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Abstract An innovative approach to the design of the

gear-tooth root-profile, and its effects on the service life

is reported in this paper. In comparison with the widely

used trochoidal and the recently proposed circular-

filleted root profiles, the optimum profile proposed here

is a G2-continuous curve that blends smoothly with

both the involute of the tooth profile and the deden-

dum circle. Following the AGMA and ISO standards

for fatigue loading, the von Mises stress at the critical

section and stress distribution along the gear tooth root

are studied. The process leading to gear-tooth failure

is composed of the crack initiation phase, in number

of cycles Ni, and the crack propagation phase, in Np
cycles. The strain-life (ε-N) method is employed to de-

termine Ni, where the crack is assumed to initiate at

the critical section. Based on the ANSYS crack-analysis
module, the effects of G2-continuous blending on the

stress intensity factor (SIF) are investigated for differ-

ent crack sizes. Paris’ law, within the framework of Lin-

ear Elastic Fracture Mechanics, is used to correlate the

SIF with crack size and, further, to determine Np. The

optimum profile provides a significant reduction in SIF

and improvement in both Ni and Np. Spur gears are

made of high-strength steel alloy 42CrMo4, the effects

of its properties and surface treatment on service life

improvement not being included in this study.

Keywords tooth root-profile optimization · crack

initiation · crack propagation · linear elastic fracture

mechanics · finite element method

1 Introduction

With the increasing demands on gear transmissions

in the automotive and the aerospace industry, spur

gears have become the focus of intensive research during

the last two decades. As a key component, the reliability

of spur gears plays a significant role in the performance

of the overall gear transmission system. Reliability de-

pends on two items: 1) the load-carrying capacity of

the gear tooth during static or dynamic load transmis-

sion via the tooth flanks in contact; and 2) the ser-

vice life of the gear tooth leading to fatal damage due

to fatigue [1]. Each item should not be treated inde-

pendently; they are interacting. On the one hand, the

increase of gear-tooth strength serves as an important

factor for the improvement of service life due to fatigue;

on the other hand, the critical area for short service life

always falls into the stress concentration area, which

could contribute to a decrease in the tooth strength.

Generally, gear teeth suffer from three basic types of

fracture: impact; fatigue; and “stringers” or “gas pock-

ets” [2]. Fatigue fracture, under consideration in this

paper, is caused by an extremely high number of stress

cycles on a gear tooth over a certain period. Hence,

an optimum gear design with reduced bending stress

plays significant roles in improving the fatigue service

life. Two approaches are commonly adopted to reduce

bending stress for a given tooth size: a) to alter the

generating cutter-tooth tip; and b) to modify the gear-

tooth root-fillet profile [3]. For the former, different

tooth profiles can be generated by assigning different

tip radii to the hob. The trochoidal curve, a shape

amenable to generation by a hob, is most widely used

in the gear industry. According to Buckingham [4], the

larger the tip radius of the hob, the lower the bending

stress concentration at the gear root. Therefore, com-

pared to its counterpart produced by a rounded-corner

hob, the trochoidal root fillet generated by a full-tip-

radius hob shows higher bending strength. As explained
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Nomenclature

α crack propagation direction angle

αc pressure angle

β dimensionless geometric factor

∆ε total cyclic strain range

∆εe elastic strain range

∆εp plastic strain range

∆σ stress range

∆K stress intensity factor range

ε′f fatigue ductility coefficients

ν Poisson ratio

σ uniform tensile stress in a direction normal to

the plane of crack

σ′f fatigue strength

σm mean stress

ξF angle between the fillet tangent and the tooth

centerline

a crack length

ac critical crack size

ai initial crack size

b strength exponent

C material constant

c fatigue ductility exponent

E Young modulus

hFe bending moment arm application at the tip

K stress intensity factor

K ′ hardening coefficient

KI SIF for fatigue mode I

KIc fracture toughness

KII SIF for fatigue mode II

m material constant

mt gear module

n′ cyclic strain-hardening exponent

Ni crack initiation period

Np crack propagation period

Nt number of teeth

ra radius of the addendum circle

rb radius of the base circle

rd radius of the dedendum circle

rp radius of the pitch circle

sFn tooth thickness at the critical point

APDL ANSYS Parametric Design Language

CAE Computer-Aided-Engineering

DOF degrees of freedom

DTA Damage Tolerance Analysis

FEM Finite Element Method

HPSTC Highest Point of Single Tooth Contact

LEFM Linear Elastic Fracture Mechanics

MTS Maximum Tangential Stress

OCS optimum cubic-spline

ODA Orthogonal Decomposition Algorithm

SIF stress intensity factor

by Zhao [5], a novel approach was developed to optimize

the gear-tooth root profile by optimizing the cutter tip

using a rational quadratic Bezier curve. Extensive in-

vestigations were conducted on root-fillet profile opti-

mization. Spitas et al. [6] proposed a novel circular fillet

design for spur gears instead of the conventional tro-

choidal fillet. The circular-fillet was proved to be capa-

ble of increasing gear-fatigue life via boundary-element

analysis. Similar analysis on the comparison between

trochoidal and circular fillets was reported by Sankar et

al. [7,8,9]. Other types of root-fillet profiles were also

analyzed, for instance, the elliptical fillet [10], the op-

timum fillet produced by polynomial curve fitting [11],

as well as that formed by FEA, and a random search

method [3].

Fatigue analysis is critical in gear design [12]. The

process leading to structural failure is composed of a fa-

tigue crack initiation and a crack propagation phases.

The former represents the early stage of fatigue dam-

age, which depends on the micro- and macro-geometry

of the specimen, microstructure of the material and the

applied load [13]. The prediction of crack initiation is

based on the strain-life method, correlating the number

of cycles Ni to initiate a fatigue crack with deformation

ε, and stress σ. This method assumes that the crack is

always initiated at the critical location, where the maxi-

mum von Mises stress occurs. In the strain-life method,

the macroscopic elasto-plastic relations are explained

and the plastic effects are described by the local strain

range instead of stress range at the critical location [14].

By means of the Ramberg-Osgood description, the local

strain range and loading cycles are correlated, consid-

ering the cyclic softening and hardening of the mate-

rial [15]. The total cyclic strain range ∆ε is composed

of the elastic and plastic strain ranges, i.e., ∆εe and

∆εp, as

∆ε

2
=
∆εe

2
+
∆εp

2
=
∆σ

2E
+

Å
∆σ

2K ′

ã1/n′

(1)

where E is the Young modulus, K ′ the hardening co-

efficient, ∆σ the stress range and n′ the cyclic strain-
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hardening exponent. Parameters E, K ′ and n′ are ma-

terial properties, obtained experimentally.

