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1. INTRODUCTION

Rain and snow arse made out of excess watsr vapour in the
atmosphere, but not directly. When conditions are such that the
atmosphere can no longer hold 2ll the water it contains as water
vapour, clouds appear first, and precipitation mey or may not fall

out of these clouds.

Clouds‘can remain relatively unchanged for several hours,
they may then evaporate without precipitating at all, or precipi-
tation, in small or large quantit ies, may form after a shorter or
longer tim . An important problem in meteorology, then, 1is to
find o precipitation mechanism to account for the fact that clouds

do not automatically turn into precipitstion, but require

favourable circumstances for this.

Bergeron (1933) proposed a theory which, with modifications
by Findelsen, 1s now generally accepted. He suggested that the
stabillty of clouds as colloids is due to the small size of. the
particles, which cannot grow at one anothers' expense at a sufficient
rate to producs precipitation of their own sccord. We shall take

up this question of colloidal stability again later.

In Bergeron's theory the cloud comes into a region where



the ambient temperature is low enough to freecze some of the
water droplets. With tte help of freezing nuclei this takes
place at about -12C. The region between tte dropdets is saturated

by the supercooled water, so that the ice crystals grow rapidly

at the expenéé of the water droplets, and fall through the cloud
as snow. If the O C isotherm lies above the ground, the snow

melts there and reaches the ground as rain.

Recent experimental work has confirmed this model in frontal
rein where moderate rainfalls continue for several: hours. Radar
observations of this type of precipitation have been correlated
with meteorological soundings by Austin and Bemis (1950) in the
United States, and with aircraft observations by Bowen (1951) in
Lustralia and by R.F. Jones (1951) in England. The characteristic

"bright band" seen on rader displays is associated with the

melting of the snow.

We tuwn now to showers, which consist of localised rainfall

characterised by vertical develomment. If the ice process were
responsible for these also, they would always have to extend at

least above the O C isotherm. Experiments on the freezing of
snmell waeter droms show that even with the most effecetive nuclsi
the drops do not freeze until cooled to about -12C. This indicates

that ¢louds which do not penetrate the =12C isotherm would contain



no ice pasrticles, thouch exceptions may be found in two tyves
of situation. Dessens (1950) sampled clouds at the summit of

8 mountein and found ice particles in 50% of clouds examined
between 0C and -12C (and 100% of clouds colder than -12C);

he suggested that this result could be due to the proximity

of fallen snow on the ground. Dennis (1953), in a study of
redar records of showers, has found evidence that some showers
whose tops were between -3C and =-12C were the result of seeding

by snow from higher levels.

There are situations, however, in which it avnears to be
impossible to account for observed precipitation by the Berseron
process, namely, those in which rain or drizzle is observed to
fall from clouds which lie entirely below the 0C isotherm,

Yason and Howorth (1952) report many cases of drizzle falling

from stratiform clouds whose upper surface is warmer then 0,
E.J. Smith (1951) described thres flights in which heavy rain

was observed falling from non-freezing clouds.*

Besides the observetions of precipitating clouds warmer
than OC in which the BRergeron process 1is Impossible, there are
meny cases of precipitating clouds warmer than =12C in which
the process seems unlikely, and these serve as additional evidence

that some other process 1s at work. (Clouds warmer than =120

are conveniently called "warm").

* In troplical regions, moderate or heavy reain often fells

%rgmoglouds warmer then OC. See Hunt (1949) and Virso
1950).



Arenberg (1939) discussed the action of turbulence in
caus ing water droplets to combine, but could not reach a
defénite conclusion. He did not discuss the conditions under
which droplets could collide. Gabilly (1949) went further but
confined hils discussion to sinusoidal motlon of the air, rather
than true turbulence, which is a random motion. Mason (1952)
1ntroduced turbulence to prolong the path travellsd by a droplet

through a cloud to account for observed drizzle. In Best's (1952)
discussion of condensation onto cloud droplets, turbulence served

to transport the droplets to and from the centre of the cloud.

In this thesis it will appear that turbulencse not only
brings droplets together, but ensures sufficient relative

velocity for collisions to take place.
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2. CLOUDS.

In discuss ing the conwersion of cloud into rain, we shall,
need to know the initial condition of the cloud, in particular,
the size sand number of the water droplets in the cloud. Direct
measurements of these quantitles have been mede from aircraft,
and described by Diem (1942, 1948) and by aufm Kempe and
Weickmann (1952). The droplets are caught in a £ilm of oil and
examined under a microscope. This method falls to detect droplets

Bess than 2 of 5 microns in radius, but it is not completely

certein that this 1s due to the measurements. The method appesars

to be reliable far 2all droplets larger than this.

Thelr results show that most types of cloud have J - shaped
distributions, in which although most of the droplets have radii
less than 20 microns, a small but significant number of droplets
have radii in the order of 100 microns. Thus most clouds must
be regerded as ones in which some precipitation process has

already started, so that rain or drizzle will soon fall (though

it my evaporate before reaching the ground).

