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Energy dissipation in viscous-plastic sea-ice models

Amélie Bouchat' and Bruno Tremblay?

"Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada

Abstract in viscous-plastic (VP) sea-ice models, small deformations are approximated by irreversible
viscous deformations, introducing a nonphysical energy sink. As the spatial resolution and the degree of
numerical convergence of the models increase, linear kinematic features (LKFs) are better resolved and
more states of stress lie in the viscous regime. Energy dissipation in this nonphysical viscous regime
therefore increases. We derive a complete kinetic energy (KE) balance for sea ice, including plastic and
viscous energy sinks to study energy dissipation. The main KE balance is between the energy input by the
wind and the dissipation by the water drag and the internal stresses (dissipating 87% and 13% of the
energy input on an annual average). The internal stress term is mostly important in winter when ice-ice
interactions are dominant. The energy input that is not dissipated locally is redistributed laterally by the
internal stresses into regions of dissipation by small-scale deformations (LKFs). Of the 13% dissipated
annually by the internal stress term, 93% is dissipated in plastic friction along LKFs (14% in ridging, 79% in
shearing) and 7% is stored as potential energy in ridges. For all time and spatial scales tested, the frictional
viscous dissipation is negligible in the KE balance. This conclusion remains valid regardless of the degree of
numerical convergence of the simulations. Overall, the results confirm the applicability, from an energetical
point of view, of the VP approximation.

1. Introduction

Satellite images from the RADARSAT Geophysical Processor System (RGPS) show that Arctic sea-ice defor-
mations occur mostly along narrow lines of high strain rates (called Linear Kinematic Features—LKFs), while
the surrounding pack undergoes no or very small deformations [Kwok, 2001]. These deformations are simu-
lated via a constitutive equation (or rheology) that relates the sea-ice deformations (or strain rates) to the
internal stresses. Early models of sea ice considered ice as a viscous material [Campbell, 1965; Glen, 1970],
but these were soon abandoned for plastic models based on the observation that the work done in deform-
ing the ice is independent of the deformation rate [Coon et al., 1974]. As part of the Arctic Ice Dynamics
Joint EXperiment (AIDJEX), Coon et al. [1974] developed an elastic-plastic (EP) rheology in which large plastic
deformations would occur only after the internal stresses had reached a critical threshold (yield curve). In
order to close the set of equations, they proposed an elastic response for subcritical stresses. In EP models,
the energy input in the pack from the surface wind stress was dissipated by the water drag and plastic
deformations only. Since elastic deformations are reversible, the work done by the wind is fully recovered
when the stress is removed, i.e., there is no energy loss from this mechanism. Resolving reversible elastic
deformation is numerically demanding because it requires small time steps and a record of the strain rate
history. As a result, early EP models mainly focused on short-term simulations. Recent advances in numerical
methods now allow EP models to run on longer time scales [Pritchard, 2001].

As a simplification to the EP model, Hibler [1977] developed a viscous-plastic (VP) rheology combining
both the early viscous theories and the plastic behavior presented by Coon et al.’s [1974] model. Hibler
[1977] showed that the average of stochastic variations in small plastic deformations can be approxi-
mated by a viscous-like stress-strain relation. To this end, he proposed to approximate small deforma-
tions by the slow creep of a highly viscous fluid, while large deformations are still modeled as plastic.
This assumption resulted in a considerable gain in numerical efficiency compared to the previous EP
formulation and established the VP models as the standard sea-ice rheology. The new development of
efficient numerical methods [Zhang and Hibler, 1997; Hunke and Dukowicz, 1997; Lemieux et al., 2008,
2010] now allows the VP model to be solved at increasingly high spatial resolution and on longer time
scales.
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In the VP model, a nonphysical energy sink is introduced since viscous deformations are irreversible. Hibler
[1979] assumed that this energy dissipation would not affect the computations as long as the value of the
strain rates delimiting the viscous and plastic deformations was chosen small enough. We raise the follow-
ing questions: how large is the energy dissipated by viscous deformations? And, is it still negligible in VP
models in the context of models being run at increasingly high spatial resolution and with increased numer-
ical convergence?

In a study of the impacts of the spatial resolution and rheological model on the simulation of the LKFs with
a VP model, Wang and Wang [2009] showed that the number of deformations lines increases with an
increasing spatial resolution (from 10 to 2 km grids). Previous broad LKFs now appear as distinct finer LKFs.
The refinement of the deformation lines implies that grid points previously part of the LKFs now undergo
viscous deformations. We therefore expect an increase in the dissipation of energy in the nonphysical vis-
cous regime as spatial resolution increase. Moreover, Lemieux and Tremblay [2009] showed the importance
of calculating a converged solution to appropriately resolve LKFs. Better resolved LKFs again lead to more
state of stress in the pack ice in the viscous (elastic) regime and less (albeit more active) state of stress in
the plastic regime (see for instance Zhang and Rothrock [2000]). This, together with the fact that models are
run at increasingly high spatial resolution, makes us question the validity of the VP approximation in current
sea-ice models.

Energy equations are useful for characterizing sea-ice simulations because of their simple scalar interpreta-
tion. Early considerations on energy dissipation based on the principle that the work done in plastic defor-
mation should be equal to the known energy sinks [Parmerter and Coon, 1973] have already been used in
EP models to determine the temporal evolution of the ice strength in compression. The energy sinks consid-
ered at the time were parameterized as functions of the ice thickness distribution and included the poten-
tial energy change from the ridging process [Coon et al., 1974; Thorndike et al., 1975] and the frictional
losses in ridging and shearing deformations [Rothrock, 1975; Pritchard, 1981]. An equation for the kinetic
energy (KE) balance of sea ice was first developed within the EP formulation by Coon and Pritchard [1979].
Their application of the KE equation to a 1-D idealized example representing winter conditions in the Beau-
fort Sea shed light on the role of the internal stresses in the lateral transmission of energy via a stress flux
term. Pritchard [1981] also studied the KE balance with the AIDJEX's EP model for sea ice in winter in the
Beaufort Sea. Although he developed parametrizations for the energy sinks in potential energy and in fric-
tional losses in ridging and shearing deformations, he did not include it in its temporal and spatial analysis
of the KE balance. These three energy sinks were later quantified numerically for the first time in the VP
model by Steele et al. [1997], who presented a (domain averaged) seasonal cycle of each term in the KE bal-
ance on a 40 km grid. To the best of our knowledge, no analysis including an energy sink for the rate of
energy dissipation by viscous creep has been made for the VP model or a detailed quantification of each
term in the local KE balance along with a study of the mechanisms of energy dissipation by the ice interac-
tion term.