Based on the Ramberg-Osgood relationship recalled

in Eq. 1, the strain range at the critical location is cor-

related with the number of fatigue loading cycles Ni in

terms of the Coffin-Manson relation [16,17,18], namely,

∆ε

2
=
∆εe

2
+
∆εp

2
=
σ′f − σm

E
(2Ni)

b
+ ε′f (2Ni)

c
(2)

where σ′f , σm and ε′f are the fatigue strength, mean

stress and fatigue ductility coefficients, respectively,

while b and c are the strength exponent and fa-

tigue ductility exponent, measured from fully tension-

compression fatigue tests.

The crack enters the stage of crack propagation once

the number of loading cycles is beyond Ni. The Paris

law, within the framework of the theory of Linear Elas-

tic Fracture Mechanics (LEFM), relates the stress in-

tensity factor range to the fatigue crack growth, under

the fatigue stress [12]. The Paris law is applicable to

the prediction of crack growth based upon the assump-

tion that the stress intensity factor (SIF) range ∆K is

a function of the crack growth rate, da/dNp, namely,

da

dNp
= C∆Km(a) (3)

where C and m are material constants, a being the

crack length, ∆K(a) the stress-intensity range factor,

i.e., the stress intensity factor difference between the

maximum and minimum loading, in units of MPa m1/2:

∆K = Kmax −Kmin (4)

According to the theory of fracture mechanics, the

stress intensity factor (SIF) is defined as a function of

crack length a [19]:

K = βσ
√
πa (5)

where σ is the uniform tensile stress in a direction nor-

mal to the plane of crack, β a dimensionless geometric

factor. Based on Eq. 5, the SIF follows:

∆K = β∆σ
√
πa (6)

The Paris law is now expressed as1

da

dN
= C

(
β∆σ

√
πa
)m

(7)

1 Although N is an integer, its values lie in the order of
106, for which reason it is common practice to treat it as a
real number.

The integration of dN , obtained from eq. (7), with

respect to the crack propagation loading cycles Np
yields,

∫ Np

0

dN =

∫ ac

ai

da

C (β∆σ
√
πa)

m

=
1

C (β∆σ
√
π)
m

∫ ac

ai

a−m/2da

(8)

which leads to

Np =
2(a1−m/2

c − a1−m/2
i )

(2−m)C(β∆σ
√
π)m

(9)

Equation (9) shows an explicit relation between the

number of loading cycles for the crack to propagate

from the initial crack size ai at the end of the crack

initiation phase, to ac, the critical crack size. The di-

mensionless geometric factor β depends on the crack

size a. Therefore, for given material parameters C and

m, the service life from ai to ac, i.e., Np, can be deter-

mined by means of certain numerical tools to build the

relation of β with the crack length a.

Of all the fatigue studies on gears, research has

mainly focused on developing computational models to

predict the service life and investigating the effects of

diverse types of material on the fatigue crack growth.

Crack initiation is strongly influenced by surface de-

fects, e.g., surface roughness and large amount of inclu-

sions [20]. Surface crack may also take place as a re-

sult of a high humid working environment and thermal

treatment of the material, because of residual stresses

accumulated.

This paper focuses on the gear-tooth breakage prob-

lem, the authors proposing a novel methodology to op-

timize the tooth-root profile, for the improvement of

gear service life. Instead of investigating effects of ma-

terial properties and surface treatment on service life,

the authors propose the optimization of the gear tooth-

root profile. The most popular standards for tooth-root

profile design are AGMA and ISO. Following both stan-

dards, the critical section is defined, where the potential

crack is initiated under fatigue loading. In this paper,

effects of the root profile on the reduction of stress, and

further, on the fatigue service life, are investigated. The

fatigue analysis results of the proposed optimum gear-

tooth root profile are compared with the commonly

used root profiles. Conclusions regarding the effects of

gear tooth-root profile optimization on the improve-

ment of fatigue service life are drawn. It is noteworthy

that this paper focuses on the synthesis of the optimum

shape, without considering the limitations imposed by

current gear-cutting technology. However, technology
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maturing and diversifying by the day, like additive man-

ufacturing [21], means to produce economically the fil-

lets we are proposing here should be feasible in the fore-

seeable future.

2 Geometric Modelling of the Spur Gear Tooth
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Fig. 1 Spur gears in contact

Figure 1 illustrates the working principle of spur

gears under loading conditions. For any tooth, the con-

tact force is applied along the contact line on the flank
of the gear tooth, thereby causing a bending stress

at the tooth root. Under contact, each gear tooth is

assumed to behave as a cantilever beam, subjected

to bending. The maximum bending stress of the gear

tooth, evolving from the accumulation of normal stress
under bending, appears at the root fillet. The gear tooth

root is exposed to a combination of both shearing and

bending [22]. Due to the maximum stress that the tooth

root experiences, the stress intensity and working life
of a gear tooth is highly dependent on the tooth-root

strength [23]. Moreover, fatigue failure, often taking

place at the tooth root [6], occurs in this region due to

the repeated stress applied exceeding the yield stress

limit of the material; it can thus cause serious defects
leading to the breaking of the proper transmission be-

tween contacting gears, the whole transmission system

thereby failing.

According to the LEFM, crack initiates at the criti-

cal section, the one most affected by root stress concen-

tration [24]. For spur gears, both AGMA and ISO stan-
dards assume that the maximum stress at tooth root

occurs at the critical section. It is noted that the AGMA

standard introduces the Lewis-inscribed parabola and

defines the critical section as the intersection of the
parabola and the tooth root fillet. Figure 2 illustrates

the AGMA and ISO standards for the gear tooth-root

critical point. In the figure, sFn is the tooth thickness

at the critical point, hFe the bending moment arm ap-

plication at the tip, and ξF the angle between the fil-

let tangent and the tooth centerline. As the maximum

stress occurs at the critical point F , optimization of the

gear tooth-root profile might help to reduce the maxi-
mum von Mises stress at that point, thus increasing the

crack initiation and crack propagation phases, Ni and

Np. Both standards also define the location of the load

applied on the gear tooth. According to both standards,
the maximum stress at the tooth root is calculated with

respect to the load applied at the Highest Point of Sin-

gle Tooth Contact (HPSTC) for spur gears.

