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Abstract This paper presents the design and validation of a new adaptive10

variable gain reaching law, integrated with sliding mode control (SMC), to11

control perturbed and unperturbed nonlinear systems. The novelty behind12

this law stems from its capability to overcome the main limitations involved13

with SMC. In contrast to existing reaching laws, system’s performance can14

be substantially enhanced via this law, with significant reduction in the chat-15

tering phenomenon, along ensuring rapid convergence time of system’s trajec-16

tories towards equilibrium. The designed law not only integrates the features17

of both the exponential reaching law (ERL) and the power rate reaching law18

(PRL), but also overcomes their limitations. Simulation and comparison stud-19

ies against ERL and PRL were carried out to validate the effectiveness and20

advantages of the proposed reaching law scheme (Proposed-RL). Furthermore,21

controlled experimental investigations were conducted using an exoskeleton22

robot (ETS-MARSE ) to validate the scheme in real-time.23

Keywords Reaching law · Sliding mode control · Chattering · Perturbed24

and unperturbed system · Exoskeleton robot.25

26

1 Introduction27

Robust control usually addresses the complex system analysis and control de-28

sign for imperfectly known process models. It refers to the control of unknown29
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systems with unknown dynamics subject to unknown perturbations. Major30

objectives of robust control are to ensure the overall stability and satisfac-31

tory system’s performance in the presence of dynamic disturbances. However,32

a critical issue that usually emerges when adopting robust control schemes33

is the involved uncertainties, raising the question of how to overcome those.34

Sliding mode control (SMC) is one of the widely common employed robust35

strategies in robotics systems Munje et al. (2018); Slotine et al. (1991); Khalil36

(1996); Utkin (2013) due to its prominent features. One significant, perhaps37

the leading, feature of SMC is its complete insensitiveness to parametric un-38

certainties and external disturbances during sliding mode. To achieve this, in39

SMC, a switching surface is chosen so that system’s trajectories can begin from40

anywhere but are constrained to reach a neighborhood of the selected switch-41

ing function in a reasonable finite time. Once on the surface, the dynamic42

behavior is reduced to a stable linear time-invariant system, which in turn is43

insensitive to parametric uncertainties and external disturbances Young et al.44

(1999). Consequently, asymptotic convergence of the system’s state is then45

readily accomplished. Despite these various advantages of SMC, it still suffers46

from several shortcomings.47

One of SMC’s limitations involves the control strategy’s gains. SMC’s gains48

play a dominant role in determining system’s trajectories asymptotic conver-49

gence time to the equilibrium point. Several control approaches have been pro-50

posed to solve this issue, with Terminal Sliding Mode Control (TSMC) Feng51

et al. (2018) being one of those. TSMC uses a nonlinear fractional-order of52

switching function to guarantee finite-time convergence, permitting the state53

trajectories to converge to an equilibrium point faster. Lately, attempts were54

successful to enhance the performance of TSMC, via strategies such as the fast55

TSMC Van (2018) and the non-singular TSMC Wang et al. (2018b).56

Another limitation involved with SMC is that the control input holds the57

switching function signum (sign(.)). That is, in real-time, the switching func-58

tion produces high frequencies, which induce undesirable chattering in the con-59

trol input. As a result, system’s performance degrades and loses its precision,60

as well as the possibility of other problems appearing in the plant (motors).61

As a remedy, the switching function (sign(.)) has been replaced by continuous62

approximations, such as a saturation function Slotine et al. (1991). However,63

this solution comes with the cost of SMC losing its robustness, even under64

small disturbances and parametric uncertainties Slotine et al. (1991). Still,65

many control approaches have been developed to reduce the chattering prob-66

lem and enhance the time convergence of the system’s state trajectories. Such67

approaches included the second-order sliding mode control(SOSMC) Tabart68

et al. (2018); Wang et al. (2018a), along with its different types such as the69

super twisting control Derafa et al. (2012); Kali et al. (2018) and the modified70

super twisting algorithm Defoort and Djemäı (2012); Fridman et al. (2011).71

Nonetheless, the second derivative of the system’s dynamics might result with72

plant instability, a risk that the parametric uncertainties and external distur-73

bances further expand.74
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On the other hand, conventional reaching laws are numerous in literature75

Gao and Hung (1993). Those include the constant reaching law, the constant76

plus proportional reaching law, and the power rate reaching law. Researchers77

often integrate the constant reaching law (CRL) in SMC due to the ability of78

CRL to force system’s trajectories to converge to the desired equilibrium state79

in a reasonable convergence time. However, one major concern is the emer-80

gence of high undesirable chattering as a result of choosing high control gain81

values, causing the time convergence to increase as well. In this case, the at-82

tenuation issue of the undesirable chattering becomes more attractive than the83

convergence speed option. In efforts of overcoming the aforementioned restric-84

tion, the constant plus proportional reaching law (CPPRL) was formulated as85

an improvement over CRL, which relatively succeeded in reducing the chat-86

tering problem Gao and Hung (1993). Yet, the power rate reaching law (PRL)87

was one of the compelling suggestions to deal with convergence rate speed;88

which, based on its surface, guarantees a chattering free process along with89

fast convergence speed. However, there is still the possibility of a reduction90

in its robustness nearby the selected surface. Lastly, the Exponential reaching91

