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Abstract

Rlter-feeding macrozooplankton were collected from 24lakes in south-central

Ontario to examine relationships OOtween environmental factors and methyl mercury

accumulation. Zooplankton methyl mercury levels ranged from 19 to 448 ng'g- I dry

weight in the study lakes and were highest in zooplanktoll from acidic brownwater lakes.

Water color and lake water pH were the oost predictors of methyl mercury levels in

zooplankton explaining 73% of the variation. Methyl mercury concentrations were

positively correlated with water color and inversely correlated with lake water pH. Water

color explained a greater portion of the overall variance in methyl mercury levels, indicating

that the supplYof mercury from the drainage basin plays a key role in deterrnining methyl

mercury concentrations in the lacustrine biota. Zooplankton methyl mercury levels were

weil correlated with mercury concentrations in smallmouth bass (MicropteNs dolomieuil

and largemouth bass (MicropteNs salmoidesl from Il of the study lakes showing

zooplankton to 00 good indicators of the relative bioavailability of mercury at the base of the

food chain.
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Résumé

Le zooplancton a été récolté dans 24 lacs du centre-sud de l'Ontario pour examiner

les relations entre les facteurs environnementaux et l'accumulation du méthylmercure. La

concentration du méthylmercure du zooplancton a varié entre 19 et 448 ng·g- I poids sec et

était plus elevée dans les lacs acides à eau brune. La couleur et le pH de l'eau du lac ont

expliqué 73% de la variation observée dans la concentration du méthylmercure du

zooplancton. La teneur en méthylmercure du zooplancton était positivement corrélée avec la

couleur de l'eau et inversement liée au pH. La couleur de l'eau a expliqué une plus grosse

proportion de la variation observée ce qui suggère que le bassin hydrologique à un effet très

important sur la concentration du méthylmercure dans les biotes lacustres. La concentration

du méthylmercure du zooplancton était fortement corrélée avec la concentration du mercure

de l'achigan à petite bouche (Micropterus dolomieui) et de l'achigan à grande bouche

(Micropterus salmoides) dans II des lacs étudiés, ce qui indique qu~ le zooplancton est un

bon indicateur de la disponibilité du mercure à la base de la chaîne trophique.
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submitted or ta be submittedfor publication. or the dearly-duplicated text ofa published

paper(s). These texts must be bound (L~ an inteRral part ofthe thesis.

If thü option is chosen. connecting texts that provide logical bridges between

the different papen are mandatory. The thesis must be written in such a way that it

is more than a mere collection ofmanuscripts: in other words. results ofa series ofpapers

must be inteRrated.

The thesis must .~till conform to ail other requirements ofthe Guidelines for thesis

Preparation. The thesis must include: A Table ofContents. an abstract in EnRlish and

in French. an introduction which dearly states the rationale and objectives ofthe study, a

comprehensive review ofthe literature. a final conc/usion and .mmmary. and a thorouRh

biblioRraphy or reference Ii.~t.
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oril:inality ofthe research reported in the thesi.~.

ln th.- case ofmanuscripts co-authored by the candidate and others. the candidate is
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such work and to what extent. Supervisors must attest 10 the accuracy of such

statements at the doctoral oral defense. Since the t(L~k ofthe examiners is made more

difficult in these cases, it is in the candidate's interest 10 make perfect/y dear the

responsihilities ofail the authors ofthe co-authored papers. Under no circumstance

can a co-author of any component of such a thesis serve as an examiner for

that thesis.·
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General Introduction

Mercury concentrations in fish in a large number of lakes in Canada. the V.S. and

Europe exceed levels considered safe for human consumption (0.5-1.0 Jlg Hg'g-I wet

weight) (McMurtry et al. 1989; Hâkanson et al. 1990; Sorensen et al. 1990; Verta 1990;

Lathrop et al. 1991; Wren ct al. 1991). Atmospheric deposition of mercury onto lakes and

their catchments is thought to be the primary source of mercury to these remote lakes

(Mierle 1990; Sorensen et al. 1990; Glass et al. 1991; Swain ct al. 1992). and since

atmospheric loading to the environment is on the increasc (Lindquist 1994), it is unlikely

that this problem will be resolved anytime in the near future.

Although only about 1% of the mercury deposited onto lakes and their catchments is

methyl mercury (Watras ct al. 1994), il is the species of interest with respect to the

contamination of the aquatic biota. Methyl mercury is a highly toxic. organic form of

mercury that is more readily accumulated by aquatic organisms than inorganic mercury

(OIson et al. 1973; deFreitas et al. 1981; Paulose 1987). Methyl mercury is readily

bioaccumulated because uptake from food and water is efficient whilt; <!p.puration is slow

(Kramer and Neidhart 1975; Phillips and Buhler 1978; Rodgers and Beamish 1982). The

principal sources of methyl mercury to non-point source contaminated lakes are: 1)

atmospheric deposition of methyl mercury onto the lake surface and drainage basin; 2)

methyl mercury in runoff waters- this includes methyl mercury that is deposited onto the

drainage basin but not retained there, as weil that produced within the drainage basin itself;

and 3) methyl mercury produced within the water column and sediments of lakes (Lee and

Hultberg 1990; Lee and Iverfeldt 1991; Hu1tberg et al. 1994; St. Louis et al. 1994; Verta et

al. 1994; Watras et al. 1994).

While inorganic mercury can be chemical1y methylated through a variety of

mechanisms (D'ltri 1990), the formation and decomposition or net production of methyl

mercury in lakes is large1y dependent on the methylation and demethylation of mercury by

microbes (Berman and Bartha 1986). A number of factors are thought to influence the net
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production of methyl mercury by bacteria within a lake including: 1) pH; 2) the availability

of inorganic mercury; and 3) environmental factors that affect microbial activity such as

temperature, the availability of biodegradable carbon, and redox conditions (OIson and

Cooper 1975; Bisogni and Lawrence 1975; Wright and Hamilton 1982; Rudd et al. 1983;

Callister and Winfrey 1986; Xun et al. 1987; Sterran et al. 1988; Regnell and Tunlid 1991;

Miskimmin et al. 1992; Ramlal et al. 1993). These factors ultimately affect the supplYof

methyl mercury available for uptake by the biota.

