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Abstract

Over the past decade, theoretical investigations have revealed the possible existence
of two distinct mechanisms, a fluid-damping controlled one requiring only a single
degree-of-freedom systemn and a fluid-stilfness controlled one tepuiring two or more
degree-of-freedom system, instrumental in causing fluidelastic instability of cylinder
arrays subjected to fluid cross-flow. As yet, the existence of these mechanisis has not
been verified experimentally, and some researchers tend to neglect one or the othe
of these mechanisms in their theoretical studies.

In this thesis, with the objcctive of obtaining further insight mto the nature of
fluidelastic instability mechanisms, experimental and theoretical studies have heen
performed on a rotated square array with P/d = 2.12. Previous theotetical and exper-
imental studies on this array have established the fact that a single flesible eylinder,
in an otherwise rigid atray, is fluidclastically stable However, multiple flesible cylin-
der dynamic (vibration) experiments undertaken i this study show that fhudelastic
instability develops when the array incorporates three ot mote flexible eylinders. "Tis
result verifies the duality of the instability mechanisms and suggests that the oy linder
motion i the present array is dominated by the fluid-stiffness controlled mechanism,
rather than the flnd-demping controlled mechanism.

Involved dynamic (vibiation) experiments have heen undertaken to cluadate the
effect of various parameters such as, number of cylinders, cvhnder position, eylinder
mass. frequency detuning and fluidelastic coupling on the mstabihty threshold of
this array, in which the fluid-stiffness controlled mechanism prevails It has been

determined that varying mechanical damping has a small effect on the critical velocity,
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whereas, varying cylinder mass generates, relatively, laige changes in the critical
velocity. A “Connors type” instability equation, or versions of it. are shown not to be
applicable in this array, mainly due to the strong dependence of the mass exponent
on the actual value of the non-dimensional mass.

Frequency detuning of adjacent cylinders is also shown to have a significant effect
on the critical velocity. Further dynamic (vibration) experiments revealed the co-
sxistence of dynamic and static instabilities within close proximity to each other. It
was possible to switch from one type of instability to the other, by warying one, or
more, of the mechanical properties of the flexible cylinders.

Next, the time averaged {luid forces acting on static cylinders were measured as a
function of monitored, and surrounding, cyhnder displacements at differ:nt Reynold
numbers, to attain a physical understanding of the flow pattern in the array. The
results complemented and verified the various dynamic and static instability findings
of the vibration (dynamic) experiments.

Finally, the fluid forces were incorporated in a quasi-steady, multiple degree-of-

freedom model for comparison with experimental results.
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SOMMAIRE

Durant la derniére décennie, des études théoriques ont démontré 'éventuelle existence
de leux mécanismes distincts donnant naissance i des instabilités fluiddlastiques dans
le cas de faisceaux de tubes soumis a un écoulement transversal: un mécanisme rehé a
PPamortissement introduit par le fluide quin n’exige qu'un systéme a un degié de liberté
et un mécamsme relié a la raideur introduite par le fluide, exigeant un systeme a deux
ou plusicurs degrés de liberté. Jusqu’a présent, existence de ces mdeanismes n’a pas
encore ¢té vérifiée expérimentalement, et certains chercheurs tendent a négliger P'un
ou l'autre de ces mécanismes dans leurs études théoriques.

Dans cette these, dans le but d’obtenir un apergu plus profond de la nature des
mécanismes des instabilités fluidélastiques, des études théoriques et expénmentales
ont été cflectuées sur un faisceau & géométrie catiée pivotée (“rotated square array™)
avec un espacement £/d = 2.12. Des études théotiques et expérimentales antéricures
sur ce faisceau ont moutré qu'un tube flexible, dans un faiscean par ailleurs maintenu
fixe, est stable de manieie fluidélastique. Cependant, les expétiences dynamiques (de
vibration) avec plusicurs tubes flexibles entiepiises dans la présente ¢tude montre
qu’une instabilité fluidélastique se développe lotsque le faiscean contient trors cylim-
dies flexibles ou plus Ce résultat vénfie Ta dualité des mécamsmes dhmstabihite et
suggere que le mouvement du tube dans ce faisceau est dominé par un mécamsme de
raideur, plutot qu’un mécamsme d'amortissement du fluide

Des expériences dy namiques (vibration ) complétes ont été entrepnises afin d'élucider
'effet de difféients parametres comnme le nombre de cylindies, la position du cylindie,

la masse du cylindre, la fréquence et le couplage fluidélastique sur le seuil d’instabilité

v




s 4

v

de ce faisceau, pour lequel le mécanisme controlé par la raideur du fiuide prévaut.
Ou a pu vérifier que 'aznortissement mécanique a peu d'effet sur la vitesse critique
alors que les variations de masse du tube générent des changements ielativement
importants.

De plus, on montie que I'équation d’instabilité de type “Connors”, ou des versions
siinilaires, ne sont pas applicables pour ce faisceau, principalement a cause de la forte
dépendance de Pexposant lié & la masse sur la valeur réelle de la masse adimensionelle.

On montre aussi que la fréquence des tubes adjacents a un effet considérable sur
fa vitesse aitique. Les expériences révelent la coexisteunce d'instabilités dynamiques
et statiques lorsque les fréquences sont proches. 1 a été possible de sauter d’un type
d'instabilité a Pautie en variant une, ou plusicurs, propricétés mécaniques des tubes
flexibles.

Ensuite, dans le but d’obtenir une compréhension physique de I'écoulement dans le
faisceau, les forces hydrodynamiques moyennes agissant sur les cylindies statiques ont
¢t¢é meswiées en fonction du déplacement conti16lé des cylindies adjacents a différents
nombres de Reynolds.

Les résultats ont complété et vérifié les conclusions des expériences en vibration
(dynamique) sur les découvertes des instabilités dynamiques et statiques.

Finalement, les forces hydrodynamiques ont été incorporées dans un modcle quasi-
statique, a plusieurs degrés de liberté, dans le but de compater avec les 1ésultats

expérimentaux.
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NOTE ON CONTRIBUTIONS
TO ORIGINAL KNOWLEDGE

The following findings of this study can be considered as contributions to original

knowledge.

1.

[

For the first time, conclusive experimental evidence has been furnished for the
existence of a multiple-flexible-cylinder, stiffness-controlled fluidelastic instabil-

ity mechaiism requiring coupled motion between adjacert cvlinders.

It is shown that for this array the resulting flow-induced vibrations are domi-
nated by the stiffness-controlled instability mechamsm, requinng multiple flex-
ible cylinders, as opposed to the damping controlled instability mechanism,
requiting orly a single flexible cylinder.  Furthermore, 1t is shown that the
cnitical flow veloaity is considerably less sensitive to stiuctural damping than
other results available in the literature. Conversely, the ciitical tlow velocity is
considerably more sensitive to dimensionless mass than other 1esults indicate.
These tesults rule out the applicability of a Connor’s type equation to predict

fluidelastic instability for this array.

The effect of frequency detuning upon the instability threshold has been studied
i letail to reveal a substantial understanding of the underlying physics of the

mstability mechanism.

vil




Vil

The very practical and dangerous scenario of both static and dy nanuc instalnhty
limits co-existing with close proximity to cach other in the samie arvay has been
detected for the first time. Furthermore, it has been possible to iterchange from

one type of instability to the other by varying one, or mote of the mechanical

properties of the flexible cylinders.
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Chapter 1

INTRODUCTION

1.1 General Introduction

In tube-and-shell type heat exchangers tube vibration can be induced, and sustained,
through cnergy supplied by the fluid flow(s) in the medium. Internal flow in the tubes,
external axial flow along the tubes and external cross-flow over the tubes concurrently,
or scparately, can be the cause of such vibrations Experience, accumulated the hard
and expensive way, indicates that a major portion of tube failures both in the short
and long run 1s caused by external cross-flow over the tubes. Paidoussis 1, 2, 3], Chen
(1] documented a rich spectia of cross-flow induced tube failures resulting in costs that
can peab to nnllions of dollats in terms of repair, replacement components and loss of
operational revenue. The problem 1s compounded by the fact that, the ever-endless
quest to minimise capital investment costs, as well as to reduce production costs per
unit of energy generated, imposes additional constraints on the designers. The usual
outcome s mote compact components with smaller pitch to diameter 1atios, higher
flow velocities, clevated temiperature differences, smaller and thinner tubes, all to
increase convective and conductive heat transfer and minimise heavy water inventory
in nudear power plants  Unfortunately all the above trends tend to increase the
occurtence of vibration and associated possibility of tube failure.

It is generally agreed that tube bundles subject to cross-flow experience vibration




due to one or an association of the following excitation mechanisms, namely; )
turbulent buffeting, b) flow periodicity, and ¢) fluidelastic instability.
In the following sections the important characteristics and some recent develop-

ments on these mechanisins will be discussed.

1.2 Turbulent Buffeting

The velocity fluctuations in the fluid cross-flow (normal to the tubes axes) result in
random, broadband fluctuating pressures acting on the surface of the tubes. At all
cross-flow velocities these fluctuating pressures transfer energy to the tubes. In tuin,
the tubes act as filters, extracting energy in the {requency bands around their natural
frequencies, in particular their fundamental fiequencies.

The tube vibrational response to fluctuating pressures is generally of low ampli-
tude and the associated fretting wear at tube suppotts is a slow process, harmful
only in the long run. Thus, for design purposes it is usually necessary to petform
hundreds of hours of laboratory tests to determine the reliability of components in
terms of turbulent buffeting.

Even though the associated fluid mechanics in a tnbe array is highly complicated
a good understanding of certain turbulent buffeting problems has been obtained ex-
perimentally and theoretically.

Fitzpatrick and Donaldson [5], for a 10 row in line tube array with L/d = 1.97
and T'/d = 1.75 in a Reynolds number, Re, range of 5.6 x 10% to 9 ¥ 10*, determined
that the turbulence mtensity, 77, 0.5% in the free-stream, steadily increases from
row to row as the flow traverses into the array. [u the vicinity of row 5 a maximum
turbulence intensity of 14% is attained and it remams constant bheyond thusrow. Ina
similar Reynolds number range, but for a 7 row rotated squate array with £/d = 2.12,
Price et al. [6] found a sharp increase in turbulence intensity up to 1ow 4 and a region
of “invarience” deeper in the airay for air- and to a rcasonable extent for water-flow.

Sandifer and Bailey [7], in a 6 row, P/d = 1.5, rotated triangle array using a




noninvasive measurement technique (LDV), obtained results quite similar to those

mentioned above. These studies lead to the conclusion that turbulence in the array
is induced by the array itself and its intensity is a function of position in the array.

Another issue of practical interesu is the effect of upstream turbuleunce character-
istics on cylinder respouse. Gorman [8, 9], for various arrays, showed that upstream
turbulators with characteristic dimension comparable to the diameter of the cylin-
ders in the array can reduce the buffeting response of the cylinders considerably. On
the other hand, screen turbulators with much smaller characteristic dimension had a
limited effect on vibration response. This is in agrecement with results of Price et al.
[6] who later, in a detailed experimental study, showed that fine upstream grids do
not alter the turbulence intensity inside the array relative to the no-grid case. It is
likely that the effect of laige and small scale upstream obstacles will be understood
better through the measurement of turbulence scale, and its decay, before the eddies
reach the first row of the cylinder array in future studies.

The telationship between buffeting response and cross-flow velocity has recently
reccived considerable attention. Pettigrew and Gorman [10], for a normal triangular
array with a pitch-to-diameter ratio range of 1.23 to 1.54, and later Sandifer and Bai-
ley (7], for a rotated triangular array with a pitch-to-diameter ratio of 1.5, found the
cylinder displacement in the buffeting region to be proportional to cross-flow velocity
squared. Price and Paidoussis [11], for a square airay with a pitch-to-diameter ratio of
1.5, found the buffeting induced displacement to be proportional to UL3 in the second
row and U2* in the fifth row In a further study [6], this time for a rotated square ar-
tay, the same authors decermimed the displacement to be proportional to UL}. These
studies suggest that the relationship between buffeting induced cylinder displacement
and cross-flow velocity is dependent on array geometry, pitch-to-diamecter ratio and
position in the array.

Two models, based on random vibration theory have been suggested by Pettigrew
et al. [10, 12] and Blevins et al. [13] to predict cylinder 1esponse to turbulent

buffeting. The only empirical input into these models is the power spectral density of



the buffeting force per unit length, which has been successfully normalised by Blevins
et al. [13], Taylor et al. [14] and Chen and Jendrzejczyk [15]. With the following

simplifying assumptions:
a) random forces fully currelated along the length of the tube,

b) no significant power at any frequency other than the fluidelastic natural fre-

quency,

c) power spectral density of the buffeting force per unit length is proportional to

flow velocity squared,

a random excitation coefficient, which is a function of frequency, is obtained from
the normalised power spectral density. Pettigrew and Gorman [10] provided a simple

equation determining the mid-span r.m.s. vibration amplitude,

1 1 . 1
Vims(5L) = [30dU°Ca] / 17 fimie) " (1)
where Yim, = mid-span rms displacement amplitude, p = flow density, U = flow
velocity, Cr = random excitation coefficient, f = fundamental frequency, d = cylinder
diameter, § = damping ratio.

Blevin’s expression for the mid-span rms displacement amplitude is equally simple

1

L)= 3pd3/2U§j2J¢n(l

D))/ [par imten] (12)
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where J = joint acceptance, (pn(%L) = cigenfunction at mid-span, the other vatiables
are the same as above.!

Paidoussis [3], and later Weaver and Fitzpatrick [16] fornd nurnerical calculations
from both models to be in limited agreement with each other, and attributed the

variations that did exist to different empirical random excitation coefficients.

'In Blevins' model ®p , esgenfunction at mid-span, 1s a function of non-dimensional veloaty,
Reynolds number, array gcometry and position of the tube in the array,




1.3 Flow-Periodicity-Induced-Resonance

For a single cylinder subject to cross-flaw it is well known that the vortex shedding
process periodically changes the structure of the wake and induces a periodicity on the
associated forces acting upon the cylinder. The ratio of the vortex shedding frequency
to the cross-flow velocily is a constant and by introducing a characteristic length can
be non-dimensionalised. The outcoming value, called the Strouhal number, is equal
to 0.20 £ 0.05 in a Reynolds number range of 2 x 10 to 2 x 10°.

For an array of cylinders, depending upon various factors such as; the geometry,
the piteh to diameter ratio, position in the array, Reynolds number and turbulence in-
tensity, flow periodicity may or may not be observed. In cases when a flow periodicity
is observed, multiple flow periodicities are not uncommon.

A physical understanding of the mechanism inducing flow periodicities in a cylin-
der array is, as yet, unavailable. Vortex shedding, wake motions, periodic reorgani-
sation of the main flow, shear layer instability, effect of a dominant {requency in the
broadband turbulent energy spectrum and slightly varying forms of the above have
been proposed as the cause of flow periodicity in cylinder arrays [16-20, 5]. However,
even in an environment of such conflicting ideas, some recent works have revealed

valuable information on the specific aspects of the problem.

- Axisa et al. [21] and Pettigrew et al. [22] conclusively showed that flow period-

icity for practical purposes occurs only in single phase flows

Gorman [8] and Savkar ¢t al. [23, 24] determined that turbulence induced by
upstream obstacles of characteristic dimension comparable to the array cylinder
diameter suppiessed or eliminated flow periodicity induced 1esonance. Whereas
results of Price et al. [6] and Gorman [8], with small scale upstream obstacles,

had no sensible effect on the magnitude of flow periodicity induced resonance
g p y

- cumulative cfforts of Fitzpatrick and co-workers [5, 25], Price et al. [6] and

Weaver with Fitzpatrick [16], for different gecometries and pitch-to-diameter
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ratios, determined Strouhal peaks to be a function of Reynolds number and

position in the array.

- Weaver and Abd Rabbo [26, 27], Mureithi [28] and Oengoren ¢t al. [29], in
square and rotated square arrays for low Reynolds numbers, detected explicit
vortex shedding through flow visualisation techniques. In a recent and continu-
ing combined flow visualisation and vibration study by McGill rescarchers [30]
it has been conclusively determined that, at least one of the Stiouhal peaks

detected in the cylinder vibration spectra is induced by vortex shedding.

For a designer of heat exchange equipment it is essential to be aware of the flow
induced Strouhal numbers. Only then can flow periodicity, cylinder natural frequency
and acoustic resonance be mismatched in order to prevent possible structural damage.
Fitz-Hugh [31] and Clien [32], using data from cylinder vibrations, tuibulence spectra,
pressure spectra on tube surfaces and acoustic resonance, formed Stronhal maps as
a function of lateral and transverse spacing of the cylinder arrays. Later Muriay ¢l
al. [33, 34] improved these highly critisized maps into a more useful form by ignoring
acoustic resonance data.

A second useful design tool to detect flow-periodicty, is based on a suggestion
of Owens [20] in the form; “the domnant frequency of the wibration ... is equal to
the wnterstitial gap velocity dwvided by twice the distance belween successwe 10ws”.
Recently, Weaver et al. [35], by observing their own and other published data for the
four different cylinder geometries. introduced “calibration constants” into “Owen’s
1ule” to have the best fitting curve for the data displayed as Stroubal number versus
the pitch-to-diamecter ratio. Zukauskas and Katinas [{36], considering o rather lunited
data basis, have developed an exponential relationship between Strouhal nuimnber and
pitch-to-diameter ratio to predict the flow-periodicity.

Both approaches mentioned above display a reasonably good fit to the data pre-

sented.
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1.4 Fluidelastic Instability

As discussed in previous subsections, turbulent buffeting and flow periodicity exist at
all cross-flow velocities and interaction between cylinder motion and the surrounding
flow is not a necessary condition for their existence. On the other hand, at sufficiently
high cross-flow velocitics, the fluid forces can induce high amplitude cylinder vibra-
tions, which in turn can modify the direction and magnitude of the local fluid forces.
Such fluid structure interaction, and the resulting coupled vibrational motion, may
amplify rapidly with increasing flow velocity, to cause catastrophic damage in heat
exchange equipment. The possibility of such a mechanism, termed as the fluidelas-
tic instability, was uncovered by Roberts [37] in a largely ignored pioneering study.
Later, Connors [38], using a semi-empirical analytical model, detected that relative
displacement of cylinders in a row can alter the surrounding flow field in such a man-
ner that suflicient energy can be transferred to the cylinder in order to overcome its
total damping to sustain a limit cycle motion. He proposed an equation, later named

after him, to detect the instability threshold velocity, U, in form of:

"f%é = K(m8/pd?)’ (1.3)
where f, = cylinder natural frequency, m = mass per unit length of cylinder, p =
cross-flow density, d = cylinder diameter, § = logarithmic decrement of mechanical
damping, K and § = cmpirical constants (9.9 and 0.5 in Connors’ case).

The decade following Connors, saw a massive effort to determine the effect of
various design parameters, like cylinder mass, structural damping, cylinder natural
[requency, array geometiy, pitch to diameter 1atio, Reynolds number, cylinder span
length and number, turbulence characteristics and void fracticn upon critical velocity.
The developments in that era, reviewed by Paidoussis [3], furnished an extensive data

base for those attempting to find a designwise acceptable *K™ for Connors’ equation.

Pettigrew ¢t al. {10], by compiling the data for all four standard geometries, in liquid,




l air and two-phase flows plotted critical cross-fiow pitch velocity?, U, against mass
damping parameter to find a best fit value of 3.3 for K. Later Chen [39, 4], with an
expanded data basis, formed the same plot individually for cach type of geometry by
defining a new reduced velocity? incorporating the effect of tube spacing. 1t should
be noted liere that dividing the stability diagiam according to array geometry, and
incorporating an effect of pitch-to-diameter ratio, could be quite risky while tiying to
form design guide lines for actual heat exchangers where the cross-flow angle of attack
exhibits a substantial variation from location to location. The natural consequence of
this is a relative change in array geometry and pitch-to-diameter ratio within the same
heat exchanger which could be under or overdesigned when based on such specialised
stability diagrams. Theiefoie, in the short run, until experimental and theoretical
studies reveal a more fundamental understanding of fluidelastic instability, stability
diagrams similar to those of references {4, 16 and 39], the only reasonable design tools,
should be used with caution.

Paidoussis (3], very correctly recognised that * .. all fluid-mechanical aspcets of the
instability are hidden within K”. In fact equation (1.3) for cylinder ¢ can be rewritten

in a more general form as;

, no. of flexible cylinders, array geometry,

(1.4)

- U, m L T ¢ :
UC = ~ = F ’ 51 Iy Ty T ? ' )

a2

where L/d, T'/d = longitudinal and transverse separation to diameter ratio,
f/d = cylinder length to diameter 1atio,

Re = Reynolds number,

Tv = Turbulence intensity,

v/d = Turbulence scale.

2Uy = Uoo P{(P - d) where P = pitch and d = cylinder diameter
3For each geometry a correction factor which 1s a function of the transverse eylinder spacing 1s
introduced

-
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When cequations (1.3) and (1.4) are compared, m/pd* and § are the only common
terms. The rest of the terms in equation (1.4), some of which can have a substantial
effect on the critical velocity, are all lumped into the constant K in Connor’s equation.
By the mid 70’s serious doubts started to develop on the applicability of Connors’
cquation to individual arrays. When specific arrays were analysed by Blevins et al.
[13], Gibert et aol. [40], Heilker and Vincent [41], Chen and Jendrzejczyk [42], Soper
[43], Grover and Weaver [44), Tanaka and Takahara [45], they determined a range of
1.25-7.1 for K and a range of 0.2-1.08 for the exponent of the mass-damping parameter
in equation (1.3) see Table 1.1.

Another issue of interest is that the mass-damping parameter in Connors’ equation
is in fact a product of two dimensionless variables, the non-dimensional mass and
the logarithmic decrement of damping. Based on insight and dimensional analysis,
Grover and Weaver [44] proposed the possibility of non-equal, separate exponents
for the mass and logarithmic decrement. Price and Paidoussis [11], Weaver and El-
Kashlan [46] and others, sce Table 1.2, verified this proposal experimentally at least

for some arrays, and obtained an expression for the critical velocity of the form,

U. m\"
=k (/—);ﬁ> 5o | (1.5)

where K,y and ay are empirical constants. The above developments brought into
discussion the issue, on how many constants should there be and what their values
should be?

Other researchers, including Connors [17] himself and Savkar [48] tried to improve
cquation (1.3) by including the cffect of the distance between the cylinders. Later
drawing on this Chen (39, 4] intioduced the effect of distance between cylinders into
the mstabihty charts

In further studies Y.N. Chen [49] introduced the effect of "¢ Reynolds number
into Connors’ equation whereas Chen and Jendrzejezyk [42), Price, Mark and Paidous-

sis [11, 50] investigated the effect of position in the array and upstream turbulence
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characteristics on critical velocity.

Another major contribution to improving Counnors’ equation is fiom the stability
maps of Chen [39, 4] and later Weaver and Fitzpatrick [16], discussed previously in
a different context. These log-log plots of non-dimensional ciitical velocity versus
the mass-damping parameter clearly show two distinct regions. In 1egion 1, above a
mass-damping parameter of & 0.4, all available data can be enveloped by a straight
line of slope 0.3-0.5 depending on the geometry of the cylinder array. Whereas in
region 2, below a mass-damping paranicter of & 0.4, the nou-dimensional critical
velocity is independent of changes in mass-damping parameter, which implies that 4
in equation 1.3 and a;,a; in equation (1.5) approaches zero. This is in contiast to
Connors’ and other rescarchers who deemed 3, «ry and o, to be constant thronghout
the whole mass-damping parameter range.

While a major portion of the above mentioned studies, directly or indirectly,
contributed to developing Connors’ equation, a considerable amount of other experi-
mental studies have focused upon a better understanding of the physical mechanisms

underlying dynamic instability. To name a few of the many;

- Zdravkovich and co-workers [51-54] using force and pressuie distribution mea-
surements, in both cylinder arrays and tandem cylinder arrangements brought o
substantial understanding to the flow structure and possible types of interaction

between cylinders.

~ Chen and Jendrzejezyk [55) found that fluid components of damping in the lilt
direction can be negative at sufficiently high flow velocities; Weaver and Ll-
Kashlan [16] found substantialiy the same at 15¢ to the lift direction. These
studies showed that the fluid damping component can be sufficiently negative
to overcome structural damping to induce dynamic instability, as predicted by

various theoretical models.

~ AECL researchers and co-workers [56, 57, 58] analysed several energy dissipation

mechanisms contributing to tube damping in actual heat exchangers with an
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emphasis on the effect of support parameters.

- McGill University [28, 30] and McMaster University [26, 27] researchers un-
dertook flow visualisation studies probing wake structure, its interaction with
surrounding flow and downstream cylinders as well as flow structure variations

frotn row to row.

Andjelic and Popp [59] in an excellent study, experimentally proved the exis-
tence of multiple instability bands at low value of the mass-damping parameter,
a phenomenon that had been previously proposed to exist via the theoretical

models of various researchers.

- Paidoussis et al. [60] experimentally detected and studied static instability in
a rotated-square array, another destructive instability mechanism which has to

be considered in heat exchanger design process.

1.5 Mathematical Models

During the course of the last 20 years various researchers have developed mathematical
models of varying complexity to determine the ciitical flow velocity for fluidelastic
instability. None of these models are yet of any reliable deterministic nature for
design putposes, but some of them have aided substantially to the understanding of
the physical mechamsms underlying fluidelastic instability. In the following section
some of these models, catagorised according to their empirical data requirements, will

be discussed.

1.5.1 Models Requiring No Experimental Data

Paidoussis, Mavriplis and Price [61], observing small wake structures behind the cylin-
ders in certain arrays, developed a model based on potential flow theory. The model,
i its imtial form, considers velocity dependent fluid-damping terms to determine

the instability threshold for a single degree-of-freedom system. The only empirical
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input is a delay term accounting for the lag between fluid forces and the response of
the cylinder to these forces. Later [62] at the expense of increasing crpirical input,
the authors incorporated fluid-stiffness terins, to establish a better agreement with
experimental results. Naturally this is a deviation from the original aim of this work
to predict fluidelastic instability with minimum empirical input.

Another model, not requiring any empirical fluid force cocflicients has been devel-
oped by Lever and Weaver [63, 64, 65). Assuming the vibration of a single cylinder
in a flow channel to be representative of a fully flexible array, the authors use the
unsteady Bernoulli equation with a phase lag to model the fluid mechanies. This
single degree-of-freedom model, considering only flnd-damping forces, s capable of
predicting fluidelastic instability with 1casonable accuracy only in the cross-tlow di-
rection. Even though the lack of fluid-stiffness forces and the concept of the “umit
cell” seriously limit the fluid mechanics of the model for any practical appheation,
Weaver and Lever were the first to detect multiple instability bands at low muass-
damping parameters through a numerical study. This phenomenon has only been

recently proven to exist experimentally [59].

