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Abstract

Literature interpretations of the electrophoretic mobility of spherical poly-
electrolytes are revisited using the capillary-electrophoresis data of Duval et
al. (Biomacromolecules, 7, 2818-2826, 2006) for the extracellular polysac-
charide succinoglycan as an example. Subtle changes in the polyelectrolyte
mobility have recently been attributed to new electrokinetic theories that
feature multi-component electrolytes, charge regulation, and the so-called
polarization and relaxation phenomena. However, these calculations exhibit
several unusual trends that have yet to be explained, and so the conclu-
sions drawn from them are controversial. Here, independent computations
strengthen conclusions drawn from the original model of Duval et al., i.e., the
discrepancies between experiments and all the presently available electroki-
netic theories reflect changes in the conformation of succinoglycan arising
from changes in the electrolyte pH and ionic strength.

Keywords:

1. Introduction

This study addresses subtle features of the electrophoretic mobility versus
ionic-strength relationship for succinoglycan macromolecules. Duval et al. [2]
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measured this relationship and interpreted the data using electrokinetic mod-
els for spherical and rod-like polyelectrolytes, explicitly addressing changes
in the charge arising from changes in the pH and ionic strength of the
electrolyte, hereafter termed charge regulation. Their model furnished es-
timates of the protolytic binding site density and equilibrium dissociation
constants. Moreover, the theory advanced the well-known Hermans-Fujita
model to account for non-linear electrostatics (via the non-linear Poisson-
Boltzmann equation), ion-concentration perturbations—also termed double-
layer-polarization (DLP)—and charge regulation.

However, two recent theoretical studies by Yeh and coworkers [11, 10]
(both using finite-element (FE) modelling software to compare models with
an without DLP) argued that new electrokinetic models elucidate the subtle
changes in the mobility-ionic-strength relationship (elaborated upon below)
not captured by the model of Duval et al. [2] Both Yeh and coworkers’ theoret-
ical interpretations predict that DLP increases the magnitude of the mobility
at high ionic strengths, as evidenced by a crossing of the mobility versus ionic
strength relationships undertaken with and without DLP. As discussed in the
SI, this unusual behaviour is contrary to the general expectation that DLP
decreases the mobility magnitude. Moreover, the charge-regulation model of
Yeh et al. [11] is not fundamentally different from the model of Duval et al.
[2], since both include charge regulation closures, and both account for DLP
(the latter attribute seems to have been overlooked by Yeh and coworkers).

Attributing the qualitative differences between the theoretical calcula-
tions to new physics is controversial, and surely demands further investiga-
tion. The anomalies in question might be considered minor and, therefore,
inconsequential from a practical perspective. However, such nuances have
been used to highlight new physical insights and to motivate intricate math-
ematical models for interpreting experiments, e.g., as tools for parameter
fitting. Knowledge of whether differences between model predictions can
be attributed to new physics or, perhaps, computational artifacts is clearly
important.

The challenges of accurately solving particle-electrophoresis models are
well known [8]. Indeed, these motivate analytical approximate theories, such
as the Hermans-Fujita formula, and specialized computational methods, as
implemented below. The solution methodology adopted in this study will
be demonstrated to agree with the calculations of Duval et al. [2] (figure 1)
and the Hermans-Fujita theory (figure 2). While the former tests general
aspects of the electrokinetic model, including charge regulation, non-linear
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electrostatics, and DLP, the latter tests computational fidelity under the most
challenging conditions where disparities in particle and diffuse-layer length
scales are very large (κa ≫ 1).

Electrokinetic model

The calculations reported here were undertaken using the same method-
ology that underlies the MPEK package, which emerged from early attempts
to capture the electrostatic non-linearities and polarization and relaxation
dynamics for soft colloidal spheres with an impenetrable core and a soft,
possibly charged, permeable corona [7, 6]. Here, it was modified to include
proton-donating and proton-accepting sites. Accordingly, for the zwitteri-
onic regulation model of Yeh and coworkers, the immobile charge density ρf
arising from the groups X1H (acid, -COOH) and X2 (base, -NH2) associated
with H+ was prescribed according to equilibria

X1H ! X−
1 +H+ and X2H

+ ! X2 +H+

with equilibrium constantsK1 = [X−
1 ][H

+]/[X1H] andK2 = [X2][H
+]/[X2H

+],
and binding-site densities n∗

f,1 = [X1H] + [X−
1 ] and n∗

f,2 = [X2H
+] + [X2]. It

follows that

[X−
1 ] =

n∗
f,1

1 + [H+]/K1
and [X2H

+] =
n∗
f,2

1 +K2/[H
+]
,

so the immobile charge density for this charge-regulation model can be writ-
ten

ρf = −
en∗

f,1

1 + [H+]/K1
+

en∗
f,2

1 +K2/[H
+]
.

