4 9 17 BBray BullVolc manuscript

±

1	Mafic replenishment of multiple felsic reservoirs at the Mono domes and Mono
2	Lake islands, California
3	
4	Brandon Bray ¹ , John Stix ¹ , and Brian Cousens ²
5	
6	1. Department of Earth & Planetary Sciences, McGill University, 3450 University Street,
7	Montreal, Quebec H3A 0E8, Canada
8	2. Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton
9	University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
10	
11	Abstract
12	The Mono Basin has been the site of frequent volcanic activity over the past 60,000
13	years, including the emplacement of the Mono domes and Mono Lake islands. The Mono
14	Basin lavas are the youngest and most poorly understood products of the Long Valley
15	Volcanic Field. We have undertaken a study of Mono Basin volcanism encompassing
16	whole-rock major and trace element, Sr, Nd, Pb, and O isotopic, and electron microprobe
17	glass, plagioclase, and amphibole analyses. Variations in major and trace elements
18	suggest that fractional crystallization of feldspar (Sr, K ₂ O), apatite (P ₂ O ₅),
19	titanomagnetite (V), zircon (Zr), and allanite (La, Ce) has influenced the evolution of the
20	Mono Basin lavas. Field observations, petrography, and chemistry together demonstrate
21	that injection of more mafic magma is a common process throughout the Mono Basin.
22	Mafic enclaves of the Mono domes are stretched and rounded, with chilled margins
23	between enclave and host rhyolite. Thin sections reveal millimeter-scale inclusions of

24	rhyolite in the enclaves and vice versa along the host-enclave border. Paoha Island dacite
25	has glass with 67-72 wt.% SiO_2 and contains microscopic clots of more mafic glasses,
26	with SiO ₂ contents as low as 64 wt.%. Isotopically, the June Lake and Black Point basalts
27	and the Mono dome enclaves represent the least evolved material in the Long Valley
28	Volcanic Field, with $^{87}Sr/^{86}Sr_i$ <0.7056 and $^{143}Nd/^{144}Nd$ >0.5126. The silicic Mono Lake
29	lavas and Mono dome rhyolites display a significant crustal component, with $^{87}\mathrm{Sr}/^{86}\mathrm{Sr_i}$
30	>0.7058 and ¹⁴³ Nd/ ¹⁴⁴ Nd <0.5127 . Oxygen and Pb isotopes throughout the sample suite
31	also have crustal signatures, with 206 Pb/ 204 Pb >19 and δ^{18} O >+6.5‰. The Mono Lake
32	lavas generally are younger and less evolved than the Mono domes, with enrichment in
33	trace elements including Ba and Sr accompanied by lower ¹⁴³ Nd/ ¹⁴⁴ Nd and higher
34	206 Pb/ 204 Pb. This implies that the Mono domes and the Mono Lake lavas are derived from
35	different magma batches, if not from separate magma chambers. There is no systematic
36	relationship between the degree of chemical evolution and the lava ages, indicating that
37	several magma batches have been involved in the development of the Mono domes
38	complex. Pronounced differences in trace element composition (Nb, Y) and isotopic
39	values between the Negit Island and Paoha Island lavas indicate that they, too, are
40	produced by the evolution of at least two different batches of intermediate-composition
41	magma.
42	
43	Keywords: Mono Lake; Mono domes; mafic enclaves; isotope geochemistry; mafic

recharge; rhyolite magmas

47 1. Introduction

48 Concern over the possibility of renewed volcanic activity in the Long Valley 49 Volcanic Field began after seismic and magmatic unrest in the region started in 1980 50 (Hill et al. 1985). The volcanic and tectonic history of the region has since been well 51 established, particularly by Bailey (1989), in order to better assess the potential for future 52 eruptions within and near Long Valley caldera, and the hazards that would be posed by 53 those eruptions. Long Valley caldera was formed during the catastrophic Bishop Tuff 54 eruption of 0.77 Ma (Crowley et al. 2007). Over the past 60,000 years, the focus of 55 magmatic instability has shifted to the north of the caldera into the Mono Basin, where an 56 extensive series of high-silica pyroclastic rocks and lava domes and several basalt flows 57 have been erupted.

58 Among the Mono Basin volcanic units are several of abnormal composition and 59 ambiguous origin that have important implications for the origin of the entire system. The 60 oldest of the Mono domes, a porphyritic dacite profuse with basaltic enclaves, predates 61 all other domes by nearly 20,000 years (Wood 1983). Several other, younger domes 62 contain abundant enclaves of basalt and andesite (Kelleher and Cameron 1990). Lavas 63 exposed on islands in Mono Lake are mostly dacitic in composition, representing the only 64 intermediate-composition magma generated in the Long Valley region in the past 60,000 65 years outside of Mammoth Mountain (Hildreth et al. 2014). The Mono Lake lavas are the 66 youngest in the region.

67 Despite the enigmatic compositions and youth of many of the Mono Basin
68 rhyolites and dacites, their petrogenesis and their relationship to neighboring igneous
69 systems remain poorly understood. This study aims to better understand Mono volcanism

through the study of mafic enclaves and silicic volcanic rocks from the Mono Lake
islands, and to use the whole-rock and isotope chemistry of these rocks to examine the
igneous processes currently occurring in the Mono Basin.

- 73
- 74 2. Magmatism in the Mono Basin

75 Activity in the Mono Basin has been for the most part bimodal, but is dominated 76 by high-silica rhyolite. Sarna-Wojcicki et al. (1988) presented evidence of Mono Basin 77 tephras aged 50 to 150 ka and Vazquez and Lidzbarski (2012) found zircon cores dated to 78 90 ka, although Mono Basin magmatism began in earnest some time later. Starting at \sim 60 79 ka, a series of high-silica rhyolites, with one dacite, erupted explosively, each eruption 80 culminating with the emplacement of a lava dome (Fig. 1b; Kelleher 1986; Kelleher and 81 Cameron 1990; Bailey 2004; Vazquez and Lidzbarski 2012). Collectively, this suite is 82 referred to as the Mono domes. Mafic rocks at June Lake and Black Point are 83 interspersed chronologically among these domes. The recent work of Peacock et al. 84 (2015) appears to have confirmed the presence of at least two magmatic sources beneath 85 the Mono Basin, as was proposed by Dawson et al. (1990). Achauer et al. (1986) initially 86 suggested that a substantial, partially molten magma chamber exists beneath the Mono 87 Basin and is the likely source of these recent lavas as regional magma production has 88 shifted to the north of Long Valley caldera.

Through field relationships and hydration rind ages of the Mono domes several early studies concluded that, in general, the mineralogy and geochemistry of the Mono domes correspond chronologically with the typical progression that would be expected from a system undergoing fractional crystallization (Wood 1983; Bursik and Sieh 1989;

93	Kelleher and Cameron 1990). Recent work on the Wilson Creek tephra section has placed
94	the domes into a more precise chronology (Zimmerman et al. 2011; Vazquez and
95	Lidzbarski 2012; Marcaida et al. 2014). This work broadly agrees with the chronology
96	established by Kelleher and Cameron (1990) based on dome petrology.
97	Using the dome numbering system of Wood (1983) and the petrological
98	classification scheme of Kelleher and Cameron (1990), as will be utilized throughout this
99	study, dome 12 is the oldest dome, estimated to be >60 ka, and is of dacitic composition.
100	Dome 12 is replete with basaltic enclaves. The next eruptions in the region involved
101	biotite-rich, porphyritic rhyolites (domes 11, 19, and 24), established by hydration rind
102	dates to have been emplaced around 13 ka (Wood 1983). Between 13 and 7 ka, a pair of
103	andesitic enclave- and orthopyroxene-bearing, porphyritic rhyolite domes (domes 14 and
104	18) erupted first, followed by a more extensive series of porphyritic, fayalite-bearing
105	rhyolite domes (domes 6, 15, 17, 20, 25, and 27-30). Single crystal 40 Ar/ 39 Ar dating of
106	sanidines found in domes 27-30 by Hu et al. (1994) places these domes at ~13 ka,
107	coincident with the older extreme of this timeline. From roughly 7 until 1.2 ka, volcanism
108	in the Mono Basin was dominated by the eruption of sparsely porphyritic, high-silica
109	rhyolite in the form of dome 8 (often referred to as the Northwest Coulée) and domes 10,
110	16, 21, 23, and 26. South of the Mono domes are North Deadman Creek dome and
111	Wilson Butte, which are enclave-bearing, sparsely porphyritic rhyolites estimated to have
112	been emplaced at 5039-5297 cal BP and 1611-1710 cal BP, respectively (Fig. 1b; Wood
113	1983; Miller 1985; Bursik and Sieh 2013). Although these two domes are geographically
114	located within the Inyo dome suite, Lajoie (1968) and Bailey (1989) classified both as
115	members of the Mono domes suite. The geochemical data presented in this study support

116	this classification. In the past 1200 years, two voluminous pulses of aphyric, high-silica
117	rhyolite volcanism have occurred. The first pulse was at 1366-1420 cal BP, emplacing
118	dome 22 – the South Coulée – and the second pulse occurred at 600-625 cal BP,
119	emplacing dome 3 – Panum Crater – and domes 4, 5, 7, 9, and 13 – the North Coulée
120	(Bursik and Sieh 2013; Bursik et al. 2014). The latter event is commonly referred to as
121	the North Mono eruption (Sieh and Bursik 1986; Hildreth 2004). Tephra produced during
122	the explosive phases of these eruptions blankets most of the older domes (Vazquez and
123	Lidzbarski 2012).
124	Coeval with dome emplacement are the June Lake and Black Point basalts.
125	Between 30 and 25 ka, the June Lake basalt flowed from a cinder cone near June Lake,
126	located in the southwestern Mono Basin (Bursik and Gillespie 1993; Bailey 2004). While
127	the biotite-bearing Mono domes were being emplaced, at roughly 16-17 ka, the Black
128	Point basalt was erupted subaqueously into Pleistocene Mono Lake, taking the form of a
129	flat-topped cinder cone (Lajoie 1968; White 2000; Bailey 2004).
130	Concurrent with the eruption of aphyric rhyolite in the Mono Basin was the
131	commencement of sparsely porphyritic dacitic volcanism in Mono Lake, a 15 km x 21
132	km lake located north of the Mono domes (Stine 1987; Bailey 2004). The initial locus of
133	Mono Lake volcanism was Negit Island, which is dominated by a dacitic cinder cone and
134	several dacitic lava flows originating therein. Stine (1987) estimated that Negit Island
135	was active from 1.7 to 0.4 ka based on the presence of tephra layers from three of the
136	more recent Mono dome eruptions: two tephras established by Wood (1983) to be ~ 1.6
137	and 1.2 ka, and a third tephra dated to 0.6 ka according to Sieh and Bursik (1986).
138	Further outcrops of these dacite flows are seen to the north of Negit Island on a series of

139	small islands referred to here as the Negit islets. Following the last eruption on Negit
140	Island, an intrusion beneath the central part of Mono Lake caused updoming of a
141	significant volume of lake sediment and the eruption of a small volume of dacite,
142	including cinder cones and lava flows, forming present-day Paoha Island (Stine 1987;
143	Kelleher and Cameron 1990). Between 500 and 150 years ago, low-silica rhyolite lava
144	was erupted in the northwestern quadrant of Paoha Island; these appear to be the most
145	recent eruptions in the Long Valley Volcanic Field. Stine (1987) placed these limits on
146	Paoha Island's emplacement based on prehistoric lake levels and the presence of
147	sedimentary features that would have been eroded easily by submergence.
148	
149	3. Methodology
150	3.1 Fieldwork

151 During two field seasons, in October 2011 and July-August 2012, sampling 152 focused on the Mono Lake islands; the Mono domes; the Mono dome enclaves; the June 153 Lake and Black Point basalts; and South Deadman Creek Dome, the southernmost of the 154 Inyo domes (Fig. 1; Table 1).