It is noteworthy that determination of all parame-

ters of the whole gear tooth profile is not available in
the AGMA and ISO standards. They provide calcula-

tion of the basic important parameters of gear tooth

design, namely, sFn, hFe and ξF , as shown in Fig. 2.

For example, according to the AGMA standard, the in-
fluence of the number of teeth on design parameters is

taken into account. As per Kawalec et al. [22], when

the gear is loaded at the HPSTC, the influence of the

number of teeth on sFn and hFe at the critical point is

slight; hence, this influence is neglected in this paper.

Figure 3 illustrates a trochoidal tooth root, com-

monly used in the design of the gear tooth-root pro-

file [6,25]. The trochoidal root fillet type analyzed

herein is produced by the full-tip-radius hob, with a
hob radius of 11.33 mm, which leads to lower bend-

ing stress concentration compared to its counterpart

produced by rounded-corner hob [4]. Besides the tro-

choidal profile, the circular fillet is also used in the gear
industry [3,7]. The circular-filleted profile can be man-

ufactured under a similar cutting process, with a fillet

radius of 10.94 mm in this paper, for comparison.

Due to curvature discontinuity at the blending

points of the trochoidal and circular fillet with the invo-
lute tooth profile and the dedendum circle, stress con-

centration occurs at those points [26]. Such disconti-

nuities cause a drastic jump in stress values, thereby

promoting mechanical failure [27]. A possible approach
to reducing fatigue stress at the critical point is the

smoothing of the gear tooth-root profile [1].

For the trochoidal, circular and optimum tooth-

root profiles, based on both standards, a static, uni-

formly distributed transmitted load is applied at the
HPSTC of the gear tooth. The transmitted load is nor-

mal to the tooth flank and pointing to the HPSTC.

Both AGMA and ISO standards consider FEM as one

of the most accurate methods in determining the gear
tooth strength [22]. By means of FEA under ANSYS,

the maximum stress is obtained at the critical section

of the tooth root.
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Fig. 3 Gear tooth-root curve shapes

Figure 4 illustrates the 2-D geometry of an involute

spur gear tooth, with its dimensions listed in Table 1.
The parameter values of the spur gear used in this work

were taken from the specialized literature [8]. Spur gears

are widely used in high-power planetary transmission
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Fig. 4 Geometry of the spur gear tooth [28]

(big 2 × 550 kW excavators). Due to the heavy load

transmitted, spur gears are relatively large. The coor-

dinate frame {O, x, y} has its origin at the center of the

gear, its y-axis being the axis of symmetry of the gear
tooth.

Table 1 Dimensions of the spur gear model

number of
teeth Nt

module mt

(mm)
face width

(mm)

pressure
angle
αC (◦)

addendum
circle radius
ra (mm)

20 24 350 20 264

pitch circle
radius rp
(mm)

base circle
radius rb
(mm)

dedendum
circle radius
rd (mm)

ΩS (◦) ζm (◦)

240 225.5262 210 5.35 3.65

The involute profile is widely used in gear-tooth de-

sign, due to its ease of high-precision manufacturing,

low transmission error, silent operation, as well as sim-

plicity of assembly—the latter arises from their robust-
ness to errors in the distance between gear centers—

in combination with its capability to maintain a uni-

form angular-velocity ratio [29,30]. The involute seg-

ment ÷AB, shown in Fig. 4, is defined by§
xinv = rb(cos t+ t sin t)

yinv = rb(sin t− t cos t)
, 0 ≤ t ≤

Ê
r2a
r2b

− 1 (10)

where rd, rb, rp denote the radius of the dedendum cir-

cle, the base circle and the pitch circle, respectively.

(a)

5

Fbn

αFen

ξF

sFn

Lewis
inscribed
parabola

hFe

F
F

σF

HPSTC

CL

(a)

Fbn

αFen

ξF

sFn

γe

hFe

F
F

σF

HPSTC

σF

ren

CL

(b)

Fig. 2 Determination of the critical section, according to (a)
AGMA standard 918-A93 and (b) ISO 6336 standard

trochoidal
profilebase circle

root circle

Fig. 3 Gear tooth-root curve shapes

Figure 4 illustrates the 2-D geometry of an involute

spur gear tooth, with its dimensions listed in Table 1.
The parameter values of the spur gear used in this work

were taken from the specialized literature [8]. Spur gears

are widely used in high-power planetary transmission

O

x

y

involute

addendum circle

base circle

pitch circle

dedendum circle

ra
rb

rp

rd

A

B

D

E

xE

yE

Γ Γ

ΩS

ζ

αc

f

H

Fig. 4 Geometry of the spur gear tooth [28]

(big 2 × 550 kW excavators). Due to the heavy load

transmitted, spur gears are relatively large. The coor-

dinate frame {O, x, y} has its origin at the center of the

gear, its y-axis being the axis of symmetry of the gear
tooth.

Table 1 Dimensions of the spur gear model

number of
teeth Nt

module mt

(mm)
face width

(mm)

pressure
angle
αC (◦)

addendum
circle radius
ra (mm)

20 24 350 20 264

pitch circle
radius rp
(mm)

base circle
radius rb
(mm)

dedendum
circle radius
rd (mm)

ΩS (◦) ζm (◦)

240 225.5262 210 5.35 3.65

The involute profile is widely used in gear-tooth de-

sign, due to its ease of high-precision manufacturing,

low transmission error, silent operation, as well as sim-

plicity of assembly—the latter arises from their robust-
ness to errors in the distance between gear centers—

in combination with its capability to maintain a uni-

form angular-velocity ratio [29,30]. The involute seg-

ment ÷AB, shown in Fig. 4, is defined by§
xinv = rb(cos t+ t sin t)

yinv = rb(sin t− t cos t)
, 0 ≤ t ≤

Ê
r2a
r2b

− 1 (10)

where rd, rb, rp denote the radius of the dedendum cir-

cle, the base circle and the pitch circle, respectively.