Details of the electrokinetic model, which addresses a much more general
class of charge-regulating spherical nanoparticulates comprising a rigid, im-
penetrable core and a porous corona, are available elsewhere [4]. To model a
porous sphere, the radius of the nanoparticle core ac must be set to a value
that is much smaller than the nominal thickness L of the corona. In this
limit, the charge and hydrodynamic drag of the vanishingly small core be-
come negligible to the charge and drag on the corona. In this study, a porous
sphere is prescribed using a Stokes-segment density profile

ns(r) = ns,00.5erfc[−(r − L− ac)/δ] (1)
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Table 1: Independent model parameters (others are provided in the figure captions). †The
mobility and drag coefficient are practically independent of these parameters because
ac ≪ L, so the core-shell particle mimics a spherical polyelectrolyte.

parameter symbol value units
core surface-charge density† σc 0 µC cm−2

core radius† ac 0.108 nm
temperature T 298 K
core relative permittivity† ϵc 10−8 -
solvent relative permittivity ϵs 78.5 -
solvent viscosity η 8.9× 10−4 Pa s
Stokes segment profile ns(r) Eqn. (1) -
corona charge profile n∗

f,1(r) Eqn. (2) -
corona charge profile n∗

f,2(r) Eqn. (3) -
Stokes segment parameter ns,0 19.8 M
Stokes segment parameter L/ac 99 -
Stokes segment parameter δ/ac 0.99 -
corona charge parameter L/ac 99 -
corona charge parameter δ/ac 0.99 -

and accompanying radial binding-site profiles

n∗
f,1(r) = n∗

f,1,00.5erfc[−(r − L− ac)/δ] (2)

n∗
f,2(r) = n∗

f,2,00.5erfc[−(r − L− ac)/δ]. (3)

With δ ≪ L, this approximates very well the perfectly step-like permeability
and charge distribution adopted in the Hermas-Fujita theory and the calcu-
lations of Duval et al. [2], Yeh et al. [10] and Yeh et al. [11] As summarized in
table 1, the calculations were undertaken with δ = 0.01L and L = 99ac (so
the nominal spherical polyelectrolyte radius a = ac + L = 100ac ≈ 1.01L).
The nominal Stokes-resistance center and immobile charge-concentration pa-
rameters, ns,0, n∗

f,1,0 and n∗
f,2,0, were varied to expedite direct comparisons

with Yeh and coworkers, prescribing ns,0 and as so that ℓ−2 = 6πasns,0.
Because the core is sufficiently small and weakly charged, the forces on

the (spherical) polyelectrolyte are practically independent of the core (size,
dielectric constant, and surface charge). This is verified below by comparison
to independent numerical calculations and analytical theory. Note, however,
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Table 2: Electrolyte-ion concentrations (n∞
j ) and the limiting ion conductivities (λj) used

to prescribe ion mobilities.

ion n∞
j (M) λj (S cm2 mol−1)

H+ n∞
1 = 10−pH 350

Cl− n∞
2 (pH > 7) 76.4

Na+ n∞
3 = −n∞

1 + n∞
2 + n∞

4 (pH > 7) 50.1
Cl− n∞

2 = n∞
1 + n∞

3 − n∞
4 (pH < 7) 76.4

Na+ n∞
3 (pH < 7) 50.1

OH− n∞
4 = 10−14+pH 199

that a vanishing of the core’s influence on the polyelectrolyte mobility when
ac ≪ a is readily anticipated from the following physical and scaling consid-
erations.

A sufficiently small core diminishes its hydrodynamic size and charge to
values that are comparable to or smaller than of the (many more) segments
that comprise the corona. Since the hydrodynamic drag force on the core
translating at velocity V is O(−ηacV ), and the electrical force is O(σa2cE),
these are obviously negligible when compared to the O(−ηaV ) and O(ρfa3E)
hydrodynamic and electrical forces on the corona when ac ≪ a and κa ≪ 1.
When κa ≫ 1, the electric field drives an O(−ρfℓ2E/η) electroosmotic flow
velocity Ueo through the polyelectrolyte; however, the hydrodynamic drag on
the segments precisely balances the electrical force, and so the net electric-
field-induced force on the polyelectrolyte is dominated by the external viscous
flow, which furnishes an O(−ηaUeo = aρfℓ2E) force, and, thus, an O(ρfℓ2/η)
electrophoretic mobility V/E when κa ≫ 1, as predicted by the Hermans-
Fujita theory in this limit.