3.2 Whole-rock major and trace element and isotopic geochemistry 155

156 Rock chips from fifty-four samples, covering the Mono Lake islands, the Mono 157 domes, all mafic enclave populations, and local basalts, were analyzed for major and 158 trace elements by X-ray fluorescence (XRF) at the Washington State University 159 GeoAnalytical Lab (techniques of Johnson et al. 1999). For major elements, reported 160 analytical precision is within <1 wt. %; trace element analyses are precise to within 2 161 parts per million (ppm) (Johnson et al. 1999). Several powders of the UTR-2 standard

162 were included in each batch of XRF samples to further gauge the accuracy and precision 163 of the analyses (Online Resource 1). Since some mafic enclaves show evidence of 164 mingling with felsic magmas along their margins, only material from the cores of the 165 enclaves was crushed for geochemical analysis. As most rocks from Mono Lake were at 166 one point submerged, rock chips from samples collected near the present, historically low 167 lake level during the 2011 field season were cleaned using acetic acid and deionized 168 water. Repeat analyses comparing cleaned samples to uncleaned splits of the same 169 samples show that cleaning had a negligible effect (Online Resource 1). This implies that 170 the waters of Mono Lake have had little, if any, effect on the trace element composition 171 of the Mono Lake lavas, so the samples collected in the 2012 field season were rinsed 172 only with deionized water. 173 Rock powders of sixteen representative samples were then selected for Sr, Nd, 174 and Pb isotopic analyses at the Carleton University Isotope Geochemistry and 175 Geochronology Research Centre (IGGRC). Samples were chosen to ensure geographic 176 and compositional coverage, with a particular focus on the enclaves and islands. 177 Elemental separation techniques were those of Cousens (1996), and samples were run on 178 a ThermoFinnigan Triton TI thermal ionization mass spectrometer. All Pb mass 179 spectrometer runs are corrected for fractionation using NIST SRM981. The average ratios measured for SRM981 are ${}^{206}Pb/{}^{204}Pb = 16.889 + 0.007$, ${}^{207}Pb/{}^{204}Pb = 15.426 + 0.009$, 180 and ${}^{208}Pb/{}^{204}Pb = 36.494 + 0.031$, based on 35 runs between May 2008 and May 2011. 181 182 The fractionation correction is +0.13%/amu (based on the values of Todt et al. 1996). Sr 183 isotope ratios are normalized to 86 Sr/ 88 Sr = 0.11940. Two Sr standards were run at Carleton University, NIST SRM987 (87 Sr/ 86 Sr = 0.710239 + 14, n=20, May 2008-2011) 184

185 and the Eimer and Amend (E&A) $SrCO_3$ (${}^{87}Sr/{}^{86}Sr = 0.708012 + 15$, n=10, Sept. 2007-

186 May 2011). Nd isotope ratios were normalized to 146 Nd/ 144 Nd = 0.72190. Analyses of the

187 USGS standard BCR-1 yield 143 Nd/ 144 Nd = 0.512668 + 20 (n=4). A total of 30 runs of an

internal Nd metal standard average 143 Nd/ 144 Nd = 0.511823 + 12, corresponding to a La

Jolla value of 0.511852 based on comparative runs (May 2008-2011). All quoted

190 uncertainties are 2-sigma standard deviations of the mean.

191 This same subset of whole-rock powders, in addition to the June Lake and Black

192 Point basalts, was analyzed for ${}^{18}O/{}^{16}O$ stable oxygen isotopes at the Queen's University

193 Facility for Isotope Research (QFIR) on a Finnigan MAT 252 Isotope Ratio Mass

194 Spectrometer (IRMS). Gas for ¹⁸O/¹⁶O analysis was extracted from 5 mg samples of rock

195 powder using the BrF₅ reaction method of Clayton and Mayeda (1963) on the QFIR

196 silicate extraction line. Reproducibility of δ^{18} O values is ±0.3 ‰.

197 3.3 Electron microprobe analysis

198 Electron microprobe analyses of amphibole, plagioclase, and volcanic glass in 199 polished thin sections were conducted at McGill University using a JEOL 8900 electron 200 microprobe. Glass analyses were conducted using a 15 kV accelerating voltage, an 8 mA 201 beam current, and a 20 µm beam diameter, to prevent Na₂O loss. Glass standards BMAK 202 and KE-12 were used to calibrate Mg, Fe, Ca, and Ti; and Na, Al, Si, and K, respectively. 203 Manganese and phosphorous were calibrated using synthetic standards. The PCD and 204 M3N standards were analyzed after each sample to gauge instrumental accuracy (Online 205 Resource 1). Since PCD has very low H_2O and M3N has relatively high H_2O , these two 206 standards were used to accurately assess variations in the H₂O content of different 207 glasses.

208	Amphibole analyses used an accelerating voltage of 15 kV, a beam current of 20
209	mA, and a 10 μ m beam diameter. All elements were standardized to a mixture of
210	synthetic standards; results were compared to the HBLD standard to gauge instrumental
211	precision and accuracy.
212	
213	4. Results
214	4.1 Field observations, petrology, and mineral chemistry
215	4.1.1 Mono dome enclaves
216	The most salient observations from field relationships are those for the
217	centimeter-scale mafic enclaves hosted within Mono domes 12, 14, and 18. The enclaves
218	in domes 14 and 18 vary from black to red in color. Populations of each hue are present
219	in each dome. They are finely vesicular, stretched, and rounded, and commonly have
220	glassy, chilled margins coupled with melting rims in their felsic hosts (Fig. 2). Kelleher
221	and Cameron (1990) noted similar enclave textures. The uniformly red enclaves of dome
222	12 are generally much smaller, never exceeding five centimeters. Rare andesitic enclaves
223	are also present in Wilson Butte and North Deadman Creek dome.
224	The dome 12 dacite contains abundant centimeter-scale plagioclase and
225	millimeter-scale hornblende and clinopyroxene crystals. Enclaves of basalt and basaltic
226	andesite within the dacite are vesicular, contain plagioclase, olivine, and clinopyroxene
227	phenocrysts, and range from microscopic to upwards of five centimeters in scale. Owing
228	to the intimate commingling of the enclaves and the host dacite in the samples collected,
229	this study uses the whole-rock analysis of Kelleher and Cameron (1990) for dome 12.

The mafic and intermediate enclaves of domes 14 and 18 are petrographically similar. Millimeter-scale olivine, plagioclase, and orthopyroxene phenocrysts are present in all enclaves. It is common to see microscopic inclusions of solidified rhyolitic magma within the enclaves, and vice versa, along the host-enclave margin (Fig. 6).

234

4.1.1 Mono Lake lavas

235 Unique to the Paoha Island lavas are microscopic clots of foreign, possibly more 236 mafic material, in the form of round pockets of glass, plagioclase, and biotite that stand 237 out from the groundmass of the lava (Fig. 4). Amphiboles found in the Mono Lake lavas 238 are fairly uniform in composition, with SiO₂ varying from 41.2 to 42.5 wt.%, FeO_T from 239 12.6 to 17.4 wt.%, and MgO from 10.8 to 13.9 wt.% (Fig. 13a; Table 4b). All Mono Lake 240 amphiboles plot as tschermakite, reflecting their relatively low Fe contents (Fig. 13a). In 241 comparison, amphiboles from the Inyo domes plot as magnesio-hornblende and are more 242 enriched in Fe. No systematic variation is apparent between rims and cores of hornblende 243 crystals. Thermobarometric calculations using the formulae of Ridolfi et al. (2009) 244 indicate that the Mono Lake amphiboles were formed at temperatures of ~915-1000°C 245 and pressures of 245-325 MPa (Fig. 13b). The Inyo dome amphiboles, including 246 amphiboles in the Inyo dome enclaves, were formed at temperatures of ~780-915°C and 247 pressures of 75-260 MPa. 248 Regardless of the location, whether a sample is from the Mono domes, Mono 249 Lake, or a mafic enclave, most plagioclase phenocrysts exhibit pronounced dissolution

textures (Fig. 5). For example, otherwise euhedral plagioclase crystals appear to be

251 dissolving into the host rhyolite along their rims. Phenocrysts commonly have spectacular

sieve textures, with almost the entire crystal pockmarked (Fig. 5a-b). Many of the voids

253 have been filled subsequently with glass and microlites, although most remain vacant.

254 The sieve texture is commonly coupled with distinct overgrowth rims, suggesting that

renewed crystallization of feldspar from the felsic magmas occurred as they cooled.

256 These textures imply that reheating of the felsic magma occurred, and that this is a

common petrogenetic process occurring at depth throughout the Mono Basin.

258 4.2 Whole-rock major and trace element and glass geochemistry

Silica shows strong positive correlations with K₂O and Rb (Fig. 7; Table 2). As it is the most incompatible element analyzed, Rb is used as an index of differentiation in all other geochemical plots (Figs. 8-10). Throughout the sample suite, pronounced fractionation trends are present in elements such as P, K, Sr, V, and Zr (Fig. 8). These trends underpin the important role played by the crystallization of plagioclase, as well as accessory mineral phases such as zircon, apatite, titanomagnetite, and allanite (Kelleher

and Cameron 1990, Vazquez and Lidzbarski 2012).

In major element space, the Mono domes lie within a very narrow compositional range. The variation in SiO₂ concentration is between 75 and 77 wt.% on an anhydrous basis; all other major elements are similarly uniform (Table 2). The minor increase in SiO₂ content in the Mono domes corresponds to the temporal evolution from biotitebearing lavas to orthopyroxene-bearing lavas, fayalite-bearing lavas, porphyritic lavas lacking any unique ferromagnesian mineral phases, and, finally, aphyric lavas.

The Mono Lake islands, on the other hand, are quite varied in major element composition and are less evolved than the Mono domes, in spite of their comparative youth. On Paoha Island, SiO₂ varies from 63 to 72 wt.%, while Negit Island and the Negit islets display a range from 64 to 70 wt.% SiO₂. In general, K₂O increases with SiO₂,

except in the Mono domes, which are depleted in K₂O relative to the most evolved Paoha
Island rhyolites (Fig. 7a). All other major element concentrations decrease with
increasing SiO₂.

