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ABSTRACT 

Four variable-depth pier cap beams were constructed and tested. These specimens were designed 

to have reinforcement details similar to types 04A and 168 pier cap beams used in the existing 

Champlain Bridge. The primary objectives were to examine and compare the behavior of 

variable depth cap beams at service loading and at failure, to analyze the effectiveness of crack 

control reinforcement, and to investigate the influence of external horizontal post-tensioning. 

Additionally, the observed cap beam responses were compared with three prediction models: 

sectional analyses, strut-and-tie models, and non-linear finite element analyses.  

It was concluded that the amount of crack control reinforcement was important in controlling 

crack widths at service load level. The inclined shear reinforcement was found to be effective in 

resisting shear. Horizontal post-tensioning was effective in reducing crack widths and the overall 

stiffness of the pier cap beams, but did not lead to significant increases in strength. Failure shears 

predicted by the sectional analyses were conservative and better than those predicted by the strut-

and-tie model. Non-linear finite element analyses gave very good predictions of the complete 

behavior and strength of the pier cap beams. 
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RÉSUMÉ 

Quatre chevêtres en poutre de profondeur variable ont été construites et testées. Ces spécimens 

ont été construits avec des armatures semblables à celles utilisées dans les chevêtres du pont 

Champlain existant, spécifiquement 04A et 168. Un des objectifs était d’examiner et de 

comparer le comportement des chevêtres lors des chargements de service et au moment de la 

rupture. De plus, l’efficacité de l’armature pour contrôler la fissuration et l’influence de la 

précontrainte horizontale externe ont été examinées. Les réponses observées des spécimens ont 

été comparées à trois modèles de prédiction : les analyses en coupe, les modèles bielle-tirant, et 

les analyses par éléments finis non linéaires. 

En conclusion, la quantité d’armature pour contrôler la fissuration était performante dans la 

maîtrise de la largeur des fissures lors de chargements de service. L’armature de cisaillement 

inclinée s'est avérée efficace pour résister au cisaillement. La précontrainte horizontale a été 

efficace pour réduire la largeur des fissures et la rigidité des chevêtres en poutre, mais sans 

augmentation de la résistance. Les cisaillements maximaux prédits par les analyses en coupe 

étaient conservateurs et meilleurs à ceux prédits par le modèle bielle-tirant. Les analyses des 

éléments finis non linéaires ont très bien prédit le comportement et la résistance des chevêtres en 

poutre. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Introduction 

The existing Champlain Bridge was constructed from 1957-1962 as a crucial link to the 

city of Montréal, Canada, over the St. Lawrence River. In a 2011 investigation the bridge was 

found to be “functionally deficient” for both current and future volumes of traffic, with several 

elements of the bridge such as the pier caps in their unrepaired state deemed in ‘poor’ condition 

(Delcan, 2011). This thesis is a study of certain features of two pier cap beam designs used in the 

existing Champlain Bridge. 

1.2 Existing Champlain Bridge Pier Caps 

1.2.1 Type 04A Pier Cap Detailing 

Figures 1.1 and 1.2 illustrate the geometry and reinforcing details of a type 04A pier cap 

beam of the existing Champlain Bridge, as originally designed and constructed. These design 

drawings were provided by Les Ponts Jacques Cartier et Champlain Incorporée (PJCCI), which 

also provided funding for this research program. The design details shown in these drawings 

were used for the construction of the piers in section 5 and 7A except for piers 37W to 43W. The 

specified 28-day concrete compressive strength was 3500 psi (24.1 MPa). 

The overall length of the pier cap beam is 77’-5” (23.6 m) and cantilevers out from the 

pier supports by a distance of 26’-6” (8.077 m) on either side. The cap beam has a uniform 

thickness of 6’-4” (1930 mm). The top surface of the cap beam is sloped downwards along the 

length from the centerline of the pier, and also sloped in the perpendicular direction for drainage. 

The bottom faces of the cantilevers have constant slopes of 1:4, resulting in a depth of 4’-11.2” 

(1503 mm) at the cap beam ends increasing to a depth of 11’-6” (3507 mm) at the pier supports.  
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The cap beam has primary longitudinal tension reinforcement located along the top of the 

beam consisting of four layers of #18 reinforcing bars. These bars have several cut-off locations 

as can be seen in Figure 1.1, and some of the bars at the cantilever ends are anchored with 90 

degree bend hooks. At the critical section located at the face of the support there are a total of 38 

#18 bars distributed in four layers. The transverse reinforcement consists of stirrups located 

throughout the cantilevered spans in two different design regions. The region within a distance of 

3.4 m from the support face is more critical and hence has more densely spaced stirrups. The 

design consists of alternating sets of 14 legs of #6 bars and sets of 10 legs of #6 bars, each with a 

spacing varying from 11 to 13 in. (279 to 330 mm). This stirrup arrangement can be averaged as 

12 legs of #6 bars at a spacing varying from 5.5 and 6.5 in. (140 to 165 mm). Outside of this 

region the same stirrups are used but at a spacing varying from 15 to 20 in. (381 to 508 mm). 

Similarly, this stirrup arrangement can be averaged to 12 legs of #6 bars at a spacing varying 

from 7.5 to 10.0 in. (191 to 254 mm). The uniformly distributed longitudinal reinforcement 

consists of 8 #8 bars and 4 #4 bars that are slightly inclined. 
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Figure 1.1: Drawing 12942-EE-4A – Reinforcement and bearing details for pier cap type 04A for 

sections 5 and 7A (PJCCI, 1960) 
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Figure 1.2: Drawing 12942-EE-5A – Elevation view of pier cap type 04A for sections 5 and 7A 

(PJCCI, 1960) 
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1.2.2 Type 168 Pier Cap Detailing 

Figure 1.3 shows the original drawings for pier cap type 168, used for the design of pier 

cap beams 11E, 12E, and 13E. The general notes of drawing 12942-L-167 indicate a specified 

28-day concrete compressive strength of 3500 psi (24.1 MPa), same as for the type 04A pier 

caps. Additionally, the general geometry of these pier caps is consistent with type 04A. In terms 

of shear reinforcement, the type 168 design uses inclined reinforcement bars in tandem with 

conventional stirrups. Although Figure 1.3 indicates that square reinforcing bars are to be used 

for the inclined reinforcement, there is a note indicating that the 1-1/4 in. and 2 in. square bars 

are equivalent to #11 and #18 bars, respectively. A study of the photographs of the rehabilitation 

of piers 11E, 12E, and 13E indicate that #11 bars and #18 deformed bars were used for the 

flexural and inclined reinforcement (Mitchell, 2018). 

The primary longitudinal tensile reinforcement in the top of the beam at the pier interface 

consists of three layers of #18 reinforcing bars. These bars have several cut-off locations as can 

be seen in Figure 1.3. At the critical section located at the face of the support there are a total of 

36 #18 bars placed in three layers, with 12 bars placed in each layer. The vertical stirrup design 

in the cantilever portions of the pier cap consists of 10 legs of #6 bars evenly distributed through 

the cantilever at a spacing of 7 in. (178 mm). In addition, six pairs of #18 inclined bars were 

provided for a length of about 2/3 of the cantilever, with an additional two pairs of #11 inclined 

bars provided in the remaining end portion of each cantilever. The uniformly distributed 

longitudinal reinforcement is the same as in the type 04A design, and the effective amount of 

transverse reinforcement in this type 168 design is 90% of the type 04A effective stirrups. 

Additional vertical post-tensioned reinforcement provided in type 04 cap beams was not 

provided in the Type 168 cap beams. 
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Figure 1.3: Drawing 12942-L-168 – Reinforcement and bearing details for pier cap Type 168 in 

Section 7B (PJCCI, 1960) 
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1.2.3 Observed Distress in Pier Cap Beams 

Figure 1.4 shows the observed damage in pier cap 36W. Significant inclined shear 

cracking can be seen in the cantilevered portion of the cap beam in addition to significant vertical 

flexural cracking and delamination of the concrete cover. Figure 1.5 demonstrates the flexural 

cracking damage observed on pier cap 21W. This flexural cracking damage can be seen in the 

central region above the piers as well as just below the concentrated #18 reinforcement layers 

where there was little crack control reinforcement. Table 1.1 summarizes the amount of crack 

control reinforcement in the vertical and horizontal directions at the region of the cap beams 

above the piers. It is noted that the 2014 Canadian Highway Bridge Design Code (CSA 2014) 

requires a reinforcement ratio, , of 0.003 in both directions. Table 1.1 demonstrates that only 

the vertical stirrup reinforcement in pier caps type 04A had adequate crack control reinforcement 

in accordance with current standards. 

 

Figure 1.4: Flexural cracks, shear cracks and concrete delamination in pier cap 36W in 2000 

(courtesy of PJCCI) 
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Figure 1.5: Flexural cracking in pier cap 21W in 2011 (courtesy of PJCCI) 

 

Table 1.1: Crack control reinforcement ratios in region of cap beams above piers 

Type Stirrups 

v 

Horizontal bars 

h 

04A 0.00573 0.00092 

168 0.00193 0.00104 
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1.3 Research Objectives 

The objectives of this research program were to study several features of the type 04A 

and type 168 pier cap beams used in the existing Champlain Bridge. These objectives were to: 

1. Examine the behavior of pier cap beam cantilevers of variable depth. 

2. Develop predictions of the flexural strength and the shear strength. 

3. Examine the performance of crack control reinforcement. 

4. Study the effectiveness of inclined reinforcement. 

5. Study the effectiveness of the horizontal post-tensioning retrofit. 

6. Compare analyses predictions using the sectional design approach, strut-and-tie 

models, and by non-linear finite element analyses.  
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Sectional Analysis Method 

Before the 1984 Canadian Standards Association (CSA) A23.3 Standard, shear design 

was largely performed based upon provisions set by the American Concrete Institute (ACI, 

1983). The traditional ACI code approach for shear design considered a concrete contribution, 

Vc, and a contribution from the stirrups, Vs. The concrete contribution was determined from 

empirical expressions representing the concrete cracking shear. To determine the shear carried 

by the stirrups, the ACI code assumed an angle of principal compression, , of 45. This angle 

was allowed to vary based off Kupfer’s (1964) variable-angle truss model assuming both the 

reinforcement and concrete were linearly elastic.  

The 1984 CSA A23.3 Standard proposed a sectional analysis method that differed from 

the traditional ACI methodology. This “General Method” was based off of the Compression 

Field Theory developed by Mitchell and Collins (1974) for pure torsion, which analyzed the 

behavior of concrete once cracked where it no longer behaves elastically. This theory is based off 

the assumption that the principal tensile stress, f1, in the concrete after cracking was negligible. 

The angle of principal compression was allowed to vary between 15-75 at the discretion of the 

designer, though an upper bound to   was given based off of when the principal compressive 

stress in the concrete, f2, reaches its crushing strength, f2,max (Collins and Mitchell, 1986). 

The Modified Compression Field Theory (MCFT) introduced by Vecchio and Collins 

(1986) involved analyzing the stress-strain relationships of cracked concrete, taking into account 

the tensile stress behavior between cracks previously assumed to be negligible. This theory was 

first implemented into the General Method in the 1994 CSA A23.3 Standard and has become 

fundamental to modern shear design. 
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The MCFT was able to determine the relationship between strains and stresses by making 

the key assumption that the concrete and reinforcement were perfectly bonded, thus having equal 

strain. It also assumes that average stress and strain values can be used if taken over a large area 

with multiple cracks (Vecchio and Collins, 1986). A Mohr circle was derived for each of the 

compatibility conditions and equilibrium conditions, which were then used to relate the normal 

strains and stresses to the principal strains and stresses (see Figure 2.2(a)). The normal strains are 

designated x and y and signify the strain in the concrete in the plane x-y directions. Principal 

strains 1 and 2 are then strains oriented with respect to the crack angle , where 1 is the strain 

perpendicular to the direction of principal compression and 2 is the strain parallel to the 

direction of principal compression (see Figure 2.1). Each strain then has a corresponding stress, 

designated fx, fy, f1, and f2, with a separate Mohr circle as shown in Figure 2.2(b). Assuming a 

linear stress-strain relationship until yielding and that the principal strain and stress angles are 

equal, some fundamental equations were derived: 

𝑓2 = 𝑓2𝑚𝑎𝑥 [2𝜀2𝜀𝑐′ − (𝜀2𝜀𝑐′ )2]    (2.1) 

𝑓1 = 𝑓𝑐𝑟1+√500𝜀1      (2.2) 

𝜀1 = 𝜀𝑥 + (𝜀𝑥 − 𝜀2)𝑐𝑜𝑡2𝜃    (2.3) 

where:  f1 = average tensile stress after cracking. Before cracking f1 = Ec1.   

 f2 = principal compressive strength of concrete      

 f2,max = crushing strength of concrete      

 fcr = cracking strength of concrete, taken as 0.33(fc')1/2     

 c'  = strain in concrete at specified strength, usually taken as -0.002 

These equations are based upon average values and thus do not give any indication as to the 

shear stresses on the crack. Walraven (1981) analyzed the cracking behavior of concrete and 

developed an equation to determine the shear stress across a crack, vci, as: 

𝑣𝑐𝑖 = 0.18√𝑓𝑐′0.31+24𝑤/(16+𝑎𝑔) (MPa and mm) (2.4) 
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This equation is based on the concrete compressive strength (fc' ), the average crack width (w), 

and also the maximum aggregate size (ag). Concrete cracks typically form along the weaker 

interface between the cement paste and aggregates, forming rough, jagged cracks (see Figure 

2.3). Thus, this phenomenon of aggregate interlock creates shear stresses and must be taken into 

account. 

 

Figure 2.1: Average strains in cracked concrete element (Vecchio and Collins, 1986) 

 

(a) Average strain    (b) Average stress 

Figure 2.2: Mohr’s circle for average strains and stresses (Vecchio and Collins, 1986) 
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Figure 2.3: Shear stresses transmitted across a crack via aggregate interlock 

 (Vecchio and Collins, 1986) 

The MCFT was first developed into a practical shear design method by Collins and 

Mitchell (1991) which was subsequently used in the CSA A23.3 1994 Standard and later 

editions. It has been implemented in several codes including the AASHTO LRFD (2014) and the 

Canadian Highway Bridge Design Code (CSA, 2014). This paper will focus on the current CSA 

S6-14 Canadian Highway Bridge Design Code (CSA, 2014) requirements. 

 Collins et al. (1996) and Bentz and Collins (2006) describe the shear design equations 

used in detail. The shear resistance of a member, Vr, is given by, 𝑉𝑟 = 𝑉𝑐 + 𝑉𝑠 + 𝑉𝑝     (2.5) 

Where Vc, Vs, and Vp are the shear contribution of the concrete, transverse reinforcement, and 

vertical component of prestressing, respectively. This is shown in a free body diagram in Figure 

2.4. The Vc and Vs contributions are determined by: 𝑉𝑐 = 𝑓1𝑏𝑣𝑑𝑣𝑐𝑜𝑡𝜃     (2.6) 𝑉𝑠 = 𝑓𝑦𝐴𝑣𝑑𝑣𝑐𝑜𝑡𝜃𝑠      (2.7) 
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Where bv and dv are the effective shear width and depth, respectively, fy is the reinforcement 

yield strength, and Av and s are the area and spacing of the transverse reinforcement. Using an 

effective area bvdv for the concrete assumes that the shear stress over this area is uniform. This 

was shown to be an adequate, slightly conservative assumption by Vecchio and Collins (1988). 