Studies indicate that a number of interrelated biological and environmental variables

influence the accumulation of mercury in aquatic organisms. Biological factors such as age

(Bache et al. 1971; Grieb et al. 1990; Lange et al. 1993), size (MacCrimmon et al. 1983:

Grieb et al. 1990: Lathrop et al. 1991; Fjeld and Rognerud 1993; Lange et al. 1993) and

diet (Phillips et al. 1980; MacCrimmon et al. 1983; Mathers and Johansen 1985: Cabana et

al. 1994) have been shown to influence mercury concentrations in fish, while surveys of

fish mercury levels indicate that environmental variables such as Jake water pH (Wren and

MacCrimmon 1983; Cope et al. 1990; Grieb et al. 1990: Wiener et al. 1990: Wren et al.

1991 ).Iake dystrophy (McMurtry et al. 1989: Hâkanson et al. 1990; Sorensen et al. 1990;

Wren et al. 1991), productivity (Hâkanson 1980; Lange et al. 1993) and catchment area

relative to lake area (Suns and Hitchin 1990; Lee and Iverfeldt 1991) are also important in

influencing mercury accumulation in fish. Although much less is known about the factors

affecting the accumulation of mercury in organisms at lower trophic levels in lakes, studies

suggest that variables such as feeding habits and life cycle (Parkman and Meilli 1993),

density (Sorensen et al. 1990), lake water acidity (Meilli and Parkman 1988; Allard and

Stokes 1989; Parkman and Meilli 1993). and water color (Meilli and Parkman 1988:

Sorensen et al. 1990; Parkman and Meilli 1993) affect total mercury concentrations in

zooplankton and benthic invertebrates.

Studies show that methyl mercury is efficiently transferred up the food chain to

higher trophic levels (Boudou and Ribeyre 1981, 1985; Saouter et al. 1989; Watras and

2



•

•

•

Bloom 1992). In fact, most of the mercury in fish is methyl mercury (Bloom 1989, 1992;

Grieb et al.1990). The uptake of methyl mercury by organisms at the base of the food

chain is an important step in the transfer of mercury from abiotic to biotic compartments in

lakes (Meilli 1991; Meilli 1994), and since diet is a significant source of mercury to fish, it

is also an important pathway determining mercury contamination offish (Meilli 1994). The

objective of the present study is to examine relationships between methyl mercury

accumulation in filter-feeding macrozooplankton and environmental factors. Filter-feeding

macrozooplankton are an important food source for fish and therefore factors that affect

their bioaccumulation of methyl mercury ultimately affect mercury concentrations in fish.

Since the uptake of methyl mercury by filter-feeding zooplankton is proportional to its

availability in the water column and in phytoplankton (Watras and Bloom 1992),1

hypotho:size that methyl mercury levels in the zooplankton will be weil correlated with

environmentaI variables that affect the supply or availability of methyl mercury in the

environment.

3
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Introduction

Although methyl mercury contributes only a small fraction to the total mercury pool

in lakes, it is the species of interest with respect to the contamination of the aquatic biota.

Methyl mercury is a highly toxic, organic form of mercury that is more readily accumulated

by aquatic organisms than inorganic mercury (OIson et al. 1973; deFreitas et al. 1981;

Paulose 1987). Moreover, methyl mercury is the fraction of the total mercury pool that is

most efficiently transferred up the food chain to higher trophic levels (Boudou and Ribeyre

1981, 1985; Saouter et al. 1989; Watras and Bloom 1992). This point is further

substantiated by a number of recent studies that show that virtually ail the mercury in fish is

methyl mercury (Bloom 1989, 1992; Grieb et al. 1990).

Mercury contamination of fish is a serious problem in a large number of remote

lakes in Canada, the V.S. and Europe that do not receive point-source mercury inputs.

Atmospheric deposition of mercury onto lakes and their catchments is thought to be the

primary source of mercury to these remote lakes (Mierle 1990; Sorensen et al. 1990; Glass

et al. 1991; Swain et al. 1992). Even so, mercury levels in fish are highly variable from

lake to lake within a single region and differences in the physical and Iimnological

characteristics of lakes and their catchments contribute to this variability. Regional surveys

of fish mercury levels indicate that physical and Iimnological factors such as lake water pH

(Wren and MacCrimmon 1983; Cope et al. 1990; Grieb et al. 1990; Wiener et al. 1990;

Wren et al. 1991),lake dystrophy (McMurtry et al. 1989; Hâkanson et al. 1990; Sorensen

et al. 1990; Wren et al. 1991), productivity (Hâkanson 1980; Lange et al. 1993) and

catchment area relative to lake area (Suns and Hitchin 1990; Lee and Iverfeldt 1991)

influence the accumulation of mercury in fish.

While many studies have examined relationships between environmental factors and

mercury accumulation in fish, much less is known about the influence of these factors on

the bioaccumulation of methyl mercury at lower trophic levels. Since diet is an important

source of mercury to fish, and given that methyl mercury is the predominant form of
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mercury at higher trophic levels, an understanding of the factors influencing the

bioavailability of methyl mercury at the base of the food chain would provide important

insight into the accumulation of mercury in fish. The purpose of this study is to examine

relationships between environmental factors and methyl mercury accumulation in filter

feeding macrozooplankton. Such zooplankton provide an integrated measure of the

bioavailability of methyl mercury in the water column and in phytoplankton (Watras and

Bloom 1992). Macrozooplankton are also an important food source for fish and therefore

factors that affect their bioaccumulation of mercury are directly relevant to the contamination

of fish.

Materials and Methods

Study sites

Macrozooplankton were collected from 24lakes in south-central Ontario (Fig. 1).

The lakes were selected from the Ontario Ministry of Natural Resources (MNR)

computerized data inventory and the Ontario Acid Sensitivity Data Base (MOE) (Neary et

al. 1990), to maximize differences in lake morphometry and water chemistry and minimize

distance between lakes. The study lakes were al50 chosen 50 as to minimize covariance

between water color and pH since these two variables have repeatcdly been shown to

influence mercury accumulation in fish and often covary in lakes (Meilli 1991). The

physical.limnological and biological characteristics of the study lakes are summarized in

Table 1. The study lakes are located within ISO km of each other and have no known

history of point-source mercury pollution. The geographical area of the study was

restricted to control for possible regional differences in mercury and SO, deposition. Ail

the study lakes are drainage lakes. having either an inflow or an outflow or both.
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FIG. 1. Location of the study lakes.
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• TABLE 1. Physical, limnologica1 and biological chamcteristics of the study lakes.