However, clouds which aufm Kampe and Weickmeann classify
as Cumulus Humilis o es Cumulus, and Diem as Schénwetter
Cumulus, are free from these larger droplets. We shall call
these Fair-weather Cumulus, and will teke them as our starting
point. The drop size spectra of a number of these ¢ louds were

replotted on a logarithmico - normel chart (as described by
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Kottler (1950, 1951, 1952)) and gave nesrly straight lines,
showing that the distributions are spproximately log-normal.
The medisrn radlil veried from 6.4 to 7.2 microns and the standard

geometric deviation @, from 1.2 to 1.7,

It appeared t hat ralr-weather Cumulus clouds could bve

remwesented for computation by the idealised distribution:

hv.o(r :7):_‘086)([’{"22((‘0‘310 %)2} dv (2.1.)

where w,dv is the number of drops per cubic metre whose radii

lie between v and vr+dv microns.

This 1s a log-normal distribution with median radius
7 microns and standerd geometric devietion gy > [.4. It is note-
worthy thet Palmer (1949) found the distribution of rain-drops and

snowflake sizes could als o be fitted by a logenormal curve, and

that the values of Oy he obtaired were close to l.4.

The idealised distribution of equation (2.1.) is plotted
in figure 2.1. It 1is normalised so that at the median radius of

7 microns it conteins 108 drops per cubic metre per micron redius

interval, This gives 1t 6.08x 10° drops per cubic metre altogether.

The Important characteristic of the ariginal data for these
Feilr-weather Cumulus cl cuds, which is well reproduced in the
idealised curve, is the scarcity of drops of radii grmeter than

16 microns. 1In contrast, Cumulo-Nimbus distributions are nmuch
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wider and some are apparently made up of two log-normal

distributions with different median radii.

Cumulus ¢ louds differ from layer clouds in having
localised updrafts. A freshly-farmed cumulus will have just a
single central upward current of air with a veloclity of a few
metres per second. This updreft is maintained by the release of

thermal energy by the cordensing water vapowr, and is prevented

from sccelereting indefinitely by entrainment of outside air,
which makes the flow turbulent. Bowen (1950) has pointed out

the importence of the updreft 1n prolonging the time that a
roaindrop spends iIn the cloud in the later stages of growth, and
in the following sections we shall discuss the action of turbulence

in bringing sbout the earlier stages of growth.
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3. MOTION AND COLLISION OF DROES

3.1. dMotion of droplets in ailr.

A sphere radlus r, density PS’ and ma.ss m moves with
constant velocity v, through a fluid.
The drag force
D=mvigev’ G, (3.1.)
where Cb is the drag coefficient and is a functlon of the
Reynolds number
R = 2rvepfy. (3.2)
Here e is the density and " the viscosity of the air.
For values of R<«&[ the relation betwsen Co and R simplifies to
Cp = 24(R, (3.3)
giving Stokes' Law '
D = 61\'1‘17 v, . (3:4)
Stokes' Law is obeyed sufficiently closely by cloud

droplets at their termlnel velocity for the purposes of the
calculations which follow. Departures from the law will be
teken into account where a drop has grown large enough to

require it.

When dreg 1s the only force scting on the drop, and
Stokes' ILaw apolies, the equation of motion in one dimension is
m%: 67rv*\7 (V~1r,.), (3.5)

where V., 1s the velocity of the drop relative to stationary
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axes and V the air velocity.

Ye define a “time constant"
m :2-—2365

- G * (3.5)
The equation of motion becomes
dw,

TVI'::L N V""\)’,,., (3.7)
For example, suppose V'to be a2 step function so that _
V-0, t< O, (3.8)

V=V,, t>0.

Then =0, t<O0,

'\r,=V°[l—exp{-%_z], £ >o0. (8:9)

3.2. Langmuir's Equation.

Longmuir, (1948) considered the problem of a current of
air containing very small droplets, flowing past a fixed sphers.

If the droplets continued in the same straight line, many would

collide with the sphere, the numbsr being proportional to the
cross-section of the sphere. The collision cross-section would

be 1sY where s is the radius of the spherse. However, the air
flows round the sphere in streamlines, and if the droplets showed
no inertia they would be carried round the sphere and never

collide with 1t. TInertle makessome collisions take place, but

not as meny as with perfectly straight paths. Using a differential
analyser, Langmulr computed the paths of the centroids of the
droplets to find which would meet the sphere. He defined the

"Gollision Efficiency" E as the ratio of actunl collision
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cross-section to Tvs?,

The results are contained in the empirical equation

E-=0, K < [.2l4,
3 -2
E - [H—:LLIS—K)] , K >1.214,
ol (3.10)
where K is a dimensionless quantity given by
_ U 2ves U
K== . (3.11)

s
vere U is the velocity of the air (and of the droplets before

encountering the sphere) relative to the sphere.

The form of equation (3.10) is shown in figure 3.1
where E 1s plotted against K on e log scale. The main feature
is that below a critical value of K no collisions take place
at all, This means that for . glven radii s andr, the

relative velocity must be greater than some critical value for

collisions to be possible.

Lengmuir carried out calculations for e sphere much
larger than the droplet, so that s >>vr. Inbthe calculations
which follow, the radii may be nearly equal in the early stages
but far conveniénce:the term “drop" will be used for the larger

perticle and "droplet" for the smaller. The disparity in sizes
allowed Langmulr to represent the droplet by a point mess at
its centroid. His values of E:, therefore, are lower limits,

since a droplet whose centroid would miss the drop by less than

Y (the droplet radius) will actually collide with the drop. This
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will be sllowed far, to some extent, by taking the capture
cross-ssction far the drop and droplet to be Ew(s+vr)’

instead of ETs?,

A further assumption which needs examining, is that
the droplet 1is stationary relative to the alr before it comes
into the region of the drop. In & gravitational field, both
drop and droplet move relative to the air, the droplet more

slowly. If the air has just been accelerated, neither particle
1s stationary relative to 1t. In such cases U will be put equal
to the relative velocity of drop and droplet regardless of

motion of the air. The errors arising from this assumption are

not expected to be important.