The effective shear depth dv is usually taken as 0.9d, where d is the effective depth from the top 

compressive surface to the centroid of the bottom tensile steel. This reduction is performed due 

to the top surface resisting little to no shear stress. From Equation 2.2, Vc is simplified to: 

𝑉𝑐 = 𝛽√𝑓𝑐′𝑏𝑣𝑑𝑣     (2.8) 

where: 

𝛽 = 0.33𝑐𝑜𝑡𝜃1+√500𝜀1  (MPa and mm)  (2.9) 

The principal strain 1 is determined from Equation 2.3, where the longitudinal strain x is 

calculated as: 

𝜀𝑥 = 𝑀𝑓𝑑𝑣 +𝑉𝑓−𝑉𝑝+0.5𝑁𝑓−𝐴𝑝𝑓𝑝02(𝐴𝑠𝐸𝑠+𝐴𝑝𝐸𝑝)     (2.10) 

where: Mf = factored applied moment       

 Vf = factored applied shear        

 Nf = factored applied axial load       

 Ap = area of prestressing steel        

 As = area of reinforcing steel       

 fp0 = stress in prestressing when concrete strain is zero     

 Ep = modulus of elasticity of prestressing      

 Es = modulus of elasticity of steel 

Before the 2004 CSA A23.3 Standard the Vf in the longitudinal strain parameter equation was 

instead 0.5Vf cot. This was conservatively assumed to be equal to Vf so as to remove   from the 

equation and correspondingly the requirement for iterations (Bentz and Collins, 2006). 

Additionally, Vf, Nf, and Mf are calculated at the section being analyzed at a chosen x distance 
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along the member length (see Figure 2.4). The first location to check is at a length dv from the 

face of a support or bearing area. As noted by Collins et al. (1996), when a shear failure is 

caused by yielding of stirrups, the longitudinal reinforcement will generally yield over an 

approximate length of 0.5dv cot . Assuming that 0.5cot  is approximately equal to one, the 

critical shear section will be about a length dv from the face of a bearing or support area. 

 

Figure 2.4: Free body diagram of shear resistance contributions (Bentz and Collins, 2006) 

 Considerable research has been carried out in determining the  and the corresponding  

value. Collins et al. (1996) proposed a tabulated approach, where for members with web 

reinforcement, different values of v/fc' and x would give corresponding  and  values. The 

values were chosen so that the stirrup strain was at least greater than 0.002 while ensuring that 

the crushing strength, f2,max , was not exceeded. The longitudinal strain x would be determined 

from Equation 2.10, and the shear stress, v, from, 

𝑣 = 𝑉𝑟−𝑉𝑝𝑏𝑣𝑑𝑣       (2.11)  

This tabulated approach also ensured  did not exceed Equation 2.4 divided by √𝑓𝑐′. A maximum 

aggregate size of 19 mm and crack spacing of 305 mm were deemed adequate. For members 

without web reinforcement the crack spacing assumption was found to be non-conservative as 

typically the crack spacing was wider for these members. As such a separate table was formed 

for members without web reinforcement dependent on the longitudinal strain x and the crack 
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spacing, sz. The crack spacing could be approximated as the critical shear depth dv. This 

approximation was made to take into account the size effect, where the crack spacing of a 

member increases almost proportionally with the depth of the member (Shioya et al., 1990). For 

a member with a maximum aggregate size, ag, different from the assumed 19 mm a correction 

factor could be applied to find the effective crack spacing, sze: 

𝑠𝑧𝑒 = 𝑠𝑧 3515+𝑎𝑔     (2.12) 

Though sze should not be taken as less than 0.85sz (Bentz and Collins, 2006). This tabulated 

approach of determining  and  was incorporated into the 1994 CSA A23.3 Standard, among 

others. 

 For the 2004 CSA A23.3 Standard, Bentz and Collins (2006) derived straightforward 

equations for determining  and  that would replace the aforementioned tabular approach. 

Looking first at , an equation independent of  was desired. Assuming an effective crack 

spacing of 300 mm and the absence of transverse reinforcement, the relationship between the 

crack width w and longitudinal strain x was determined based on Equation 2.4 for members with 

varying compressive strengths. From this analysis a simplified crack width equation was 

determined, 𝑤 = 0.2 + 1000𝜀𝑥     (2.13) 

This crack width equation was graphed relative to the MCFT crack width-longitudinal strain 

relationship in Figure 2.5. Substituting this equation into Equation 2.4 gives, 

𝑣𝑐𝑖 = 0.4√𝑓𝑐′1+1500𝜀𝑥     (2.14) 

for a compressive strength in MPa units. Thus, an equation for  was derived from Equation 2.14 

with an additional size correction factor to accommodate a member with an effective crack 

spacing greater than 300 mm. The equation formulated was, 

𝛽 = 0.41+1500𝜀𝑥 ( 13001000+𝑠𝑧𝑒)    (2.15) 
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Figure 2.5 gives some insight as to the usability of this  equation. This equation only works for 

longitudinal strains larger than -0.2 x10-3, as values lower than this result in negative crack 

widths. Additionally, it is important to note that at high longitudinal strains the crack width 

equation becomes very conservative when compared to the MCFT. 

 

Figure 2.5: Simplified diagonal crack width equation compared to the relationship from the 

MCFT (Bentz and Collins, 2006) 

 Bentz and Collins (2006) based the  equation on a member with a significant amount of 

transverse reinforcement, where v/fc' = 0.25. Curves relating  to x for concrete with differing 

compressive strengths were determined (See Figure 2.6). One set of curves signified a lower 

bound for , being the situation where concrete crushes. The upper bound signifies the situation 

where shear failure occurs without stirrup yielding. A suitable equation for  was then 

determined that fit between these two bounds: 𝜃 = 29° + 7000𝜀𝑥     (2.16) 

With Equations 2.15 and 2.16,  and  could be determined with more simplicity than the 

previous tabular approach. Though  is based on a member with no stirrups and  is based on a 
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member with a large amount of shear reinforcement, for an amount of stirrups between these two 

extremes Bentz and Collins (2006) showed that combinations of  and  give appropriate 

conservative values. 

 

Figure 2.6: The CSA A23.3 2004 theta equation compared to upper and lower limits  

(Bentz and Collins, 2006) 

2.2 Strut-and-Tie Model 

Strut-and-tie models were first based upon the early truss model developed by Ritter 

(1899) and Mörsch (1909). This model approximated the behavior of concrete after cracking as a 

truss, where vertical tensile forces were carried by transverse reinforcement, horizontal forces 

were carried by longitudinal compressive or tensile chords, and diagonal compressive forces 

were carried by diagonal concrete struts.  

The strut-and-tie model can be visualized as an idealized truss diagram where each strut 

or tie is a linear representation of the compressive or tensile stress flow through the structure. 

Struts are representative of the compressive stress paths carried by the concrete, and ties are 
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representative of the tensile stresses carried by the reinforcement. Nodes are formed at the 

intersection of struts or the intersection of struts and ties. Nodes also occur at locations of highly 

concentrated forces or reactions, such as at an abrupt change in geometry or for a region under 

concentrated loading (Schlaich et al., 1987). A typical strut and tie model for a deep beam is 

shown in Figure 2.7. In this case the primary bottom tension reinforcement is modelled as a 

tension tie, the flow of compression forces from loading plates to bearing plates modelled as 

struts, and nodal zones placed at the intersections of struts with other struts and at the 

intersection of struts and ties. 

 

  (a) Flow of forces     (b) End view 

 

(c) Truss model 

Figure 2.7: Strut-and-tie model for a reinforced concrete deep beam (Collins and Mitchell, 1986) 
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Several design codes have adopted the strut-and-tie method described by Collins and 

Mitchell (1986) for the design of disturbed regions (D-regions). The first of these was the CSA 

A23.3 in its 1984 Design Code, followed in later years by the Canadian Highway Bridge Design 

Code (CSA, 2014), the AASHTO LRFD (2014), and the ACI Design Code (2014).  

The design of a strut-and-tie model involves several key steps, the first of which is to 

visualize the flow of stresses through the D-region. Depending on the geometry and loading of 

the structure the compression fields will typically take one of three forms: the “fan”, the “bottle”, 

or the “prism”, as shown in Figure 2.8 (Schlaich et al., 1987). These compressive stresses are to 

be drawn in the form of representative linear struts, with tension ties added in locations to ensure 

equilibrium. As these tension ties are representative of the reinforcing steel, care should be taken 

to ensure that the centroid of each tension tie is compliant with spacing and cover requirements. 

Several examples of stress flows in disturbed regions and their corresponding strut-and-tie 

models are shown in Figure 2.9. In these examples the dashed lines show the flow of the 

compressive forces, and the darker dashed and solid lines are the representative struts and ties, 

respectively. With the truss idealized, the next step is to apply the factored loads to the model 

and determine the forces carried by each strut and tie. For statically determinate structures this 

can be done with basic statics. Statically indeterminate structures are represented by statically 

indeterminate strut-and-tie models and thus require a more advanced method of elastic analysis 

or stiffness assignation to determine the forces (Mitchell et al., 2004). 

 

(a) The “fan”  (b) The “bottle” (c) The “prism” 

Figure 2.8: Typical compression fields in disturbed regions  

(Adapted from Schlaich et al., 1987) 
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  (a) Deep beam     (b) Anchor zone 

 

 

(c) Corbel 

Figure 2.9: Examples of strut-and-tie models of stress paths in disturbed regions (Adapted from 

Collins and Mitchell, 1991) 
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Next, for each tension tie the required area of reinforcement, Ast, to resist the factored 

force in the tie, Tf, is determined. This is done by ensuring the resisting tensile force, Tr, is 

greater than the factored force in the tie. That is, 𝑇𝑟 = 𝜙𝑠𝐴𝑠𝑡𝑓𝑦 ≥ 𝑇𝑓     (2.17) 

The nodal zones also need to be checked. As shown in Figure 2.10, depending on the 

struts and ties in the nodal zone three different types are possible (Mitchell et al., 2004): 

1. CCC: Nodal zone containing only compressive struts or bounded by bearing areas 

2. CCT: Nodal zone containing one tension tie 

3. CTT: Nodal zone containing two tension ties in different directions 

Each type of node has a different stress limit that the struts and bearing areas intersecting the 

nodal zone cannot exceed. This is done to ensure that the concrete in the nodal zone does not get 

overstressed. For the CSA S6-14 Standard (2014) and the AASHTO LFRD code (2014) these 

stress limits are 0.85c fc', 0.75c fc', and 0.65c fc' for CCC, CCT, and CTT nodes respectively. 

At loading or support locations the factored reaction divided by the bearing area must be less 

than the applicable stress limit. For struts and ties, the force being carried by the given strut or tie 

divided by the area of the nodal zone at the strut or tie intersection must be less than the 

applicable stress limit. 
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(a) CCC nodes (stress limit = 0.85c fc' ) 

 

(b) CCT node (stress limit = 0.75c fc' )  (c) CTT node (stress limit = 0.65c fc' ) 

Figure 2.10: Examples of different node types (Mitchell et al., 2004) 

The strengths of the struts must also be checked to ensure that concrete crushing does not 

occur. That is,  𝐶𝑟 = 𝜙𝑐𝑓𝑐𝑢𝐴𝑐𝑠 ≥ 𝐶𝑓     (2.18) 

where Cr is the compressive resistance of the strut, Cf is the applied compressive force in the 

strut, Acs is the effective cross-sectional area of the strut, and fcu is the crushing strength of the 

concrete when cracked.  The crushing strength, fcu, is equivalent to f2,max used in sectional 

analysis. From the MCFT, Vecchio and Collins (1986) found that, 
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𝑓2,𝑚𝑎𝑥 = 𝑓𝑐′0.8−0.34𝜀1/𝜀𝑐′    (2.19) 

If the strain at peak compressive strength is assumed to be -0.002, then Equation 2.19 becomes: 

𝑓𝑐𝑢 = 𝑓2,𝑚𝑎𝑥 = 𝑓𝑐′0.8+170𝜀1    (2.20) 

where 1 is derived from Equation 2.3 as, 

𝜀1 = 𝜀𝑠 + (𝜀𝑠 + 0.002)𝑐𝑜𝑡2𝛼𝑠   (2.21) 

In this equation s is the average tensile strain in concrete parallel to the tension tie, and s is the 

smallest angle from the compressive strut to the tension tie. It is important to note that as the 

tensile strain in the concrete due to the tension tie increases, the crushing strength of concrete 

and hence also its compressive stress capacity decreases (Collins and Mitchell, 1991). 

Additionally, Figure 2.11 shows that as the tension tie angle s  decreases, the concrete crushing 

strength decreases as well. The crushing strength fcu is limited to a maximum value of 0.85fc'. 

Lastly the anchorage of the ties must be checked to ensure that the reinforcement can 

properly carry the applied forces. This anchorage can be in the form of mechanical anchorage 

such as a hook, or simply ensuring that the reinforcement has adequate development length, ld, to 

carry the applied forces in the steel at the edge of the strut in the given nodal region (Mitchell et 

al., 2004). 



 25 

 

Figure 2.11: Influence of the tension tie angle on the crushing strength of the compressive strut 

(Collins and Mitchell, 1986) 

In 1979 Kani et al. performed significant research in comparing the sectional method 

with the strut-and-tie analysis. Several reinforced concrete beams were tested, with each beam 

having a different shear-span-to-depth ratio (a/d). Each beam was tested to failure in order to 

determine their shear strengths, and the shear strength versus shear-span-to-depth ratio of each 

beam was plotted as shown in Figure 2.12. These were then compared with curves representing 

results from the strut-and-tie and sectional model predictions. It was observed that for shear-

span-to-depth ratios less than about 2.5 the shear strength was much better predicted by the strut-

and-tie model, as the failure for these beams were more heavily influenced by details in the 

disturbed regions. For shear-span-to-depth ratios higher than 2.5 the sectional model using the 

MCFT gave better predictions, as for beams in this region the strength was more dependent on 

conditions outside of the disturbed regions. 
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Figure 2.12: Comparison of strut-and-tie and sectional model strength predictions with observed 

strengths for beams of varying shear-span-to-depth ratios tested by Kani et al., 1979 (Collins and 

Mitchell, 1991) 

2.3 Non-Linear Finite Element Analysis 

2.3.1 Background 

VecTor2 (Vecchio, 2018) is a non-linear finite element program developed by the 

University of Toronto for analyzing the response of two-dimensional models of reinforced 

concrete structures (Wong et al., 2013). This program performs its post-cracking analysis based 

on two foundational theories: The Modified Compression Field Theory as described earlier, and 

the Disturbed Stress Field Model (DSFM). The DSFM was developed by Vecchio (2000) as a 

revised model to the earlier MCFT, and as such is similar to the MCFT in many respects. The 

primary difference is that the DSFM takes into consideration crack shear slip which can be 

especially significant in lightly reinforced members. By including crack shear slip the 
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assumption that principal stresses and principal strains have the same direction is no longer 

correct, as the principal strains change in direction faster than the principal stresses. Thus, the 

model becomes a smeared delayed rotating-crack model (Vecchio, 2000). 

FormWorks is a pre-processor developed by Wong (2002) specifically designed to be 

used in tandem with VecTor2. It allows a user to create a two-dimensional finite element model 

representing a reinforced concrete member, to be then analyzed by VecTor2. FormWorks allows 

the user to select specific non-linear models for various concrete and reinforcement behaviors. 

The non-linear models selected are then used in the VecTor2 analysis. A detailed summary of the 

non-linear models available for use is given by Wong et al. (2013).  

Augustus is a post-processor developed by Bentz (2003) that was also specifically 

developed for use with VecTor2. It provides graphical information from the VecTor2 analysis on 

key aspects of the member modelled in FormWorks. Such data includes the load-deformation 

response, stresses and strains in each element, cracking patterns, and the deflection of the 

member. 

2.3.2 Crack Widths and Spacing 

Crack widths in concrete are quantified by an average crack width parameter, wm. An 

average width is calculated due to the fact that concrete does not crack perfectly, with cracks 

varying in spacing and width. The expression for average crack width is based off Walraven’s 

(1981) crack width equation: 𝑤𝑚 = 𝜀𝑐1𝑠𝑚      (2.22) 

Where sm is the average crack spacing, and c1 is the average tensile strain. The average tensile 

strain is determined based on the MCFT or the DSFM. The average crack spacing is determined 

based on the CEB-FIP Model Code (CEB 1978) as: 𝑠𝑚 = 2(𝑐 + 𝑠/10) + 𝑘1𝑘2𝑑𝑏/𝜌𝑒𝑓   (2.23) 

where: c = clear concrete cover         

 db = diameter of reinforcing bars       
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 s = maximum spacing of longitudinal reinforcement, but no greater than 15db 

 k1 = factor for bond properties of reinforcing bars, taken as 0.4 for deformed bars 

  and 0.8 for plain bars         

 k2 = factor accounting for the strain gradient in the concrete    

  = 0.25(1 + 2) / 21         

 1, 2 = the largest and smallest tensile strains in Ac,ef, respectively    

 ef = effective reinforcement ratio, equal to As/Ac,ef     

 As = area of effective steel        

 Ac,ef = area of the effective embedment zone, where the reinforcement has an effect on 

  concrete crack widths. This is taken as a rectangular region with bounds 7.5db 

  from the center of the reinforcing bars 

2.4 Previous Research on Pier Caps 

MacLeod (1997) performed testing on two full-scale bridge pier caps of identical 

geometry with differing concrete strengths of 35 and 70 MPa. The pier caps were designed 

according to the strut-and-tie approach, and the uniformly distributed longitudinal and transverse 

reinforcement varied on either side of the pier caps. From the testing of these pier caps the 

following conclusions and recommendations were made: 

1. For normal-strength concrete pier caps, a reinforcement ratio of 0.002 was sufficient 

to adequately control cracking at service load levels. 