Variable n Mean 5.0. Min. Max.

Lake area (ha) 24 198 323 12 1377

Maximum depth (m) 24 17.3 14.3 3.4 71.1

Mean depth (m) 24 6.4 4.7 0.7 23.1

Dminage mtio 24 4.4 12.4 0.1 62.1

% Welland in the catchment 24 10.0 8.7 0 26.0

Surface water tempemture (OC) 24 23.5 0.8 21.9 25.0

Lake water pH 24 6.8 0.9 5.4 8.3

Conductivity (}lS.cm- l ) 24 60 53 20 224

Water color (mg Pt.r l ) 24 72 73 3 231

Total Phosphorus (}lg.r 1) 19 22.0 11.5 7.0 47.4

• Chlorophyll-a (}lg·r ') 19 3.9 .... 0.8 9.4......
% Nitrogen in zooplankton 23 7.5 1.1 5.4 9.4

Zooplankton weight (mg) 24 0.01 0.008 0.001 0.038

•
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Environmental variables

Surface water sampies were collected for total phosphorus and chlorophyll-a

determinations from the profundal zones of 19 of the study lakes in late May and early June

1993. Total phosphorus concentrations were determined in triplicate using the ascorbic

acid modification of the molybdenum blue technique (Strickland and Parsons 1968)

following oxidation with potassium persulphate (Menzel and Corwin 1965). Chiorophyll-a

concentrations were determined in triplicate for samples collected on Gelman AE glass fiber

filters following pigment extraction in 95% ethanol (Bergmann and Peters 1980). Lake

water pH, water temperature, oxygen, and conductivity were measured in late July and

early August 1993. Temperature and pH profiles were determined with a Hach model

43800 pH meter and electrode with temperature sensor, oxygen profiles were obtained with

an Orion model 840 oxygen meter and probe, and conductivity profiles were measured with

an Orion model 122 conductivity meter and data standardized to ZS°c. Surface water

samples were taken from the profundal zone of each lake in late July and carly August 1993

for water cotor determination. The sampies were filtered through a 0.45 pm polycarbonate

membrane filter (Nucleopore) and stored in dark bottles in a cooler until analyzed. Water

color was determined in duplicate in the laboratory by Iight absorbance at 440 nm.

Absorbance coefficients were calculated and converted to platinum color units using the

equation of Cuthbert and dei Giorgio (1992).

Lake morphometric variables including Jake area, maximum depth, and mean depth

were obtained from the MNR computerized data inventory. Lake volume was estimated by

multiplying lake area by mean depth. Catchment variables were obtained from 1:10,000

base maps or 1:50,000 topographic maps. Drainage area was measured using the cut and

weigh method. Percent wetland in the catchment was measured using the dot counting

method (Nilsson and Hâkanson 1992), from the proportion of the catchment covered by

map symbols representing marshes or beaver ponds. Drainage ratio was calcuJated by

dividing drainage area by Jake volume.
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Zooplankton collection and sample preparation

Zooplankton were collected with a 363 ]tm mesh plankton net in late July and early

August 1993, using vertical hauls at the deepest point in each lake. Great care was taken to

avoid contamination during the collection and preparation of the sampies. The net was

carefully rinsed in lake water before and after each use and stored in a c1ean plastic

container with a lid. Plastic gloves were wom at ail times throughout the collection and

handling of samples. Once collected, zooplankton were transferred to prewashed Teflon

vials that had been acid leached in 20% reagent grade HN03 for a week, thoroughly rinsed

with distilled, deionized water and stored inside two c1ean resealable plastic bags. Samples

were frozen within 1 hour of collection. ln the laboratory, zooplankton samples were hand

sorted under a dissecting microscope using acid-eleaned Teflon coated forceps and filter

feeding Cladocera selected for methyl mercury analysis. We chose to restrict our analysis

to filter-feeding Oadocera because they feed at approximately the same trophic level in ail

lakes. It was important to minimize variation in trophic level because it influences methyl

mercury levels in the biota and could easily have obscured relationships with environmental

variables (Watras and 8100m 1992). Once the Cladocera had been sorted and counted they

were freeze-dried for about 24 hours and then weighed on a MeUler AE 100 analytical

balance. Their mean individual weight was calculated for each lake by dividing the sample

weight by the number of Oadocera per sample. Nitrogen content of the Cladocera was

determined for duplicate samples with a Roboprep-CN analyzer. To determine if the

taxonomic composition of the zooplankton contributed to the variability in methyl OIercury

levels we identified a subsample of200 filter-feeding Cladocera to the genus level.

Samples consisted largely of Daphnia mJ!. and Holopedium gibberum. with Daphnia §Pl!.

usually dominating. Since Daphnia §Pl!. were the dominant filter-feeding Cladocera in

most lakes the taxonomic composition is given by the proportion Daphnia §Pl!. in each

sample. The data reveaied that the proportion of Daphnia mJ!. in the samples did not
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significantly influence methyl mercury concentrations in the study lakes lr:::QJJ7,

f=0.748).

Methyl mercury detenninations

Methyl mercury levels in zooplankton were detennined by aqueous phase

ethylation, gas chromatograph (GC) separation and cold vapour atomic fluorescence

detection (CVAFS) using a technique modified from Bloom (1989). Zooplankton (0.1 g)

were digested with 2 ml 25% KOH in methanol for 3 h at 70°C. An aliquot (500 Ill) of the

digestate was then diluted with 200 ml of wal.er, neutralized to pH 4.9 with acetate buffer,

and ethylated with 100 III of sodium tetraethylborate. The sample was allowed to react for

20 minutes and was then purged with argon onto a Tenax® trap. The use of a Tenax® trap

instead of a graphitized carbon column allowed rapid desorption of trapped mercury species

atlower temperature (275°C) and direct coupling to the GC (Van Tra et al., submilted).