279	Trace elements are more useful in differentiating among the different
280	mineralogical types of Mono domes, as established by Kelleher and Cameron (1990).
281	Domes 14 and 18, the orthopyroxene- and enclave-bearing porphyritic rhyolites, are the
282	most depleted in Rb, with 156 and 164 ppm, respectively. They are also depleted in Nb
283	and Y compared to the rest of the Mono domes (Fig. 9) and enriched in Zr, La, and Ce
284	(Figs. 8d, 9c-d). At first glance, the considerable range in La (18 to 38 ppm) and Ce (42
285	to 69 ppm) concentrations within the remaining domes would appear to further
286	distinguish them; careful examination, however, reveals that the variations in La and Ce
287	do not correspond to geography, mineralogy, or major element composition.
288	The Mono Lake lavas display significant trace element variations and are overall
289	less evolved than the Mono domes. The lavas of Mono Lake have higher, more variable
290	Ba concentrations when compared to all other Mono Basin lavas, ranging from 1000 to
291	1600 ppm, and Sr concentrations from 95 to 530 ppm (Fig. 10; Table 2). Similarly, they
292	are conspicuously depleted in Rb relative to the Mono domes, with concentrations
293	ranging from 100 to 130 ppm. For comparison, within the Mono domes, Sr ranges from 1
294	to 25 ppm, Ba from 10 to 40 ppm, and Rb from 130 to 180 ppm (Fig. 10).
295	The Negit and Paoha lavas exhibit marked differences from one another. Among
296	the high field strength elements, particularly Y and Nb, Negit and Paoha lavas define
297	discrete fields with no overlap, suggesting that the islands are chemically distinct (Fig. 9).
298	The older Negit lavas have Y and Nb concentrations reflective of a less evolved magma

299 (18 to 20 ppm and 12 to 14 ppm, respectively), while the more youthful Paoha lavas are 300 comparatively enriched in Y and Nb (19 to 27 ppm and 15 to 19 ppm, respectively). 301 Examining the new geochemical data presented here combined with those of 302 Kelleher and Cameron (1990) shows that the basaltic enclaves from dome 12 vary little 303 from one another: SiO₂ ranges from 50 to 54 wt.%, notably lower than the enclaves from 304 domes 14 and 18, and the other elements analyzed exhibited no systematic variation 305 (Table 2). The dome 14 and 18 enclaves define two distinct populations chemically and 306 petrologically (Figs. 7-10). In each dome, one set of enclaves has 55 to 56 wt.% SiO₂, 307 while another set has 59 to 61 wt.% SiO₂, with correlative variations in the other major 308 and trace elements. The two enclave populations form distinct clusters in most major and 309 trace element diagrams. A fractionation trend between the two populations is often 310 apparent, particularly in trace elements such as Rb and Sr (Fig. 10a). The Inyo and North 311 Deadman Creek dome enclaves analyzed in this study and by Varga et al. (1990) had 312 compositions more similar to the Mono Lake dacites than to the other Mono enclaves, 313 with SiO₂ of 60 to 62 wt.% and enriched Rb and Ba concentrations compared to the 314 enclaves of domes 12, 14, and 18 (Figs. 8-10; Table 2). 315 The enclave-bearing Mono dome lavas also have millimeter-scale inclusions of 316 glass that are more mafic than the host rhyolite, with SiO₂ contents of 49 to 55 wt.%, 317 CaO contents in excess of 8 wt.%, and K₂O contents less than 2 wt.% (Fig. 12c-d; Table 318 4a). On Paoha Island, where the host glass compositions are dominantly felsic, with SiO_2 319 of 67 to 72 wt.%, CaO less than 2 wt.%, and K_2O greater than 4 wt.%, microscopic clots 320 of more mafic glass have SiO₂ concentrations as low as 64 wt.%, CaO up to 3.3 wt.%,

321 and K₂O as low as 3.5 wt.% (Figs. 4, 12a-b; Table 4a). These clots contain glass,

322 plagioclase, and biotite, and appear to be unique to Paoha Island (Fig. 4).

323 4.3 Radiogenic isotopes

143 Nd/ 144 Nd from 0.51260 to 0.51262 (Fig. 11). The Mono Lake lavas are similar, with
$^{87}\text{Sr}/^{86}\text{Sr}_i$ from 0.70587-0.70642, and $^{143}\text{Nd}/^{144}\text{Nd}$ from 0.51252 to 0.51259. The mafic
enclaves present within the Mono domes display a range of $^{87}\mbox{Sr}/^{86}\mbox{Sr}_i$ from 0.70442 to
0.70486, significantly lower than the silicic Mono lavas, and 143 Nd/ 144 Nd from 0.51274 to
0.51278, well above other values for silicic rocks in the Mono Basin. The exceptions are
the enclaves of the Inyo domes analyzed here and by Varga et al. (1990), which have
radiogenic isotopic ratios resembling the Negit Island dacites (${}^{87}Sr/{}^{86}Sr_i$ 0.70622,
$^{143}\text{Nd}/^{144}\text{Nd}$ 0.51252), and the enclaves of North Deadman Creek dome ($^{87}\text{Sr}/^{86}\text{Sr}_i$
0.70564, 143 Nd/ 144 Nd 0.51264). The entire sample suite has a very tight range of Pb
isotopic values, all reflecting a crustal or sedimentary signature; ²⁰⁸ Pb/ ²⁰⁴ Pb ranges from
38.86 to 39.04, ²⁰⁷ Pb/ ²⁰⁴ Pb from 15.66 to 15.71, and ²⁰⁶ Pb/ ²⁰⁴ Pb from 19.09 to 19.24 (Fig.
11; Table 3).

337 4.4 Oxygen isotopes

The range in our δ^{18} O values is +6.5 to +9.5‰, with two exceptions: a peperite sample from Paoha Island with δ^{18} O of +11.6‰, likely due to integration of sediment into the dacites in the locality at which this sample was taken; and a dome 18 enclave with δ^{18} O of +12.7‰ (Table 3). There is no correlation between loss on ignition from the XRF analyses and δ^{18} O. The overall δ^{18} O range is characteristic of crustal compositions in general, as reported by Bindeman (2008) as +5 to +18‰, and furthermore coincides

344	with the range of Eastern Sierra Nevada basement whole-rock oxygen isotope values
345	presented by Lackey et al. (2008) of +7.0 to +9.5‰. That said, there are notable
346	variations within the new oxygen isotope data presented here. The Mono domes, rather
347	than defining a tight cluster as they do for other chemical components, range from +6.9 to
348	+9.0%; similarly, the Paoha Island lavas vary from +7.6 to +9.4%, ignoring the
349	abnormally elevated sample from the Paoha peperite.
250	

351 **5. Discussion**

The data presented above offer several implications regarding the petrogenetic processes involved in the generation of the Mono Basin lavas, as well as their context within the Long Valley Volcanic Field as a whole. In addition to fractional crystallization, as detailed above, these processes include interaction with both mafic

356 intrusions and the felsic Sierra Nevada crust. We now discuss these aspects in detail.

357 5.1 Basalt-rhyolite and magma-crust interactions in the Mono Basin

358 The Mono dome enclaves display clear evidence of having been at least partially 359 molten upon incorporation into the Mono domes rhyolite. They are vesicular, rounded, 360 and have chilled margins (Fig. 2). Field and petrographic observations of the Mono 361 domes suggest that mingling between the mafic enclaves and their felsic hosts has 362 occurred. Examination of inclusions along the enclave-host margin reveals microscopic 363 clots of each magma type contained within the other (Fig. 6). For example, while the 364 groundmass glass of the dome 14 andesitic enclaves has 60 wt.% SiO₂, 6 wt.% CaO, and 365 less than 2 wt.% K₂O, millimeter-scale globules of rhyolite found within the enclaves 366 have nearly 77 wt.% SiO₂, less than 1 wt.% CaO, and nearly 6 wt.% K₂O (Fig. 12c-d;

367 Table 4a). For this reason, the rock chips used for whole-rock major and trace element368 and isotope geochemistry of the enclaves were taken from their cores.

369 The presence of mafic enclaves in the Mono dome rhyolites is a direct line of 370 evidence revealing that mafic magmas have co-existed and interacted with the silicic 371 magma. The enclaves are intermediate in composition between the host rhyolites and 372 regional mafic material; hence this material likely represents fractional crystallization of 373 basalt that intruded into the felsic magma, at which point some mixing between the Mono 374 dome rhyolites and intruding magma may have occurred, in addition to the magma 375 mingling described above (Fig. 12c-d). Lever rule calculations using the June Lake basalt 376 as a mafic end member, domes 14 and 18 as felsic end members, and each dome's 377 enclaves as intermediate compositions show the enclaves to represent a mixture of 75-378 80% mafic material and 20-25% felsic material, however the textural evidence does not 379 support magma mixing to this extent. The relationship between regional basalts, enclaves, 380 and the Mono dome lavas is far from linear, an observation that is reflective of 381 crystallization of both the mafic and felsic magmas over thousands of years as well as the 382 existence of multiple magma sources beneath the Mono Basin. This latter conclusion is 383 consistent with the conclusions of Dawson et al. (1990) and Peacock et al. (2015), who 384 propose that multiple magma sources exist beneath the Mono Basin, as will be discussed 385 further below.

In contrast to the Mono domes, there is little direct petrological evidence of basaltic magma input into the Mono Lake magmas, yet the clots in the Paoha Island lavas are significant. The clots are only slightly less silicic than their host lavas, compared to the Mono dome enclaves (Fig. 12a-b). Mono Lake magmas may be replenished by

intermediate magma, or, alternatively, small volumes of intruding basalt may be mixed
efficiently with larger volumes of Mono Lake dacite. The latter hypothesis seems the
most likely case, as the Black Point basalt is not only adjacent to Mono Lake, but also
provides a fitting parental end member for the Mono Lake lavas (Figs. 7-10).

394 The pervasive disequilibrium textures visible in plagioclase phenocrysts further 395 demonstrate that mafic rejuvenation is a common process beneath the Mono Basin. Even 396 in lavas with no other physical evidence of basaltic recharge, plagioclase phenocrysts 397 have sieve textures and overgrowth rims (Fig. 5). Although the formation of sieve 398 textures and overgrowth rims in feldspars during decompression and subsequent 399 crystallization is a well-established phenomenon, the sieve textures which we observe 400 coincide with other observational evidence of magma mixing in the Mono Basin lavas, as 401 discussed above (Nelson and Montana 1992, Blundy et al. 2006). The partial dissolution 402 of crystals, and their subsequent overgrowth rims, indicates the reheating of the felsic 403 host rock, which in turn implies intrusion of a hotter, mafic magma.

404 Isotopic data indicate that magma-crust interaction is also an important process in the evolution of the Mono Basin magmas. While ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios preserve 405 406 mantle signatures in the basalts and mafic enclaves, the silicic rocks of the Mono domes 407 and Mono Lake have significantly more crustal signatures, with ⁸⁷Sr/⁸⁶Sr_i straddling the 408 0.706 line that appears to separate the Mono Basin basalts and enclaves from all other 409 regional lavas (Fig. 11a; Table 3). The mantle signatures of the mafic enclaves suggest 410 that limited chemical exchange occurred between mafic magmas and host rocks, while 411 the lithospheric signatures of the silicic rocks suggest that substantial crustal input has 412 occurred throughout the system. This is reinforced by our Pb and O isotopic data, which

413 convey strong crustal signatures throughout the sample suite (Fig. 11; Lackey et al.

