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r.rsrr OF STIffiOT.S USED 

A Acceleration of air 

C.D Drag coefficient 

D Drag force in viscous motion 

E Collision efficiency 

G(w) Spectral density function of air velocity V 

9 Gravitational field 

~c.f'i~. Critical gravitational field, .iust sufficient to 
cause col11s ion. 
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V 

Relative velocity 

Mass of s phere 

parB.meter in I,anq:muir 1 s equat i on 

K= 2r1esV 
q~.s 

Number of drops of radius r, per unit volume, oer 
unit radius interval. 

Volume swept but in unit time bV drop in re.ndom mot.i.on 

Equive.lent swept volume par unit t1me, allowintz for 
droplet radius and collision efflc1ency. 

Real part of 

Reynolds number 

Radius of droplet 
~ d.v--op. 

'T'ime 

Relative velocity of drop and droplet 

:: JL -= Cl,!) 5 

1< 2 rle.s 

Relat.ive veloc1ty 8.S a time function 

Frequency spectrum of relative velocity 
Rel"Hve spfeJ. of drop .. .,.,J. d.t"0f(o~ in t-k~ J..,''I'I,Q'I\SÎo",s. 

Velocit.y of air 
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V Peak velocit. ~T of 8.tr in sinusoids.l motion 

V(t") Air veloclty as 9. tire function 

V(w) Frequency sp3ctrum of air velocity 

"r Velocity of droplet 

vs Velocity of drop 

~ Collision rate Integral 

f Rate of supply of energy per untt mass 

~ Viscosity of air ("1" 1.72 X /o-Lf- 3'M CM-
2 sec.- I 04t 0 C) 

r Density of air 
-3 rs Denstty of sphere t~s = ~ gm cm for water) 

<TA R.m.B. accelere.t:i.on of s.ir 

<J, Stands.rd geometric deviation in lo~-norm9. l distributions 

(j'K R. m. s. value of K in random mot ion 

crv R. m. s. re lat ive ve loc:tty of drop s.nd droplet 

rsy R.m.s. air velocity 

Tr rrime constant of droplet, radius r 

15 Time constant of drop, rad~.us s 

W Angular frequency ((,IJ,. 2-nJ) 

Wo Che.re.cterlstlc anguler frequency of s.ir spectrum 

WH Angular frequency s.t upœr limit of be.nd spectrum 

WI. Angule.r frequency at lower limit of band snectrum 



1. INTRODUCT ION 

Rain and snow are made out of excess water vapour in the 

atmosphere, but not directly. When conditions are such that the 

atmosphere can no longer hold aIl the water it contains as water 

vapour, clouds appear first, and precipitation may or may not fall 

out of these clouds. 

Clouds can remain relatively unchanged for several hours, 

they may then evaporate without precipitating at aIl, or precipi­

tation, in small or large quant it ies, may forro after a s horter or 

longer tine. An important problem in meteorology, then, is to 

find a precipitation mechanism to account fo r the fact that clouds 

do not automatically turn into precipitation, but requlre 

favourable circumstances for this. 

Bergeron (1933) proposed a theory whlch, with modifications 

by Flndelsen, ls now generally accepted. He sug gested that the 

stability of clouds 9.S colloids is due to the small size of. the 

particle s, which cannot grow at one anotœ rs" ext:e nse at a sufficient 

rate to produce precipitation of their own accord. We shall take 

up this question of colloidal stability again la.ter. 

In Bergeron' s theory th e cloud cornes int 0 a region where 
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the ambient temperature is low enough to free ze sorre of the 

water droplets. With tre help of freezing nuclei this takes 

place at about -12C. The region between t te dropmets is saturated 

by the supercooled water, so t hat the ice crystals g,row rapidly 

at the expense of the water droplets, and f aIl through the cloud 

as snow. If the 0 C isotherm lies above the ground, the snow 

melts there and reaches tre ground as raine 

Recent experimenta1 work has confirmed this model in frontal 

rain where moderate rainfalls continue for severa1~ hours. Radar 

observat ions of t his type of preei pi tat ion have been eorrelated 

with meteorologieal soundings by Austin and Bemis (1950) in the 

United States, and with aireraft observations by Bowen (1951) in 

Austra1ia and by R.F. Jones (1951) in Eng1and. The eharaeteristic 

I1bright band" seen on radar dis p1ays i s ass ocia ted wi th the 

me1t ing of the snow. 

We turn novi to showers, which consist of localised rainfall 

characterised by vertical deve10t1~rnent. If the lee proeess were 

responsible for tœse also, they wou1d always have to extend at 

least above the 0 C Is othe rm. Experime nts on the freezing of 

sne. Il water drofB show t hat even wi th the mes t effective tluclei 

the drops do not free ze unt il coo led t 0 about -12C. Thi s indicates 

that c louds whieh do not penetrate the -12C isotherm would contain 
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no iee particles, tbous:h exceptions mg.y be fou nd ln +'1170 ty'Oes 

of situation. Dessens (1950) sampled clouds at the SUlTTJ1'11.t of 

a mountain and found ice particles in 50~ of clouds examined 

between OC and -12C (and 100( of clouds colder than -12C); 

he suggested that this result could be due to the proxirrity 

of fallen snow on the ground. Dennis (1953), in a study of 

radar records of showers, bS.8 found evidence that sorne showers 

whose tops were between -3C and -12C were the result of seedlng 

by snow from higher levels. 

There are situations, however, in which it apnears to he 

impossible to account for observed preci pitati on by the Berrreron 

process, namely, those in which rain or drizzle is observeà to 

fall from clouds which lie entirely below the OC isotherme 

'Mason and Eoworth (1952) report many cases of drizzle f~.ll:t1."lg 

from strat iform c louds wbose upper surfe.ce is W8.r111er the.TI Or,. 

E.J. Smith (1951) described three flights in whieh heavy rain 

"* was observed falling from non-freezing clouds. 

Besides t.he observe.t5.ons of precipitatin,g: clouds w~.rmer 

than OC in wblch the Bergeron process ls impossible, there are 

many cases of precipitatinrr clouds warme1" the.n -12C in which 

the process 8eems unlikely, s.nd these serve as addtt:tonal e"'l.r1.dence 

that sorne other process i9 at work. (Clouds warmer th~.n -1~r. 

are c onvenient ly ce.lled IIwarmll
). 

* In tropical regions, moderate or heavy rein often falls 
from clouds warmer the.n OC. See Hunt (1949) B.nd Virrro 
(1950). 



Arenb"srg (1939) discussed the action of turbu1e.nce in 

caus ing water drop1ets to combine, but could not reach a 

deftnite conclusion. He did not discuss the conditions under 

whlch droplets could col1ide. Gabi1ly (1949) went further but 

confined his discussion to slnusoldal motion of the air, rather 

than true turbulence, which ls a random mot 1 on. Mason (1952) 

Introduced turbu1e.nce t 0 pro1ong the t:a th travelJa d by a droplet 

through a cloud to account for observed drizz1e. In Best's (1952) 

discussion of condensation onto cloud droplets, turbul~nce served 

to transport the droplets to and from the centre of the cloud. 