The forces from the MPEK methodology are customarily computed from
the far-field velocity disturbances in an unbounded electrolyte [8, 7]. To avoid
unnecessary controversy over the force-evaluation method, the forces were
also calculated from direct integrations of the electrical and hydrodynamic
forces on the corona/polyelectrolyte, as detailed by Hill [4]. Both methods
furnished the same mobilities (to numerical discretization accuracy), and also
reproduced the Hermans-Fujita theory for uniform, weakly charged spheres
(fixed charge), without DLP. Studies of DLP in multi-component electrolytes
with charge regulating coronas and gels (for nanoparticle gel electrophore-
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sis) have recently been undertaken by Hill [4] and Hill [5]. These provide
direct comparisons of computations undertaken with and without DLP, also
assessing the influence of electrolyte-ion mobilities on the particle drag coef-
ficient (elucidating electroviscous effects resulting from polarization), as well
quantifying how numerical errors scale with the computational extent, grid
resolution, and force-evaluation method.

Results and discussion

The MPEK package furnishes many useful diagnostics, e.g., drag, co-
efficient, polarizability, and conductivity increment. Here we examine the
dimensionless electrophoretic mobility

M∗ =
V

E

ηe

ϵsϵ0kBT
,

where V is the (signed) electrophoretic particle velocity in response to an
electric field with strength E. Note that the customary factor of 3/2 has
been discarded to expedite a direct comparison with Yeh and coworkers. The
methodology was first tested by computing spherical polyelectrolyte mobili-
ties using the charge-regulation model of Duval et al. [2] As shown in figure 1,
these calculations (which account for charge regulation, non-linear electro-
statics, and DLP) are in excellent agreement over the full range of ionic
strengths reported by Duval et al. [2].

Additional tests were undertaken by direct comparison with the well-
known Hermans-Fujita theory (see also Ohshima [9]) over an unprecedented
range of fixed charge densities and ionic strengths. The Hermans-Fujita
formula can be written

V

E
≈ ρfℓ2

η

[
1 +

(a
ℓ

)2 1 + e−2κa

9 + 3(κa)2

]
, (4)

where ρf is the fixed/immobile charge density, and ℓ and κ−1 are, respec-
tively, the Brinkman and Debye lengths. The dimensional pre-factor is the
limiting mobility at high ionic strength when κa ≫ 1. As expected, the
results presented in figure 2 are in excellent agreement when the electro-
static potential is low enough to justify the Debye-Hückel approximation
and neglect of DLP. Note that the (sometimes significant) differences aris-
ing from non-linear electrostatics and DLP are consistent with expectations
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Figure 1: Electrophoretic mobility compared with Duval et al. [2] (charge regulation,
nonlinear electrostatics, DLP): a = 10.8 nm, ℓ = 0.7 nm, n∗

f,1,0 = 0.239 M, pK1 = 4.58
and pK2 = 8.60 at pH = 10.3. The green line is the data labelled as ‘rigorous theory’ from
figure 3B of Duval et al. [2], which they evaluated using the computational methodology
of Duval and Ohshima [1]; the blue solid (red dashed) lines are calculations using the same
charge-regulating electrokinetic model of Duval et al. [2] (two acid-dissociation moieties)
evaluated with (without) DLP. Symbols are the experimental data of Duval et al. [2]
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gleaned from soft core-shell nanoparticles [7] and the foregoing comparison
with Duval et al. [2] Moreover, the differences between the numerically exact
calculations without DLP (red dashed lines) and Eqn. (4) (black dash-dotted
lines) are because the Debye-Hückel approximation (in the analytical approx-
imation) breaks down as the magnitude of the electrostatic potential inside
the polyelectrolyte increases with decreasing ionic strength (decreasing κa).

10−2 10−1 100 101 102
−6

−5

−4

−3

−2

−1

0

M
∗

κa

Figure 2: Spherical polyelectrolyte electrophoretic mobility versus scaled reciprocal Debye
length κa: a = 20 nm, ℓ = 2 nm, and fixed charge densities ρf = 1, 2, 4, ... 128, 256 mM
(top to bottom). The blue solid (dashed red) lines are calculations (δ = L/100 with
electrolytes containing H+, Cl−, Na+ and OH− ions at pH = 7) with (without) DLP. The
black dash-dotted lines are Eqn. (4) (Hermans-Fujita theory: Debye-Hückel approximation
without DLP).