(b)

Fig. 2 Determination of the critical section, according to (a)
AGMA standard 918-A93 and (b) ISO 6336 standard

5

Fbn

αFen

ξF

sFn

Lewis
inscribed
parabola

hFe

F
F

σF

HPSTC

CL

(a)

Fbn

αFen

ξF

sFn

γe

hFe

F
F

σF

HPSTC

σF

ren

CL

(b)

Fig. 2 Determination of the critical section, according to (a)
AGMA standard 918-A93 and (b) ISO 6336 standard

trochoidal
profilebase circle

root circle

Fig. 3 Gear tooth-root curve shapes

Figure 4 illustrates the 2-D geometry of an involute

spur gear tooth, with its dimensions listed in Table 1.
The parameter values of the spur gear used in this work

were taken from the specialized literature [8]. Spur gears

are widely used in high-power planetary transmission

O

x

y

involute

addendum circle

base circle

pitch circle

dedendum circle

ra
rb

rp

rd

A

B

D

E

xE

yE

Γ Γ

ΩS

ζ

αc

f

H

Fig. 4 Geometry of the spur gear tooth [28]

(big 2 × 550 kW excavators). Due to the heavy load

transmitted, spur gears are relatively large. The coor-

dinate frame {O, x, y} has its origin at the center of the

gear, its y-axis being the axis of symmetry of the gear
tooth.

Table 1 Dimensions of the spur gear model

number of
teeth Nt

module mt

(mm)
face width

(mm)

pressure
angle
αC (◦)

addendum
circle radius
ra (mm)

20 24 350 20 264

pitch circle
radius rp
(mm)

base circle
radius rb
(mm)

dedendum
circle radius
rd (mm)

ΩS (◦) ζm (◦)

240 225.5262 210 5.35 3.65

The involute profile is widely used in gear-tooth de-

sign, due to its ease of high-precision manufacturing,

low transmission error, silent operation, as well as sim-

plicity of assembly—the latter arises from their robust-
ness to errors in the distance between gear centers—

in combination with its capability to maintain a uni-

form angular-velocity ratio [29,30]. The involute seg-

ment ÷AB, shown in Fig. 4, is defined by§
xinv = rb(cos t+ t sin t)

yinv = rb(sin t− t cos t)
, 0 ≤ t ≤

Ê
r2a
r2b

− 1 (10)

where rd, rb, rp denote the radius of the dedendum cir-

cle, the base circle and the pitch circle, respectively.

Fig. 3 Gear tooth-root curve shapes

Figure 4 illustrates the 2-D geometry of an involute

spur gear tooth, with its dimensions listed in Table 1.

The parameter values of the spur gear used in this work

were taken from the specialized literature [8]. Spur gears

are widely used in high-power planetary transmission

(big 2 × 550 kW excavators). Due to the heavy load

5

Fbn

αFen

ξF

sFn

Lewis
inscribed
parabola

hFe

F
F

σF

HPSTC

CL

(a)

Fbn

αFen

ξF

sFn

γe

hFe

F
F

σF

HPSTC

σF

ren

CL

(b)

Fig. 2 Determination of the critical section, according to (a)
AGMA standard 918-A93 and (b) ISO 6336 standard

trochoidal
profilebase circle

root circle

Fig. 3 Gear tooth-root curve shapes

Figure 4 illustrates the 2-D geometry of an involute

spur gear tooth, with its dimensions listed in Table 1.
The parameter values of the spur gear used in this work

were taken from the specialized literature [8]. Spur gears

are widely used in high-power planetary transmission

O

x

y

involute

addendum circle

base circle

pitch circle

dedendum circle

ra
rb

rp

rd

A

B

D

E

xE

yE

Γ Γ

ΩS

ζ

αc

f

H

Fig. 4 Geometry of the spur gear tooth [28]

(big 2 × 550 kW excavators). Due to the heavy load

transmitted, spur gears are relatively large. The coor-

dinate frame {O, x, y} has its origin at the center of the

gear, its y-axis being the axis of symmetry of the gear
tooth.

Table 1 Dimensions of the spur gear model

number of
teeth Nt

module mt

(mm)
face width

(mm)

pressure
angle
αC (◦)

addendum
circle radius
ra (mm)

20 24 350 20 264

pitch circle
radius rp
(mm)

base circle
radius rb
(mm)

dedendum
circle radius
rd (mm)

ΩS (◦) ζm (◦)

240 225.5262 210 5.35 3.65

The involute profile is widely used in gear-tooth de-

sign, due to its ease of high-precision manufacturing,

low transmission error, silent operation, as well as sim-

plicity of assembly—the latter arises from their robust-
ness to errors in the distance between gear centers—

in combination with its capability to maintain a uni-

form angular-velocity ratio [29,30]. The involute seg-

ment ÷AB, shown in Fig. 4, is defined by§
xinv = rb(cos t+ t sin t)

yinv = rb(sin t− t cos t)
, 0 ≤ t ≤

Ê
r2a
r2b

− 1 (10)

where rd, rb, rp denote the radius of the dedendum cir-

cle, the base circle and the pitch circle, respectively.
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Generally, the fillet curve bears a complex form,

which depends on the form of the cutting finish
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tools [31]. For practical purposes, the curve segment Γ ,

which blends with the involute at point B and with the

dedendum circle at pointD, functions as the gear tooth-

root fillet [23]. Γ is commonly produced in gear design

as a circular arc [8,7]. The problem with the circular

root fillet lies in that it provides only first order geo-

metric continuity, G1, at the blending points2 B and D,

which gives rise to stress concentration due to curvature

discontinuities [32]. Further, the local stress concentra-

tion caused by geometric discontinuities may lead to

failure of the structure [13]. The widely used trochoidal

fillet only provides G1-continuity at the blending points

also [4]. In order to reduce the stress concentration,

an important criterion, G2-continuity at the blending

of two given curve segments, should be satisfied. G2-

continuity means position, tangent and curvature con-

tinuity over a given geometric curve [33]. Therefore, the

problem at hand is formulated as the optimization of

the root profile, implemented by an optimum curve Γ ,

which connects the blending points B and D with G2-

continuity, as smoothly as possible.

The position of point D depends on the value of ζ,

the angle between OB and the centerline of gear-tooth

space, which satisfies 0 < ζ ≤ ζm, with ζm given as [6]

ζm =
π

Nt
−ΩS (11)

where ΩS is the angle from the centerline of the tooth

to OB, defined as

ΩS = π/ (2Nt) + inv(αc) (12)

Nt being the number of teeth and inv(x) denoting the

involute function of x, defined as inv(x) ≡ tan(x)− x.

It is noteworthy that ζm is chosen with the purpose

of synthesizing a tooth-root profile with the “smallest

possible curvature”. The term in quotation marks will

be precisely defined in the sequel.

The transmitted load f is normal to the tooth flank

and exerted at the HPSTC—Point H in Fig. 4.