law (ERL) Fallaha et al. (2011) is considered one of the imperative solutions92

that were proposed to overcome the limitation involved with CRL. Essentially,93

the ERL was able to reduce the undesirable chattering, for the same CRL94

convergence speed, via using a simple exponential tuning. Thus, effectively95

achieving excellent performance with different robotics systems Rahman et al.96

(2013); Mozayan et al. (2016a,b); Zhang et al. (2012). Nonetheless, one of the97

shortcomings involved with ERL is its incapability to improve the convergence98

speed without inevitably stimulating the chattering phenomenon.99

In response to the different limitations involved with the aforementioned100

reaching laws, the motivation behind this paper was to improve system trajec-101

tories’ convergence time without inducing any chattering reduction. Therefore,102

the aim of this research is to propose a new reaching law to address the men-103

tioned problem; primarily, to improve the convergence speed of the system104

trajectories, along with enhancing the chattering attenuation process. The105

proposed law benefits from the properties of both ERL and PRL. That is, it106

employs a power rate term to reduce the chattering while utilizing ERL’s char-107

acteristic of providing a fast reaching time to the origin. In addition, in efforts108

of maintaining system’s robustness, a novel adaptive term was also integrated.109

Thereafter, simulation and comparison studies were conducted to investigate110

the robustness of the proposed reaching law (Proposed-RL) as well as po-111

tentially showing its faster convergence speed compared to PRL and ERL.112

Lastly, Experiments were performed by a real subject using an exoskeleton113

robot Brahmi et al. (2018b) to prove the feasibility and ease of implementa-114

tion of the proposed law in real-time applications.115

This paper is organized as follows: Problem formulation and motivation are116

described in section 2. Section 3 presents the proposed reaching law in details.117

Simulation and comparison studies against ERL and PRL are presented in118

section 4. An experimental study using the exoskeleton robot is given in section119

5. Section 6 concludes the research.120
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2 Problem Formulation and Motivation121

Although the theory of SMC of non-linear systems is well-known in literature122

Utkin et al. (2009), a brief description highlighting its main advantages and123

shortcomings is still presented in this chapter. Fundamentally, such limitations124

were highly prompting to propose the novel, effective, reaching law approach125

detailed in the next section. To start, consider a general non-linear second-126

order dynamic system:127

ẍ = f (x, ẋ) + g (x, ẋ)u+ w(x, ẋ) (1)

where f ∈ <n and g ∈ <n×n are two non-linear functions, with g being128

an invertible matrix. w ∈ <n represents the unknown bounded uncertainty129

and disturbance forces. The tracking position error, which tends to zero, can130

be defined as: e = x − xd ,where xd ∈ <n is the desired trajectory. Selecting131

a switching function S to track position and velocity errors is often one of132

the first steps in designing SMC controllers. Commonly, this sliding surface is133

chosen as follows:134

S = ė+ λe (2)

where λ ∈ <n×n is a diagonal positive definite matrix. It is worth mentioning135

that the value of λ plays a crucial role in the error tracking convergence rate136

to zero.137

Consider the Lyapunov function: V (S) =
1

2
STS, with its time derivative138

given by:139

V̇ = ST Ṡ (3)

The criterion for stability is therefore: V̇ < 0 . This requires Ṡ < 0 for S > 0140

and Ṡ > 0 for S < 0, which gives rise to the commonly known control law141

switching phenomenon around S = 0. Based on (2) and its derivative, the142

following control input is proposed:143

u = g−1
[
ẍd − λė− f − w + Ṡ

]
(4)

It is noteworthy, from (4), that the control input is highly dependant on Ṡ,144

which in turn determines the rate of S. That is, if Ṡ � 0 for S > 0 (with the145

opposite being also true), the system’s forced trajectory converges to S = 0.146

Hence, commonly referring to Ṡ as the ”reaching” law. When system’s trajec-147

tory is in the vicinity of S = 0, with V̇ < 0, Ṡ < 0 dictates how close is the148

system exactly from the sliding manifold S = 0. Consequently, a ”switching”149

phenomenon emerges in order to maintain the condition: SṠ < 0.150

That being said, numerous reaching laws that took into account the speed151

of the reaching time have been proposed in literature. These reaching laws can152

be summarized as follows Gao and Hung (1993):153
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– Constant rate reaching law (CRL)Gao and Hung (1993):154