The question remains whether a droplet which touches the
drop glways combines with it to form a single larger drop, or
whether it sometimes "bounces off". Gabilly (1949) obssrved,
under a microscope, coalescence between a captive drop and small
droplets blown onto 1t. Dessens (1950) found by microscopic
observations that if droplets are brought into contact, they

always coalesce provided the radii are greater than about 1 or
2 microns. Gunn and Hitschfeld (1951) perfarmed quantative

experiments which appsar to show that a true collision always, or
nearly always, results in coaslescence, so that collection

efficlenty and collision efficiency will be assumed to have the

same value.



4, COALESCENCE BY GRAVITY.

Consider a drop of radius § and a droplet of radiusr
in still air in a gravitational field g . If the locale 1is
the earth's troposphere, g will have a value which varies little
and is about 980 cm sec™*. By equating the welght of the droplet
to the drag force and substituting from equation (3.4) we‘find
that the droplet will fall with velocity

2¢?
V,=9=— 9T
r qu’ 9 v, (4.1)
end the drop will fall with the greater velocity
vo=q 28 an (4.2)
S 9 qn-s S) *

so thet thelr relative velocity

U- %.aﬁuw) - g(Ts-T) . (4.3)

If this relative veloclty 1s insufficient, collision
between the drops will be impossible even if the drop starts
exactly above the droplet. A very smll droplet, for instance,

would escape collision unless the field were so gregqt that the
drop could catch it. Adroplet almost as big as the drop would

also escape collision because thelr velocities are nearly equal,
unless the field were great enough to bring up the relattve
velocity. Intermediste drovlet sizes favour capture br the

drop, and require less field,

" |
Now K = gT"':gi:%;?' .-E—l(sl-r‘). (4,4)

The value ofgikr which collision is fust possible is
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found by putting K=1,214.

gt _ s
T { —_—
9‘ t WAL q_es; Y"(S‘-Y")

-2
where v,s are in miecrons and 9«;1-. in em sec .

In figure 4.1., 9.ir. 1s plotted against v for

§s 15 microns. For other values of s, the curve would have

the same shape but differemt scales. Since K is proportional
to g (4.2) the value of K corresponding tog other than gerir
can be found for a particular v by reading off 9erit, 8N4
putting

R
K=l2ik 9erie. (4.8)

For a field of 980 em sec—z, collisions are only possible
over a limited range of radii of the smaller drops, and in
this range the collection efflciency is small, At v:=10 microns,
close t o the minimum of t he curve, the critical field is 8"10 em

sec™® and the efficiency, though nearly a maximum, is only

about 3%.

A calculation was made of the gcrowth of a drop whose
radius § 1s 15 microns, falling in a cloud which has the

t1dealised characteristic of equation (2.1), (figcure 2.1.),

The numerical computation necessary far figure 4.1.

teble 4.1, and much of that for figure 4.2 were carried oub
by M. Herschorn.
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It grows by absorbing any drovlets with which it collides;
i1t is found to increase 1in radius by only O.42><1O‘3nﬁcrons
per second, so that it would take roughly 40 minutes to
lnerease from 15 to 16 microns radius. Tven 18 micron drops
(which are scarce in the type of cloud considered) only grow

st the rate of 3X10™° microns per second,

The observed stability of Pailr-weather Cumilus clouds
is explained by these findings. Tt 1s evident that the value

of 9 found on the earth is too small to coagulate them.,

Simllar calculst ions were carried out for a field twice
as great; much faster growth 1s found. The method of
celculation was purely numerical. The results are shown in
table 4.1

Table 4,1.

Rate of inerease of S
(X10™3 microns per second)

9 s5=15 18 microns
cm sec?
980 0.42 340
1960 5.6 15.1

Doubling the grevitationsl field has iIncreased the rate
of growth of a 15 micron drop by about 13 times, and of an 18
micron drop by ebout 5 times. The relative velocities have

2ll been doubled, so that the drop falls past twice as many
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droplets in a given time, but more important still, this has
resulted in greatly increased collection efficiencies, so that

overtaking results in collision much wore often.

To pursue the growth of the drop, calculations were
continued by 2 partly snalytical method, in which the function
E was aporoximated by suitably chosen fixed values, anrd the
rate of crowth ds/df found by integration. The resulting
graph of dsﬂt against s was integrated numerically o obtaln
s ggainst t. The overall sccuracy is estimated to be ahout
107 in rate of growth. The drop becomes too bis far Stokes'
TLaw to apply, so & semi-empirical law for terminal velocity

was used. At thils stage, efficiency can be tsken to be 100%

for all significant drov sizes.

Figure 4.2 shows the way that the radius of the drop
increases with time, starting from 20 micron radius, (dotted

curve). The drop grows guite rapidly, reaching raindrop size

in about 25 minutes.