1.5.2 Models Based on Unsteady Flow Theory Requiring
Extensive Experimental Data and the Dynamic In-
stability Mechanisms

At the other end of the spectrum are the models 1equiring extensive experimental in-
put in form of cylinder motion and flow velocity dependent fluid forees accounting for
added mass, fluid-damping and fluid-stiffness effects. Such models, furmshing results
in excellent agreement with instabitity velocities obtained from vibration experiments,
ate hindered by the fact that input data requurement is exhiaustively large aud in most
cases unavailable. But, so far, the greatest nnderstanding of the fluidelastic instability
mechanisms has been attained from such models.

Tanaka and Takahara [66, 67, 68}, dtawing upon their extensive unsteady fluid-

force measurements, developed a fully unsteady flow formulation giving numerical
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results in excellent agicement with vibration experiments. They determined that
the number of flexible cylinders considered in the analysis can have a significant
effect on the stability threshold, depending upon the mass-damping parameter and
pitch-to-diameter ratio. In addition, initial frequency differences between cylinders,
quite common in heat exchangers, were found to have stabilising and in some cases
destabilising effects depending upon the pattern o1 frequency detuning,.

Chen [69, 70], utilising Tanaka and Takahara’s fluid-force data, developed a fully
unsteady second order model. This approach helped to distinguish, at least in the
numerical arena, that fluidelastic instability is in fact composed of two distinct mech-
anisius. The first instability mechanisim proposed by Chen requires a single degree
of freedom system (less formally a single flexible cylinder) in which work done by
fluid forces proportional to, and in phase with, the velocity of a vibrating cylinder
is sufficient to reduce the total modal damping to zero. This mechanism, named
as the wvelocity or fluid damping-controlled mechanism, is usually dominant at low
mass-damping parameter values, i.e. for high density fluids. The second mechanism
proposed requires two or more degrees-of-freedom (multi-flexible cylinder array) with
coupled motion. Instability occurs when the total modal damping becomes zero but
in this instance due to work done by fluid-forces proportional and in phase with the
displacement of the cyhinder. Generally, named as the displacement or fluid styffness-
conlrolled mechanasm, this type of instability is dominant at high mass damping
parameter value, 1.e. for low density gas flows.

A better understanding of the duality of the dynamic instability mechanisms can
be obtained by analysing an approach taken by Collar and Simpson [87]. The fluid
forces acting on the cylinders of an array, with the exception of those due to the

added fluid mass, can be written as
F=Kz+Bz, (1.6)

where K = the fluid stiffness matrix, B = the fluid-damping matrix and z = the




14

displacement vector. If the motion is assumed to be harmonic, the displacement

vector, 2, can then be expressed as
z = asinwt + beoswt (L7

where a and b are the oscillation amplitudes and w is the cyclical frequency
By definition, the work done by the fluid forces per cycle of oscillation, W, can
be written as

rjw
W =/ 2TFdt . (1.8)
0

Combining equations (1.6) to (1.8) and rearranging yields

2r
W= / (aTc — bTs)[K(as + bc) + wB(ac — bs)] d(wt),
0
=r(aTKb - bTKa + w(aTBa+ bTBb)), (1.9)

where ¢ = coswt and s = sinwt. Equation (1.9} can be transformed into a more

useful format as

W =r [2aTKzb + w(aTBja + bTB1b] | (110)

when the fluid-stiffness matrix, K, (and the fluid-damping matrix B) ate expressed as
the sum of their symmetric and skew-symmetric components - K = K + Kz where
Ki = (K+KN/2=KT and K3 = (K - KT)/2 = ~K7 (sumlarly for B)

Inspection of equation (1.10) reveals the possibility of two distinet mechanisms
than can lead to W being negative and hence enabling the cyhinders to extract cnergy
ftom the surrounding flow to become dynamically unstable  The first mechanism
tequires the system to have a sufliciently negative aT Bya+bTByb teti for e <hulnting
dynamic instability. This fluid-damping controlled mechanism can generate dy nanie
instability even in a single degree-of-freedom systems when By is negative

The existence of a second dynamic instability mechanism can also be deduced
from equation (1.10). If aTKsb < 0 and |aTK2zb| > w(aTBla i bTB1b) |, then

W < 0 and dynamic instability is initiated. This fluid-stiffness controlled instabality
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is quite similar to aircraft wing flutter and requires at least two degrees-of-freedom,
as the scalar form of K2 is equal to zero [87). It should be stressed that, there is as
yet, no experimental evidence proving or disproving the existence of these proposed
mechanisms. Also, a significant portion of theoretical studies acknowledge only one

or the other of these mechanism.

1.5.3 Quasi-Steady Models Requiring Limited Experimen-
tal Data

The limited prediction capability of models requiring no experimental data [61, 63,
64, 65) and the vast magnitude of experimental effort necessary for models based on
unsteady flow theoty [66-70] has forced a significant portion of rescarchers to a mere
optimal path of quasi-steady formuiations. In such models, 1t is assumed that as the
tube oscillates, the instantancous fluid forces acting on it at a given position, can
be approximated by the forces acting on the static tube when displaced to the same
position. This assumption sharply reduces the experimental input required and the
magnitude of the numerical formulation to a manageable level.

Connors [38], and later Blevins [71, 72} developed linearised, quasi-steady mod-
cls showing good agreement with experimental data at high mass-damping values.
Through this quasi-steady model, Blevins was the first to analyse the cffect of fre-
quency detuning between adjacent cylinders and between the in- and cross-flow di-
rections of the same ¢ylinder, Whiston and Thomas [73] extended Blevins’ model to
icotpotate the effect of mechanical coupling between cylinders as well as the addition
of a limited fluid-damping contiolled mechanism  In general, all the above models
give poor agreement with experiments at low mass-damping values as fluid forces
considered are only displacement dependent.

Price and Paidoussis {74-80] overcame a major limitation of quasi-steady models
by introducing a frequency dependent term into their models to produce destabilising
fluid-damping forces. In the case of a single degrec-of-frecdom systemn (74, 75] they

successfully tested their modified quasi-static (quasi-steady) model by obtaining a
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dynamic instability due to the fluid-damping controlled mechanism. Various single
and multi degrec-of-freedom theoretical studies of these authors obtained the following

conclusions:

- There are definitely two different dynamic instability mechanisms operative in

most arrays,
- both mechanisms can separately cause instability,

- the effect (contribution) of each mechanism is dependent on array geometry,

pitch-to-diameter ratio and mass- damping paramecter value,

- the exponent of mass-damping parameter in a stability boundary equation is

different for each mechanism,

- detuning between cylinders and between the two directions of a single cylinder

can significantly effect the instability threshold,
- at low mass-damping parameter values multi-instability bands exist.

With a better estimation, or empirical determination, of the frequency dependent
terms for specific arrays and by incorporating the cffect of Reynolds number on force

coefficients this type of a model promises a good future.

1.5.4 Non-Linear Models

The aforementioned theoretical models are all based on lincarised theory. Recently
Price and Valerio [81], for a single degree of ficedom system, developed an analysis
mcorporating non-lincar quasi-steady forces. Encouraged by this pioncering results
further investigations are being pursued at McGill University.

Analyses considering structural non-lincaritics, i.c. impacting between cylinders
and their supports have been performed by Axisa and co-workers {82, 83] and Iiicker
[84]. Non-linear models are presently at their infancy and important developments

are to be expected in the near future.
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1.6 Motivation for the Present Work

As discussed in the above subsections, a significant portion of the recent developments
on the cross-flow induced vibrations of heat exchanger tubes is fiom numerical studies
(e.g. existence of two different dynamic instability mechanisms, effect of detuning,
multiple instability regions at low mass-damping parameter values etc.) But it is
rather strange that, at the time this study was undertaken, most of these findings
have not been fully verified experimentally. In addition to this lack of experimental
data, even in the theoretical arena there is a substantial amount of difference and in

some cases contioversy between various schools of researchers. To exemplify a few;

- Even though for some arrays Southworth and Zdrovkovich [51], Soper [43],
Abd Robbo and Weaver [27] have observed a change in critical velocity with
increasing number of flexible cylinders, there is as yet, no clear experimental
study proving or disproving the existence of a multiple-flexible cylinder type
dynamic instability mechanism. On the other hand some of the theoretical
models [63-65] are still based on the assumption that a single flexible cylinder
is sufficient to analyse dy+iamic instability in cylinder arrays. Such an approach
rules out the possibility of a multiple-flexible cylinder type dynamic instability

mechanisin from the very beginning.

- Lever and Weaver [63], Chen and Jendizejezyk [42], Soper {43] Weaver and
Koroyannakis [85] have experimentally studied the effect of frequency detuning
between the cylinders of an airray. These results have indicated little effect
of frequency detuning in higher density fluids; otherwise, few conclusions have
been obtained. Similarly, results obtained from various numerical studies by
Blevins [72], Tanaka and Takahara [66-68], Price and Paidoussis {77] are not
in total agrecment on the effect of frequency detuning between either adjacent

cylinders or the in- and cross-flow directions of the same cylinder.
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- Recent experimental results shed doubt on the global nature of a “Connors’
type” equation. At least for some arrays it has been determined that the non-
dimensional mass and damping cannot be lumped together under the same
exponent, sce Table 1.2. In fact, as scen in equation (1.4) the non-dimensional
mass and damping are separate non-dimensional variables and there is no phys-

ical justification of any sort for lumping them together.

- Similarly, for an array where multiple-flexible cylinder, fluid-stitlluess type in-
stability mechanism is the main contributor to instability it is not known if a

“Connors’ type” equation is applicable.

- Also, in cases where the multiple-flexible cylinder, fluid-stiffness type instabil-
ity is important, the effect of detuning is not clearly understood. Price and
Paidoussis {77, 79] and Chen [69, 70] in their theoretical studies, suggest an

important effect which experimentally |, is as yet unproven.

A series of experimental and theoretical studies performed at McGill University
(6, 75, 80] on a seven row rotated square array, with P/d = 2.12, have revealdd
interesting results that can form a basis for future research. A single flexible cylinder
placed at various rows of this array has experienced no fluidelastic instability during
experimental studies (mm = 280, § = 0.014, U/f,d up to 125). Similarly, both
linear and non-linear models developed by the same authors determined no flindelastic
instability for a single cylinder in the same array.

All of the above results conclusively show that a siugle degree-of-ficedom, fluid-
damping controlled instability inechanisin by itself is insufficient to induce fluidelastic
instability in a 1otated square artay with P/d = 2.12.

But in a further theotetical study {78] Price and Paidoussis found that with multi-
ple flexible cylinders in this array, fluidelastic instability can occur. If this is dernon-
strated to be so experimentally then this will be the first, and conclusive proof, for the

existence of a multiple-cylinder, stiffness controlled fluidelastic instability mechanism,
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1.7 Objectives of the Study

A.

13.

D.

This study undertakes to experimentally prove the existence of a multiple-
flexible cylinder type fluidelastic instability mechanism in an array where a

single flexible cylinder is known to be stable.

If such an instability is proven to exist, at the nexi stage the effect of various
parameters such as number of cylinders, cylinder position, cylinder mass, cylin-
der damping, coupled motion between cylinders and frequency detuning on this

instability mechanism will be investigated.

. The applicability of Connors’ type design equations to arrays where the multiple-
Y I g

flexible cylinder type fluidelastic instability mechanism is dominant will be re-

scarched.

The time averaged forces acting on static cylinders as a function of the dis-
placement of instrumented and the surrounding cylinders will be determined at
different Reynold numbers to gain a physical understanding of the flow pattern

in the array.

. Finally, the above forces will be incorporated into a quasi-steady multiple degree

of freedoin numerical model for comparison with experimental results.




Chapter 2

A GENERAL OVERVIEW OF
THE WIND TUNNEL AND THE
ARRAY

2.1 The Wind Tunnel

The experiments to be discussed in the following chapters have all been performed
in a blow-down, subsonic wind tunnel schematically shown in Figure 2.1. The tunnel

consists of:

a) A fan section housing a 1220 mm (4-ft.) impeller centrifugal fan diiven by a
40 hp d.c. electric motor. The fan shaft speed is regulated by a contiol system

that varies the voltage across the d.c. motor.

b) A settling and straightening section with a honeycomb to destroy large scale flow
irregularities and a series of meshwire screens to reduce turbulence-intensity and

de]C.
¢) A contracting scction with an exit to inlet flow area ratio of 16

d) A 1829 mm (6-ft.) long test section with cross-sectional dimensions of 610 nun

(2-t.) by 914 mm (3-ft).

A steady volumetric flow rate of 1-24 m?/s which corresponds o a maxinmm air

flow velocity of 43 m/s, can be obtained in an empty test section A pilot-static tube,

20
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connected to an inclinable manometer, measures the dynamic pressure from which
the upstream flow velocity can be calculated by using Bernoulli’s equation for inviscid
and incompressible flow. Outside the boundary layer, the velocity profile across the
tunnel cross-section deviates by less than 1% for an empty test section. In earlier
studies [86] the turbulence intensity in the empty test section was shown to be less

than 1%.

2.2 The Cylinder Array

To simulate cross-flow over the tubes of a shell-and-tube heat exchanger, a 10tated
square array with a pitch-to-diameter ratio of 2.12 has been designed and constructed.
The array consists of a portion of ngid cylinders, which will be discussed here, and
two interchangeable inserts one of which is designed for vibration experiments and
the other for force measurements, these will be discussed later in Chapters 3 and 5.

The rigid portion of the array consists of ninety two 591 mm (23.25 in.) long,
25.4 mm (1 in) diameter solid aluminum rods sandwiched between 10 mm (0.39 in)
thick aluminum plates as shown in Figure 2.2. These are arranged to form rows of a
Pfd = 2.12 rotated square array. The hole at the center of the aluminum plates, with
slight modifications, is capable of housing both the vibration and force measurement
nserts.

The array which spanes the entire width of the test section was cight rows deep
for most of the experiments, except cases where up to three extra rows of cylinders
were added to prevent downstream effects occurring during vibration experiments
petformed on the latter rows of the ariay.

Prior to any vibration or force measurements the variation of the upsticam (ap-
proach) velocity with distance from the leading (uppermost) 10w of the atray was
measured, as shown in Figure 2.3. For upstream velocities of Uy, = 4 52 m/s and
U = 20.22 /s, corresponding to the minimum and maximum velocities of the ex-

periments, it is seen that 600 mm or further from the leading cylinder of the array,




B

. . . . . ,
there is very limited change in the magnitude of the velocity veetor (less than 19%).
Based on this preliminary observation, the upstream velocities (Us) for the tosts re-
ported in this study were measured via a pilot-static probe with its tip at 600 mm

upstream of the leading row of the array.
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Chapter 3

VIBRATION MEASUREMENT
APPARATUS

3.1 The Vibration Measurement Insert

The wibration insert, briefly mentioned in section 2.2, is shown in Figure 3.1. This
inscrt has been designed to facilitate the investigation of the flow-induced vibrational

response of as many as four flexible cylinders. It consists of:

&) four, 25.4 mm (1 in.) diameter, 1500 mm (59 in.) long vertical steel posts
attached to the plates housing the rigid portion of the array through the ar-

rangement shown in Figuires 3.2 and 3.3.

b) Two 191 mm (3/4 in.) thick horizontal steel slabs, as shown in Figures 3.2, 3.3
and 3.4, bolted to the four steel posts to form the lower and the upper platforms

for stiinging the flexible cylinders.

¢) Asliding platform holding four oil pots, which forms part of the viscous damping

system as shown in Figures 3.3 and 3.5.

The insert houses the flexible cylinders, which are in fact rigid cylinders flexibly

mounted via piano wires. A schematic of a typical flexible cylinder and its mounting
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system is given in Figure 3.6. All the flexible cylinders have a diameter of 25,1 mm
(1 in) and a length of 600 mm (23.6 in.).

A carriage located at the center of each cylinder accommodates two miniature
accelerometers orthogonal to cach other. The accelerometers are aligned in the in
and cross-flow directions. 0.76 mm (0.030-in.) piano wires attached to both sides of
the carriage are attached to brass sliders on the lower and upper platforms fixed to
the top and bottom of the wind tunnel. These sliders, as shown in Figure 3.4 can be
moved in the in-flow direction to correct for the blow-back caused by the static drag
force acting on the cylinder. Thus, at all flow velocities, it is possible to heep the
array geometry sensibly the same. A further function of the upper slider s to vary
the tension, via a sinall mechanism in the wires. This mechanism allows the natural
frequency of a cylinder to be sct at any desired value with less than 0.5% ciior within
a frtequency range of 3.5 to 17 Haz.

A perforated damping bell 1s located on the lower wire of cach cylinder When
this bell is lowered into the previously mentioned oil pot, a viscous damping system
is formed. The resulting logarithmic decrement of a cylinder can be vatied hetween

0.014 and 0.3 by:
a) using different viscosity oils,
b) varying the depth of the bell 1n the oil,
c) varying the distance of both the bell and the pot from the cylinda

Table 3.1 summarises the characteristics of vanous flexible ey hnders used dunng

the experiments.

3.2 Vibration Measurement Instrumentation

In most experiments the vibrational motion of all the flexible eylinders was monitored
in both the in-flow (drag) and the cross-flow (lift) directions. This monitoring was

realised through two different measurement devices, namely;




4) 1niniature piczoclectric accelerometers,
b) velocity pick-ups consisting of a coil and a horse-shoe magnet.

‘The above hybrid arrangement was necessitated by the lack of eight miniature
piczoclectric accelerometers capable of fitting inside the flexible cylinders.

Up to a maximum of six Endevco miniature piezoelectric accelerometers with
transverse sensitivities less than 1.5% and a typical frequency response of +0.45 dB
from 20z to 8 kllz were used. Table 3.2 lists the accelerometer models and charge
sensitivities (PC/g) as well as the charge amplifier models and voltage-to-acceleration
(inV/g) 1atios

The vlocily prek-up, consisting of a coil and a horse-shoe magnet, was developed
at McGill by Mark [88] and used with success in previous experimental studies. The
system consists of a coil of wite atiached to the upper piano wire which is positioned
inside the magnetic field of a horse-shoe magnet as shown in Figure 3.7. The motion
of the piano wire, and thus that of the coil, induces a current proportional to the
vibrational veloeity of the cylinder. The magnitude of this signal can be increased to
a satisfactory level, not 1equiting any amplification, by increasing the magnet strength
or by increasing the number of windings in the coil. When electronically differentiated
and calibrated against an accelerometer the vibiation power spectra obtained from
the coils were virtually identical to those obtained via an accelerometer, at least in
the fiequency range of interest - 2 Hz to 30 Hz - as shown in Figuie 3.8 Thus,
throughout this study vibration pick-ups with the plane of the coil either parallel or
perpendicular to the upstream flow direction were used with confidence to inonitor
the in - and cross-flow vibrational motion of cylinders

The output signals, llom accelerometer charge amplifiers and the vibration pick-
ups, were analysed via a Hewlett-Packard 3562A two channel dynamic signal analyser

coupled to a Hewlett-Packard 9000 310 microcomputer.
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3.3 Vibration Measurement Procedure

In all of the experiments the initial step consisted of choosing the number, position
and mass of the flexible cylinders and placing them in the array. Next, the eylinders
were tuned to the desired natural fiequency and structural damping, This was accom-
plished by lightly impacting the cylinders to obtain a decaying acceleration signal.
The natural frequency of the cylinder, f,, corresponding to the frequency with the
largest amplitude in the power spectra was obtained from this acceleration signal. In
all experiments the flexible cylinders was tuned to the previously detetmined natural
frequencies with a maximum deviation of £ 0.5 %.

The logarithmic decrement of damping was obtained dircctly from the decaying
acceleration versus time trace. In some experiments, high structural damping values
were required. Such a requirement was realised by dipping the bell into the oil pot.
[ this type of experiment it was possible to keep the maximum difference between
the logarithmic deciement of different cylinders below 7%. But in most experiments
the cylinders were only damped by air, and ensuring that the cylinders had equal
structural damping was more difficult. Still in all cases the maximum difference in
the logarithmic decrement was less than 12%.

Once the natural frequencies and the logarithmic decrement of damping was set
to the predetermined values, experiments to measute the flow-induced vibiational
behaviour of the cylinders at incrementally increasing flow velocities were perlonined.
At cach flow velocity, the cylinder blow-back due to static diag was adjusted  Then
according to the requitements of the specific experiment a combination of the mea-

surements listed below were performed.
o The in- and the cross-flow acceleration power spectra of cach eylinder.
e The coherence between the vibrational acceleration of different cyliuders.
o The cross-spectra between the vibrational acceleration of different cylinders

o Orbits of the oscillation obtained where the in-flow vibration was plotted versus




the cross-flow vibiation,

Generally, depending upon the test performed, 50-100 samples were found to be
sufficient to reach steady state in all frequency domain measurements.

The test was terminated either at the instability threshold or at the maximum
wind tunnel veloeity of & 22 m/s if the array was stable.

Finally, the cylinder natural fiequencies and the logarithmic decrements were
measured again to check for any major variation that may have occuired during
the experiment.

Data analysis was done using a lewlett-Packard 9000 310 coinputer system util-

ising the software NEWED, developed by Mark [89], at McGill University.



Chapter 4

DYNAMIC RESULTS

4.1 An Overview of the Dynamic Results

The dynamic (vibration) experiments performed in this study can be categorized into

three major groups.

A Those aimed at determining the possible existence of a multiple-flexible eyhn-
der, fluid-stiffness controlled instability mechanism and factors affecting such a

mechanism.

B Those elucidating the effect of natural frequency variations between adjacent

flexible cylinders (detuning) upon the threshold of fluidelastic instabulity

C Those investigating flow induced static cylinder displacement and associated

instability.

As emphasized above and in previous sections, the major subject of study i this
thesis is the instability mechanisms, Turbulent buffeting and flow penodicity mduced
resonance, even though closely monitored, will only be a marginal issue of interest.

Prior to any detailed discussions, the flexible eylinder numbering system used will
be introduced. A flexible cylinder will be named after the 1ow 1t is positioned m, e.g.

a cylinder in row 3 will be referred to as cylinder 3 Similarly when there are two
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flexible cylinders in the same row, such cylinders will be distinguished to be the left
and the right cylinders of that row and will be referred to as cylinder (X)L and (X)R.
A typical example for second row flexible cylinders (X = 2), is as shown in Figure

11

4.2 Multiple-flexible Cylinder Fluidelastic Insta-
bility

4.2.1 A Single Flexible Cylinder

In an excellent experimental study at McGill, Mark {86] in aii-flow and Macdonald
(90] m water flow conclusively determined that a single flexible cylinder positioned in
any 1ow of a rotated square array with P/d = 2.12 does not become fluidelastically
unstable. For the sake of completeness, and to form a basis for comparison with the
multiple flexible expernments, a limited number of single flexible cylinder experiments
hive been repeated in this study.

Iigure 1.2 shows a typical vibrational acceleration power spectra for a single flex-
ible cylinder in the array. The main response of the cylinder to fluid foicing as would
he expected, is atats first fluidelastic natural frequency. When the in- and cross-flow
vibrational acceleration power spectra, for a fourth row flexible cylinder, are measured
at many upstream flow velocities, they can be compiled into a thice-dunensional for-
mat as shown in Figure 1.3. Based on such a display, the variation of vibrational
acceleration amplitude and frequency of any mode can be nlotted as a function of the
non-dimensional velocity, {7/ f,d, as shown in Figure 4.4 and Figure 4.5, Figure 4.5
teveals a substantial increase m the in-flow ditectional fiequency and a considerable
decrease in the cross-flow duectional frequency as flow velecity is increased. This
divergence of major in- and cross-flow frequencies is typical of all single/multiple
flexible eylinder experiments performed in this array and will be encountered often.
[n a previous study [86] the incicase of in-flow stiffness had been attiibuted to in-

crease of steady drag with flow velocity. Whercas the static force measurements that
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will be discussed in Chapter 6 have revealed that the loss of rigidity in the cross-flow
direction is purely induced by the aerodynamic force field.

Single flexible cylinder experiments of this study are summarised in Table 1.1, In
all cases stable cylinder behaviour prevailed throughout the whole non-dimensional

velocity range.

4.2.2 Two Flexible Cylinders and the Existence of Coupled
Motion

Once the stable behaviour of a single flexible cylinder had been verified, experiments
with two flexible cylinders were initiated. The results, summarised in Table 4.2, show
that under no circumstances could instability be obtained with two flexible eylinders.
Still, one of these cxperiments, with a tandem arrangement of flexible cylinders m
the first and third rows - m = 280, f, = 10 Hz, § = 0.014 - revealed an mteresting
phenomenon. In Figure 4.6, for the in-flow direction of cylinder I, and in igure
4.7, for both the in- and cross-flow directions of cylinder 3, the three-dimensional
acceleration power spectra are presented (the cross-flow direction for eylinder | was
not measured in this experiment). When the major oscillation frequencies (peaks) ate
extracted from each spectra and plotted as a function of non-dimensional velocity,
as shown in Figure 4.8, it is observed that some frequencies are common to both
cylinders. At these coinciding frequencies a high magnitude peak is measured i the
cross-spectra. Also these coinciding frequencies, from different cylinders, have high
coheience levels well 1n excess of 75%, indicating an input/output type of relationship
between the oscillation of the two cylinders. As an cxample of highly conrelated
motion Figures 4.10, 4.11 and 4.12, respectively, show the power spectra of eylinders
1 and 3, the cross-spectra of cylinders 1 and 3,coherence between cylinders | and 3 at a
velocity of 7.8 m/s. Such an intimate relationship between the vibrational modes of

both cylinders can also be scen at all the other flow velocities, Figure 4 13 shows the
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cohiecrence between the in-flow vibration signals of cylinders 1 and 3 at different flow
velocities in a three-dimensional format. A similar result, this time between the in-
flow signal of cylinder 1 and the cross-flow signal of cylinder 3 is given in Figure 4.14.
Both figures clearly show high levels of colierence at common ficquencies, even at fairly
low flow velocities. It has also been established that there is no mechanical coupling
between the eylinders, and common frequencies ate not induced by any known flow-
periodicity. This leads to the conclusion that in this array, the vibrational motion of
one cylinder can effect and synchionise the motion of the others through fluidelastic
conpling. Such a conclusion is important in the sense that, fluidelastic coupling
between cylinders has been proposed to be a necessary condition for the existence
of multiple cylinder type instability by Piice and Paidoussis as well as Chen in their
various theoretical models. Thus, it is quite likely that coupled motion between more
numerous flexible cylinders could induce a fluidelastic instability, even though this
arrangement of two flexible cylinders is stable acioss the non-dimeusional velocity
range tested, as shown by the acccleration versus non-dimensional velocity plot of
Figure 4.9.