414 2008). Notably, Pb and O isotopic values do not correlate with volatile content, indicating
415 that they are truly reflective of crustal contamination. This is true even among the Mono
416 Lake lavas, which have had prolonged, intimate contact with the lake's water that could
417 have affected Pb and O isotope values.

418 Mafic recharge is the most likely explanation for the presence of the mafic 419 enclaves, their textures and mineral chemistries, and the mantle-crustal mixing isotopic 420 signatures observed throughout the Mono domes and Mono Lake island lavas. Mafic 421 parental magmas partially melt Sierra Nevada basement rocks, which then lie dormant in 422 shallow reservoirs, evolving until intruded by hot mafic magma. This intrusive magma 423 mixes and mingles with the preexisting, crustal felsic magma and facilitates its eruption, 424 a process that has been well established in large, silicic igneous systems (e.g., Sparks et 425 al. 1977; Bailey 2004). The influx of hot magma into the crust encourages further partial 426 melting of basement rock, promoting the evolution of silicic magmas with crustal 427 isotopic signatures. The remaining magmas continue crystallizing and interacting until 428 the next intrusion of basalt, when the process repeats.

429 5.2 Separate sources of the Mono domes and Mono Lake magmas

While the Mono Lake lavas are generally younger than the Mono domes, they are also significantly less evolved. In addition to the obvious differences in SiO₂ content and other major elements, the lavas of Paoha and Negit are markedly enriched in trace elements such as Ba and Sr compared to the Mono domes (Figs. 9-10). With the exception of one sample from Paoha Island, Mono Lake lavas have lower ¹⁴³Nd/¹⁴⁴Nd and slightly higher ²⁰⁶Pb/²⁰⁴Pb than the Mono dome rhyolites (Fig. 11; Table 3). 436 The eruption of dacites and low-silica rhyolites in Mono Lake is a reversal of the 437 chemical trend that dominated the Mono Basin for the preceding 60,000 years, in which 438 successive eruptions were generally more silicic and more evolved than preceding 439 eruptions. The implication is that even if the mantle source of the Mono dome and Mono 440 Lake magmas is the same, each suite represents a different batch of magma that has been 441 variably affected by basaltic rejuvenation, fractional crystallization, and crustal 442 contamination, and possibly storage in entirely separate magma chambers. Notably, the 443 Mono Lake magmas appear to be derived from a hot (915-1000°C) and deep (245-325 444 MPa) reservoir, based on our amphibole thermobarometric data (Fig. 13b; Ridolfi et al. 445 2009).

446 Bailey (2004) theorized that the postcaldera dacites erupted within and proximal 447 to Long Valley caldera, including the Mammoth Mountain dacite and the Mono dacites, 448 have likely formed from a number of discrete magma batches in separate subsurface 449 chambers. This is consistent with the chemical and physical diversity noted here between 450 the Mono dome dacite (dome 12) and the Mono Lake dacites, as well as the theorized 451 presence of a magma chamber beneath the Mono Basin that is separate from the Long 452 Valley caldera chamber and fuels several shallow magma reservoirs (Achauer et al. 1986; 453 Dawson et al. 1990; Peacock et al. 2015). The older lavas of each suite (dome 12 and 454 Negit Island) thus may reflect two separate batches of dacitic magma, likely formed by 455 fractional crystallization of mantle-sourced basalt and partial melting of the Sierra 456 Nevada basement (Kelleher and Cameron 1990; Hildreth 2004). 457 Furthermore, Negit Island and Paoha Island are themselves potentially the 458 products of discrete magma batches (Kelleher and Cameron 1990). All of the Negit lavas

have slightly higher ⁸⁷Sr/⁸⁶Sr_i and ²⁰⁶Pb/²⁰⁴Pb ratios than the Paoha lavas (Fig. 11b; Table
3). Negit Island also has pronouncedly lower Nb and Y concentrations (Fig. 9a-b; Table
2). The trace element and radiogenic isotope signatures together indicate that the Negit
flows, arguably the older of the lavas, were produced from a different felsic magma than
the Paoha flows.

464 The idea that several distinct magma batches were produced and erupted is not 465 unique to Mono Lake. Indeed, it appears likely to have occurred in the Mono domes as 466 well, as is supported by chemical evidence. For almost all elements, three individual 467 clusters of rhyolitic domes can be seen, with notable compositional gaps between each 468 cluster (Figs. 7-10). These dome clusters do not correspond temporally, meaning that 469 they cannot reflect the evolution of a single batch of magma. There is no systematic 470 relationship between the age of a dome cluster and its degree of chemical evolution. The 471 majority of Mono dome lavas, including the biotite- and fayalite-bearing, sparsely 472 porphyritic, and aphyric domes, define a continuous array that does not suggest temporal 473 or spatial patterns. The orthopyroxene- and enclave- bearing domes 14 and 18 are 474 consistently less evolved than this large array, but are intermediate in age between the 475 biotite-bearing domes and the other high-silica rhyolites. The least evolved rhyolitic 476 Mono dome is North Deadman Creek dome, notably the southernmost dome of the chain. 477 Bursik and Sieh (2013) calculated the age of North Deadman Creek dome to be between 478 5039 and 5297 cal BP, chronologically between the two clusters of more evolved domes. 479 Given the lack of chronological correlation present among the three Mono dome clusters, 480 they were likely produced by several magma batches undergoing similar petrogenetic 481 processes.

482 5.3 Regional context

483	Wark et al. (2007) provide compelling evidence from quartz cathodoluminescence
484	and thermometry that the Bishop Tuff eruption was stimulated by mafic recharge of the
485	Long Valley magma chamber. Early postcaldera silicic lavas, erupted on the floor of
486	Long Valley caldera from ~0.7 to 0.5 Ma, contain vesicular, rounded mafic magmatic
487	enclaves with chilled margins, similar to those present in the Mono domes (Bailey 2004).
488	These common textures, along with the eruption of post-Bishop Tuff mafic to
489	intermediate lava flows along the caldera margin, indicate that mafic rejuvenation of the
490	Long Valley magma system has been an important process since caldera formation.
491	Seismic activity beneath Long Valley caldera starting in 1980 has been interpreted as
492	basaltic recharge around the Long Valley magma chamber (Hill et al. 1985; Battaglia et
493	al. 1999; Bailey 2004; Hill and Prejean 2005). The present study indicates that the same
494	process occurs beneath the Mono Basin.
495	The mafic lavas of the Mono Basin, including the Mono dome enclaves and the
496	June Lake and Black Point basalts, exhibit the least radiogenic $^{87}\mbox{Sr}/^{86}\mbox{Sr}_i$ and most
497	radiogenic ¹⁴³ Nd/ ¹⁴⁴ Nd values of the entire Long Valley Volcanic Field (Fig. 11a). Since
498	any interaction with the felsic host magma could only have elevated $^{87}\mbox{Sr}/^{86}\mbox{Sr}_i$ in the
499	mafic component, the anomalously low $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}_{i}$ values in the Mono dome enclaves
500	likely reflect the maximum possible 87 Sr/ 86 Sr _i of the mafic magma source (Fig. 11a-b).
501	Cousens (1996) suggested that low ${}^{87}\text{Sr}/{}^{86}\text{Sr}_i$ in the Black Point and Red Cones basalts
502	reflects the initiation of asthenospheric melting beneath the Long Valley region; 87 Sr/ 86 Sr _i
503	in the Mono dome enclaves supports this conclusion.

504	The enclaves from domes 12, 14, and 18 also show slightly lower 206 Pb/ 204 Pb
505	compared to the field as a whole (Fig. 11b). By contrast, Sr and Nd isotopic signatures in
506	both precaldera and postcaldera mafic lavas associated with the caldera resemble the
507	Sierra Nevada crust and lithospheric mantle, with the exception of the Black Point and
508	Red Cones lavas (Fig. 11; Online Resource 1; Van Kooten 1981; Cousens 1996). There is
509	a striking difference in ²⁰⁶ Pb/ ²⁰⁴ Pb between precaldera and postcaldera mafic lavas, with
510	postcaldera basalts and andesites tending towards higher values, hence more pronounced
511	levels of crustal contamination (Fig. 11b). The marked difference between mafic material
512	erupted in and around Long Valley and mafic material in the Mono Basin may indicate
513	that mantle melts are being brought to the surface more efficiently in the Mono Basin
514	than in Long Valley, and that their crustal residence time is shorter. In comparison, the
515	silicic Mono Basin lavas exhibit 87 Sr/ 86 Sr _i and 143 Nd/ 144 Nd values comparable to Glass
516	Mountain and the Bishop Tuff (Fig. 11a; Table 3; Online Resource 1; Halliday et al.
517	1984; Heumann and Davies 1997; Davies and Halliday 1998). This similarity suggests
518	that the processes responsible for the Mono Basin dacites and rhyolites are similar to
519	those that generated the high-silica precaldera and caldera-forming magmas.
520	While it remains uncertain whether a distinct magma chamber underlies Mono
521	Lake, as was suggested by Pakiser (1960), Achauer et al. (1986), Peacock et al. (2015)
522	provide convincing magnetotelluric evidence that not only does this chamber exist, but it
523	has produced multiple shallow reservoirs beneath the Mono Basin. The propagation of
524	magma reservoirs beneath the Mono Basin and throughout the Long Valley region in
525	general is promoted by the complex regional tectonic regime; the intersection of the
526	Sierra Nevada batholith and Basin and Range extension has provided an ideal

527 environment both for mafic magma intrusion and production of silicic magmas (Bursik et 528 al. 2003; Riley et al. 2012). It is likely, based on our data and that of others, that the 529 Mono domes and Mono Lake lavas are derived from disparate and discrete magma 530 batches, as proposed by Kelleher and Cameron (1990) and Hildreth (2004). Our 531 amphibole thermobarometry results indicate that the Mono Lake dacites and rhyolites are 532 derived from a magma reservoir (or reservoirs) that is fairly deep, i.e., 9-12 km (Fig. 13b; 533 Ridolfi et al. 2009). There is little evidence of Long Valley magma having migrated north 534 to beneath the Mono Basin. The occurrence of Mono domes as far south as Wilson Butte 535 and North Deadman Creek dome, however, supports the theory of Sieh and Bursik (1986) 536 and Varga et al. (1990) that Mono-type magma is one component of the most recent Inyo 537 eruptions.

538

539 6. Concluding remarks

540 Mafic recharge is a well-established mechanism by which volcanic activity in 541 voluminous silicic systems is initiated. More specifically, there is a well-documented 542 body of work indicating that mafic recharge has been an important process in the 543 petrogenesis of lavas throughout the Long Valley Volcanic Field and elsewhere in the 544 northern Sierra Nevada. Our geochemical data indicate that variable amounts of partial 545 melting of the Sierra Nevada crust, fractional crystallization, and magma mixing and 546 mingling have generated the chemical variations observed for the silicic rocks of the 547 Mono Basin. Our field and petrographic observations throughout the study area are 548 consistent with mafic recharge playing a significant and perhaps dominant role in the 549 genesis and evolution of silicic magmas in the Mono Basin. In the case of the Mono

domes, the felsic reservoir may be the Mono Basin magma chamber proposed by Pakiser
(1960) and Achauer et al. (1986) and supported by Peacock et al. (2015), or a series of
distinct reservoirs based on the three groups of Mono dome lavas. In the case of the
Mono Lake lavas, the felsic reservoir must have contained either a separate batch of less
evolved magma within the Mono Basin chamber or, more likely, dacite stored at midcrustal levels in a chamber (or chambers) beneath Mono Lake.