Ṡi = −K1isign(Si) (5)

where K1i > 0 with i = 1...n being a positive constant. The reaching155

law (5) forces the system’s trajectory (ei, ėi) to converge to the switching156

surface Si in a reaching time given by: Tri =
|Si (0)|
K1i

, where Si(0) is157

the initial condition of Si. Thus, a higher K1i value is necessary for fast158

convergence. However, this comes with the cost of a worsened chattering159

when the system’s trajectory moves in the sliding manifold.160

– Constant plus proportional rate reaching law (CPPRL)Gao and Hung161

(1993):162

Ṡi = −K1isign(Si)−K2iSi (6)

where K1i,K2i are positive constants. The CPPRL law ensures a conver-163

gence rate of: Tr1i =
1

K1i
ln
K2i |Si(0)|+K1i

K1i
. Unlike the CRL, expression164

(6) improves the chattering phenomenon while maintaining a relatively fast165

convergence rate, which makes it one of the most powerful reaching law166

candidates.167

– Power rate reaching law (PRL)Gao and Hung (1993):168

Ṡi = −K1i |Si|σ sign(Si) (7)

where 0 < σ < 1. The PRL law (7) is able to provide a reaching time169

of: Tr2i =
|Si(0)|(1−σ)

(1− σ)K1i
. The primary advantage of this law is its capabil-170

ity to adjust the reaching time, a parameter that depends on the position171

of the state system relative to the sliding surface. In other words, when172

the system’s trajectory is distant from the surface, the PRL increases its173

reaching speed, with the opposite being true. The term |Si|σ guarantees174

a chattering-free process along fast convergence of the desired state. De-175

pending on the choice of the power term σ, this might further lead to a176

loss in system’s robustness.177

Remark 1 : The control law defined by (4) is inputted to system (1) if it is178

unperturbed, i.e. for a given known w(x, ẋ). However, in real-time, system (1)179

will be subject to uncertainties and external disturbances. In such a case, an180

estimation of w(x, ẋ) will be integrated into control law (4) (see section 3.2).181

After closely assessing all three reaching laws, they have proven to be highly182

helpful and applicable in designing SMCs. Yet, adopting any of the aforemen-183

tioned reaching laws seems to come with an inevitable trade-off between either184

the convergence rate and chattering reduction, or the chattering reduction and185

controller’s robustness. One common behavior between the three is that the186

choice of a large gain value K1i (coefficient of sign(Si)) is necessary to ensure187

a fast convergence rate to the desired surface. Though, this leads to chattering,188
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the damaging effect that produces high-frequency dynamics. As a result, an189

adaptive reaching law has been proposed, namely the Exponential Reaching190

law (ERL)Fallaha et al. (2011), as a remedy to the drawbacks of choosing a191

large gain value. The ERL is given by:192

Ṡi = − K1i

µi + (1− µi) e−αi|Si|pi
sign(Si) (8)

where µi, αi and pi are strictly positive constants with µi < 1. As a conse-193

quence of (8), the limitation related to the gain value can be easily overcome194

with the controller dynamically self-adjusting to the variations resulting from195

the switching function Si. This operation permits the gain K1i to smoothly196

vary between K1i and K1i/µi. Thus, the ERL method can ensure a reaching197

time of Fallaha et al. (2011):198

Tr3i ≈ µi
|Si(0)|
K1i

(9)

if αi in (8) abides by the following condition Fallaha et al. (2011):199

αi �
(

1− µi
µi |Si(0)|

)1/pi

(10)

Indeed, the ERL focuses primarily on reducing chattering using the innova-200

tive law defined by (8). However, completely eliminating this chattering effect201

remains questionable, especially when the term K1isign(Si) is conserved, thus202

putting restrictions on improving the chattering. Besides, as can be inferred203

from (9), it is almost impossible to increase the convergence speed without204

causing chattering attenuation. That is, any decrease in the reaching time205

drives the term K1i higher, which again causes the chattering phenomenon.206

It was further noticed that the state of the control system does not perfectly207

overlap with the reference trajectory due to the continuous low chattering208

degree.209

As a promising solution in this paper, integrating a power rate adjustment210

technique allowed for a significant enhancement in reducing the chattering,211

nearly eliminating such a phenomenon, with a remarkable improvement in212

the reaching speed without any direct effect on the chattering. The proposed213

reaching law was formulated such that it would be able to benefit from all214

reaching laws (6), (7) and (8) advantages. That is, the proposed law adopted215

the advantages of PRL and CPPRL, which outweigh the limitation of ERL, as216

well as integrating the feature of ERL, which in turn overcomes the restriction217

of both PRL and CPPRL.218

3 Proposed Reaching law219

The proposal of the adaptive reaching law, along comparing it against ERL,220

will be presented in subsection 3.1. However, as mentioned in Remark 1, the un-221

certainties and external disturbances might cause some losses in the proposed222
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reaching law robustness. In this case, reformulating some of the parameters is223

necessary as shown subsection 3.2 .224

3.1 System Without Uncertainties and External Disturbances225

This section presents the mathematical formulation of the proposed reaching226

law that would make use of ERL’s and PRL’s advantages, in addition to227

ensuring a convergence time less than that provided by ERL and PRL. The228

proposed reaching law is given by:229

Ṡi = − K1i

µi + (1− µi) e−αi|Si|pi
|Si|γsign(Si)