Separation of the volatile alkyl derivatives was achieved by isothennal (9Q°C) GC

separation rather than cryogenie GC separation. Eluted species were thennally decomposed

(900°C) and the resulting elemental mercury measured by CVAFS. The detection Iimit

(3xSD) for a 0.1 g sample was 3.9 ng Hg'g-I dry weight. Certified standard tissues and

blanks were analyzed every live samples. SampIes were subsequently corrected for reagent

contamination. Analysis of 0.1 g sampies of National Research Council of Canada DORM

I (0.731± 0.060 mg'kg- I ) yielded 0.788 ± 0.053 mg'kg- I (n=8). Samples analyzed in

triplicate for three of the study lakes had a mean coefficient of variation of 14o/o±4%. This

variation was considered acceptable and therefore data for the remaining lakes are the result

of one detennination.

Statistical analyses

To examine relationships between environmental factors and methyl mercury

accumulation Pearson correlation coefficients were calculated between methyl mercury
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levels in the Cladocera and environmental variables. Variables significantly correlated with

methyl mercury levels were entered into a stepwise multiple regression and the OOst-fitting

model detennined by the coefficient of detennination and the standard error of the estimate.

Separate analyses were conducted to detennine if relationships between methyl mercury

levels in zooplankton and environmental variables were different in c1earwater Ùl=14) than

in brownwater lakes Ùl=lO). The level of significance for statistical tests was set at

P<O.Os. Variables were logarithmically transfonned where necessary to Iinearize

relationships between the dependent and independent variables. Ali statistical analyses

were perfonned using SYSTAT version 5.1 for the Macintosh (Wilkinson 1990).

ResuUs

Methyl mercury levels in the Cladocera ranged from 19 to 448 ng'g- I dw in the

study lakes. This range is similar to that reported for zooplankton collected from Swedish

lakes with a 250 pm plankton net (35 to 400 ng'g- I dw) (Meilli 1991). Methyl mercury

levels were highest in Cladocera from brownwater acid lakes and lowest in those from

c1earwater alkaline lakes (Fig. 2). Zooplankton from brownwater lakes were significantly

more contaminated (mean=289, n=lO) than those from c1earwater lakes (mean=9s, n=14)

(Student's t-test, f=O.OOOI).

Zooplankton methyl mercury levels were significantly correlated with lake area (-),

maximum depth (-), mean depth (-), 10gIO drainage ratio (+), %wetland in the catchment

(+), lake water pH (-),log lO conductivity (-), log,o water color (+), total phosphorus (+),

and loglo zooplankton weight (-) (Table 2). Water temperature, chlorophyll-a and %

nitrogen in zooplankton did not significantly influence methyl mercury levels. As there

were significant intercorrelations OOtween a numOOr of the predictor variables (Table 3), the

analysis was Iimited to subsets of variables that did not share a high degree of covariance.

Water color and lake water pH were the oost predictors of methyl mercury levels in

zooplankton explaining 73% of the variation (Table 4). Methyl mercury levels increase
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RG. 2. Three-dimensional scatter plot of the relationships among methyl mercury levels in

zooplankton. logll)water color. and lake water pH.
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• TABLE 2. Pearson correlation coefficients for methyl mercury levels in zooplankton and

envinmmental variables.

Variable n r P

Lakearea 24 -0.432 0.035

Maximum depth 24 -0.482 0.0\7

Mean depth 24 -0.449 0.028

log 1() Drainage ratio 24 0.515 0.010

% Wetland in the catchment 24 0.428 0.026

Surface water temperature 24 0.120 0.577

Lake water pH 24 -0.598 0.002

loglll Conductivity 24 -0.530 0.008

logl() Water color 24 0.788 0.000

• Total phosphorus 19 0.724 0.000

Chlorophyll-a 19 0.331 0.166

% Nitrogen in zooplankton 23 0.287 0.185

log III Zooplankton weight 24 -0.559 0.005

•
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TABLE 3. Correlation matrix ofenvironmental variables significantly related to methyl mercury levels in

zooplankton. Only correlation coefficients with P<O.OS are shown. LA=lake area, Zmax=maximum depth,

Zmean=mean depth, DR=loglO drainage ratio, %WET=%wetland in the catchment, pH=lake water pH,

COND=log10 conductivity, COL=log10 water color, TP=total phosphorous, and WGT= 10gIO zooplankton weight.

•

COL TP pH war COND DR Zrna'( Zrncan %WEr LA

COL

TP 0.824---

pH -0.601--

N war -0.548-- -0.663--

COND -0.450- 0.911-"

DR 0.SI9'-' 0.678-" -0.611"

Zrna'( -0.492- -0.505' 0.440' -0.615'"

Zrncan -0.496- -0.546* -0.642*** 0.974"-

%WEr 0.486' 0.467' 0.444' -0.482' -O.SIS"

LA 0.559*' -0.673'" 0.401'

* P s 0.05. ** P s 0.01. and *** P s 0.001



• TABLE 4. Stepwise multiple regression of methyl mercury levels in zooplankton on

environmental variables. Model r2= 0.73, Intercept= 449.64. SEcsl=65.6I, f= 0.0001.

•

•

Independent variable

loglo Water color

Lake water pH

n Partial r2 Std. partial r

24 0.62 0.668

24 0.1 1 -0.352

22

Siope

146.35

-47.41

Partial F

30.74

8.55

P

0.0001

0.008
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with watcr color and dt'Cline with incrcasing lake water pH. The standardized pm1ial

correlation coefficients point to water color having a mllch grcater afféct on methyl mercllry

acclllUlùation in looplankton than lake water pH. The data scaller around the line of best fit

was not correlated with any of the other enviromnental variables measurcd.

Discussion

The results of this study show that methyl mercury levels in zooplan"10n increa.~e

with increasing water color and decline with incrc'L~ing lake water pH and that water color

innuenccs methyl mercury concentrations in the study lakes to a greater extent than lake

water pH. These reslùts are consistent with previous studies that havc shown that mercury

levels in fish and other aquatic organisms are positively correlated with water color or

dissolved organic carbon (DOC) concentration in lake water (Meilli and Parkman 1988:

McMurtry et al. 1989: Sorensen et al. 1990: Hiikanson et al. 1990: Wren ct al. 1991:

Parkman and Mcilli 1993). mld Î1l1'ersely corrclatcd with lake water pH «('ope et al. 1990:

Grieb et al. 1990: Wiener et al. 1990: Watras and Bloom 1992: P.lI'kmml and Mcilli 1993).