556

557 Acknowledgements

558 Dave Marquart of the Mono Lake Tufa State Natural Reserve and Tamara Sasaki 559 of California State Parks were instrumental in ensuring that we received the proper 560 permits needed to explore Negit and Paoha. Dan Dawson, Kim Rose, and the rest of the 561 staff of the Sierra Nevada Aquatic Research Lab provided us with housing and lab space 562 during the 2012 field season. Bartshe Miller and the volunteers of the Mono Lake 563 Committee let us rent their boat on several occasions. Kristie Nelson was a keen observer 564 and faithful companion in the field. Patrick Beaudry and Gregor Lucic were able field 565 assistants in the summer of 2012.

Paul Alexandre, Kristen Feige, and the rest of the Queen's Facility for Isotope
Research staff assisted with oxygen isotope determinations, and Rhea Mitchell at the
Carleton Isotope Geochemistry and Geochronology Research Centre was unflagging in
her efforts to make sure that we obtained the best radiogenic isotope data possible. Dr.
Wes Hildreth of the U.S. Geological Survey read an early draft of this manuscript. We
are grateful to him for his comments and suggestions. This research was supported by
Discovery and Accelerator grants to J. Stix from the Natural Sciences and Engineering

573	Research Council of Canada, as well as a grant to B. Bray from the University of
574	California Valentine Eastern Sierra Reserve.
575	
576	References
577	Achauer U, Greene L, Evans JR, Iyer HM (1986) Nature of the magma
578	chamber underlying the Mono Craters area, eastern California, as determined
579	from teleseismic travel time residuals. J Geophys Res 91: 13873-13891
580	Bailey RA (1989) Geologic map of Long Valley caldera, Mono-Inyo Craters volcanic
581	chain, and vicinity, eastern California. US Geol Surv Misc Investig Ser Map I-
582	1933, 11 pp, scale 1:62,500, 2 sheets
583	Bailey RA (2004) Eruptive history and chemical evolution of the precaldera and
584	postcaldera basalt-dacite sequences, Long Valley, California: implications for
585	magma sources, current seismic unrest, and future volcanism. US Geol
586	Surv Prof Pap 1692, 76 pp
587	Battaglia M, Roberts C, Segall P (1999) Magma intrusion beneath Long Valley
588	caldera confirmed by temporal changes in gravity. Science 285: 2119-2122
589	Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by
590	single crystal analysis. Rev Mineral Geochem 69: 445-478
591	Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven
592	crystallization beneath andesite volcanoes. Nature 443: 76-80
593	Bursik M, Sieh KE (1989) Range front faulting and volcanism in the Mono Basin,
594	eastern California. J Geophys Res 94: 15587-15609
595	Bursik MI, Gillespie AR (1993) Late Pleistocene glaciation of Mono Basin,

596California. Quat Res 39: 24-35

597	Bursik M, Renshaw C, McCalpin J, Berry M (2003) A volcanotectonic cascade:
598	Activation of range front faulting and eruptions by dike intrusion, Mono Basin -
599	Long Valley Caldera, California. J Geophys Res: Solid Earth 108: B8
600	Bursik M, Sieh K (2013) Digital database of the Holocene tephras of the Mono-Inyo
601	Craters, California. US Geol Surv Data Ser 758
602	Bursik M, Sieh K, Meltzner A (2014) Deposits of the most recent eruption in the
603	Southern Mono Craters, California: description, interpretation and implications
604	for regional marker tephras. J Volcanol Geotherm Res 275: 114-131
605	Chaudet RE (1986) The petrology and geochemistry of precaldera magmas, Long
606	Valley caldera, eastern California. MSc thesis, Virginia Polytechnic Institute
607	Christensen JN, DePaolo DJ (1993) Time scales of large volume silicic magma
608	systems: Sr isotopic systematics of phenocrysts and glass from the Bishop Tuff,
609	Long Valley, California. Contrib Mineral Petr 113: 100-114
610	Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the
611	extraction of oxygen from oxides and silicates for isotopic analysis. Geochim
612	Cosmochim Acta 27: 43-52
613	Cousens BL (1996) Magmatic evolution of Quaternary mafic magmas at Long Valley
614	caldera and the Devils Postpile, California: effects of crustal contamination on the
615	lithospheric mantle-derived magmas. J Geophys Res 101: 27673-27689
616	Crowley JL, Schoene B, Bowring, SA (2007) U-Pb dating of zircon in the Bishop Tuff at
617	the millennial scale. Geology 35: 1123-1126
618	Davies GR, Halliday AN (1998) Development of the Long Valley rhyolitic

619 magma system: strontium and neodymium isotope evidence from glasses and 620 individual phenocrysts. Geochim Cosmochim Acta 62: 3561-3574 621 Dawson PB, Evans JR, Iver HM (1990) Teleseismic tomography of the compressional 622 wave velocity structure beneath the Long Valley region, California. J Geophys 623 Res 95: 11021-11050 624 Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) 625 Comparison of microanalytical methods for estimating H₂O contents of silicic 626 volcanic glasses. Am Mineral 80: 319-328 627 Google, TerraMetrics (2016) Long Valley caldera. Google Maps. 628 https://www.google.com/maps/place/Long+Valley+Caldera/@37.8023694,-629 119.1960395,76495m/data=!3m1!1e3!4m5!3m4!1s0x8096103d4842abcb:0xe217 630 52c39e238391!8m2!3d37.7165993!4d-118.8843024. Accessed 25 October 2016. 631 Halliday AN, Fallick AE, Hutchinson J, Hildreth W (1984) A Nd, Sr and O 632 isotopic investigation into the causes of chemical and isotopic zonation in the 633 Bishop Tuff, California. Earth Planet Sc Lett 68: 379-391 634 Heumann A, Davies GR (1997) Isotopic and chemical evolution of the post-635 caldera rhyolitic system at Long Valley, California. J Petr 38: 1661-1678 636 Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, 637 and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm 638 Res 136: 169-198 639 Hildreth W, Fierstein J, Champion DE, Calvert AT (2014) Mammoth Mountain and its 640 mafic periphery – a late Quaternary volcanic field in eastern California. 641 Geosphere 10: 1315-1365

642	Hill DP, Bailey RA, Ryall AS (1985) Active tectonic and magmatic processes
643	beneath Long Valley caldera, eastern California: an overview. J Geophys Res 90:
644	11111-11120
645	Hill DP, Prejean S (2005) Magmatic unrest beneath mammoth mountain, California. J
646	Volcanol Geoth Res 146: 257-283
647	Hu Q, Smith PE, Evensen NM, York D (1994) Lasing in the Holocene: extending the
648	40 Ar/ 39 Ar laser probe method into the 14 C age range. Earth Planet Sc Lett 123:
649	331-336
650	Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and
651	minerals for major and trace elements on a single low dilution Li-tetraborate fused
652	bead. Adv X Ray Anal 41: 843-867
653	Kelleher PC (1986) The Mono Craters-Mono Lake islands volcanic complex, eastern
654	California: evidence for several magma types, magma mixing, and a
655	heterogeneous source region. MSc thesis, University of California Santa Cruz
656	Kelleher PC, Cameron KL (1990) The geochemistry of the Mono Craters-Mono
657	Lake volcanic complex, eastern California. J Geophys Res 95: 17643-17659
658	Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal
659	recycling, and alteration in the Central Sierra Nevada Batholith: the oxygen
660	isotope record. J Petr 49: 1397-1426.
661	Lajoie KR (1968) Late Quaternary stratigraphy and geologic history of Mono Basin,
662	eastern California. PhD dissertation, University of California Berkeley

- 663 Marcaida M, Mangan MT, Vazquez JA, Bursik M, Lidzbarski MI (2014) Geochemical
- fingerprinting of Wilson Creek formation tephra layers (Mono Basin, California)
- using titanomagnetite compositions. J Volcanol Geoth Res 273: 1-14
- 666 Miller CD (1985) Holocene eruptions of the Inyo Volcanic Chain, California:
- 667 implications for possible eruptions in Long Valley caldera. Geology 13: 14-17
- 668 Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by
- rapid decompression. Am Mineral 77: 1242-1249
- 670 Ormerod DS (1988) Late- to post-subduction magmatic transitions in the western
- 671 Great Basin, U.S.A. PhD dissertation, Open University
- 672 Pakiser LC, Press F, Kane MF (1960) Geophysical investigation of Mono Basin,
- 673 California. GSA Bull 71: 415-448
- 674 Peacock JR, Mangan MT, McPhee D, Ponce DA (2015) Imaging the magmatic system of
- Mono Basin, California, with magnetotellurics in three dimensions. J Geophys
 Res: Solid Earth 120: 7273-7289
- 677 Ridolfi F, Renzulli A, Puerini M (2009) Stability and chemical equilibrium of
- amphibole in calc-alkaline magmas: an overview, new thermobarometric
- 679 formulations and application to subduction-related volcanoes. Contrib Mineral
- 680 Petr 160: 45-66
- 681 Riley P, Tikoff B, Hildreth W (2012) Transtensional deformation and structural control
- 682 of contiguous but independent magmatic systems: Mono-Inyo Craters, Mammoth
- 683 Mountain, and Long Valley Caldera, California. Geosphere 8: 740-751
- 684 Sampson DE, Cameron KL (1987) The geochemistry of the Inyo volcanic chain:
- 685 multiple magma systems in the Long Valley region, eastern California. J Geophys

- 686 Res 92: 10403-10421
- 687 Sarna-Wojcicki AM, Lajoie KR, Meyer CE, Adam DP, Robinson SW, Anderson RS
- 688 (1988) Tephrochronologic studies of sediment cores from Walker Lake, Nevada.
- 689 US Geol Surv Open File Rep 88-548
- 690 Sieh KE, Bursik MI (1986) Most recent eruption of the Mono Craters, eastern
- 691 Central California. J Geophys Res 91: 12539-12571
- 692 Sparks RJS, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for
- triggering acid explosive eruptions. Nature 267: 315-318
- 694 Sr-Nd-Pb-U-Th isotope procedures. Isotope Geochemistry and Geochronology
- 695 Research Centre. <u>http://www.carleton.ca/iggrc/</u>
- 696 Stine S (1987) Mono Lake: the past 4000 years. Dissertation, University of California
 697 Berkeley
- 698 Stix J, Gauthier G, Ludden JN (1995) A critical look at quantitative laser-ablation ICP-