2. For high-strength concrete pier caps, a reinforcement ratio of 0.003 was required to 

adequately control cracking at service load levels. 

3. The high-strength concrete pier cap was slightly stronger and significantly less ductile 

than the normal-strength concrete pier cap.  

4. Cracking was influenced by the size of the pier caps and by restrained shrinkage 

stresses. The high-strength pier cap cracked at only a slightly higher load than the 

normal-strength pier cap because of the high-strength concrete having higher 

shrinkage strains. 

5. The simple strut-and-tie models were conservative. 
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6. The refined strut-and-tie models gave load estimates closer to the experimental 

results. This is because it takes the crack control reinforcement into account. 

7. Non-linear finite element analyses were accurate in predicting stresses in the primary 

tension steel, and reasonable for estimating principal tensile strains and crack widths 

at service load levels.  

8. Reasonable flexural crack width predictions could be made based on the principal 

tensile strains from the non-linear finite element analyses. 

9. Future research in terms of predicting inclined crack widths in larger D-regions, or 

the relationship between high-strength concrete and inclined crack widths, is required. 

Al-Soufi (1990) performed testing on six reinforced concrete bridge pier caps with 

different geometries and reinforcement detailing. Three different geometries were used, and for 

each geometry two different uniformly distributed reinforcement schemes were tested. One 

specimen would have more closely spaced crack control reinforcement in only one direction, and 

the other would have more dispersed crack control reinforcement but in both horizontal and 

vertical orientations. The pier caps were designed by the strut-and-tie method, and later 

compared to a non-linear finite element software. From the testing regime the following 

conclusions and recommendations were made: 

1. The reinforcement in large pier caps exhibits significant yielding before failure, due 

to considerable stress redistribution in the pier cap. 

2. The uniformly distributed reinforcement in both directions was effective in increasing 

the strength and controlling the cracking of the member. 

3. Anchoring the main tension reinforcement with 90 hooks was effective in allowing 

the reinforcement to properly develop and carry stresses. 

4. The crack control in the central region was improved due to the added reinforcement 

by the central column. 

5. Non-linear finite element analyses gave the most accurate predictions for ultimate 

strength. Simple and refined strut-and-tie models, and plane section analyses gave 

more conservative results. 

6. Future research in terms of investigating the influence of post-tensioning or the 

amount of uniformly distributed reinforcement for adequate crack control, is required. 
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CHAPTER 3 

3. EXPERIMENTAL PROGRAM 

3.1 Introduction 

Four pier cap beams were constructed and tested, with reinforcement details similar to the 

types 04A and 168 pier cap beams used in the existing Champlain Bridge. Pier caps C1 and C1R 

are similar to the Type 04A pier cap detailed in Section 1.2.1. Pier caps C2 and C2R are similar 

to the Type 168 pier cap detailed in Section 1.2.2. In all four specimens the amount of 

longitudinal crack control reinforcement differs in each cantilever. Each specimen was loaded to 

failure, external shear clamps were applied to the failed side, and reloaded until an additional 

failure was reached on the opposite side of the pier cap. For pier caps C1R and C2R, post-

tensioning was installed upon reaching the service load level on the initial failure loading. 

3.2 Details of Specimens 

3.2.1 Geometric Design 

The outer geometry of the four specimens can be seen in Figure 3.1. Each cantilever has 

an overall length of 4800 mm with two cantilevers extending past the column by 2000 mm each. 

The distance between the two loading support points is 4200 mm. The cantilevered portions have 

a depth of 1000 mm at the column face decreasing to 500 mm at the beam end. The overall 

height is 1800 mm, with a uniform width of 600 mm. These research specimens are 

approximately 1/3 to 1/4 the size of the existing Champlain Bridge (see Table 3.1), with both 

having the same 1:4 slope on the cantilever bottom. 
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Figure 3.1: Geometry of pier cap beams (dimensions in mm) 

 

Table 3.1: Comparison of the geometry of the existing Champlain Bridge and the test pier cap 

beams 

 Existing Champlain Bridge Research Specimens Scale Factor 

Overall Length (mm) 23,600 4800 4.92 

Cantilever Length (mm) 8077 2000 4.04 

Cantilever Depth @ 

column face (mm) 

3507 1000 3.51 

Cantilever Depth @ end 

(mm) 

1503 500 3.01 

Width (mm) 1930 600 3.22 
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3.2.2 Reinforcing Steel Design for C1 and C1R 

 The reinforcing steel design details for pier caps C1 and C1R can be seen in Figures 3.2 

to 3.6. The primary top longitudinal steel was made up of 18-25M bars distributed in 2 layers of 

9 bars each. These were spaced transversely and vertically to meet the CSA S6-14 (2014) 

minimum spacing requirement as the maximum of 1.4db, 1.4ag, or 30 mm. Assuming an ag of 20 

mm the 1.4db case was most critical having a minimum clear spacing of 35 mm. As such the 

vertical and transverse clear spacing are both 35 mm. The reinforcement ratio of this steel is 

0.081 at the column face, similar to the reinforcement ratio of 0.087 and 0.107 for the primary 

longitudinal steel at the column face for the existing Champlain Bridge pier types 04A and 168, 

respectively. The ends of each top steel layer were anchored at 90 angles. The CSA S6-14 

(2014) requires a minimum extension of at least 12 bar diameters as a free extension past the 90 

bend, which in the case of 25M bars is a 300 mm extension. The top layer meets this anchorage 

limit with an extension of 300 mm. The bottom longitudinal steel was made up of 4-20M bars 

inclined at a 1:4 slope. 

 The vertical crack control reinforcement was made up of 4-legs of 10M stirrups at a 

spacing of 200 mm in both cantilevers. This spacing was chosen as the reinforcement ratio v is 

0.00333, thereby just above the 0.003 crack control requirement set by the 2014 Canadian 

Highway Bridge Design Code (CSA, 2014). This spacing was also checked with the minimum 

stirrup requirement, (Av /smin), for the CSA S6-14 (2014). This was calculated as: 

(𝐴𝑣𝑠 )𝑚𝑖𝑛 = 0.06√𝑓𝑐′ 𝑏𝑤𝑓𝑦      (3.1) 

From this equation and having 4-10M legs per stirrup location, the chosen spacing was found to 

be acceptable. 

The horizontal crack control reinforcement differed in each cantilever. On the north side 

it consisted of 2 sets of 2-10M bars at an equal spacing of 270 mm at the column cross-section, 

while the south side had the same spacing and consisted of 2 sets of 2-10M bars with 2-15M 

bars. The reinforcement ratios of these crack control reinforcements corresponding to the 1000 

mm cap beam depth at the column face can be seen in Table 3.2. The horizontal crack control 
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reinforcement in the north cantilever is only 40% of the 0.003 required, whereas the south side 

provides 21% more than required. 

Table 3.2: Reinforcement ratios of crack control reinforcement in the north and south cantilevers 

for pier caps C1 and C1R 

Type Stirrups 

v 

Horizontal bars 

h 

North 0.00333 0.00121 

South 0.00333 0.00363 

The horizontal crack control reinforcement is well developed into the column, as per the 

CSA S6-14 (2014) standard the development length required, ld, for a 15M bar (assuming a 

design value for the concrete strength of 35 MPa) is: 

𝑙𝑑 = 0.45𝑘1𝑘2𝑘3𝑘4 𝑓𝑦√𝑓𝑐′ 𝑑𝑏 > 300 𝑚𝑚   (3.2) 

= 0.45(1.0)(1.0)(1.0)(0.8) 400√35 (15) = 365 𝑚𝑚 

where: k1  = bar location factor = 1.0        

 k2  = coating factor = 1.0 for uncoated reinforcement     

 k3  = concrete density factor = 1.0 for normal-density concrete    

 k4  = bar size factor = 0.8 for 20M bars and smaller 

Likewise, for 10M bars the required development length is 300 mm. Both of these requirements 

are easily met as the bars extend approximately 630 mm into the column. 

 The central column was designed following the CSA S6-14 (2014) Standard, and was 

made up of 8-25M vertical bars confined by sets of 2-10M stirrups at a spacing ranging from 

300-320 mm. This spacing was well within the maximum spacing controlled by 16db = 400 mm. 

Particular attention was made concerning the compressive reentrant corner, where the column 

stirrups were required to be within smax / 2 = 200 mm below the bottom longitudinal steel, as well 
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as s/2 = 150 mm above it. These stirrups were placed 122 mm above and 178 mm below this 

steel layer. Additionally, the first set of vertical stirrups closest to the column face was to be 

placed within s/2 = 100 mm of the outermost column bar. As such this set was placed 100 mm 

from the outer column bar in both cantilevers for all specimens. 

 

Figure 3.2: Reinforcing details of cap beams C1 and C1R 
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Figure 3.3: Reinforcing steel for cap beams C1 and C1R 

 

Figure 3.4: Reinforcing steel in south cantilever for cap beams C1 and C1R 
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Figure 3.5: Reinforcing steel in north cantilever for cap beams C1 and C1R 

 

Figure 3.6: Details of 90 hook anchorages for concentrated reinforcement layers 
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3.2.3 Reinforcing Steel Design for C2 and C2R 

Pier caps C2 and C2R are identical to C1 and C1R except for the vertical stirrup spacing 

and the addition of inclined reinforcing bars, as can be seen in Figures 3.7 to 3.11. Three sets of 

2-20M inclined bars were placed in each cantilever at a 45 angle and 630 mm spacing, 

extending from the bottom longitudinal steel to the bottom layer of the top longitudinal steel. The 

stirrups were then placed at a spacing of 300 mm so that the vertical crack control reinforcement 

ratio was similar to pier caps C1 and C1R. Table 3.3 shows the reinforcement ratios 

corresponding to the 1000 mm cap beam depth at the column face for pier caps C2 and C2R. The 

horizontal crack control reinforcement in the north cantilever is deficient at 78% of the 0.003 

required (CSA, 2014), whereas the south side provides 58% more reinforcement than required. 

The inclined reinforcement bars were designed with lap splices meeting the requirements 

of the CSA S6-14 (2014) Standard. For a Class B tension splice the required splice length is 

1.3ld, where using Equation 3.2, ld is 487 mm. Thus, the required tensile lap splice length is 633 

mm. The required compression lap splice length is taken as the greater of 0.073fy db or 300 mm, 

where in this case 0.073(400)(20)= 584 mm controls. As the inclined bars act as shear 

reinforcement and are extended into regions of compression and tension, these lap splice lengths 

may be taken from the mid-depth of the pier cap. Lastly the minimum free end extension after a 

standard hook is 12db = 12(20) = 240 mm. The 2 sets of inclined bars closer to the column have 

free end extensions of 240 mm, as this was the more critical constraint. The outermost set of 

inclined bars had extensions of 333 mm and 263 mm on the tension and compressive sides 

respectively, as the lap splice lengths were more critical for these shorter inclined bars. 

Table 3.3: Reinforcement ratios of crack control reinforcement in the north and south cantilevers 

for pier caps C2 and C2R 

Type Vertical 

v 

Horizontal 

h 

North 0.00222 + 0.00112 = 

0.00334 

0.00121 + 0.00112 = 

0.00233 

South 0.00222 + 0.00112 = 

0.00334 

0.00363 + 0.00112 = 

0.00475 
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Figure 3.7: Reinforcing details of cap beams C2 and C2R 

 

Figure 3.8: Reinforcing steel for cap beams C2 and C2R 
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Figure 3.9: Reinforcing steel in south cantilever for cap beams C2 and C2R 

 

Figure 3.10: Reinforcing steel in north cantilever for cap beams C2 and C2R 
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Figure 3.11: Top view of reinforcing steel for cap beams C2 and C2R 

3.3 Construction 

All reinforcing bars were cut and bent in the laboratory, and the reinforcing cages were 

assembled right-side up for ease of construction. Short lengths of 5-35M bars were placed 

transversely between the two top longitudinal steel layers at an 800 mm spacing to act as spacers. 

After assembly, the reinforcement cages were then flipped 180 to be cast. Casting the cap 

beams upside down was advantageous in terms of facilitating formwork design and put each cap 

beam into the testing orientation. In order to position the reinforcing cage in the formwork, 50 

mm plastic spacers were tied along the exterior of the reinforcing cages, followed by the cages 

being placed into their respective formwork (see Figure 3.12). The formwork was constructed 

from 3/4" sheets of form-ply and screws, and two reinforcement cages in their completed 

formwork are shown in Figure 3.13. To minimize formwork bulging, bracing was provided 
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approximately 450 mm from the base of the cap beams by four threaded steel rods tightened 

between two steel I-beams on either side of the formwork. Additional bracing was provided for 

the cap beam column at a height of 1100 mm using steel angles and threaded rods (see Figure 

3.13). Wooden planks were also fixed in place around the perimeter of the cap beam base. 

Transverse bracing was provided for the column via one 1-inch threaded rod tightened between 

two steel HSS sections and enclosed in an aluminum pipe spanning the column length. This 

detail was included to facilitate lifting and moving the pier caps once cast. Pier caps C1 and C1R 

were cast in tandem, followed by C2 and C2R. The casting of pier caps C1 and C1R and the 

associated cylinders and beams for material testing is shown in Figure 3.14(a). The cap beams 

after formwork removal are shown in Figure 3.14(b). 

 

Figure 3.12: Placement of cap beams C1 and C1R in inverted position 
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Figure 3.13: Formwork for casting cap beams in inverted position 

  
 

  (a) casting of cap beam  (b) casting of test beams and cylinders 

Figure 3.14: Casting of cap beams C1 and C1R 
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3.4 Material Properties 

3.4.1 Concrete 

Two different ready-mix concrete batches were used during casting: Batch 1 for pier caps 

C1 and C1R, and Batch 2 for pier caps C2 and C2R. Table 3.4 summarizes the mixture 

proportions, which were the same for the two batches. A slump test and air content test were 

performed for the fresh concrete before placement as per the CSA A23.2-5C and CSA A23.2-4C 

Standards (CSA, 2014) respectively. Batch 1 had a slump of 125 mm and an air content of 6%, 

while Batch 2 had a slump of 100 mm and an air content of 5%. The specified concrete strength 

of both batches was 25 MPa. 

Table 3.4: Concrete mix proportions 

Component Quantity (per m3) 

Type GUL Portland cement (granulated slag and silica fume) 275 kg 

Concrete sand 936 kg 

10-20 mm limestone aggregate 541 kg 

5-14 mm stone 442 kg 

Water 150 L 

Air 5.5% 

Air entraining agent (ml/100 kg) 22 ml/100 kg 

Water-reducing admixture 133 ml/100 kg 

The pier caps were cast in the formwork and the concrete sufficiently vibrated. The 

concrete in the cantilever portions were placed first followed by casting the concrete in the 

column. Two hours after casting the top of the column was covered in wet burlap and a plastic 

sheeting. The pier caps were moist-cured in the formwork for 7 days, after which the formwork 

was removed, and the pier caps allowed to cure at standard temperature conditions.  
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Concrete cylinders and rectangular beams for material testing were made concurrent with 

the casting of the pier caps. As with the pier caps, these were covered in wet burlap and plastic 

sheeting two hours after casting. After curing for 24 hours in this condition they were removed 

from their forms, and subsequently placed in a curing chamber until testing. The cylinders were 

cast as per the requirements in the CSA A23.2-12C (CSA, 2014) Standard, each measuring 100 

mm in diameter with a length of 200 mm. These were used in determining the average concrete 

compressive strength, fc', and the splitting tensile strength, fsp, from the compression and split-

cylinder tests detailed in CSA A23.2-9C and CSA A23.2-13C respectively (CSA, 2014). The 

rectangular beams were cast as per the CSA A23.2-8C (CSA, 2014) Standard, each measuring 

100 mm in depth, 100 mm in width, and 300 mm in length. Four-point bending tests were 

performed in accordance to this same CSA Standard in order to determine the modulus of 

rupture, fr , of each concrete batch. All material properties were determined from the average of 

at least 3 test samples. The concrete material properties are summarized in Table 3.5, and a 

typical stress-strain relationship for the concrete compressive strengths of both batches is shown 

in Figure 3.15. 