The other curves are copled from Foughton (1950) and are

for g= 980 em sec'a. The lowest line is for a reother homoseneous

cloud of medisn radius 7 microns and water content 1 3W\m?

The other so0lld line 1s for a2 nimbostratus of weter content
2 SMrN? In both, growhth is slow to start with. The dashed

curve is far an ice crystal plate in water-saturated atr at -5 Q.
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-2
Tts initial growth is comparable with that for 3=»196O em see .,

The gravitational field used for * his calculation;is
not found in the earth's atmosphere, of course. Towevery =
steady sccelesration of the air in which a drop and drovlet
find themselves would produce the same effect as 2 gravitational
field, end could bring about collisions., Any kind of
acceleration of the air would produce temporarily the effects
of a grevitational field, and could also cause collisions.
In the next section we shaell consider svystemstic and random
motion of the alr in a straight line, as intermediate stages

in the aprroach to the actual motion of turbulent air,.
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5. ONE - DIVMENSTONAL EXC ITATION.

5.1. Sinusoidsl Exe itation.

Consider a parcel of a2ir containine the drop (radius S,
time constant 75 ) end the droplet (radius v, time constant %)
' A

to be in sinusoidal motion with peak velocity V and ancular

frequency w. Then the instantaneois ailr velocity

A
V=R“[V°"P(‘“’“JJ- (5.1)
The motion of the droplet is given by substituting for'Vin

equation 3.7, and solving for vi,. The drovlet veloclity 1is
A
vV : ]
= ————— b .
Vr R"[mw‘r.- exp(iv)

Or in the notation customery in electrical problems, where the

symbols Re ang exp(iwt) are omitted

- V
Ur® TFon (5.2)
For the drop v - Y (5.3)
ST l+iwTs
So the relative velocity .
U- Viw (s-%) (5.4)
ﬁ+(wn)ﬂ+wwﬁJ
Taking sbsolute values only, the relative velocity of the
drops (compared to the air velocity) is given by
E_z_ wz(-rs 'T\r')2 .
VIO ((+ &) (1 + ) (5.5)

This function is shown in figure 5.1, where |—| 15" plotted~"
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against {:0[% for v:10 microns and 5:=15 microns. At very high
frequencies the droplet moves very little and the drop even

less; the relative velocity goes as w™, At very low frequencies

the droplet moves with the air and the drop lags very little,

the relative veloc ity goes as w. At about 100 ¢/s (in this case)
the relative velocity is o maximum and is sbout two-fifths of

the air velocity. With & greater disparity of drop sizes, a
range of frequencies can be found 1in which the droplet follows
the air closely and the drop stays almost st1ll; in this rance

U almost equals V.

Now consider some fixed frequency, and a fixed drov radius
S,( end therefore fixed ~) and vary v. The parameter K in
Langmuir's Equation is propertional tc>é;ko thet for verv small
droplets where T is very small, K 13 well below the eritical

value and collisions sre impossible, unless the velocitles UsanaV

are both extremely large. On the other hand, if the dronlet

18 nearly as bilg as the drop, 7. nearly equals 7, and equation

(5.5) shows that the reletive velocity U becomes very small unless
the air velocity 1s again very large. At Intermediate values of
T. , Kean exceed the critical value for moderate values of V ,

and collisions take place. ™This 1s 3lust the kind of behaviour

found earlier for gravitstional excitation.

At low frequencies, where w1 <<|, the similarity becomes
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an sanalogy. Equation (5.5) becomes
1- -
’U, M (-Te)" (5.6)
Putting |V/w= A, the peak mccelerdtion of the alr,

then the peak relstive velocity

IUI =»= A (75"7\")7

(5.7)

closely perallel to equetion (4.3), but with the veak

accelenation/)replacing the gravitationsl fieLig .

5.2. Turbulencs.

In the clear atmosphere turbulence is e¢sused by the
wind shear which results from the 2ction of the ground on
the wind. 1In e vertically developed cloud there 1s a ghHear
between the updrafts and the surrounding air. Tntrainment telkes

place and the motion becomes strongly turbulent,

Although turbulence has been studied theoreticslly and
experimentally for several decades, present-day knowledge 1is
very incomplete. tueh work has cone into developing an
adequate mathematlical description but this 1s sti1ll in an
active stage of developement. TExperiments "in the field" have
mostly been alred towerds lesrninz sbout diffusion of water
vapour or smoke 1n the clear atmosvhere, and none seem Lo have
been carried out inside clouds., Many flishts have been made,

it 1s true, in which the accelerations (or "bumps") of the
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aircraft sre measured, but the aircraft travels so far in o
short time thet this merelv reveals the distribution of
updrafts along 2 horizontal line, rather than the vaertation

of the velocity of one region with time.

The most useful results so far are those obtaired in
wind tunnels. In describing turbulent flow, any steady motion
of the air must be subtracted out first so that the wean sir
velocity over 2 perilod of time tends to zero as the vperiod
tends to infinity. The work of Simrmonsc and Salter (1934),
Towngend (1934), and Taylor (1935) and Townsends many
published papers show that turbulence in sir well clesr of
any boundaries, such as the walls of the wind tunnel (or in
the atmosphere, the ground), cen then be exvected to have

the following propertiss,

The motion of the sir is rendom and Gaussian, whichr
meens that it is not possible to vredict the schtual velocitr
2t any distent place or time, hut only the probsbility
distribution of veloecity, and that the distribution is =2

Gaussian or normal error curve., The mohion 1s 8lso stakionary,

homogeneous and isotropiec, which means thet the gtatistical

properties of the motion ere indepsndent of tine, plece, and

the direetion of tte axes of reference.