−%i
K1i (1− γ)

µi
sign(Si) (11)

where µi, αi and pi are strictly positive constants with µi < 1 and 0 < γ < 0.5.230

%i is determined by limt→∞(%i) = 0 and
∫ t
0
%i(w)dw = Qi < ∞, where %i =231

1/(1 + t2i ) and ti being the execution time of the exercise. In fact, the second232

term of the proposed law (11) is responsible for maintaining the robustness of233

the control input, especially around the starting point of the trajectory. It is234

worth mentioning that, as time elapses, this term would vanish according to235

the definition of %i.236

In the preceding section, the advantages of each term, such as ERL and237

power rate, were briefly explained. It was noticed that the term γ is usually238

assigned a high value in the conventional power rate law to ensure fast conver-239

gence to the equilibrium point, however resulting with undesirable chattering.240

In efforts of improving this, in the proposed law, a limit on γ was enforced241

such that: 0 < γ < 0.5. This would not only ensure fast convergence, but also242

minimize the chattering.243

Proposition 1 For the same gain value K1i, and in accordance with the244

choice of γ defined earlier, the reaching law given by (11) always provides245

faster convergence to the equilibrium point than ERL Fallaha et al. (2011).246

Proof The reaching time of the ERL is given by Fallaha et al. (2011):247

Tr3i =
1

Ki

(
µi |Si(0)|+ (1− µi)

∫ |Si(0)|

0

e−αi|Si|pidSi

)
(12)

To find the reaching time (Tr4i) of the proposed reaching law (11), it is first248

rewritten as follows:249

dti =

(
µi + (1− µi) e−αi|Si|pi

)
dSi

−K1i|Si|γsign(Si)

+
µidSi

−%iK1i (1− γ) sign(Si)
. (13)
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Integrating (13) from zero to Tr4i, with Si(Tr4i = 0), the following can be250

found:251

Tr4i =

∫ 0

Si(0)

(
µi + (1− µi) e−αi|Si|pi

)
dSi

−K1i|Si|γsign(Si)

+

∫ 0

Si(0)

µidSi
−%iK1i (1− γ) sign(Si)

.

=

∫ Si(0)

0

(
µi + (1− µi) e−αi|Si|pi

)
dSi

K1i|Si|γsign(Si)

+

∫ Si(0)

0

µidSi
%iK1i (1− γ) sign(Si)

. (14)

In the first case, if Si < 0 for all ti < Tr4i, then:252

Tr4i =

∫ −Si(0)

0

(
µi + (1− µi) e−αi|Si|pi

)
dSi

K1i|Si|γ

+

∫ −Si(0)

0

µidSi
%iK1i (1− γ)

. (15)

Otherwise, if Si > 0 for all ti < Tr4i, this would result with:253

Tr4i =

∫ Si(0)

0

(
µi + (1− µi) e−αi|Si|pi

)
dSi

K1i|Si|γ

+

∫ Si(0)

0

µidSi
%iK1i (1− γ)

. (16)

According to (15) and (16):254

Tr4i =

∫ |Si(0)|

0

µidSi
K1i|Si|γ

+

∫ |Si(0)|

0

(1− µi) e−α|Si|pidSi
K1i|Si|γ

+

∫ |Si(0)|

0

µidSi
%iK1i (1− γ)

. (17)

Integrating (17), the reaching time is then given by:255

Tr4i =
1

K1i
(µi
|Si(0)|(1−γ)

(1− γ)
+

µi|Si(0)|
%i (1− γ)

+(1− µi)
∫ |Si(0)|

0

e−αi|Si|pi |Si|−γdSi). (18)

In Fallaha et al. (2011) the authors used the properties of Euler’s gamma256

function (Γ ) to prove that the the reaching time Tr3i satisfies the following:257

Tr3i ≤
µi
K1i
|Si(0)|+ (1− µi)

K1iα
1/pi
i

. (19)
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Using a similar approach for the proposed reaching law, the last term of (18)258

can be rewritten in terms of the Γ function such that:259 ∫ |Si(0)|

0

e−αi|Si|pi |Si|−γdSi =

α
γ/pi
i

[
Γ−

(
γ − 1

pi

)
− Γ

(
−
(
γ − 1

pi

)
, αi|Si(0)|pi

)]
piα

1/pi
i

. (20)

Based on the properties of the Γ function:260

Γ

(
−
(
γ − 1

pi

)
, αi|Si(0)|pi

)
� Γ−

(
γ − 1

pi

)
. (21)

Therefore, it is valid to assume that: Γ

(
−
(
γ − 1

pi

)
, αi|Si(0)|pi

)
≈ 0, and261

hence:262

∫ |Si(0)|

0

e−αi|Si|pi |Si|−γdSi = α
γ/pi
i

Γ−
(
γ − 1

pi

)
piα

1/pi
i

. (22)

substituting (22) into (18), it is found that the reaching time fulfills the fol-263

lowing condition:264

Tr4i ≤
µi
K1i

[
|Si(0)|(1−γ) + %i|Si(0)|

(1− γ)