Table 3.5: Concrete material properties 

 Age at 

Testing 

fc' (MPa) 

(STDEV) 

c' 

(STDEV) 

fsp (MPa) 

(STDEV) 

fr (MPa) 

(STDEV) 

Batch 1 

(C1 & C1R) 

80 days 27.1 

(1.598) 

0.0014 

(0.0001) 

3.55 

(0.243) 

4.00 

(0.571) 

Batch 2 

(C2 & C2R) 

56 days 30.5 

(1.297) 

0.0015 

(0.0003) 

4.27 

(0.167) 

4.73 

(0.108) 
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Figure 3.15: Typical concrete compressive stress-strain curve for batches 1 and 2 

3.4.2 Reinforcing Steel 

The reinforcing steel comprised of 10M, 15M, 20M, and 25M deformed bars, all of 

which were specified as Grade 400 with properties in accordance with CSA G30.18 (CSA, 

2009). A minimum of 3 tension tests were performed per bar size as per the A615/615M-16 

Standard (ASTM, 2016). The loading machine provided axial force values while the axial 

displacement was recorded by an extensometer. From the stress-strain curves average steel 

properties were determined for each size of bar, namely the yield strength (fy ), ultimate strength 

(fu ), and strains at yielding (y ), at the initiation of strain hardening (sh ), and at ultimate 

strength (u ). Table 3.6 summarizes these properties. Figure 3.16 presents a typical stress-strain 

curve for each reinforcing bar size. 
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Table 3.6: Reinforcing bar material properties 

 fy (MPa) 

(STDEV) 

fu (MPa) 

(STDEV) 

 y 

(STDEV) 

 sh 

(STDEV) 

 u 

(STDEV) 

10M 
461 

(22.3) 

571 

(23.6) 

0.00231 

(0.000112) 

0.0286 

(0.00282) 

0.144 

(0.0140) 

15M 
442 

(29.1) 

551 

(18.0) 

0.00221 

(0.000145) 

0.0269 

(0.00173) 

0.131 

(0.0141) 

20M 
448 

(8.14) 

558 

(6.81) 

0.00224 

(0.000038) 

0.0265 

(0.00053) 

0.141 

(0.0047) 

25M 
465 

(7.77) 

568 

(5.60) 

0.00232 

(0.000037) 

0.0218 

(0.00048) 

0.122 

(0.0017) 

 

 

Figure 3.16: Typical tensile stress-strain relationships for the reinforcing bars 
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3.5 Test Setup and Instrumentation 

3.5.1 Test Setup 

The test setup can be seen in Figure 3.17. Because the self-weight of the cap beams 

introduces a shear at the critical section of less than 1% of the failure shear, the cap beams were 

tested in an inverted position to facilitate testing. The pier caps were loaded by the computer-

controlled MTS universal testing machine with a loading capacity of 11,000 kN. The machine 

applied a downwards force via a 559 mm diameter loading plate fixed to the MTS machine. This 

then applied loading centered on a rectangular 600 x 700 x 40 mm thick steel plate seated and 

centered at the top of the column. Capping compound was applied between the plate and column 

to level the column top surface thereby improving load distribution. 

 

Figure 3.17: Cap beam test setup 
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The supports were made up of rockers and rollers located at 4200 mm center-to-center. 

Each bearing plate was 200 mm x 500 mm x 25 mm thick, with capping compound applied 

between the bearing plate and the base of the specimen. Each bearing plate was supported by a 

200 x 600 x 100 mm rocker, resting on top of two 75 mm radius rollers of length 600 mm 

sandwiched between two 375 x 600 x 75 mm plates. Overall the base of the specimen was at a 

height of 437 mm from the laboratory strong-floor. 

3.5.2 Instrumentation 

The load applied to the pier cap columns was measured by the load cell of the MTS 

machine. Strains were measured by strain gages installed on the specimen reinforcement before 

casting, as shown in Figure 3.18 for cap beams C1 and C1R and Figure 3.19 for cap beams C2 

and C2R. Each pier caps had six 5-mm strain gages located at the column-cantilever interfaces: 

one on each cantilever for the primary compressive steel layer and the two primary tensile steel 

layers. Specimens C1 and C1R had seven additional 2-mm strain gages in each cantilever, 

located on the centers of outer stirrups 2 through 8 from the column. Specimens C2 and C2R had 

four 2-mm strain gages located on the centers of outer stirrups 2 through 5 from the column per 

side, and an additional three 5-mm strain gages per side, each located on the centers of the 

inclined bars. 

Nineteen Linear Voltage Differential Transducers (LVDTs) were used to measure 

displacements for each specimen, as can be seen in Figure 3.20 for cap beams C1 and C1R and 

Figure 3.21 for cap beams C2 and C2R. These were installed by drilling 40 mm deep 1/4” 

diameter holes at the start and end point of each LVDT. Short threaded rods were then coated 

with epoxy on one end and hammered into the drilled holes. Plastic LVDT holders or ends were 

then twisted onto the threaded rods. The LVDTs would then be placed into the holders, tightened 

in place with nuts, and a steel extension rod attached to each. Figure 3.22 shows a picture of the 

LVDTs in place.  

Three 25-mm LVDTs, designated as LVDISM, LVDISL and LVDISR, were installed on 

stands and placed vertically at the two support locations and at mid-span. These were used to 

record deflections from the centroid of the primary tension steel, which were then used in 

calculating the mid-span deflection as: 
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∆𝑀𝑖𝑑𝑠𝑝𝑎𝑛 =  ∆𝑀𝑖𝑑 − 12 (∆𝑁𝑜𝑟𝑡ℎ + ∆𝑆𝑜𝑢𝑡ℎ)   (3.3)  

where: Mid  = deflection recorded at mid-span LVDT (LVDISM)    

 North  = deflection recorded by north support LVDT (LVDISL)   

 South  = deflection recorded by south support LVDT (LVDISR) 

This was done to remove support settlement recorded by LVDISM. Eight 15-mm LVDTs 

designated as LV1-LV8 were placed along the centroid of the primary tensile steel from support-

to-support with equal lengths of 525 mm. These were installed to determine the average 

longitudinal strains in the tensile steel. LV9 and LV10 were placed at the center of the primary 

compressive steel at the column-cantilever interface. Each was a 15-mm LVDT with lengths of 

150 mm, with 100 mm in the cantilever and the remaining 50 mm in the column. These were 

used in determining the compressive strains at the reentrant corner. Each pier cap had a rosette in 

each cantilever, made up of two 15-mm LVDTs in the horizontal and diagonal orientations and 

one vertical 25-mm LVDT. The center of each rosette was located at the mid-depth of the 

cantilever, at a horizontal distance of 918 mm from the center of each support. The gage length 

of the rosette LVDTs was 500 mm, except for specimens C1R and C2R. LVD1 and LVD2 were 

adjusted to 565 mm and LVV1 to 465 mm for C1R. LVV1 and LVV2 were adjusted to 460 mm 

and LVD1 and LVD2 adjusted to 630 mm for C2R. These changes were made so that the 

LVDTs would not interfere with the external post-tensioning that was applied later. The rosettes 

were used to determine principle strains and the angles of principal compressive strains. 
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Figure 3.18: Locations of strain gages for cap beams C1 and C1R 

 

Figure 3.19: Locations of strain gages for cap beams C2 and C2R 
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Figure 3.20: Locations of LVDTs for cap beams C1 and C1R 

 

 

Figure 3.21: Locations of LVDTs for cap beams C2 and C2R 
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Figure 3.22: Typical LVDT setup on cap beams 

3.6 Testing Procedure 

3.6.1 General Testing Procedure 

Each pier cap was initially loaded at a rate of 1.5 kN/s up to the service load of 1050 kN 

in shear, after which the specimens were loaded in deflection control at a rate of 0.007 mm/s for 

the remainder of the test. Data was recorded at 0.5 second intervals. The service load of 1050 kN 

was chosen as it is at 70% of the predicted ultimate factored shear capacity of the cap beam C1 

design. This was deemed reasonable as bridges similar to the existing Champlain Bridge were 

designed for service loads at about 60-80% of their ultimate factored shear capacities. Load 

stages were taken at intervals of 300 kN, except near failure when the deflection between two 

loading stages was not to exceed 2 mm. These loading stages were used to mark and measure 

crack widths, and to take photographs. The specimens were loaded until failure was observed in 

one cantilever, after which they were unloaded at a rate of 1.5 kN/s. External shear clamps were 

then applied to the failed side, where it was then possible to reload the pier cap and fail the 
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opposite cantilever. The pier cap was loaded once again at the same rate until this second failure 

was attained, after which the pier caps were unloaded at 10 kN/s. 

3.6.2 Application of External Shear Clamps 

The external shear clamping was performed with three clamps installed on the cantilever 

side that experienced shear failure, at locations that would best constrain the shear crack from re-

opening. Figure 3.23 shows an example of the external shear clamping, in this case applied to the 

north cantilever of cap beam C1. Each clamp was made up of a pair of 1 in. (25.4 mm) diameter 

high strength threaded rods tensioned between two HSS sections. The HSS sections resting on 

the inclined cantilever surface were placed in bearing against hardwood wedges to account for 

the slope. 

 

Figure 3.23: Shear clamps applied to the north cantilever of cap beam C1 
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3.6.3 Horizontal Post-Tensioning of Pier Caps C1R and C2R 

Post-tensioning was applied to cap beams C1R and C2R at the service load level. Figure 

3.24 shows a cap beam with the post-tensioning installed. Four 1 in. (25.4 mm) diameter high 

strength threaded rods were used for the post-tensioning, with each rod anchored by a pair of 

HSS beams on either side of the pier caps, and each HSS beam in bearing against a 254 mm high 

by 500 mm wide by 25 mm thick steel plate. The bottom of each plate was covered in capping 

compound, pressed against the pier cap ends, and fixed in place with screws drilled into the pier 

cap. The centroid of the post-tensioning was located 167 mm from the tension face. The north 

end was the jacking end, with post-tensioning applied by the “turn of nut” method. The rods 

were tightened to 10 kN each, and then tightened in stages until each rod was at 150 kN for a 

total post-tensioning force of 600 kN. The jacking forces were monitored at the dead end on the 

south side by 225 kN capacity load cells, and the loading machine held constant at 2100 kN 

during the post-tensioning operation. After post-tensioning the load cells were used to monitor 

the change in post-tensioning force as each pier cap was loaded. Figure 3.25 shows the setup for 

both the jacking end and dead end. 

The existing Champlain Bridge used 6-36 mm diameter bars for post-tensioning with a 

total force representing 16.2% of the nominal yield force of the primary tension reinforcement. 

For the specimens discussed in this research 18-25M bars were used as the primary tension 

reinforcement, with a nominal yield force of, 

As fy = 18  500 mm2  400 MPa = 3,600 kN 

Thus 600 kN was chosen as the post-tensioning force for these pier caps, as it represents 16.7% 

of this nominal yield force. 



 55 

 

Figure 3.24: Post-tensioning of cap beam 

  
 

Figure 3.25: Jacking end (left) and dead end (right) for post-tensioning
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CHAPTER 4 

4. EXPERIMENTAL RESULTS 

4.1 Pier Cap C1 

4.1.1 Shear-Deflection Response 

The shear versus midspan deflection response for pier cap C1 is shown in Figure 4.1. The 

pier cap reached a shear of 1908 kN and a midspan deflection of 17.3 mm before failing in shear 

in the north cantilever. After the installation of shear clamps on the north cantilever the pier cap 

reached a shear of 1885 kN and a midspan deflection of 27.6 mm before failing in the south 

cantilever. The south cantilever had reached a higher shear of 1908 kN on the initial loading 

cycle. 

 

Figure 4.1: Shear versus midspan deflection of cap beam C1 
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First flexural cracking in the region of the concentrated steel was observed at a shear of 

413 kN near the column-cantilever interface on both sides. Figure 4.1 seemed to indicate 

cracking at a shear of 250 kN as the stiffness decreased considerably, however this was likely 

missed due to a thicker coat of paint on the first specimen. The first flexural web cracks were 

observed at 525 kN and 475 kN in the north and south sides respectively, and the first shear 

cracks were observed at 725 kN in both cantilevers. 

4.1.2 Shear Failures 

The initial failure of the north cantilever can be seen in Figure 4.2. The specimen failed in 

a combination of crushing on the inclined face and shear with the 1.50 mm critical shear crack 

starting 50 mm from the center of the roller support on the bottom face and ending 400 mm from 

the column face on the top surface. The stirrups experienced considerable yielding before shear 

failure occurred. 

 

Figure 4.2: Shear failure of north cantilever of cap beam C1 
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The failure on the south cantilever can be seen in Figure 4.3. The specimen failed in a 

combination of crushing on the inclined face and shear with the 2.50 mm critical shear crack 

starting at the roller support face and ending 100 mm from the column face. The stirrups 

experienced considerable yielding before shear failure occurred. 

 

Figure 4.3: Shear failure of south cantilever of cap beam C1 

4.1.3 Crack Widths 

The maximum crack widths for the north and south cantilevers are shown in Figures 4.4 

and 4.5, respectively. In these figures, flexure cracks are subdivided into two different types. 

“Flexure-Concentrated” represents flexure cracks observed in the region of the primary tension 

reinforcement and “Flexure-Web” represents flexure cracks observed in the web outside of the 

primary tension reinforcement zone.  

At the service load level shear cracks were most critical, with maximum widths of 0.20 

mm and 0.15 mm in the north and south sides respectively. Maximum flexural web crack widths 



 59 

were 0.15 mm and 0.10 mm for the north and south sides respectively, and maximum flexural 

cracks in the region of concentrated reinforcement were widths of 0.10 mm in both sides. Figures 

4.6 and 4.7 show the crack patterns and measured crack widths for the north and south sides, 

respectively. Shear cracks and flexural web cracks were consistently smaller in the south side 

which had a higher amount of crack control reinforcement. Above the service load level the 

critical shear crack in the north cantilever propagated faster than the south cantilever. 

 

Figure 4.4: Shear versus maximum crack widths for north cantilever of cap beam C1 

 

Figure 4.5: Shear versus maximum crack widths for south cantilever of cap beam C1 



 60 

 

Figure 4.6: Crack pattern and widths at service loading for north cantilever of cap beam C1 

 

Figure 4.7: Crack pattern and widths at service loading for south cantilever of cap beam C1 
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4.1.4 Measured Strains 

The average tensile strains measured by LVDTs LV1-LV8 at the centroid of the 18-25M 

primary tension reinforcement are shown in Figure 4.8. The average strain was determined over 

a gage length of 525 mm. The highest average strain at service loading was 0.00149 on the south 

cantilever near the column face. At failure four of the average strains were well above the yield 

strain of 0.00232 for the 25M bars, and one LVDT at the onset of yielding. Figures 4.9 and 4.10 

show the shear versus average strain curves for each LVDT and indicate that for LV3-LV6 

yielding of the primary tension steel had occurred before failure (1908 kN). Specifically, LV3, 

LV4, LV5, and LV6 reached yielding at shears of 1630 kN, 1597 kN, 1900 kN, and 1744 kN, 

respectively 

 

Figure 4.8: Average longitudinal strains measured along the centroid of the concentrated tension 

steel for cap beam C1 
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Figure 4.9: Shear versus average longitudinal strain on the south cantilever of cap beam C1 

 

Figure 4.10: Shear versus average longitudinal strain on the north cantilever of cap beam C1 
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The shear versus strain relationships for several stirrups in the north and south cantilevers 

are shown in Figures 4.11 and 4.12. On the north cantilever LS6 was the first strain gage to reach 

the yield strain of 0.00231 for 10M bars at a shear of 747 kN. It is noted that this is close to the 

observation of first shear cracking at 725 kN. Strain gages LS1, LS2, LS5, and LS7 each reached 

yielding at shears of 1820 kN, 1822 kN, 1880 kN, and 1678 kN, respectively. LS3 and LS4 had 

measured strains considerably below the yield strain and malfunctioned at shears of 1823 kN and 

1879 kN, respectively. Thus, significant stirrup yielding had occurred before failure of the north 

cantilever. 