The veloecity of o psrcel of air which contains o drov
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and some droplets can be resolved slong one axis, and the

occurrence of collisions may be calculated in one dimension.

Since the turbulence 1s isotropic, the situatlion must be the

same in each of the three dimensions. .Tust how the one-
dimensional results can be used to give the rate of occurrence
of collistons in s three-dimensional svstem will be discussed

in section 6,

Of course, 1f the motion were really entirely in one
direction, a drop would make all possible collislons in a verv
few excursions through the droplets, and would then move in

a clear channel, making no more collisions. Anv transverse

motion, however, would ensure that the drov was alwavs encount-

ering a fresh sample of droplets.

5.3, Random Excitation.

The problem of coalescence by one=dimensional exasitabion
in general can be apwgrosched itn the following way. The alr
veloclty V 15 a function of +ime and can be written \/ﬂj;

similerly, the relstive veloecity is written WU(£)/ ™hev sre

linked by two linear differential equations,

dv,
v, + T :Il(: =V(¢'), (5.8)
U+ R L V), (5.9)

de
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and the linear eguation

U(e) = v - %%, (5.10)

so that \/&)can be regarded as the cause and U@ﬂ the effect

in a linesr process,

The straightforward application of Fouriler trensforms

to problems of this kind is well ¥nown (for example, see

Cempbell and Foster (1948) page 24)., First, the complex

exponent 1al Fourter transform of Vﬂ?is obtained; this 1s VQ@Q,

the spvectrum of the air velocity. DNext, V(w)mst be miltivlied
by the frequency resronse of the process, which is given by
equation (5.4). The product is Uﬂé% the spectrum of the
relative velocity; application of the inverse Fourier transform

gives U(H), the relative velocity itself.

1f  V(t) were sctually a defénite fumection (such as »
square wave), LMO would be one also, but in our problem
is 2 random function; and the above method cannot he used as
it stands. Since the alr velocity V(d is random and Gaussisan,
the relative velocity U(t) must 2lso be random and Geussian,
For calculating the rate of collisions, it is necessarv to
know the probability distribution of the relative velocity,
and nothing more. Since we %¥now that the vprobability distribution

is Gaussian, 1t 1s completely specified by its mean square

value. The problem reduces to one of finding the mean square
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relative veloclty OJ 1in terms of the sir veloetty V(¢). *
The method used is belleved to be due originaelly to V.Wierer;
1t will be outlined here, without showing how the steps mav

be justified.

The air velocity Y(¢) 1s a random funetion with
stationary properties, so that it can be described bv a mean
square G'VZ end by e spectrum ,V(w)’z. (The spectrum
can be obtained by baking tte cosine Fourier transform of the

correlation function of V(6)). Parseval's theoram states that

[ v ["ver o, (5111

and by spplying 1t to the definition of 0, we £ind
o7 @ .

Cs fimm LT [v(g] dt - b L [V () dw. (5.12)
In this way lV(Q”Z can be normelised correctly. From here the
procedure is similer to thet described for definite funetions,
but the syrectrae and the fredquency resvonse sre all in modulus
squsred form. The air velocity spectrum ‘V{uOlznmst be
multiplied by the square of the frequency resvonse, given by
(5.5). The product is !U(wﬂ: the spectrum of the relative

velocity. (The cosine Fourler transform of this would eive

the correlation function of U(ﬂ s, but this is not needed for

* The author was fortunate in having the collaborstion
of Z.A. Velzak for this part of the work, uv to Table 5,1.
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the present purpose). Applying Parseval's theprem =2cain,
this time to the definition of G;z, the mean square of the

relastive velocity, we finrd

Q~U?_’ ’_?’_W‘:‘ ZT’X ‘U ('), dt = »QWW '—-_(—_'gm IU(W),IAQ)

< G 5= IV(«»)V

Tooa 2T

2
7’ dw . (5.13)
Thus Gﬂf 1s a Iind of mean square of the aitr velocttvy gvectrum
welghted by the response spectrum, where 6}2 was the unweighted

mean square.

It can be seen that O, 1s proportional to Oy’, and
that the constant of provortionality depends on T end T
and on the spectrum of the 2 ir veloecity v; Tt can also be
seen that a spectrum that 1s concentrated aroand 100 c/s, when
weighted by the frequencyrresponse shown in ficure 5.1, would
give 2 larger velue of O, than one in which the svectral
density was lov around 100 e/s. Thus, although one Joes not
wish to know anything about the spectrum of U , something
mast be knewn sbout the spectrum of V for the method to sive

any velue at 2l1l for 0}%

The foregoing procedure was carried out for a number

of trial spectra of the air velocity \/, with the results shown

in table 5.1.

In this Table, the speectrum of V is given in the second
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Alr Veloeity Spectrum

*
Ne.me G(w)
Markoff 22w° {
Sv WiHw?