]

+

(
1− µi
K1i

) Γ−
(
γ − 1

pi

)

piα

(
1− γ
pi

)
i

. (23)

To prove that the proposed reaching law provides a reaching time less than that265

provided by ERL Fallaha et al. (2011), it is essential to rewrite the reaching266

time of the proposed law as follows:267

Tr4di =
µi
K1i

[
|Si(0)|(1−γ) + %i|Si(0)|

(1− γ)

]

+

(
1− µi
K1i

) Γ−
(
γ − 1

pi

)

piα

(
1− γ
pi

)
i

. (24)
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Therefore, the reaching time Tr4i should be less than the desired reaching268

time Tr4di for every value of α such that:269

αi �

 (1− µi)Γ−
(
γ − 1

pi

)
(1− γ)

µi
(
|Si(0)|(1−γ) + %i|Si(0)|

)


pi
1− γ

. (25)

Thus, the desired reaching law can be re-approximated as follows:270

Tr4di ≈
µi
K1i

[
|Si(0)|(1−γ) + %i|Si(0)|

(1− γ)

]
. (26)

As a second condition, the gain K1i must satisfy:271

K1i ≈
µi

Tr4di

[
|Si(0)|(1−γ) + %i|Si(0)|

(1− γ)

]
. (27)

If both conditions (25) and (27) are satisfied, it can then be ensured that272

Tr4i < Tr4di. Since the proposed reaching law will be against the ERL Fallaha273

et al. (2011), it would be helpful to mention the desired reaching law, along274

with the tuning gain, given by the ERL proposition:275

Tr3di ≈ µi
|Si(0)|
K1i

(28)

276

K1i ≈ µi
|Si(0)|
Tr3di

(29)

Subtracting (26) from (28) yields:277

Tr3di − Tr4di ≈ µi
|Si(0)|
K1i

− µi
K1i

[
|Si(0)|(1−γ) + %i|Si(0)|

(1− γ)

]
≈ µi
K1i
|Si(0)|

[
1−

(
|Si(0)|−γ + %i

(1− γ)

)]
(30)

Since µi and K1i are positive constants, it is then remarked that the term278

µi
K1i
|Si(0)| is always positive.279

In addition, it is essential to prove that the second term of (30) is always280

positive. Based on the definition of %i in (11), as t −→ ∞, the term %i −→ 0.281

In this case, to ensure that the second term of (30) is always positive, the282

following must hold:283

1

|Si(0)|γ(1− γ)
< 1 (31)

This means that it is indispensable for the following to hold:284

|Si(0)| > (1− γ)−1/γ (32)
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Hence,285 (
1− 1

|Si(0)|γ(1− γ)

)
> 0,∀|Si(0)| > (1− γ)−1/γ (33)

Alternatively, (30) can be rewritten as follows:286

Tr3di − Tr4di ≈
µi
K1i
|Si(0)|

[
1−

(
|Si(0)|−γ

(1− γ)

)]
> 0,

∀|Si(0)| > (1− γ)−1/γ (34)

It is noteworthy that, based on (23) and (24), Tr4i ≤ Tr4di. Furthermore,287

based on Fallaha et al. (2011), Tr3i ≤ Tr3di . Thus, according to the condition288

given by (34), the following can be rewritten:289

Tr3i − Tr4i > 0,∀|Si(0)| > (1− γ)−1/γ (35)

Consequently, depending on the value of γ, the reaching time provided by the290

proposed law is less than that provided by the ERL. Therefore, the proof is291

complete.292

3.2 System With Bounded Uncertainties and External Disturbances293

To consider the system with unknown bounded uncertainties and external294

disturbances, this would indeed impose multiple constraints on the proposed295

adaptive reaching law parameters. Firstly, recall that a non-linear second-order296

system can be described by:297

ẍ = f (x, ẋ) + g (x, ẋ)u+ w (x, ẋ) (36)

Let ŵ (x, ẋ) be the estimated value of w (x, ẋ) and BMAX be the upper bound298

of the estimation error, defined as follows:299

BMAX = sup
t
|w(x, ẋ)− ŵ(x, ẋ)| (37)

Using the same sliding surface described by (2), the conventional sliding mode300

control would be given by:301

u = g−1
[
ẍd − λė− f(x, ẋ)− ŵ(x, ẋ)−K1isign(S)

]
(38)

where K > 0 and sign(S) = [sign(Sii) · · · sign(Snn)]. This results with:302

Ṡ = (wi(x, ẋ)− ŵi(x, ẋ))−K1isign(Si) (39)

From Equation (39), the convergence to zero can be achieved only if the fol-303

lowing condition holds:304

K1i > (wi(x, ẋ)− ŵi(x, ẋ)) ∀t (40)
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As illustrated by (5), the value of K1i is constant in conventional sliding mode305

control. This implies that:306

K1i > BMAX (41)