Fcw studics have cxmllined thc cffccts of envirolUllcntal factors on Illethyl mcrcllry

accumlùation in aquatic invertcbrates in relativcly pristinc lakcs. Walr'JS and Bloom (1992)

evaluatcd the cffects of lakc watcr pH on the a\'ailability of mcthylmcrcul)' in the water

column and biota of an cxperimcntally acidified lakc basin. Thcy found thm acidification

reslÙtcd in significant incrcases in methyl Illercury concentrJtions in thc watcr collimn. in

phytoplankton and in zooplankton. Theil' rcsults c1carly show that cnvironmental factors

innuence both thc a\'ailability of methylmercury in thc environlllent and the

bioaccumlÙation of methyl mercury by 7.00plan"10n and other lacustrine organisllls. Mcilli

(1991) too found significant correlations bctween mcthylmercury concentrations in

looplan"10n and water color and lake water pH in 181akcs in central and southem Sweden.

Howcver. these two variables explaincd considerably Icss of the variation in methyl

mcrcury concentrations in the Swedish lakes than in the present study. despite sunilar
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rangcs in watcr color anu lakc watcr pH. This mOlY bc bceausc thc lakcs samplcu in thc

Swcdish stuuy cncompass two rcgions that vary with rL'Spcct to c1imatc. hydrology. and

IIlcrcury dcposition. and bceausc thc zooplankton includcd prcdaccous as wcll as filtcr

fccding cmstaccan zooplankton.

SCI'CI'a! hypothcscs havc bL'Cn proposcd to cxplain elcvatcd mcrcury lcvels in thc

biota l'rom brownwatcr lakcs. Il has bccn suggcstcd that mcrcury IC\'l:ls arc high bccausc

humic substanccs tlmt arc largcly dcrivcd l'rom catchmcnts (Rasmusscn ct al. 1989).

mobilizc mcrcury l'rom thc drainagc busin (LL'C 'lIld HlÙtberg 1990: Lee und Ivcrfcldt 1991:

Micrlc 1990: 1\,Iicrlc und Ingr.un 1991). thOlt thc abiotic mcthylation of inorganic mcrculJ' by

hlllnic substanccs in highly organic soils mu)' incrcasc thc supply of mcthylmcrcury to

lakcs (Lcc ct 011.1985: Lee and Hultbcrg 1990). and that humic substanccs mOlY stimulatc thc

in·lakc production of mcthylmcrcury (~IcMurtry ct al. 1989: \Vren cl al. 1991: 1\Iiskinllnin

cl al. 1992). or cnhancc Ihc rclcntion of mcthylmcrcury by lakcs (~Iiskinllnin 1991).

Laslly. it has bccn hypolhcsizcd Ihalmcrcury Icvcls arc high in thc biota l'rom brownwatcr

lukcs bccausc thcsc lukcs rcccivc watcr l'rom wctlands Ihal arc sourccs of mclhylmcrcw)'

(St. Louis ct al. 199·n.

Whilc mcrcury ICI'els in fish and olhcr aquatic organisms hal'c bccn l'mUId to bc

positÎl'cly corrclalcd wilh walcr color or D< JC conccntmtion in slmlics on dnlinagc lakL'S.

Ihc oppositc trcnd Ims bccll obscrl'l-d in Iish l'mm sccpagc lukcs. Gricb ct al. (1990) found

mcrcury ICI'cls in ycllow pcrch to bc invcrscly correlalcd with DOC conccntr.tlion in

sL'Cpagc lukcs. Thcy uttlibutcd this ncgutÏl'c rclationship 10 u rcduccd bioal'ailubilil)' of

mcrcury rcsulting l'rom ils complcxution with orgunics. 'I11cir findings togcthcr with thosc

of 1\ Iiskinllnin cl al. (1992). who shollcd cxpclimcntally tlml incrcascd conccntrations of

DOC inJukc \Vatcr l'L'SUit in dL'Crcascd specific mlL'S of nct mClhylation. suggL'S1 \hat humic

substanccs inhibil thc in·Jakc production of mcthylmcrcury. Sincc humic substanccs

appcar 10 inhibil mlhcr \han slill1ulalc Ihc in·lakc produclion of mclhyJ mcrcury il is l1I1likcly
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that this mcchanism a10nc cOldd account for clcl'atcd mcrcul)' Icvels in the biota l'rom

brownwater lakes.

Correlational evidence indicates that mercul)' entering lakL'S l'rom thc dminage basin

is associated with humic substances (Lee and Htdtberg 1990: Lce and Iverfeldt 1991:

rvlierle 1990: Mierle and Ingram 1991). and that the concentmtion of hwnic substances in

runoff l'rom the drainage basin and in lake water is positively corrclated \Vith mcrcury

conccntmtions in fish (McMurtry et al. 1989: Sorcnsen et al. 1990: Hi\kanson ct al. 1990:

Wren et al, 1991: Lee and Iverfeldt 1991). Furtherrnorc. the drainage ratio has heen found

to be weil correlatcd with mercury loading l'rom the drainagc basin (Swain et al. 1992).

while mercury concentmtions in fish have been shown to he positively corrclated with thc

drainagc ratio (SlIJlS and Hitchin 1990). Lastly, the present study shows that mcthyl

mercury levels in filter-feeding macrozooplankton are also positively corrclatcd with thc

concentmtion of humic substances in lake walcr and with the dminage ratio (fable 2).

Together. these results provide strong evidencc for the notion that hUlllic substances

influence mercury levels in the biota through thcir role in the e:l:port of mcrcury l'rom thc

drainage basin. That methylmercury levcls in the zooplankton were also positivcly

correlatcd with the percent welland in the catchment is particularly inlcresting in light of

recent work by St. Louis et al.(I994) who dcmonstmtcd thc wetland portions of catchlllcnts

to be net sources of methylmercury but nct sinks of totalmcrcury. Thc positil'c

relationship observed between methyl mercury Icvels in the Cladoccm and thc pcrccnl

wetland in the catchment supports the idea that terrestriai sources of Illcthyllllcrcul)'

conttibute significantly to the contanlination of the lacustrinc biota.