MS analysis of natural and synthetic glasses. Can Mineral 33: 435-444

- 700 Todt W, Cliff RA, Hanser A, Hoffmann AW (1996) ²⁰²Pb-²⁰⁵Pb double spike for high-
- 701 precision lead isotope analysis. In: Basu A, Hart SR (eds) Earth processes:
- reading the isotopic code. AGU Geophysical Monograph 95. AGU, Washington,429-437.
- Van Kooten GK (1981) Pb and Sr systematics of ultrapotassic and basaltic rocks from
- 705the central Sierra Nevada, California. Contrib Mineral Petr 76: 378-385
- Varga RJ, Bailey RA, Suemnicht GA (1990) Evidence for 600 year-old basalt
- and magma mixing at Inyo Craters volcanic chain, Long Valley caldera,
- 708 California. J Geophys Res 95: 21441-21450

709	Vazquez JA, Lidzbarski MI (2012) High-resolution tephrochronology of the
710	Wilson Creek Formation (Mono Lake, California) and Laschamp event using
711	²³⁸ U- ²³⁰ Th SIMS dating of accessory mineral rims. Earth Planet Sc Lett 357-
712	358: 54-67
713	Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-
714	eruption recharge of the Bishop magma system. Geology 35: 235-238
715	White JDL (2000) Subaqueous eruption-fed density currents and their deposits.
716	Precambrian Res 101: 87-109
717	Wood SH (1983) Chronology of late Pleistocene and Holocene volcanics, Long Valley
718	and Mono Basin geothermal areas, eastern California. US Geol Surv Open File
719	Rep 83-747
720	Zimmerman SR, Hemming SR, Hemming NG, Tomascak PB, Pearl C (2011) High-
721	resolution chemostratigraphic record of late Pleistocene lake-level variability,
722	Mono Lake, California. Geol Soc Am Bull 123: 2320-2334
723	
724	Figure captions
725	Fig. 1a: Map of the Long Valley region, adapted from Google and TerraMetrics (2016).
726	Boxes indicate (a) Long Valley caldera, (b) Mono domes - see Fig. 1b for further detail -
727	and (c) Mono Lake – see Fig. 1c for further detail.
728	Fig. 1b: Map of the Mono domes, adapted from Kelleher and Cameron (1990). Domes
729	are numbered using the scheme of Wood (1983).
730	Fig. 1c: Map of Mono Lake, adapted from Bailey (1989).

731 Fig. 2: Field photographs of mafic enclaves. (a) Elongate enclave in flow-banded

rhyolite, sample BB-2011-05, Mono dome 14. (b) Small, rounded enclave in sparsely

porphyritic rhyolite, sample BB-2011-14, North Deadman Creek dome. (c) Reddish,

rounded enclave in porphyritic rhyolite, sample BB-2011-05, Mono dome 14. (d)

Numerous elongate enclaves in porphyritic rhyolite, sample BB-2012-05, Mono dome

736 18; photo courtesy Patrick Beaudry.

Fig. 3: Field photographs of dacite lava textures in Mono Lake. (a) Finely layered dacite

and sediment of peperite on Paoha Island, sample BB-2011-11c. (b) Decimeter-scale

columnar jointing in the Negit islets dacite, sample BB-2011-02. (c) Welded ledges at the

summit of the Negit Island dacitic cinder cone, reminiscent of Strombolian-style deposits,

sample BB-2011-19; photo courtesy Patrick Beaudry. (d) Brecciated Negit islets dacite

cemented by Mono Lake tufa, sample BB-2011-02.

Fig. 4: Intermediate-composition clot containing glass, biotite, and plagioclase in sample
BB-2011-10, Paoha Island dacite.

Fig. 5: Plagioclase crystals with pronounced disequilibrium textures are present in all

rystal-bearing lavas of the Mono Basin. (a) Plagioclase with sieved center and calcic

747 overgrowth rim, sample BB-2011-05, Mono dome 14. (b) Partially dissolved, finely

sieved plagioclase, sample BB-2011-10, Paoha Island dacite. (c) Finely sieved

plagioclase pierced by biotite, sample BB-2011-18, Negit Island. (d) Coarsely sieved,

zoned plagioclase, sample BB-2012-17, Mono dome 29.

751 Fig. 6: Intimate commingling of enclaves and host lava. (a) Rhyolitic inclusion within an

andesitic enclave, sample BB-2011-05b-2, Mono dome 14 enclave. (b) Inclusions of

solidified rhyolitic magma at the enclave-host border, sample BB-2011-05b-2, Mono 753 754 dome 14 enclave.

755	Fig. 7: (a) K_2O and SiO_2 show a positive correlation, except at high SiO_2 values, where
756	K_2O declines in the Mono domes. (b) Rb and SiO ₂ are positively correlated throughout
757	the entire sample suite. Several of the mafic enclave analyses presented in Figs. 7-11, as
758	well as the analysis of Mono dome 12, are from Kelleher and Cameron (1990), and an
759	Inyo enclave sample from Glass Creek is taken from Varga et al. (1990).
760	Fig. 8 : (a) K ₂ O and Rb show a positive correlation, except at high Rb values, where K ₂ O
761	declines in the Mono domes. (b) P_2O_5 and Rb are negatively correlated except for the
762	most mafic lavas. (c) V decreases with increasing Rb content throughout the entire
763	system and is completely depleted in the Mono domes. (d) Zr concentrations increase
764	with Rb concentration in the mafic and intermediate lavas, then decline abruptly in the
765	more evolved lavas of the Paoha Island rhyolite, the Inyo domes, and the Mono domes.
766	Fig. 9: (a-b) Y and Nb concentrations are notably different between Paoha Island and
767	Negit Island. They are broadly consistent within individual enclave populations. (c-d)
768	LREE concentrations are depleted in the Mono domes compared to the less silicic lavas.
769	The Mono domes form clusters at different LREE contents.
770	Fig. 10: The Mono Lake lavas have noticeable differences in trace element content
771	compared to the more mafic and more felsic lavas. (a) Sr concentrations in Mono Lake
772	samples show some overlap with more mafic enclaves and lavas and are enriched relative
773	to the Mono domes. (b) The Mono Lake lavas are extremely enriched in Ba compared to
774	all other samples.

Fig. 11: (a-b) The mafic lavas of the Mono Basin have the least radiogenic Sr and Nd

values of the Long Valley Volcanic Field. The Negit Island lavas tend toward more

crustal values than the Paoha Island lavas, and the lavas of both islands are more

radiogenic than the Mono dome rhyolites. (c-d) Crustal signatures dominate O isotope

values throughout the Mono Basin. This is the case even in the otherwise mantle-like

780 mafic magmas. Regional isotopic data used in plotting fields come from Van Kooten

781 (1981); Halliday et al. (1984); Chaudet (1986); Kelleher (1986); Ormerod (1986);

782 Sampson and Cameron (1987); Christensen and DePaolo (1993); Cousens (1996);

Heumann and Davies (1997); Davies and Halliday (1998); and Bailey (2004) (Online

Resource 1).

Fig. 12: Lavas throughout the Mono Basin exhibit multiple glass populations. (a-b)

Paoha Island has clots of material that is more mafic (higher CaO, lower K₂O) than the

host dacite. (c-d) Inclusions of glass in the Mono domes are basaltic in composition;

rhyolitic inclusions in the Mono dome and esitic enclaves have glass that is more felsic

(lower CaO, higher K_2O) than the andesite.

Fig. 13: Two distinct populations of amphiboles characterize the Mono Lake lavas versus

the Inyo domes. (a) The Mono Lake population has noticeably lower Si and Fe compared

to the Inyo population, and formed at (b) generally higher temperatures and pressures

than the Inyo population.

119°W

0 25 cn

Sample	Magma			
Number	group	Coordinates	Locality	Rock type
		11S		sparsely porphyritic
BB-2011-01	Negit Island	0321345/4211192	Norway Island	rhyolite
		11S		sparsely porphyritic, flow
BB-2011-02	Negit Island	0320829/4211181	Tahiti Island	banded dacite
		11 S		sparsely porphyritic, flow
BB-2011-03	Negit Island	0320985/4211108	Tahiti Island	banded dacite
		11 S	Mono dome 13 (North	
BB-2011-04	Mono domes	0322636/4195314	Coulée)	aphyric rhyolite
		11 S	Mono dome 13 (North	
BB-2011-04b	Mono domes	0322377/4195303	Coulée)	breccia
		11 S		orthopyroxene- and
BB-2011-05	Mono domes	0322199/4195444	Mono dome 14	enclave-bearing rhyolite
	Dome 14	11S		
BB-2011-05b	enclaves	0322199/4195444	Mono dome 14	mafic enclaves
		11S		
BB-2011-06	Mono domes	0321305/4196207	Mono dome 12	enclave-bearing dacite
		11S		2
BB-2011-07	Mono domes	0320836/4198805	Mono dome 6	fayalite-bearing rhyolite
		11S		
BB-2011-08	Mono domes	0321078/4198661	Mono dome 7	aphyric rhyolite
		11S	Paoha Island (east	
BB-2011-09	Paoha Island	0322513/4207227	dacite flow)	peperite
		11S	Paoha Island (east	
BB-2011-10	Paoha Island	0322569/4207300	dacite flow)	sparsely porphyritic dacite
		11S	Paoha Island (east	
BB-2011-11	Paoha Island	0322287/4207052	dacite flow)	grey dacite in peperite
		11S	Paoha Island (east	
BB-2011-11b	Paoha Island	0322287/4207052	dacite flow)	black dacite in peperite
		11 S	Paoha Island (east	
BB-2011-11c	Paoha Island	0322287/4207052	dacite flow)	peperite
			Paoha Island	
		11S	(northeast cinder	
BB-2011-12	Paoha Island	0322458/4208935	cones)	sparsely porphyritic dacite
			Paoha Island	
		11S	(northeast cinder	
BB-2011-12b	Paoha Island	0322458/4208935	cones)	dacitic scoria
			Paoha Island	
		11 S	(northeast cinder	
BB-2011-13	Paoha Island	0322273/4209031	cones)	dacitic bomb
			,	

Table 1: Mono Basin samples from the2011 and 2012 field seasons.