3 Methodology

3.1 Curve synthesis

For the purpose of simplifying the curve synthesis

procedure, we resort to non-parametric cubic splines

to discretize the tooth-root fillet [34]. This spline is a

straightforward and simple numerical tool, that lends

itself to applications in industrial shaping. Moreover,

the proposed cubic spline can be readily integrated with

2 G1 continuity means point- and tangent-continuity; not
curvature-continuity.

Computer-Aided-Engineering (CAE) software. Figure 5

includes a sketch of the blending segments—the invo-

lute and part of the dedendum circle—by means of a

third one, Γ , between B and D. The coordinate frame

{E, xE , yE} is built with the yE-axis parallel to OB of

Fig. 4. Notice that the segments in this figure pertain

to a tooth in the lower half of the gear, as opposed to

the tooth of Fig. 4, for ease of representation.
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Now, n + 2 points {Pk}n+1
0 are defined along

the mid-curve segment Γ , by their polar coordi-

nates Pk(ρk, θk), with P0(ρ0, θ0) chosen as B and
Pn+1(ρn+1, θn+1) as D. For point Pk, let θk = θ0+k∆θ,

for k = 1, 2, . . . , n+1, the uniform increment ∆θ being

∆θ =
θn+1 − θ0
n+ 1

(13)

Hence, the polar coordinates {ρk}n+1
0 are arrayed in

a (n+ 2)-dimensional vector ρ, namely,

ρ = [ρ0, ρ1, · · · , ρn+1]
T

(14)

By the same token, its first- and second-order deriva-

tives ρ′ and ρ′′, are defined with respect to the polar

coordinate θ of Fig 5.

According to the definition of non-parametric cubic

splines, the cubic polynomial ρk(θ) between two consec-

utive supporting points Pk and Pk+1 takes the form [35]
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0 are arrayed in

a (n+ 2)-dimensional vector ρ, namely,

ρ = [ρ0, ρ1, · · · , ρn+1]
T

(14)

By the same token, its first- and second-order deriva-

tives ρ′ and ρ′′, are defined with respect to the polar

coordinate θ of Fig 5.

According to the definition of non-parametric cubic

splines, the cubic polynomial ρk(θ) between two consec-

utive supporting points Pk and Pk+1 takes the form [35]

ρk(θ) = Ak(θ−θk)3+Bk(θ−θk)2+Ck(θ−θk)+Dk (15)
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in which θk ≤ θ ≤ θk+1 and 0 ≤ k ≤ n.

By virtue of the G2-continuity condition, i.e., two

curvatures coinciding at the blending point, ρ, ρ′ and

ρ′′ are found to satisfy the linear relationships be-

low [35]:

Aρ′′ = 6Cρ, Pρ′ = Qρ (16)

with matrices A, C, P and Q provided in the Appendix.

Further, the curvature at Pk takes the form, in polar

coordinates,

κk =
ρ2
k + 2(ρ′k)2 − ρkρ′′k
[ρ2
k + (ρ′k)2]3/2

(17)

Now, if a curve with “the smallest possible curva-

ture” is sought, an obvious candidate is a curve Γ with

a curvature distribution that carries the minimum root-

mean-square value in the segment comprised between

B and D of Fig. 4. Hence, the optimization problem is

formulated as

z =
1

n

n∑

k=1

wkκ
2
k −→ min

x
, x = [ρ1 · · · ρn]

T

subject to

κ0(ρ,ρ′,ρ′′) = κB = 1/rb,

κn+1(ρ,ρ′,ρ′′) = κD = 1/rd
(18)

in which wk denotes a normalized weight at point Pk,

obeying
∑n
k=1 wk = 1. Besides, with reference to Fig. 4,

the additional boundary constraints at the two blending

points are

{
θ0 = θB = 0

θn+1 = θD =
π

2
− ζm ,

{
ρ0 = ρB = rb tan ζm

ρn+1 = ρD =
rb

cos ζm
− rd
(19)

The optimization problem thus formulated is a con-

strained nonlinear mathematical program, which can

be solved using a suite of methods, the one used here

is the in-house developed ODA (orthogonal decompo-

sition algorithm) [36].

3.2 Co-simulation

Upon the geometry synthesis of the root profile, the

optimization problem formulated in Sec. 3.1 is imple-

mented via co-simulation by means of the ODA pack-

age implemented in Matlab and the FEA using a cus-

tomized ANSYS Parametric Design Language (APDL).

The procedure starts with equal weights for all sup-

porting points, i.e., wk = 1/n, the coordinates for all

supporting points being generated to form the initial

cubic-splined tooth profile. The optimum found with

equal weights is termed the geometric optimum. Based

on the G2-continuity constraints, the geometric opti-

mum is capable of reducing the stress concentration to

some extent. However, there is still room for improve-

ment. Hence, a set of iterations is conducted, to find

the root profile with minimum von Mises stress distri-

bution.

Based on the generated point coordinates and the

geometric parameters from Matlab, the gear tooth is

modeled in ANSYS and meshed consecutively. Then, a

static analysis is conducted by applying the boundary

conditions and loadings, which produces the von Mises

stress at each supporting point along the root-fillet pro-

file. Aiming to alleviate the stress concentration along

the splined fillet, different weights in eq. (18) are as-

signed to each supporting point according to their cor-

responding von Mises stress values sk, as reported by

ANSYS:

wk = sk/
n∑

i=1

si (20)

The idea is that the points with higher von Mises

stress values are more heavily penalized by assigning to

them a higher weight at the current iteration. The pro-

cedure stops when the von Mises stress value remains

virtually constant throughout Γ , which yields, in turn,

the most uniform stress distribution, thereby satisfy-

ing Venkayya’s optimality criterion3 [37]. The optimum

cubic-splined tooth-root profile is illustrated in Fig. 6.

From this figure, it is noteworthy that the optimum fil-

let is obtained by removing material from its circular

counterpart. As illustrated in Fig. 7, the smooth cur-

vature distribution of the optimum profile verifies the

structure for a higher allowable bending stress. Hence,

the optimum fillet is lighter, yet stronger.

4 Stress analysis

4.1 FE model formulation

Accurate evaluation of the stress at the tooth root

and precise determination of the stress distribution re-

quire appropriate FE modeling of the tooth. The tooth-

root fillet is refined for a more accurate prediction of

stress concentration, while the other part of the gear

tooth is meshed with relatively larger elements, to lower

the computational cost. Figure 8 illustrates the FE

model of the gear tooth with its boundary conditions.