In this thesis it will appear tbB.t turbulence not only 

brings droplets together, but ensures sufficlent relative 

ve10city for collisions to take place. 
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2. CLOUDS. 

In discuss ing the conversion of cloud into rain, we shall;, 

need to know the initial condition of the cloud, in particular, 

tœ size and number of the water droplets in the cloud. Direct 

measurements of th ese quant i ties have been made from aircraft, 

and described by Diem (1942, 1948) and by aufm Kampe and 

Weickmann (1952). The droplets are caught in a film of oil and 

examined under a microscope. This method fails to detect droplets 

less than 2 or 3 microns in radius, but it is not completely 

certe.in that this is due to the measurements. The method appears 

to be reliable for aIl droplets larger than this. 

Their results show that most types of cloud have J - shaped 

distribut ions, in which althoué'P most of the droplets Bave radii 

les s than 20 microns, a small but significant number of droplets 

have radi i in the order of 100 microns. Thus most clouds must 

be regarded as ones in which sorne precipitation process has 

already started, so that rain or drizzle will soon fall (though 

it my evaporate before reaching the ground). 

However,clouds which aufm Kampe and Weickmann classify 

as Cumulus Humilis or as Cumulus, and Diem as Schonwetter 

Cumulus, are free from these laroger droplets. We shall calI 

these Fair-weather Cumulus, and will take tœm as our starting 

point. The drop s ize spectra of a number of these c louds were 

replotted on a logarithmico - normal chart (as described by 
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Kottler (1950, 1951, 1952)) and gave ne8.rl~l straight lines, 

sbowing that the distributions 8.re a.pproxin'atel;y~ log-normal. 

The me dian r a.di i vS.rie d f rom 6.4 t 0 7.2 microns and the s tande.rd 

geometric deviation 0; from 1.2 to 1.7. 

It appeared t hat il3.ir-we e,ther Cumulus clouds could be 

re PI" esented for comput at ion by th e idealised di stri but i on: 

l'\yo J.r :t 7 ~o8' fl,Xp f -22 (~I" ~ r} J..r (2.1. ) 

where V\rc:iv .. is the number of drops per cubic metre wh os e radi i 

lie between y- end r+4r microns. 

This i s a log-nar mal dis trmbution wi th median radius 

7 microns and s t a. ndB.rd geometric devi8. tion ~;> /.4-. It is note­

worthy the.t Palmer (1949) frund the disttibution of rain-drops and 

snowfl8,ke sizes could a.ls 0 be n tted by a log'-TIorrr.al curve, and 

that the va.lues of a-~ he obtaiœd were close to 1.4. 

The idealised distrlbution of equation (2.1.) 18 plotted 

in f igur-e 2.1. It is normalised sot hat at the median radius of 

7 microns it contai ns 10« drops p3r eub ie metre pEl r micron radiu.s 

interva.l. This gives ft 6.08 x lOg' drops per cubic metre altogether. 

The important characteristic oftœ ariginal data for these 

F'air-weather Cumulus cl ouds, whicb is weIl reproduced in the 

idealised curve, isthe searcity of drops ofradii grmter than 

16 microns. In contrast, Cumulo-Nimbus distributions a.re much 
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wider and sorre 8.re 8.pparently made up of two log-normal 

distribut ions wi th d ift erent medi an re.di i. 

Cumulus clouds differ from layer clouds in baving 

localised updrafts. A freshly-farmed cumulus will have just a 

single central upward current of air with a velocity of a few 

metres per second. This updraft i s maintained by the release of 

the rmal energy by the com ensing w at er vapour, and 18 prevented 

from 8.ccelerating indefinitely by entrainment of outside air, 

which rrakes ihe flow turbulent. Bowen (1950) has pOinted out 

the importance of the updraft in prolonging the t ime that a 

raindrop sp ends in t he cloud in t he la ter stages of growth, and 

in tbe following sections we shall di8CUSS the action of turbulence 

in bringing about the earlie r stages of growth. 



3. MOTION AND COLLISION Ol~ DROIS 

3.1. i\'iotion of droplets in air. 

A sphere radius r, density Ps ' and nl3.SS r"'\ moyes with 

constant velocity ~r through a fluide 

The drag force 

D '1 l '2. C 
:: 7rY'. 'ifVV" 1>, 

where CJ) is the drag coefficient and is a functlon of the 

Reynolds number 

Here ~ ls the density and '1 the viscosity of tte air. 

(3.1. ) 

(3.2) 

!t'or values of 'R.<:~I the relation between CI> and'R simplifies to 

CJ) : 2lf(R , (3.3) 

givlng Stokes' Law 

Stokes' Law 18 obeyed sufficiently closely by cloud 

droplets at their terminal velocity for the purposes of the 

calculations which follow. Departures from the law will be 

te.ken into account where a drop has grown large enough to 

requ1re 1t. 

When drag i8 the only force 8.cting on the drop, and 

Stokes' Law a pp lies, the equat lon of mot ion in one dimensi on ls 

'M 4f'::: 6'TT',(,~ (V~'\I'.,.), (3.5) 

where v~ ls the velocity of th e drop relative to stationary 



axes and V the air velocity. 

Then 

'Ne define a "tirre constantl! 

'1. ::: ~::: 2r~fs 
r 61f\"~ q.,., 

The eque.tion of motion becomes 

(3.6) 

..,. J.vy- V (3 7) 
Iv- Tt::: -'\Tv-. • 

Far example, suppose V to be a step function so that 

V..,O, t~O, (3.8) 

v::: Vo, t > O. 

t ~O, 

t >0. (3.9) 

3.2. Langmuirls Equation. 

Ls.ngmuir, (1948) considered the problem of a current of 

air containing very small droplets, flowing past a fixed sphere. 

If the droplets continued in the same stralght 11ne, many would 

col1ide with the sphere, the number being proportiona1 to the 

cross-section of the sphere. The collision cross-section would 

be 1t'S\ where s is the radius of the sphere. However, the air 

flows round the sphere in streamlines, and if the drop1ets showed 

no inertia they wou1d be ca.rried round the sphere and never 

collide wi th 1 t. Inert la. makes sorne co111s ions take place, but 

not as me.ny as wlth perfectly straight paths. Using a dlfferentlal 

analyser, Langmuir computed the paths of t te centrolds of the 

droplets to find which would meet the sphere. He defined the 

!lCollision Bfficiency" E as the ratio of actual collision 
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cross-section to -rrs2
• 

The resu1ts are contained ln the emplrlcal equation 

E"'O, K ~ t. 214-, 

[ 
~~ (2K)]-2 

E = 1 + K-I.21't ' 
K>I.21~, 

where K i8 a dimenslonless quantlty given by 

K '" Tr~ = 2Y"~f5 U 
S CJ'1s 

(3.10) 

(3.11) 

Here U ls the velocity of the air (and of the droplets before 

encountering the sphere) relative to the sphere. 