In this paper, we study the energy dissipation in VP models by computing a complete KE balance for sea
ice, including an energy sink for the viscous dissipation. This allows us to quantify each term in the KE bal-
ance and to understand the mechanisms of redistribution and dissipation of the KE in the pack. The impor-
tance of the nonphysical dissipation in high resolution and converged simulations is also assessed to test
the viscous approximation (with respect to energetics). We address these questions by presenting Arctic-
mean and spatially varying seasonal cycles of each term in the KE balance using both monthly averaged
and instantaneous fields, with a special attention to the redistribution and quantification of energy at differ-
ent scales.

The paper is structured as follows. In sections 2 and 3, we present the momentum and continuity equations
for sea ice and the specific equations for a viscous-plastic rheology. In section 4, we derive the KE balance
including the energy sink for the viscous dissipation. In section 6, we discuss the results for the KE balance
and its dependence on the grid resolution and the degree of convergence of the numerical solver. The
main conclusions drawn from this study are presented in section 7.

2. Sea-lce Momentum and Continuity Equations

The two-dimensional horizontal momentum equation for sea ice is given by:
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pih {% +(u- V)u} =—p;hfkXu+1,—19w+V - 6—p;hgVHy , (1

where p; is the ice density, h the mean ice thickness, f the Coriolis parameter, k the vertical unit vector,
u=(u, v) the horizontal sea-ice velocity, t, the surface wind stress, t,, the water drag, ¢ the two-
dimensional vertically integrated internal ice stress tensor, g is the gravitational acceleration, and H, the sea
surface height. The gravitational term can also be approximated as —p;hgVHy=p;hfk Xug, [Tremblay and
Mysak, 19971, where ug, is the geostrophic ocean velocity. Following Zhang and Hibler [1997], we neglect
the advection term (u - V)u. This term only becomes important for length scales of a few kilometers, i.e.,
not important for this study. The acceleration term ?le' can be important on time scales of an hour or smaller.
In the following, we keep this term and quantify its importance in the KE balance. The external air and water
stresses acting on the ice are parameterized as quadratic laws as [McPhee, 1975]:

Ta=paCaalug| (ucos O, +kXusin 0,) )
Tw =Py Caw|u—ud | [(u—uf)cos 0, +kx (u—uf,)sin 0, ] , (3)
where p, and p,, are the air and water densities, C4, and Cy, the air and water drag coefficients, u the geo-

strophic wind, and 6, and 0,, the wind and water turning angles. The sea-ice velocity is neglected in equa-
tion (2) since it is much smaller than geostrophic wind speeds.

In a two thickness-categories model (ice or no ice) [Hibler, 1979], the volume (or mass) of ice is characterized
by the mean thickness (h) and concentration (A) inside a grid cell. Evolution equations for these variables
are needed to close the system of equations since 6=a(h, A). The continuity equations are given by

oh
ot +V - (hu)=S, , (4)
0A
9t +V - (Au)=S, , (5)

where S, and S, are thermodynamic source terms. The sea-ice model is coupled thermodynamically to a
slab ocean model of 100 m thickness. For details on the thermodynamical processes included in the model,
see Tremblay and Mysak [19971].

3. Viscous-Plastic Rheology

The term V - ¢ in (1) is referred to as the rheology term. It depends on the mechanical properties of the ice
and is defined by the constitutive law relating the internal stresses to the deformations (strain rates). For VP
models, a general viscous-plastic constitutive law is given by the Reiner-Rivlin stress relation [e.g., Smith,
1993]:

P . . -
UU:_E(SU+(C_’7)€kk50+271€U ) 1712172 ) (6)
where g represents the stress acting in the j direction on a surface area with unit normal in the i direction,
with i, j={x, y}, 0; is the Kronecker delta, { and # the bulk and shear viscosity coefficients, ¢;= % g—ﬂ; + %
are the component of the strain rate tensor and repeated indices indicate summation. The ice strength in
isotropic compression P depends on the ice concentration and thickness as [Hibler, 1979]:

P=P" hexp[—-C(1-A)] , )

where P*=27.5xX103Nm ~2 is the ice compressive strength parameter and C = 20 is an empirical ice con-
centration parameter. The formulations for { and 1 depend on the particular yield curve used. For the ellipti-
cal yield curve and normal flow rule, the viscous coefficients are defined as [Hibler, 1979]:
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P
¢

with A= [(&7,+¢3,)(1+e 2)+4e 260, +2é11é5(1—e72)] '/2. e = 2 is the aspect ratio of the ellipse. To avoid

singularities as A — 0, the viscous coefficients are capped using the continuous formulation developed by
Lemieux and Tremblay [2009]:

=patanh (5871532, 10

With {max=(2.5X102)P and 5 still defined by (9). When viscous coefficients are capped, the stress states are
no longer plastic, but they lie on a concentric ellipse inside the yield curve (viscous stress states). Simula-
tions were also repeated using the original capping suggested by Hibler [1979]. The conclusions presented
in the paper are not affected by the choice of capping.

4. Kinetic Energy Equation

The kinetic energy per unit area, K, can be written as:

1 1
Kzzp,h(u2+vz):§p,h(u~u) ) (11)
and its local rate of change as:
oK 1 oh ou
—=—p(u-u)— +u- h—) .
ot zp‘(u “)at " (p’h at) (12)

The first and second terms on the right-hand side of equation (12) represent the change in inertia

(or mass; 21) and acceleration (2%). Substituting the continuity (4) and momentum (1) equations in the
first and second terms of equation (12), respectively, we obtain the kinetic energy balance for a 2-D
continuum:

pk:ph+pa+pw+pi+pg ’ (13)

where p, =9K /0t is the rate of change of KE per unit area, p, =1 p;(u-u)2=1p,(u- u)[S,—V - (hu)] is the
power due to the change in inertia (positive when the mean thickness is increasing), p,=u - 74 is the power
input by the surface wind stresses, p,,=—u - 7,, is the rate of work done by the ocean drag, p;=u- (V - o) is
the rate of work done by the internal stresses (see section 4.1 for details), and py=—p;hg(u - VH)=—p;hf
(uvgfvugv) is the power generated by gravity when ice is drifting on a sloping sea surface (positive when
ice is accelerating by moving downslope on the sea surface). The Coriolis term does not appear in the
energy balance since the resulting acceleration is perpendicular to the velocity vector. Note that the power
due to the change in inertia accounts for both the changes in h due to thermodynamical processes (Sp)
and the changes in h due to mechanical processes (—h(V - u)). This KE equation (13) has also been derived
by Coon and Pritchard [1979] and Pritchard [1981], except for the previously neglected change-in-inertia

term.