3 According to Venkayya’s criterion, the optimum design
can be interpreted as the one in which the strain energy per
unit volume stays constant
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Refined mesh at the critical section with 8-node nonlin-

ear quad elements is used for accuracy, while for other

areas, larger elements are used for higher computational

efficiency. The quad elements at the bottom of the gear

tooth show high aspect ratio. However, they are far

from the crack propagation path and should not affect

the finite element results.

The inherent cyclic symmetry feature of spur gears

allows us to take only certain gear segments for analy-

sis; complete FE modeling of the whole spur gear is un-

necessarily time-consuming. Some researchers use only

one segment of a spur gear for stress analysis [6,38]. As

the focus of this study is tooth-root stress minimiza-

tion, three segments of the spur gear are used to avoid

cutting too close to the tooth-root fillet.

The boundary conditions on the generated FE

model are defined by fixing all nodes at the inner rim

and both radial boundary sections. According to the

AGMA standard 918-A93 and ISO standard 6336, the

tooth-root stress is calculated with respect to the unit

nominal load applied at the HPSTC. Therefore, a unit

nominal transmitted load is applied as an external force

on the FE model, at its HPSTC, uniformly distributed

along the contact line over the tooth width. Instead of

evaluating the stress at the tooth root due to the con-

tacts of mating gears, the application of load at the HP-

STC to calculate the root stress is also a standard and

accurate methodology. By doing this, the complicated

contact boundary conditions in FEM are avoided and

the development loop procedure is further reduced. The

FE model of the gear tooth with both circular and op-

timum cubic-splined root fillet is used for fatigue stress

analysis.

4.2 Shape optimization

Within the framework of previous work [28], using

FEA, a set of iterations is conducted to reach the op-
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Fig. 8 Finite element mesh for the gear tooth boundary con-
ditions, with 3240 elements and 6862 nodes for the cubic
spline model

4.2 Shape optimization

Within the framework of previous work [28], using

FEA, a set of iterations is conducted to reach the op-

timum shape profile of the gear tooth-root. The maxi-

mum von Mises stress at the gear root versus the num-

ber of iterations is illustrated in Fig. 9, from which we
can observe that the stress value shows a significant

decrement at the first and second iterations, then it

starts settling down to the minimum. The optimiza-

tion procedure stopped at its seventh iteration, when
the maximum stress reduction from the previous iter-

ation is smaller than 0.01 MPa. The process was not

stopped at the second iteration, when the von Mises

stress reaches its minimum value, in the hope that fur-

ther iterations would lead to an even lower value.

By means of nonlinear analysis in ANSYS, the von

Mises stress distribution of the whole gear tooth with
the trochoidal, circular and cubic-spline fillets are il-

lustrated in Figs. 10(a), (b) and (c), respectively. It is

apparent that the critical von Mises stress occurs within

the same region for all profiles, namely, the critical sec-
tion, which, in this analysis, is within the tensile or

loaded side of the tooth. Moreover, the most critical

von Mises stress of the cubic-spline is 18% and 14%Fig. 6 Gear tooth-root curve shape optimization [28]
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FEA, a set of iterations is conducted to reach the op-

timum shape profile of the gear tooth-root. The maxi-

mum von Mises stress at the gear root versus the num-

ber of iterations is illustrated in Fig. 9, from which we
can observe that the stress value shows a significant

decrement at the first and second iterations, then it

starts settling down to the minimum. The optimiza-

tion procedure stopped at its seventh iteration, when
the maximum stress reduction from the previous iter-

ation is smaller than 0.01 MPa. The process was not

stopped at the second iteration, when the von Mises

stress reaches its minimum value, in the hope that fur-

ther iterations would lead to an even lower value.

By means of nonlinear analysis in ANSYS, the von

Mises stress distribution of the whole gear tooth with
the trochoidal, circular and cubic-spline fillets are il-

lustrated in Figs. 10(a), (b) and (c), respectively. It is

apparent that the critical von Mises stress occurs within

the same region for all profiles, namely, the critical sec-
tion, which, in this analysis, is within the tensile or

loaded side of the tooth. Moreover, the most critical

von Mises stress of the cubic-spline is 18% and 14%
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lower than its trochoidal and circular counterparts, re-

spectively. The FEA results validate the capability of

the optimum shape profile in reducing stress concentra-
tions, which plays a significant role in increasing both

the crack-initiation and the crack-propagation phases.

5 Fatigue service life improvement

High-strength alloy steel 42CrMo44 is used in this
work, with Young modulus E = 2.1 × 105 MPa and

Poisson ratio ν = 0.3 [39].

5.1 Fatigue crack initiation

Based upon the von Mises stress from nonlinear
FEA, the strain at the critical section is obtained. The

fatigue crack initiation phase can be determined by

means of the strain-life method, i.e., the ǫ-Ni method.

Equation (2), providing the relation of the crack initia-
tion phaseNi with strain, is used to determineNi at the

gear-tooth root critical section in this study. The mate-

rial parameters are readily available [12], which yields

n′ = 0.14, σ′
f = 1820 MPa, ǫ′f = 0.65, b = −0.08 and

c = −0.76.

A set of values of the concentrated bending force

F is applied at the HPSTC in ANSYS to calculate the

von Mises stress at the critical section. The crack initia-
tion phases, for trochoidal, circular and optimum cubic

spline-profiles, are listed in Table 2. It is apparent that,

thanks to shape optimization, the smooth stress distri-

bution yields a much higher number of stress cycles for

crack initiation.

4 42CrMo4 contains 0.43% C, 0.22% Si, 0.59% Mn, 1.04%
Cr, and 0.17% Mo.
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circular-filleted root; (c) the cubic-spline filleted root (MPa)
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Cr, and 0.17% Mo.
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Table 2 Comparison of fatigue crack initiation phase

Profiles
Load at

HPSTC (N)
von Mises

Stress (MPa)
Ni (cycles)

trochoidal 1800 597 7.60× 106

trochoidal 2000 659 2.23× 106

trochoidal 2200 725 6.62× 105

trochoidal 2400 786 1.64× 105

circular 1800 570 1.07× 107

circular 2000 621 3.46× 106

circular 2200 685 1.00× 106

circular 2400 753 2.26× 105

optimum 1800 490 5.52× 107

optimum 2000 545 1.12× 107

optimum 2200 600 8.01× 106

optimum 2400 660 2.21× 106

tip [40]. The SIF, according to Eq. (5), is related to

the stress and dimensionless geometric factor β at the

crack tip. Factor β denotes the variant stress concentra-

tion factor corresponding to crack length a and is highly

related to the geometry of the mechanical element. Sev-

eral numerical software tools to calculate β are avail-

able, e.g., NASA NASGRO, Bombardier CRPR, etc.