The form of equation (3.10) is shown in figure 3.1 

where E i8 plotted aga! nst K on a log scale. The main feature 

is that below a critical value of K no collisions take place 

at a Il. This means that for given radii sand r, the 

relative veloc ity must be greater than some crit ical value for 

collis ions to be pos si ble • 

Langmuir carried out calculations for a sphere much 

larger than the drop let , so t hat s» r. In the calculat ions 

which follow, the radi i may be nearly equa1 in the early stages 

but fer conven1énce",: the term "drop" will be used for the larger 

p8J:'ticle and IIdroplet" for the smal1er. The dlsparity in sizes 

allowed Langmuir to represent the droplet by a point mass at 

its centroid. His values of E , therefore, are lower limits, 

since a droplet whose centrold wou1d miss the drop by less than 

r (the droplet radius) will actually collide with the drop. This 
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will be e.llowed for, to sorne extent, by taklng the capture 

cross-section far the drop and droplet to be E1I"(S+y)1 

instead of ETf s2.. 

A furtber assumption which needs examining, is that 

the droplet is stat i onary relative to the air befor e i t cornes 

into the region of the drop. In a gravitational field, both 

drop and droplet move relative to the air, the droplet more 

slow1y. If the air has just been accelerated, neither particle 

i s st a ti onary re lat ive toit. In such case s U wi Il be put equal 

to the relative velocity of drop and droplet regardless of 

motion of the air. The errors arislng from this assumptlon are 

not expected to be important. 

The question remains whether a droplet which touches the 

drop always combines with it to form e. single larger drop, or 

whether it sorretlrres "bounces off". Gabi11y (1949) observed, 

under a microscope, coalescence between a captive drop and sma11 

drop1ets blown onto it • . Dessens (1950) found by microscopie 

observations that if droplets are brought into contact, they 

a1we.~Ts coalesce provided the re.di i are greater than about 1 or 

2 microns. Gunn and Hitschfeld (1951) performed quantative 

experime nt s which a pçe a.r t 0 show that a trœ c ollis ion always, or 

nearly always, results in coalescence, so that collection 

efficientj" and collision efficiency will be assumed to have the 

same value. 
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4. COALESCENCE BY GRAVITY. 

Cons ider a drop of r e.di us S and a dro plet of radh13 y­

in still air in a gravitational field 9. If the locale is 

the earth's troposphere'9 will have a value which varies little 

and is a bout 980 cm sec-2.. By equating the weight of the droplet 

to the drag force and substituting from equation (3.4) 'Ne find 

that the droplet will fall with velocity 

2 V"l 

1Tr = ~ Cf,? ~ ST.,..., 

8.nd the drop will fall with th e greater velocity 

21'2 
'US = <J Gf'1;: 91"s 

so ths.t their relative ve:}.ocity 

(4.l) 

(4.2) 

(4.3 ) 

If this relative velocity is insufficient, collision 

between the drops will be impossible even if the drop starts 

exactly above the d roplet. A very sna Il droplet, far instance, 

would escape collision unless tte field were so greqt that the 

drop could catch it. Adroplet almost as big as the drop would 

also esca.pe collision because the!r> veIoclties are nee.rIy equal, 

unless the field were great enough to br1ng up the relat1ve 

velocity. Intermedi a.te droolet s1zes favour ca.pture bv the 

drop, and require le ss fie Id. 

NoW (4.4 ) 

The value Ofjfcr which collision 18 Just possible 19 



found by putt1ng K= 1.214. 

2 JJ. !!:!l1. S 
~ 'rll-. .. 1. h IL 1 ~2~(: -'1----:1) 

"'-fs r s -Y' 1 

; 7.25 x lOs Y'~~l._'("~) 

where ~Js are in microns and a '1': in cm sec-l
. 

J''''' . 

In figure 4.1., ~c.rir. is plotted a{tainst r for 

(4.5) 

S :> 15 microns. For oth er value s of s , t h3 c urve wou Id h!=l.ve 

the sam9 shape but different scales. S1nce K :ts oroportional 

to ~ (4.2) the value of K corresponding tO<j other than 3c:rir. 

can be found for a particù1ar Y' by reading off C)cr;t'. and 

puttlng 
K ; 1.2fJt _9_ 

<;J,rit. (4.6) 

-2 
Fat" a fie Id of 980 cm sec ,col11 si ons are onlv pos s1 ble 

over a limited range of radii of the small-er drops, and in 

this range the colJection effic1ency is smalI. At \""=10 microns, 

close t 0 th e minimum of t he curve, the cr1t 1cal fie là i8 8'70 cm 

sec-1 and the effic1ency, thougb nearly a maximum, ls onlv 

about 3~. 

A calculation was rrade of th e growtb of a drop whose 

radius s is 15 microns, fe.Iling in a cloud which has the 

Idea1ised characteristic of equation (2.1), (f1~ure 2.1.). 

The numerica1 computation necessary fer figure 4.1. 
table 4.1, and much ofthat for figure 4.2 were ce.rried out 
by M. Rerschorn. 
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Tt grows by absorbing any droplets with which tt c011;des; 

-3 it ls found to increase in re.dtus by only 0.42 X 10 rntcl"ons 

peI' second, so that it would take roughl;r 40 minutes t.o 

increase from 15 to 16 microns radius. F.ven 18 micron drops 

(which are sce.rce in the t.ype of cloud considered) only grow 

at tbe rate of 3X10-3 microns peI' second .• 

The observed stabllity of F8.ir-weatber Cumulus clo'\.1ds 

ls explained by these fi ndine;s. Tt is evide1:1t. +,bat the v8.Iue 

of 3 found on th e earth is too small to coagu1e.te +bem. 

Simi1ar ca1cul9t ions were c8.!Tied out for a field twice 

as gree.t; much faster growth i s f ound. The rreth ad of 

ce.leuls.t.ion was purely numerical. "'he results are shown ~_n 

table 4.1 

Table 4.1. 

Rate of i ncre8.S e of 5 
(X10-3 rrlerons pel" second) 

~ l 5" 15 18 microns 
cm sec-2. 

980 0.42 3.0 

1960 5.6 15.1 

Doubling the gre.vltatione.l field 08.S 111cre8.sed t.he 1"8.te 

of growth of a 15 micron drop by about 13 times, and of 8.n 18 

micron drop by about 5 tirnes. The relative ve10cities have 

aIl been dru ble d, sc th at th e drop falls p8.St twice as me.ny 
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droplets in a given tlme, but !rore important still, this h8.S 

resulted in greatly Increased collection efficiencies, so that 

overtaking results in collision much ~ore often. 