IFurther experiments, two of which will be discussed in detail below, were done
to determine some of the variables affecting the fluidelastic coupling between two
flexible cylinders. To observe the effect of relative cylinder position with respect to
cach other, two cylinders, with exactly the same properties, - m = 280, f, = 10
Hz, & = 0.014 -, were placed in the second and the third rows as shown in Figure
1.15. The major difference between this experiment and the one discussed above is
that the downstream (1ow 3) cylinder is not directly in the wake of the upstream
(row 2) cvlinder. Thus, intuitively one would expect less mteraction between the
dynamic behaviour of each flexible cylinder. Figures 4 16 to 4.17 show the stable
in - and cross-flow vibrational behaviour of both flexible cylinders for an upstream
flow velocities less than = 19.5 m/s (U./f.d = 77). As can be scen, both cylinders
ate stable for the complete velocity range. There are far less peaks common to both

cylinders. compared to the previous case, and those that do exist are generally in
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! the cross-flow direction. In the major portion of the velocity range the coherence
between the motion of both cylinders is negligible, signifying an uncoupled motion.
| In fact, as shown in Figure 4.18 the vibrational motion of both cylinders hecomes
coherent only for velocities greater than 15 m/s (U'/ fod = 59) and then the coherence
is only between the cross-flow directional motion of cylinder 2 and 3. When this,
and previous experiments are compared, it is observed that changes in the telative
position of two flexible cylinders has a major cffect on the strength of the fluidelastic
coupling between cylinders.

In the experiments discussed next, two flexible cylinders, again with the same
initial properties, - m = 280, f, = 10 Hz, § = 0.014 | are located in tows 1 and
6. This experiment is identical to the tandem arrangement previously discussed with
flexible cylinders in 1ows 1 and 3, except that in this case the same arrangement
is placed deeper inside the array to determine if position changes in the arroy have
any cffect on the fluidelastic coupling between flexible cyhnders. Figures 119 to 120
show thie vibrational behaviour of cylinder 4 and cylinder 6 in the in and doss flow

directions. Two important results can be extracted fiom these figures.

- The maximum rms vibration of both cylinders is less than 0.07g, which is four
times smaller than that experienced by the same arrangement in the upstieam

rows (sce Figure 4.9).

~ In this position (1ows 4 and 6) the motion of cither one of the ¢ylinders is

totally independent of the other. No significant level of coherence was measued

between the vibrational acceletation signals of cach cylinder to wartant the

possibility of fluidelastically coupled motion.

Therefore, the two-flexible cylinder experiments discussed in this section suggest
that the vibrational motion of the eylinders can be fluidelastically conpled to achieve
over all synchronisation. The strength of this coupling, which can be measured by the

magnitude of common power and coherence! at coinciding modes, is a function of the

e cross (power) spectra is a measure of the common power between two signals m the frequency
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cyhnder arrangement with 1espect to each other and the position of the arrangement
in the array. Another interesting result occurring with two flexible cylinders, static

displacement and instability, will be discussed in section 4.4.

4.2.3 Four Flexible Cylinders and the Multiple-Flexible Cylin-
der, Stiffness Controlled Instability

Ouce fluidelastically coupled motion had been observed to exist between two flexi-
ble cylinders, experiments with more flexible cylinders were initiated. Figure 4.21
schematically shows four flexible cylinders, one each in rows 1 and 3 (cylinder 1 and
3), and two in 1ow 2 (cylinder 2R and 2L), all with the properties of m = 280, f,
= 10 Hz and § = 0.011 It should he noted that these properties, (cylinder mass,
damping and natural ficquency) are the same as those for the two flexible cylinder
experiments presented in subsection 4.2.2 (Figuies 4.6 to 4.14); the only difference
being the mumber of flexible eylinders.

The in- and cross-flow 1ms acceleration of each cylinder, at the major frequency
of vibration, are given in Figures 4.22 and 4.23, respectively. At a threshold non-
dimensional velodity of & 62 the motion of all the cylinder becomes flu:delastically un-
stable. Instability, which initiates fiom cylinder 3 at 1 slightly lower non-dimensional
veloaty of & 59, effects all other cylinders through strong fluidelastic coupling, to
tesult o nims vibration acceleration magnitudes as high as 3 g, In such cases, the
unstable motion of the cylinders is so violent that, to avoid the destruction of the
ovhnders and the associated instiumentation, detailed expeniments could not be per-
formed beyond the instabnlity threshold in the unstable region.

The above tesult has great significance in the sense that arrays stable when hous-

tange of wtetest By definttion it s the product of the Fourter transform of the two signals and
contains both magmtude and phase mformation It s an extremely powerful tool to detect portions
of the signals common to both measured events When both signals are high the common power
will be lugh and when they are both low the ccimmon pawer will be low

The coherence function i the general sense 1s a micasure of causality between two signals It
15 the ratio of the cross-spectra squared to auto spectrum squared  This function dehvers only
@ normabised magnitude and lacks the phase mformation  In fact, it does not have the double
whrmation advante of the cross-spectra In this study 1t has been used as an addiional mean of
data analysis
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iy a single fleeible cylinder can become fluidelastically unstable with multiple flerible
cylinders. For the first tame thes furmishes conclusiee crperimental « cedenee for the cr-
wolence of a stiffness-controlled (dvsplacement type) fhadelastic instability niechanisin
requiring coupled motion between multiple-flenble cylinders,

The in- and cross-flow major Hluidelastic frequency variation of cach eylinder with
non-dimensional flow velocity, Figure 4.24, supplied further interesting results Al
four cylinders, inttially tuned to the same natural frequency under no flow conditions,
exhibit a diverging trend in their individual fluidelastic fiequencies with creasing
flow velocity. In general, the in-flow frequencies increase and cross-flow frequencies
decrease. Just before instability these frequencies start to converge back to cach
other, and cumulate around two specific frequencies. One of these fiequencies =
11.3 Hz, can be detected in the vibration spectra of all fouwr flexible eylinders
the following sections it will be seen that for most cases of instalnlity, all (yhnders
oscillate at a single dominant frequency. This fiequency synehronzation of overall
cylinder motion is a good indicator of strong fluidelastic coupling between Hexible
cylinders at the instability threshold. In fact, coupling between different flexible
cylinders can also be observed at relatively low non-dimensional flow velocities As an
illustrative example to this argument, in Figure 4.21 the major frequendies connmon to
at least two cylinders are numbered from 1 to 6. C'ohierence measuremcents hetween the
cylinders at these frequencies are given in Figure 4.25 as a function of non-dimensional
velocity. The general tiend, as wonld be expected, is an increase in the coherence
with increasing flow velocity.

It should be stressed that the above mentioned frequendies are those of the peaks
with the largest amplitude in the power spectra of cach fleible cyhder Inaddition to
these peaks, all the cylinders exhibit dynamic response at vatious other frequencies,
The complicated nature of the fluidelastic vibration expenenced by the cylinders
can dearly be seen in Figuie 4.26 which presents the acceleration power spectia of
cach cylinder in the in- and cross-flow directions al a non-dimensional velocity of

= 57.5. Of the numerous peaks in each spectium, many ate cornmon to more than
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one cyhnder. This can be seen more easily in Table 4.3 which tabulates some of the
mnportant frequencies extracted from each power spectra shown in Figure 4.26. One
of these frequencies, 12.6 Hz, is due to a flow-periodicity of Su = 0.022. All the other
common peaks at 9.3, 11.5, 12.3 and 15.6 Hz are due to fluidelastic coupling between
cylinders?  One can easily sce the strengih of fluidelastic coupling between cylinders
by inspecting Figure 4.27 which shows the coherence between the cross-flow signals of
cylinders 3 and 2L as well as between the in-flow signals of cylinders 3 and 1. At the
above mentioned common peaks of 9.3 Hz and 12 3 Hz high coherence values of 0.86
and 0.93 are measured. The strong coupling at these peaks is further demonstrated
by the high common power 1 the cross-spectra for the same directions, as shown
in Figure 428, To further demonstrate the extiemely coupled nature of the motion
between the flexible eylinders, it should be mentioned that in some experiments as
many as cleven frequencies common to at least two cylinders were monitored.

In all experimental studies, repeatability is a very legitimate issue of concern.
Generically in experiments such as these, involving multiple degrec-of-freedom cou-
pled motion as well as a considerable amount of initial settings, one would expect a
substantial vaiiation between the results of repeat experiments. Surprisingly this has
not been the case for the present experiments In nearly all the 1epeated cases, the
difference in critical velodity between experuments was less than 10%. Figutes .29
to -L31, showing the oscillatory behavionr of cylinder 3, in a repeat experiment, for
the case discussed above, - four flexible cylinders in the three upsticam rows, m =
280, f, = 10 Hz and & = 0.014 -, is a good example for this argument. In this 1epeat
expetiment, cylinder 3 becomes unstable at a citical non-dimensional velocity of =
58 which compates very well with the previously 1epoited critical non-dimensional
velocity of & 59 for the same initial conditions.

Up to this stage of the thesis it has been established that the vibrational 1esponse

of a combination of two flexible cylinders, located anywhere in the array, is stable,

2 .

During all the expertnents the vibrational behaviour of the tunnel has been continuously mon-
nored, sometimes i three different locations, to detect mechanical coupling In all the experiments
the stabihity of the array has been found to be unaffected by a mechanical coupling
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while a four flexible-cylinder-combination located in the upstream tows (e hndens 1,
2L, 2R and 3) is unstable. In the next section the dynamic behaviour of thiee fleable
cylinders will be discussed to determine the effect of the mmber of Heable cvlinders

on the threshold of multiple-flexible cylinder, stiffness-controlled instability.

4.2.4 Effect of Number of Flexible Cylinders on Dynamic
Instability

In® various single and multiple cylinder experiments the instability threshold was
determined to be the lowest for second and third row cylinders.? Based on this ob-
servation, a combination of three flexible cylinders (21, 2R and 3) was placed in the
second and third rows of the array, where they have the highest possibibity of ex-
periencing instability. Table 4.4 summarises the three flexible cylinder expetiments
performed at this location. For most cases the three flexible cylinders were fuidelas-
ticaily stable up to the limiting velocity of the wind tunnel. However, upon reduding
the cylinder mass, frequency and damping to the lowest values possible - e = 280,
fn=T7Hz and § = 0.014 - instability was obtained. As seenin Figures 4.32 and 4.33,
cylinder 3 initially becomes unstable at a non-dimensional velocity of = 97 folluwed
by cylinders 2R and 2L at a higher non-dimensional velocity of 105.

This result shows that, all other parameters being equal, (cylinder mass, damping
and position in the array) the non-dimensional critical veloaty is lower for four flexible
cylinders (U,/fad = 62) than for three U/ fod = 105. Even though experunental
imitations have prevented tests with more than four flexible cylinders, the present
trend strongly suggests a general deaease 1o the aitical veloaty with increasing,
mnber of flexible ey hinders in the anay.  Natuwally when the number of Heable
cyhnders i the array is large after a substantial amount, the addirion of one more

fexible eylinder would only have a marginal effect on the cotical veloaty Fuentually

3In some three-flexible cylinder experunents static deflection and static imstabality has boen ol
served  This phenomenon will be discussed 10 section 4 4

YTune averaged fluid forces acting on second and third row cyhinders as well as the results of the
theoretical model reveals the same result This will be discussed an the fortheomng soctions
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an asymtotic value independent of the number of cylinders is to be expected. In
fact, the theoretical analysis of Price and Paidoussis [76] suggests this trend. It
should be emphasised that the reduction of the instability threshold with number of
cylinders is only applicable 1n cases where the instability is mainly induced by the
stiffness-controlled mechanism requiring multiple degree-of-freedom coupled motion.
The eritical velocity of the arrays, in which instability is mainly due to damping-

controlled effects, should be insensitive to the number of flexible cylinders.

4.2.5 Effect of Flexible Cylinder Position

In Section 4.2.2 it was shown that there is much less fluidelastic coupling between two
flexible cylinders when such a combination of flexible cylinders is placed deep inside
the array, instead of w the upstream rows. As coupled motion is one of the main
requitenents ¢ nultiple-flexible cylinder type instability, it is to be expected that its
deficit would certainly increase the threshold for fluidelastic instability. To establish
the validity of such an argument a series of experiments summarised in Table 4.5 were
performed. In these experiments a four-flexible cylinder configuration with properties
m = 280 and 6 = 0.011 was located in different rows of the array. The case in whic*
the leading cylinder of the configuration was in the fiist row was discussed in Section
4.2.3. Now, the same four-flexible-cylinder configuration is considered with its leading
cylinder in the second 1ow (cylinder 2, 3R, 3L and 4) Figures 4.34 and 4.35 show the
vatiation of the in- and cross-flow directional cylinder rms acceleration magnitude
with non-dimensional flow velocity. It is interesting to note that cylinder 2 (upstream
cvlinder) displays a substantially higher response relative to the other cylinders in
the butfeting region. At a non-dimensional velocity of & 52, all the cylinders exhibit
unstable vibiational behaviour The eritical velocity for this position is & 20% lower
than that for exactly the same arrangement (number of cylinders, cylinder mass and
damping) with the leading cylinder in the first row. This shows that, ceteris paribus,
chiange in position has a substantial effect on the critical velocity of arrays, at least

when multiple-flexible cylhinder type instability is dominant. In fact, the importance
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of position in the array upon fluidelastic instability becomes more apparent when the
same configuration is tested with its leading flexible cylinder in the third 10w, For
the cylinder parameter, of m = 280, § = 0.014 and f, = 10 Hz the eylinders display
a stable vibrational response up to the limiting velocity of the wind tunnel, as shown
by the three-dimensional acceleration power spectia in Figures -1.36 to 1.39. Only
when the frequency of all the cylinders was reduced to 7 Hz did instability occur for
the four flexible cylinder configuration in this locale (‘Table 4.5). As shown in Figuie
1.40, cach cylinder becomes unstable at a different non-dimensional flow velodity.
Instability initiates fiom cylinder 3 at U/ f,d ~ 67, then appears for eylinders 4R
and 4L at U/ f,d = 70 — 77 and finally envelopes cylinder 5. This behaviour 1s quite
different to the behaviour of the same configuration with the leading cylinder in the
fitst or second rows - where all cylinders became unstable sensibly at the sanie flow
velocity.

To observe further changes in the instability threshold the same four flexible cylin-
der artangement was placed further in the array with its upsticam cylinder mow 47
(cylinders 4, 5R, 5L and 6). Even with the lowest possible cylinder natural fiequency
and damping (fn = 7 lHz, § = 0.014) the vibiational response of these four flexible
cylinders was stable up to the limiting flow velocity attainable friom the wind tunnel,
Figutes 4.41 to 4.44 summarises the vibrational behaviour of the four flexible cyhinders
in this location. Only a few frequencies ate common to two o1 mate cylinders, and
at such frequencies the cominon power or coherence is very low (less than 04). This
is in strong contrast to what has been observed for flexible eylindews in the entrance
rows, where cylinders, undergo highly coupled, o1 even synchronised motion

Anoverview of the experiments shows that once past the entrancerows of the array
the fluidelastic interaction between the flexible cylinders reduce shaply  Fyventually,
cach {lexible cylinder, due to the changing nature of the fluid foices from row to

row, starts to act morc like a single flexible cylinder with little or no effect from

5An extra row of cylinders was added to the array to eluninate end (exit) effects
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the other flexible cylinders.®. Thus, inside the array, the multiple-flexible cylinder
stiffness-controlled instability mechanism, requiring coupled motion between multiple
degrees-of-freedom, is no longer operative. Once this mechanism is ruled out, the only
remaining instability mechanisin is the single degree-of-freedom, damping controlled
one In this, and previous studies, it is firmly proved that this mechanism is unable
to induce instability in this array solely by itself. Therefore flurdelastic instability
e a rotaled square array with a Pld = 2.12 is mainly due to the multiple-flerible
cylinder, stiffness-controlled mechanism and 1s confined to the first few entrance rows
Figure 4.45, based on the experiments discussed in this section, illustrates the above
conclusion by showing the variation of non-dimensional critical velocity with flexible
cylinder position in the array (= 280,6 = 0.014). A practical observation that can
be derived from this figure is that; if the instability threshold for the first few entrance
rows is substantially lower than that inside the array, then lacing these entrance 1ows
together” can allow higher operational flow velocities — allowing higher heat transfer
rates i heat exchangers of a rotated square geometry. Previous rescarch at McGill
by Paidoussis et al. [60], detecting the critical nature of the entrance rows for a

PP/d = 1.5 rotated square array, lends further support to this practical solution®.

4.2.6 Effect of Dimensionless Cylinder Mass

In the previous sections, the effect of the number of flexible cylinders, their position

with 1espect to each other, and the position of the flexible cylinders in the airay

®ln section 6 3 1t is shown that ¢ ie motion of the surrounding cylinders has a major effect on the
direction and the magmtude of the fluid forces acting on cyhinders located in rows 1, 2 and 3 Once
past the third row, the motion of the surrounding cylinders has little or no effect on the fluid forces
acting on the ¢y hnders i rows 4, 5,6 and 7

“Such an action will iduce a difference m the fludelastic natural frequencies of neighbouring
cylinders “The 1 depth consequences of such a scenario, which 1s termed as “trequency detuning”
m this thesis, will be discussed in section 4.3

#Naturally 1 regions of the heat exchangers where the direction of the flow velocity is 1ll-defined or
exhibits g large variation this observation may have only a himited benefit It should be appreciated
that the P/d ratio and the geometry of the array 1s defined relative to the upstream flow velocity
direction Thus any major change in the velocity vector can alter the geometry of the array into a
format {in-hine, ete. ) for which tlus solution may not be applicable
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have been discussed in detail. The effect of the dimensional mass on the mstability
threshold will be considered in this section. The expetiments summarised in Table 4 6
were all performed with four flexible cylinders positioned in the three upsticam rows,
at a damping value of 8 = 0.014. The only variable of these tests is the dimensionless
eylinder mass®. Four different sets of eylinders with dimensionless masses of 195, 280,
490 and 980 were employed in the tests. Table .6 summarises the results, Based
on these experiments the variation of the non-dimensional critical veloeny'® with

dimensionless cylinder mass is shown in Figure 4.46. It is customary to express this

variation in the form
U feod a (nfpd®)? ... § = constant (t1)

where 3 is taken as a constant in the literature. In this array 4 has two tather unnsual

properties:

~ 3 itself is a function of the dimensionless cylinder mass, as seen i Figwe 116
The value of 4 at /m = 195 is 0.38 and at 1 = 980 is 1.55'". The dimensionless
cyhnder mass has only been varied in arelatively narrow 1ange (i = 190 to Y80)
due to experimental limitations. But, even in such a limited range 4 exinints
a large variation as a function of the dimeunsionless eylinder mass. In fact the

data leads to the conclusions that, at the least for this array,’? « telationship

*The effect of different imitial natural frequencies is incorporated into the non-dinensional critical
velocity

10Fram Table 4 6 1t s observed that there can be a difference i cnitical veloaity from cylinder to
cylinder In this figure, with an exception at 7it = 980, the critical velocity s defined as the seloaty
at which all the cyhnders becomes unstable

UFor this high cylinder mass, 1t was not clear if all the eyhnders were unstable at this non
dimensional velocity  Cyhinder 3 exhibits a sudden inerease 1 its vibrational acceleration magnitude
(=0 7g) and its magor in- and cross-flow frequencies “converge” | all pomting 1o unstable bohaviour
The other cylinders were stull stable  However, this 15 not unusual as third row oy hindees always
become unstable mnargimally before the others  But as U./ fd = 236 correspunds to the limting
flow velocity i this case 1t cannot be sohdly determmned 1f cyhuders 1, 2L and 2R will become
unstable as expected  If this 1s not the case, then the value of 4 will be groater than 155 for the
dimensionless mass of 980

2For design purposes, a modified form of the “Connors equation”, is still the only tool, of used
with caution
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of the “Connors type” between the non-dimensional critical velocity and the

dimensionless cylinder mass is not applicable.

The /3 value of 1.55 is the highest exponent of dimensionless cylinder mass
tepoited in the literature so far'3. There is a likelyhood that such a strong
dependence of critical velocity upon cylinder mass is a generic property of arrays
for which fluidelastic instability is induced by the multiple-flexible cylinder,
stiffness-controlled mechanism. However, further rescarch on other arrays is

required before this statement can be conclusively stated.

4.2.7 Effect of Cylinder Damping

Table 4.7 summaiises the experiments undertaken to elucidate the cffect of cylinder
damping upon the instability threshold. The stability of the array, with four flexible
cylinders in the thiee upstream rows, has been investigated for different values of
cylinder damping at 10 = 280 and 490 Drawing from these experiments the variation
of non-dimensional critical velocity with cylinder damping is given in Figure 4.47 for
two different cylinder mass values. This figure shows a relationship between the non-
dimensional cnitical velocity, U,/ fod, and the logatithmic decrement of damping, 6,
of the formn

U fud a 6% ... m = constant (14.2)

where o = 0.06 and 0.07, respectively for m = 280 and 490. This result, in association
with the effect of cylinder mass, discussed in subsection 4.2.6, reveals a series of

itnportant points,

The mstability thieshold of a flexible cylinder configuration in this array, is
only marginally affected by changes in the mechanical damping of the cylinders

(280 < m < 190).

HChen and Jendreejesy b [42) reported the second highest value for 3 as | 08
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- Changes in cylinder 1ass have little or no effect on the telationship bhetween

non-dimensional critical velocity and cylinder damping (280 < < 190).

- For this array, it is impossible to combine the dimensionless mass and the damp
ing together under the same exponent in a Connots type equation. Fyen f both
the dimensionless mass and damping are grouped separately, it is still not pos-

sible to form a generalised version of the Connors’ type equation in the form
Ue/ fad = K(m/]pd*)™r 67

as «y is strongly dependent on the value of m/pd?. 1 s, as yot, not knownf this
important result is valid only for this array, or if it can be generalised for other
arrays in which the dominant instability inducing mechanisns muttiple flesible

cyvlinder, stiffness controlled.

4.3 The Effect of Frequency Detuning

4.3.1 Introduction

Variations between the natural frequencies of heat exchanger tubes s an uiasordable
and frequently encountered phenomenon.  Iu contrast to tts practid nmupaottance
this issue, termed frequency detuning, or simply deluning has receved rather Innited
attention.  Whatever information is available in the literature is mnconclusive and
i some cases contradictory. Probably the only common denormmnator of all such
studics, both experimental and numerical, i that frequency deturmg will have o
mote important effect i arrays where strongly conpled cyhnder motion exists. In
previous subsections of this study, (subsections 4 22, and 4.2 3) on vanions occasions
the stiongly coupled motion between flexible eylinders has been discnssed 1t has

been strongly emphasized that through fluidelastic coupling, flexible ¢y linders unpose

|
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different vibrational modes on each other and affect/alter each others vibiational
motion.  Therefore, this array offers an excellent platform to analyse the cffect of

ficquency detuning on fluidelastic instability limits.

4.3.2 The Effect of Inter-Cylinder Frequency Variation

In subsection 4.2.3 the vibrational 1esponse of a four-flexible cylinder configuration,
located in the three upstream rows (cylinders 1, 2L, 2R and 3), with m = 280, f, =
10 Hz and 6 = 0.014 was discussed in detail. In the first detuning experiment the
initial natural frequency of the thiee upstream flexible cylinders (cylinders 1, 2L and
210) was 1educed to 6.375 Hz, whereas the third row cylinder (cylindet 3) was retained
at 10 Hz; all four cylinders had m = 280 and § = 0.014*. In the terminology of this
subsection such a configusation is termed to be - (minus) 36% detuned'®,

Table 1.8 is a tabulation of the major fiequencies extracted from the power spec-
tta of cach cylinder at the non-dimensional flow velocities of 18 and 39. In this
subsection natural fiequency of cylinder 3 is used for non-dimensionalisation. At the
non-dimensional flow velocity of 18, which is a relatively low velocity falling in the
buffeting region, the three upstream cylinders (1, 2L and 2R) vibrate in the vicinity
of theit initial natural frequencies!® as shown in Figure 4.48. Two peaks of 6.44 and
6.87 Hz are common to all three flexible cylinders and inter-cylinder motion at these
frequencies is stiongly coupled. The response of the downstream cylinder. cylinder
3. is of greater interest. It oscillates in the vicinity of its initial natural frequency'?

at 9.31 and 956 Hz as well as at, two other low magmtude modes of 6 87 and 6.44

" detuming expernments all the fleible cylinders are hept at the same cylinder mass and damp-
g The enly difference between the flexible eylinders 1s the imtial natural frequency

B For the experunents to be presented in this subsection, the frequency of the third row cylinder 1s
alwaye at 10 Hz, unless otherwise stated  So this cylinder will be taken as the reference one in non-
dimensionalisation Detuning ratio or sunply deluning s defined as the ratio of the natural frequency
of cyhnders I, 2L, and 2R to the ¢y hinder 3 natural frequency minusone [(fer = feor = fear)/ fes—1]
For example, when the upstream cylinders are at frequency of 8 He, the detuning ratio 1s [8/10 -1}
= -0 20 = -20% Such a case 1s termed as negatively detuned Sinnlarly when the upstrearn ¢y hinders
are at a higher frequency than that of ¢y inder 3, the system will be termed to be posttively detuned

Y6 375 Ny

10 0 He
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Hz. When the cross spectra of the signal from cylinder 3 and the upstream ¢y linders
is examined high level of cohicrence and common power are detected atound 6.87 and
6.44 Hz, signifying strong fluidelastic coupling between all the eylinders, So the low
frequency upsticam flexible eylinders are capable of imposing an additional, lower
mode of vibration upon the downstrecam third row cylinder throngh Hnid coupling,
At this velocity, the intetaction between the cylinders is still of low magnitude,

At U/ fud = 39, as shown in Figure 4.49, the flexible cylinders beconme unstable
and vibrational acceleration magnitudes close to 2 g ate recorded Ay seen i ta
ble 4.8, all the cylinders oscillate at a frequency of 11.8 Hz. A lower and a higher
harmonic, namely f/2 = 5.9 Hz and 3f/2 = 17.7 Hz 1s also observed in eyhders
2R and 3. It is quite interesting that at this flow velocity eylinders 1, 2L and (if
the harmonics are not considered) 2R, have completely *lost™ their original natural
frequency of 6.375 Hz. Their motion is completely synehiomsed with that ot cylin-
der 3. Thus, flexible cylinders with different initial fiequencies are capable (through
fluidelastic coupling) of affecting and synchionising cach others motion Figure 4,50,
showing the variation of the major in- and cross-flow fluidelastic natural fiequendies
of cach cylinder with non-dimensional velocity, illustrates this point Initially, the
natural frequency of cylinders 1, 2L and 2R are quite distinct from that of ¢y hinder 3;
however, as the velocity is increased the frequencies gradually affect cach other and
synchronise at a non-dimensional velocity of 39", Figuwies 151 and .52 how the
in- and cross-flow vibrational acceleration of all the cylinders hecommg unstable at
{7of fud = 35. Focusing on cylinder 3, it is seen that this eylinder hecomes unnstable at
a non-dimensional veloaty & 10% less than when all the flexible cylinders are at the

0

same initial natural frequency®® Therefore, interaction between cyhmders vesults)as

discussed above, in a reduction of the instability thieshold for o downsticam cylinder

BEmergence of harmonics at instability 1s observed 1 most exporunents  Generally, this can
be taken as an mdicator of non-lineanties m the cylinder vibration which are important at the
mstability himit

9Coherence between cylinders greater than 90%

208ubsection 4 2 3, same conditions but all eylinders at 10 Hz & critical non-duncusional velocaty
of = 59.
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in the presence of upstream cylinders with lower frequencies (negative detuning).