On the south cantilever, only RS3 definitively indicated stirrup yielding at a shear of 

1586 kN. Stirrup RS6 started increasing in strain rapidly at 720 kN similar to LS6 on the north 

cantilever but appeared to start malfunctioning upon reaching a strain of 0.00139. RS5 and RS7 

reached moderate peak strains of 0.00140 and 0.00142, respectively. RS1, RS2, and RS4 did not 

reach significant strains, with RS4 appearing to malfunction after reaching a strain of 0.00102 

near service loading. 

Strain gages LLT and RLT measured compressive strains on the inclined face of the 

cantilevers next to the column interface on the north and south sides, respectively. The shear 

versus strain for these strain gages can be seen in Figure 4.13. LLT and RLT reached the yield 

strain of 0.00224 for 20M bars at shears of 1750 kN and 1785 kN, respectively, indicating that 

the primary compressive reinforcement had buckled before failure. Two LVDTs were also 

placed at this reentrant corner. LV9 located on the south side reached a strain of 0.0035 at a shear 

of 1785 kN (see Figure 4.13), while LV10 on the north side malfunctioned. 
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   (a) LS1     (b) LS2 

 

   (c) LS5     (d) LS6 

 

(e) LS7 

Figure 4.11: Shear versus strain for stirrups in north cantilever of cap beam C1 
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   (a) RS3     (b) RS5 

 

 

   (c) RS6     (d) RS7 

 

Figure 4.12: Shear versus strain for stirrups in south cantilever of cap beam C1 
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  (a) LLT (north)     (b) RLT (south) 

 

(c) LV9 (south) 

 

Figure 4.13: Shear versus compressive strain at re-entrant corners of cap beam C1 
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Figure 4.14 shows the results from the LVDT rosettes on pier cap C1 for both the north 

and south cantilevers. “North-1” and “South-1” signify the response during the initial loading 

curve, and “South-2” represents the response during the post-clamping loading in the south 

cantilever. The horizontal strains (x) were particularly low, reaching peak strains of only 

0.000847 and 0.00152 for the north and south sides respectively. In terms of vertical strains (y) 

the north side began developing strains at 725 kN coinciding with the formation of the first shear 

crack and reached the yield strain of the 10M stirrups at 1530 kN. The south side had more crack 

control reinforcement and remained at very low strains until reaching a shear of 1520 kN. The 

vertical strains then increased quite rapidly, reaching the 10M yielding strain just before failure 

at 1885 kN. Both sides also exhibited similar ductility after reaching the peak shear. The 

maximum tensile strains (1) for both sides were similar, with the weaker north side reaching 

higher strains. At the initial failure the north side reached an 1 of 1.22% and the south side 

0.67%. After clamping the north side, the south side reached an 1 of 1.27% before failure. Shear 

strains (xy) were also quite high, with the north side reaching 1.19% at initial failure, and the 

south side reaching shear strains of 0.80% and 1.17% at initial and post-clamping failures, 

respectively. The principal angle, p, on each side during their respective failure was 28.1 on the 

north side and 29.2 on the south side. It was noted that the angle of the critical shear cracks near 

the rosettes at failure was 37.2 on the north side and 31.7 on the south side. 
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 (a) horizontal strain, x    (b) vertical strain, y 

 

 (c) principal tensile strain, 1    (d) principal compressive strain, 2 

 

 (e) shear strain, xy     (f) principal angle, p 

 

Figure 4.14: Principal strains and angles from cap beam C1 rosettes 
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4.2 Pier Cap C1R 

4.2.1 Shear-Deflection Response 

The shear versus midspan deflection response for pier cap C1R is shown in Figure 4.15. 

The “To Service Load” curve indicates the initial loading of the pier cap to the service load level. 

Horizontal post-tensioning was then applied with the load held constant, and subsequently 

unloaded. On the “Initial Loading” curve the pier cap reached a shear of 1973 kN and a midspan 

deflection of 14.7 mm before failing in shear in the south cantilever. After the installation of 

shear clamps on the south cantilever the pier cap reached a higher shear of 2017 kN and a 

midspan deflection of 20.1 mm before failing in the north cantilever. 

First flexural cracking was observed at a shear of 275 kN near the column-cantilever 

interface on both sides, accompanied by a decrease in stiffness. The first shear cracks were 

observed at 575 kN on the north cantilever and 725 kN on the south cantilever. 

 

Figure 4.15: Shear versus midspan deflection of cap beam C1R 
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4.2.2 Shear Failures 

Figure 4.16 shows the initial failure observed in the south cantilever. The specimen failed 

in shear with a 1.00 mm critical shear crack starting at the roller support face and ending 500 mm 

from the column face on the top surface. Concrete crushing on the inclined face and significant 

yielding of the stirrups were observed before shear failure. 

The failure on the north cantilever can be seen in Figure 4.17. The specimen failed in 

crushing of the inclined face while the load was being held during a load stage. A 3.00 mm wide 

shear crack starting 50 mm from the roller support center and ending at the column face also 

contributed to the failure. Significant yielding of the stirrups occurred before shear failure. 

 

Figure 4.16: Shear failure of south cantilever of cap beam C1R 
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Figure 4.17: Shear failure of north cantilever of cap beam C1R 

4.2.3 Crack Widths 

The maximum crack widths for the north and south cantilevers are shown in Figures 4.18 

and 4.19. At the service load level shear cracks were most critical, with widths of 0.20 mm and 

0.15 mm in the north and south sides respectively. Flexure cracks were lower, with flexural web 

cracks being 0.15 mm and 0.10 mm for the north and south sides, respectively, and flexural 

cracks in the region of the concentrated tensile steel at 0.05 mm for both sides. Post-tensioning at 

the service load level decreased the shear crack widths by 0.05 mm and flexural crack widths by 

0.05 mm on the north side. Figures 4.20 to 4.23 show the crack patterns and measured crack 

widths for the north and south sides, both before and after post-tensioning. Shear cracks and 

flexural web cracks were consistently smaller in the south side at the service load level and at 

higher loads due to its increased amount of crack control reinforcement. Despite this the south 

side failed before the north side.  
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Figure 4.18: Shear versus maximum crack widths for north cantilever of cap beam C1R 

 

 

Figure 4.19: Shear versus maximum crack widths for south cantilever of cap beam C1R 
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Figure 4.20: Crack pattern and widths at service loading for north cantilever of cap beam C1R 

 

Figure 4.21: Cracks at service loading after post-tensioning for north cantilever of cap beam C1R 
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Figure 4.22: Crack pattern and widths at service loading for south cantilever of cap beam C1R 

 

Figure 4.23: Cracks at service loading after post-tensioning for south cantilever of cap beam C1R 
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4.2.4 Measured Strains 

The average tensile strains measured by LVDTs LV1-LV8 at the centroid of the 18-25M 

primary tension reinforcement are shown in Figure 4.24. The highest average strain at the service 

load level before post-tensioning was 0.00166 at LV5 on the north cantilever near the column 

face. After post-tensioning all eight LVDTs recorded an appreciable decrease in strain, such as 

LV6, which decreased from a strain of 117110-6 to 99410-6. At failure two of the average 

strains were well above the yield strain of 0.00232 for the 25M bars. Figures 4.25 and 4.26 show 

the shear versus average strain curves for each LVDT and indicate that for LV3 and LV5 

yielding of the primary tension steel had occurred at shears of 1778 kN and 1686 kN 

respectively, both well before failure (1973 kN). 

 

Figure 4.24: Average longitudinal strains measured along the centroid of the concentrated 

tension steel for cap beam C1R 
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(a) to service load 

 

(b) post-tensioning at service load 

 

(c) initial loading 

 

Figure 4.25: Shear versus average longitudinal strain in the south cantilever of cap beam C1R 
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(a) to service load 

 

(b) post-tensioning at service load 

 

(c) initial loading 

 

Figure 4.26: Shear versus average longitudinal strain in the north cantilever of cap beam C1R 
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The shear versus strain relationships for several stirrups in the north and south cantilevers 

are shown in Figures 4.27 and 4.28 Looking first at the north side, LS6 was the first stirrup to 

reach the yield strain of 0.00231 at a shear of 1357 kN, followed by LS2 at a shear of 1913 kN. 

LS1, LS5, and LS7 reached peak strains of 0.00106, 0.00161, and 0.00139, respectively. LS3 

and LS4 were both well below yielding. As for the south cantilever stirrups RS6 and RS7 

reached yielding at shears of 1920 kN and 1730 kN, respectively. Stirrup RS3 was very close to 

yielding, reaching a peak strain of 0.00202 at failure. Stirrups RS1, RS2, and RS4 recorded low 

strain values, and strain gage RS5 malfunctioned. Overall these stirrup strain gages indicated that 

significant stirrup yielding had occurred before failure in both cantilevers. 

Strain gages LLT and RLT measured compressive strains on the inclined face of the 

cantilevers next to the column interface on the north and south sides, respectively. The shear 

versus strain for these strain gages can be seen in Figure 4.29(a)-(b) below. Strain gage LLT 

reached a peak strain of 0.00187, slightly below the 0.00224 yield strain for the 20M bars. Strain 

gage RLT reached a peak strain of 0.00218, thus indicating the onset of concrete crushing and 

possible buckling of the primary compressive bars. Two LVDTs were also used at the reentrant 

corners. LV10 on the north side reached a strain of 0.0035 at a shear of 1755 kN, as shown in 

Figure 4.29(c). LV9 on the south side malfunctioned. 

 Unfortunately for pier cap C1R the rosette LVDTs LVV1 and LVV2 malfunctioned and 

gave no salvageable data. Thus, Figure 4.30 shows the horizontal strain x and the 45 diagonal 

strain x' measured by the two remaining LVDTs on either side. In the legend “PT” represents 

the loading before post-tensioning installation. On the north side the horizontal strains were 

approximately zero for the entire loading curve, and the 45 diagonal strain reached a peak strain 

of 0.00245. The diagonal strains started increasing at a shear of about 820 kN, noting the first 

signs of shear cracking were observed at 575 kN. The south side reached a peak horizontal strain 

of 0.00145 and a peak 45 diagonal strain of 0.00942 at failure. The longitudinal strain started 

increasing at a shear of about 465 kN, coinciding with the first flexural web crack at 450 kN. The 

diagonal strain started increasing at a shear of about 700 kN, close to the first signs of shear 

cracking at 725 kN. Though the principal angles could not be determined, it was noted that the 

angle of the shear crack at failure near the rosettes was 38.1 on the north side and 29.4 on the 

south side. 
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   (a) LS1     (b) LS2 

 

   (c) LS5     (d) LS6 

 

(e) LS7

 

Figure 4.27: Shear versus strain for stirrups in north cantilever of cap beam C1R 
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   (a) RS3     (b) RS6 

 

 

(c) RS7 

 

Figure 4.28: Shear versus strain for stirrups in south cantilever of cap beam C1R 
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(a) LLT (north)    (b) RLT (south) 

 

(c) LV10 (north) 

 

Figure 4.29: Shear versus compressive strain at re-entrant corners on cap beam C1R 
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 (a) horizontal strain, x    (b) 45 diagonal strain, x' 

 

Figure 4.30: Shear versus strain from cap beam C1R rosettes 

4.2.5 Variation of Post-Tensioning Force 

Figure 4.31 demonstrates the post-tensioning force variation with increasing shear. The 

total force of post-tensioning at the service load level was approximately 600 kN. As the shear 

increased the post-tensioning force increased almost linearly to a peak of 748 kN when the south 

cantilever failed. After external shear clamping the post-tensioning force again increased quite 

linearly to 740 kN before failure of the north cantilever. 

 

Figure 4.31: Shear versus total force in post-tensioning rods in cap beam C1R 
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4.3 Pier Cap C2 

4.3.1 Shear-Deflection Response 

The shear versus midspan deflection response for pier cap C2 is shown in Figure 4.32. 

The pier cap reached a shear of 2075 kN and a midspan deflection of 17.5 mm before failing in a 

combination of crushing and shear in the north cantilever. After the installation of shear clamps 

on the north cantilever the pier cap was loaded once again. However due to the extensive damage 

on the north cantilever it was not possible to fail the south cantilever. The shear clamps failed to 

prevent the north cantilever from failing again, with failure initiating at a shear of 2007 kN and 

reaching a midspan deflection of 30.0 mm. The north cantilever had reached a higher shear of 

2075 kN on the initial loading cycle. 

First flexural cracking was observed at a shear of 250 kN near the column-cantilever 

interface on both sides, accompanied by a decrease in stiffness in Figure 4.32. The first shear 

cracks were observed at 675 kN in both cantilevers. 

 

Figure 4.32: Shear versus midspan deflection of cap beam C2 
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4.3.2 Shear Failures 

Figure 4.33 shows the initial failure observed in the north cantilever. The specimen failed 

in a combination of crushing on the inclined face and shear with the 0.70 mm critical shear crack 

starting 50 mm from the center of the roller support on the bottom face and ending just before the 

column face on the top surface. Significant yielding of the stirrups and inclined reinforcement 

was observed before failure. 

The crack pattern of the south cantilever at peak load after clamping is shown in Figure 

4.34. The largest shear crack had a width of 1.30 mm and concrete cracking on the inclined 

surface had initiated. Despite not reaching failure, significant yielding of the stirrups and inclined 

reinforcement was observed in the south cantilever. 

 

Figure 4.33: Shear failure of north cantilever of cap beam C2 
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Figure 4.34: Shear distress and concrete crushing of south cantilever of cap beam C2 

4.3.3 Crack Widths 

The maximum crack widths for the north and south cantilevers can be seen in Figures 

4.35 and 4.36. At service loading flexural cracks in the web were most critical, with widths of 

0.15 mm and 0.10 mm in the north and south sides respectively. Flexure cracks in the region of 

the concentrated tensile steel were lower, at 0.10 mm and 0.05 mm for the north and south sides, 

respectively. Maximum shear cracks at the service load level were only 0.05 mm on both 

cantilevers due to the 45 inclined reinforcement in the pier cap C2 design. Figures 4.37 and 4.38 

show the crack patterns and measured crack widths at the service load level for the north and 

south sides respectively. Shear cracks and flexural web cracks were consistently smaller in the 

south side at the service load level and at higher loads due to the higher amount of crack control 

reinforcement. Despite the maximum shear cracks being smaller than the maximum flexural 

cracks at the service load level, at a shear of 1350 kN in the north side and at 1650 kN in the 

south side the maximum shear crack widths surpassed the maximum flexural crack widths. 

 For this cap beam horizontal splitting cracks of the hooks of the 45 inclined reinforcing 

bars were also observed. These cracks were located along the hooked anchorages of the inclined 
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bars that were spliced with the primary tension reinforcement layers. A horizontal splitting crack 

was first observed at a shear of 1650 kN in the inclined bar closest to the end of the cantilever on 

the north side. This crack opened up to a width of 0.50 mm at failure, as observed in Figure 4.33. 

No horizontal splitting cracking was observed in the south cantilever.  

 

Figure 4.35: Shear versus maximum crack widths for north cantilever of cap beam C2 

 

Figure 4.36: Shear versus maximum crack widths for south cantilever of cap beam C2 
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Figure 4.37: Crack pattern and widths at service loading for north cantilever of cap beam C2 

 

Figure 4.38: Crack pattern and widths at service loading for south cantilever of cap beam C2 
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4.3.4 Measured Strains 

The average tensile strains measured by LVDTs LV1-LV8 at the centroid of the 18-25M 

primary tension reinforcement are shown in Figure 4.39 below. The highest average strain at 

service loading was 0.00164 in the north cantilever about 300 mm from the column face. At 

failure four of the average strains were well above the yield strain of 0.00232 for the 25M bars. 