To pursue the growth of the drop, cS.lcul!3.tions were 

continued by a. partly a.ne.13rtical method, 'ln wh1ch the function 

E was approximated by suite.hly chosen fixed va.lues, 8.'1'11 the 

rate of growth dsfJ.t; found by 1ntegrat1on. fTlhe resulttnp: 

graph of d.sftlt B.gainst s was integrB.ted numericB.lly :bo obta5.n 

s ~gainst t. The overs.ll B.C curacy i8 estimated to be !=l.bout 

1010 in rate of growth. The drop becomes too bt~ far Stokes' 

Law to apply, so a semi-empiric~l law fOl" termine.l velocity 

was ooed. At thls stage, efficiency can be tB.ken to be 100% 

for aIl significant drop sizes. 

Figure 4.2 shows the way tha.t th e re.dius of the drop 

increases witb time, ste.rtimr, from 20 micron re.dlus, (do-t:ted 

curve). The drop r-:rows quite rapidly, reachinp: raindrop size 

in about 25 minutes. 

The other curves are c opied from FToughton (1950) and are 

for 9:: 980 -2 cm sec • The lowest line ls for a re.ther homo~eneous 

cloud of medie.n ra.dius 7 microns and water content 1 9W1 Yn.~! 

The other solid line is for B. nimbostratus of we.ter content 

2 -3 
~~ 'M. In both, growth is SION to sta.rt w5.th. fTlhe de.shed 

curve 18 fer an ice crystal plate in water-saturated B.ir at -5 C. 
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Its initial growth i8 comparable with that for ~:.1960 cm 
-2. 

sec , 

The gravite.tional field used for t his calcu1a.tionis 

not found in th e earth f s atmos phere, of co urse. uowe~TerJ' 8. 

steady s.cce le re.t ion of the e. ir in which e. drop and dronlet 

finà themse1ves wruld produce the se.me effect e.s a I!r9.vitatione.l 

field, e.nd could bring about c011is1.ons. .f:my kind of 

acce1eration of the air w0Il1d produce tempore.ri1,? the effects 

of a gre.vitational field, and could 13.1'30 cause coIJ.i sions. 

In the next section we shal1 con8ider systematic and random 

motion of th e s.ir in a stre.ight 1ine, as intermedi.e.te St9.&tes 

in the approach to the s.ctual motion of turbu1e.nt e.ir. 



2.b 

5. 01TE - DIME:NSTONAL EXCITATION. 

5.1. Sinusoidal ~xcitation. 

Consider a pe.rcel of air conte.ini!'lbt the drop (radlus SI 

time consts.nt,..s) 8.nd the droplet (radius r, tirre constant T~) 
1\ 

to be in sinusoidal rrotion witb pee.k veloclty V and ançtu1~.:r 

frequency w. rrhen th e instantaneru s air veloc tty 

The motion of the droplet ig given 01' suostituttnbt for V in 

equation 3.7, and s olving for 11;.. l'fIhe droplet veloc:ttv is 
1\ 

If. . ~[ V e.)(p(lWt')] • 
.,. - 1 +~Ulj ... 

(5.1) 

Or in the notation custome.r1' in eleetrieal nroblems, where the 

symbols ~ and ~~p(lv.lt) are omitted 

v 
(5.~) 

For the drop y 
VS:. 1 + 4WIS 

(5.3) 

So the re18.t ive v eloe ity 

u= ( 1 + i W 1'.:1 ) (1 -t- ~ w"ty ) 

Taking B.bsolute values only, the re18.tive velaelty of th e 

drops (compared to th e air veloeity) ls btiven b~r 

(5.~) 

This functlon 1s shœn in flgure 5.1, where IvI1S' pH,.f;tl::rfj,:-c'-
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Figure 5.1. Relative velocity of drop and drop]et 
with sinusoldal air velocity of frequency f· 
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against 5z.W/27f for '(':10 microns and .1=15 microns.o\t very hi!!b 

frequencies the droplet moves very 1ittle and the drop even 

les S; -, the relative ve10clty goes as W • At very low frequencies 

the droplet moves wi th the air and the drop lags very litt le, 

the relative velocity goes asW. At about 100 c/s (in this case) 

the relative ve10city is 13. me.ximum a.nd i9 s.bout two-fifths of 

the air velocity. With 13. !!reater disparity of drop sizes, a 

range of frequencles cl3.n be found in which the drop1et follows 

the air closely and the drop stays B.lmost still; in t.his r~.nqe 

U almost equals V. 

Now conslder sorne flxed frequency, and a fixed drop r13.d1118 

SJ( l3.nd therefore fixed "'t'J') and v8.ry r. rr'he pA.rameter K ln 

Langmuir's Equation ls proportional toJY'so the.t for ver~r small 

droplets where "r", is very small, K ia weIl below the crit.lcal 

value B.nd collisions are impossi ble, unless fu e velocit,les U and V 

are both extrerrely le. rge. On the other h and, if the dronlet 

1 s nearly a.s b1.g as th e drop, "t'Y' nearlv equals "r.s' B.nd equat ~.on 

(5.5) shows that the relat~. ve velocity U becomes very srnall unless 

the air ve loc i ty ls aga in very lar!!e. A.t 1. nterrred1.a te values of 

Ir , f< can exceed the crl t lcal value for rnoderate values of V , 

and collisions take place. ~his is ~ust the klnd of behavlour 

found earlier for ~ravitational excitation. 

At 101'1 frequenc ies, where w~«" the s :lmi 1ar1.ty bec orres 



an analogy. Equation (5.5) becomes 

lul2. ~ lVI1. w l. (~-7Y'Y . 

Putting /V/w= A, the peak accelerltion of the air, 

then the peak rele.tive velocity 

lUI ~ A ("5 -'1'Y') , 

closely pe.re.llel to eque.tion (4.3), but wUh the oeal.{ 

accele~ation A reple.c1ng the grav1tational field J • 

5.:2. 'J'urbulence. 

(5.'1) 

In the clear atmosphere turbulence 1s ce.used by the 

wind sbear which results from the e.ction of the IZround on 

the wind. In a vertically developed cloud there ls a sHear 

between the updrafts e.nd the surroundJng air. :Sntrainment te.kes 

place e.nd the moti on becomes strongly turbulent. 

Although turbulence has been studied theoret 1 cally and 

exper1mentally far several decades, present-day knowledge ls 

very incomplete. T'.~uch work ha.s ~one into develop1.ng: an 

B.dequate mathematical description but this is still in an 

active stage of developement. Experiments "in the field" he.ve 

mostly been ai:t1"ed towe.rds learnin~ !:l.bout diffus ion of w~.t. er 

vapour or smoke in the elee.r atmosohere, and none seern to hq.ve 

been carried out inside clouds. ~.lfany flig:h+.s }rave been ms.de, 

i t 1s true, in which the acee lera.t ions (or "bumps If) of th e 
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aircraft B.re measured, but the 9.1rcraft trB.vels so far in a 

short time the.t this merel" reveals the d".st.rlbut"'on of 

updrafts e.long 9. horizontal 1ine, rather than t.he ve.J"'~ 9.t. loT' 

of the velocity of one region with ttme. 