Severa! mechanislllS hal'e aIso been proposcd to e:l:plain thc relationships obscrvcd

between mercury concentmtions in the biota and lake water pH. Thesc Illechanisms. ail of

which involvc the effects of pH on in-Iake processes. includc Ihc increascd production of

methyl mercury in the water colwnn and surface sediments at low pH (Furutani and Rudd

1980: XlIJl et al. 1987), a decreased loss of volatile mercury frollllakc water Olt low pH
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(Rada ct al. 1987). and an incrcascd uptakc of balh organic and inorganic mcrcury by

aquatic organisms at 101V pH (Rodgcrs and Beamish 1983: Saoutcr ct al. 1989: Poncc and

B100m 1991). The importancc of pH in influcncing mcthyl mcrcury ICI'cls in zooplankton

is highlightcd not only by thc fact that pH c:'lplainl'<! a significant proportion of thc O\'cmll

variancc in mcthylmcrcln)' Icvcls (Tablc 2). bul also by thc factlhat conductivity. a l'ariablc

c10scly Iinkcd to lakc lVatcr pli Crablc 3). c:'lplainl'<! much of thc among lakc variance in

mcthylmcrcury conccntrations in the brownwalcr lakcs (Fig. 3). 1\Iethylmcrcury ICI'cls in

thc 7.00plankton l'rom brownwatcr lakcs wcre not signifïcanlly rclatcd 10 watcr color.

showing that variablcs rclatcd to lakc walcr acidily bccomc morc importanl whcn inteliakc

differences in mcrcury loading l'rom the drainagc basin are reduced.

ln dminage lakcs. such as thosc sampll'<! herc the supply of mcrcury l'rom Ihe

drainage basin ha~ bl'Cn l'Slimatcd 10 bc ab:JlII ..10·75'1· of the total annualload

(Iverfcldt mld Johansson 1988: 1\ Iierle 1990: Sorcnsen ct al. 1990: i\Iierle mld Ingram

1991). 1be prl'Scnt study shows thal in such lakes both walcr color and lake walcr pli

signifïcantly influence the accumulation of melhylmercury in zooplmlkton. ~cverthcless.

waler color. which appears to rcpresent mercu,:' loading fromlhc dminage basin.

outweighs the in·lake cffl'Cts of lake water pH on methyl mercu,:' accumulalion. i\ lorc

prl'Cisely. the slandardized partial correlalion coel1ïcients of Il'aler color and lake water pli

(Table -1) sho\l' Ihat the efTccl~ of \l'aler color onmelhylmercu,:' lel'ds in zooplanklon arc

1.9limes more importlltllhan those of lake \l'aler plI. This means. for e:'lample. thal if

melhylmercu,:' lel'els in lOoplanklon increa~e or decrease by -IO'} per unil change in waler

colm. melhyl mercu~' levcls \l'ould inlTease or decrease by 22'1' for a similar change in

pH. Il is howel'er worth noting Ihallhe relative importance of waler color and lake \l'ater

pli will shifl depending on Ihe magnilude of difl'erences in the supplYof mcrcu,:' l'rom Ihe

drainage ba~ins. and on Ihe relatÏl'e importance of calchmenl inpuls of merclU)' in

comparison 10 olher sources. Thus. whcre calchmenl inpuls of mercury arc minor. as in

secpage lakes I~ith Ihcir Iypically smaIl drainage basins (Walras cl al. 199-1:
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AG. 3. Rclutionship bctwccn mcthyl mcrcury Ic\'cls in zooplunkton from brownwnlcr

Inkcs nnd loglo conductivity.
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Verta ct al. 199-n, lake water pH has bcen found to be the variable of importance in

influencing mercury levels in the biota (Gricb ct al. 1990: Bloom et al. 1991).

lvIercury levels in Iish in a given lake can be reasonahly weil predicted fmmlevcls

in other organisms within thatlake (Stokes ct al. 1983: Cope ct al. 1990: Sorensen ct al.

1990: Meilli 1991: Allarù and Stokes 1989: Wren ct al. 1991). This may be because the

Iish are eithcr directly or it:directly feL'Ùing on the other organisms. or simply a rL'Sult of the

fact thatthey share the same ell\'ironment and arc as such exposL'Ù to similar ambient

mercury levcls (Wren ct al. 1991). 1compared methylmercury levels in zooplankton to

mercury concentrations in largemouth and smalhl10uth bass for Il lakes in which data were

available from the Ontario Mercury Data Base (MOR 1993). Mercury levcls in the bass

were indecd weil correlated with methyl mercury levels in zooplankton from the same lakes

(Fig. 4). Since adultlargemouth and smallmouth bass feed primarily on Iish. aquatic

insects and cr,lylish (Scott and Cmsslllan 1973). it is highly unlikely thatthey arc

\rophically Iinked to pmfundal zooplankton. Thus wc can conc!ude that filtcr-fL'Cding

macrozooplankton renL'Ct the relative bioavailability of mercury at differenttrophic levels

within these lakes. This makes them an easy to obtain and convenient measure of the

bioavailability of mercury atthe base of food chains that is useful in studies thatlllllsl

account for differences in the bioavailabilitv of mercurv among lakes... ...

Conclusions

rvIethyl merclll)' le\'c1s in filter-feL'Ùing Illacroz()()plankton varied 24 fold across the

study lakes and 73% of this \'ariation wa, accounted for by differences in water color and

lake water pH. Water color explains a greater portion of the overall variance in methyl

mercury levels. indicating that the supply \If mercury from the drainage basin plays a key

role in innuencing the accUll1ulation of methyl mercury in the lacustrine biota.