(Exponential

correlation

function)
Geussian

Oy F 73 exF( 20))

{(¥ormal Error

curve )
Uniform Band O W<w,
Wy te Wy .5__v_ W, S WK Wy
H
0 W< W
Delta Function G-vz S(w- 0%)
(Cisoidal
oscillation)

*

TABLE 5.1

Mean Sguare

Closed TForm

Gl w. (% -1 /
ve T+ T (14w Ts)(1+ws)
S A
v (’*’or 21 Ts+Tef T, 26T

- eri(g )

Relative Velocity Yean  Square
Acesleration of Rdir
2
Oy oy
A
Infinite Seriles

2 00w, E_ﬁ [1-0.(7s T+

])oes not cow/erje
Ts+Te

ﬂ'rf"F(i‘:ﬁi){' —erfe (,]2:).;7? )}]

=2 0 0, (15 - ,)1[| -3wd (4T +. ]

2 O‘VZ woz

| T - avch ( __..__Iwu-w" — -L arctan (‘T L )J
I W=, "@-«-%[‘T o T |+wwa T, T 4w, T

o) w

:  (-w)
® (14w T ([ + Wi T7)

These two columns of the table and the theorem are the work of

_ = o-vl{wu wL-%—(U“ 'w‘-)?} (Ts ‘Tv)z [l Wy, ("l’,’+”r})+. ) ] O-v2 {wu "’L‘_‘;' (w“__wL)Z}

-0yl (T [~ w

Z. A. Nelzak.
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column irn the form of o svpectral density function
Y | z} o
G (w0) = Ko =< IVl (5.14)
Where < Lv signiflies the average dver a vanishingly

small portion of the spsctrum sround w . This defénition

eliminetes the operetor fum . from fhe formilae; +the spvectrum

Ty 2T
is now normelised so that
[
oo S ¢(w)dw, (5.15)
[+

and the mean square reletive velocity

"> f 6 () I%Iz"(“" (5.16)

The third column gives the mean square relative veloecttw
caleculated by equetions (5.16) and 5.5). It shows the devendence
on the drop and droplet time constants, on the shape of *he
spectrum, and on some fixed frequency w, which is characteristid

of the spectrum (two fixed frequencies in one case).

The expressions for Cﬂf were expanded in ascending
powers of W, and the first two terms 2are listed aloncside the
exact formulase. TIf the characteristic frequency w, 1s small
enough, all terms except the filrst cen be neglected. “ore
specifically, the condition is

W, Ty <<

(w Nt <<l), (5.17)

Tn all cases except the first, the expressions are very

similar, involving (7;~1;)1 and a quantity having the dimensions
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of mean sque&re scceleration, For comparison, the mean

square scceleration of the air motion

% * g‘, ) o7 de (5.18)

has been calculated far each spectrum and is 1listed in

the last column.

It is evident that when the condition (5.17) is
fulfilled, in any case except the first, the mesn square
relative veloclty and the mean square sir accelerstion are
related by the equation

g,k = Of (=), (5.19)
The analogy with equation (4.3)
U = 9 (s 'Tv)

far & gravitational fileld is complete.

The result (5.19) apvlies to any spectrum concentrated

at low frequencies, regardless of its form, as the following
reesoning shows. A theorem will be used:

Tf an air velocity spectrum &/(@) gives rise +o

a mean square relative velocity Syt 2 srectrum Gy(w)

to be ete., then a s ctrum
G(w) = G (w) + Go(w) + ——--.
gives rise to a mean square relative velocity
Ty = G + 60 e
The air veloclty spectrum is divided up into a larege number df

narrow elements, so that each can be renlaced by a uniform beand
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like the one listed in Table F.1. Tet w,, and w.. be the
uprer and lower boundaries of the nth. portion where

Wph ~ Wy << Whne
and define W, = Wey Wng

Then for 211 portions of the srectrum for which

G.U“’L = G_A“ (’YS -'T'-)i
E) (,dhz G'(wh)crs '7r)1 .
1 S 2. 15’0)1(;ad)
Then Oy = é Ovw (Ts ‘Tr) £, " v,

In the limit as the elements become infinitesimally narrow,
Gt s (o) [ wre () do
= (7 "TV')IO-AZ
This result does not spply if Gﬁz recelves an sporec-

1iable contribution from those perts of the spectrum for which
is near to or greater than unity. The Warkoff svectrum is of
this type, and its farmula for Cﬁz differs considerably from

the others; actually, the integrel for q?' does not converge.,

_ Until more is known a2bout the spectrum of turbulence
inside clouds, 1t is not possible to say whether condition
(5.17) will be met. If measurements show that 1t is met, then
the simple relationship (5.19) will hold, and only the quantity(&z
need be used. If the condition is not met, then equstion (5.18)

will have to be applied.
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5.4, Co0llist ons by Random Excitation.

There 1s one difference between a gravitational field
and o random one-~-dimensional acceleration that has to be tsken
into serount; 1t 1s that the relative velocityw U is rendom,

not steady as 1t was in the computetions of seetion 4.