4.1. The Internal-Stress Power

The internal-stress power, p;=u - (V - ), is the rate of work done on the ice by the internal stresses that
leads to a change of its kinetic energy (KE). We define p; as negative when internal stresses are doing work
to deform the sea ice (i.e., energy dissipation during deformations). Following Coon and Pritchard [1979], we
express u - (V - o) as the difference between the total rate of work done by ¢ and the deformation rate of
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work that dissipates energy and/or affects the potential energy of the system [see also Kundu and Cohen,
2008]. Using tensor notation (where repeated indices indicate a sum), this can be written as:

P =u-(V-o)=u(goy)
= [ui(Goy) +ay(u)] —ay(Fur)
=V (u-0)=0;(qu) (14)
=V-(u-0) —tr(co) |,
——

R s
Piat transm  Ppot TPy TP

where tr (é6)=0jéj.

In equation (14), the term V - (u - o) is the total rate of work done by the internal stresses. It can also be
considered as the lateral transmission of energy (or stress flux divergence) through ice boundaries as a
result of local imbalance between energy input by air stresses and energy dissipated by ocean drag, assum-
ing the other power terms are small [Coon and Pritchard, 1979]. Using the divergence theorem, the term

V - (u - a), averaged over any arbitrary 2-D region R of area A and contour C, can be written as:

i;(u«r) .ﬁdl=%§§u-(a.ﬁ)d/ 7 (15)

R C C

>
—_—
—
<

e
N
S

Il

> =

where 7 is a unit normal vector perpendicular to the boundary of R, ¢ - f is the stress acting on the contour
C, and the line integral represents the rate of work transmitted through the contour C. Taking R to be each
grid cell in a numerical domain, the term V - (u - 6) represents the power laterally transmitted by the inter-
nal stresses through ice-covered cell boundaries. In the following, we use V - (U - 6) =Pyt transm -

The term tr (¢o) in equation (14) includes the rate of work done to change the potential energy (p ot ) and
the rate of work dissipated in friction by the internal stresses (pg;c =pF;. +Pfic )- It is also called the deforma-
tion rate of work [Kundu and Cohen, 2008], since it assumes nonzero values when ice is deforming. Changes
in potential energy occur during ridging when the center of mass of the deformed floes changes position.
Energy is dissipated by the internal stresses as frictional losses both in ridging (p?ric —Rothrock [1975]) and
shearing (pfSric —Pritchard [1981]) plastic deformations. In viscous-plastic models, energy is also dissipated
by the irreversible viscous creep used to approximate small elastic deformations. Assuming ice as an iso-
tropic material with coinciding principal axes of stress and strain rate, the term tr (é¢) can be written as a
function of the stress and strain rate invariants as tr (é6)=¢,0,+¢é,0y (see Appendix A). Since €,=0 in pure
shear deformations and ¢,=0 in biaxial convergence/divergence, the terms ¢,g, and ¢, can be thought of
as the deformation rates of work done by the internal stresses during ridging/opening and shearing respec-
tively. These can also be expressed explicitly in terms of the bulk ({) and shear (1) viscosity. Using the gen-
eral form of the viscous constitutive law as 6=~ 5;+({—n) (€ ) 35+ 2né;, we get:

—tr(ea) =(—éa))+(—¢enon)

(16)
= (pPOt +p1Bric ) + ( p?ric ) ’
where,
P
ppotzz(v'u) ) (17)
P =—U(V - u)P=—(¢ (18)
i =—11[2(& + &, +263) ~(V - u)?| =—néf . (19)

The formulations for the energy dissipation given above are general and apply to any VP rheology. We can
further distinguish whether the frictional dissipation in ridging (p .. ) and shearing (p3;. ) is associated with
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Plastic (Pfic past AN P piast) OF Viscous deformations (pf. i and Pz iec) by imposing a criterion on A,
a measure of the magnitude of the deformation. The viscous dissipation criterion can then be written as

A < A. : viscous deformation 20)
A > A, : plastic deformation

where A, is the critical deformation size. We define A, as the deformation size for which the viscous coeffi-
cients reach their maximum values when using the elliptical yield curve and the capping of Hibler [1979],
i.e., when {={.=(2.5X10®)P, or equivalently:

p P

A= =
¢ 2max  2X(2.5X10%)P

=(2x107%)s7" . 1)

This definition (21) of the critical deformation size depends on the choice of the maximum viscous coeffi-
cients and it can therefore take different values depending on the VP model used. Note that frictional dissi-
pation has always the same form as in equations (18) and (19) regardless of whether the deformation is
plastic or viscous.

Summing up, the internal-stress power can be written as:

— R R S S
Pi=Plat transm T Ppot + Pric ,plast + Pric . visc + Pric , plast + Pfric ,visc » (22)

R R S S . . . . . . .
where pgic oace s Phric visc » Phric. plast» 31 Pric visc are the plastic and viscous frictional losses in ridging and
shearing, respectively.

5. Numerical Scheme and Forcing Fields

The momentum equation is discretized on the Arakawa C-grid and solved numerically using a Jacobian
Free Newton-Krylov (JENK) method [Lemieux et al., 2010]. In each Newton Loop (NL) of the JFNK solver
(outer loop iterations in Lemieux and Tremblay [2009]), the linearized set of equations are solved iteratively
using the preconditioned Generalized Minimum RESidual (GMRES) method [Lemieux et al., 2008]. The non-
linear water drag and viscous coefficients are updated and the process is repeated with added NL iterations
until convergence or until a maximum number of NL iterations (NL j,4x) is reached. Here we assume conver-
gence is reached when the residual norm of the solution has reached a certain tolerance (i.e., when

residual < tolerance). In section 6.5, we study the dependence of each term in the KE balance on the level
of convergence of the nonlinear solver. The reader is referred to Lemieux et al. [2008] and Lemieux et al.
[2010] for more details on the numerical scheme.

The model is forced with atmospheric fields from the National Centers for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR) reanalyzes. Linear interpolation between the two
closest 6 hourly geostrophic wind fields is used to calculate the wind forcing at any time level. The monthly
climatological ocean temperatures are specified at the model’s open boundaries from the Polar Science
Center Hydrographic Climatology (PHC 3.0) [Steele et al., 2001]. The yearly mean oceanic currents are
obtained by solving the Navier-Stokes equation in steady state (without advection) assuming a 2-D nondi-
vergent velocity field and using a 30 years climatological forcing wind stress field.

6. Results

The model is first spun-up for 10 years (1970-1979) using 1T m ice thickness and 100% ice concentration as
initial conditions. The numerical domain consists of a Cartesian grid superimposed on a polar stereographic
projection of the physical domain [see Tremblay and Mysak, 1997, Figure 8]. We perform a control run on a
40 km grid for 25 years (1980-2004) with a 1 h time step and a maximal number of Newton loop iterations
of NL pmax =500 (residual norm: O(10°)). Additional simulations on a 10 km grid and with NL ;5 =500, 50,
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and 5 are also presented to study the effects of convergence and of spatial resolution on the KE balance
(sections 6.3 and 6.5).