Furthermore. this study provides a first delllonstra\Îon that the effects of water color

outweigh those of lake water pH in innuencing methyl mercury levels in the biota at or near
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FIG. 4. Rclationship bctwccn Illclhyllllcrcury conccnlr.tliolt~ in zooplankton and mcrcury

conccnlr.llions in largcllloulh or slllalhnoulh bass in 11 Ontario lakcs.
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the base of the food chain. Methyl rnercury concentmtions were highl'St in zooplankton

l'rom acidic brownwater lakes. supporting the notion that the pool of bioavailable mercury

is particularly large in this type of lake. Finally. zooplankton rnethyl mercury levels were

weil correlated with mercury concentrations in fish showing filter-fecding zooplankton to

be good indicators of the relative bioavailability of rnercury at the base of the food chain in

lakes.
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Summary

The pwpose of the study was to examine relationships between enviromnental

factors and methyl mercury accumulation in filter-fœding macrozooplankton. The results

of this study show that methyl mercury accumulation is strongly inlluenced by waler coler

and lake waler pH. Thcse Iwo variables logelher explained 73% of the variance in melhyl

mercury concenlrations in zooplanklon across the study lakes. Zooplankton l'rom

brownwaler Jah'S were siglùficantly more conlaminaled than Ihose l'rom c1eaJwaler lakes

suggesting Ihat Ihe bioavailability of mercury is enhanced in the fonner. The effeels of

\Valer coler on methyl mercury accumulalion appear to be primarily relalL'<110 Ihe supply of

mercury l'rom the drainage basin. In contrast. the effects of Jake \Valer pH appear 10 be

principally linked 10 in-Iake proccsses. Water color explained a grealer portion of Ihe

overall variance in methyl mercul)' levds suggesting that the supply of mercul)' fromlhe

drainage basin plays an importanl role in delennining melhyl mercury concentrations in Ihe

lacustrine biota. Melh,,1 mercurv concentmlions in the filler-fecding CladocerJ were weil. . -
correlaled with mercury levds in smallmouth and largemoulh bass in 11of Ihe sludy lah'S

showing zoopJanklon 10 be good indicators of Ihe bioal'ailabiJily of merclU')' ut Ihe ba~e of

the food chain.
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LlIke lAdltude L.ongltude
LlIko:ne::-

Lake volume Zmax Zmeln Catch~ Dral:::~aree Drainage
(m3 x 1oS) (m) (m) area(k rlltlo

Pearcelev 45.42 79.3 0.441 1.9 9.2 4.2 0.66 0.22 0.4
FooaJ 45.11 79.53 0.118 0.3 5 2.2 0.87 0.75 3.4
Meadow 45.22 79.35 0.739 1.9 7.9 2.6 4.21 3.47 2.2
Moot 45.09 79.1 0.462 1.2 7.9 2.6 5.55 5.09 4.6
Fawn 45.1 79.15 0.867 2.9 7.9 3.4 12.72 11.85 4.3
HeaJev 45.05 79.11 1.189 3.3 7 2.8 5.72 4.53 1.7
Crosson 45.05 79.02 0.568 4.6 23.5 8.1 2.11 1.54 0.5
Fox 45.23 79.2 1.366 7.8 12.2 5.7 9.57 8.2 1.2
Leonard 45.04 79.27 1.93 13.1 18.3 6.8 5.91 3.98 0.5
Leach 45.03 79.06 0.82 5.2 13.7 6.3 3 2.18 0.6
Lowe 44.55 79.15 0.194 0.3 3.4 1.3 15.65 15.46 62.1
BrandY 45.07 79.31 1.048 3.7 7.5 3.5 34.41 33.36 9.4
SOIina 45.01 79.08 0.258 1.7 18.9 6.6 0.72 0.46 0.4
Avde 44.54 79.15 0.817 4.8 12.8 5.9 9.46 8.64 2
Clear 45.02 79.01 0.963 11.4 29.6 11.8 1.93 0.97 0.2
Bark 44.56 78.28 1.679 7.7 12.2 4.6 10.22 8.54 1.3
LooncaJl 44.44 78.09 0.864 4.8 15.5 5.6 4.7 3.84 1
Cavendish 44.44 78.17 0.235 2.5 25.9 10.6 4.23 4 1.7
Boshkuna 45.04 78.44 7.164 165.5 71.1 23.1 21.2 14.03 0.1
Pine 45.07 78.35 1.118 8.5 20.4 7.6 16.67 15.55 2
Pencil 44.48 78.21 0.766 6.4 21.3 8.4 13.66 12.89 2.1
Gloucester Pool 44.51 79.42 13.766 95 30.5 6.9 88.52 74.75 0.9
Salmon 44.49 78.27 1.716 19.4 30.5 11.3 6.28 4.56 0.3
Mitchell 44.35 78.57 8.511 6 3.7 0.7 22.14 13.63 3.7
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Physleal and IImnologleal eharaeterlstlcs of the study lakes
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Lake 'll. Welland Lake Sprlng Sumrner Sprlng Summer Sprlng colour Summer colour
Elevation (m) aecc:hlfml aecchl(ml pH pH laba @ 440 nm) laba @ 440 nml

Pearcelev 10 358.5 · 8.6 · 5.35 • 0.17
FoaaJ 24.5 213 2.2 2.4 5.n 5.5 5.84 5.69
Meadow 26 318.5 1.4 1.3 5.58 5.56 5.12 7.91
Moot 18.5 350.6 1.6 1.5 5.78 5.8 5.5 8.34
Fawn 18.5 289.9 1.2 1.6 5.n 5.82 7.51 8.92
HeaJev 11.6 304.9 • 2.4 · 6.22 • 4.46
Crossan 7.7 335.4 2.6 2.9 6.42 6.23 2.58 2.14
Fox 3.7 297.9 1.5 1.5 5.87 6.37 6.42 8.13
Leonard 0 182.9 2.8 5.2 6.33 6.38 0.51 1.01
Leech 0 320.1 2.6 3.7 6.34 6.41 1.9 1.9
Lowe 9.8 253 • 1 • 6.42 · 12.63
Brandv 6.3 236 1.4 1 6.79 6.64 7.63 12.68
Soona o • 5.5 5.9 6.1 6.67 0.96 0.56
Allde 16 243.9 • 2.4 • 6.69 · 7.23
Oear 0 330.5 9.9 7.4 6.51 6.78 0.14 0.22
8ark 17.9 343 4.4 3.9 6.63 7.18 1.95 1.34
Looncall 16.1 350.6 4.1 4.4 7.21 7.2 1.07 1.31
Cavendish 0 294.5 • 3.6 · 7.29 • 2.2
Boshkuna o • 5.5 5.3 6.87 7.38 0.24 0.63
Pine 0 317.1 3.9 5.2 7.07 7.n 1.01 0.75
PeneU 24.1 323.2 3.2 2.8 7.32 8.08 3.58 3.75
Gloucester Pool 6.2 197.9 3.2 3.8 8.11 8.22 1.76 1.25
Salmon 7.5 322 10.4 8.1 8.09 8.28 0.29 0.45
Mitchell 14.3 256.4 • • 8.08 8.28 0.74 1.14
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•