Finally, we turn to the electrophoretic mobilities of Yeh et al. [11] General
model parameters are summarized in tables 1 and 2 with other parameters
(specific to particular calculations) provided in figure captions. To expedite
comparisons with Yeh et al. [11], all the calculations were undertaken with
four electrolyte ion species. The concentrations of H+ and OH− were set
according to the prescribed pH, with the concentration of Na+ (Cl−) chosen
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to vary the bulk ionic strength I when pH < 7 (> 7), and the concentration
of Cl− (Na+) calculated to ensure an electro-neutral bulk electrolyte when
pH < 7 (> 7). Note that there is a lower limit to the ionic strength at each
pH, which increases as the pH deviates from 7.

The mobility versus ionic-strength relationship is shown in figure 3 using
the same parameters as Yeh et al. [11] The results in figure 2 of Yeh et al. [11]
(available in the SI) were calculated with pH = 10.3 (as also in the experi-
ments to which they compared their calculations). It is therefore important
to note that the pair of curves in figure 3 that begin at an ionic strength
0.2 mM are the ones to be compared to Yeh et al. [11] Note that the ionic
strength in figure 3 has been extended to 1 M to avoid unnecessary contro-
versy over the way in which the mobility approaches the high-ionic-strength
limit.

The calculations with and without DLP plateau at high ionic strength to
the value furnished by Eqn. (4) in this limit (horizontal dash-dotted line).
Consistent with the general expectation stated in the introduction (and dis-
cussed in the SI), there is no crossing of the curves computed with and with-
out DLP. Thus, contrary to the predictions of Yeh et al. [11] and Yeh et al.
[10], the magnitude of the mobility is indeed diminished by DLP at high ionic
strength, and this attenuation is amplified by the increasing electrostatic po-
tential that accompanies a decrease in the electrolyte ionic strength.

Note that pH = 10.3 is considerably higher than the values of pK1 and
pK2 prescribed for H+ (see table 2), so under these conditions the charge
regulation is weak. Nevertheless, the additional calculations presented in
figure 3 with four lower pH values confirm that the charge decreases with
decreasing pH. Because the electrostatic potential decreases with the de-
creasing charge that accompanies the change in pH, this attenuates the role
of DLP. At pH = 4 and 5, for example, the difference between the solid (with
DLP) and dashed (without DLP) curves is practically null. Again, all the
curves asymptote to the limiting mobilities of Eqn. (4), as demonstrated in
figure 2 for polyelectrolytes bearing a fixed charge.

Conclusions

The calculations undertaken here show that the unusual ‘bumps’ and
crossings of the electrophoretic mobility versus ionic-strength relationship
predicted by Yeh et al. [11] and Yeh et al. [10] cannot be attributed to
the electrokinetic models. The present calculations validate those of Duval
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Figure 3: Electrophoretic mobility for succinoglycan versus ionic strength for an electrolyte
comprising H+, Cl−, Na+ and OH− and other parameters as prescribed by Yeh et al. [11]:
a = 10.8 nm, ℓ = 0.635 nm, n∗

f,1,0 = 0.213 M, n∗
f,2,0 = 0.026 M, pK1 = 4.58 and

pK2 = 8.60. Other parameters are listed in tables 1 and 2. Solid (dashed) lines are
calculations with (without) DLP. The dash-dotted line is the value furnished by Eqn. (4)
at high ionic strength for the fully dissociated polyelectrolyte (M∗ ≈ −0.46), and the
symbols are experimental data from Duval et al. [2] at pH = 10.3.
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et al. [2], the analytical theory of Hermans [3], and indeed other numerical
calculations undertaken by Yeh and coworkers, albeit in other regions of the
parameter space (not compared to the data and calculations of Duval et al.).
Thus, the anomalous electrokinetic interpretations must be attributed to
computational artifacts in the experimental region of the parameter space
or, perhaps, oversights in the fitting and reporting of the model parameters.
The present calculation methodology (i) has 2nd- or 3rd-order convergence
(depending on the force-evaluation methodology) when increasing the radial
extent of the computational domain [4], (ii) adopts a highly adaptive grid,
and (iii) captures the far-field asymptotic decay of the decaying perturbation
fields (ion concentration, electrostatic potential, and fluid velocity). Thus, its
high accuracy for a broad class of spherical core-shell nanoparticles provides a
useful benchmark with which to test new models and solution methodologies.
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