All the terms in the KE balance are computed as scalars at the center of all ice-covered grid cells (A > 0.15)
at the end of each time step. The terms are then averaged in time and/or space to form the averaged quan-
tities presented in the following sections. All terms, except p,, Py, aNd Piat transm - are formed directly at the
grid center by linear interpolation (from the two nearest u or v locations) of quantities not already defined
at the center of the cells, e.g.,

o . uﬁ-i—u,ﬂu N v,f-i—v,?_j+1
pk,ij*& Epi ij 5 5

The terms p,, P,y @and Pjat transm are instead formed at the u and v locations on the C-grid and then averaged
to the grid center to reduce the stencil of the calculation, e.g.,

| UjTax, jj T Ui+1jTax, i+1, " VijTay,ij T Vij+1Tay,ij+1
Pa,ij =

2 2

While the choice of the numerical stencils used to compute the terms of the KE balance can affect the resid-
ual error in the KE balance, it does not affect the conclusions of the present study.

6.1. Arctic-Averaged Seasonal Cycle

The main balance in the Arctic-averaged monthly climatology (25 years) of the power terms in equation (13) is
between the power input by the surface wind stress, the power dissipated by the water drag and the power dissi-
pated by the internal stresses (Figure 1). Note that the internal stress term appears as a dissipative term on a
domain average but can take both positive and negative values locally (see section 6.4). All first-order terms are
larger in winter and smaller during summer. In the mid-late summer, ice-ice interactions are small and all energy
input is dissipated by the water drag. On an annual mean, the water drag dissipates 87% of the energy input by
the air stress and the internal stress term dissipates the remaining 13%. Given the interannual variability, this is in
agreement with values of the 7 years study of Steele et al. [1997].

The second-order and third-

0.0al order terms in the KE balance
= are 1-10 thousand times
NE ~ 0.02} smaller than the dominant
E 0 v " B terms and include the power
) \_Js FMAMUJ J A S O ND generated by gravity, (py), the
3 x 10 temporal change of the total
8 2r KE, (p.), and the power associ-
3 . o F—F Mﬂf:{: = ated with changes in inertia
2 S ot }‘/17 :1> (or mass), {p;,) (Figure Tb—()
g -4 J F M A M J J A S O N D denotes the Arctic average).
8 The magnitude of (py) is mini-
§ x107° mal in spring/summer and
= 1 maximal in winter when the
T obii=E4g . ____ L ____ Beaufort Gyre is well estab-
lished. (p;,) follows a seasonal
-1 e e cycle with positive values dur-
J F M AMJ J A S OND ing the winter and negative
Time values during summer corre-
Figure 1. Arctic-mean monthly climatology (25 years) and standard deviations of (a) p, sponding to the thermOdy_
(blue), —p,, (green), and —p; (red); (b) pi (magenta) and p, (black); and (c) py, (cyan)—see namical cycle of growth and

section 4 for the definition of each term. The spatial average is done for all points within the
ice edge (A > 0.15). The annual mean values for each term (in W/m?) are .
P, : 0.0227, —p,, : 0.0198, —p; : 0.0029, py : 1X1077,py : —4X1075, and py, : 1X107. The are equally small in the local
dashed black lines in Figures 1b and 1c are the zero line. KE balance derived from

melt of ice. These three terms
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monthly mean and snapshot
fields and will not be dis-
cussed in later sections.

(a)

The rate of work done by the
internal stress term, (p;), is
dominated by the frictional
dissipation during plastic
shearing deformations
((PRic. plast)) that dissipates
77% of the total (p;), followed
by the frictional dissipation
in plastic ridging deforma-
tions (<p1Bric,pIast>) and by the
power due to changes in the
potential energy ((Ppor )
dissipating 15% and 9% of
(p;) respectively (Figure 2).
Since (ppot) transfers KE into
potential energy stored in

()

Mean power inside ice edge [W/m2]

s OF = == = i e e = i = = = irreversible plastic ridging
1t deformations, it follows
2F . closely the seasonal variations
J FMAMUJJASOND Of (Pfiic, plast )- The importance
Time of each power term compos-

ing (p;) is dependent on the

Figure 2. Arctic-mean monthly climatology (25 years) and standard deviations of (a) — . .
J Y e choice of the ellipse aspect

p?ric,plast (green), _p?ric.plast (black), and ~Piic, plast =~ (pﬁ'ic‘plast +p2’ic.plast ) (dashed red); (b)

—Ppot (blue); () —pfic e (Magenta), —pc e (Green) and —Peic vise = = (Pic vise T Phic visc) ratio. The value e = 2 was
(dashed black); and (d) =Py yransm (Cyan)—see section 4 for the definition of each term. The derived from strain rate meas-
spatial average is done for all points within the ice edge (A > 0.15). The annual mean values .

for each term (in W/m?) are —pfi . : 0.0004, —pf ...  0.0023, — Py : 0.0002, urements [Hibler, 1974, 1979]
“PRic vise :2X1077, —=pdi o :6X1077,and — Pyt ransm : —3X1077. The dashed black line and supported from observa-
in Figure 2d is the zero line. tions of opening/closing dis-

tributions as functions of the
ratio of divergence to shear invariants [Stern et al., 1995]. For e > 1, the shear strength of the ice is less than
the ice strength in isotropic compression, offering less resistance to shear deformations than ridging. For
instance, an ellipse ratio of 2 makes the shear viscosity four times smaller than the bulk viscosity (see equa-
tions (8) and (9)), but frictional dissipation by the internal stresses is dominated by the shear strain rates and
much less by the viscous coefficients (results not shown).

The dissipation by viscous deformations, (Pgic visc )= (Phic visc ) +<p1§ric,visc ), is roughly a 1000 times smaller
than the domain-averaged dissipation by plastic deformations (Figure 2c). This suggests that dissipation by
the nonphysical viscous deformations is negligibly small in the KE balance. Whether this holds in the local
nonaveraged balance will be discussed in the next sections.

The power laterally transferred by the internal stresses during deformations, (P, transm )» has a nearly zero
domain average during the whole year (Figure 2d). As shown by Pritchard [2005], the integral of the term
Plat transm ON the entire domain should indeed be zero when the sea-ice velocity is taken to be zero on the
boundaries. However, the term pi; transm iS @ first-order term locally and generally redistributes KE input
from the wind to LFKs where dissipation occurs by friction and changes in potential energy (see sections
6.2 and 6.4).

6.2. Local Monthly Averaged KE Balance

We present results for the local March and September KE balance for the year 1992. While there is interan-
nual variability in the KE balance (e.g., associated with the Arctic or North Atlantic Oscillation), the conclu-
sions drawn from a specific year are robust. The Arctic-mean residual error in the monthly mean KE balance,
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Figure 3. Monthly mean of the first-order terms in the KE balance (in W/m?) for March and September 1992—see section 4 for the defini-
tion of each term. We show —p,, and —p; for ease of comparison with the power input, p,. Note that the internal stress term, p; can some-
times act as a source of KE (—p; > 0), but we cap —p; to zero to keep the color bar consistent between those of p, and —p,,.

calculated as |py— (P, +Pw+Pi+Pg+Pn)|, is approximately 2% of the Arctic-averaged monthly mean energy
input (p,) in March and less than 1% in September.