"""-

Lake Sprlng colour Summer colour Sprlng totel Sprlng chl-a Mlxlng depth Hypollmnellc
(Pt. mgIIl (Pt. mgIIJ phoephorou8 (ugII) (ug/l) (m) °2(moI!\

Pearcelev • 3 • • 8 •
Foaal 106 103 23.8 8.2 2 0.1
Meadow 93 144 34.4 9.4 4 •
Moot 100 152 47.4 3.3 3 0.3
Fawn 137 162 40.2 3.7 3 0.9
Healev • 81 • • 4 4.8
Crosson 47 39 31.9 6.2 3 5.1
Fox 117 148 26.1 3.1 6 •
Leonard 9 18 16.5 6.8 5 8
Leach 34 34 16.6 3.7 4 4.6
Lowe • 230 • • 2 6.6
Brandv 139 231 37.1 2.6 3 0.9
SDr1na 17 10 11.1 1.8 4 9.6
Rvde · 132 • · 4 2.9
Clear 2 4

, 7 0.8 6 11.3
Bark 35 24 18.5 2.8 5 ·
Looncall 19 24 18.4 7.3 5 •
Cavendish • 40 • • 3 ·
Boshkung 4 11 14 2.9 8 9.6
Pine 18 13 11.4 2.7 6 5.4
Peneil 65 68 11.6 2 6 •
Gloucester Pool 32 23 17 3 7 9.5
Salmon 5 8 10.3 1.3 8 •
Mitchell 13 21 25.2 2.6 • 10.8
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Physleal and IImnologleaJ eharaeterJstles of the study Jakes
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Lake Surface H20 EplIImnetlc H20 Mean H20 column COndUctlV~~
lem eture (OC) lemDl1IDereture(OC) lem etur.(OC) 25 oc (ualcm Lake type

Pearcelev 22.2 21.3 21.3 21 ce
Foaal 24.6 23.6 20.9 21.5 ba
Meadow 21.9 21.7 15.2 22.5 ba
Maot 24.2 22.7 18.3 19.5 ba
Fawn 23.9 23.2 18.1 29.2 ba
Healev 22.3 22.3 20.7 37.7 ben
Crosson 25 23.8 10.6 22.8 intcn
Fox 22.8 22.6 15 29.7 ben
Leonard 24.2 23.4 15.4 35.9 ccn
Leach 22.4 22 13.4 33.7 ccn
Lowe 23.3 23.2 23.2 40.1 ben
Brandv 24 23.1 19.3 61.5 bal
SDI1ng 23.8 23.1 13.6 45.3 cal
Rllde 23.5 23.2 15.1 37.1 bal
Clear 23.2 22.8 11.2 32.3 cal
BarI< 22.8 22.6 17.3 33 cal
Looncall 24.2 22.2 13.7 43.8 cal
Cavendish 24.2 23 10.2 50.4 inlal
Boshkuno 22.8 22.6 • 55.2 cal
Pine 23.6 23.1 14.8 71.1 cal
Pencil 24.1 22.5 9.7 96.8 intal
Gloucester Pool 24.1 23.6 18.6 224.2 cal
Salmon 23.2 23.1 10.1 171.5 cal
Mitchell 23.3 23.3 23.3 153.3 cal
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Characterlstlcs of the zooplankton populations sampied

Lake Zoop:~:,~onMeHg Meen IndlVldusl zoo~~snkton % DaphnIs C:N 'lI.N 'lI.C
n dw) welaht (ma dw

Pearcelev 113 0.008 95 9.0 6.4 57.9
Foaal 338 0.007 20 7.9 7.7 60.8
Meadow 221 0.011 100 5.7 8.6 49.2
Moot 448 0.002 70 8 7.1 56.8
Fawn 271 0.001 70 6.3 8.3 52.2
Heale'l 283 0.003 100 6.3 8 50.5
Crossan 225 0.012 40 6.4 8.4 54
Fox 384 O.OOS 100 7.6 9 68.1
Leonard 55 0.038 0 6.6 8.9 58.3
Leach 171 0.014 90 7.8 6.9 53.9
Lowe 256 0.001 100 6.4 9 58
BrandY 192 0.004 100 7.6 7.3 55.6
SDfino 83 0.015 95 7.8 7.2 56.3
Rvde 309 0.009 100 7.9 6.8 53.8
Oear 19 0.009 75 12.0 6 72
BarI< 44 0.008 5 6.6 9.4 62.4
Looncall 142 0.014 50 9.1 6.8 62.1
Cavendish 148 0.013 95 8.9 6.6 58.6
Boshkuna 40 0.007 80 6.9 8 55.3
Pine 105 0.006 95 8.5 7 59.4
Pencil 164 0,018 100 8.0 7.2 57.4
Gloucester Pool 62 0.010 95 10.2 5.4 55.1
Salmon 70 0.019 100 8.1 6.0 48.5
Mitchell 20 0.011 100 • . •

•
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Mercury data for the study lakes wlth elther smallmouth or largemouth basa

Lake Zooplenkton MeHg Meen ban Hg Meen b~: welght Bannmple
(uâla dry wlllahti (ua/a wet wekllrtl sIze

Meadow 0.221 0.750 876 10
Mao! 0.448 1.110 1000 18
Fawn 0.271 1.100 604 14
Fox 0.384 1.375 784 42
Leonard 0.055 0.690 573 12
Brandv 0.192 0.800 475 19
Oear 0.019 0.460 818 5
BarI< 0.044 0.020 294 4
Boshkuna 0.040 0.500 784 16
Pine 0.105 0.290 473 17
Gloucester Pool 0.062 0.306 . .

•