The above behaviour is repeatable. Figure 4.53 shows the vibrational response of
the third row cylinder in a similar experiment, but with the upstream cylinders (1,
21, and 2R) at a slightly different frequency of 6.5 Hz. The critical non-dimensional
velocity for cylinder 3 is & 39, in agreement with the above experiment.

The next question to be addressed, which is the reverse of the above, is the effect
that upstreamn cylinders with higher frequencies (positively detuned) will have on the
third row cylinder. With all other conditions the same, cylinders 1, 2L and 2R were
tuned to an initial natural fiequency of 13.5 Hz, while cylinder 3 was retained at
10 Hz. Table 4 9, based on the acceleration power spectra of Figures 4.54 and 4.55,
swinmatises the major vibiational modes of the four flexible cylinder configuration at
non-dimensional flow velocities of 33 and 65. For U/ f,d = 33 all the flexible cyhnders,
low and high frequency ones, oscillate independently of each other. No trace of
coupled motion is detectable?'. The higher stiffness of the upstieam flexible cylinders
tnpedes any mteraction with either the surrounding fluid and/or with each other.
At U] fud = 65, cortesponding to = 90% of the critical non-dimensional velocity,
substantial fluidelastic coupling between the flexible cylinders exists. Cylinders 1, 2L
and 2R aire affected hittle by the motion of cylinder 3 But in contrast, cylinder 3 is
sttongly affected by the motion of the upstream cylinders. Cylinder 21, at 11.6 Hz,
eviinder T at 128 Hz and cylinders 2L and 2R at 13.0 Hz induce high magnitude
vibrations of cylinder 3 by fluidelastic coupling. Such an effect delays the instability
of cylinder 3 to a non-dimensional velocity of = 69.3, as seen in Figures 4.56 and 4.57.
Thus, the presence of higher frequency cylinders (positive detuning) upstieam of the
third row cylinder delays the onset of instability by 18% relative to the case wheie
all exhinders have the same initial natural frequency

Therefore, a third row cylinder located behind three cylinders with lower nat-

ural frequencies exhibits instability at a lower non-dimensional velocity relative to

'\When the upstream cylinders were negatively detuned by 36%, strong fluidelastic coupling
between flexible eyhinders was measured
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i a configuration with all cylinders at the same natural frequency. Whereas, o thitd
row cylinder located behind thice cylinders with higher natural ficquencies exlnbits
instability at a higher non-dimensional velocity relative to a configuration with all
cylinders at the same natural {requency.

To fortify this observation a series of experiments with four flexible cylinders lo-
cated in the three upstream rows (eylinders 1, 2L, 2R and 3) was done. Al the
flexible cylinders had 1 = 280 and é§ = 0.0l4. Cylinder 3 was always hept with an
initial natural frequency of 10 Hz, while the initial natural frequency of the upsticam
cylinders (1, 2L and 2R) was varied from experiment to experiment. Table 4,10 suin-
marises some of the important initial properties and results. Based on the data fiom
this table, the effect of frequency detuning on the nou-dimensional critical velocity of
cylinder 3 is plotted in Figure 4.58. When all the cylinders have the same fiequency,
cylinder 3 becomes unstable at a non-dimensional veloaity of 59, When the nntial
natural frequency of the upstream cylinders (1, 2L and 2R) is increased to 1237 [z
the third row cylinder experiences instability at a non-dimensional veloaty of 665,
13%higher than the non-detuned case. A further increase in the fiequency of the up-
strcam cylinders to 13.5 Hz, impedes the instability of cylinder 3 to a non-dimensional
velocity of & 70 At lcast in this range, the relationship between fiequency inciease
(positive detuning) and non-dimensional critical velocity 1s reasonably huear.

On the other hand, when the imtial natural ficquency of the upsticam cylinders
(1, 2L and 2R) is lower than that of cylinder 3. the instability threshold s lower
relative to the non-detuned case. For example, with the upstiecam cyhinders at 9 1o,
cylinder 3 becomes unstable at a non-dimensional velocity of 48.5, 18% less than for

the non-detuned cace.

The above effects of negative and positive detuning on the instability veloaty of
cylinder 3 arc in agreement with previous detailed discussions. Higher-frequency up-
stream cylinders are capable, through fluidelastic coupling, of wncreasing the offectioe
fludelustic natural frequency of the third row cylinder relative to the case when all

the cylinders are at the same frequency. The result of such a coupled interaction is, in
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a sense, the same as having cylinder 3 tuned to a higher 1itial natural frequency than
it actnally is. Such a fluidelastic ncrease of stiffness delays the unstable behaviour
of cylnder 3 to higher flow velocities.  When non-dimensionalised with respect to
the stll-arr wmatwad natural fiequency of the third row cylinder??, the resulting non-
dimensional critical velocity is also higher relative to the case of equal frequencies.
Due to set-up limitations the frequency ratio [(fi = for = fan)/fa] could not be
increased beyond 1.35, but it is hkely that a further increase in this ratio would tend
to increase the effective stiffness of cylinder 3, resulting in higher critical velocities.
Fventually with mcreasing fiequency ratio, cylinders 1, 2L and 2R would be rigid
enough not to affect the motion of cyhinder 3, which in turn will act as a single flex-
ible eylinder in the artay. At this point there will be no fluidelastic instability - a
single flexible eylinder does not become unstable in this array [6).

On the other hand, in case of negative detuning, upstream cylinders with lower
natural fiequencies can attain considerable vibrational displacement at low flow veloc-
ities. Such motions pertutb the surtounding fluid sutficiently to couple with other low-
frequency flexible cylinders. Then, the combined contribution of these low-frequency
flexible eylinders, fluidelastically affect the thitd row high-frequency cylinder at a
frequency lower than its own. So cyhnder 3, with increasing flow velocity, undergoes
vibrational motion both at high frequencies related to its own nitial natural fiequency
and at low frequencies because of coupling with the upstream flexible cyhuders The
result of such coupled motion is to reduce the effective fluidelastic natural frequency
of the third 10w cyhnder relative to the case when all cylinders are at the same fre-
queney. This, in a sense, is equivalent to having cylinder 3 tuned to an werementally
lower nitial natural fiequency than it actually is Such a flurdelastic decrease of stiff-

ness advances the unstable behaviour of cylinder 3 to lower flow velocities, as scen in

2Por detuned arrays 1t s quite difficult to decide upon the frequency to be used i non-
dunensionalisation In fact as discussed ahove, the major effect of detuning 1s to alter the fluidelastic
frequency of the other flexible cyhmders Tre 1deally correct frequency of choice should be a natural
Jrequeney also comprising the effects of detuning that will be induced by the surrounding cylinders
dunng flow conditions Naturally this i1s out of the question So the mutial natural frequency of the
“non-detuned” eylinder will be used for non-dimensionalisation




18

Figure 4.58.

Up to this point, the effecy of frequency detuning upon critical veloaty has been
analysed from the perspective of the third row flexible cylinder of a four-flenible
cylinder configuration only. The question of how the upstream ovlinders of the con-
figuration (cylinders 1, 2L and 2R) respond to detuning will be addiessed neat.

Table 4.5 shows the 1esults from four flexible-cylinders in the three upsticam rows
(1, 2L, 2R and 3), all the flexible cylinders having m = 280, 6 = 0.01t aud f, == 13.5
Hz. This non-detuned coufiguration does not become unstable up to the nnt of the
wind tunnel, which is U/ f,d = 57 for this casc.

Table 4.10 summarises the tesults of another experiment, with all conditions the
same as the above, except that cylinder 3 has an mitial natural trequency of 10 1z
(m =280, 6 =0.014, f, = for = for = 13.5 Hz and [, = 10 Hz). This conhiguration,
which has been discussed previously, becomes unstable at a flow veloaty of 17.80
m/s, corresponding to U/f,d = 52. Thus the cxistence of a siugle lower-fiequency
cylinder in a downstrear row (row 3), affects the higher-frequency upsticam cyhinders
such that instability is induced in an otherwise stable array. This result leads to some

important conclusions;

- in the presence of strong fluidelastic coupling, detuning effects can dissipate
from upstream to downstream flexible cylinders as well as from downstream to

upstream flexible cylinders.

- in a detuned array the exchange of frequencies hetween cylinders of different fre
quencies is reaprocal. While higher-frequency (ylinders impose greater nedity
on lower-frequency cylinders through flnidelastic coupling, the lower brequency

cylinders in return, inflict lower fiequencies on ngher-frequency cyhinders

This mutual exchange of frequencies strongly alters the flurdelostic natural frequency
of all the cylinders. Higher-frequency cylinders hecomes unstable at a flow velodity
lower than the case when all the cylinders have the same fiequency, winle lower-

frequency cylinders becomes unstable at a flow velocity higher than the case when all




49

the cylinders have the same frequency. This conclusion will be expanded on in the

next subsection.

4.3.3 Further Effects of Frequency Detuning

In this subsection, a configuration of four flexible cylinders® is once again located in
the three upstream rows. This time, cylinders 1 and 3 are tuned to the same frequency
while cylinders 21 and 2R are tuned to a different one. The results obtained in
vartous experiments are summarised in Table 4.11. To illustrate the effect of [requency
detuning on different cylinders, two figures based on the data of Table 4 11 will be
presented.,

In Fignies 459 and 4 60 the non-dimensional critical velocity of each tlexible
cylinder 1s plotted against the frequency ratio [(fi = f3)/(for = fir)l. In Figure
4.59 the non-dimensionalisation is with respect to f; (or f3) and in Figure 4.60 the
non-dimensionalisation is with tespect to for, (or forr) When [(fy = f3)/(for = for)]
is less than umty, cylinders 1 and 3 are at a lower fiequency than cylinders 2L and
2R The high-frequency, more tigid cylinders (21 aud 2R), transfer higher frequency
vibrations to cylinders 1 and 3 thiough fluidelastic coupling and delay instability to
a higher flow velocity. When this flow velocity is non-dimensionalised with respect to
the initial natural frequency of eylinders 1 or 3 the result is a higher non dimensional
critical velocity compared to the case of no detuning, [(fi = f3)/(foar = fan)] = 1.
as seen in Figure .59, For example, at [(fi = f3)/(fa, = for)] = 0.64 the average
non-dimensional velocity is = 80, 29% higher than the average value of 62 for the
non-detuned case,

Again, in the same regron, [(f1 = f3)/(f2i = far)] < 1. the events can be analysed
from the perspective of the higher frequency second 10w cylinders as shown in Figure
1.60. These cylinders, while affecting the low-frequency cylinders (1 and 3) are in turn

themselves affected by the low [requency cylinders. Through fluidelastic coupling,

23A1 cylinders with = 280 and 6§ = ( 014,
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cylinders 2L and 2R, receive lower frequencies from cylinders 1 and 3. This 1educes
the effective flurdelastic natural frequency of cylinders 2L and 2R and results ina lower
critical velocity. When this flow velocity is non-dimensionalised with respect to the
iitial natural frequency of cylinders 2L or 2R, the 1esult s a lower non-dimensional
critical velocity, compared to the case of non-detuning. An example of these is when
(A = f3)/(fo1 = far)] = 0.61, where the average non-dimensional velocity s about
52, 16% lower than the average value of 62 for the non-detuned case.

Such an exchange of fiequencies between the flexible cylinders affecting cach others
instability limit is also applicable in the region wheie {(fi = f2)/(for = fud)) >
In a detuned array, the higher fiequency cylinders become unstable at o lower non
dimensional velocity when non-dimensionalised with tespect to their mitial nataral
[requency, as shown in Figure 4.59. Similarly, the lower frequency cyhnders becore
unstable at a higher non-dimensional velocity when non-dimensionalized with vespect
to their initial natural fiequency, as shown in Figure 160,

Exchange of frequencies between detuned ceylinders discussed above, can be itlus
trated further through Figure 4.61 When the critical veloaty s non-dimensionalised
with respect to the squate root of the lower and higher natural frequenaes, ve
U./(fifa2)? *d instead of fi or fyr. then the average of the non dimensional cnity
cal velocities of each frequency ratio change little with frequency tatio This suggests
that the affect of low- and high-fiequency cylinders on cach other is of telatisely equal
impottaitce.

Table 4.12 summarises some other frequency detuning experiments, showing trends

in agreement with previously presented observations

4.4 Static Displacement and Instability

4.4.1 Two Flexible Cylinders

In some theoretical studies [79, 69, 65] it has been proposed that if the tolal stiffness

of a cylinder vanishes (aerodynamic plus structural), then such a system can become




51

unstable by divergence (non-oscillatory static-instability). The actual existence of
this instability mechanism has recently been verified by Paidoussis, Price and co-
workets in an experimental study on a rotated square array with P/d = 1.5 [60].
When the data for the single and multiple-cylinder experiments of this study are
considered, a significant decrease in the cross-flow fluidelastic frequency of second
and thitd row cylinders i1s observed with increasing flow velouty. Typical examples
of such a behaviour can be found in Figures 4.5, 4.8 and 4 24. A sciies of special
expetiments for cylinders in rows 2 and 3 was designed to investigate, (f this loss of
total cylinder stiffness can eventually lead to static instability. A schematic example
of these experiments, where two flexible cylinders with m = 280, f, = 7 Hz and
0 = 0014 are located m 1Hw 2 (cylinders 2L and 2R), 1s shown in Figuie 1 62 The
in and cross-flow vibrational response of these two cylinders (21 and 2R) are given
in Figures 4.63 to 1.68. Certamn interesting observations, mainly 1 the cross-flow

direction of both eylinders, can be extracted fiom these figures.

In the cross-flow direction the main natuial frequency exhibits a reduction with
increasing flow veloaty (Figures 4.63 to 4.653). This reduction becomes substan

tial for flow veloaties greater than approximately 115 m/s (U/f.d = 61.7).

- Especially m the cross-flow direction of ¢y linder 2L, the acceleration magnitude
in the primary mode is very low. (less than 0.02 g as seen in Figures 4.64 and

1.66)

Both cyhnders 2R and 2L exhibit a static displacement i the cross-flow diree-
tion. This displacement starts at the same velocity as that of the frequency
teduction and moves the cylinders away from cach other. Figure 4.67 shows the
increasing magnitude of the static displacement with flow velocity for cylinders

2L and 2R.

- At a low velocity of & 15.3 m/s (U/fnd = 86.1) cylinder 2L (and to a lesser
extent, cylinder 2R) experiences a sudden buckling type of motion in the cross-

flow direction as shown in Figure 4.67. The cylinder is displaced, very suddenly,




by a distance of about 6.5 min relative to the previous point and exlubits an
inert vibrational response. The major cross-flow 1esponse at this selodity s
fairly broadband as seen in the acceleration power spectium of Figure 168 and
its magnitude is less than 0.01 g.2* The center of this broadband respunse can
be taken to be slightly less than 4 Hz which cotresponds to & 555 of the imtial
natutal frequency value in still-air - Fven though the cross low frequency does
not go to zero, as it should in a complete static instability case, loss of substan

tial rigidity, highly reduced oscillatory motion, significant static detlection and
buckling like motion all suggest, that cylinder 2L has undergone a statie instabail-
rty. Two additional factors I nd further support to this argunent. Fusthy the
only other known case of experimental static instalnlity was detected manother
totated squate array, but with a smaller P/d = 1.5 [60]. Sccondly, when the
tune averaged-steady forces acting on the static evlinders of this array {totated
squate. P/d = 212) were measuted, it was determimed that the vanation of
static Iift coefficient with cross-flow displacement (JC', /dy) s positise \s pes
the quasi-steady model of Price and Paidoussis [79] this is a nece ssary condition
for static instability?®. Furthermore, the magmtude of this tetm s o maxs

mum for eylinders in the second row, where divergenee oceurred e the flevable

cylinder, dynamic experiments.

1) The peak of = 16 Hs vriginates trom the -flow direction as shown e Liguee 161 L) The
behaviour of cylinder 2R 1s somewhat different  Even though o reduction in frequency (= 30%)
and a static deflection (= 6 5 mmn total) s measured, the magmtude of the aceeloration at the
ngor mode 15 still substantial (= 005 g)  ldeally, mn a petfect system, hoth cyhndas Should
exhubit identical behaviour when subject to the same conditions But it s quite hke by that a shght
unpetfection m array geometry and ahignment could possibly tngger and watiate ddle coes

B\When the measured JCL /Ay term s introduced snto the Price and Padoussis model amagor
reduction of frequency, sumtlar to that observed 1 the experiments, 1s obtamed and cventually the
cylinder becomnes statically unstable at a flow veloaty of 138 /s This s only == % diffesona
that the above reported expersmental value of 13 3 m/see Such an excellent agrecinent between the
experunental and the theoretical results gives further support to the existence of statte mstabahty
and 1s discussed in detail in Chapter 6
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4.4.2 Three Flexible Cylinders

During most of the three- and four-flexible cylinder experiments performed 1 the
first few upstream rows of the array, a loss of stiffness was noted, prior to dynamac
tnstabity. In the previous subsection it was seen that this loss of rigidity for two
flexible eylinders 1 the second row eventually leads to static instability. These ob-
servations lead to the possibility that the threshold for dynamic and static instability
can be in the same proximity, at least for some configurations To check the validity
of such a hypothesis, a three-flexible eylinder configuration, known to be dynamically
unstable, was te<ted under different initial conditions. The objective being to sup-
press the dynamic instability and Hf possible initiate a static instability. In subsection
1.2.0 1t was shown that a combination of three flexible cylinders positioned in the
second and thitd tows (ylinders 2L, 2R and 3) with m = 280, f,, = 7 Hz and 8
= 0014 expenences dynamic mstability at a non-dimensional cnitical velocity of =
105 The typical oscillatory 1esponse of a second 1ow cyhinder for such an experiment
endimg with unstable dynamic behaviour is shown in Figuie 4.69. This configuration
will be taken as a 1eference pont, and the type of the instabihity will be altered by
hanging the mitial frequency and/or damping

In the first experiment to be discussed, the ¢ylinder position, mass and frequency
are hept the same,  m =230, f, = 7 Hz -, but the damping is increased 11 times to

O =020 Igures 4 70 to L71 illustrates some mteresting results of this experiment.

By mcreasing the damping, the dynamic instability 1s suppressed®® as shown
by the thice dimensional acceleration power spectra of Figure 1.70. (Compare
this with Figure 4 69, showing the unstable behaviour of the same cylinder at

a lower damping valie of 6 = 0.014).

- The motion of the cylinders is uncoupled. So the motion of cach cylinder is

91t should be remembered that the critical non-dimensional velocity of & 105 corresponds to the
limiting value attamable from the wind tunnel. Even though i this array the critical velocity 1s
weakly dependent on cylinder damping, a major change in damping scems to be sufficient enough
to suppress dynamic mstability




similar to that of a single eylinder, with little or no effect from the others This

is in complete contrast to the case where o = 0.01 1.

- The maximum vibration amplitude at the major cross-low mode never exceeds
a value of 0.035 g and exhibits a diop after a tlow velocity of 118 m/s, (7] )

66.4) as shown in Figure 4.70 and 4.72.

- At a flow velocity of 16.9 m/s (U/ fud = 95.1) the vibration at the major eross
flow mode becomes broadband and it is quite diflicult to distinguish a domimant
peak in either the in- or cross-flow directions as shown by Figure 1.70 A clos
view of the acceleration power spectra at this How velodity, Figure |F 74, vertfies
this argument. The only visible peak is wound 17 Hz cottesponding, to the
major in-tlow mode. Again, at this flow velocity the cvhuder experences a
buckling type motion in the cross-flow ditection and undergoes a niajor stati

deflection of = 4 mm as shown by Figure 1.74

All the above observations point to a strang possibility ol static instalnhity, al
least in the vicinity of a flow velocity of 16.9 m/s ({// fud = 95.1). Ths resalt s
quite important in the sense that through the change of a siugle vanable, -dampig
dynamic instability can be suppressed and replaced by a static mstabibity - Such a
cohabitation of both dynamic and static instability mechanisms i the same provinnty
is being reported for the first time. Another stnlat example will e presented ne

Again a configuration of three flexible cylinders positioned m the second aud rhid
rows with 712 = 280 is taken as a 1eference. All the eylinders were set to o damping
value of § = 0.14 (ten times that of the case which tesulted in dynane instalahity)
Cyiinders 2L and 2R were tuned to an mitial natural frequency of 7 Hz (the same
as the case which resulted in dynamic mstability) whereas eylinder 3 was taned 1o
13.5 Hz. The objective of such an arrangement is to minunise fluidelastic coupling,
between cylinders by increasing the damping of all the eylinders and the stiflness

of the most “energetic” cylinder?” to retard multiple-flexable cylinder type dynam

?TIncreasing the fluidelastic natural frequency of flexible cylinder relative 1o others 1s Wrned s
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mstabibity to higher flow velocities. Thus static instabiiity, if it exists, will reveal itself,
The results for the behaviour of a second row cylinder are as shown in Figures 4.75
to 41.79. Dynamic instability is suppressed and the major cross-flow mode decreases
both in vibtation amplitude and fiequency with increasing flow velocity as shown in
Figures 4.75 10 4.77. At a flow velocity of 16.1 m/s (U] fud = 91) the major cross-
flow vibrational mode becomes bioadband and a distinct peak cannot be detected, as
shown iu Figure 4 78. Also at this flow velocity a buckling type of motion, similar to
the previous ones, is observed. The total static deflection is as much as a third of the
cylinder diameter, as shown in Figure 4.79. All these observations point to a static
mstabtlity.

Therefore, by varying both the damping and/or frequency of the system it is
possible to initiate static instability instead of a dynamic instability. Equation 2.5 of

Appendix 2 shows that theoretical threshold for static instability is given by

L g

2m
P
U, U)"dI_(BC/(?E) , (4.3)

where w, = initial cyclical frequency of the cylinder, d = diameter of the cylinder, 1
= dimensionless cylinder mass and dC/0z = the variation of hift or drag coeflicient
with displacement  The effect of these parameters upon static instability thieshold
were investigated by further experiments.  Inaeasing the initial frequency of the
cylinder resulted in higher critical velocities. But for f, > 9.5 Hz, probably due
to limitations of the wind tunnel, no clear case of static instability was detected
similatly, experiments with high dimensionless mass (m > 190), prevented static
instability and reduced the loss of stiffness in the cross-flow direction. Finally, as will
be discussed in Chapter 6, the largest value of dCp /8y was measured for a sccond
row cylinder, confirming the critical nature of this row as determined by dynamic

(vibration) experiments.

“positave detuning”. In section 4 3 positive detuning is shown to reduce fluidelastic couphng and
retard dynamic instabihity to higher critical flow velocities




Chapter 5

FORCE MEASUREMENT
APPARATUS

5.1 The Force Measurement Insert, the Force Bal-
ance and the Associated Instrumentation

Another objective of this study was to nvestigate the time averaged torces acting on
static cylinders; this was done as a function of both the surtoundmg ovlinders dis
placement and the Reynolds number. Such an investigation enables a better physical
understanding of the fluid dynamics in the array and furnishes data for « quast steady
multiple-degiee-of-freedom numerical model predicting the instability thieshold

As discussed in section 2 2, the rigid portion of the array was designed to serve m
both the vibration and force measurement expermments. By replacing, the ediration
measurement sert with the force measurement insert and o foree balance the ap
patatus is converted into a form facilitating the measurement of tine averaged Hhd
forces.

The force mecasurement insert consists of cight 25 1 mun (1- ) duaneter, 591
mm (23.25 in.) long, solid aluminum cylinders sandwiched between two equal sided
hexagonal 10 min (0.39 in.) plates, as shown in Figmes 51 and 5.2, The npper and
lower hexagonal plates of the force measurement incert were carefully madhined to fin
closely into the similar shaped holes in the aluminum base plates of the ngid portion

of the array, as shown in Figure 2.2. Thus, when assembled and placed into the




37

reged portion of the array, this inscit completes a P/d = 2.12, rotated square array
with the excepuion of a single cylinder. This cylinder is the so-called "instrumented
eylinder” which is bolted to the force balance, which in turn is attached to the wind
tunnel through the arrangement, shown in Figure 5.3. Using a gear arrangement
it is possible to move the platform housing the force balance and the instrumented
cylinder in the plane patallel to the wind tunnel floor. The instrumented cylinder
could be displaced to any desired position within a circle of diameter 46 mm (1.81
in.).

To simulate the effect of the surrounding cylinders motion on the instrumented
cylinder, one of the ecight cylinders in the insert is designed with the capability of
bemg displaced along a straight slot as much as 25.4 mm (1-in.). As the hexagonal
shaped insett is synunetrical, thiough consecutive turns of 60° each it is possible to
locate this eylinder in different rows and positions.

The force balance is instiumented by two Kistler type force transducers mounted
otthogonally in the in- and cross-flow directions to measure the {luid forces acting
on the instrumented cylinder. The foice transducers are calibrated against known
weights as shown in Figure 5.4, As observed from this figure, for a load of less than
2.5 1b the relationship between the force and the output voltage of the transducer is
lincar. The experiments in this study were all performed in this linear range. The
inand cross-flow directional force signals were analysed either via a IIP 3562A or a
HP 5120 dynamic signal analyser. Data analysis is performed on a Hewlett-Packard
Q000 310 computer system by utilising the software NEWED, developed by Maik [39)

at MeGill Umniversity

5.2 The Force Measurement Procedure

The foree measuremens  performed in this study can be divided into three main

groups.
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1) Measurement of the variation of the drag coeflicient ('p,' versus the
Reynolds Number Re?. In this experiment all the eylindess, instrumented
and surrounding, weie located at non-displaced positions during the course
of the whole experiment. The experiment was started at the lowest possible
steady upstream flow velocity of 3 m/s and a 10 see. time trace oi the m How
directional fluid force acting on the instrumented cylinder was tecorded by the
dynamic signal analyzer to calculate an average force. Ouce this valie was
stored for future data analysis, the velocity was increased by an inciement of
~ 0.5 m/s to repeat the same measurement. This procedure of measming time
averaged forees at different flow velocities was repeated untal the limiting tlow
velocity of the tunnel was reached. Such measurements were performed i rows
1, 2,3, 4 anc 5 of an eight-row array and in row 7 of a ten-row artay .\ sample
output from this experiment for a cylinder in row 1 can be found in Figure 62

in the form of the variation of the drag cocflicient, 'y with Revuolds number,

Re.