The power input by winds and the power dissipated by the oceanic drag are the two largest contributions
in the monthly mean balance (both in March and September—Figure 3) with powers on the order of 1072
W/m2 in the central Arctic in agreement with values calculated by Coon and Pritchard [1979]. Generally, the
spatial pattern of p,, follows that of p, with local differences in intensity almost entirely compensated by
the internal stress term (results not shown). During winter, important ice interactions are present almost
everywhere, except at the center of the Beaufort Gyre (where deformations are small) and in the marginal
ice zone in the Eurasian basin (where ice is in free drift). Regions of high dissipation by shear strain rates are
present at the outer edge of the Beaufort Gyre, adjacent to the less-mobile sea ice north of the Canadian
Arctic Archipelago (CAA). In summer, the mean value of p; drops by a factor of approximately 10. Thin ice
and open water in the pack allows ice floes to move more freely in the central Arctic reducing the transmis-
sion of stress between the floes [Richter-Menge, 1997] and the importance of p; in this region decreases.

The first-order terms in the local internal stress term p; for both March and September are piy¢ transm s Ppot s
and Pic, plast =Phic. plast T Phric.plast (Figures 4 and 5). The spatial distributions of pi ransm @nd of the total
internal stress term are very similar, indicating that the main role of the internal stresses in the KE balance is
not only the dissipation of energy during deformations, but also the redistribution of energy laterally within
the pack. In fact, pi; gansm redistributes energy away from the input locations (P, transm < 0) to regions of
deformation (Pis transm > 0) Where it is used in frictional dissipation and/or stored as potential energy (also
observed with EP model—see Pritchard [1981]). The power due to changes in potential energy during con-
verging/diverging deformations (p pot ) also acts as a redistributive term, but this time between KE and
potential energy during deformations. During ridging (V - u < 0), p, is negative and KE is lost to potential
energy stored in the ridge. The areas of positive py,, (associated with opening of the pack or V - u > 0) are
an artifact of using a normal flow rule jointly with an elliptical yield curve, because P is allowed to be non-
zero even when the divergence is positive.
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Figure 4. March mean of each term composing p; (in W/m?) for the year 1992—see section 4 for the definition of each term.

Highly dissipative plastic ridging deformations occur mainly along the coastlines, while shearing dissipation
of the same order of magnitude is present everywhere in the domain. Overall, the average power dissipated
by shearing deformations is approximately five times larger than that dissipated by ridging deformations.
This is supported by observations from RGPS that show that the shear strain rate invariant (¢;) is larger
than the divergence invariant (¢;) in most local deformation events in the central Arctic [Stern et al., 1995].

In September, p; is active mostly north of the CAA and in other regions of high sea-ice concentration (e.g.,
at the entrance of the Kara Sea). This reduced area of ice interaction results in a mean intensity of the plastic
dissipation that is approximately 10 times smaller than in March. The change of sign of the term p,,,, near
the CAA from negative in March to positive in September is related to the change in the monthly mean ice
drift patterns. In March, the Beaufort Gyre and Transpolar Drift Stream promote converging ice velocity
(Ppot < 0) north of the CAA, while the cyclonic circulation in September (of that particular year) leads to
shearing and diverging motion (pp,, > 0) in the same region.

In both seasons, viscous dissipation is approximately a 1000 times smaller than plastic dissipation locally in
the monthly averaged fields. There exist regions, however, where ice is most of the time in the viscous regime
(e.g., North of the New Siberian Islands, Beaufort Sea, and Lincoln Sea). However, the total monthly mean
energy dissipated in these regions is still dominated by the less frequent but more energetic plastic deforma-
tions. The VP approximation is therefore appropriate for the monthly time scale at 40 km of spatial resolution.

6.3. Effects of an Increasing Spatial Resolution

Before analyzing the role of each power term from higher-resolution snapshots of the KE balance, we look
at the effects of an increasing spatial resolution the KE balance. We run the same model, again for the time
period of 1 January 1992 to 31 December 1992, on a 10 km grid with the same time step (1 h) and degree

of convergence (NL g =500—residual norm: O(1073)).

The monthly mean KE balance at 10 km spatial resolution (not shown) resemble that of the 40 km run,
except that finer structures are visible in all power terms. Some shear lines are now visible in the plastic dis-
sipation in shearing deformations, p?ricﬁp,ast, especially around the Beaufort Gyre. The mean error on closing
the monthly mean balance for the 10 km run is again about 2% of the Arctic-averaged mean value of the
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Figure 5. September mean of each term composing p; (in W/m?) for the year 1992—see section 4 for the definition of each term.

energy input by the surface winds. Note that in the following, we neglect data from the CAA when perform-
ing domain averages to compare with the same domain as in the 40 km resolution run.

During the month of March, the monthly mean ratio of the number of grid points in the viscous and plastic
regimes (Nyisc/Npiast) increases from 7% (for the 40 km grid) to 19% on the 10 km grid due to refined LKFs.
With increasing resolution, broad deformation lines separate into groups of finer LFKs and new deformation
lines also appear (results not shown). The net result is an increased number of grid cells in the viscous regime
at the expense of the plastic regime. However, the ratio of the Arctic-averaged monthly mean dissipation in
each deformation regime still yields (Pgic visc )/ (Pfiic. plast ) ~ 10> because the increment in the viscous energy
sink is still small compared to the resulting plastic energy sink. As shown by Wang and Wang [2009], the
choice of a particular yield curve affects the position and the spatial distribution of the LKFs as the spatial reso-
lution increases. This will affect the ratio of Ny /Npiast and the total viscous sink. However, we expect that the
viscous dissipation would still be negligible. This is because the stress states scale approximately the same
regardless of the VP yield curve used. The ratio (Pgic visc )/ (Pric, plast ) S€ales as (épiast) / (€visc) and (évisc) must be
much smaller than (épias) by definition with all VP yield curves.

At 10 km spatial resolution, the mean surface wind stress is higher due to the cubic spline interpolation of
the surface winds used to calculate 7,. Consequently, direct comparison of the magnitude of the energy
sinks in the KE balance between the two spatial resolutions considered is not possible. Instead, we report
on the ratio of a particular term in the KE balance and the energy input by the wind ({p,); Figure 6). The
results for the 25 years climatological values (mean and standard deviation) obtained from the 40 km model
are also presented for reference.