The most useful results so far are those obtaired fT' 

wind tunnels. In deseribin~ turbulent f'low, any steë.dy motion 

of the air must be subtracted out first so th at the rree.n air 

ve10city over e. period of t irre tends to zero as the perlod 

tends to infinity. rrhe work of Sirrmons' and Salter (1934), 

Town*end (1934), and ~ay10r (1935) and ~ownsendh many 

pub1ished pB. p.7rs show that turbulence in air weIl cle8.r of 

any boundaries, such as the walls of the wind tunnel (or in 

the 8.tmosphere, the ?round), car then be expected to he.ve 

the fol10wtng proper·ttés. 

~b e mot ion of t.he 8.5. ris random a.pd Gaus si.an, mh ich 

mee.ns trot it ls not possible to pred1.ct the 9.ctU!~. 1 veJoc"'+v 

at s.ny distaDt place or time, but only the probabillty 

distribution of velocity, and thet the distribution is a 

Ge.ussian or normal error curve. ~he motion 18 8.1so sts.t.tone.ry, 

homogeneous and isotropie, which mea.ns tha.t t.he statistical 

propert ies of tœ mot ion are independent of ti rre, pIe.ce, B.nd 

the direction of tœ axes of reference. 

l'J1he velocity of 8. percel of air which conta5.ns e. drop 
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and sorne droplets can be resolved along one 9. X~S, and the 

occurrence of collisions may be calculated in one dimension. 

Since the turbulence is isotropie, the situation must be tbe 

SB.me in each of the three dimens ions. Just how t. he one-

dimensional results can be used to give the rate of occurrence 

of collisions in a three-dimensional system will be d'scussed 

in section 6. 

Of course, if the motion were reallv enttrelv in one 

direction, a drop would make aIl possible collisions in 8. very 

fewexcursions througb the droplets, and would then mO,Te in 

a clear channel, making no more collisions. Anv transverse 

motion, however, would ensure that the drop was alw8.ys encount-

ering a fresh s ample of drop let s. 

5.3. Random Excitation. 

The problem of coalescence bV one-di mens ional e:~c i t8.t i on 

in general cs.n be ap~oe.ched 1m the follo'Jfing W8:V. rnhe s.ir 

velo ci ty Vis a funct ion of t i 111e 8.nd c an he wr i t.ten V (1:.) ; 

simils.rly, the rel8.tive velocity 1.s written U(t)! rTlhevare 

linked by two linear differenti9.1 equat 1_ cms 1 

v'" .:f- Il" ~ = V(t) , 

Vs + 1$ dvs :. V (t), 
Tc 
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and the linear equat ion 

Ui.l0) 

so that V{t-) can be regarded as the ce.use and Urt) t ,he effect, 

in a linear process. 

The straightforward application of Fourier transforms 

to probleTPs of this kind is weIl 1rnown (for exe.mole, see 

Campbell and Foster (1948) pa~e 24). First, the complex 

exponential l"ourier transform of V(r)is obte,ined; this is V(w)) 

the spectrum of the air veloclty. }!ext, V{w)must be multlplied 

by the frequency response of the proces9, which ls ~ivel1 bV 

equation (5.4). The product 19 U{w), the spectrum of the 

relative velocity; applice.tion of the inverse Fourier tre.nsform 

glves U(~, the relative velocity Itself. 

If V (t) were 8.ctually a def,imite funct i on (such as 9, 

square wave), Urt) wou Id be one aIs 0, but in our prohleTP 

19 a random function; and the above method ce.nnot be used as 

It stands. Since the air veloclty V(~ Is random and Gaussian, 

the relative velocitv U(I:-) must also he random 8.'111 Ge.ussi8.n. 

F'O!' calculating the rate of collisions, ft is necesse.rv to 

know the probability distribution of the re18,t1.ve velocitv, 

and nothing more. Since we 'k"now that the probabtl1tv distribution 

is Gaussian, it is completely specified by its mee.n square 

value. The problem reduces to one of finding tbe mean squa,re 
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2-relative velocity cru in terms of the 9.ir veloctt:v V(~) . 

'T'he method used is believed to be due origine.lly to l'!.W,iel'ler; 

it will be outlined here, witl-Jout sbowtng how the steps may 

be justified. 

rrhe s.lr velocity V(t) is a rardom function witb 

station8.ry properties, so that it can be descrlbed bv e. roean 

square rs/ e.nd bye. spectrum IV(w)l~ ('T'he spectrum 

can be obte.ined by tJ8.king tre cos 1ne Fourie r tre.nsform of the 

correls.tion function of VM ). Parseval t s theorem states thl3.t 

(.5.11) 

and by 8.pplying it to the definit~on of (j/ we rird. 

(Sv~~ ~ .J- r-T 

IV(t)l\lt-:: t.- rœ 

1 v (w)rcJ.w. (5.1?) 
T ... ao '2.. T 1.T T~OO 106 

In this way IV(VJ)I2. can be norw9.1ised correctly. From here the 

procedure is simile.!' to that descrlbed for definlte functions, 

but the spectra B.nd. the frequency resnonse a.re aIl in modulus 

squared forme 'T'he air velccity st:ectrum IV{W)/2 must be 

multiplied by the square of the frequency resDonse, @:tven b:v 

(5.5). 'T'he product ls 1 U(w)t~ tbe spectrum of t,he rel~t{.ve 

velocity. (Tbe cestne Fourier tra~sforTl' of thts wou]"! qtve 

the correlation function of U(t), but this ts net. neederl fo'!" 

* The autbor was fortunate in be.ving the collabore.tton 
of Z.A. Melzak for th is part of the '!Hork, UP to rrable 5.1. 



the present purpose). A.prlving pp..rseval's thenrem 8.ge.1n, 

l. 
this tirre to the definition of <Iv , the mean squ9.re of' +."'e 

relB.tive v eloc tty, we fir..d 

~2::~.-L fT IU(t-)I\h :: J;-.. .-1-(00 IU(wJll.J.w 
u T~oO 2.. T J-T T4~ 2 T tao 

::~ iT t:IV{w)lll~r dw . ( ,'3 • 13 ) 

Thus 
l. 

()u ls a k1n1 of mean square of the a ~.r ~!eloc ~. t.v sDect.rUJ1'1 

weighted by the response spectrmr, where a-/, W8.S the unweighteo 

mean square. 

It can be seen thet 18 proport i onal t 0 z av , and 

that the constant of proportionallty depends on l"s 8.nd 7r-

and on the spectrum of fu e 2. ir ve loci ty V. Tt can aIs 0 be 

seen the. t 9. S pe ctrum the.+; ls c oncentrated arrund 100 c/s, when 

weighted by tœ frequency response shown 1.n flç:ure 5.1, 'l!ITould 

givee. le.rger vB.lue of (jJ' than one in w'h.lch t.he spect.r~.l 

density WB,S lov a.round 100 c/s. '"l'hus, 8.1t''1ouQ'h one 10es 'not. 

wlsb to lmow 8.nythlng about the spectruJ1'1 of U, somet.himr 

must be known about the spectrum of V for the rret.l,od t.o Q'ive 

1 s,n;YT vB.lue at aIl for O"v . 