In fact, it is almost impossible to satisfy condition (41) without causing other307

problems such as the chattering phenomenon. This is mainly because the gain308

value K1i is usually large enough to guarantee the convergence of the slid-309

ing surface. With the proposed adaptive reaching law defined by (11), since310

limt→∞(%i) = 0 and
∫ t
0
%i(w)dw = Qi < ∞, the condition given by (41) can311

be rewritten as:312

K1i > µiBMAX + (1− µi) e−αi|Si|piBMAX (42)

It is obvious from (42) that the gain K1i has to be at least superior to BMAXµi.313

Satisfying this minimum Ki gain requirement, and subsequently solving for Si314

in (42), the following is obtained:315

|Si| =p

√
ln( BMAX(1−µi)

K1i−BMAXµi
)

αi
, K1i > BMAXµi (43)

It can then be inferred from equation (43) that, to meet condition (42), the316

sliding surface Si can vary in a boundary of width Q defined by:317

Q =p

√
ln( BMAX(1−µi)

K1i−BMAXµi
)

αi
, K1i > BMAXµi, (44)

Thus, this boundary width Q is directly affected by the choice of αi.318

To sum up, all aforementioned constraints, in subsections 3.1 and 3.2, pro-319

vided insightful relations to be used in choosing the proposed adaptive reaching320

law parameters. These relations can be summarized as follows:321

Ki

µi
> BMAX , αi ≥

ln( BMAX(1−µi)
K1i−BMAXµi

)

Qp
(45)

4 Simulation Study322

In this section, three different numerical simulations were conducted, in Mat-323

lab(2018a)/Simulink software, to track the trajectory of a two degrees of free-324

dom (2-DOFs) robot manipulator, as shown in Fig.1. The dynamics of 2-DOFs325

system is described by (1) with the applied control input given by (4). The326

simulation set consisted of substituting each of the reaching laws (7), (8) and327

the proposed one defined by (11. The primary goal was to create a comparison328

between all reaching laws, as well as to elaborate on the potential advantages329

of the suggested law.330
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Fig. 1 Two-link robot manipulator.

The dynamic model of 2-DOfs robot manipulator is given by the following331

equation:332

M(q)q̈ + C(q, q̇)q̇ +G(q) + fdis = τ (46)

where q ∈ R2 denotes the generalized coordinates vector. M(q) ∈ R2×2,
C(q, q̇)q̇ ∈ R2, and G(q) ∈ R2 are respectively the symmetric, bounded, inertia
matrix, the Coriolis and centrifugal torques, and the gravitational torques. τ ∈
R2 is the torque input vector and fdis ∈ R2 represents the uncertainties and
external disturbances. The earlier introduced matrices are defined as follows:

M(q) =

(
M(1, 1) M(1, 2)
M(2, 1) M(2, 2)

)
with, M(1, 1) = l22m2 + 2l1l2m2c2 + l22(m1 +m2) + J1;
M(1, 2) = M(2, 1) = l2m2(l1 + l2); M(2, 2) = l22m2 + J2;

C(q, q̇)q̇ =

(
−l1l2m2s2q̇

2
2 − 2l1l2m2s2q̇1q̇2

l1l2m2s2q̇22

)
,

G(q) =

(
l2m2gc12 + (m1 +m2)l1gc1

l2m2gc12

)
and,

fdis =


[
4 sin(t) + 1

2 sin(200πt)
cos(3t) + 1

2 sin(200πt)

]
, If t < 2.5s[

15 sin(t) + 6 sin(200πt)
10 cos(3t) + 6 sin(200πt)

]
, else
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Table 1 Parameters of 2-DOFs robot manipulator Craig (2005).

Symbol Definition value Unit (s)
l1 Length of the first link 1 (m)
l2 Length of the second link 0.85 (m)
J1 Moment of inertia of the first motor 5 (kg.m2)
J2 Moment of inertia of the second motor 5 (kg.m2)
m1 Mass of link 1 0.5 (kg)
m2 Mass of link 2 1.5 (kg)
g Gravitational constant 9.81 (m/s2)

where si, ci and cij are defined such that: si = sin(qi), ci = sin(qi), and333

cij = cos(qi + qj). The parameters defining 2-DOFs manipulator are given in334

Table 1.335

Assuming that q = x and qd = xd, the robot’s dynamics (46) can be336

rewritten in accordance with the general form of nonlinear systems given by337

(1):338

q̈ = f (q, q̇) + g (q)u+ w (q) (47)

where, g (q) = M−1(q), u = τ , f (q, q̇) = −M−1(q) (C(q, q̇)q̇ +G(q)), and339

w (q) = M−1(q)fdis.340

The controller objective is to track the reference trajectories given by:341

q1d = cos(t)

q2d = cos(t) (48)

All initial states (joint positions and velocities) were selected to be q1 = q2 = 0342

rad and q̇1 = q̇2 = 0 rad/s.343

The parameters used in simulating the control input (4), coupled with the344

proposed reaching law (11), were chosen as follows: K1i = diag(5, 5), λ =345

diag(2, 2), µ1 = µ2 = 0.6, α1 = α2 = 20, p1 = p2 = 1, and γ = 0.5. On the346

other hand, the parameter set for the case of the ERL (8) were:K1 = diag(5, 5),347

λ = diag(2, 2), µ1 = µ2 = 0.6, α1 = α2 = 20 and p1 = p2 = 1. Lastly, for the348

case of PRL (7): K1i = diag(5, 5), λ = diag(2, 2), and γ = 0.5. In addition,349

the same gain values were utilized in all cases.350
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Fig. 2 Joints position tracking.