The domain-averaged monthly mean ratios (p;)/(p,) and (Pgic piast )/ {Pa) for the 10 km run are significantly
lower (outside the standard deviation of the 25 years climatology) than the same ratios for the 40 km run
during the winter months (Figures 6a and 6b). The relative amount of (Pgic visc )/ (Pa) is also slightly (not sig-
nificantly) reduced in winter and is still a 1000 times smaller than (Pgc piase) for all months, suggesting that
the VP approximation is appropriate with the 10 km grid (Figure 6c). The ratio of the dissipation by the
water drag to the atmospheric input, (p,,)/(p,), also increases with spatial resolution to balance the
decrease in (p;)/(p,) (Figure 6d). This result is also observed for other years (results not shown).
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Figure 6. Dissipative terms in the KE balance as a function of the spatial resolution and numbers of Newton loops of the numerical solver.
These include: (a) dissipation by the internal stresses, (b) dissipation by the water drag, (c) dissipation in plastic deformations, and (d) dissi-
pation in viscous deformations. Each sink term is normalized with the monthly mean domain averaged atmospheric forcing, <p,>, for
comparison between the runs with different forcing. The black line is the climatological mean values (1980-2004) and standard deviations
at 40 km spatial resolution.

These differences in the KE balance between the 10 and 40 km simulations suggest that the ice strength in
isotropic compression (P") should be increased as the spatial resolution of the model is increased. A study
of the calibration of the VP model against buoy drift data indeed suggests that a higher value of P should
be used on a 10 km grid [Dansereau, 2011]. Steele et al. [1997], studying the sensitivity of the force balance
to variations in P’, showed that increasing the ice strength in isotropic compression considerably increases
the internal stress gradients in the pack and slows down the ice drift in winter. We have tested that the
amount of small deformations is increased at the expense of larger deformations when P” is increased in
our 10 km model, but that the dissipation by the less frequent large plastic deformations becomes larger.
The net effect is an increase of the work done by the internal stresses in winter (even if the ice drift velocity
is reduced as P” increases). Note that changing the value of the ice strength in isotropic compression would
also change the deformation patterns and intensity so that the number of points in the viscous and plastic
regimes and the total dissipation in both modes would also be affected.

6.4. Snapshots

In this section, we present the KE balance from instantaneous snapshots of each field variables (Figure 7).
Snapshots were obtained at every hour for the month of March 1992 for the 10 km run with NL 4 =500
(residual norm: ©(1073) - fully converged). In the following, we focus on the snapshots for 17 March at
1200 universal time coordinated (UTC).

The instantaneous KE balance resembles that of the monthly mean balance for March, except for p, and pq
that can reach values as large as 1 order of magnitude smaller than the magnitude of the internal stress
term for certain time levels (results not shown). The two main energy sinks in the pack are again the water
drag (py) and the internal ice stress term (p;). On average inside the pack, the water drag dissipates ~80%
of the energy input by p,. The remaining 20% of the energy input by the wind is transferred and dissipated
by the internal stress term in regions of imbalance between p, and p,, (Figures 7c and 7d). In regions where
the winds are small, the dissipation by the water drag exceeds the input of energy locally and the internal
stresses act also as a source of energy in those regions. Input of energy by the internal stress term results
from an imbalance in the lateral energy transfer from regions of extra energy input (|p,| —|p,,| > 0) to
regions where the intensity of the water drag dissipation is greater than that of p,. This is achieved by the
term of lateral transmission of energy (Pt transm =V - (U - 6)—Figure 7e).

The role of P, ransm 1S Well illustrated in the instantaneous KE balance: it redistributes the energy input by
the wind toward smaller-scales structures (LKFs) within the pack. The LKFs are clearly defined in the snap-
shot of Piat transm PY lines of positive transmission of energy (indicating energy being transferred to the
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Figure 7. Snapshots of the sources and sinks of energy in the KE balance and in the internal stress term (in W/m?) with a spatial resolution

of 10 km and NL 4, =500 on 17 March 1992 1200 UTC.

LKFs) that are collocated with large area of plastic dissipation (Figure 7e and 7f). Note that, the LKFs are no
longer visible in the resulting work by the internal stresses because most of the frictional dissipation is bal-
anced by pi,; iransm - Along LKFs, the energy is in fact mainly dissipated via frictional dissipation in plastic
deformations, but a smaller fraction (up to half of that by pgic piast) is dissipated by the potential energy
sink (p pot ) in ridging deformations. On a domain average, the plastic dissipation accounts for 85% of the
total dissipation by the internal stresses, while py,; accounts for the remaining 15%. The instantaneous
Arctic-averaged frictional dissipation in shearing is still five times larger than that in ridging (not shown) as
seen in the monthly mean KE balance. Note that there are some regions of plastic dissipation where
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Figure 8. Snapshots of plastic and viscous frictional dissipation (in W/m?) for the 10 km spatial resolution model on 17 March 1992 1200
UTC, for (a and b) 5 NL, (c and d) 50 NL, and (e and f) 500 NL. Results along the A-B transect are shown in Figure 9.

Plat transm 1S @lso transferring energy away from the deformation locations. In that case, the energy input by
the atmospheric wind is larger than the amount of energy dissipated by the water drag and by the plastic
dissipation locally, such that the extra input energy is being redistributed elsewhere in the domain by

Piat transm -

The ratio of the number of points in the viscous regime to that in the plastic regime (Nyjsc/Npiast) for this
particular time level is of 14% which is representative of the monthly mean field. As expected, instantane-
ous viscous frictional dissipation occurs in between LKFs and is again approximately a 1000 times smaller
than plastic frictional dissipation (locally and domain averaged). This confirms that the VP approximation is
also appropriate on an instantaneous time scale for this model.

6.5. Effects of the Degree of Convergence of the Numerical Solver

We now run the same 10 km resolution model (from 1 January 1992 to 31 December 1992—1 h time step)
with different levels of numerical convergence, including NL 4, =500 (from previous section; residual norm:
0O(1073) - fully converged), NL ;4 =50 (residual norm: O(10°) - solver converging on 14% of the time
levels) and NL e =5 (residual norm: @(10")—solver never converging).

The number of Newton loops of the nonlinear solver does not significantly affect the ratio of the domain
means (or intensity) of the terms in the KE balance (Figure 6). In winter, the ratio (Pgic visc)/{Pa) is slightly
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Table 1. Viscous and Plastic Sinks With Different Levels of
Numerical Convergence?®

Nuisc / Nptast 0.15 0.18 0.18
(Pricvisc )/ (Pricplast) 24X 107" 33x107%  35x107"

“Relative importance of the viscous and plastic regimes meas-
ured by the monthly mean ratio of the number of grid points in
each regime (Nyisc /Npiast) and by the ratio of the Arctic-averaged
monthly mean dissipation in each regime (pgic visc )/ (Pfric, plast )
for March 1992 and for different maximal number of Newton
loops (NL,q) in the numerical solver (10 km grid).

increased due to the refinement of plastic defor-
mation lines with increased number of NL [see
also Lemieux and Tremblay, 2009] leading to larger
viscous dissipation areas in between the regions of
plastic deformation. For this reason, the monthly
mean ratio of grid points in the viscous and plastic
regime in the month of March is seen to slightly
increase with increasing NL,,,4 (Table 1). However,
the increased amount of viscous points is not
enough to significantly affect the ratio of the

Arctic-averaged monthly mean viscous and plastic
diSSipation (<pfric,visc >/<pfric‘plast>) and the viscous
energy sink stays negligible even in a nonconverged simulation (Table 1).