Figures 4.40 and 4.41 show the shear versus average strain curves for each LVDT and indicate 

that for LV3-LV6 yielding of the primary tension steel had occurred before failure (2075 kN). 

Specifically, LV3, LV4, LV5, and LV6 indicated yielding at shears of 1650 kN, 1690 kN, 2035 

kN, and 1475 kN, respectively. 

Figure 4.39: Average longitudinal strains measured along the centroid of the concentrated 

tension steel for cap beam C2 
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Figure 4.40: Shear versus average longitudinal strain in the south cantilever of cap beam C2 

 

 

Figure 4.41: Shear versus average longitudinal strain in the north cantilever of cap beam C2 
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The shear versus strain relationship for several stirrups and inclined reinforcing bars in 

the north and south cantilevers are shown in Figures 4.42 and 4.43. Looking first at the north 

side, stirrups LS1 and LS2 reached peak strains of 0.00130 and 0.00213 at failure, respectively, 

while stirrup LS3 reached the yield strain of 0.00231 for the 10M bars at a shear of 1884 kN. 

Strain gage LS4 malfunctioned. The strain gages for inclined bars LZ2 and LZ3 reached the 

yield strain of 0.00224 for 20M bars at shears of 1914 kN and 1646 kN, while LZ1 

malfunctioned. As for the south cantilever, strain gages RS2 and RS4 reached peak strains of 

0.00197, and 0.00143 respectively, while stirrup RS3 reached yielding at a shear of 1785 kN. 

Strain gage RS1 only reached very low strain values. Inclined bar RZ3 reached yielding at 1905 

kN while RZ1 and RZ2 malfunctioned. Overall this data indicates that several stirrups and 

inclined bars on both the north and south cantilevers experienced significant yielding before the 

initial north cantilever failure. 

Strain gages LLT and RLT measured compressive strains on the inclined face of the 

cantilevers next to the column interface on the north and south sides, respectively. The shear 

versus strain for these strain gages can be seen in Figure 4.44. LLT and RLT reached the 20M 

yield strain of 0.00224 at shears of 2055 kN and 2006 kN, respectively, both just before the 

specimen failure at 2075 kN shear. This indicated the onset of concrete crushing and possible 

buckling of the primary compressive bars just before failure. Figure 4.44 also shows the 

compressive strains recorded by LVDTs LV9 and LV10. The LVDT on the south re-entrant 

corner, LV9, reached a strain of 0.0035 just before the north side failure at a shear of 2033 kN. 

LV10 on the north corner reaching a peak strain of 0.00228 at failure. After the testing of cap 

beam C2 was completed the concrete in front of the primary compressive steel on the north 

cantilever was chipped away, where the extent of steel buckling was clearly visible (see Figure 

4.45). 
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   (a) LS1     (b) LS2 

 

(c) LS3 

 

    (d) LZ2     (e) LZ3 

Figure 4.42: Shear versus strain for stirrups and inclined bars in north cantilever of cap beam C2 



 92 

 

   (a) RS2     (b) RS3 

 

 

   (c) RS4     (d) RZ3 

 

Figure 4.43: Shear versus strain for stirrups and inclined bars in south cantilever of cap beam C2 
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  (a) LLT (north)     (b) RLT (south) 

 

 

  (c) LV10 (north)     (d) LV9 (south) 

 

Figure 4.44: Shear versus compressive strain at re-entrant corners on cap beam C2 
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Figure 4.45: Buckling of primary compressive reinforcement on the north side of cap beam C2 

Figure 4.46 shows the results from the LVDT rosettes on Pier Cap C2 for both the north 

and south cantilevers. The peak horizontal strains for the north and south sides were 0.00206 and 

0.00293 respectively, with the south side reaching the yield strain of the 15M bars at a shear of 

1735 kN. The horizontal strains started increasing at a shear of 590 kN, shortly before shear 

cracks were observed at 675 kN. The vertical strains were much higher, reaching the yield strain 

of the 10M stirrups at shears of 1930 kN and 1927 kN in the north and south sides, respectively. 

Nearby stirrups LS3 on the north side and RS3 on the south side reached yielding at similar 

shears of 1884 kN and 1785 kN, respectively. Both vertical strain responses were almost 

identical up until the peak load, at which point the weaker north side developed higher strains 

and failed. Significant vertical strains started to develop at 950 kN in the north side and 635 kN 

in the south side. The maximum tensile strains for both sides were similar, with the weaker north 

side reaching slightly higher strains at the onset of failure. The north side reached a strain of 

0.74% and the south side a strain of 0.58% at the initial failure. At this point the shear strains 

reached peak values of 0.52% and 0.44% on the north and south sides respectively. The principal 

angle of each side on the initial failure was 30.5 on the north side and 37.3 on the south side. It 

was noted that the angle of the shear cracks near the rosettes at failure was 38.7 on the north 

side and 41.0 on the south side. 
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 (a) horizontal strain, x    (b) vertical strain, y 

 

 (c) principal tensile strain, 1    (d) principal compressive strain, 2 

 

 (e) shear strain, xy     (f) principal angle, p 

 

Figure 4.46: Principal strains and angles from cap beam C2 rosettes 
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4.4 Pier Cap C2R 

4.4.1 Shear-Deflection Response 

The shear versus midspan deflection response for pier cap C2R is shown in Figure 4.47. 

The “Post-Tensioning at Service Load” curve indicates the initial loading of the pier cap to the 

service load level and the subsequent horizontal post-tensioning operation was carried out at this 

service load level. On the “Initial Loading” curve the pier cap reached a shear of 2050 kN and a 

midspan deflection of 12.6 mm before failing in a combination of flexural crushing and shear in 

the north cantilever. After the installation of shear clamps on the north cantilever the pier cap 

reached a higher shear of 2198 kN and a midspan deflection of 26.9 mm before failing in the 

south cantilever. 

First flexural cracking was observed at a shear of 250 kN near the column-cantilever 

interface on both sides, accompanied by a decrease in stiffness in Figure 4.47. The first shear 

cracks were observed at 675 kN in both cantilevers. 

 

Figure 4.47: Shear versus midspan deflection of cap beam C2R 
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4.4.2 Shear Failures 

Figure 4.48 shows the initial failure observed in the north cantilever. The specimen failed 

in shear with a critical shear crack larger than 1.00 mm starting 150 mm from the column face on 

the top surface. Concrete crushing on the inclined face and significant yielding of the stirrups 

were also observed before failure. 

The crack pattern of the south cantilever at failure can be seen in Figure 4.49. The 

specimen failed in shear with a 1.50 mm critical shear crack starting at the roller support center 

and ending 200 mm from the column face. Concrete crushing on the inclined face and significant 

yielding of the stirrups was observed before failure. 

 

Figure 4.48: Shear failure of north cantilever of cap beam C2R 
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Figure 4.49: Shear failure of south cantilever of cap beam C2R 

4.4.3 Crack Widths 

The maximum crack widths for the north and south cantilevers can be seen in Figures 

4.50 and 4.51. At the service load level flexural web cracks and shear cracks were equally 

critical, with widths of 0.15 mm and 0.10 mm in the north and south sides respectively. Post-

tensioning at service loading decreased the maximum shear crack widths by 0.05 mm in both 

cantilevers. Maximum flexural web crack widths decreased by 0.10 mm and 0.05 mm on the 

north and south sides respectively. Flexure cracks in the region of the concentrated tensile steel 

were lower, at a maximum of 0.05 mm for both cantilevers at the service load level with no 

significant change after post-tensioning. Figures 4.52 to 4.55 show the crack patterns and 

measured crack widths for the north and south sides respectively, both before and after post-

tensioning. Shear cracks and flexural web cracks were consistently smaller in the south side at 

service loading and at higher loads due to its higher amount of crack control reinforcement. 

Beyond the service load level, the flexural web cracks and shear cracks were equally critical until 

a shear of 1500 kN was reached. Upon further loading the shear cracks became more critical on 

both cantilevers until failure. 
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For this cap beam horizontal splitting cracks of the hooks of the 45 inclined reinforcing 

bars were also observed. These cracks were located along the hooked anchorages of the inclined 

bars that were spliced with the primary tension reinforcement layers. A horizontal splitting crack 

was first observed at a shear of 900 kN in the inclined bar closest to the end of the cantilever on 

the north side. This crack opened up to a width of 0.25 mm at failure, as observed in Figure 4.48. 

No horizontal splitting cracking was observed in the south cantilever until near the end of the 

post-clamping loading. 

 

Figure 4.50: Shear versus maximum crack widths for north cantilever of cap beam C2R 

 

Figure 4.51: Shear versus maximum crack widths for south cantilever of cap beam C2R 
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Figure 4.52: Crack pattern and widths at service loading for north cantilever of cap beam C2R 

 

Figure 4.53: Cracks at service loading after post-tensioning for north cantilever of cap beam C2R 
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Figure 4.54: Crack pattern and widths at service loading for south cantilever of cap beam C2R 

 

Figure 4.55: Cracks at service loading after post-tensioning for south cantilever of cap beam C2R 
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4.4.4 Measured Strains 

The average tensile strains measured by LVDTs LV1-LV8 at the centroid of the 18-25M 

primary tension reinforcement are shown in Figure 4.56. The highest average strain at service 

loading before post-tensioning was 0.00246 at LV5 on the north cantilever near the column face. 

This is above the yield strain of 0.00232 for the 25M bars, indicating that some yielded had 

occurred before post-tensioning. After post-tensioning all eight LVDTs recorded decreases in 

strain. The peak strain LV5 dropped to 0.00225, a reduction of 8.5%. At failure two of the 

average strains were well above yielding strain. Figures 4.57 and 4.58 show the shear versus 

average strain curves for each LVDT and indicate that LV3 and LV5 reached yielding at shears 

of 1442 kN and 1098 kN. LV7 was at the onset of yielding at failure, as it reached a strain of 

0.00230 or 99.1% of the yield strain. 

 

Figure 4.56: Average longitudinal strains measured along the centroid of the concentrated 

tension steel for cap beam C2R 
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(a) post-tensioning at service load 

 

(b) initial loading 

 

Figure 4.57: Shear versus average longitudinal strain in the south cantilever of cap beam C2R 
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(a) post-tensioning at service load 

 

(b) initial loading 

 

Figure 4.58: Shear versus average longitudinal strain in the north cantilever of cap beam C2R 
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The shear versus strain relationships for several stirrups and inclined reinforcing bars in 

the north and south cantilevers are shown in Figures 4.59 and 4.60. Looking first at the north 

side, strain gage LS2 started malfunctioning after reaching a strain of 0.00138 at a shear of 1497 

kN. This was likely due to the shear crack widening to 0.15 mm at a shear of 1500 kN. Strain 

gages LS3 and LZ2 indicated that both the stirrups and inclined bars were close to yielding at 

failure with peak strains of 0.00209 and 0.00219. LS1, LS4, LZ1, and LZ3 were well below 

yielding, reaching peak strains of 0.00105, 0.00116, 0.00165 and 0.000841, respectively. 

Although none of the strain gages definitively indicated stirrup or inclined bar yielding in the 

north cantilever, the shear crack at failure previously shown in Figure 4.48 clearly shows that 

considerable stirrup yielding had occurred. 

As for the south cantilever, strain gages RS1, RS3, and RZ1 reached yielding at shears of 

2115 kN, 2140 kN, and 2163 kN, respectively, all of which occurring on the loading curve after 

external shear clamping. Inclined bar RZ3 was slightly below yielding at a peak strain of 

0.00198, and the strain gage for inclined bar RZ2 malfunctioned at a shear of 1345 kN possibly 

due to the widening of the shear cracks. Strain gages on stirrups RS2 and RS4 reached peak 

strains of 0.00112 and 0.00125, respectively, both well below yielding. Overall the strain gages 

on the south cantilever indicate that both stirrup and inclined bar yielding had occurred before 

the post-clamping failure. 

Strain gages LLT and RLT measured compressive strains on the inclined face of the 

cantilevers next to the column interface on the north and south sides, respectively. The shear 

versus strain for these strain gages can be seen in Figure 4.61. LLT and RLT reached the 20M 

yield strain of 0.00224 at shear values of 1900 kN and 1920 kN, respectively, indicating that the 

primary compressive reinforcement had buckled before the initial failure at 2050 kN. Figure 4.61 

also shows the shear versus strain for LVDT LV9 located at the south reentrant corner. LV9 only 

reached a peak strain of 0.000447 during the first loading cycle, however after installing external 

shear clamps to the north side LV9 reached a strain of 0.0035 at 2185 kN, just before failure 

(2198 kN). LV10 experienced malfunctioning. 
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   (a) LS2     (b) LS3 

 

   (c) LZ1     (d) LZ2 

 

 

Figure 4.59: Shear versus strain for stirrups and inclined bars in north cantilever of cap beam 

C2R 
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   (a) RS1     (b) RS3 

 

   (c) RZ1     (d) RZ3 

 

 

Figure 4.60: Shear versus strain for stirrups and inclined bars in south cantilever of cap beam 

C2R 
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(a) LLT (north)    (b) RLT (south) 

 

(c) LV9 (south) 

 

Figure 4.61: Shear versus compressive strain at re-entrant corners on cap beam C2R 
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Figure 4.62 shows the results from the LVDT rosettes on pier cap C2R for both the north 

and south cantilevers. The peak horizontal strains were 0.00111 on the north side and 0.000752 

on the south side for the initial loading curve. After clamping the south side reached a peak 

horizontal strain of 0.00106 before failure. As for the vertical strains, the north and south sides 

reached peak vertical strains of 0.00177 and 0.00035 at initial failure, both well below the stirrup 

yielding strain. A nearby stirrup LS3 on the north side reached a similar strain of 0.00209 at 

failure. After clamping the south side reached stirrup yielding shortly before failure, at a shear of 

2170 kN. Nearby stirrup RS3 recorded yielding after clamping at 2140 kN. The maximum tensile 

strains reached were 0.37% and 0.28% at the initial failure on the north and south sides 

respectively. After clamping the south cantilever reached a peak tensile strain of 0.50% at 

failure. The shear strains on both cantilevers were very similar at the initial failure, with both 

reaching peak strains of 0.44%. After clamping the shear strain in the south cantilever increased 

to 0.64%. The principal angle of each side at their respective failures was 41.0 on the north side 

and 39.0 on the south side. It was noted that the angle of the shear cracks near the rosettes at 

failure was 42.8 on the north side and 30.5 on the south side. 

4.4.5 Variation of Post-Tensioning Force 

Figure 4.63 demonstrates the post-tensioning force variation with increasing shear. The 

total force of post-tensioning at the service load level was approximately 600 kN. As the shear 

increased the post-tensioning force increased almost linearly to a peak of 752 kN when the north 

cantilever failed. After external shear clamping the post-tensioning force again increased quite 

linearly to 743 kN before failure of the south cantilever. 
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 (a) horizontal strain, x    (b) vertical strain, y 

 

 (c) principal tensile strain, 1    (d) principal compressive strain, 2 

 

 (e) shear strain, xy     (f) principal angle, p 

 

Figure 4.62: Principal strains and angles from cap beam C2R rosettes 
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Figure 4.63: Shear versus total force in post-tensioning rods in cap beam C2R 
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CHAPTER 5 

5. ANALYSIS OF RESULTS 

5.1 Discussion and Comparison of Experimental Results 

5.1.1 Shear-Deflection Response 

A comparison of the shear-deflection responses of the initial loading for the four pier 

caps is shown in Figure 5.1. Pier cap C1 reached the lowest peak shear at 1908 kN, and it can be 

observed that it also had the lowest stiffness. Pier cap C1R reached a higher peak shear of 1973 

kN and had a much stiffer response when compared to C1. Cap beam C2 had a stiffness similar 

to that of specimen C1R but the inclined reinforcement in C2 allowed it to reach a significantly 

higher shear of 2075 kN. Pier cap C2R had the greatest stiffness of the four cap beams and 

reached a shear of 2050 kN, just below that reached by C2. 