]
~—

Lift and Drag Maps at constant Reynolds Number Agam all the cylin-
ders were initially located at non-displaced positions. The upstream flow veloc-
ity was sct to a constant value throughout the experiment The imstrumented
cylinder, at the center of the insert, was systematically traversed ina 356 mm
by 35.6 mm (1.4 in. by 1.4 in.) square. This squate can be thought ol as
matrix with 361 cqually spaced nodes, cach of which is o mcasurement point
The cylinder was displaced to every node and the conespondimg in - and oy

flow fluid forces acting on the cylinder measured. These data pomts were late

"Drag coefficient is defined as Cp = F/LpU2 d where I* = Flund force actmg o the cylinder
the dircction of the upstream flow, Uy = .Upstrc:mn flow velocity, p = Plow donsiy, #0 Cyvhinder
Length, d = Cylinder Diameter In case of the hft coeflicient, (', the fhind force considired as the
one acting on the ¢yhinder perpendicular to fiow direction "The typical anis system s as shown
Figure 6 8

2Reynolds Numbers, Re, is the ratio of inertia to viscous effects and 1s de fined as fee - '—/J“”‘ wheie
Us = Upstream Flow Veloaily, p = Flow density, d = characteristie length (cylindder diameter), p
= viscoslty.
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non-dimensionalised to form contour maps of lift and drag cocflicients expert
enced by the instrumented cylinder as shown in Figures 6.22 and 6.23. The
typical velocity chosen for constructing such fluid force coeflicient naps was
16.6 m/s, but also some investigations weie carried ont at flow velocities of 8.3
m/s and 21.4 m/s. In two probing experiments a finer measurement matrix
(grid) witii 1369 nodes was used. The results, when compared with those from
a 361 node matrix, did not exhibit significant difference to warrant the use of a

finer measurement matrix requiring nearly four times more experimental effort.

The two expenimental measurements discussed above, in items 1 and 2, supply
data for the analysis of a single flexible cylinder inside an otherwise 1ipid aivay
A multiple-flexible-cylinder analysis, further 1equites the effeet of surromding
cylinder motion upon the fluid foices acting on the instrumented eylinder, This

measuiement was done in the third type of experiment discussed helow.

Measurement of the variations in lift and drag coeflicients of the in-
strumented cylinder due to surrounding cylinder displacement at con-
stant Reynolds Number. Again with all the cylinders at their equulibrium
positions, a constant flow velocity was chosen and ietained throughout the ex-
petiment. One of the cylinders in the insert. previcusly termed the surrounding
cylinder, was incrementally displaced cither in the in - or cross-flow directions
by as much as 25.4 mm (1-in.). At each displaced position the fluid forces acting
on the instiumented cylinder, which was kept at its vtiginal position, were mea-
sured A typical variation of the diag coefficient of the instrumented eylinder,
due to the displacement of a suttounding cylinder s shown i Fignie 6.1 By
rearranging the apparatus it is possible to measure the effect of displacing the

adjacent cylinders, one at a time.
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Chapter 6

FORCE MEASUREMENTS

6.1 Variation of The Drag Coefficient, Cp, with
Reynolds Number

6.1.1 Variation of The Drag Coefficient, C'p, with Reynolds
Number for a Single Cylinder

For a single cylinder in cross-flow, the variation of the steady drag coefficient versus
the Reynolds number is well documented. In the Reynolds number range of this study
(6.2 x 10* < Re < 45 x 10") the drag coefficient, Cp, for a single cylinder - with
all surrounding cylinders removed - is a constant around 1.15, with a variation of
~ £ 10%, as shown in Figuie 6.1. This figure also shows the drag cocfficient values
determined in the present study for a single cylinder, exhibiting a good agreement

with others.

6.1.2 Variation of the Drag Coefficient, Cp, with Reynolds
Number for Cylinders in Different Rows of the Array

These measurements have been performed for cylinders in rows 1, 2, 3,4 and 5 of an
cight-row array and 10w T of a ten row array. During the course of these experiments
the instiumented cyhinder was kept at a non-displaced position (z =0, § = 0).

For a cylinder in the first row, the dependence of drag coeflicient, Cpp, upon

60
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the Reynolds number, Re is very weak as observed in Figure 6.2, Throughout the
Reynolds number range considered (6.2 x 10° < Re < 4.5 x 10%) the drag coeflicient
is constant, fluctuating around a value of ~ 2.1.

The results for the second, third and fourth 1ow cylinders are radically different
than that of the first row cylinder. The drag coefficient for cylinders located in these
rows cxhibits a major decrease with increasing Reynolds number, as shown in Figute
6.3. For an upstream flow velocity range of & 20 m/s, the drag cocllicient experiences
a reduction of approximately 2-2.5 times, depending upon cylinder position in the
array. This is in great contrast to the behaviour of a single cylinder, as well as to
the behaviour of the first 10w cylinder of the array, which are subject to a constant
drag cocflicient in this Reynolds number range of intercst. Thus it can be suggested
that the velocity dependence of the drag coeflicient in the rows 2-4 is an wrray-imduecd
cvent. This can either be due to a macro change in the flow pattern through the array
and/or due to a viscous boundary layer change effecting the separation point, and
thus, the size of the wake. Results that will be introduced latet! do not support the
possibility of a major macro level change in the surrounding main flow with Reynolds
number. Thus, it is quite likely that a viscous boundary layer event is triggeting
changes in the wake, and hence, in the drag coefficient.

The drag coefficient for the fifth and seventh 1ow cylinders exhibits a inuch milder
dependence upon Reynolds number as shown in Figuie 6.4, It is also of interest that,
the seventh row shows a striking similarity to the fifth row, in terms of the variation
of the diag coeflicient with Reynolds nuinber. Such a result suggests the pussibility of
only a limited change in flow pattern atound the eylinders once the upstream entrance
rows are traversed. In fact, this observation can be Hlustrated futther by referting to
Figute v.5 which shows the variation of drag coeflicient with position in the array at

a flow velocity of 16.6 m/s. As scen, after the fourth 1ow, the diag cocflicient 1s ouly

'n subsection 6 2 hift and drag maps are obtained by displacing the snstrumented cylinder were-
mentally n a 141 x 14, arca at different flow veloeities The difference between the shape of
such maps at three different velocities, U, = 8 3 mi/s, 16 6 m/s and 21 4 m/s, 15 only nnnor “T'hs
suggests only a hinnted change in the flow structure
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weakly related to position in the array. To sum up, it is possible to distinguish three

different zones in this array:
first row where Cp is independent of Re,

- sccond, third and fourth rows where Cp is a strong function of both row position

and Re,

fifth to seventh rows where Cp is a function of Re, but very weakly rclated to

position in the array.

Figures 6.6 and 6.7 display again the variation of the drag coefficient with flow velocity
for cylinders in vatious rows, but in a log-log format. For each row the relationship

between drag cocflicient and flow velocity can be expressed approximately, as
CD = Reﬁ (6.1)

where a and § are empirical constants. Table 6.1 gives the value of these caeflicients
for different row cylinders and illustrates the strong effect of Reynolds number and

position in the array upon the drag coefficient.

6.2 Lift and Drag Maps
6.2.1 Lift and Drag Maps for a Third Row Cylinder

Once the effect of Reynolds number on the magnitude of the drag cocfficient was
determined, the next step was to resolve the effect of cylinder displucerent on the force
cocthicients. A series of drag contours, composed of the fluid forces acting on a third
row cylinder in a 361 data point, (1.4 in. x 1.4 in ) measwiement grid for upstream
velocaities of 8.3 m/s, 16.6 m/s and 21.4 m/s are given, respectively, in Iigures 6.8,
6.9 and 6.10. In general, at all flow velocities, when the cylinder is moved either
upsticam or downstream the drag coefficient increases. Also, cylinder displacement
in the cross flow direction, i e. moving the cylinder more into the channel flow also

initiates an increase in the drag coeflicient of a third 1ow cylinder. Even though some
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impottant variations are observed between drag contours at different tlow velocities,
such differerces are mainly confined to the peripheries of the maps. The shape of
cach contours’ center region is quite similar, cven if the magnitude of the contours
are different.

The lift coefficient maps for a third row cylinder, at the same thice flow veloe-
ities, are given in Figures 6.11, 6.12 and 6.13. All these maps are quite similar in
contour shapes and exhibit a reasonably good symmetry atound the j = 0 aniv® Any
displacemeat from the § = 0 symmetry axis generates a substantial lift foree on the
cylinder.

Figures 6.14, 6.15 and 6.16 are the force cocflicient vector plots obtained fiom the
vector addition of the lift and drag coefficient maps at cach velocity., For simplicity
such plots will be termed as the vector plots. A comparison of the vector plots for
Uso = 16.6 m/s and U,, = 21.4 m/s (Figures 6.15 and 6.16) shows a strong siimlarity
both in magnitude and direction. Figure 6.14, the vector plot for U, = 83 m/s
exhibits both similarities and differences relative Lo the vector plots at the other two
flow velocities. To better assess these similarities and differences, the foree coeflicient
vectors for Uy, = 21.4 /s are multiplied by a factor of 1.653. Then, these normalised
force coeflicient vectors for Ue = 21.4 m/s and the force cocfheient veetors for {7, =
8.3 m/s are ploited together in Figure 6.17. This figure can be divided mito two
zones, shown in the figure, by a green-line. Downstream of this line, m oan area
ceriesponding to 2/3 of the measurement grid, the vectors for both flow velocties are
of similar magmtude and direction. Upstream of this line, neither the magnitudes noy
the directions are comparable. Therefore, for a core 1egion in the vicinity of « - )
and §j = 0, provided that the variation of the diag cocflicient with flow velocity for o

cylinder at & = 0 and y = 0 is known, force measurements at a sengle flow velocity

*X axis 1s in the m-flow and y axis 1510 the cross-flow direction

3The difference in drag coeflicient, for a cylinder at £ = 0 and § = 0, between that measnred at
a velocity of 83 m/s and at Us = 214 m/s1s &~ 1 65. So multiplymg the drag coeflhicient value
at ¥ = 0,7 = 0 for U, = 21 4 m/s by a factor of 165 can be considered as “nonnalisation” with
respect to Uy = 8 3 in/s Such a nonnalisation can be expected to be reasonably succosstul in the
central core of the vector plots
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are suflident and repiresentative enough to form a data base for modelling purposes.

During the discussion of the dynamic results in Chapter 4, a loss of cylinder
rigidity in the cross-flow direction for second, third and fourth row flexible cylinders
was 1eported. Both the 1ift cocflicient and vector plots for the third row cylinder
further substantiates the findings of the dynamic experimenis. At all flow velocities,
the steady fluid forces tend to push the eylinder away fiom i¢s equilibrium position
in the cross-flow direction, as shown in Figuies 6.14, 6.15 awd 6.16. In this case
the fluid forces are acting in an opposing direction to the structural restoring force
and will reduce the overall flurdelastic stiffness of the cylinder. If the steady fiuid
stillnesses (JCL/0y) are large enough to exceed the structural restoring stiffness,
then the system will act as if it has a negatwe overall fluadelastic styffness and static
instability (divergence) will occur.

Works of Price and Paidoussis {79, 60] and a simple derivation in Appendix 2

shows that loss of cross-flow stiffness can be expressed by

(6.2)

where wg = initial cyclical frequency of the cylinder, w = in-flow cyclical frequency
of the cylinder, {7 = non-dimensional flow velocity, 7 = dimensionless cylinder mass
and dC',/J y = variation of the lift coefficient with cross-flow displacement at 7 = 0.
Static instability will occur when the LIS of equation (6.2) equals zero. This will
take place only if 9C,/dy is positive and U is sufliciently large.

From the dift coefficient maps of Figures 6.11, 6 12 and 6.13 the vaiiation of Cy,
with y at » = 0 can be determined easily. Figuies 6.18. 6.19 and 6.20 show this
variation for U, = 33 m/s, 16.6 m/s and 214 m/s In all cases CL[di is positive
up to a displacement of § = 04, satislymg the condition for static mstability at
sulliciently high flow velocities. The slope, JCL/07, at the cential position (j = 0) 15
not sensitive to flow velocity. A value between 3-3 5 is measured in all cases. But when
the eyhnder is deflected from the central position in the y-direction a general drop

in the magnitude of the slope, increasing with flow velocity, is observed. This can be
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scen clearly from the figures where the numbers on cach figure, showing the slopes at
¥ inciements of 0.1 for cach velocity, are analysed. For example, at y = 0.3 the slope
JdCL/ 0y for Uy = 8.3 m/s, 16.6 m/s and 214 m/s is 2.23, 1.11 and 109, tespectively
(Figures 6.18, 6.19 and 6.20). This variation in slope becomes mote sipmficant at lape
displacements and high velocities. For Uy = 214 m/s and y == 0.5 even the sign of the
slope changes to negative. Such a change indicates an inercase in the frequency and the
possibility of a single degree-of-freedom fluid-damping controlled dynamic instalnlity *
The slopes determined at 5 different § values for cach of thice upsticam velocitios
were inserted into equation (6.2), to attain the frequency ratio, w!fwd, at ditferent
non-dimensional flow velocities and static displacements®. Figure 6.21 summarises
the 1esults for m = 280, The contour lines show how the frequency 1atio vanes with
respect to the non-dimensional flow velocity and displacemient of the eylinder i the
cross-flow direction. In fact this is a map of what may happen to a single flexable
cylinder at certain velocities and displacements (1 = 230).  Thice distinet zones
are identifiable in this contour map. The first zone, in the lower left-hand corner,
is enveloped by the contour line w?/w} = 0. lnside this region the cylinder acts as
if it has negative overall stiffness and suffers a divergence  So, at sufficiently high
velocities it is also possible to have static instability in the third 1ow. The second
zone, in the lower right-hand coiner, exhibits an entirely different behaviour. In
this zone of high flow velocity and large cross-flow divectional cylinder displacerent
the frequency ratio, w?/w}, is greater than unity, suggesting the possibility of single
degree-of-freedom dynamic instability® at sufficiently high veloc.ties.

In the remaining and major zone (0 < w?/w? < 1), the cylinder experiences

a reduction in its fiequency, to an extent related to its displacement and the flow

1Paidoussis and Price [79] showed that for a single depree of frecdom system dynamise mstabahity
occurs when dCy, /37 15 negative

5The static displacement mentioned i this context 1s a predetermned value inserted nto equation
6 ? and 1s different than the measured static displacernent discussed i Chapter 4

SInspection of equation 6 2 reveals that w?/wd can be greater than umty only when 9C Jdy s
negati'e Price and Paidoussis have shown this to be a necessary, but not suffiaent, condstion for
dynamic mstabihity
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velocity It is quite obvious that a third row cylinder will experience a loss of rigidity

based on this static analysis.

6.2.2 Lift and Drag Maps for a Sccond Row Cylinder

The drag and hft coeihicient maps and vector plot for a second row cylinder are as
SJown in Figures 6.22, 6.23 and 6 24 respectively. In general the drag cocfficient
decreases with cyhnder displacement in the upstream and cross-flow directions and
increases with displacement in the downstream direction. The lift coeflicient is highly
sensitive to displacement in the cross-flow direction and shows the tendency to diverge
in this direction.

The variation of the lift coefficient versus cross-flow displacement at 7 = 0 for
a second row cylinder 15 as shown in Figure 6.25. In a bioad 1ange of cylinder
displacement the average value of 9C1, /0§ can be taken as 2.9, a positive and a high
value that permits static instability at sufliciently large velocities.

Substituting dCL/dy = 29, m = 280, f. = 7 Hz into equation 6.2, the fluidelastic
natural frequency in the cross-flow direction for a flexible cylinder at different veloci-
ties can be calculated. The resulting cross-flow frequency variation with flow velocity
is as shown in Figwme 6 26, At slightly less than 16 m/s, the cylinder totally loses its
stiffness and becomes unstable, It is interesting to recall the vibrational behaviour of
two flexible eyhnders in the cecond row with m = 280, f, = 7 Hz and 6 = 0.014 as
presented in subsection 4.4.1. This configuration, which has identical propeities to
the above calculated case, becomes unstable at a flow velocity of & 153 m/s. The
cross-flow fiequency vanation with flow velocity for this experiment is also plotted in
Figuie 6 26, for comparison with the calculated 1esults The difference between the
experimental and the caleulated critical velocity is only 5%, stiongly supporting the
existence of static instabihity in the second row of the P/d = 2.12, 10tated squate

diray.
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6.2.3 Lift and Drag Maps for a First Row Cylinder

In contrast to the behaviour observed in rows 2 and 3, the lift coeflicient of a cyhinder
in tow 1 s invariant with displacement unless the cylinder is moved into the viamity
of cylinders 2L and 2R as shown by Figure 6.27 'T'his is in line with the dynami
1esults showing no loss in the cross-directional ngidity of a first 10w flexible ¢y hnde
The drag coeflicient exhibits a decrease with cylinder displacement in the upsticam
direction and an increase with displacement in the reverse ditection as shown by
Figure 6.23. As the cylinder moves upsticam of the airay, mmto the fice-sticam,
the diag cocfficient should indeed decrease due to the reducing effects of the arvay
Eventually at a distance sufliciently far upstream, the effects of the array will be
minimal on the eylinder and the diag cocfficient will approach that of a stugle ¢y linder
Comparing Figure 6 29, the vector plot for a first tow cylinder, with those for the
scecond and third rows (Figute 6.21 and 6.14) deatly illustrates the great variation

the flow structure fiom tow to row in the first few upstream rows of the arcay

6.2.4 Lift and Drag Maps for Fourth, Fifth and Seventh
Row Cylinders

When” the lift coeflicient maps (Figures 6.30, 6 31 and 6.32) and the diag coeflicent
maps (Figuies 6.33. 6 31 and 6.35) for fourth, fifth and seventh row cylinders at a flow
velocity of Uy, = 16.6 m/s are compared. striking similarities are observed The Tift
and diag coeflicicut maps, as well as the vector plots (Figures 6 36, 6 37 and 6 38 {og
different tows are neatly identical to cach other  both in shape and magnitude Such
a finding 1mplies that, once past the few upstream entrance tows, the flind forees and
hence the tlow stiuctuie becomes meardant with 1ow position imside the array 'The
results of Price ¢t al in the same artay (6], showing that both interstitial veloaty and
turbulence intensity 1emain reasonably constant beyond the fourth row lends futher

support to this finding. This is in sharp contiast to the behaviour observed o the

"For this experiment two more rows Fave been added to the usual eight row array with the
objective of protecting the seventh row eyhnder from end (exat) effects
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first. three entrance rows, where the flow structure exhibits a major variation from
TOw to 10w

The tendency to diverge in the cross-flow ditection is reduced in case of rows 4,
D and 7. Fven though dC';, /0y is still positive, a necessary condition for divergence,
its magnitude 1s 25 - 3 times lower than that 1ecorded in rows 2 and 3. So, loss of
stilfness and divergence are delayed to higher velocities, which are outside the limits
of the wind tunnel.

The results of the dynamic experiments are in excellent agreement with this ob-
servation. No substantial loss of stiffness or divergence was observed for the flexible
cylinders in rows 4. 5 or 7. In accordance with tow 1. 2 or 3 «ylinders, the cylinders
in tows 4, 5 and 7 are also not prone to damping controlled dynamic instability. As
shown in Table 6.2, both 9C /Ay, =8 and Cp /D7 y=p are positive for all rows, barting
single degrec-of-freedom damping controlled dynamic instability but allowing static

instability at sutficiently high flow velocities.

6.3 Effect of the Surrounding Cylinders’ Motion

6.3.1 The Effect of Surrounding Cylinder Motion Upon a
First Row Cylinder

To deteimme the effect that motion of the surtounding cylinders have upon the fluid
forces acting on a fist 1ow cyhnder, cylnders 1L, 1R, 2L, 2R and 3 ate consecutively
displaced m the in and aoss-flow directions. Motion of cyhinders 1R and 11, both
i the o and doss-flow ditections, have no effect on the drag o1 hit coefficients of

the fivst tow ¢y hinder. as shown i Figures 6.39 and 6 107 Motion of ¢y linders 21, and

STable 62 <hows that static instabihity 15 ¢ possibility i the in-flow direction as well ws i the
cross-tlow direction Equation 6 2, when 0C /39 15 replaced by 3Cp /dr, can be used to caleulate
the doss of tidity i the n-flow direction Sctting fu = 7 He and m = 280, and JCp /dx = 0 69 (the
highest valoe measared i the array) the cntical veloaty for in-flow directional static mstability 1s
found to be = 32.m/s  As this flow veloaty 1s 50% greater than that available from the wind tuunel,
1L as not surprisaing that m-flow static wstabihties were not encountered duning the expuniments

"I'is ¢ servation can be generahsed to cover experiments i all rows  Por experniments i the
rows 1 1o 7 the Mhnd forees acting on the mstrumented «yhnder are found to be e pendent of
nerghbouring ey hinder motion i the same row
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2R in the cross-flow ditection have a himited cffect upon the drag coeflicient of the
instrumented cvlinder. But as seen in Figure 641 this effect 1s also margial. Motion
of cylinder 3 m the in-flow duection has a relatively more important effect on the
drag cocflicient of the instrumented cylinder as shown in Figuies 6,12

In general the first tow eylinder is insensitive to motion of the surrounding «yhn
ders. Other than a limited effect from the downstieam eylinder i its wake, it behaves
independently of the motion of the surtounding eylinders. Thisas in good agrecment
with vibration (dynamnic) test tesults. In such experiments a flexible eylinder in the
firost-row always exhibited a substantially lower amplitude vibrational motion relative
to the other flexible eylinders and exhibited coupled motion with the flexible ¢y hnde

in its wake only at high flow veloaties.

6.3.2 The Effect of Surrounding Cylinder Motion Upon a
Second Row Cylinder

The cylinders surrounding a second 1ow cylinder can be categonsed into three gronps

as,
~ the upstream cylinders (eylinders 1L and 1R),
- the side eylinders (cylinders 21, and 2R),
- the downstream cylnders (cylinders 3L, 3R and 1).

Motion of the side cylinders, have sensibly no effect on the insttumented cylinder
This is most likely due to the considerable distance between the instimmented and
the side cylinders.

The displacement of the upstream cylinders {(cylinders 1L and TR) e the i flow
direction also has little affect on either the lift and drag coefficients of the row 2
cylinder. In contrast, as shown in Figure 6.43 the cross-flow motion of these cyhinders
induce a major effect on the fluid forces acting npon the instrumented cyhnder. o
example, a 0.4 d. displacement of cylinder 1L or 10 in the cross-flow ditection changes

the lift coefficient from 0 to 1.0 and the drag cocflicient from 2.63 to 23 for an
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imstomnented cylinder in the second row.  Another major effect is induced by the
in-flow directional motion of cylinders 3L, 3R and 4 in the in-flow direction, as shown
m Fignre 6.44.

Therefore, the second row cylinder is strongly affected by motion of the upsticam
cyhnders and to a lesser, but still important, extent by motion of the downsticam
cyhinders. This finding is in good agreement with two important results obtained

during multi-flexible eylinder vibration experiments.

1. When two first row flexible cylinders are located in front of a second row flex-
ible cylinder, the three flexible cylinders experience dynamic instability after a
highly coupled vibrational motion. If the two upstream flexible cylinders are
replaced by rigid eylinders, the second row flexible cylinder stabilises. Thus,
the upsticam flexible cylinders have a major effect on the second row flexible

cylinder as verified by the force measurements.

2. If two flexible cylinders are located in the second row, at sufficiently high non-
dimensional flow velocities static instability occurs. Force measurements verify
the critical velocity for static instability obtained fiom vibration experiments
with a difference of 5%. Also, force measurements show that flexible cylinders
in the rame row do not affect each other Therefore, due to lack of coupled

motion dynamic mstalnlity cannot develop.

6.3.3 The Effect of Surrounding Cylinder Motion Upon a
Third Row Cylinder

Ouce again, the surrounding ey hinders will be categorised into three groups; the up-
sticam eylinders (eylinder 1, 2L and 2R), side cylinders (3L and 3R) and downstream
cylinders (eylinders 41, (R and 5) Up to this point the effect of the suirounding
evlinders upon the instrumented cylinder was monitored at a flow velocity of 16.6
m/s only. In this 10w, to observe the effect of the surrounding cylinders at different

Reynolds numbers, expeniments were also performed at a flow velocity of 8.3 in/s.
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The effect of the upstream cylinders is critically important and each will be dis
cussed separately. It should be noted that cylinders 1, 2L and 2R, tegether with
the third row instrumented cylinder, represent the typical four flexible cylhinder con-
figuration used in many vibration experiments. Cylinder 1, the upsticam cyhnder
of the four flexible cylinder configuration in the vibration experiments, 15 the one
with the greatest influence on the downstream instrumented cylinder. The motion
of this cylinder in the cross-flow direction creates a major change in both the drag
and lift coefficients of the third row cylinder ~ both at Uy, = 8.3 m/s and U, = 16.6
m/s, as shown in Figure 6.45. For example, the lift coefficient of the 1ow 3 cylindes
varies between 1.7 and -1.7 when cylinder 1 is displaced £ 0.5 d. about its original
position. In addition, these figures display the variation of the fluid force coctlicient
versus displacement at Uy, = 8.3 m/s, normalised'® with respect to the properties at
U, = 16.6 m/s. Normalisation is reasonably successful in the y = + 0.25 d interval
and will be used in the remainder of this subsection.

Based on the above measurements, it is to be expected that a flexible cylinder
in row 1 will have a substantial effect on a flexible cylinder in row 3 in a vibration
experiment. In fact, the experiment, with two flexible cylinders introduced in subsec-
tion 4.2.2, (Figures 4.6 to 4.12) testifies to such an intimate relationship between the
motion of flexible cylinders in these locales. The vibrational motion of these cylin-
ders 1s highly coupled, and coherences as high as 90% are monitored between cylinder
vibration signals.

The next echelon of upstream cylinders, 2L and 2R, also incite a significant effect,
on the forces acting upon the row 3 cylinder. Again, the cross-flow motion of cylinders
21, and 2R wduces a greater change in the fluid foice coeflicients of the vow 3 cylinda
compated to that induced by the in-flow motion, as shown in Fignies 6 16 and 617

Finally'! the effect of displacing the downstream cylinders (4L, 4R and ) is shown

in Figures 6.48 to 6.50; this effect is much less than that induced by the motion of

10 The normalisation techmque is 1dentical to that used i subsection 6 2 |
11Gide cylinders have no effect as usual.
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the upstream cylinders. Therefore, the four flexible cylinder array utilised in the
vibration experiments includes the flexible cylinders that will have the major impact
on the oscillatory behaviour of a row 3 cylinder-if cascading effects are not included.