(continued)				
Sample				
Number	Magma group	Coordinates	Locality	Rock type
		11S		
		0321591/41762	North Deadman Creek	enclave-bearing
BB-2011-14	Mono domes	23	Dome	rhyolite
		11S		
	N. Deadman Creek	0321591/41762	North Deadman Creek	
BB-2011-14b	enclaves	23	Dome	mafic enclaves
		11 S		
		0322210/41761	South Deadman Creek	coarse-grained
BB-2011-15	Inyo domes	38	Dome	rhyolite
		11 S		
		0322210/41761	South Deadman Creek	fine-grained
BB-2011-15b	Inyo domes	38	Dome	rhyolite
		11S		
		0322210/41761	South Deadman Creek	
BB-2011-15c	Inyo enclaves	38	Dome	mafic enclaves
		11S		
		0321501/42093	Paoha Island (Lunacy	sparsely porphyritic
BB-2011-16	Paoha Island	48	Point)	dacite
		11S		
	~	0320844/42087	Paoha Island (west	sparsely porphyritic
BB-2011-17	Paoha Island	52	rhyolite flow)	rhyolite
		115		1 1
DD 2011 10		0320116/42098	Negit Island (east	sparsely porphyritic
BB-2011-18	Negit Island	14	dacite flow)	dacite
		115	N	
DD 2011 10	Na ait Island	0319934/42099	Negit Island (cinder	
BB-2011-19	Negit Island	05	cone)	dacitic scoria
		115		an ana lin n amhruitia
DD 2011 20	Mono domos	0521957/41855	Wilson Dutta	sparsery porphyrtuc
DD-2011-20	wono domes	115	wilson Butte	Illyonte
		0321037///1835		
BB 2011 20b		0521957/41055	Wilson Butte	venolithe
DD-2011-200	-	115	Wilson Dutte	Achontuis
		0318272/41859		oxidized vent
BB-2011-21	Basalt	71	June Lake cinder cone	breccia
DD 2011 21	Dubuit	115	June Luke ender cone	biecciu
		0318310/41883		
BB-2011-22	Basalt	77	June Lake basalt	basalt
22 2011 22	Dusuit	115		ousure
		0314795/42057		
BB-2011-23	Negit Island	40	Mono Lake shoreline	pumice
		11S		F
		0315244/42105		
BB-2011-24	Basalt	30	Black Point	degassed basalt
		11 S		C
		0315244/42105		
BB-2011-24b	_	30	Black Point	vesicular basalt

(continued)				
Sample				
Number	Magma group	Coordinates	Locality	Rock type
		11S		
		0315244/4210		
BB-2011-24c	-	530	Black Point	pumices
		11S		
		0315244/4210		
BB-2011-24d	-	530	Black Point	sedimentary matrix
		11S		
		0315244/4210		
BB-2011-24e	-	530	Black Point	fine, sandy layer
		11 S		
		0345948/4180		
BB-2012-01	-	113	Glass Mountain	rhvolite
		11S		y a
		0345948/4180		
BB-2012-01b	-	113	Glass Mountain	xenoliths
DD 2012 010		115	Chubb Infountain	<i>Kenonuns</i>
		0322262/4195		orthopyroxene- and enclave-
BB-2012-02	Mono domes	540	Mono dome 14	bearing rhyolite
DD 2012 02	Wono domes	115	Mono donie 14	bearing myonic
		0322262/4195		
BB 2012 02b	Dome 1/ encloses	540	Mono dome 14	mafic anclaves
DD-2012-020	Donie 14 cheraves	118	Mono donie 14	mane eneraves
		0221240/4106		
DD 2012 02	Mono domos	106	Mana dama 12	analaya haaring daaita
DD-2012-05	Mono domes	190	Mono donie 12	enclave-bearing dache
		115		
DD 2012 021	D 10 1	0521540/4190	Mana 1	
BB-2012-030	Dome 12 enclaves	196	Mono dome 12	matic enclaves
		115		
		0321865/4176	North Deadman	
BB-2012-04	Mono domes	572	Creek Dome	enclave-bearing rhyolite
		115		
	N. Deadman	0321865/4176	North Deadman	
BB-2012-04b	Creek enclaves	572	Creek Dome	mafic enclaves
				orthopyroxene- and enclave-
BB-2012-05	Mono domes	-	Mono dome 18	bearing rhyolite
BB-2012-05b	Dome 18 enclaves	-	Mono dome 18	mafic enclaves
		11S		
		0320260/4199		
BB-2012-06	Mono domes	922	Mono dome 3	aphyric rhyolite
		11 S		-
		0320260/4199		
BB-2012-06b	Mono domes	922	Mono dome 3	breadcrust bomb
		11S		
		0320260/4199		
BB-2012-06c	Mono domes	922	Mono dome 3	obsidian

Table 1				
(continued)				
Sample	Magma			
Number	group	Coordinates	Locality	Rock type
		11S		
	Mono	0320485/41994		
BB-2012-07	domes	37	Mono dome 4	aphyric rhyolite
		11S		
DD 2012 00	Mono	0321801/41839		1 1 1 1
BB-2012-08	domes	/0	Wilson Butte	sparsely porphyritic rhyolite
		0321801//1839		
BB-2012-08b	_	76	Wilson Butte	xenoliths
DD 2012 000		115	Wilson Butte	Achonuns
		0342840/41797	Intracaldera dacite	
BB-2012-09	-	73	dome	porphyritic dacite
		11S		
		0342840/41797	Intracaldera dacite	
BB-2012-09b	-	73	dome	columnar dacite
		11S		
DD 2012 10	Mono	0321639/41992		1 1 1
BB-2012-10	domes	24 118	Mono dome 5	aphyric rhyolite
	Mono	0323738//1902	Mono dome 22 (South	
BB-2012-11	domes	83	Coulée)	aphyric rhyolite
22 2012 11	uomes	11S)	
	Mono	0323738/41902	Mono dome 22 (South	
BB-2012-11b	domes	83	Coulée)	obsidian
		11S		
	Mono	0323738/41902	Mono dome 22 (South	
BB-2012-11c	domes	83	Coulee)	pumice
	Paoha	115 0322280/42070	Pacha Island (east	
BB-2012-12	Island	31	dacite flow)	peperite sediment laver
DD 2012 12	Island	11S	ducite 110 w)	poportio southione layor
	Paoha	0322289/42070	Paoha Island (east	peperite dacite inclusions in
BB-2012-12b	Island	31	dacite flow)	sediment layer
		11S		
	Paoha	0322289/42070	Paoha Island (east	
BB-2012-12c	Island	31	dacite flow)	peperite dacite layer
	Deebe	115	Doobo Island (asstam	
BB_2012_13	Faona	0522511/42075	shoreline)	Paoha Island sediment
DD -2012-15	Istatia	118	shorenne)	i aona isiane sediment
	Negit	0320302/42102	Negit Island (north	
BB-2012-14	Island	18	dacite flow)	sparsely porphyritic dacite
		11 S	,	
	Negit	0320302/42102	Negit Island (north	
BB-2012-14b	Island	18	dacite flow)	sparsely porphyritic dacite
	NL 14	115	No alt Island (1	
DD 2012 15	Inegit	0320043/42099	inegit Island (cinder	anaroaly northermitic desite
DD-2012-13	isiallu	70	cone)	sparsery porphythic dache

Table 1
(continued)

	Magma			
Sample Number	group	Coordinates	Locality	Rock type
		11 S	Negit Island (cinder	
BB-2012-15b	Negit Island	0320043/4209970	cone)	dacitic bombs
	Mono	11 S		
BB-2012-16	domes	0321147/4187050	Mono dome 30	fayalite-bearingrhyolite
	Mono	11 S		
BB-2012-17	domes	0321604/4187195	Mono dome 29	fayalite-bearingrhyolite
	Mono	11 S		fayalite-bearing
BB-2012-18	domes	0321796/4187441	Mono dome 28	rhyolite
		11 S		
BB-2012-18b	-	0321796/4187441	Mono dome 28	xenoliths
	Mono	11 S		fayalite-bearing
BB-2012-19	domes	0322473/4187760	Mono dome 27	rhyolite
	Mono	11 S		fayalite-bearing
BB-2012-20	domes	0322947/4189213	Mono dome 25	rhyolite
	Mono	11 S		sparsely porphyritic
BB-2012-21	domes	0322681/4189219	Mono dome 26	rhyolite
		11 S		
BB-2012-21b	-	0322681/4189219	Mono dome 26	xenoliths
	Mono	11 S		sparsely porphyritic
BB-2012-22	domes	0323162/4189746	Mono dome 23	rhyolite
	Mono	11S		sparsely porphyritic
BB-2012-23	domes	0322531/4198256	Mono dome 9	rhyolite
	Mono	11 S		
BB-2012-24	domes	0322299/4198350	Mono dome 8	aphyric rhyolite
	Mono	11 S		fayalite-bearing
BB-2012-25	domes	0323560/4192222	Mono dome 20	rhyolite
	Mono	11 S		
BB-2012-26	domes	0322608/4193567	Mono dome 19	biotite-bearing rhyolite
	Mono	11 S		fayalite-bearing
BB-2012-27	domes	0323467/4193790	Mono dome 17	rhyolite
		11S		
BB-2012-27b	-	0323467/4193790	Mono dome 17	xenoliths

Sample	BB-2011-04	BB-2011-05	BB-2011-07	BB-2011-08	BB-2011-14	BB-2011-20	BB-2012-05
Magma group	Mono dome 13 11S 0322636/4195	Mono dome 14 11S 0322199/4195	Mono dome 6 11S 0320836/4198	Mono dome 7 11S 0321078/4198	Mono domes (N. Dmn. Crk.) 11S 0321591/4176	Mono domes (Wlsn. Bt.) 11S 0321937/4183	Mono dome 18
UTM	314	444	805	661	223	577	
SiO ₂	75.83	74.49	74.33	76.06	73.10	75.80	73.48
TiO ₂	0.06	0.07	0.06	0.06	0.11	0.06	0.07
Al ₂ O ₃	12.46	12.57	12.21	12.48	13.13	12.43	12.43
FeO _T	1.04	1.13	0.98	1.02	1.27	1.02	1.13
MnO	0.04	0.05	0.04	0.04	0.05	0.04	0.05
MgO	0.01	0.02	0.00	0.00	0.05	0.00	0.06
CaO	0.54	0.57	0.51	0.54	0.64	0.53	0.69
Na ₂ O	3.97	3.93	3.81	3.96	3.91	3.96	3.81
K_2O	4.65	4.78	4.58	4.64	5.12	4.63	4.73
P_2O_5	0.01	0.01	0.01	0.01	0.02	0.01	0.04
Total	98.62	97.61	96.54	98.80	97.39	98.49	96.49
Ba	28	41	20	23	137	22	37
Ce	47	69	43	48	108	48	65
Cr	3	2	3	3	4	4	3
Cu	1	2	2	2	1	1	4
Ga	17	18	17	17	16	17	17
La	24	34	21	20	58	22	35
Nb	21	20	21	21	18	21	19
Nd	19	26	20	20	38	20	25
Ni	3	3	2	4	3	2	0
Pb	28	28	29	29	28	29	27
Rb	178	168	175	177	156	180	164
Sc	2	2	2	3	2	2	3
Sr	6	9	6	7	25	6	12
Th	20	21	20	21	21	19	20
U	6	6	6	5	5	7	6
V	0	0	2	1	1	2	4
Y	28	27	27	29	23	28	27
Zn	40	43	41	41	41	41	42
Zr	111	132	107	107	175	109	126

Table 2: Major and trace element compositions of the Mono Basin lavas. Major elementsreported in wt.%. Trace elements reported in ppm. Blank space indicates element belowthe detection limit of the XRF.