The post-tensioning caused a significant increase in the stiffness of the pier caps while 

not gaining much additional capacity. As shown in Table 5.1, for the initial loading response pier 

cap C1R reached a 3.4% higher shear at a 15% smaller deflection than C1. Pier cap C2R reached 

a 1.2% smaller shear at a 28% smaller deflection than C2. 

It is also noted that cap beams C1, C2, and C2R failed on the north side first which had 

less crack control reinforcement than the south side. However, for C1R the south side failed first. 

In this initial south failure the critical shear crack in the south cantilever before failure was 

smaller than the critical shear crack in the north cantilever, demonstrating that the increased 

horizontal crack control reinforcement was still more effective in controlling crack widths. 

However the area of horizontal crack control reinforcement was very low when compared to the 

area of primary tension steel, thus giving very little additional strength to the pier cap. The 

strength of the south side was thus only slightly higher than the north side, and with the 

variability of concrete an initial failure in the south cantilever was within reason. 



 113 

 

Figure 5.1: Shear-deflection response of cap beams 

Table 5.1: Comparison of peak shear and deflections between cap beams  

 C1 C1R % change C2 C2R % change 

Peak Shear (kN) 1908 1973 3.4% 2075 2050 -1.2% 

Peak Deflection 

(mm) 

17.3 14.7 -15.0% 17.5 12.6 -28.0% 

 

5.1.2 Crack Widths 

Figures 5.2 to 5.4 compare the flexural and shear cracks on the north and south sides for 

all four specimens. The shear cracking behavior can be seen in Figure 5.2. At service load level 

the shear crack widths in C1 and C1R were 0.20 mm and 0.15 mm in the north and south ends 

respectively. These were consistently larger than the shear crack widths in pier caps C2 and C2R. 

Cap beam C2 had crack widths of 0.05 mm in both cantilevers, and C2R had crack widths of 

0.15 mm and 0.10 mm in the north and south ends, respectively. Post-tensioning was effective in 

reducing the shear cracks by 0.05 mm. Beyond service loading C1 and C1R had significantly 
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larger shear cracks than C2 and C2R. The weaker north cantilever typically had larger shear 

crack widths than the south cantilever. 

Looking next at flexural web cracks in Figure 5.3, up until service loading all four 

specimens exhibited similar cracking, reaching crack widths of 0.15 mm and 0.10 mm in the 

north and south side respectively. The added crack control reinforcement in the south side 

resulted in slightly smaller crack widths. The post-tensioning applied to pier caps C1R and C2R 

was effective in reducing these flexural web crack widths. Pier cap C1R saw a crack width 

decrease of 0.05 mm in the north side, and pier cap C2R saw a crack width decrease of 0.1 mm 

and 0.05 mm in the north and south cantilevers respectively. Beyond the service load level cap 

beams C1 and C2 had the largest flexural web cracks, with C1R and C2R having smaller crack 

widths due to the post-tensioning. Pier caps C2 and C2R generally had larger flexural crack 

widths at failure, likely due to reaching higher loads by having additional resistance to shear 

cracking. 

Flexural cracking behavior in the concentrated tensile steel region is shown in Figure 5.4. 

At service loading pier cap C1 had the largest crack widths at 0.10 mm on both sides. Pier cap 

C1R had lower crack widths at 0.05 mm on both sides. Pier cap C2 had crack widths of 0.10 mm 

and 0.05 mm on the north and south sides respectively, and C2R had crack widths of 0.05 mm on 

either side. In general, up until the service load level the four pier caps had similar flexural 

cracking behavior in the concentrated tensile steel region. The post-tensioning was not very 

effective in reducing these crack widths, with only C1R in the north side seeing a notable 

reduction of 0.05 mm. Beyond service loading cap beam C1 consistently had the largest flexural 

cracks in the region of the concentrated steel. Pier caps C1R and C2 had similar crack widths, 

and C2R generally had the highest resistance to this type of flexural cracking. There was no 

significant difference observed in these flexural cracks between the north and south side, as the 

amount of primary flexural steel remained the same for the span of the pier cap. 
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(a) North cantilever 

 

 (b) South cantilever 

Figure 5.2: Maximum shear crack widths 
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 (a) North cantilever 

 

 (b) South cantilever 

Figure 5.3: Maximum flexural crack widths in the web 
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 (a) North cantilever 

 

 (b) South cantilever 

Figure 5.4: Maximum flexural crack widths in the primary tension reinforcement 
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Maximum horizontal splitting crack widths at the hook locations of the 45 inclined 

reinforcing bars in the primary tension steel is shown in Figure 5.5. Both cap beams C2 and C2R 

had significant splitting cracks in the north cantilevers, reaching values of 0.50 mm and 0.25 mm 

at their respective failures. In the south cantilevers no horizontal splitting cracking was observed 

for C2, and splitting cracking only initiated near the second, post-clamping failure of specimen 

C2R. These results seem to indicate that the higher amount of crack control reinforcement in the 

south cantilever for both cap beams was effective in controlling the formation of the horizontal 

splitting cracking. It is also noted that the post-tensioned cap beam C2R had a significantly 

smaller splitting crack than cap beam C2. After testing of cap beam C2 the concrete in front of 

the inclined reinforcement on the north cantilever was chipped away. Figures 5.6 and 5.7 

indicate that there was no slip of the inclined reinforcement hooks at the top and bottom primary 

steel layers at the locations closest to the critical shear crack. 

 

Figure 5.5: Maximum horizontal splitting crack widths for 45 inclined reinforcing bars in cap 

beams C2 and C2R 
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Figure 5.6: Inclined reinforcement hook at primary tension steel layer on north side of C2 

 

Figure 5.7: Inclined reinforcement hook at primary compression steel layer on north side of C2 
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5.2 Predicted Behavior from Sectional Analysis 

5.2.1 Determining Locations of Critical Sections 

In order to perform a sectional analysis, the locations of the critical sections must first be 

determined. A critical section is located a distance dv away from the face of supports or loading 

areas. This is shown in Figure 5.8, where for these pier caps there will be two critical sections to 

be checked: one a distance dv away from the inner edge of the bearing (Section 1), and another a 

distance dv from the column face (Section 2). The effective shear depth dv is typically taken as, 𝑑𝑣 = 0.9𝑑      (5.1) 

where d is the effective depth at the critical section. However due to the 1:4 sloped bottom face 

the dv at the critical section is different than the dv at the face of the loading point.  

Looking first at Section 1, the compression forces flow in a fanning pattern from the 

support to the inclined bottom face. As such the effective shear depth will be larger due to the 

critical section location being further away from the support. Using the 1:4 slope, dv for Section 

1 was calculated as, 𝑑𝑣 = 0.9𝑑1 = 0.9(𝑑 + 0.25𝑑)   (5.2) 

where d1 is the effective depth at the critical section. 

 For Section 2, the compression forces instead fan from the edge of the column up to the 

top horizontal surface. Therefore, the distance to Section 2 from the column face was taken as 

Equation 5.1, where d is the effective depth at the column face. At the section the dv was then 

determined from Equation 5.1, where d is equal to d2, the effective depth at Section 2. 

 Using Equations 5.1 and 5.2 the effective depth at Section 1, d1, and Section 2, d2, were 

calculated as 650.2 and 703.3 mm, respectively. The effective shear depth, dv, was then 

calculated as 585.2 and 633.0 mm for Sections 1 and 2, respectively. 
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Figure 5.8: Critical sections for sectional analysis 

5.2.2 Sectional Design Methodology 

The general method outlined in the CSA S6-14 Canadian Highway Bridge Design Code 

(CSA 2014) was used for the analysis of the pier caps. This general method was discussed earlier 

in Section 2.1 and was performed at the critical sections 1 and 2 in Figure 5.8. The primary 

objective of this analysis was to determine the nominal shear resistance, V, of the pier caps. As 

such, material resistance factors (s, c, p) were taken as 1.0 for this analysis. An iterative 

general method was used in order to determine V at the critical sections, the steps of which are 

described below: 

Step 1: A value for the nominal shear resistance, V, was assumed 

Step 2: The longitudinal strain, x, was calculated. For pier caps C1 and C2 Equation 2.10 was 

simplified as: 
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𝜀𝑥 = 𝑀/𝑑𝑣+𝑉−𝑉𝑝2(𝐸𝑠𝐴𝑠)      (5.3) 

In this equation M is the nominal moment corresponding to the shear V, with the lever arm from 

the critical section to the center of the bearing. As and Es are the cross-sectional area and modulus 

of elasticity of the flexural tension reinforcement, respectively. Vp was taken as the vertical 

component of flexural compression parallel to the 1:4 inclined face. For pier caps C1 and C2 this 

was calculated as: 𝑉𝑝 = 0.25 × 𝑀/𝑑𝑣     (5.4) 

 For pier caps C1R and C2R Equations 5.3 and 5.4 were adjusted to take into 

consideration the external unbonded post-tensioning force, P, applied at an eccentricity, e. This 

post-tensioning force acts as both an applied moment and axial load. In the longitudinal strain 

equation, the moment was reduced by Pe, and the post-tensioning force treated as an externally 

applied compressive force. That is, Nf in Equation 2.10 was substituted by P, with the sign 

changed for compression. Thus, for pier caps C1R and C2R the longitudinal strain equation 

becomes: 

𝜀𝑥 = (𝑀−𝑃×𝑒)/𝑑𝑣+𝑉−𝑉𝑝−𝑃/22(𝐸𝑠𝐴𝑠)     (5.5) 

where Vp was also modified to become: 𝑉𝑝 = 0.25 × (𝑀 − 𝑃 × 𝑒)/𝑑𝑣    (5.6) 

Note that in these equations the post-tensioning force was assumed to remain constant over the 

loading cycle. 

Step 3: The  factor takes into consideration the shear resistance of the cracked concrete for a 

member with shear reinforcement. This was calculated with Equation 2.15, where sze was 

assumed to be the typical value of 300 mm for members with at least minimum web 

reinforcement. 

Step 4: The angle of principal compression, , was calculated from Equation 2.16. 
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Step 5: The nominal shear resistance provided by the cracked concrete, Vc, was calculated as per 

Equation 2.8. The measured concrete strength from material testing was used for fc’. 

Step 6: The nominal shear resistance provided by the vertical stirrups, Vs, was calculated as per 

Equation 2.7 for pier caps C1 and C1R. Pier caps C2 and C2R have additional inclined 

reinforcement, the transverse component of which must be added to Equation 2.7. Thus, this 

becomes, 

𝑉𝑠 = 𝑓𝑦𝐴𝑣𝑑𝑣𝑐𝑜𝑡𝜃𝑠 + 𝑓𝑦𝐴𝑣𝑖𝑑𝑣(𝑐𝑜𝑡𝜃+𝑐𝑜𝑡𝛼)𝑠𝑖𝑛𝛼𝑠𝑖    (5.7) 

where si is the spacing of the inclined reinforcement, Avi is the cross-sectional area of the inclined 

reinforcement within the spacing si, and  is 45, the angle of the inclined reinforcement. The 

measured yield strength for the 10M bars was used for fy. 

Step 7: The nominal shear resistance, V, was calculated as: 𝑉 =  𝑉𝑐 + 𝑉𝑠 + 𝑉𝑝     (5.8) 

Step 8: The nominal shear resistance V calculated in Step 7 was compared with the assumed 

value in Step 1. The assumed value was changed, and procedure repeated until the solution 

converged.  

5.2.3 Sectional Design Results 

The predicted nominal shear resistances, Vpredicted, by the general method described above 

are shown in Table 5.2. The reported values are the predicted shear resistances at Section 1 in 

Figure 5.8, as for all four pier caps this location had a lower and hence more critical shear 

resistance than at Section 2. Comparing the predictions to the experimental shear resistances, 

Vtest, it is clear that the general shear design method of the 2014 CHBDC consistently gave 

conservative shear predictions. The Vtest/Vpredicted ranged from 1.10 to 1.22, with pier caps C1 and 

C1R being predicted slightly more conservatively than pier caps C2 and C2R. 
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Table 5.2: Comparison of predicted shear capacities from the sectional analysis with shear 

capacities achieved during testing 

 
C1 

N 

C1 

S 

C1R 

N 

C1R 

S 

C2 

N 

C2 

S 

C2R 

N 

C2R 

S 

Vpredicted 

kN 

1567 1583 1661 1675 1774 1791 1865 1881 

Vtest 

kN 

1908 1908 2017 1973 2075 2075+ 2050 2198 

Vtest/ 

Vpredicted 

1.22 1.21 1.21 1.18 1.17 1.16 1.10 1.17 

 

5.3 Predicted Behavior using Strut-and-Tie Analysis 

5.3.1 Strut-and-Tie Methodology 

The methodology used for performing the strut-and-tie analysis was primarily based on 

the steps given by Mitchell et al. (2004). Stress limits were based on those in the Canadian 

Highway Bridge Design Code (2014), though all material resistance factors were taken as 1.0. 

The concrete strength, fc’, and yield strength of the reinforcing bars, fy, were based on values 

from material testing. The primary steps are listed below: 

Step 1: The flow of stresses through the structure were visualized.  

Step 2: An idealized strut-and-tie model was drawn. The primary compressive and tensile 

reinforcement layers were represented as longitudinal ties located at the centroids of their 

respective steel layers. Vertical ties representative of the stirrups were added to the model, and 

concrete compressive struts added to complete the model.  

Step 3: The area of the ties was determined. For the stirrup ties this area was determined by the 

number of stirrups in the band width for each stirrup tie.  

Step 4: An applied load, P, was assumed at the support, and the forces in the struts and ties 

calculated by statics. 
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Step 5: The strength of the ties was checked to ensure that the applied nominal tensile force, T, 

was less than the nominal tensile resistance, Tn, calculated as: 𝑇𝑛 = 𝐴𝑠𝑓𝑦      (5.9) 

Step 6: The stresses in the nodal zones were calculated to ensure that the nodal zone stress limits 

were not exceeded. For the CSA S6-14 code (2014) these stress limits are:  

1. 0.85 fc' for CCC nodes 

2. 0.75 fc' for CCT nodes 

3. 0.65 fc' for CTT nodes 

Step 7: The strength of the struts was checked to ensure that the nominal compressive force, C, 

was less than the nominal compressive resistance, Cn, calculated as: 𝐶𝑛 = 𝐴𝑐𝑠𝑓𝑐𝑢      (5.10) 

The determination of the crushing strength of concrete when cracked, fcu, required several steps 

discussed previously in Chapter 2. Equation 2.21 was first used to determine the principal strain 

1, where the 0.002 term, representing an assumed c' for the strain at peak compressive strength, 

was instead taken based on material testing. Subsequently Equation 2.19 was used to determine 

f2,max, equal to fcu, and the nodal zone stress limits in Step 6 above were checked for compliance.  

The nominal compressive strength was then determined by Equation 5.10, and compared with 

the nominal compressive force C. 

Step 8: Based on the Step 5—Step 7 checks, the applied load P or stirrup configuration was 

varied until these checks were adequate at stirrup yielding. 

5.3.2 Strut-and-Tie Model 

The strut-and-tie model representative of cap beam C1 can be seen in Figure 5.9. In this 

figure the solid lines are tension ties, and the dashed lines compressive struts. One horizontal 

tension tie is located at the top of the cap beam at the centroid of the two layers of primary 

tension reinforcement. Similarly, a compressive strut is located at the centroid of the primary 

compression steel layer at the bottom face. Each cantilever has a vertical tension tie 
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representative of the stirrups located within its effective tributary length. This vertical tie was 

located at a distance of 850 mm from the loading point, that is halfway along the 1700 mm shear 

span. An effective tributary length of 950 mm was chosen to represent the band of stirrups over a 

length of one half of the distance from the loading point to the reaction (See Figure 5.9). It was 

assumed that the number of stirrup sets in this tie was 950 mm / 200 mm = 4.75. Hence the yield 

force in the tie was 876 kN. 