Also, in most cases discussed above, normalisation'? has been quite successful in
a broad range of static displacements. Thus suriounding cylinder data acquired at
a single Reynolds number can be used in theoretical models, if normalised through

utilisation of curves like Figures 6.2 to 6.4.

6.3.4 The Effect of Surrounding Cylinder Motion Upon Fourth,

Fifth and Seventh Row Cylinders

A general inspection of the data (Figures 4.51 to 4.53), shows that the motion of the
suttounding cylinders have a very limited effect upon the fluid forces acting upon
fourth, fifth and seventh?® 1ow cylinders. This becomes more obvious when the sur-
rounding cylinder effect for a third and fifth row cylinder are compared as shown
in Figures 6.54 to 6.56. The differences between the third and fifth!* row cylinder
response to surrounding cylinder motion is indeed striking. The row § cylinders’ drag
and Nft cocfficients are virtually independent of the surrounding cylinder motion, in
strong contrast to what has been observed in row 3. This is in excellent agreement
with vibration experiment results presented in Chapter 4. While a set of four flexible
cylinders experienced dynamic mnstability in the entrance rows with highly coupled
motion, the same array was quite stable deep inside the array. When inside the array,

the mdividual flexible cylinders of the four flexible cylinder configuration acted like

Plu subsection 6 2 11t has been deternmned that the shape of the hift and drag contours, especially
in the core region, vary very httle with Reynolds number, Figures 6 8 to 6 16 Thercfoie, if the
vartation ot the drag coeflicient versus the Reynolds number at £ = 0 and § = 015 hnown (Figure
2 to 6 1), then a normalisation factor can be obtained fromn this data to predict the magnitude of
the contours at different Reynolds numbers, even if only the contours at a single Reynolds number
15 available

Even though, there 1s only hnuted justification, the same approach has been used to normalise the
effect that surrounding cyhnders have upon an instrumented cylinder at different Reynolds numbers
The result, as seen i Figures 6 15 to 6 50, 1s surprisingly good

M For this experniment two more rows have been added to the usual eight row array

"The response of the fifth row cyhnder to surrounding cylinder motion 1s sensibly the same as
that experienced by the fourth and seventh row cylinders
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single flexible cylinders, without any interaction with cach other.

"Therefore, both vibration and force measurements indicate that the imstability, in
this array is due to a multiple-flexible-cylinder, stiffness-controlled mechamsm. Lack
of interaction between cylinders inside ihe array pievents coupled motion between
cylinders, - a necessary condition for the existence of this type of instability mecha-

nism. Thus, in this array, instability is confined to the entrance rows's.

131t should be once again recalled that single-cylinder, damping-controlled inechanisin is meffectyve
in this array
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Chapter 7

THEORETICAL MODEL

7.1 Introduction

In Chapter 1, the merits and disadvantages of various theoretical modelling ap-
proaches, taken by different researchers, were discussed. A modified quasi-steady
model, developed by Price and Paidoussis [74-80], was shown to deliver an excel-
lent understanding of the instability mechanisms, while only requiring a reasonable
amount of experimental data. This model, as mentioned in section 1.5, has the ca-
pability to predict dynamic instability in both single degree-of-freedom [74, 75] and
multiple degree-of-freedom systems [76-80], in contrast to some other models [6, 63,
64, 65). Using this model, Price and Paidoussis analysed systems with as many
as twelve flexible cylinders! (twenty-four degrees-of-freedom) [76]. Later, to reduce
the magnitude of the computational work, they introduced a so-called “constrained-
mode” method, where a specific pattern of motion? is prescribed for the cylinders in
the array [77-80]. This helped to reduce the analysis for an array of flexible cylinders
to four-degices of freedom. Comparison of the critical flow velocities obtained using

the “long-row” and “constrained mode” solutions, for the same gecometry, showed a

"Later they named this approach, developed for a two-row array, as the “long-row” solution.
“In a recent study [80] the same authors introduced a variable phase difference between the
motion of adjacent cylinders

T4
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good agreement for 10 < mé < 10° [77).

In the present study, to investigate the effects of various parameters upon the
instability threshold of the rotated square array, an approach similar to the “long-
tow” method of Price and Paidoussis is adopted®. The heat exchanger tube bank
is modelled by up to four flexible cylinders (eight degrees-of-freedom) in an array of
otherwise rigid cylinders. The objective of such an approach is to test the theoretical
model against the various multiple-flexible-cylinder vibration experiments discussed
in previous chapters. It should be stressed that the four flexible cylinders ate not

thought to be represcntative of a complete array of flexible cylinders.

7.2 Equations of Motion

Assuming equal mechanical damping in all modes and no mechanical coupling, the

cquations of motion of the four flexible cylinders, sce Figure 7.1(a), can be written as
F=[Ez+[C)z+ [M]Z, (7.1)

where;

F = the fluid force vector;
z = {x1,Y1, T2, Y2, T3, Y3, L4, Y4} , the displacement vector;
[E] = [k], the mechanical stiffness matrix with &, = 0 for ali tenins
other than 2 = 3, (the diagonal terms, &, can be different from
cach other to introduce differences between the mechanical

stiffness of adjacent flexible cylinders) ;

3The “constraimed-mode” method assumes the pattern of cyliner motion to be constant through-
out the array Such an approach, imposes an additional initial restriction to the solution Therefore
in this case, where a maximum of eight degrees-of-freedom 1s desired, the “long row” type of solution
is computationally feasible and 1s expected to be more accurate
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[C] = b[Iss), the mechanical damping matrix, b being an equivalent
viscous damping coefficient;
[M] = ml[Igxs], the mass matrix, m being the mass per unit length

of the cylinder and £ the cylinder length.

In the following scctions the expressions for the fluid force vector, I, will be obtained.

7.3 Fluid Forces

As seen in Figure 7.1(b), due to the vibrational motion of a flexible cylinder the
resultant velocity vector for cylinder : is at an induced incidence, a,, to the upstrcam
velocity. Neglecting higher order terms, the angle of induced incidence e, and the
resultant, velocity vector U, can be defined as
y
a, ~
t U,. ]
and

U, ~Ug— i, (7.3)

Where Ug is the so-called “reference gap velocity”. This velocity can be obtained

from continuity to be

Ug = Usa , (7.4)

where a = T/(T — 0.5d) and U, is the upstream velocity.
Using quasi-steady acrodynamics the fluid forces on cylinder 7 in the z— and y--

ditections can be expressed as

Foo= %prﬂd[C‘D cosa, + Crsina,} ,
Fy = éprEd[C’L cosq; — Cpsing,] (7.5)
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where C, and Cp are lift and drag coefficients, non-dimensionalised with respect to
the local approach velocity. However, the measured force coefficients are based on
the upstream velocity U, and not Ug. Realising that U2y, = UECy, whete O is

now hased on the upstream velocity, enables Cp, to be written as

CL = CL/a*, (7.6)
and similarly for the drag coefficient.
By non-dimensionalising the displacement vector with respect to the cylinder di-

ameter and combining cquations (7.2) to (7.6), the resulting expression for the fluid

forces can then be written as

o = SURU(C — 2Cp3.d1Ua + CujidIUa)

-1
-1
~—

Fy= %onzofd[CL —9CL3:dJUc — CoidfUs) .

For a flexible cylinder in the first row of the array Ug in equation (7.7) is replaced
by Ue. In this analysis Cj, and Cp arc functions of both the Reynolds number* and
cylinder displacements. Assuming that they can be expressed in a hinear form, C,

and Cp can be written as

4 )C (‘)C’
CL, -CL.°+AUaC"'—° Z( oL ’)

k=1 a’)k
acC ac ac
Cp, = Cp,, + AU D'°+2( ')gD' Tk ’:) , (73)
k=1

where the derivation of the Reynolds number dependent terms, is given in Appendix
3. ¢ and 7, respectively, are directions parallel and normal to gap flow as shown in

Figure 7.2. Next, various time delay terms introduced into this analysis, are discussed

4In previous analysis, due to lack of data, the developers of the model neglected the effect of
Reynolds number on Cp and Cy,
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7.4 Time Delays and Apparent Displacements

It is assumed that the fluid forces acting on a flexible cylinder (i.e. cylinder 4) are
affected by its own motion and that of its three other neighbouring flexible cylinders
(i.e. cylinders 1, 2 and 3). However, the effect induced by the neighbouring flexible
cylinders will not be mstantancous and will involve a time delay, 7,, necessary for the
disturbance to traverse the distance between the cylinders. Thus, following Simpson
and Flower [91], Price and Paidoussis [76] stated that the apparent displacement of

cylinders 1, 2 or 3 in the in-flow (z) direction, as viewed from cylinder 4, will be
o(t—n)+na(t-7) (7.9)

where 1 = 1 to 3 in this case®. The corresponding displacement of cylinder 4 will be

only
z4(t) . (7.10)

The exact magnitude of the time delay 7,, is as yet unknown®, but following the work

of Price and Paidoussis it can be approximated as
T,':S,/UG (711)

where S, is the distance between the center of cylinder 4 and the three other flexible
cylinders. Ug, the so-called “gap velocity”, has already been defined by equation
(7.4) m section 7 3.

Another effect of cylinder motion is to produce a change in the angle of incidence
of the oncoming flow, as scen in Figure 7.1. Assuming & and y < Ug/d and neglecting

second order terms, the induced angles of incidence, a,, for cylinders 1, 2 or 3 are

%The analysis will be developed as viewed from cylinder 4 and later generahsed
®A current research progeam m MeGull is aimed at having a better understanding of this time
delay
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given by
alt—-1) =4t - 1)U, (712)
and for cylinder 4 by
aq(t) = ga(t)/Ug . (7.13)

The result of this induced incidence is to reorganize the ditection of the interstitial
gap velocity and produce apparent displacements of cylinders 1, 2 and 3 as viewed
from cylinder 4. The apparent displacements-parallel and normal to the reahigned

gap velocity, £, and 7, - can be determined from Figure 7.2 as

AT][ = —2140[3 A£1 =0,
AT]Q = —Laz, Afz = T()'),,
Any = —~Laj, Al = —Tas, (7 14)

In order to express the variables in equation (7.14) in terms of time ¢ instead of ¢ — 7,

the cylinder motion is assumed to be harmonic, such that

z,(t) = Tioexp(At) ,3i(t) = yio exp (A) (715)

where r,, and y,, are che amplitude of oscillation of cylinder 1 in the in - and cross-flow
directions, and A is an eigenvalue of the final solution. Thercfore, variables at -~ 1,

can be expressed at time t as

r(t — 7)) = z,(t)exp’ =1 A) = g.1,(t) ,

‘i‘t(t - T,) = gxlx(t) = gx)‘-l"t(t) s (7 1(;)

where g, = exp(—7,A).
In addition to above discussed time delay terms, Simpson and Flower [91] deter-

mined that another delay term, due to the flow retardation effect around the stag-
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nation region of the cylinder is important in arrays where large changes in the fluid
force coeflicients may occur as a result of small cylinder displacements. This term
is especially important as it can lead to fluid-dynamic damping forces which can be
either stabihising or destalnlising. If the flow retardation is ignoted. then the time for
a fhnid particle to traverse fiom z = 2y to R+ AR is t = [z, - (R+ AR))/U, where R
is the cylinder radius and U the constant flow velocity. But, as the flow approaches
the cylinder, it slows down. Therefore, the approach velocity has to be taken as a
variable to have a realistic estimate of the time required to traverse the distance from

xy to R+ AR This time can be expressed as

F 3} 1
t At:/ —dr | 717
t rR+aR U, o (7.17)

where U, is the variable approach velocity. As a first approximation this velocity can
be taken to be U, = U(1 — R?/z?), as that given by potential flow theory” for flow
around a single cylinder to yield

R Iy —R AR
At —_ e —n e . 7.18
20 [gn <x1+R) ‘ (QR+AR>] (7-18)

Taking r, as large compared to A R simplifies the above equation further, to the form

R, [2R
At=2en [M] . (7.19)

A typical value of A% is yet unknown, but Simmpson and Flower {91] by vaiying AR
from 0.JR to 0.0IR calculated At = 0.75(d/U) and At = 1.32(d/U), 1espectively.

Therefore an equation of the form
At = — (7.20)

where g is of order unity can be taken to be ar: acceptable represantation of the delay

“Price aud Paidoussis [T6) recogiused this not be totally correct, but in view of other assumptions,
Jdid not pursue a more exact expression
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induced by ilow retardation until further understanding of the problem is gained®,

Assuming harmonic motion, Price and Paidoussis [76] stated that this tlow re-
tardation wiil induce a y-directional apparent displacement of the cylinder i the
form

Ay =y)[1 - 9], (7.21)

where

g = exp(—AAt) . (722)

The final apparent displacement of cylinders 1 to 4, as viewed from cylinder 4 at
time t can be obtained by substituting equations (7.12), (7.13) and (7.16) into (7 14)

and multiplying the outcome by equation (7.22). The results are given below,

£i = gn (1 + 1 A), M = gootiyi (1 = 2LAJUL),
&2 = gaga(z2(1 + 12A) + Thy2/Ugl, 12 = gaqay2(1 — AL[Ug),
€3 = gaga[za(l + m3A) = Thys/Us], 13 = gagsys(1 — A.JUg),

& = ggz4, Na = YGYa.

Based on the apparent displacements shown in Figures 7.2 and using the procedure
detailed above, the final apparent displacements, as viewed from the perspective of all
other cylinders can also be determined. Thus the appaient displaceients of eylinders

1, 2, 3 and 4, as viewed from cylinder 1, at time ¢ are determined to be

1 = gool1, h = Yy,

&2 = gogara(l + A2) + TAy /Uy, 12 = gagaye + LA /U,
& = gegara(l + As) = TAy/Uso s 13 = 96953 + LAy U,
4 = gagars(l + A1q), M4 = gagays + 2LApn JU L.

Similarly, the apparent displacements of cylinders 1, 2, 3 and 4. as viewed from

8Price, Paidoussis and co-workers are presently pursuing an wvolved experimental study to have
a deeper understanding of the time delays involved
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cylinder 2, at time t are
H

& = gothZi(1 + A1) + gt T M Uso, M = g1t — 993 LAY fUos,

€2 = gy,

N2 = dGgYa2

€3 = gayszs(l + A13) 4+ gcg:2T Aya /U , 13 = gagays,

€1 = gagsza(l + A1y) + gcT Ay2/Ug, M = gcgsya + 96 LAy2/Uc.

-~

I'inally, the apparent displacements of cylinders 1,2,3 and 4 as viewed from cylinder

3, at time ¢ are,

€1 = 91 T1(1 + A1) = gt TAY1/Uoy M = Goo1¥1 — Joo 91 LAY [/ Uso

€2 = gagaz2(1 + A1) = g6 92T hy2/Ug, 12 = gagaya,

& = gy

N3 = 9Ggys,

§a = !]GUM:x(l + /\1'4) - gGT)\ya/Uc, N4 = 9GgaY4 + gGL/\ya/UG-

Before substituting the apparent displacements given by equations (7.23) to (7.26),

into equation (7.8), it is possible to introduce certain simplifications arising from ge-

ometric syminetry of the present array. The force measurements discussed in chapter

6 have substantiated the validity of these simplifications, shown below

Con = CLzo = CLao = C[«o = 0’
Cp, = Cp,,

oCy, _ aCy, _9CL, 0Cy, -0
Dy Vs 0 06
O‘CD‘ _ JdCp, _ (9.CD2 _ dCp, -0, (7.27)
ang dns any dm
JCp, _ oCp, 0Cp, _ oCp,
3 B 983 s T on3 ’
BCL‘_ _ oC., 9Cy, _30[,,

06 & O~ Ons
JaCr,, _ dCp, _

o om 0,

Ty = T3.
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By substituting equations (7.23) to (7.27) into equation (7.8) the lift and diay, o

efficients for each flexible cylinder as a function of the Reynolds number, its own
motion and the motion of the other flexible cylinders can be obtained. The 1esvlts
are presented in Appendix 4. Once the lift and drag cocfficients are determined, they
i turn can be substituted into equation (7.7) to obtain the fluid forces acting on cach
cylinder in the x- and y-directions. The complete set of fluid forces acting on the four

flexible cylinders can be wrilten as

F=[Kz+ [B)z (7.2N)
where

z = {1, Y1, T2, Yo, L3, Y3, T4, Y4}, the displacement vector;
(K] = the fluid-stiffness matrix;

[B] = the fluid-damping matrix.

Finally, equations (7.1) and (7.28) are combined to form the complete equations

of motion as

(Mz+ {[C]-[Bl}z+ {{L]-[N]}z=0. (729)

Substituting the expanded form of the matricies

(M] = mé(lgxs) »

Cwyé
[Cv] — m :) [stsl ’
[K) = wimh] , (7 :30)
pdel
3] = ‘F—[B
[1] 2a [ ] !

(K] = plU*[K] ,
)
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into equation (7.29) yields

miw,d

me gl {

Usxs] - ”“U[B]}z n {w me[h] - —-—-—[K]} 2=0. (7.31)

Introducing a non-dimensional displacement vector, Z = %, and a non-dimensional

time, ¢ = w,t, into the equation of motion leads to

(lsxs)Z + { (Tsxs] — —Q—[B]} Z+ {{h] ~ -2-7_;{1\]} =0

_ m
wod and m = ;4—2' . (732)

The individual terms in [K] and [B] are as given in Appendix 5 and 6.

where U =

In this analysis a solution of the form Z = Z,exp(At) is assumed, where A is ¢
complex cigenvalue. At the dynamic instability boundary A will be purely imaginary,
indicating zero damping. The eigenvalues and eigenvectors are obtained through

standard numerical procedures.




Chapter 8

THEORETICAL RESULTS

8.1 Multiple-Flexible Cylinder Fluidelastic Insta-
bility

8.1.1 Four Flexible Cylinders and The Instabilility Thresh-
old

The stability of a P/d = 2.12 rotated square array housing a four-flexible-cylinder
configuration was investigated using the fluid force coefficients and their variation
with displacement, presented in Appendix 1 To compare with the experimental
results discussed in section 4.2, the flexible cylinder configuration was located in
different rows of the array. Figure 8.1 shows the variation of the nou-dimensional
ciitical velocity, U./ f.d, versus the dimensionless mass, 1, for four flexible ¢ylinder
configurations with the upstream of the four cylinders located in cach of the first five
rows of the array. The damping paramecter, 8, was kept at 0 014 and no frequency
detuning between the cylinders was intioduced. The 1esults of Figure 8.1 show that
the four-flexible-cylinder configuration has the lowest instability thieshold when its

1

upstream cylinder is in the second 1ow'. Then configurations with their upsticam

YAn exception to this is mm < 75, where the four fiexible-cyhnder configuration with its upstroam
cylinder 1n the third row has the lowest critical velocity.
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cylinders in rows 1, 3, 4 and 5, respectively, have increasing instability thresholds.
This trend is in agreement with the experimental results of section 4.2.

Experimental results of Chapter 4 showed that, an equation of the form
U./fad a ()P ...§ = constant (8.1)

was not applicable for the P/d = 2.12, rotated square array. Even, in a relatively
narrow range of dimensionless mass, 195 < m < 980, the exponent in equation (8.1)
g, exhibited a substantial variation from 0.38 to 1.55. For the same configuration
and the same range of dimensionless mass, the theoretical calculations resulted in a
f value varying between 0.19 and 0.27. This low value leads to the conclusion that
the theoretical model utilised, fais to predict the experimentally determined strong
dependence of critical velocity upon the dimensionless mass.

Also in Chapter 4, it was experimentally determined that the critical velocity is
only weakly related to the initial damping of the cylinder, §. For 0.014 < 6 < 0.25,

the relationship between the two variables was proposed to be in the form
U./fad a 6% ...m = constant (8.2)

where @ = 0.06 and 0.07, respectively for m = 280 and 490. Figure 8.2 shows the
theoretically determined effect of initial cylinder damping upon the critical velocity
for m = 75, 280 and 1500. For 0.014 < § < 0.35, the theoretically determined
relationship between critical velocity and damping can be approximated by equation
(8.2), where a varies between 0.10 and 0.39, depending upon the value of the di-
mensionless mass. Therefore, the theoretical model predicts a greater dependence of
critical velocity upon the cylinder damping than the experimentally determined one.

Again in Chapter 4, for a four-flexible cylinder configuration (m = 280 and 6 =

0.014), ithe variation of the stability threshold with position in the array had been
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discussed. Figure 8.3 compares both the experimental and theoretical? tesults for
the variation of the nondimensional critical velocity with cylinder position in the
array at m = 280 and é = 0.014. Both the experimental and theotetical curves are
quite similar in shape. In both cases the entrance 10ows are found to be the least
stable, whereas the rows deeper in the array, are found to be more stable due to
lack of coupled motion between flexible cylinders. Figure 8.3 also shows a major
shortcoming of the model, which is a difference of an order of magnitude between the
experimental and theoretical critical velocities. Theicfore, the present model, at least
for the rotated square array, is more likely to deliver a general physical understanding,

of fluidelastic instability rather than predicting instability threshold with precision®.

8.1.2 Sensitivity of Four Flexible Cylinder Motion to “Un-
steady Effects”

The “unsteady eflects” included in this model are: the time delay/flow retardation
effect, accounted for by equation (7.20): the delay between the motion of cylinders,
accounted for by equation (7.11); the wake inclination cffect, accounted for by cqua-
tions (7.12) and (7.13).

In a recent study [79] Paidoussis and Price showed that the time delay factor, g,
deiined by equation (7.20) has a major effect in the stability behaviour of smgle flexible
cylinder models, especially in the lower mé range where the flmd-damping contiolled
instability mechanism attains importance. To assess its importance in this array, the
time delay factor, y, has been varied between 3.0 and 0 0. As shown in Figure 8.4,
for m > 7400 (mé > 104), the value of 1 has no effect on the non-dimensional aitical
velocity. However, for m < 740 (128 < 10), the effect of changing p wduces a change
in the non-dimensional critical velocity. For m = 74 (7 = 1), at g = 0 and p =3
the non-dimensional critical velocitics are approximately 50% less and 75 % greater,

respectively, than the value at 4 = 1. Therefore, the fluid-damping terms generated

2These results can be obtained from Figure 8 1 at 1 = 280 for each position in the array
3There 1s, as yet, no such model




#-3

88

by ju are stabilising®, rather than destabilising in the region of m < 740 (mé < 10).
This is in general agreement with the results of Price and Paidoussis [76] obtained
through their “long row” solution for a different array.

The effcct of the time delay term, 7,, and the wake inclination terms, o, and
ay, are determined to be negligible in this array. Setting these terms equal to zero
generates no sensible change in the instability threshold.

Therefore the insensitivity of the critical flow velocity to both time delays At and
7., defined by equations (7.20) (7.11), and to the wake inclindation terms, a; and ay,
defined by equations (7.12) and (7.13) allows major simplifications in the theoretical
model adopted.

The effect of the variation of drag coeflicient with Reynolds number®, has been
included in the model as per equation (7.8). Numerical investigations revealed that
inclusion of this factor has sensibly no effect® on the non-dimensional critical velocity.
This result is not surprising when it is noted that the Reynolds number dependent
terms are a part of the fluid damping matrix? which has practically no contribution to
the instability mechanism prevailing in this array. Omission of the Reynolds number

dependent terms introduces further simplification into the model.

8.1.3 Sensitivity of Four Flexible Cylinder Motion to Fluid
Force Coefficients

To assess the sensitivity of the instability threshold to variations in the fluid force
coefficients, a series of calculations have been performed with modified coefficients,
specifically, reduced by 50% and increased by 50%. Tables 8.1 and 8.2 summarize

the critical velocities obtained with incireased and decreased fluid coefficients as well

*This 1s not surpnsing in the light of the fluid force coeflicients presented in Chapter 6. For
instrumented cylinders in rows 2, 3, 4,5 and 7, 8Cr /3y and 0Cp /3% are both positive, advocating
stabilising fluid-damping terins

5This approach only considers the change in the value of the drag cocflicient of each flexible
cylinder with K. In Chapter 6 1t is shown that the vanation of luid force coefficients with respect
to displacement 1s only weakly dependent upon velocity and such an effect 1s neglected in this model.

SFor 11 > 750 the critical velocity is unchanged, however, for m < 350 a change less than 5% has
been noted.

TAppendix 6
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as with the original force coefficients. As expected, reducing the force coeflicients
generates an increase in the critical velocity and vice versa. In all cases the change
in the critical velocity is less than the change in the fluid coclficients. This significs
the critical velocity for this array not to be over sensitive to the small changes in the

fluid force coeflicients.

8.1.4 Multiple Instability Boundaries

Multiple instability boundaries at low mé values have been encountered in various
theoretical models [63-65] and [74-80] as well as in a recent experimental study [59].
Inspection of Figure 8.1, for the case of upstreamn cylinder of the four-flexible-cylinder
configuration located in rows 3 and 4, exhibits a sudden diop in the aitical non-
dimensional velocity for m < 300 that could possibly be due to existence of multiple
instability boundaries. Figure 8.5 summarises a “numetical search” for such multiple
instability boundaries at low values of m. It is scen that for 1 = 1 and 15 as the
velocity is decreased, the eigenvalue of the solution changes sign at U/ ~ 2.3 and
the array becomes stable. If the eigenvalue is monitored at lower non-ditensional
velocities it is obscrved that at U =~ 0.2 the cigenvalue changes its sign once more
and the system becomes unstable again. Eventually further reduction of U restablises
the system. A similar display of instability bands has also been detected for a fou
flexible cylinder configuration with its upstream cylinder in 1ow 4.

Existence of multiple instability band for this array is, somewhat unexpected,
as the damping controlled mechanism is stabilising rather than destabilising®. As
suggested by Price et al. [80! even at such low mé values, the fluid-stiffness contiolled
mechanism can be dominant enough to generate mnstability bands through the effect
of fluid stiffness terms osaillating harmonically.

The results presented in this section strongly suggest that, by far, the dominant

instability mechanism in a rotated square array with P/d = 2.12 is the multiple

8Even though stabilising, 1t 1s still osaillatory
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flexible-cylinder, fluid-stiffness controlled one. As shown by the magnitude of the
non-dimensional critical velocity for instability to occur, the fluid-stiffness cffects
are most dominant in the first few upstream rows-relative to downstream positions.
Time delay terms, associated with flow retardation and adjacent cylinder response
lag, have been found to have no effect on the stability threshold of the array and can

be neglected.

8.1.5 Three Flexible Cylinders and The Instability Thresh-
old

Theorctical results for the stability threshold of a three- and four-flexible-cylinder
configuration are compared in Figure 8.6. The three-flexible cylinder configuration has
cylinders in positions 2L, 2R and 3, whereas the four-flexible-cylinder configuration
has cylinders in positions 1, 2L, 2R and 3. The only difference between the two
configurations is an additional flexible cylinder in the row 1. As expected the three-
cylinder configuration is more stable in the range 75 < m < 750,000 (6 = 0.014) when
the three-flexible-cylinder configuration is placed deeper in the array, the stability
thieshold increases further, as shown in Figure 8.7. For example, the non-dimensional
critical velocity for a configuration with upstream cylinders in row 5 is approximately
two orders of magnitude higher than that of the same configuration with upstream

cylinders in 10w 1.