The foreg:oing procedure W8.S cB.rrted out for a nUJTlber 

of trial spectra of the air veloctt:v V, witb the results shown 

ln table 5.1. 

In tbis Table, the spectrum of V 18 given in the second 



Air Velocity Spectrum 

Ne.me G(W) * 

Markoff 

(Exp one nt i al 
crorrelation 
function) 

Gaussian 

~Normal Error 
C'urve) 

Unlform Band 

WL. ~o WH 

Delta Function 

CCis'oidal 
os ci ll8.t i on) 

* 

0 VJ <WL. 
cr;'L 

WL.~W~ WH ~ 
WU-wL. 

0 WH<W 

TABL~ 5.1 

~!.ean Square-

"* Glesed' Ferrr 

These two columns of the table and the theorem are the workof 

Relative Velocity 

(J'ua 

Infinite Series 

z. A. rielz8.k. 

~, 'e 9.11 Square 
'cceleration of ~ir 

(Jt2. 
A 
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column i11 t.he form of 9. spect.ral densit.y functton 

(5.14) 

Wbere < ).."'. signifies the avere.ge tbver a ve.n~shtnŒly 

small portion of the sr:ectrum a.round w. '11his deflJlnltion 

elimine.tes t. h e oper8.tor ..ew... -L from +:be formulae; the spectruTl1 
• T....,oO 2.T 

ls now normalised so that 

(5.15) 

and the mee.n square relative veloclty 

(5.16) 

ITlhe third column gtves the mee.n square re18.t.1.ve ,7eloc~t\r 

calculated by equ~tio~s (5.16) and 5.5). Tt shows the dene~de~ce 

on the drop and droplet time consta.nts, on the shape of +re 

speetrum, and on some fixed frequeney Wo whtch 5s ch9.ra.c"":er~st,lo 

of the spectrum (two fixed frequencies in one case). 

'T'he expressions far rso"z' were expan ded in ascendincr 

powers of Wo a.nd the first t'Wo terms e.re llsted 9.10p çr. s~de the 

exact formula.e. Tf the character 1. st 1e frequ ency'û)o 1 s snlA.II 

enough, aIl terms exeept the ftrst can be ne~leet:ed. ~ore 

specifically, the condition ls 

Wo 1"5 ~< ( 

(a'r w~ 15 <<:. 1 ) 
(5.17) 

In 8.11 cases except tbe first, tbe expressions 9.re very 

slmilar, involving ("T's-'-v-Y' and a qU8. ntity havlna the dfrnenslo1"ls 
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of mee.n sqU8:re 9.e ce lerat ion. For c omparis on, the mean 

square 8.cceleration of the air motion 
a() 

(j'A'!. = t c;.(w) uJ~ Jw 
(5.18 ) 

has been calcule.t.ed far' each spectrum anà. 1.s lister) 1.,., 

the last column. 

It ls evident that wb en the condition (5.17) ls 

fulfilled, in any case except the first, the mean square 

relative velocity and the mean square air accelera+ion are 

re1ated by t.he equation 

<rul. ~ (JA2. C'1"s-"rv-)"2 • 

The ana10gy w:tth equation (4.3) 

V:: ~ (1"5 -7y ) 

far a p.:ravite.t~_ onal fie Id is complet.e. 

(5.19) 

~he result (5.19) apo1ies to any spect.rum concentrated 

at low frequencl es, rege.rd"les s of its form, 9.S the following: 

reasoning shows. A theorem will be used: 

If an s.ir velocity spectrum G-,(v» p.:1ves r1.se -to 

a mee.n square relat.jve velocit,r <JIII "1-} a snectrum G1 {VJ) 
l 

to o-Ul etc., tben e. S"!;B ctrum 

G-(w) 
glves rise to a mean square relative velocit·v 

'1 ). 1. + cru :. <rUI +6"V2. .-----

The air veloclty spectrum ls à. tvided up into a la.rae numher !bf 

narrO\~ elements, so that each can he rep18.ced by 9. unlform be."nd 
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like the one listed in fJ'1able g.l. l ,et W"'H and '""",,- be the 

upper s.nC!. 10'\l'ler bound4r1.es of the nth. port ion where 

and define 

'Tlhen for aIl porti ons of th e s p3 ctrum far wblch 

1. 

<rA" (1"$ -7 .. f' (Jv", : 

= 
l. 

W'" e;. (w",) (Is -7l'"Y" 

a- dJ 

'l..~ L o-v: = ('1s -TY'/ Z w ... :t G-(w",) . Then <ru -
"'., 'h' 1 

In the limit as the elements become inflnitesimally na.rrow, 
01 

0"'", l.: ('l's -T.,.) 1. l eN 1. G- (e,..)) J.w 

~ ('t.s -'1\_)1.~A?. 

This result does not apply if 
:l 

(JA rece ives B.n a.onrec-

iable contribution from those pe.rts of tte spectrum for whi.ch 

ls near to or ~reater than unlty. ~he Warkoff soectrum ls of 
2 

this type, and Its fcrmula for av differs considerably from 

the others; 8.ctually, the integre.l for tJA '1. does not converp:e. 

Untll more is known e.bout the spectrum of turbulence 

inside clouds, it i8 not possible to se.V whether cond~ti.on 

(5.17) will be met. If measurements show tha.t it is met, then 

the simple relatlonshlp (5.19) will hold, and only the quantity ~l 

need be used. If the condition ls not met, then equatlon (5.16) 

will have to be 8.pplied. 



5.4. Collist ons by Random :?xc1te.tion. 

There 1. sone di f ference between e. gravi tat t orH'!.1 fle Id 

and B. random one-dlmenstonal acceleration tbB.t bas to he te.ken 

lnto e. c~ount; it ls the.t tœ relat.lve veloc1t:v U ls re.ndom, 

not steB.dy as it was in tbe compute.t ions of section 4. 

'l'he probe.bility of tbe rele.tive veloclty l:vimr hetween 

U e.nd U+dU i s 

1 (Vl. ) l' (u) J lJ = j2rr'"e,xp - -----2 l cl. U . av 2IT ~II (5.20) 

Tbe probability densit~T 'PlU) ls norme.lised so t.rat 

fX> p(v) J.u :: 1. 
-CJ(1 

The mean speed lU) :t9 given by tbe wei~bted Integre.l 

ÏÜÎ ~ 1: luI 'P{U) dU :: 2 tOO 

U -p{v)JU , (5.21) 

sinee p(v) :: p(-u). Tbe volume swept out br a droo re.dius 

in unit tlrrs ls Q ~ ns1 /U/. If tbe collectlon eff:1cleney 

were unIt y, tbe qua.nttty Q would !:rlve the number of droplets 

p3r second very simply. Since tre collection effic1.eney ls 

not unl ty, q must be replaced by an equivalent swept volurre 

pel" unit time Q by replB.clng Ttsl. by Elf (s+r)l, 9.S (Es~ussed 

in sect ion 3.2. Since E depends on V , :t t must' be ta.ken i. ns ".de 

the integra1. Then the equivalent volume swept pel" uni.t t:lme 
10 

QI :: TT{S+'r)~. 2 LEU 'P(v)JU . 
(5.22' 

In the above formula as it ste.nds, ~ E de pend.s not 

only on U, but also on Sand r , so that the lntep:ral would 



he.ve to be evaluated 8.fresh for every c ombi nat i. on of drop 

and droplet. 't'his ce.TI be avolded by putt1m! 