However, they only provide β for the basic crack prop-

agation models, e.g., one-tip crack at the edge of a rect-

angular plate, two-tip crack at the edge of a hole inside

a plate, etc. For any complex geometry, determination

of the overall β factor is a complicated task, which in-

volves a combination of different basic β factors. By

doing this, the approach assumes that any mechanical

element profile can be represented by the basic geome-

tries; hence, accuracy is reduced. It is acceptable for

commercial engineering projects, where the accuracy

requirement is not as strict as in research. However,

for the proposed methodology of profile optimization

to improve fatigue service life, a more straightforward

and accurate approach is preferred.

The FEM, with the aid of a singular element at the

crack tip to determine the SIF, is used to simulate the

crack growth. As illustrated in Fig. 11, a typical sin-

gular element forms at least four quadratic elements

with 10 nodes around the crack tip. Instead of using

specific numerical crack-solving tools, e.g., FRANK2D,

the proposed methodology resorts to general FEM soft-

ware, more readily available. The stress at the crack tip

is used to obtain the SIF for fatigue mode I—opening

mode with tensile stress normal to the plane of the

crack—and II—sliding mode with a shear stress act-

ing parallel to the plane of the crack and perpendicular

to the crack front. The SIF for fatigue modes I and II

is expressed in terms of normal tensile stress and shear

stress, respectively, as [41]

KI = σn
√
πa, KII = τn

√
πa (21)

where σn and τn are the normal tensile stress and the

shear stress at the crack tip, respectively, as illustrated

in Fig. 12.

The combined SIF is expressed as

K =
»

(K2
I +K2

II) (1− ν2) (22)

where ν is the Poisson ratio, KI and KII being the SIF

read from ANSYS for fatigue mode I and II, respec-

tively.

According to the Maximum Tangential Stress

(MTS) criterion, the crack propagation direction is pre-

dicted by angle α, namely,

α = 2arctan

[
1

4

KI

KII
+

 Å
KI

KII

ã2

+ 8

]
(23)
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In the crack propagation simulation, the same load-
ing as in the stage of crack initiation is used. As shown

in Fig. 13, a cyclic loading F is applied at the HPSTC

of the gear tooth. One loading cycle corresponds to one

contact loading on the HPSTC. The material parame-

ters for crack propagation are taken from [18]: n = 4.16
and C = 3.31 × 10−17 mm/cycl/

(
MPamm1/2

)n
, the

fracture toughness being KIc = 2620 MPamm1/2. The

initial size of the crack propagation, ath, is set at

1.3 mm in high steel alloys [39]. According to Eq. (3),
SIF is a function of crack length a. The critical crack

length ac is reached when the value of SIF is equivalent

to the fracture toughness.
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Fig. 14 FE model of the crack tip mesh

With reference to Figs. 10(a), (b) and (c), the crack

initiates at the critical section where the highest von
Mises stress occurs. The FE model of the crack at the

critical section of the tooth root is illustrated in Fig 14.

A highly refined mesh is prescribed at the area around

the crack tip, for accurate determination of the effects
of crack size on the SIF. For different root profiles, a

set of simulations is conducted in ANSYS to calculate

the SIF for combined fatigue modes, at diverse crack
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tip

In the crack propagation simulation, the same load-

ing as in the stage of crack initiation is used. As shown
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in Fig. 13, a cyclic loading F is applied at the HPSTC

of the gear tooth. One loading cycle corresponds to one

contact loading on the HPSTC. The material parame-

ters for crack propagation are taken from [18]: n = 4.16

and C = 3.31 × 10−17 mm/cycl/
(
MPa mm1/2

)n
, the

fracture toughness being KIc = 2620 MPa mm1/2. The

initial size of the crack propagation, ath, is set at

1.3 mm in high steel alloys [39]. According to Eq. (3),

SIF is a function of crack length a. The critical crack

length ac is reached when the value of SIF is equivalent

to the fracture toughness.
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critical section of the tooth root is illustrated in Fig 14.
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set of simulations is conducted in ANSYS to calculate
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lengths. According to Eq. (22), the said SIF is calcu-

lated in terms of normal tensile stress and shear stress
at the crack tip, as illustrated in Fig. 15. For each sim-

ulation, an updated remeshing around the crack tip

using a singular element is conducted, until the crack

reaches ac. The crack propagation path is predicted by
the crack propagation angle, as per Eq. (23). Figure 16

shows the predicted crack propagation path. As illus-

trated in Fig. 17, the proposed optimum profile leads

to lower stress-concentration levels.

As illustrated in Fig. 18, for trochoidal, circular and
optimum cubic-spline root profiles, the critical crack

length has a negative relationship with the applied load-

ing. Due to the minimum stress concentration, the crit-

ical crack length for the optimum cubic-spline profile is
higher than for its trochoidal and circular-filleted coun-

terparts, under the same loading conditions. Higher

critical crack lengths help increase the number of cycles

Np for crack propagation, which is obtained using the

Paris law. Figure 19 illustrates the crack propagation
for the optimum cubic spline, trochoidal and circular-

filleted profiles under an applied load of 2400 N at the

HPSTC. It is apparent that the proposed optimum root

profile leads to a much wider crack propagation phase.

Table 3 lists Np for different profiles at various ap-
plied loads. It is apparent that Np obeys a negative

relationship with load F . Moreover, the effects of pro-

file optimization on the increase of crack propagation

cycles are significant. For industrial applications, the
crack propagation phase determination is the focus of

Damage Tolerance Analysis (DTA), which is significant

for in-service engineering in the automotive and the

aerospace industry. The increase of crack propagation

phase, by means of gear-tooth root profile optimization,
is thus feasible.