The probebility of the relative velocity lvinge hetween
U ena Utdl 15

P(U) AU = %(/_i;r_exp(— —-U—z.> dv

20,° (5.20)
The probability density P(U) is normelised so that
(" Pro)dv 1.
The mean speed [_UT 1s gr;;en by the weighted integral
I_UIQ’L'”’ Plo) dU :2L°°u1>(u)au, (5.91)

since P(U) =P("U). The volume swept out by a drov redius

in unit tim 1s Q= ms*[U[. TIf the collection efficlency
were unity, the quantity Q would give the number of droplets
rer second very simply. Since the collection effileiency is
not unity, Q mist be replaced by an equivalent sweot voluwe
per unit time Q by replacing ns* by Ew (s+r)?, as dfscussed
in section 3.2. Since E devends on V) , 1t mast be talren inside

the integral. Then the eaqulvelent volume swept per unit time

2 5 (TEUPV4
Q *n(s+v~).2LEU (vV)dv | (5,001

In the above formula as it stands, snd E depends not

only on U, but 2lso on S and v , so that the integral would
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heve to be evalueted afresh for every combinetion of drov

and droplet. This ean be svolded by putting
U:UOK and G;:Uoo_;(

where U z:iﬂﬁ_
027_)
r2pg
K is the dimensionless paresmeter in Tengmuir's equation (3.10)

and Ok 1s the root mean gquare of K. Then the probability

distribution of K is given by

. _ K ).
Plk)dk - O'KJz_zTexP( 26y )' U P(U), (5.93)

and the equlvalent swept volume per unit +time

Q"= n(s+v)* 20, S E(K) P(R)K*dK

= J2n (s+v)* U LOOE(") EK_;Q"P(" ZK;;) dK

= JZ7 vy Us (5.24)

where ok stands for the defénite integral. The value of o

depends on Gy but not otherwlise on s and v; 1t has been
computed for varlous values of T, and 1s plotted in filgure
5.2.

The main trend of the curve of X versus Oyis to increase
the rete of sweeping up drovlets with increasse of Tk - This
1s similer to the trend shown in ficure 3.1, where collection
efficiency increases with K. However, there is no eriticsal
value of Oy below which « is zero: « is st111 finite, however

et
smell N\ becomes. The physical 1nterp?ation of this difference
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i{s, that even if the root mean square relative velocity O
is less then the critical value,\) 1tself will exceed the

criticel value for some part of the time.

For example, if K=|.0 with eravitational excitation,

no collisions ocecur, because K<K[.2{4; while 1f Ck=].0with
random excitatlon, collisions occur at a rate given bvld=CLOGL
which corresponds to a mean collection efficiency of 4.9%,
still quite o large value. On the other hand, the reduction
of collision rate with decreasing Ok is quite rapid; at Oy= 0.6,
for example, the mean collection efficieney is onlvy 0.7%, so
that collisions, slthough still not imvossible, sre mch

rarer.

The position regarding one-dimensional excitation of
a cloud can be summarised as follows: qualitativeiy, the
effeet 1is very much the same as gravity, except that the onset
of coalescence i1s more gradual. Quentitatively, siven any
value for the mean §quare sccelerstion of the turbulent atr,
and provlded a certain condition is fulfilled, the rate of
growth of a drop in a given cloud can be computed. Vo
measured value for mean sguare acceleration is svailabhle so

far. If the condition is not fulfilled, the complete svectrum

of the turbulence will be reqguired.
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6. THFRERE~DIVMENSTONAL EXCITATION.

6.1. Extension of One-dimensional results.

The derivation of a three-dimensional treatment of
turbulence from the one-dimensional results of the previous
section can proceed on the following lines. The relationshivo
between the component of relative velocity Ux and the component
of ailr acceleration Axin one direction is linear and indevendsnt
of the velocity and acceleration in the other two directions.

If we consider an isotropie air motion, for which condition
(5.17) is velid, the mean squares of the three components of
relative velocity are relsted to the mean squares of the three

components of air acceleration as follows:

O'U: = o'u; : G'U; = Gh; (’T’s'--"f'v-)1 s 07‘; (s - LS RE O—A}z (s "T")z' (6.1)

Iftlis the relstive speed, its mean square

(6.2)
Temporarily, the assumption 1s made that the components
of air motion in the three directions are mutually independent,
(as they are for molecular wotion in the Xiretic Theorv of
Gases); the components of relative velocity are then mutuslly
independent 2lso. In such a cese, the well known Maxwellisn B
law can be applied to the relative velocity, and the vrobability

distribution of relative speed

3 2 ’
P(U)dU =J2— o_ﬂz-exp<_. U ) dU. (6.3)
UX
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(See for example Jeans (1948) section 91.) ™The expvression

(6.3) 1s normelised.

The calculations can now proceed as in section 5.4,
but with equation (5.20) replacad by the new prohabilitw
distrivution (&.3)., The new distribuvtion is narrorer +than
the 0ld, so the result of fthe procedvre would he 2 curve of
rete of collisions resemrbling ficure 5.1 In essence, hut
differing in detail, TIn particular, st small values of Ok, the
value of ™ wes achleved by the fact that the relative velocitwr
(J considersbly exceedsd its R¥S value for part of the time,
In the three dimensions, the narrower distribution of speed U
makes such excevticnal values of U mueh 1less prohable, so that
the curve waarld be lower and steepver than the one in fioure
5.1. TIn fact, since the "dtstribution of U is fr+ermediste in
width between the brosd distribution of U in ome-dimenstonal
random motion and the infinttely narrowesx distribution of U
for steady motlon, the curve of rate of collision would he
intermediste 1In shape bekween figute 5,1 and the curve for

a gravitgtional fileld, which Ts =zero below K='1.914.