U " U 0 K CA,,<l <lv:: Uo <fi< 

where U z 9'V}s 
o 2r'2. fs ) 

k i s the di:mens lonles s pare.meter in Iat1gorrruir' s equat10n (:; .10) 

and (JK is the root mean square of K. rrhen the prob~.bi.llt.v 

distribution of 1< is given by 

and the equivalent swept volume peI' unlt time 

QI = TI (5+V)1 2 Uo ~: E (K) 'P(K) K' JK 

, J2~ (SH? u. r E (i<) ~ exp (-(2~~') J K 

=J2.7f (s+v? Uoo() (5.24) 

where rA stands for the def~nlte integral. The value of ct. 

depends on <rI<. but not otherwi se on sand r; 1 t bas been 

computed for varlous values of "K' and ls p10tted in f1!Zure 

5.2. 

'rhe main trend of t.he curve ofo<versus O'"Kis to lncrease 

the rS.te of sweepingo uo droplets with incree.se of Ok. mh:ts 

18 simi1a.r to the trend shown in flmre 3.1, where co11ect,iol1 

efficiency increases with k. However, there ls no cr1t1.ce.1 

value of (JK below which D( is zero: 0< ls stl11 fin1.te, however 
et 

sms.ll c:t'I( becomes. rrhe phys 1cal 1 nterpI).at 1 on of th 19 d 1. fference 
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Is, tha.t even if the root mean square rela.tive velocity O"u 

is less than the critical value, U itself will exceed the 

critical va.lue for sorne part of the time. 

For exe.mple, if K:.I.O with gravita.tlon8.1 exc1t,a t.ion, 

no collisions oceur, because K< 1.2./Lf-; while if crI(: I.Ow1.th 

ra.ndoin excitat ion, collis i ons oc cur at e. rate g:1.ven by 0( ~ O.Ob 1) 

which corresponds to a mean collectlonefficlency of 4.9"h, 

still quite a lerge value. On the other band, the reductlon 

of collision rate wltb decreasing ()K is quite rapid; at CT,,:: 0,6, 

for example, the mean collectlon efflcienc:v is onl:; O.'7~, so 

that collisions, e.lthougb still not impossible, e.re much 

rarer. 

The pos 1 ti on regarding one-dimensionB.l excitation of 

a cloud can be 8uJTTmarised as follows: qUB.litativel'y, the 

effect is very much the saroe as gravlty, except that the onset 

of coalescence i8 more graduaI. Quantitativel:;, g:lven anv 

value for the mean sque.re B.ccelere.tion of the turbulent, air, 

and prov1ded a. certa.in condition 5.s fulfilled, the re.te of 

growth of a drop in a g5.ven cleu d can be computed. ~TO 

measured value for rrea.n squa.re acce lerat ion Is e.vB.1lable S 0 

fa.r. If the condition i9 not fulfilled, the complete spectrum 

of the turbulence will be requlred. 
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6. TFRffi-DUlTEFSIONAL EXCITA'T'ION. 

6.1. Extension of One-dimensions.l results. 

The derivs.tion of a three-dimensional treatment of 

turbulence from the one-dimensions.l results of the previous 

section can proceed on the followin~ llnes. '"Phe rels.tionshltl 

between the component of relative velocitv Ux and the comnonen+ 

of air acceleration Axin one direction is linee.r 8.nd 1ndenent'l~n+ 

of the velocity and acceleration in the other two direct.lol1s. 

If we consider an isotropie air motion, for which cond-ttion 

(5.17) is v9.1id, the mean squares of the three components of 

relative velocity are relR.ted to the mean squ8.res of the three 

components of air acceleration B.S fol10","8: 

0" v~ := cru: : <Yu; = CA; (Ys' -1"v-t " <TA; ('1"s - 1'"v-t = O"'AJ"1 ('1.5 _I~)l. (6.1) 

If U is the re1e.tive speed, its mean square 

(6.2) 

Temporarily, the aS8umption is made the.t the components 

of air motion in the three directions are mutually independent, 

(as they are for molecular motion in the Kinetic rrheorv of 

Gases); the compo.nents of relative veloclty s.re then mutu8.1J.v 

independent also. In such a cB.se, the weIl known M'e.x~eJ15. 8.n 

law can be applied to the rele.tive velocity, and the orohe.h11:tty 

distribution of relative speed 

'P (U) J. U.J~ ~: ~tP(- ut l) cl U. 
u" 2()u~ 

(6.3) 



(See for example Jeans (1948) section 91.) 'fIhe express~on 

(6.3) is norme.lised. 

'::'he calculB.t 10 ns c an nolV PY'oceed 8.S in sect l on 5.4, 

but with equ8.tion (5.20) repIe.ced by tre new proh~.b.(.,ihr 

distribution (6.3). rr'l"1e ne"" d:l.strfbu+iorJ -t.s D8.r ..... o""'er +'~~l.l" 

th e old, s 0 the resul t of the procedure wou là. oe a curve of 

re.te of colUstons reserrbling: figure 5.1 in essence, hut 

differing in dete.il. In particulB.r, e.t s·-:18.11 iT8.1ues of lS"'KJ t.he 

value of ~ wes achieved by the fact th8.t the relat-tve velocltw 

U cons i derably excee ded :t t ,s RYS value for part of +- he t 1 rre. 

In the three dimensions, the narrower distribution of speed U 
makes such excepttcnal values ofU rruch less proh8.0Ie, so that 

the curve ';vruld be lower and steeper than the one in ft~ure 

5.1. In fact, s ince the ' ClJs tri ou+'1. on of U 1. s -r n+'erT"Ted-t "l.te -r n 

widtb between the broe.d distribution of U in one-di'ti1ens-f.o118.1 

random '!11otion and t.he inftnttelv narrOWM" dî.str1bu+.ton of U 

for stee.dy motion, the curve of rate of co1.l1s1('m moulà hA 

lnterrnediate in shape bet~een f!~u+:e 5.1 and ~e curve for 

a gravH8.t :fon2.1 field, whtc\:1 :Ts zero belo~ Kt 1.t;>14. 

For fuese computations, tt would be neceSS8.rv to !mom 

the mee.n sque.re HCC e lera ti on of the thre e-d111"eT1S t on9.1 1:my'1:1u1 en+: 
l 

motion, sa that cru can be calculated far ee.ch p8.fr of drop 

and droplet sizes. As before, this qual:tit;v has not oeen 

measured. 