It is noteworthy that crack initiation accounts for

the dominant part of service life. However, with the
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lengths. According to Eq. (22), the said SIF is calcu-

lated in terms of normal tensile stress and shear stress
at the crack tip, as illustrated in Fig. 15. For each sim-

ulation, an updated remeshing around the crack tip

using a singular element is conducted, until the crack

reaches ac. The crack propagation path is predicted by
the crack propagation angle, as per Eq. (23). Figure 16

shows the predicted crack propagation path. As illus-

trated in Fig. 17, the proposed optimum profile leads

to lower stress-concentration levels.
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optimum cubic-spline root profiles, the critical crack

length has a negative relationship with the applied load-

ing. Due to the minimum stress concentration, the crit-

ical crack length for the optimum cubic-spline profile is
higher than for its trochoidal and circular-filleted coun-

terparts, under the same loading conditions. Higher

critical crack lengths help increase the number of cycles

Np for crack propagation, which is obtained using the

Paris law. Figure 19 illustrates the crack propagation
for the optimum cubic spline, trochoidal and circular-

filleted profiles under an applied load of 2400 N at the

HPSTC. It is apparent that the proposed optimum root

profile leads to a much wider crack propagation phase.

Table 3 lists Np for different profiles at various ap-
plied loads. It is apparent that Np obeys a negative

relationship with load F . Moreover, the effects of pro-

file optimization on the increase of crack propagation

cycles are significant. For industrial applications, the
crack propagation phase determination is the focus of

Damage Tolerance Analysis (DTA), which is significant

for in-service engineering in the automotive and the

aerospace industry. The increase of crack propagation

phase, by means of gear-tooth root profile optimization,
is thus feasible.
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lengths. According to Eq. (22), the said SIF is calcu-

lated in terms of normal tensile stress and shear stress

at the crack tip, as illustrated in Fig. 15. For each sim-

ulation, an updated remeshing around the crack tip

using a singular element is conducted, until the crack

reaches ac. The crack propagation path is predicted by

the crack propagation angle, as per Eq. (23). Figure 16

shows the predicted crack propagation path. As illus-

trated in Fig. 17, the proposed optimum profile leads

to lower stress-concentration levels.

As illustrated in Fig. 18, for trochoidal, circular and

optimum cubic-spline root profiles, the critical crack

length has a negative relationship with the applied load-

ing. Due to the minimum stress concentration, the crit-

ical crack length for the optimum cubic-spline profile is

higher than for its trochoidal and circular-filleted coun-

terparts, under the same loading conditions. Higher

critical crack lengths help increase the number of cycles

Np for crack propagation, which is obtained using the

Paris law. Figure 19 illustrates the crack propagation

for the optimum cubic spline, trochoidal and circular-

filleted profiles under an applied load of 2400 N at the

HPSTC. It is apparent that the proposed optimum root

profile leads to a much wider crack propagation phase.

Table 3 lists Np for different profiles at various ap-

plied loads. It is apparent that Np obeys a negative

relationship with load F . Moreover, the effects of pro-

file optimization on the increase of crack propagation

cycles are significant. For industrial applications, the

crack propagation phase determination is the focus of

Damage Tolerance Analysis (DTA), which is significant

for in-service engineering in the automotive and the

aerospace industry. The increase of crack propagation

phase, by means of gear-tooth root profile optimization,

is thus feasible.

It is noteworthy that crack initiation accounts for

the dominant part of service life. However, with the

increase of applied loading, the percentage for which

the crack initiation phase accounts through the overall

service life decreases.
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Table 3 Comparison of fatigue crack propagation phase

Profiles
Load at

HPSTC (N)
von Mises

Stress (MPa)
Np (cycles)

trochoidal 1800 597 2.56× 105

trochoidal 2000 659 1.83× 105

trochoidal 2200 725 1.32× 105

trochoidal 2400 786 9.97× 104

circular 1800 570 2.99× 105

circular 2000 621 2.23× 105

circular 2200 685 1.61× 105

circular 2400 753 1.08× 105

optimum 1800 490 5.01× 105

optimum 2000 545 3.49× 105

optimum 2200 600 2.53× 105

optimum 2400 660 1.88× 105

6 Conclusions

The authors proposed an innovative methodology

for spur-gear root-profile optimum design, and showed

its effects in gear service life. The optimization of the

gear tooth-root profile is realized by means of non-

parametric cubic splines—parametric cubic splines,

ideal for shape optimization, were avoided, because

they double the number of design variables, thereby

leading to a more complex optimization procedure. The

optimum cubic splines provide G2-continuity at the

blending points, while the traditional trochoidal and

the recently proposed circular fillet do not. Based on

the AGMA and ISO standards, under the same applied

loading at the HPSTC, the von Mises stress at the criti-

cal section for the general circular-filleted and optimum

profiles are obtained by means of ANSYS and compared

with each other. The optima led to a significant von

Mises stress reduction when compared with their cor-

responding trochoidal and circular counterpart values.

The stress distribution along the gear tooth-root pro-

file was also studied, by recording the von Mises stress

value at each node of the FE model on the root profile.

The stress distribution of the optimum root profile is

the smoothest possible, which led to a significant re-

duction in stress concentration.

High-strength alloy steel 42CrMo4 is assumed to be

the gear material. Investigation of the effects of mate-

rial properties and surface treatment on service life are

beyond the objectives of this study. The overall fatigue

phase at the critical section leading to gear-tooth fail-

ure is composed of a crack initiation phase Ni and a

crack propagation phase Np. The former accounts for

most of the overall service life. Due to both the reduc-

tion of the von Mises stress at the critical section and

a smooth stress distribution along the tooth-root pro-

file, the proposed optimum profile is advantageous over

its trochoidal and circular-filleted counterparts. The de-

termination of crack propagation is realized by Paris

law, within the framework of Linear Elastic Fracture

Mechanics. Indeed, the proposed fillet increases signifi-

cantly the number of cycles toward crack initiation and

crack propagation.

The proposed methodology provides a straightfor-

ward and feasible means in silico, not only for increasing

load-carrying capacity, but also for improving service

life.
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Appendix: Matrices Related to the G2-

Continuity Conditions

A = ∆θ




2 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · 1 4 1 0
0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 2




(24)

C =
1

∆θ




c11 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · 1 −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 cn′′n′′




(25)

in which n′′ = n + 2, c11 = −1 −∆θ/ tan(γ0) and cn′′n′′ =
−1 −∆θ/ tan(γn+1).

P = ∆θ




1

∆θ
0 0 0 · · · 0 0

1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · 1 4 1 0
0 0 0 · · · 1 4 1

0 0 0 · · · 0 0
1

∆θ




Q =
1

∆θ




1

tan(γ0)
0 0 0 · · · 0 0

−3 0 3 0 · · · 0 0
0 −3 0 3 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · −3 0 3 0
0 0 0 · · · −3 0 3

0 0 0 · · · 0 0
1

tan(γn+1)




(26)
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