8.2 The Effect of Frequency detuning Upon the
Instability Threshold

8.2.1 The Effect of the Mass-Damping Parameter

In Chapter 4 it was shown that frequency detuning between the cylinders of a P/d =

2.12 rotated square array incites substantial variations in the instability threshold.
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In a numerical study, frequency detuning can be realised by introducing differences
between the diagonal terms of the mechanical stiffness matrix defined by equation
(7.1).

To enable comparison with experimental results. a four flexible cylinder configu-
ration is located in the threc upstream rows of the airay (cylinders 1, 2L, 2R and 3).
The initial natural frequency of the row 3 cylinder is kept constant, while that of the
other cylinders, collectively, are varied.

Typical results, for 6% = 3.92 and 126 = 10500, are as shown in Figures 8.8
and Figure 8.9. A quick inspection of these figures suggests that effect of frequency
detuning upon the non-dimensional critical velocity is not only a function of mé,
but of 6§ and 7 separately. This observation is especially pronounced in the positive
detuning region (fi21,2r/f3 > 1).

The numerical results for m = 280 and § = 0 014 shown by a solid line in Figure
8.8 can be compared with Figure 4.58 displaying the experimental results for the same
conditions. Both results'?, reproduced in Figure 8.10, shows a general agicement in
the region fi212r/f3 > 1. However, for 0.8 < fi.12r/fs. the numencal solution
exhibits a sharp ircrease in the instability threshold, in contrast to the experimental
results. Finally for f).r2r/fs < 0.8 both experimental and numerical tiends are
the same, but a magnitude difference still exist, probably due to the sharp mcrease
experienced in the previous zone. In general the agreement between experimental

and numetical detuning results are not satisfactory.

8.2.2 The Effect of Cylinder Damping

In this section the effect of detuning on the non-dimensional critical velocity at thiee

damping values, —6 = 0.14, 0.014 and 0.0014 -, is presented. The other initial

%In Chapter 4, 1t has been shown that lumping /m and 6 together in form of a single dimensionless
parameter is not applicable in this array So it should be stressed that, this approach s adopted
here just to show that 1t does not give satisfactory results

10The physical understanding attained from this curve has been discussed in Chapter 4 and will
not be repeated in this context
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conditions are identical to those of the previous subsection. As observed both in
Figure 8.11 (m = 280) and Figure 8.12 (m = 750000) changing damping by two-
orders of magnitude has no significant effect on the non-dimensional critical velocity
in the positive detuning region, f212r/fs > 1. Whereas in the negative d tuning
region, fi2nanr/fa < 1, cspecially for the higher dimensionless mass, m = 750000, a
substantial effect of damping on the stability thicshold is observed. In general, it can
be proposed that, in the operational range of actual heat exchangers!' the instability
threshold of a detuned rotated square array with P/d = 2.12 is weakly related to the
initial damping of the cylinders, especially in the positive detuning region. A similar
insensitivity of instability threshold of detuned arrays to initial cylinder damping has

also been reported by Price et. al. [77].

8.2.3 The Effect of Dimensionless-Cylinder Mass

Again, for a four-flexible-cylinder configuration, located in the three upstream rows
of the array, the initial natural frequency of the row 3 cylinder is kept constant
while that of the others is varied. Figures 8.13 to 8.15 very clearly show that, at
all damping values, changing the dimensionless cylinder mass bas a large effect on
the non-dimensional critical velocity across the whole detuning range. This result is
not surprising in light of the experimental findings presented in Chapter 4, showing
the dominant effect of cylinder mass upon the instability threshold. Therefore the
numerical results verify the critical velocity of this array to be more sensitive to

dimensionless mass than damping.

8.2.4 The Effect of Flexible Cylinder Position

In Chapter 4, it was shown experimentally that the effect of frequency detuning, on

the instability threshold decreases if a flexible cylinder configuration is located in the

''A damping value of 0 0014 1s an order of magnitude lower and a dimensionless mass of 750000
is at least two orders of magnitude higher than that of an actual heat-exchanger. Such extreme
values are used to assess the effect of these variables in the broadest range possible
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inner rows of the array rather than the upstream rows. Dynamic tests have revealed
this to be due to a major deficit of coupled motion inside the array.

In this context a four-flexible-cylinder configuration (12 = 280, 6 = 0.01 1) is nu-
merically first located in positions 1, 2., 2R and 3 and then in positions 4, 51 R
and 6. The numerical results, shown in Figure 8.16, are in agreement with vibration
experiment results. [nside the array the effect of detuning, especially in the negative

detuning range, is less relative to the upstream rows.
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Chapter 9

A GENERAL DISCUSSION &
CONCLUSIONS

In this thesis, the flow-induced vibrational behaviour of a rotated-square array, with
Pl{d = 2.12, was investigated both experimentally and theoretically to introduce
further insight into the nature of fluidelastic instability mechanisms.

The experimental studies were comprised of extensive dynamic (vibration) and
static (fluid force) measurements, whereas the theoretical studies focused on intro-
ducing limited changes into an existing quasi-steady model and applying it for com-

parison with experimental results.

9.1 Single and Two Flexible Cylinders

In the dynamic experiments, a single flezible cylinder retained its stability throughout
the entire non-dimensional velocity range, in agreement with previous results {6).
When the fluid forces acting on such a cylinder, both at equilibrium and displaced
positions, were measuted and introduced into the quasi-steady model, the stability
of a single flexible cylinder was also verified theoretically. Therefore, it was firmly
concluded that, a single-degree-of-freedom!?, galloping type instability mechanism, is

incapable of inducing dynamic instability in this array.

'n all experiments, the in- and cross-flow vibrational motion of a single flexible cylinder was
found to be uncoupled
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Dynamic experiments wuth two flerible cylinders, although stable for all expen-

mental conditions?

, revealed that the vibrational motion of one cylinder could affect
and synchronise the motion of the other cylinder through fluidelastic coupling. The
strength of such interaction between cylinders was determined to be a function of po-
sition in the array and relative location of the flexible cylinders with respect to each
other. The highest level of coherence was measured between two flexible oy inders, ar-
ranged in tandem in the upstream 1ows of the array. When posttioned i rows deepen
inside the array, or with a different relative position, the coupling between the motion
of the flexible cylinders reduced dramatically and cach behaved as a single flexible
cylinder. In support of these observations, the time averaged fluid force measuie-
ments revealed that displacing the cylinders in the entrance rows sharply affected the
fluid forces acting on the surrounding cylinders, especially when the eylinders were
placed in tandem. Dceper inside the array, displacement of cylinders had practically

no cffect on the fluid foices of neighbouring cylinders.

9.2 Three and Four Flexible Cylinders

Dynamic experiments with three and four flexible cylinder configurations, first pro-
duced a highly coupled and synchronised motion, and cventually fluidclastie instabil-
ity. This 1esult has a great importance, in the sense that arrays stable when housing
a single flexible cylinder can become fluidelastically unstable in the presence of multi-
ple flexible cylinders. For the first time, this furnishes experimental evidence, for the
existence of a multiple-flexible-cylinder ty pe fluidelastic instability medhiamsin, neces-
sitating fluidelastically coupled motion between adjacent cylinders. The instability
threshold for this mechanism was found to be related to the number of flexible cylin-
ders. For the same mechanical propertics, four flexible cylinders became unstable at
a 40% lower non-dimensional velocity than that of three flexible cylinders.

When the four flexible cylinder configuration was moved deeper into the aray,

2Static instability excluded
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the instability threshold increased in association with reduced fluidelastic coupling.
Beyond the fourth row, instability would not develop within the velocity range of the
wind tunnel. Also the motion of the flexible cylinders were totally independent of the
other, each behaving as a single flexible cylinder.

Force measurements supplied similar results. Displacement of cylinders located
in the thiee upstream rows affected the fluid forces acting on adjacent cylinders to
a significant extent. Especially the motion of upstream cylinders in the first and
second rows, induced major changes in the flow field around the third row cylinder
and the fluid forces acting on it. In contrast, the motion of downstieam cylinders was
determined to have no significant effect on the upstream cylinders fluid forces. Fluid
forces acting on cylindets in the fourth to seventh rows were relatively insensitive to
the displacement of neighbouring cylinders. Both dynamic and static results detected

two major 1egions in the array.

1. The upstream rows of the array, where flexible cylinders were capable of gen-
erating major changes in the flow field, through their vibrational motion and
so to aflecting the magnitude and direction of fluid forces acting upon neigh-
bouring flexible cylinders. At sufficiently high flow velocities, the motion of
the cylinders was synchronised through strong fluidelastic coupling, which sub-
sequently, induced violent unstable motion. The instability threshold for this
multiple-flexible cylinder, stiffness-controlled instability mechanism requiring
coupled motion, was experimentally detetmined to be a strong function of the

number of flexible cylinders and the extent of coupling between the cylinders.

2. The wmner-rows of the array, where flexible cylinders were sensibly unalflected
by each others motion and acted as single isolated cylinders. Thus, a multiple-
Hexible-cylinder type instability could not occur in this region. Simlarly, the
single degree-of-freedom fluid-damping controlled instability mechanism by 1t-
self, as shown in the present and previous studies, was insufficient to induce

fluidelastic instability in this region of the array. Therefore stability prevailed




in the inner rows of the rotated square array with P/d = 212

Another interesting result, obtained from the static measurcments, was the vatia-
tion of the fluid force coefficients of cylinders in the array with the Reynolds number.
In a similar range (6 x 10® < Re < 4.5 x 10%) the drag cocllicient of a sungle cylinder
was determined to be virtually constant, Cp = 1.2 £ 5%. Therefore, the vanation
of the fluid force coefficients for the cylinders in the array s induced by the presence
of the array itself. In general, the fluid forces were found to be functions of both
position and Reynolds number.

The theotetical results for fluidelastic instability were m gualitative agicement
with the experimental ones. Three and four flexible cylinder configurations became
anstable, wlale single aud two flexible cylinder configurations tetained their stability.
The major shortcoming of the theoretical model was an order of magnitude difference
between the experimental and theoretical critical velocities. Therefore, the present
theoretical model, is more hikely to deliver a general physical understanding of -
stability mechanisms rather than predicting the instability threshold of the present
array with precision Even with such a shortcoming, the theoretical model delivered

important results, in agreement with the dynamic and static experiments,

1. The instability threshold for a three and a four flexible cylinder configuration
increased sharply when the cylinders were located in the inner rows of the airay.
For example, the instability threshold of a four flexible cylinder configuration’
was an order-of-magnitude lower when located at 1, 2R, 2L, 3 rather than at 5,

6R, 2L, 3.

2. The variation of the fluid force coefficients with Reynolds number, discussed
above, was induded in the theoretical model. In fact, this was one of the main

changes to the quasi-steady model, already developed by Price and Paidoussis.

3The variation in the instability threshold of a three flezible cylinder configuration with respeet
to position was even greater The critical velocity difference between the positions 1, 2R, 21 and 5,
6R, 6L was {wo orders-of-magnitude
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Considering such an effect, introduced additional fluid-damping terms into the
theotetical model. These additional terms had no sensikle effect on the numer-
ically determined critical velocity. This is in excellent agreement with the ex-
perimental results which showed a single-degree-of-freedom, damping-controlled
mechanism to be incifective in this array. It should be stressed that even though
unimportant in this case, Reynolds number dependent terms can be very impor-
tant in arrays where a single degree-of-freedom, damping-controlled mechanism

is the main contributor to dynamic instability.

3. In a recent publication [79], Paidoussis and Price showed that if the time delay
factor, u, was neglected (i.e. p = 0), then the destabilising/stabilising fluid-
damping terms would be suppressed. In the present study, solutions with p =0
resulted in a simall change in the critical velocity, once again substantiating the

unimportance of the fluid-damping controlled mechanism in this array.

9.3 Applicability of a “Connors’ type” Instability
Criterion

Dynamic 1esults with multiple-flexible-cylinders showed that a “Connor’s type” in-

stability criterion,

or a modified form of it,

U, = K™ §%?
could not be applicable in the rotated square array, with P/d = 2.12.

1. ai, the exponent of dimensionless mass, was determined to be a function of
dimeusionless mass itself. The a; values at m = 195 and 980 was 0.38 and
1.55, 1espectively. It should be appreciated that this substantial variation was

recotded in a limited 1ange of dimensionless mass and can be expected to be
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more pronounced in a wider range.

A value of a1, as high as 1.55, was recorded for the first time. There is a
likelyhood that such a strong dependence of critical velocity npon cylinder mass
is a generic property of arrays for which fluidelastic instability is induced by the

multiple-flexible cylinder, stiffness controlled mechanism.

. The instability threshold for a multiple-flexible-cylinder configuration was de-

termined to be only marginally affected by changes in the mechanical damping
of the cylinders. In a relatively broad range of mechanical damping, (0.0135 <
6 < 0.25), the value of a; was determined to be only 0.06. Such a low a, value
is being reported for the first time and maywell be a characteristic of arrays

where multiple-flexible cylinder type instability mechanism is dominant,

In the light of the above findings it is obvious that neither equation (1.3) nor
equation (1.5) can be used to predict the instability threshold of this array.
Whether this conclusion can be generalised for all other arrays, in which the
instability is induced by a multiple-flexible cylinder, stiffness-controiied mecha-

nism, is yet to be determined through further studies..

9.4 Frequency Detuning

In actual heat exchangers, variations between the natural frequencies of tubes, termed

as frequency detuning or simply detuning, is a common phenomenon. The mformation

available on the effects of this phenomenon is inconclusive and in some cases contra-

dictory. Therefore an extensive experimental work was undertaken to shed further

insight into the instability behaviour of detuned arrays.

Various forms of {requency variation were introduced between the cylinders of a

four-flexible cylinder configuration and some important results are itemised below.

- 1.
o

Cylinders with different natural frequencies, are capable of imposing on each

other, different modes of vibrations through fluid coupling at flow velocities
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which can be as low as 50% of the critical velocity To emphasize the strong
interaction between the vibrational motion of such cylinders, it should be men-
tioned that in some experiments as many as eleven frequencies common to at
least two cylinders were monitored. In the vicinity of the critical velocity, the
cffect of fluid coupling was determined to be domineering enough to synchronise
the motion of all the cylinders at a single frequency (and possibly its harmon-
ics). Therefore, some of the cylinders - in many cases all - completely “lost”

or “forgot” their original natural frequencies.

2. Such an exchange of frequencies between detuned cylinders was reciprocal. While,
through fluidelastic coupling, higher-frequency cylinders imposed greater rigid-
ity on lower-frequency cylinders, the lower-frequency cylinders in return, in-
flicted lower frequencies on high-frequency cylinders. This mutual exchange of
frequencies altered the flurdelastic natural frequency of all the cylinders in such
a fashion that lower frequency cylinders acted as if they were tuned to a higher
imtial natural frequency than they actually were and higher frequency cylinders

responded as if they were tuned to a lower initial natural frequency.

3. Therefore, if one or more flexible cylinders of an array are tuned to a higher-
frequency than the others, then the whole array will become unstable at a critical
velocity, greater than that experienced when all the cylinders were at the same
frequency. Similarly, if one or more flexible cylinders of an array are tuned to
a lower-frequency than the others, then the whole array will become unstable
at a critical velocity, less than that experienced when all the cylinders were at
the same frequency. This simple criterion can be expected be applicable for all
arrays in which the multiple flexible-cylinder type instability mechanism is the

dominant one.

The quantitative agreement between the experimental and theoretical detuning

tesults was unsatisfactory, especially in the negative detuning region®. Still, the theo-

1As defined i section 4 3
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retical results showed the critical velocity of detuned arrays to be a strong function of
dimensionless mass and a weak function of damping. Even though the dimensionless
mass had been determined to be the variable with the greatest effect on the critical
velocity of non-detuned arrays, due to set-up limitations, the magnitude of its effect
in detuned arrays could not be assessed cxperimentally. This, still 1emains, to be

verified through further experiments.

9.5 Static Displacement and Instability.

In most of the dynamic experiments with multiple flexible-cylinders, a fluidelastic
loss of stiffness in the cross-flow direction had been observed in the second and third
rows. Special dynamic experiments with two flexible cylinders in the sccond row

determined;

~ a loss of cross-flow stiffness, that in some cases, could be as much as 50%,

— a major reduction in the cross-flow vibrational motion, correlated to the

loss of stiffness,

— a static displacement of the cylinder in the cross-flow direction increasing

with flow velocity and finally taking the form of a “buckling” type motion.

The ahove give support to the possibility of a static instability (divergence) in this
array.

On the other hand, static expetriments found fluid force coefficients favouring static
instability (0CL/0y > 0 and large) in the second and thitd rows. When these coefhi-
cients were introduced into a simple equation of motion, it was possible to verify the
second row static instability threshold measured in the dynamic experiments with a
deviation of only 5%. Such an agreement between dynamic, static and theoretical
results solidly verified the existence of static instability in this array Therefore the

present 1otated square array, with P/d = 2.12 is the only array so far, in which both
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multiple-flexible-cylinder, stiffness-controlled dynamic instability and static instabil-
ity exist with critical flow velocitics of the same order of magnitude. In fact, by
altering the mechanical properties (i.e. frequency and/or damping) of a three-flexible
cylinder configuration located in the second and third rows of the array it has been

possible to suppress dynamic instability and initiate static instability.
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Reference K a
Blevins et al. (13] 2.5 0.5
Gibert et al. [40] 2.7 0.34
Heilker and Vincent [41] 5.0 0.5
Chen and Jendrezjczyk [42] 2.43-6.03 { 0.20-1.08
Soper [43) |1.25178] 0.5
Grover and Weaver [44] 7.1 0.21
Tanaka and Takahara [45] 3.0 0.75

‘able 1.1: Empirical Values of the Constants in Equation (1.3)

Reference K ay as
| Tanaka & Takahara [45] - 0.33-0.5 | 0.2-0.5
Weaver & El-Kashlan [46] 4.6 0.29 0.21
Price & Paidoussis [11] 0.68-15.4 | 0.19-0.57 | 0.15-0.57
Grover & Weaver [44] - 0.5 < 0.5

Table 1.2: Empirical Values of the Constants in Equation (1.5)
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Cylinder { Cylinder
Type Material

Dimensionless Cylinder
Cylinder Mass (17 = m/pd?)

1 Steel

2 Aluminum

3 Drafting paper/epoxy
4 Drafting paper/epoxy

980 £ 7
490 £ 5
280 £+ 3
195 + 3

Table 3.1: Certain Characteristics of Flexible Cylinders Used.

Accelerometer Change Charge Amp
Model Sensitivity (pC/g) Model Capacitance

Endevco 2229C 3.196 27218 365
Endevco 2229C 3.207 27218 392
Endevco 2229C 3.260 27218 384
Endevco 2229C 2.785 27218 396
Endevco 2221D 17.2 27218 384
Endevco 2221D 17.7 27218 845 ]

Table 3.2: Charactetistics of Accelerometers Used.
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Iixperiment | Flexible

Reference | Cylinder | 25 | fu[Hz| | 6 U./fnd

Position
S-1 1 280 1 10 0.014 | stable for U./f,d < 83
S -2 3 280 | 10 0.014 | stable for U,/ f.d < 83
S-3 3 280 7 0.014 | stable for U./f.d < 118
S -4 3 195174 0.014 | stable for U./fod < 112

Table 4.1: Summary of the Dynamic Response of a Single Flexible Cylinder in Dif-
ferent Rows of the Array

Experiment | Flexible

Reference | Cylinder | % | fulHz]| 6 U./fnd
Position

T -1 1.3 280 | 10.0 0.014 | stable for U./f.d <80

T -2 4,5 280 | 10.0 0.014 | stable for U./f.d <17

T-3 2L, 2R! {280 7.0 0.014 | stable for U,/ f.d < 87

T -5 1, 2L 280 | 10.0 0 014 | stable for U./fad < 80

T -6 5 6L% |280]10.0 |0.014] stable for U./fod < 77

T -4 2L, 2R 1195 | 5.0 0.014 | stable for U./f.d < 165

T -7 4,6 280 { 10.0 0 014 | stable for U./f,d < 77

lable 4.2: Summary of the Dynamic Response of Two Flexible Cylinders for Ditferent
Positions in the Array. Notes: (1) This arrangement is stable in terms of dynamic
instability, but unstable in terms of static instability. (2) An extra row of cylinders
was added to the array in this experiment.
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F(H =] | FalHa] | Jalfa] | Jal=] | Jaltta] | Joli=] | el =] Taltiz) | Julfi+] ]
in-flow | - - - - lias Ja2et | 3o | - |56 |
Cylinder 1 ] I
cr-flow - - - 115 - 12 6! - - 156 ]
in-flow | - - - | s | 123 | e 128 | 156 |
Cylinder 2L
cr-flow - - 93 115 - 12 6! - -
] 4 = -
in-flow - - - - - 12 6! - - 155
Cylinder 2R
cr-flow - - 9.3 - - 12 6 - - | 156
in-flow - - - - 122 12 6! - - -
Cylinder 3 ]
cr-flow 57 68 93 - 123 12 7! - -

Table 4.3: Major Peaks in The In- and Cross-flow Acceleration Power Spectra of Four
Flexible Cylinders Located in the Three Upsticam Pows for U,/ fud = 57.5. Note:
(1) This peak, observed in all cylinders, is a periodicity .urresponding to Su = 0 022
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Experiment | Flexible

Reference Cylinder ;'f,,— falH?Z) b U/ fud
Position

A-l 2L, 2R,3 128070 0.014 | 2L = 2R = 105; 3 = 97

A -2 2L, 2R, 3 | 280 [ 10.0 | 0.014 | stable for U./fud < 79

A-3 21, 2R 3! | 280 | 7.00 0.200 | stable for U,/ fnd < 112

A -4 2L, 2R, 3 | 280 | 10.8 0.014 | stable for U./f,d < 73

Table 4.4: Summary of the Dynamic Response of Three Flexible Cylinders Positioned
in the Second and the Third Rows. Note: (7, .. static instability possibly occurred
in this experiment.

Experiment | Flexible
Reference | Cylinder ;’57 fxlHz] ) U./fod
Position
Z -1 1,2, 2R, 3 {280 ] 13.5 0.014 | stable for U./fad < 57
7 -2 I,2L, 2R, 3 | 280 | 13.0 0.014 | stable for U./f.d < 65
Z-3 1,2L 2R, 3 [ 280} 12.5 0.014 =2L =2R =653 = €3
7 -4 1,2L 2R, 3 | 280 | 10.0 0014{1 =2L=2R =62;3 =59
2 -5 2, 3L, 3R, 4 | 280 | 10.0 0.014 | 2 =52; 3L = 3R =53; 4 = 52
7, -6 3,4L, 4R, 5 | 280 | 10.0 | 0.014 | stable for U./fud < 83
Z -7 3,4L, 4R, 5 1280 | 7.0 0.014 | 3 =67, 4L = 74; 4R = 70; 5 = 82
7 -8 3, 4L, 4R, 5' | 280 | 8.25 0.01413 =70;4R = 74;
7 -9 4, 5L, 5R, 62| 280 | 7.00 | 0.014 | stable for U./fod < 110

Table 1.5: Summary of the Dynamic Response of Four Flexible Cylinders Positioned
In Different Rows of the Array [m = 280,6 = 0.014]. Notes: (1) cylinders 4L and 5
did not go unstable. (2) An extrarow of cylinders was +~.dded to the array to eliminate
downstream effects.
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Experiment | Flexible
Reference Cylinder - falHz) 6 Ue/ fod
Position o
Z-10 1,2L, 2R, 3 | 195} 13.5 00141 =2L =053;2R =3 = 51
Z-11 t, 2L, 2R, 3 | 195 | 6.75 0.014 ] 1 = 2L =2R = 33;3 = 52
Z-1 1,21, 2R, 3 ] 280} 13.5 0.014 | stable for U./f.d < 57
7 -2 1,2L, 2R, 3 {280 | 13.0 | 0.014 | stable for U,/ f.d < 65
Z-3 1,21, 2R, 3 {280 | 12,5 0.014 | 1 = 2L ==2R =653 == 63
Z -4 1, 2L, 2R, 3 | 280 | 10.0 0014} 1 =2L =2R =623 =239
Z -12 1, 2L, 2R, 3 {490 | 5.00 0014 {1 =177;2L =90; 2R = 79; 3 = 87
7 -13 1,20, 2R, 3 | 490 | 7.00 [ 0.014 {1 =93: 921, = 2R =3 == 91
Z-14 1, 2L, 2R, 3 {980 | 4.88 0014 | stable for U,/ f,d < 165
Z-15 1, 2L, 2R, 3! | 980 | 3.40 00141 =2L=2R=3=1236 3

Table 4.6: The Effect of Dimensionless Cylinder Mass on the Dynamic Response of
Four Flexible Cylinders Positioned in the First Thice Rows of the Array [6 = 0.014].
Note: (1) In this experiment it is not clear if instability has occurred or if 1t is just

impending.
Experiment | Flexible T
Reference | Cylinder 2| falHZ]| 6 Uc/ fnd
Position L |

Z -4 1,2L, 2R, 3 {280 | 10.0 0014 |1 =2L =2R =62;3 =259

Z-16 1,2L, 2R, 3 | 280 | 10.0 0.10 |1 =2L =2R = 67;3 = 64

Z-17 1, 2L, 2R, 3! [ 280 { 10.0 020 | 2L =2R =72;3 =69

Z-18 1, 2L, 2R, 3% | 280 | 10.0 0.45 | stable for U,/ f.d <76

Z-1 1 2L 2R, 3 [ 280 13.5 0 014 | stable for U./f.d <57

Z -2 1, 2L, 2R, 3 {280 | 13.0 0 014 | stable for U./fud < 65

Z -3 1,2L, 2R, 3 [ 280 | 12.5 001411 = )L = 2R = 65;3 = 63

Z-12 1, 2L, 2R, 3 | 490 | 5.00 0014 |1 =77;2L =90, 2R =79, 3 =87
Z-13 1.2L, 2R, 3 1490 { 700 001411 = !)3, 20, = 2R =3 = Ul