Fig. 3 Evolution of the surfaces.
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Fig. 4 Evolution of the torques.

Fig. 5 Convergence of the states on phase plane.
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It is evident from Fig.2, which tracks the joints position, that both the ERL351

and the proposed RL controllers closely matches the reference trajectory. On352

the other hand, the PRL seems to lose its accuracy in the first two seconds.353

Thereafter, it provides a similar performance compared to the ERL and the354

proposed RL. Fig.3 clearly shows that all controllers are able to drive the355

surface to the origin in a finite time, with the proposed RL being the fastest356

to do so among the other two controllers. Nevertheless, all controllers are able357

to reduce the chattering problem as shown by the torque inputs given by Fig.4.358

Lastly, Fig.5 shows the performance of each controller in the phase plane. All359

the state trajectories converge to the origin of the phase plane, with evidently360

the proposed RL again being the fastest among the other two. Such results361

support the high efficiency of the proposed RL.362

5 Experimental Study363

5.1 System Characterization364

ETS-MARSE (Ecole de Technologie Supérieure - Motion Assistive Robotic-365

exoskeleton for Superior Extremity) is a 7 degrees of freedom (DOFs) ex-366

oskeleton robot (Fig.6). This robot is fundamentally built to support in re-367

habilitation treatments provided to persons with an impaired upper-limb. Its368

mechanical design is inspired from the anatomy of the human upper-limb.369

The primary purpose is for it to be comfortably attached to the arm, per-370

mitting the subject’s arm to freely move. It consists of three joints shaping371

the shoulder member, one joint modelling the elbow member and three other372

joints shaping the wrist member. As described in Table 2, the motion each373

part of the exoskeleton manipulator is able to perform mimics human upper374

limb movements. All exceptional features of ETS-MARS, along with its com-375

parison against other popular rehabilitation robots, can be found in Rahman376

et al. (2015); Brahmi et al. (2018a). Table 2 presents the modified Denavit-377

Hartenberg (DH) parameters obtained from the coordinate frames attached378

to the robot as shown in Fig.6. Those are later used to find the homogeneous379

transformation matrices.380

5.2 Dynamic Model of ETS-MARSE Robot381

The dynamic model of ETS-MARSE robot is expressed in joint space as fol-382

lows:383

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) + fdis = τ (49)

where θ ∈ <7 denotes a 7-vector of generalized coordinates. M(θ) ∈ <7×7,384

C(θ, θ̇)θ̇ ∈ <7, and G(θ) ∈ <7 are respectively the symmetric, bounded, inertia385

matrix, the Coriolis and centrifugal torques, and the gravitational torques.386

τ ∈ <7 is the torque input vector and fdis ∈ <7 represents the external387



18 Brahim Brahmi et al.

disturbances. Introducing x = θ and ẋ = θ̇, the dynamic model expressed in388

Eq.49 can be rewritten in the form of Eq 1 as follows:389

ẍ = f(x, ẋ) + g(x)u+ w(x, ẋ) (50)

with:390

– u = τ391

– g(x) = M−10 (θ)392

– f(x, ẋ) = M−10 (θ)
[
−C0

(
θ, θ̇
)
θ̇ −G0 (θ)

]
393

– w(x, ẋ) = M−10 (θ)
[
−fex −∆M (θ) θ̈ −∆C

(
θ, θ̇
)
θ̇ −∆G (θ)

]
394

where M0 (θ), C0

(
θ, θ̇
)

and G0 (θ) are respectively the known inertia395

matrix, the Coriolis/centrifugal matrix, and the gravitational forces vector.396

∆M (θ), ∆C
(
θ, θ̇
)

and ∆G (θ) are the associated uncertainties.397

Coupling the control input (4) with the reaching law (11), the robot system398

should be able to follow the reference trajectory with the promising charac-399

teristics given by Proposition 1.400

Fig. 6 (A) Human-exoskeleton robot. (B) Coordinate defining ETS-MARSE movements.
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Table 2 Modified Denavit-Hartenberg parameters

joint (i) αi−1 ai−1 di−1 θi
1 0 0 ds θ1
2 −π

2
0 0 θ2

3 π
2

0 de θ3
4 −π

2
0 0 θ4

5 π
2

0 dw θ5
6 −π

2
0 0 θ6 − π

2

7 −π
2

0 0 θ7

5.3 Real time setup401

The rehabilitation robot system is composed of three processing units. The first402

is a PC unit where the top-level commands are transmitted to the exoskeleton403

robot using LabVIEW interface, i.e. to select the type of physiotherapy exercise404