Increasing the degree of convergence of the simulation results in similar changes as the increase in spatial
resolution (section 6.3). With a high number of NL iterations, new deformation lines that were previously
nonexistent or merged with other deformation lines can now be resolved and local dissipation in deforma-
tions is increased. This can be seen by comparing snapshots (again on 17 March 1992 at 1200 UTC) of the
plastic and viscous dissipation term for the three runs (Figure 8). The local intensity of pgc yisc On these
snapshots stays about 1000 times smaller than pgic s independently of the number of NL. Note that com-
parison between the local intensity in the three runs is not possible since the input by the atmospheric
stress changes with the number of NL via changes in the sea-ice velocity. Taking the local ratio of the terms
with the atmospheric forcing is also not appropriate for comparison of the spatial distributions since the
energy dissipated locally usually gets transferred by pjat.transm from a different input region (see section 6.4).
We can then only discuss qualitatively the differences between the snapshots.

The main effect of the degree of convergence of the numerical solver on energy dissipation is to modify

the deformation lines (position and size) as discussed by Lemieux and Tremblay [2009]. We illustrate this by

sampling the terms of energy dissipation along the transect (A-B—Figure 8) crossing a LKF, for the three 10
km runs (Figure 9). The corre-

o 0.01y 20 Kk = 500 NL sponding results for the 40 km
s g oo0sl = — iEEEEEg:,ETL are also included foT comparison
g and the atmospheric input for
o A each run is also presented along
0 the transect. The resulting spatial
0= distributions for p; are very differ-
o ent, mostly due to changes in the
o) § —0.005 plastic dissipation. In the noncon-
= ’ verged run (NL g =5), the shear
o A B line crossed by the transect is
B e o
broad and the plastic dissipation
NE shows two distinct peaks of maxi-
s mum dissipation. As the number
< Hﬁ of Newton loop iterations (i.e.,
(_% level of convergence) increases,
o —47A ) ) ) ) ) ) ) ) . B, the LKF sharpens and the posi-
%107 tion of its maximum dissipation
NE 0 _ shifts toward the coastline (point
s oo A of the transect). In the fully
S g —2r \_/\/ converged run (NL g =500), a
i -4t - second shear line is resolved near
o _glA_. . . . . . . . . ) point A (Figure 8a) and another
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distinct peak of plastic dissipa-
tion is observed (Figure 9b). The
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Figure 9. Atmospheric forcing and energy dissipation along the A-B transect of Figure 8:
(a) Par (b) Pir (C) pfric,plast v and (d) Pric visc *
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at the limits between the plastic and viscous regions where the viscous deformations are larger (yet still
much smaller than plastic deformations). When NL,, is decreased from 500 to 5, the viscous region disap-
pears entirely as a consequence of the plastic deformation line being too diffuse. This illustrates again the
migration of stress states from the plastic to the viscous regime with an increased level of convergence.

In this snapshot, the center of the LKF (the highest plastic dissipation point) is offset from the closest maxi-
mum of atmospheric input (also observed for other snapshots during the month). In fact, the deformation
lines tend to appear on the periphery of the atmospheric input regions, where the shear in ice velocity is
larger. The energy input in the pack must therefore be transmitted laterally in the pack for the dissipation
to occur in the deformation lines as detailed in the previous section.

It is interesting to note that, along this transect, the distribution of the forcing (p,) in the converged 40 km
run and in the nonconverged 10 km run (NL 0, =5) are very similar. However, the resulting work from the
internal stresses and the dissipation (plastic and viscous) are very different. This illustrates that the forcing is
not the only determining factor on energy dissipation, but that the spatial resolution and degree of conver-
gence of the numerical solver are also influential factors.

7. Conclusion

Large plastic deformations in sea ice occur along narrow lines of high strain rates (called linear kinematic
features—LKFs), while the surrounding pack undergoes small elastic deformations. To model this mechani-
cal behavior, most current sea-ice models use the viscous-plastic (VP) approximation [Hibler, 1979] that
considers the small deformations as irreversible viscous deformations. This introduces a nonphysical energy
sink in the models, but the gain in numerical efficiency (compared to previous elastic-plastic models)
appeared as a sufficient justification for this approximation. The improvements in the numerical efficiency
of numerical solvers in the last decade now allow for the solution of the governing equations to be more
accurate and on increasingly high-resolution grids. As the spatial resolution is increased, the number of grid
points undergoing viscous deformations increase because of the refinement of LKFs [Wang and Wang,
2009]. A better converged solution also results in better defined LKFs and a migration of points from the
plastic regime toward the viscous regime [Lemieux and Tremblay, 2009; Zhang and Rothrock, 2000]. In this
context, we posed the following questions: is the energy sink associated with the viscous deformation still
negligible for better converged and high-resolution sea-ice models? And, what is the relative amount of
energy dissipated by each term in the kinetic energy (KE) balance?

For all time scales (annual climatology, monthly means and snapshots) and grid resolution (40 and 10 km)
investigated, the VP approximation is shown to be appropriate as viscous dissipation remains a negligible sink
of energy (3 orders of magnitude smaller than the leading term) in the KE balance. The climatological seasonal
cycle of the KE balance revealed that the internal stress term is a first-order term in the KE balance and that it
is mostly active during the winter when the ice-ice interactions are important. The frictional dissipation in plas-
tic deformations along LKFs is found to be the dominant term in forming the total internal stress term, while
the potential energy sink is found to be less than half of the magnitude of the plastic dissipation. Annual and
monthly averages also showed that frictional dissipation in shearing is about five times bigger than frictional
dissipation in ridging. It is indeed easier for large shearing deformations than for large (negative) divergence
to occur since the shear strength of the ice is less than its isotropic compressive strength when using an
ellipse aspect ratio e = 2. A different ellipse ratio as proposed in Miller et al. [2005] and Dumont et al. [2009]
would obviously change the ratio of frictional dissipation in ridging to that in shearing.