Besides tbis prs.ctlce.l difficulty, however, tbere 1s e. 



fundamental ob,iection to the TT'etbod described. rrhe 

assumption we.s m8de that the cOTT'ponents of eir motion were 

mutually independent; this is not. true except on the molecule.r 

scale (Batchelor (1952)). B'ow this wrulà. e.t'fect t.he results 

ts not. easy to say. Instead of attempting te medify the 

procedure to 8.l10":,,r fer tl:1e tntere.ction of ve10cit.i.es tn t.hree 

dimensions, i t seems it l'\7ould be more profitable t .o ste.rI": 

with tbe more fundamente.l approe.cb to tbe n8.t.ure of t .llrbuJel"t 

motion tbe.t. is now becomlncr e.vailable. 

6.2. Tbe Modern Theor~of 'T'urbu1ence. 

B8.tcbe10r (1952) gives a gocrl account of t.he modem 

theory of turbulent motion. 'J'he velocity field at an ~.nste.nt 

of time is subjected to e. three-dimensiona1 Fourier trensform. 

rrohe result is a spectruTT' in three-di1'l1ensionA.l 'TIl8.ve-nurriher SDP.ce. 

'T'he diste.rce of 8. poiret in wave-number space from +he orio:'fn 

ls the reciproxal of the size of the eddles which it renresents, 

so the.t the nearest points belonS! to tbe lR.r~est edè1.es. 

Heisenberg (1948) he.S developed the theory by using 

dimensiona18.rgurrents. Fe 8.r'Y'tves B.t 8. plcture in 1~hich 

turbulence is an inter~ediate sta~e t~rouçh whlcb energy 

passes on its we.y from e. source to event.ua1 disstp8.tion by 

viscous fr1.ction. Edëlies of e. p8.rt1.culpr size B.re a1111)'8.'\TS 

being converted by i:r:erti8.1 ferces into smaller eddies. fTlhe 

energy from tbe source goes B.t first i rt 0 large edà5. es (of 



size comparable to the boundaries of the system), whlch then 

h8.nd i t down t hrough srraller and s ma 11er e ddi. es • .r.,. s a carte. i 11 

size js reached, the energy goes itlto viscous fr"tct1on lnste8.d 

of into still srnaller eddles, and the spectrum does not extend 

appreclably beyond th ls si ze. 

rrhis wave number theory 18 not very closely rele.ted to 

the frequency-spectrum treatment considered prev1.ously, chleflv 

because the wave-number sp3ctrum describes the sts.te of e. l8.rlZe 

reglon of space at e.n instB.nt of tl'Y'e, while t.he frequercv 

spectrum describes the movements in time B.nd spB.ce of a stN!le 
bi 

e lement of the flui d. Fowever, in a serri':'quant i.t et!e way one 

ce.n ass oc i ate the small eddie s wi th hig!:! frequenc tes, B.nd H , t s 

possible,at lee.st in principle, to transforrn equations from one 

system to another. 

The virtue of the new the ory is that its results ~re 

expressed in terms of very few initial facts. Insteed of a 

me8.n square velocity or 8.ccelere.tlon and a frequency spectrur1, 

neither of which are known, the main quantity which determines 

tbe nature of tœ motIon :ts t he rate ' of supply of energy per 
W\.4.SS t 1 

unit %fOhlTAO~. The energy i8 supnliea. by trermal processes in 

the atmosphere, and. ca n be deduced from such facts e.S the 

temper8.ture 8.nd humidity, which ha.ve bee n mee.sured in t,yn:tcal 

cas es. Bre.ham (1952) ha.s drawn up an energy bud~et for a 

thunderstorm, 8.nd. 8. S imil8r budget for a fair-WGfl.ther "'umulus 

cloud would give the requlred value of ~. 



The vect or equ8.t ion for th e acce lerat 1 on of a parcel 

of air in non-lrrotational flow is 

~ 'd ~ _)r­A :: ~ V + (V.\l V (6.4) 

If the new tbeory of turbulence is to oe 8.polied to the orohlem 

of collision between drops, it must provide the prohabilit,y 

distribution of accelere.tion, 'P(IA/) cl/AI. ~he relat-tonshtp 

between lUI and lAI must then be re-established. B.nd p{V)otu 

obtained. From here on, the iVorl{ will foJJ.ow sect.ion .5.4. 

Of course, an indirect determination of turbulent motion 

of this kind C8.Düot repl8.ce reliable and accurate direct 

measurements, but unti l sucb me8.surerrents can he made, it perhaos 

offers a means of reacb1ng a conclusi on. 



7. Sm.r;"r~RY A}.TD CO!'!CLUSIONS. 

The observed genera.ti on of moderate of' beavy r8.5.n in 

clouds war~er than 0 C m~kes It necessary to loo~ for an 

alternative to the Bergeron-Findeison ice-phase mechanism of 

re.i.n formation. Calcule.t ions, be.sed on I ,e.ngmuir 1 s "1.Vork on 

collision between drops, show th8.t·p.:re.vitv br~. ng:s s.bout too slow 

a settling fo~ coalescence to take place; tb~s reevlt ~ccounts 

for tbe observed ste.bility of fe.tr-1veatber cumulus cloue-J.s. 

Increasirg the gravitational field by a r~ctor 2 mould 

greatly increase the rate of ~rowtb of drops by coalescence, 

pr'oduc ing raindrops in s.bout 30 mi nutes. A stes.diT 8.ccelere.t 1. on 

of the air of the cloud produces the same effect es an extra 

gravitational field. rrhe updre.ft in 8. Cumulus cloud i s turbulent, 

and produces a fluctuatirg acceleration. A one-dimans 1 onal 

treatment of turbulent motion shows thts accelere.tion to oe at 

least 8.S effect ive as a steady ac ce lerat ion equal t 0 "' t s r.M.S.value 

in brins ing about coalescence. 

A difficulty of a theoretical nature, and the very 

practic8.1 one that no measured values of turbulent acceler8.tlon 

are ave.1Iable, prevent t hi s treatment from 8.rr'l v "' .. r.2: e.t a def1. nt te 

ste.tement whether turbulence plays s. n important pe.rt :l TI "' . .,..,1 t -te.+':l or. 

of raine Tt rr'ay oe th8.t la rflore fundamsnts.l e.p'Ç'ro.9.ch tl>rourrh 

energy considerations will give the answer. 



If turbulence is the pr1.1Y8.ry ce.use of re.:l n 'tV}"d.cn forJ"'ls 

in W'I3.rm clouds, it must. 8,lso be an impor·tant fe.et.or in S:!.r'1U.8.r 

clouds which B.re cold enough for the ice ob9.se to E'n'~st-.. ;;rhere 

the Bergeron-Finde:i .. son proces 8 i s predord Y'EJ.nt, +'~en tur'bulence 

will help B. fB-l1inv snowflake to colleet sUYJ"~rcooled droDlets. 

'Hhere c08.1escence by t"t.:œhu1ence becorres este.blished -jn the 

• lower part of a cloud, it may inh~bit an ice-phase process bv 

cutting off the supply of droplets. 
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