and type of rehabilitation protocol to be specified. The performance of the405

exoskeleton robot is further evaluated at the level of this unit (PC). That is, it406

is also responsible for receiving all feedback data sent by the robot. The other407

two processing units are parts of a National Instruments PXI. One of those is a408

board (NI-PXI 8081 controller board), responsible for the management of the409

exoskeleton system, as well as executing the top-level command algorithms.410

In this case, the proposed control strategy was set to operate at a sampling411

time of 500 µs. Lastly, at the input/output level, a NI PXI-7813R remote412

input/output board with a Field Programmable Gate Array (FPGA) executes413

the low-level control; i.e., a PI current control loop (sampling rate of 50 µs)414

responsible for stabilizing the current of the motors as required by the main415

nonlinear controller. Furthermore, joints position is measured via Hall-sensors,416

where input/output tasks are executed at the level of this FPGA. The joints of417

ETS-MARSE are powered by Brushless DC motors (Maxon EC-45 and Maxon418

EC-90) coupled with harmonic drives (a gear ratio of 120:1 for motor-1 and419

motor-2, while a gear ratio of 100:1 for motors 3-7)Brahmi et al. (2018b).420

5.4 Experimental Results421

5.4.1 Joint Space422

For the earlier mentioned purpose, a basic physiotherapy exercise was chosen423

(Elbow: Flexion/Extension; Shoulder Joint: Internal/External Rotation) in424

joint space. All experiments were performed by a real subject (age: 29 years;425

height: 176 cm; weight: 78 kg). The conducted exercise started from a 90◦426

Elbow joint initial position. For all controllers, the same gain values were427

manually chosen as follows: K1 = 150I7×7, λ = 15I7×7,µi = 0.5, αi = 0.03,428

pi = 5, and γ = 0.5.429



20 Brahim Brahmi et al.

5.4.2 Discussion of joint space results430

As shown by the first set of data of Figs.(7-9), all controllers were able to431

provide a good tracking trajectory. Interestingly, looking at the second and432

third sets of data of Fig.7 (surface and control input evolution respectively),433

the proposed controller (Proposed-RL) was uniquely able to both, track the434

trajectory to a very good extinct while significantly reducing the chattering.435

On the other hand, SMC with PRL (Fig.8) was only efficient in reducing the436

chattering as compared to ERL (Fig.9), as described by the second and third437

sets of data of both figures. Conversely, SMC with ERL was mainly efficient in438

providing high performance as compared to PRL, as illustrated by the second439

set of data of Figs.8 and 9.440
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Fig. 7 Performance of the proposed controller.
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Fig. 8 Performamce of the Sliding Mode Control (SMC) coupled with the Power Rate
Reaching Law (PRL).
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Fig. 9 Performance of the Sliding Mode Control (SMC) coupled with the Exponential
Reaching Law (ERL) (Red color is the desired trajectory and blue one is the measured
trajectory).

5.4.3 Cartesian space441

In this section, an exercise in 3D Cartesian space (Starting position→ Target-442

A→ Target-B) was performed using the proposed controller. This experiment443

was conducted by the same subject, starting from the same elbow joint initial444

position (Described in the previous Joint Space subsection). All controllers’445

gains were also manually chosen as follows: K1 = 180I7×7, λ = 20I7×7,µi =446

0.7, αi = 2, pi = 15, and γ = 0.5.447
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Fig. 10 Performance of the proposed controller on ETS-MARSE robot in 3D space.
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using the proposed approach.
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Fig. 12 Evolution of the torque inputs during the Cartesian described task using the pro-
posed approach.

5.4.4 Discussion of Cartesian space results448

The performance of the proposed control approach on ETS-MARSE in 3D449

Cartesian space is summarized in Figs (10-12). Concisely, collected results450

highly support the smooth and effective operation of the proposed controller.451

In details, Fig. (10) shows the high rate of convergence to the desired trajec-452

tory. Concurrently, Fig. (11) clearly shows that all errors eventually diminish453

to around zero. Evidently, Fig. (12) proves the satisfactory smooth control454

input. It is noteworthy that the control input is further smoother than that455

of SMCERL Rahman et al. (2013) which has been applied on the same robot456

(ETS-MARSE). Hence, the control scheme renders satisfactory outcomes.457
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6 Conclusion458

In this paper, a sliding mode control (SMC) with a novel proposed reaching459

law were employed to control a perturbed and unperturbed nonlinear system.460

The proposed reaching law proved its capability to overcome and enhance the461

performance of SMC. It also assisted SMC in achieving high performance with462

a significant reduction in the chattering problem. It further proved to drive463

system’s trajectories towards the origin in a substantially fast convergence464

time as compared to existing reaching laws. Simulation and comparison re-465

sults against existing successful approaches clearly supported the advantages466

of the proposed reaching law. Lastly, experimental results, with the aid of an467

exoskeleton robot, as performed by a real subject, proved the feasibility of the468

proposed reaching law for real-time implementation applications.469
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