By varying the load, P, at the bearings, it was found that stirrup yielding occurred at an 

applied force of 1317 kN, with the inclined compression in the bottom strut contributing to the 

shear strength. The stresses in the nodal zone at the bearing and in the strut below the bearing 

were both found to be below the limit of 0.75fc' for CCT nodes. The width of the strut was taken 

as 600 mm, that is the full width of the cap beam, due to spreading of the compressive stresses 

from the bearing interface down to the centroid of the top tension reinforcement. The observed 

failure shears for pier cap C1 were 1908 kN for both the north and south cantilevers. Thus, the 

observed shear failure was 1.45 times the predicted shear failure from the strut-and-tie model, 

making it a very conservative prediction. 

 

Figure 5.9: Strut-and-tie model of cap beam C1, with forces in kN and dimensions in mm 
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5.4 Predicted Behavior by Non-Linear Finite Element Analysis 

5.4.1 Pier Cap C1 

The non-linear finite element software used for analysis was VecTor2 (Vecchio, 2018), 

previously introduced in Chapter 2.3. Before the analyses could be carried out, a finite element 

model for each pier cap was made using the pre-processor FormWorks (Wong, 2002). Figure 

5.10 demonstrates the finite element model for pier cap C1, which was modeled as a plane-

membrane structure. A combination of truss and quadrilateral elements were used, with a 

maximum width and height of 100 mm. The longitudinal reinforcement was modelled as truss 

elements assumed to be perfectly bonded with the concrete, indicated by thin horizontal regions. 

The vertical stirrups in the cantilevers were modelled as smeared reinforcement layers in the 

concrete, that is, the steel was assumed to be uniformly distributed in these elements. The 

column region had smeared reinforcement layers in both the horizontal and vertical directions to 

take into account the vertical 25M column bars and the horizontal 10M column ties. Figure 5.10 

also shows the concentrated loading points for the pier cap. The concentrated loads are assumed 

to be distributed over each 200-mm bearing plate with half of the applied load in the center of the 

plate and a quarter of the applied load on either edge of the plate, where the applied loads were 

incremented from zero loading to failure with a load step of 25 kN. The self-weight of the 

structure was also taken into account. After the VecTor2 analysis was complete the post-

processor Augustus (Bentz, 2003) was used to visualize the results. 

The concrete and reinforcing steel material properties used in VecTor2 were those 

obtained from material testing. The modulus of elasticity of the reinforcement was assumed to be 

200,000 MPa, and the maximum horizontal and vertical concrete crack spacing assumed to be 

200 mm. The models used in the VecTor2 analysis are summarized in Table 5.3. Information on 

these models can be found in the VecTor2 & FormWorks User’s Manual, Second Edition (Wong 

et al., 2013). 
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Table 5.3: Models used in VecTor2 

 Description Model 

Concrete Compression Pre-Peak Response Popovics (Normal Strength Concrete) 

Compression Post-Peak Response Modified Park-Kent 

Compression Softening Vecchio 1992-A (e1/e2-Form) 

Tension Stiffening Modified Bentz 2003 

Tension Softening Bilinear 

Confined Strength Kupfer/Richart 

Dilation Variable – Isotropic 

Cracking Criterion Mohr-Coulomb (Stress) 

Crack Stress Calculation Basic (DSFM/MCFT) 

Crack Width Check Agg/2.5 Max Crack Width 

Crack Slip Calculation Walraven 

Hysteretic Response Nonlinear with Plastic Offsets 

Reinforcement Dowel Action Tassios (Crack Slip) 

Buckling Akkaya 2012 

Hysteretic Response Bauschinger Effect (Seckin) 

Bond Concrete Bond Eigenhausen 

Analysis Cracking Spacing CEB-FIP 1978 – Deformed 

 

Figure 5.11 shows the predicted cracking pattern of pier cap C1 at the service load level 

(1050 kN per bearing plate). Flexural cracks in the concentrated steel region were predicted 

along the entire span between the bearing plates, flexural web cracks were predicted inside and 
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close to the column interface, and shear cracks in the cantilevers were also predicted. Figure 5.12 

demonstrates the predicted crack widths at service loading. These were 0.35 mm for shear cracks 

in both cantilevers, 0.52 mm and 0.26 mm for flexural web cracks located just outside the 

column face in the north and south sides respectively, and 0.24 mm for flexural cracking of the 

region containing concentrated reinforcement in both cantilevers. 

Figure 5.13 shows the predicting cracking pattern of pier cap C1 at a predicted failure 

shear of 1750 kN. Figure 5.14 shows the predicted crack widths at failure. The largest crack 

widths were due to shear cracking in the north cantilever, predicted as 1.19 mm. Maximum 

flexural web cracks were predicted to be 0.80 mm at the column-cantilever interface. Thus, the 

analysis predicted a failure due to shear combined with flexure. Figure 5.15 shows the predicted 

principal compressive stresses, f2, in the concrete at failure. The largest principal compressive 

stresses were at the re-entrant corners, reaching a maximum value of 30.7 to 32.0 MPa, with 

concrete cracking predicted at these locations. Although these stresses exceed the cylinder 

compressive strength of the concrete, VecTor2 considers the beneficial effects of biaxial 

confinement from the reinforcement on the peak compressive strength and strain in its analysis.  

 

Figure 5.10: Finite element model for cap beam C1 
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Figure 5.11: Predicted cracking pattern for cap beam C1 at service loading 

 

Figure 5.12: Predicted crack widths for cap beam C1 at service loading 
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Figure 5.13: Predicted cracking pattern for cap beam C1 at failure 

 

Figure 5.14: Predicted crack widths for cap beam C1 at failure 
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Figure 5.15: Predicted principal compressive stress for cap beam C1 at failure 

5.4.2 Pier Cap C1R 

The finite element model used for pier cap C1 was also used for pier cap C1R. The only 

difference is the external post-tensioning force of 600 kN, applied as horizontal compressive 

forces distributed over the loading plate height as shown in Figure 5.16. Figure 5.17 shows the 

predicted cracking pattern of pier cap C1R at service loading after post-tensioning. The cracking 

pattern was similar to pier cap C1 but with noticeably smaller flexural and shear cracks. Figure 

5.18 demonstrates the predicted crack widths after post-tensioning. These were 0.25 mm for 

shear cracks on both cantilevers, 0.35 mm and 0.19 mm for flexural web cracks located just 

outside the column face on the north and south sides respectively, and 0.15 mm for flexural 

cracking in the region of concentrated tensile reinforcement on both cantilevers. 

Figure 5.19 shows the predicting cracking pattern of pier cap C1R at a predicted failure 

shear of 1900 kN. Figure 5.20 shows the predicted crack widths at failure. The largest crack 

widths were due to shear cracking in the north cantilever, predicted as 1.10 mm. Maximum 

flexural web cracks were predicted to be 0.55 mm at the column-cantilever interface. Thus, the 

analysis predicted a failure due to shear combined with flexure. Figure 5.21 shows the predicted 

principal compressive stresses, f2, in the concrete at failure. The largest principal compressive 



 133 

stresses were at the re-entrant corners, reaching a maximum value of 30.9 to 32.3 MPa, with 

concrete cracking predicted at these locations. 

 

Figure 5.16: Finite element model for cap beam C1R indicating applied post-tensioning force 

(bearing loads not shown) 

 

Figure 5.17: Predicted cracking pattern for cap beam C1R at service loading after post-tensioning 
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Figure 5.18: Predicted crack widths for cap beam C1R at service loading after post-tensioning 

 

Figure 5.19: Predicted cracking pattern for cap beam C1R at failure 
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Figure 5.20: Predicted crack widths for cap beam C1R at failure 

 

Figure 5.21: Predicted principal compressive stress for cap beam C1R at failure 

5.4.3 Pier Cap C2 

Figure 5.22 shows the finite element model used for pier cap C2. This was similar to the 

pier cap C1 model with several key differences. The vertical stirrups were modelled again as a 

smeared reinforcement layer attached to the concrete, but with a lower reinforcement ratio due to 
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the larger stirrup spacing for pier cap C2. The inclined reinforcement was added as a smeared 

reinforcement layer at a 45 angle, and the concrete properties adjusted because of the different 

concrete batch properties for pier caps C2 and C2R.  

Figure 5.23 shows the predicted cracking pattern of pier cap C2 at service loading. 

Flexural cracks were predicted along the span in the concentrated steel region and near the 

column-cantilever interfaces. Shear cracks were predicted in the cantilevers. Figure 5.24 shows 

the predicted crack widths at service loading. These were 0.23 mm for shear cracks in both 

cantilevers, 0.34 mm and 0.21 mm for flexural web cracks located just outside the column face 

in the north and south sides respectively, and 0.17 mm for flexural cracking in the region of 

concentrated tensile reinforcement in both cantilevers. 

Figure 5.25 shows the predicting cracking pattern of pier cap C2 at a predicted failure 

shear of 2075 kN. Figure 5.26 shows the predicted crack widths at failure. The largest crack 

widths were due to shear cracking in the north cantilever, predicted as 0.97 mm. Maximum 

flexural web cracks were predicted to be 0.73 mm at the column-cantilever interface. Thus, the 

analysis predicted a failure due to shear combined with flexure. Figure 5.27 shows the predicted 

principal compressive stresses, f2, in the concrete at failure. The largest principal compressive 

stresses were at the re-entrant corners, reaching maximum values of 34.8 to 36.3 MPa, with 

concrete cracking predicted at these locations. 

 

Figure 5.22: Finite element model for cap beam C2 
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Figure 5.23: Predicted cracking pattern for cap beam C2 at service loading 

 

Figure 5.24: Predicted crack widths for cap beam C2 at service loading 



 138 

 

Figure 5.25: Predicted cracking pattern for cap beam C2 at failure 

 

Figure 5.26: Predicted crack widths for cap beam C2 at failure 
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Figure 5.27: Predicted principal compressive stress for cap beam C2 at failure 

5.4.4 Pier Cap C2R 

The finite element model used for pier cap C2 was also used for pier cap C2R. The only 

difference was the external post-tensioning force of 600 kN, applied as horizontal compressive 

forces distributed over the loading plates as shown in Figure 5.28. Figure 5.29 shows the 

predicted cracking pattern of pier cap C2 at service loading after post-tensioning, which visually 

looked similar to pier cap C2. Figure 5.30 demonstrates the predicted crack widths at the service 

load level after post-tensioning, which were much smaller and scattered than in the other three 

cap beams. These predicted maximum crack widths were 0.13 mm for shear cracks in both 

cantilevers, 0.22 mm and 0.15 mm for flexural web cracks located just outside the column face 

in the north and south sides respectively, and 0.11 mm for flexural cracking in the region of 

concentrated tensile reinforcement in both cantilevers. 

Figure 5.31 shows the predicting cracking pattern of pier cap C2R at a predicted failure 

shear of 2200 kN. Figure 5.32 shows the predicted crack widths at failure. The largest crack 

widths were due to shear cracking in the north cantilever, predicted as 1.00 mm. Maximum 

flexural web cracks were predicted to be 0.63 mm at the column-cantilever interface. Thus, the 

analysis predicted a failure due to shear combined with flexure. Figure 5.33 shows the predicted 

principal compressive stresses, f2, in the concrete at failure. The largest principal compressive 
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stresses were at the re-entrant corners, reaching maximum values of 34.8 to 36.3 MPa, with 

concrete cracking predicted at these locations. 

 

Figure 5.28: Finite element model for cap beam C2R indicating applied post-tensioning force 

(bearing loads not shown) 

 

Figure 5.29: Predicted cracking pattern for cap beam C2R at service loading after post-tensioning 
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Figure 5.30: Predicted crack widths for cap beam C2R at service loading after post-tensioning 

 

Figure 5.31: Predicted cracking pattern for cap beam C2R at failure 
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Figure 5.32: Predicted crack widths for cap beam C2R at failure 

 

Figure 5.33: Predicted principal compressive stress for cap beam C2R at failure 

5.4.5 Summary of Non-Linear Finite Element Analysis Predictions 

Table 5.4 compares the predicted failure shears from the non-linear finite element 

analyses with the actual failure shears observed during testing. The model only gives information 

corresponding to the first failure, and so only the north side failure shears are compared. The 
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Vtest/Vpredicted ranges from 0.93 to 1.09, with the pier caps C1 and C1R models giving slightly 

more conservative predictions than the C2 and C2R models. For reinforced concrete, these 

failure shear predictions are well within acceptable limits. 

Table 5.4: Comparison of predicted shear capacities from non-linear finite element analyses with 

shear capacities achieved during testing 

 C1 

N 

C1R 

N 

C2 

N 

C2R 

N 

Vpredicted (kN) 1750 1900 2075 2200 

Vtest (kN) 1908 2017 2075 2050 

Vtest/Vpredicted 1.09 1.06 1.00 0.93 

Table 5.5 to Table 5.7 compare the predicted maximum crack widths at the service load 

level from the non-linear finite element analyses with the actual maximum crack widths 

observed at service loading during testing. For the post-tensioned pier caps C1R and C2R these 

crack widths refer to those observed after post-tensioning. The crack widths predicted by the 

non-linear finite element analyses were consistently larger than those observed during testing. 

Shear crack predictions were generally closer to the test results than flexural web cracking, 

except for the case of pier cap C2 where the inverse was true. The predicted cracking at failure 

was consistent with the testing results in predicting that shear cracks would be the largest, 

controlling cracks. 
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Table 5.5: Comparison of predicted maximum shear crack widths from the VecTor2 analysis 

with those observed during testing 

Shear 
C1 C1R C2 C2R 

N S N S N S N S 

wpredicted (mm) 0.35 0.35 0.25 0.25 0.23 0.23 0.13 0.13 

wtest (mm) 0.20 0.15 0.15 0.10 0.05 0.05 0.10 0.05 

wtest/wpredicted  0.57 0.43 0.60 0.40 0.22 0.22 0.77 0.38 

Table 5.6: Comparison of predicted maximum flexural web crack widths from the VecTor2 

analysis with those observed during testing 

Flexure 

(Web) 

C1 C1R C2 C2R 

N S N S N S N S 

wpredicted (mm) 0.52 0.26 0.35 0.19 0.34 0.21 0.22 0.15 

wtest (mm) 0.15 0.10 0.10 0.10 0.15 0.10 0.05 0.05 

wtest/wpredicted  0.29 0.38 0.29 0.53 0.44 0.48 0.23 0.33 

Table 5.7: Comparison of predicted maximum flexural crack widths in the region of concentrated 

tension reinforcement from the VecTor2 analysis with those observed during testing 

Flexure 

(Concentrated) 

C1 C1R C2 C2R 

N S N S N S N S 

wpredicted (mm) 0.24 0.24 0.15 0.15 0.17 0.17 0.11 0.11 

wtest (mm) 0.10 0.10 h 0.05 0.10 0.05 0.05 0.05 

wtest/wpredicted  0.42 0.42 N/A 0.33 0.59 0.29 0.45 0.45 
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CHAPTER 6 

6. CONCLUSIONS 

Based on the experimental results and analysis predictions the following conclusions 

were made: 

1. The amount of crack control reinforcement was an important variable in controlling 

the crack widths at service load. Smaller shear and flexural web cracks were 

consistently observed on the south side. Compared to the north side the south side had 

three times the horizontal reinforcement for cap beams C1 and C1R, and twice the 

horizontal reinforcement for cap beams C2 and C2R. 

2. The 45 inclined reinforcing bars in cap beams C2 and C2R were effective in 

resisting shear. Cap beams C2 and C2R had a stiffer shear-deflection response and 

improved shear crack control when compared to cap beams C1 and C1R.  

3. External horizontal post-tensioning reduced crack widths and increased the overall 

stiffness. However, it did not lead to significant increases in strength. 

4. The sectional design procedure in the CSA S6-14 Canadian Highway Bridge Design 

Code gave conservative predictions of the failure shears, with Vtest/Vpredicted ranging 

from 1.10 to 1.22. 

5. The strut-and-tie model gave a very conservative failure shear prediction for cap 

beam C1, with a Vtest/Vpredicted of 1.45. 

6. The non-linear finite element analyses gave very reasonable predictions of the 

complete behavior and strength of the cap beams, with Vtest/Vpredicted ranging from 

0.93 to 1.09. 

7. The 45 inclined bars were well anchored and did not experience slip at the hook 

ends. However, the inclined bars were confined by the vertical stirrups. More 

research would be required to observe the effectiveness of the 45 inclined bars in the 

absence of vertical stirrups.
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