For these computations, it would be necessarv to know

the mesn squsere acceleration of the three-dimensional burbulent

2
motion, so that (Sb can be caleculated faor esch pair of drop

and droplet sizes. As before, this quartity has not heen

measured.

Besides this presctical difficulty, however, there 1s a
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fundamental objection to the method described. The

asssumpt ion wes made that the components of sir motion were
mituelly independent; this is not true except on the moleculer
scale (Batchelor (1952)). Fow this woald affect the results

is not easy to sav. Instead of attempting to modify the
procedure to allow far the interaction of velocities in three
dimensions, it seems it would be more vprofitable to start

with the more fundamental approsch to the nsture of turbulent

motion that is now becoming svailable.

6.2. The Modern Theory - of Turbulence.

Batchelor (1952) gives a goal account of the modern
theory of turbulent motion. The veloclty field at an Instant
of time 1is subjected to a thres~dimensional Fourier transform.
The result is a spectrum in thres-dimensional wave-nurher svace,
The disterce of 2 poirt In wave-numbher svace from the orfoin
is the reclproxsal of the size of the eddies which 1% revresents,

so thet the nearest polnts belong to the largest eddles.

Helsenberg (1948) has develoved the theorvy by nsing
dimensional arguments. Fe srrives at a pleture in which
turbulence 1s an intermrmediate stage throush which energy
passes on its wav from a source to eventual dissipation by
viscous friction. Tddies of a perticuler size are alwsvs
being converted by irertlal farces into smaller eddies. The

energy from the source goes at first into large eddies (of
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size comparable to the bounderies of the svstem), which then

hand it down through smaller and smller eddies. As a certain
size is reached, the energy goes into viscous frietion instead
of into still smaller eddies, and the spectrum does not extend
sporeciably beyond this size.

This wave number theory 1s not very closely relsted to
the frequency-spectrum treatment considered previously, chiefly
because the wave~number syectrum describes the state of & large
reglon of space at an instant of time, while the frequerevw
gspectrum describes the movements In time and space of a sincle
element of the fluid. Fowever, in e semiéquantit%ge way one
can associate the small eddies with high frequencies, and 1+ is

possible,at least in prineiple, to transform equatblons from one

system to another.

The virtue of the new theory is that its results are
expressed in terms of very few initial facts. Tnstead of =
meen square velocity or acceleretion and a frequency spectrum,
neither of which are known, tne main guantity which determines
the nature of the motion 1s the rate of supply of energy per
unit #333;9 €. The energy is supnlied by the rmal processes in

the atmosvhere, and can be deduced from such facts as the

temperature and humlidity, which have been measured in tvnical

cases. PBrasham (1952) has drawn up an ensrgyv budeet for 2

thunderstorm, and 2 similar budget for = falr-weather Mumilus

cloud would give the required value of €.
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The vector equetion for the accelsration of a parcel

of a2air Iin non-irrotational flow 1s

/\

~ ~ ~ -
h=27 + (TOV . (6.4)
If the new theory of turbulence is to be applied to the problem
of collision between drops, 1t must provide the probabhilitw
aistribution of acceleration, 'P(]AD d]ﬂ] . The relattonship
vetween (U] and M[ mist then be re-sstablished =and 'P(U)AJ)

obtalined. From here on, the work will follow section 5.4,

0f course, an indirect determination of turbulent mwotion
of this kind cannot replace rellable and sccurste direct
meesurements, but until suech measurerents cean be made, 1t perhaps

offers a means of reaching 2 conclusi on.
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7. SUMSARY AND CONCIUSTIONS,

The observed generation of moderate of bheavy rain in
clouds warmer then O C mekes it necessary to loo¥% for an
alternative to the RBergeron-Findelson ice-phase mechanism of
rain formation. Calculstions, besed on TLangmuir's work on
collision between drops, show that gravity brings about too slow
a settling for coslescence to take place; this result accounts

for the observed stability of feir-weather cumulus clouds.

Increasirg the gravitational field bv a faetor 2 would
greatly increase the rate of growth of drops by coalescencs,
producing reindrops in sbout 30 minutes. A steadv sccelerstion
of the air of the cloud produces the same effect s an extra
gravitational field. The updraft in a Cumulus cloud 1s burbulent,
and produces a fluctuating ecceleretion. A one-dimensional
treatment of turbulent motlion shows thils accelerstion to be at

least as effective as a steady accelesration equal to ftsrmmsvalue

in bringing about coelescence.

A difficulty of a theoretical nature, and the very
practlcel one that no measured values of turbulent acceleration
are aveilable, prevent this treatment from arrivirz 2t a definite
statement whether turbulence plays an important part ir initiation

of rain., It may be thet g8 more fundamental apvroach throush

energy considerations will give the answer,
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If turbulence is the priwary csuse of rain mhich forms
in warm clouds, it must 2lso be an important fector t1n similer
clouds which ére cold enough for the ice vhase to exisk, There
the Bergeron-fTindeison process is predominant, then furhulence
will help 2 fa2lling snowflake to collect sunercooled dronlsts.
¥here coslescence by turbulence hecomes estabhlisghed in the

[]
lower part of a cloud, it mey inhdabit an ice-vhase vprocess bw

cutting off the supnly of droplets.
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