The energy input by the atmospheric drag is mainly dissipated by the water drag locally and by the internal
stress term along deformation lines over the whole domain. We noted that the dissipation by the internal
stresses can occur away from the input locations due to the term of lateral transmission of energy entering
in the definition of the internal stress term. Both the frictional dissipation and the lateral transmission are
first-order terms and this highlights the fact that terms that appear to be negligible when averaged on the
whole domain can be locally important (e.g., the term of lateral transmission of stress). Results from the
monthly averaged KE balance show that, large shear deformations are present everywhere on the domain
in winter, while ridging deformations dissipating the same amount of energy are found only near the coast-
lines. In the summer, both the ridging and shearing dissipation are confined to the coastlines and other
regions of high ice concentration.
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As expected from the refinement of the LKFs at a higher grid resolution, the area of viscous deformations
increases with increasing spatial resolution (from 40 to 10 km), but not enough to make a significative
change in the averaged amount of viscous dissipation relative to the plastic dissipation. At higher resolu-
tion, we found that the ratio of the energy dissipated by the ocean drag to the energy input increases while
that of the energy dissipated along deformation lines to the energy input decreases. This suggests that the
ice strength in isotropic compression (P") should be higher when the resolution increases to maintain the
same KE balance (i.e., decrease the water drag dissipation due to reduced sea-ice velocity and increase the
internal stress dissipation because of higher viscous coefficients for each deformation). This raises the ques-
tion of the dependence of the KE balance on the calibration of other model parameters (e.g., drag coeffi-
cients and ellipse ratio) and if those are adequate for high-resolution modeling. It is interesting to note that,
increasing P* (and consequently the values of the viscous coefficients) with increasing resolution is in oppo-
sition to a fluid behavior where the viscosity need to be decreased as more small-scale dissipating proc-
esses are being resolved in the flow (e.g., small-scale eddies in ocean models). Raising the value of P" for
higher-resolution sea-ice models is however consistent with laboratory experiments conducted at smaller
scale that also suggest higher compressive/shear strength of a single floe when compared to an aggregate
of floes [Dempsey et al., 1999].

The KE balance from instantaneous snapshots reveals that the energy input by the wind is dissipated in the
pack by the ocean drag (mostly following the same pattern as the energy input) and away from the input
locations by small-scale structures (LFKs). The dissipation by the internal stresses can occur away from the
input regions due to the term of lateral transmission of energy entering in the definition of the internal
stress term. The term of lateral transmission of energy also redistributes the energy from regions of high
input to regions where the wind energy input is small, such that the internal stresses act locally as a source
of KE.

The degree of convergence of the numerical solver does not significantly affect the KE balance. We observe
that the amount of (monthly mean Arctic averaged) energy dissipation/input by each term in the KE bal-
ance is stable after only a few Newton loop iterations in the nonlinear solver. This is in agreement with
results previously shown by Lemieux et al. [2008] that only 10 Newton loops (NL) iterations are required for
the average KE in the pack to stabilize to values that are within 2% of the KE of the fully converged solution.
However, the degree of the convergence of the simulations could affect the deformation distributions in an
analogous manner as with a change of spatial resolution. The particular effect of a changing deformation
distribution on the amount of energy dissipated is yet to be evaluated.

Appendix A: Derivation of the Deformation Rate of Work in Terms of Stress and
Strain Rates Invariants

In Rothrock [1975] and Coon et al. [1974], the deformation rate of work done by the internal stresses,
tr (¢ : g), is written in terms of the stress and strain rate invariants. To derive this expression, we consider
the following stress and strain rate tensors:

011 012 . €11 €12
ag= €= . . )
g1 022 €21 €22
where g;; are the vertically integrated internal stresses (equation (6)) and ¢; are the strain rates defined by

€ij= % (8,uj+€)ju;). Both tensors are symmetric. The principal values (or eigenvalues) of these tensors are
found by solving the characteristic equations |c—A/|=0 and |¢ —4/|=0, respectively. They are given by

a1t 011022\ 2
61:< 5 )+ < 5 > +6%2

_(ontoxn 011 —022\2 | 5
‘72_< 2 )7 ( 2 )”12

(A1)

and,
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62:<¥>—5\/(611+€22)2—4(611622—€$2) .

In the above, g1(¢é1) and a3 (¢;) represent the maximum and minimum normal stress (strain rate), respec-
tively. These eigenvalues can also be found by rotating the original tensors by an angle 6 derived from the
rotation matrices, P, and P;, formed with the eigenvectors that are associated with the eigenvalues, i.e.,

(A2)

g1 0
Pl.G:P, = o=

0 (o)

€1 0
Pl.é:p. = ¢é=

0 €2

The trace and determinant of second-order tensors (like ¢ and ¢) are mathematical invariants under similar-
ity transformations. From them, we can form two different invariants for each tensors which have a useful
physical meaning, e.g.,

T T T2
s (A3)
o= (I’(O’)) —deto = S s
2
and,
é/:tl’(é):é1+é2
(A4)

én=1/(tr(¢))>—4(deté) =é1—¢, .
The invariants o; and g, represent the average normal stress and maximal shear stress at a point, respec-
tively, while ¢, and ¢ are the sea-ice divergence and the maximum shear strain at a point.

The trace of the product of the diagonalized strain rate and stress tensors, tr (¢ : ¢’ ), can be written in terms
of the rotation matrices P, and P; as

’ ’

tr(¢ :o) =tr(Pl:é:P::Pl:6:P,)

é‘| 0 a1 0

=tr : (A5)
0 éz 0 g

:é1G1+é20'2 .

Taking into account the fact that the rotation matrices are orthogonal (i.e., PT=P; ', i=¢, ¢) and assuming
that the principal axes of stress and strain rate coincide (i.e, P,=P: =P), the trace of the product of the diag-
onal tensors (A5) can be written as

which can be interpreted as the trace of the rotated tensor (¢ : ). Since the trace of a tensor is invariant
under similarity transformations such as rotation, we can write

BOUCHAT AND TREMBLAY ©2014. American Geophysical Union. All Rights Reserved. 993



@AGU Journal of Geophysical Research: Oceans

10.1002/2013JC009436

Acknowledgments

Amélie Bouchat is grateful to the
Natural Science and Engineering and
Research Council (NSERC) and the
Fonds Québécois de la Recherche sur
la Nature et les Technologies (FQRNT)
for scholarships received during the
course of this work. Bruno Tremblay is
grateful for financial support by the
NSERC Discovery program, the
Environment Canada Grants and
Contribution program, and by the
Office of Naval Research
(N000141110977). This research was
also supported by the Canadian Sea
Ice and Snow Evolution (CanCISE)
Network, which is funded by the
NSERC's Climate Change and
Atmospheric Research Program. We
thank Jean-Frangois Lemieux Jaime
Palter and anonymous reviewers for
their careful review of the manuscript
and helpful comments.

tr((é : 0))=tr (¢ : 6)=é101+¢é207 .

Substituting the principal stresses and strain rates in terms of the invariants (equations (A3) and (A4)), we
write [Coon et al., 1974; Rothrock, 1975]:

tr (6 : O'):é10'1+é”0'// . (A6)

This term includes the rate of change of potential energy during deformations as well as the rates of dissi-
pation from all energy sinks including frictional losses during ridging, shearing and viscous creep in the
case of VP models.
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