Z-19 1,2L, 2R, 3 [ 490 | 700 0.24 |1 = 2L = 2R =3 =108

Z -20 1,2L, 2R, 3% [490 | 7.00 | 0.07 |1 = 2L = 2R = 3 =105

Table 4.7: T}

he Effect of Initial Cylinder Damping on the Dynamic Response of Four

Flexible Cylinders Positioned in the First Three Rows of the Arvay [rn = 280 and 190},
Notes: (1) Cylinder 1 was not instrumented in this experimuent, (2) a static mstablity
possibly occurred in these experiments; (3) no detailed measuiements made in this
experiment, U, based on visual observations only.
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Ny f| Y fa| fs| fo| [
[Hz] | [Hz] | [Hz] | [Hz] | [Hz] | [Hz] | [Hz]
in-flow - - -16.87 - - _
Cylinder 1
cr-flow | 6.03 -16.75 - - - -
in-flow - - -1 6.87 - - -
U./snd = 18 | Cylinder 2L
cr-flow -|6.44 - ~ - - -
in-flow - 16.44 -16.87| 7.5 - -
Cylinder 2R
cr-flow - -16.87 - - _
in-flow - - | 6.87 - - 19.56
Cylinder 3
cr-flow - 16.44 - - -19.31 -
h fa fs| fa| fs| fo| [fr
[Hz] | [Hz]| [Hz] | [Hz] | [Hz] | [Hz] | [Hz]
in-flow -111.81 - - - _ _
Cylinder 1
cr-flow ~111.81 - - - - -
in-flow ~111.81 - - - - _

Uc/jnd=39 Cy]inder 2L
cr-flow| 591 11.81 - - - _ -

in-flow| 5.9 11.81 | 17.72 - - - -

Cylinder 2R
cr-flow| 5.9 11.81 - - _ -

in-flow| 59 11.81} 17.72 - - - -

Cylinder 3

cr-flow| 5.9 11.81 | 17.72 - - - -

Table 4.8: Major Peaks in the In~ and Cross-Flow Acceleration Power Spectra of a
-36% Detuned Four Flexible Cylinder Configuration Located in The Three Upstream
Rows, m = 280,68 = 0.014, f; = fop = for = 6.375 Hz and f; = 10 Hz.
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h f Ja J4 fs fe I
[Hz] | [Hz] | [Hz]| [Mz] | [He]| [He]| [Hz)
in-flow - - - -1 13.56 - -
Cylinder 1
cr-flow - - - -113.56 - -
in-flow - - - - -1 13.75 -
Uc/snd = 33 | Cylinder 2L
cr-flow - -1 12.91 - - -
in-flow - - - - - -1 13.84
Cylinder 2R
cr-flow - - -113.40 - - -
in-flow | 9.40 { 10.47 - - - - -
Cylinder 3
cr-flow | 9.40 - - - - - -
h J§! f Ja fs fe| S Js fo
(Hz) | [Hz} | [Bz] | [Hz)| [Hz] [Pef | [Hz] | [He) | [He] |
n-flow ~ - - -1 1280 - 1145 e
Cylinder 1
cr-flow - - - - - - -
T
in-flow - - - - -1 1300 o AR
U.jgnd = 65 | Cylinder 2L i
cr-flow - -1 1160 - - 1300 1 B ]
in-flow - - - i AU R J.-"LO‘
Cylhinder 2R - - W
cr-flow - - - 11260 ] L 1,17_ i,(L
in-flow 725 - -lagsofisoo| -
Cylinder 3 -
cr-flow | 587 {725 1160 | 1]

Table 4.9: Major Pcaks in the In- and Cross-Flow Acceleration Power Spectra of a
+35% Detuned Four Flexible Cylinder Configuration Located in The Three Upstream
Rows, m = 280,68 = 0.014, f; = fop = for, = 13.5 Hz and f3:10 Hz.
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Exper | fy fao | forn | fa | (fi=faw | Ure | Uare | Uzre | Use | Use/ | Useqden)/
| Rel | (M2) | (Mz) | (Hz) | (Hz) | = fog)/Ja | (m/s) | (m/s) | (m/s) | (m/s) | fad Use
D-1 13.5 13.5 135 | 10.00 135 na. n.a. n.a. 1765 | 695 1.18
D-2 135 135 13.5 { 10.00 1.39 17.80.({ 17.80 ( 1780 | 17.80 { 70.0 119
D-3 123711237 1237 ] 1000 1237 n a. n.a. n a. 16.90 | 66 50 1.13
D-4 1144 ) 1144 ) 1144 1000 1.444 na. na na 1625 | 640 108
D-5 1080 ] 10.80 ] 1080 | 1000 1080 na. na n a. 1565 | 615 104
D-6 1000 { 1000 ] 10.00 | 10.00 1.00 na na. na | 1500 ) 590 1.00
D-7 900 { 900 { 900 | 10.00 0.90 n.a. n.a. n.a. 12.35 | 485 0.82
D-8 812 | 812 | 812 | 1000 0.812 n.a. n a. na. | 1015 400 0.68
D-9 637 | 637 | 637 | 10.00 0.637 n.a. n.a. n.a. 980 | 385 0.65
D-10 | 600 ) 600 | 600 | 1000 0.600 990 | 950 | 875 | 840 | 330 0.56

Table 4.10: Initial Natural Frequency (fi), Natural Frequency Ratio (fl/f3) Critical

Velocity (U,.) and Non-dimensional Critical Velocity of Cylinder 3 —3‘-(——1 for Various
Detuning Experiments with Four Flexible Cylinders Located in The Three Upstream
Rows of the Array (1, 2L, 2R and 3), m = 280,6 = 0.014. Note: (1) n.a. = not

available (not measured).

Experiment | fi | fuo | far | f3 | Ui | Vare | Uare | Us,
Reference | (Hz) | (Hz) | (Hz) | (Hz) | (m/s) | (m/s) | (m/s) | (m/s)
D-11 10.00 | 10.00 | 10.00 | 10.00 | 15.8 158 | 15.8 | 15.80
D-12 8.00 | 8.00 | 800 | 8.00 | 11.5 { 11.5 | 11.5 | 115
D-13 12.50 | 12.50 | 12.50 | 12.50 | 20.4 204 | 204 | 204
D-14 1000 | 12.50 | 12.50 | 10.00 | 17.6 16.1 15.0 | 17.90
D-15 8.00 | 1250 | 12.50 | 8.00 | 17.1 16.5 | 17.5 | 14.00
D-16 1250 | 800 | 8.00 | 12.50 | 18.0 18.7 | 18.7 | 18.5
D-17 13.00 | 8.530 | 8.50 | 13.00 | 16.0 16.0 | 16.0 | 16.0

Table 4.11: Imtial Natural Frequency (f1) and Critical Flow Velocity (U1) for Various
Detuning Experiments With Four Flexible Cylinders Located in the Three Upstream
Rows of the Array (1, 2L, 2R and 3), m = 280,6 = 0.014.
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Exper. | Flexible )
Ref. Cylinder fx fz f3 f4 U]Cf U'),cf Uac,- Uqc,-

Position (Hz) | (Hz) | (Hz) | (Hz) | (m/s) | (m/s) | (m/s) | (m/s)
D-17 1,2L, 2R, 3| 8.00 ] 9.50 {11.00 | 12.50 | 18.60 | 18.00 | 14.00 | 16.50
D-18 1, 2L, 2R, 3 [ 12,50 | 11.00 { 9.50 | 8.00| 13.20 { 13.00 | 10.60 | 10.40
D-20 | 2, 3L, 3R, 4 {10.00 | 10.00 | 10.00 | 10.00 | 13.45 | 13.45 | 13.45| 13.45
D-21 2,3L,3R, 4| 850 13.00|13.00] 850 1850 | 15.50 | 20.72 | 20.72
D-22 12 3L,3R,4| 850 | 850 | 8.50]13.50 | 13.50 | 15.20 | 14.20 | 15.20
D-23 |3, 4L, 4R, 5 | 10.00 | 10.00 | 10.00 | 10.00 | stbl | stbl] stbl] stbl]
D-24 | 3,4L,4R, 5| 7.00 | 10.00 | 10.00 | 10.00 | 12.20 | 12.45 | 12.45 | 13.20
D-25 3,4L, 4R, 5| 8.15| 8.15| 8.15]10.00 | 16.50 | 18.05 | 18.30 | 17.50
D-26 |3,4L,4R, 5] 8.25| 825| 8.25| 8.25]| 14.65| 15.50 77 717
D-27 | 3,4L,4R, 5 |13.00 | 13.00 { 13.00 | 800 | stbl| stbl| sthl| stbl
D-28 |3,4L,4R,5| 7.00| 7.00| 7.00| 7.00) 11.90 | 12.35| 13.15 | 14.50
D-29 |3,4L,4R,5[13.00 | 7.00| 7.00| 7.00| 17.95] 19.00 | 19.00 | stbl ]

Table 4.12: Further Detuning Experiments With Four Flexible Cylinders (i =
280, § =0.014)
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Cylinder
Position | a Jo}
(Row)

1 2.1 0
2 300 | -0.46
3 400 | -0.55
4 130 | -0.46
) 90 {-0.45
7 38 {-0.38

Table 6.1: The Values of Constants in the Equation Cp = aRe? for a Cylinder
Located in the Different Rows of the Array

Cylinder
Position | dCL/8yz=0 | Cp/dZg=0
(Row)

1 ~0 0.40

2 2.90 0.43

3 2.75 ~ 0

4 1.35 0.45

5 1.15 0.41

7 1.04 0.69

Table 6.2: Variation of the Lift and Drag Coeflicients With Displacement at a Flow
Velocity of 16.63 m/s.
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Non-dimensional

Critical Velocity  (U)

m Case A | Case B | Case C
50 380 3.50 4.30
280 4.60 4.10 5.60

1500 6.80 6.00 9.00

7500 12.40 | 10.40 | 16.75
75000 34.00 | 28.00 | 47.50
750000 { 103.00 | 84.00 | 145.00

Table 8.1: The Effect of Varying the fluid Force Coefficients on the Non-dimensional
Critical Velocity of the Array. Case A is for the Coeflicients Given in Appendix 1.

Case B is for the Same Coeflicients Increased by 50% and Case C is for the Same
Coefficients Decreased by 50% (& = 0.014).

Non-dimensional

Critical Velocity  (0)
) Case A | Case B | Case C
0.0014 5.70 5.00 7.20
0.014 12.40 10.40 16.75
0.14 3450 | 28.50 | 47.00

Table 8.2: The Effect of Varying the Fluid Force Coefficients on the Non-dimensional
Critical Velocity of the Array. Case A is for the Cocfficients Given in Appendix 1.

Case B is for the Same Coeficients Increased by 50% and Case C is for the Same
Coeflicients Decreased by 50% (m = 7500).
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Figure 2.1: Schematic of the wind tunnel
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Figure 2.2. The rigid portion of the array (the upper plate is removed for a better

view)
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Figure 3.1: The vibration insert (The rigid portion of the array has been removed in
this instance for a better view)
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Figure 3.2: Upper portion of the vibration insert.
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Figure 33 Lower portion of the vibration insert.
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Figure 3.5. Platform holding oil pots.
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Figure 4.2: Typical vibrational acceleration power spectra for a single flexible cylinder
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Hz and 6 = 0.014).
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Figure £.20° Variation of the in-flow (a) and cross-flow vibration power spectra with
How velocity for cylinder 6 (two-flexible cylinders - 4 and 6 -, 7 = 230. f, =

lzand 6§ = 0.014).
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Figure 4.40: In-flow directional rms acceleration of cylinders 3, 4R 4L and 5 at their
major fluidelastic frequencies as a function of the non-dimensional flow velocity (four
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fs = fn =10 Hz and 6 = 0.014).
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LIFT COEFFICIENT

3§80 T oz oo o Toso

e J
P
Z
-
(3] (®)
2 o o
e OOE 0
9 of
-
W
(]
-4
P
4
w
S o)
w )
w O B O
8 O O
o o
«
@
(@]
-
r4
- o
= )
r OOH 0
S O‘P
(L]
x
S 0.5 " To.z: 0.00 0.25 0.50

POSITION (d)

Figure 6.48: Changes in the fluid force coefficients of a third row cylinder due to the
displacement of cylinder 4R (A : Uy, =83 m/s, O0: U, = 166 m/sand «: U, =83
m/s normalised).

~ Wy




’

272

LIFT COEFFICIENTY

LIFT COEFFICIENT

DRAG COEFFICIENT

ORAG COEFFICIENT

i A P’y A J A A -

o’ P S S red PO S Y
-3.50 -0.25 0.00 0.25 0.50

POSITION (d)

Figure 6.19: Changes in the fluid force coeflicicnts of a third row cylinder due to the
displacement of cylinder 4L (A : U = 8.3 m/s, O : Uy = 16.6 m/s and ¢ : Uy, = 8.3
m/s normalised).




DRAG COEFFICIENT

DRAG COEFFICIENT

[
2
w
-t
O
[,
W
W
w 3
=] ]
U -
h -
W ]
3 -~ el A redien A 1 U VI S § i e n ' J
—5. 50 -0.25 0.00 0.25 0.50
L 2y
: |
3 1p : O
w t : O 0
g OW O B O
O 1 O(PO
- =iF 3
5 |
_' —— FA A oA, e ! - S { e ) N S S A - A A A A b
-5.50 ~0.25 0.00 0.25 0.50

POSITION (d)

Figute 6.50: Changes in the fluid force coefficients of a thitd 1ow cylinder dae to the
displacement of cylinder § (A : U =83 m/s, 0 : Uy, = 16 6 m/s and < 1 1/, = 8.3
m/s normalised).




PR

»

274

ORAG COEFFICIENT

DRAG COEFFICIENT

LIFT COEFFICIENT

¢
0 4000000000000~ 0-0—0~0—80 o _H
' o

e
e

b r
—-1» -
b L

r

E

LIFT COEFFICIENT

A A

T R T 0.00  _0.25  0.50

POSITION (d)

Figure 6 51: Changes in the fluid force coefficients of fourth (0), fifth (A) and seventh
(¢) row cylinders due to the displacement of an upstream cylinder at U, = 16.6 m/s.




S 2.5¢ ~ ~— ———r——r— — )
s ]
o o
o 2.0 ]
(] : 4
u L
b 1.5f :
4 h
8 : 1
4
© 1.0F ]
& <
o
O.SF
-0.5
;2.5:. + — —r—r—r—v——r ]
us 4
ot [ b
v 2.0F 1
ot ]
Y ’ 1
w 1.5F ]
o : ]
© [ 000090000 o o @ o o o ]
© 1.0p 422112 O o
a ]
Q o " —d 1 PP | " )
-0.50 -0.25 0.00 0.25 0.50
2 Y B SR g8 T T v v

LIFT COEFFICIENT
o

Ao s

~0.25 0.00

Al

YT T TTY al

R T 1 A, P

50

5.

20.25 0.00

POSITION (d)

LIFT COEFFICIENT
o

Figure 6.52: Changes in the fluid force coefficients of fourth (B), fifth (A) and seventh
(¢) row cylindes due to the displacementof an upsticam cylindet at U, = 16.G /s,




- 2.5 Y v T~ ~—rT Lamnen & T v
z t ]
I~ : .
Q 2.0{ . o)
uw s : o O
G 1.5F ] O B O
o ] 0 (p
0 1.0} ] o)
L3 r |
a [ 4
a 0 AU L P T S S WU WS VI W\

-0.50 -0.25 0.00 0.25 .50
. 2.5 e q
z «
w [ ]
o 2.0} ] 0
w o f ] 0 0
& 1.5¢ 1 O B O
o 4 ] o ©o-
© | o A-a-A-0-000 80000003 , ] O
[0 1.0' P~ iy G Gy i S W Sy Sy Sy S a4 >
« i 1
a S ]
(=) og’ N I T .kt aa Lo a2 ]

-0.50 -0.25 0.00 0.25 .50

LIFT COEFFICIENT
o

.50

b
-1E.
e
>

P

e A

LIFT COEFFICIENT
(=
o
o
(PH
o

28,50

-0.25

0.00

POSITION (d)

Figuie 6 53: Changes in the fluid force coefficients of fourth (O), fifth (A) and seventh
(¢) row cylinders due to the displacement of a downstrcam cylinder at U, = 16.6

m/s




1o
7

-1

= 2 ~— —r— v -

2z ) '

W

(]

8]

[

w

w

w

0

(8]

-

u

(]

-

-

Z

w

(]

(8]

-

w

u.

Ww

(=)

Q

(&)

«

a

Q

.

4

w

(]

Q

Lol

w

w

w X

o F 4

(8]

(L] &Wo—i

a t :

@] O 5* U SR SN SULEY NENLY SN SN U VU SIS S Uy S S A ot ]
-0.50 -0.25 0.00 0.25 0.50

POSITION (d)

Figuie 6.31. The effect induced by the displacement of suttounding cylinders upon
the fluid force coefficients of a thivd (@) and fifth (o) tow cyhnder at {7, - 16 6 m /s




[ akate §

DRAG COEFFICIENT

DRAG COEFFICIENT

0_5 n PO G G Y SRy PSS W S S
-0.50 -0.25 0.00 0.25
2-5"" T Y T

.50

2.
1. -4?4?€r£***£*{}{¥{}{}€

]
1. 00—
0. PP SN G U T U U Y W T S ]
—g.SO -0 25 0.00 0.2%5 .50

POSITION (d)

278

Figure 6.55 The effect induced by the displacement of surrounding cylinders upon
the fluid force coefficients of a third (O ) and fifth (o) row cylinder at U, = 16.6 m/s.
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Figure 7.1: (a) Schematic of four flexible cylinders; (b) the resultant velocity vector
for cylinder 1
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Figure 7.2 The apparent displacements treproduced from ref. [80})
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Figute 8.1: Variation of the non-dimensional critical flow velocity with dimensionless
mass for a fout-flexible cylinder configuiation in different positions of the array.
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APPENDIX 1

FLUID FORCE COEFFICIENTS AND THEIR VARIATION WITH
DISPLACEMENT

I'or a four flexible cylinder configuration in positions 1, 2R, 2L and 3.

Cp, = 1.95

JCp, _ dCp, _ dCp, _ dCp, _

~—0}T = 0.43 9z, -0.35 2a - 0.35 B —0.20

a0, oCy, aCyL aCy

= 0.10 L =0.00 L =0.00 L = (.00

dzy Iy dy2 dya
Cp, = 2.50

dCp, dCp, acC Cp, dCp, dCp,

—= = . = 0.40 — = ~0. = 0. = —-0.30
iz, 0.00 9z, = 0. 82:4 0.50 I 0.30 s 0

acCy aCy, aCy ocy, aCu,

2 = —0.15 2 =0.00 2 =-1.30 2 =290 = -0.20

Jz, Or, dn dy2 dy4
Cp, = 2.50

dCp, B aCp, _ dCp, _ dCp, 0Cp, Ca
0z = 0.00 o 0.40 5. 0.50 - £ = -0.30 Byn - 0.30

JC', aCy, aCy, aCy, aCr,

—=2 =0.15 = 0.0 =-1.3 = 2 = —0.20
day dxy 0 ayl 0 0ys3 %0 a3/4 0
Cp, = 1.35

()CD JCp JCp aCp.

—2 =0.35 1 =03 L =0. 1= —0.
()M iz, 0 5z, 0.00 s 60
acy oCy, aCy oCr

L= 010 = = t = 1. L =2,
0ts 0 o 1.45 m 1.90 57 2.75

For a four-flexible cylinder configuration in positions 2, 3R, 3L, 4.

= -0.30

aCp aCp
- = —0.50 -~ =0.35 .
dr 8-732 Jz4 ayz




acL] aCL 6CL BCL
— =000 —% =290 —=2 = -0.20 — = 0.00
Oz, Oy Oya dy4
sz = 1.35
dCp, JdCp, dCp, JdCp, oCp
= (. = (. =-0.4 1= —-0.60 —2 =
5, 0.30 5z, 0.00 B4 0.45 i 0.60 i 0.10
aCr, aCy, _ aCl, _ C'?CL, _ aCy, ‘_
92, = 0.10 Bre = 0.00 5 1.90 ()yz = 2.75 o ~0.40
Cp, = 1.35
dCp, dCp aCp, JdCp, JCn
= . 3 = U. = - = V. 0 2 = —\)
5, 0.30 7 0.00 5z 0.45 B9, 0.6 " 0.10
oCL ac, aCy, aCy, aCy,

2 = 0.10 3 =000 —2=-1.90 /2 =275 /=2 = (.|
52, 0 5o, 0.0 o 90 s 75 e ). 10
Cp, = 1.05

dCp dCp dCp dCp

t =02 * = L= —0.5
Bz, 0.20 —= 61’2 =0.10 e 0.50 Tl 0.50

aCr, aCy, aCy acy,
— = 0.05 —=% = 0.20 L= ~0.90 —2 =1.35
0z, on 0y, dy4 0

For a four-flexible cylinder configuration in positions 3, 4R, 41, and 5

Cp, =135
BCD 0CD 6CD aCD
> =0.00 -~ = —0.45 L =0.10 > =0.00
0z, 0132 014 a!/2
aCy, aCy aCyL aCy,
= - 2 ! = 4. ! = —U. ! = l
02 0.20 0 2.75 B2 0.60 " 0.10
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001)2 8002 (f')CD2 OCD? aC v 1,
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-
% 9C, _ aCry _ 6CLy _ _ , 9CL, _ 1.35 0C1, = —0.2
7z, 0.00 Bz, 0.00 o 0.90 3, 3 a7, 0.20
Cp, =0.95
JdCp, _ dCp, _ dCp, _ dCp, _ o
52 = 0.15 92, = 0.20 Froake 0.69 T0n =0.25
aCy, acCy, aCL oCy,
¢ =020 S = 010 22 = 050 =1.10
Jdz, Jy, 33/2 6y4

For a four-flexible cylinder configuration in positions5; 6R,6L and 7.

Cp, = 0.95
aCp, .. 9Cp, _ aCp, _ ... 9Cp, _
9z, 0.69 92, —0.40 9z, 0.15 By 0.00
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APPENDIX 2

STATIC INSTABILITY

For the problem at hand, the overall (in-flow) fluidelastic stiffness, Ay, of the

system can be expressed as

kr =k, — ky (2.1)

where k; = structural restoring stiffness and k; = total fluid stiffness. Those stilfness

terms can be expressed by

kT = w2mT1

k, = wzmT, (' .

(8™
t~
N’

and

ac
. 2
ky = pU df(dz)

where w, = initial cyclical frequency of the cylinder, w = overall in-flow cyclical
fluidelastic {requency of the cylinder, my = total mass of the cylinder, Uy = upstream
flow velocity, d = diameter of the cylinder, p = density of the flow and JC/[dz ==
variation of fluid force coeflicient with displacement. Substituting equation (2.2) into

(2.1) and rearranging gives

w? pUZ dt (OC
9z |

w? " 2mrw?

By taking U = U, /w,d ,2 = z/d and m = myp/pd*l equation (23) can be

2 v
-w_=1_-_(ac) (2 4)

simplified further as

w2 Jz

At static instability, the overall in-flow cyclical frequency of the cylinder, w, will

become zero. Therefore from equation (2.4), the critical non-dimensional flow veloaty




& for static instability can be found to be

_ 1
2m

Uer = [m] . (2.5)

'ﬁkﬂé{‘
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APPENDIX 3

THE EFFECT OF REYNOLDS NUMBER UPON THE DRAG AND
LIFT COEFFICIENTS

In section 6.2 the variation of the drag coefficient versus the Reynolds number
for a non-displaced cylinder positioned in different rows of the array was presented.
A typical result, for a cylinder positioned in the third row, is reproduced below. To
obtain the variation of Cp with flow velocity in a dimensionless format the upstream
velocity is non-dimensionalised with respect to a flow velocity of 16.6 m/s denoted
by Usy. It should be recalled that the major portion of the force measurements have
been performed at this velocity. Therefore non-dimensionalisation with respect to

this velocity is reasonable.

k . — S S

sl =1

[n a fairly broad range around U = Uy /Uy = 1, if the value of Cpy at U =1 is

taken to be Cp,,, then an equation of the form

can be used to represent the variation of the drag coefficient with flow velocity.
In section 7.2 it has been found that U, = Uy — 2. Based on this an incremental

change in velocity can be defined as

AU =Us — &= Usy .
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Upon non-dimensionalisation this incremental velocity will be

Uso T

-1 =

AU:Z—; Uooj .

Thetefore the Reynolds number dependent term of the drag coeflicient becomes,

AU =5 ! 50

-~ 9Co, [Uw . & ] 8Co,
B Uooj Uoo] .
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APPENDIX 4

LINEARISED FLUID FORCE COEFFICIENTS

The lincarised lift and drag coeflicients of a four flexible cylinder configuration are

[ acy, acC
CLx = gGg?(l + ’\TQ) af ]IQ— [g( gz(l + /\TZ) ()gL }

+ oCy, 2T'A\ 0Cy, + 2LN (0Cy, . oC, z
9 "om Us ) 0& © Us \om  op )|V
F aCLl BCL‘ 0014
+ -9092 o ]yz + [9692 o Y3+ 9694—0‘7;‘— Y4
~ . Uoo acDm aCDl
(/D, = CDO1 + [_0::[- -1- E;:;] a0 + [_(/oo 3¢,

acC aCp,
+ [9092(1-*-72/\) aé‘j dﬁ’j] :

9o | 4 4 Lgig, 260 n |,
¢, 4 9G gz an Y2 — 149692 s /R

’] T+ [90112(1 + 712A)

+ {9094(1 + 74A)

oC aCy,
CL [googl(l + /\T']) ()51; ] [grg;(l + /\T;) () ]

[ (m) 9Cy; ( u) ac,,}
+ (g1 | 77 + g1 |1 —
I

Uoo 05 1

n BCL2 + -L_,\z aCL2 L T'A . (}(, }(
995 799 \Us) am T\ Usg ue. I e |

Joo rd | 9Cp,, JC 91,
CDz = CDoz + 'L— -1- _'7:__ _a____D_o__ + googl(l + A7-1) U?} et [j( {_ J)“] Ly
29 &

9Cp, TA\ 9Cp, LAY 9C,
[t (2) s - 2) 5

i —
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@)% () o]
96 Us) 0t 95\ Us a4 O I .

i acy, ac
Cr, = Lymgx(l + A1) 5, }xl + [9094(1 + A1) (){L ]ﬂf

N r . L)\ acy, N TA (901,3
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APPENDIX 5

FLUID STIFFNESS MATRICES

The eclements of the fluid stiffness matrix of a four flexible cylinder configuration
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APPENDIX 6

FLUID DAMPING MATRICES

The elements of the fluid damping matrix of a four flexible cylinder configuration

are

all other terms for ¢ # j

Initial numerical solutions revealed that considering the variation of the diag co-
efficient with flow velocity, 9Cp/8U, has little or no impact upon the aitical velocity
in this array. So for most results presented in Chapter 8 the dC,/0U terms are

neglected. Therefore the elements of the fluid-damping matiix are expiressed, in a




simplified and non-dimensional form, as

By, = -2Cp,,
By = - Cp,,
B33 = —2Cp,,
By = - Cp,

Bss = —2Cp,,
Bgs = — Cpy,
Brr = —2Cny,
Bgg = — Cp,,
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