Sample	BB-2012-06c	BB-2012-07	BB-2012-10	BB-2012-11b	BB-2012-16	BB-2012-17	BB-2012-18
Magma group UTM	Mono dome 3 11S 0320260/4199 922	Mono dome 4 11S 0320485/4199 437	Mono dome 5 11S 0321639/4199 224	Mono dome 22 11S 0323738/4190 283	Mono dome 30 11S 0321147/4187 050	Mono dome 29 11S 0321604/4187 195	Mono dome 28 11S 0321796/4187 441
SiO ₂	76.11	75.89	75.62	76.08	75.36	74.76	75.15
TiO ₂	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Al ₂ O ₃	12.54	12.48	12.46	12.56	12.47	12.43	12.54
FeO _T	1.03	1.03	1.02	1.02	1.01	0.97	1.02
MnO	0.05	0.05	0.04	0.05	0.05	0.04	0.05
MgO	0.01	0.00	0.00	0.00	0.01	0.01	0.00
CaO	0.53	0.54	0.54	0.54	0.53	0.54	0.54
Na ₂ O	3.98	3.98	3.94	3.98	3.92	3.86	3.92
K ₂ O	4.68	4.64	4.64	4.66	4.62	4.64	4.71
P_2O_5	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total	99.00	98.68	98.34	98.95	98.05	97.32	97.99
Ba	22	23	24	22	20	18	20
Ce	50	51	48	48	48	42	46
Cr	3	4	4	4	3	2	4
Cu	1	6	3	1	3	3	6
Ga	16	18	18	17	19	17	17
La	22	22	25	21	23	21	26
Nb	20	21	20	21	20	21	21
Nd	22	21	22	20	19	17	20
Ni	1	1	0	0	1	0	1
Pb	29	28	28	28	30	28	29
Rb	179	177	178	178	177	176	177
Sc	3	3	3	3	2	2	2
Sr	6	6	6	6	5	6	7
Th	21	20	21	21	21	20	21
U	6	7	7	6	6	5	6
V	0	1	0	2	1	1	1
Y	28	28	27	27	28	27	28
Zn	41	40	39	40	41	41	40
Zr	108	107	108	107	110	107	109

Table 2
(continued)

Sample	BB-2012-19	BB-2012-20	BB-2012-21	BB-2012-22	BB-2012-23	BB-2012-24	BB-2012-25
Magma group	Mono dome 27 11S	Mono dome 25 11S	Mono dome 26 11S	Mono dome 23 11S	Mono dome 9 11S	Mono dome 8 11S	Mono dome 20 11S
UTM	0322473/4187 760	0322947/4189 213	0322681/4189 219	0323162/4189 746	0322531/4198 256	0322299/4198 350	0323560/4192 222
SiO ₂	74.93	76.05	76.08	75.73	76.35	75.18	75.71
TiO ₂	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Al ₂ O ₃	12.38	12.59	12.50	12.46	12.57	12.45	12.53
FeO _T	1.02	1.07	1.04	1.03	1.04	1.03	1.04
MnO	0.05	0.05	0.05	0.05	0.05	0.04	0.05
MgO	0.00	0.07	0.02	0.01	0.01	0.01	0.01
CaO	0.54	0.60	0.54	0.53	0.54	0.53	0.53
Na ₂ O	3.88	3.94	3.97	3.92	4.00	3.88	3.94
K ₂ O	4.68	4.65	4.68	4.68	4.69	4.67	4.65
P ₂ O ₅	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total	97.54	99.07	98.93	98.47	99.30	97.88	98.53
Ba	19	17	20	21	23	26	19
Ce	49	43	47	48	54	49	47
Cr	4	4	2	4	4	4	3
Cu	4	4	3	3	2	3	3
Ga	17	18	18	18	18	17	18
La	23	18	22	24	22	23	20
Nb	20	21	20	20	20	21	21
Nd	22	19	21	22	25	20	22
Ni	1	3	1	1	1	1	1
Pb	29	28	29	29	29	28	29
Rb	178	178	180	178	179	177	179
Sc	3	2	2	3	3	2	3
Sr	6	5	5	6	5	6	5
Th	20	20	21	21	20	21	20
U	5	7	7	6	7	7	7
V	2	2	3	0	0	2	2
Y	28	27	27	27	28	27	27
Zn	42	39	41	42	40	40	42
Zr	110	110	106	106	107	108	109

Sample	BB-2012-26	BB-2012-27	M12-1A ²	BB-2011-15	BB-2011-15b	BB-2011-22	BB-2011-24
Magma group UTM	Mono dome 19 11S 0322608/4193 567	Mono dome 17 11S 0323467/4193 790	Mono dome 12	Inyo domes 11S 0322210/4176 138	Inyo domes 11S 0322210/4176 138	Basalt 11S 0318310/4188 377	Basalt 11S 0315244/4210 530
SiO ₂	74.57	75.82	66.67	70.73	71.22	54.00	50.54
TiO ₂	0.06	0.06	0.84	0.42	0.21	1.48	1.50
Al ₂ O ₃	12.31	12.52	14.86	14.56	14.55	17.71	18.77
FeO _T	0.97	1.05	4.59	2.30	1.91	7.44	8.56
MnO	0.05	0.05		0.06	0.06	0.12	0.14
MgO	0.00	0.00	1.99	0.68	0.18	3.94	6.23
CaO	0.57	0.54	3.52	1.85	0.96	8.23	8.62
Na ₂ O	3.73	3.98	3.68	4.32	4.51	3.59	3.95
K ₂ O	4.63	4.66	3.54	4.14	5.12	1.71	1.14
P_2O_5	0.01	0.01	0.15	0.12	0.04	0.43	0.31
Total	96.91	98.68	99.84	99.19	98.75	98.65	99.76
Ba	29	15	297	708	835	829	559
Ce	42	51	47	66	118	52	43
Cr	3	3	14	5	4	28	21
Cu	3	3		3	2	24	25
Ga	17	17		18	18	20	19
La	23	24	20	38	65	25	18
Nb	19	21	22	17	17	11	11
Nd	17	21	18	23	39	25	21
Ni	2	3	15	5	4	17	62
Pb	29	28		26	25	10	5
Rb	180	181	124	114	137	28	15
Sc	2	1	9	4	4	20	20
Sr	10	5	277	273	103	961	816
Th	21	21		13	17	3	3
U	6	7		4	5	1	1
V	0	1	82	28	4	194	180
Y	27	28	27	17	24	19	20
Zn	38	42		50	54	80	83
Zr	96	113	126	224	310	157	144

Sample	BB-2011-09	BB-2011-10	BB-2011-11	BB-2011-12	BB-2011-13	BB-2011-16	BB-2011-17
Magma group UTM	Paoha Island 11S 0322513/4207 227	Paoha Island 11S 0322569/4207 300	Paoha Island 11S 0322287/4207 052	Paoha Island 11S 0322458/4208 935	Paoha Island 11S 0322273/4209 031	Paoha Island 11S 0321501/4209 348	Paoha Island 11S 0320844/4208 752
SiO ₂	66.22	67.27	69.56	64.56	63.26	64.52	68.99
TiO ₂	0.54	0.53	0.17	0.93	1.05	0.90	0.29
Al ₂ O ₃	15.76	15.90	14.38	16.53	16.63	16.47	15.24
FeO _T	2.95	2.90	1.88	4.39	4.88	4.25	2.36
MnO	0.07	0.07	0.06	0.09	0.10	0.09	0.07
MgO	0.65	0.62	0.15	1.28	1.52	1.22	0.31
CaO	1.87	1.82	0.90	3.14	3.51	3.05	1.40
Na ₂ O	4.86	5.04	4.05	4.93	4.79	4.93	4.64
K ₂ O	4.41	4.50	5.14	3.80	3.60	3.83	4.81
P_2O_5	0.15	0.15	0.04	0.33	0.40	0.32	0.08
Total	97.51	98.79	96.34	99.98	99.74	99.60	98.18
Ba	1498	1560	917	1362	1315	1358	1094
Ce	88	84	105	83	79	85	92
Cr	3	3	4	2	3	2	3
Cu	1	1	1	2	14	1	2
Ga	21	21	17	22	21	21	20
La	46	45	57	44	41	46	52
Nb	19	19	17	18	18	19	15
Nd	36	34	38	38	37	36	31
Ni	3	3	3	3	4	3	3
Pb	22	23	25	19	19	19	25
Rb	110	111	130	96	91	96	110
Sc	6	6	3	9	10	8	4
Sr	305	296	97	488	528	479	198
Th	11	12	14	11	9	9	11
U	3	3	5	6	2	3	3
V	9	7	2	36	50	29	3
Y	25	26	22	26	25	27	19
Zn	68	69	56	79	82	78	59
Zr	392	413	311	309	287	313	350

Sample	BB-2011-01	BB-2011-02	BB-2011-03	BB-2011-18	BB-2011-23	BB-2012-14	BB-2012-15
Magma group UTM	Negit Island 11S 0321345/4211 192	Negit Island 11S 0320829/4211 181	Negit Island 11S 0320985/4211 108	Negit Island 11S 0320116/4209 814	Negit Island 11S 0314795/4205 740	Negit Island 11S 0320302/4210 218	Negit Island 11S 0320043/4209 970
SiO ₂	68.06	68.81	68.71	63.45	66.62	65.38	64.68
TiO ₂	0.43	0.43	0.43	0.94	0.21	0.77	0.80
Al ₂ O ₃	15.68	15.80	15.73	16.46	13.73	16.50	16.34
FeOT	2.83	2.83	2.82	4.68	2.04	4.05	4.22
MnO	0.07	0.07	0.07	0.09	0.06	0.08	0.08
MgO	0.56	0.56	0.56	1.47	3.43	1.15	1.22
CaO	1.95	1.95	1.95	3.71	1.11	3.19	3.22
Na ₂ O	4.68	4.71	4.69	4.67	4.00	4.71	4.66
K ₂ O	4.35	4.39	4.38	3.34	4.31	3.56	3.63
P_2O_5	0.13	0.13	0.13	0.34	0.06	0.28	0.28
Total	98.76	99.68	99.45	99.14	95.58	99.67	99.14
Ba	1250	1218	1228	1327	898	1402	1303
Ce	81	84	83	61	86	68	70
Cr	4	3	2	2	3	1	2
Cu	1	3	3	7	14	6	8
Ga	18	19	20	20	16	21	20
La	44	46	48	34	49	34	36
Nb	14	14	14	13	14	12	13
Nd	29	31	30	29	28	26	30
Ni	3	3	3	3	4	2	2
Pb	22	23	22	17	23	18	19
Rb	100	102	101	75	98	80	81
Sc	5	5	4	8	3	8	8
Sr	306	303	302	521	142	480	459
Th	10	10	11	7	11	6	7
U	2	3	2	3	1	4	2
V	12	14	11	68	4	46	52
Y	18	19	20	20	18	19	20
Zn	61	62	62	76	51	71	71
Zr	312	312	311	261	325	263	274

Table 2
(continued)

Sample	83083-1	BB-2011-15c-1	BB-2011-15c-2	LV87-1 ¹	VGC-1 ¹	BB-2011-05b-1	BB-2011-05b-2
Magma group	Inyo enclaves	Inyo enclaves 11S	Inyo enclaves 11S	Inyo enclaves	Inyo enclaves	Dome 14 enclaves 11S	Dome 14 enclaves 11S
UTM		0322210/417613 8	0322210/417613 8			0322199/419544 4	0322199/419544 4
SiO ₂	58.50	59.65	59.90	59.70	57.30	56.17	54.86
TiO ₂	0.91	0.76	1.33	0.98	0.92	1.93	1.75
Al ₂ O ₃	15.40	17.26	16.27	16.30	17.00	15.73	16.28
FeO _T	5.80	4.67	5.82	6.03	5.66	8.62	8.34
MnO	0.18	0.11	0.15	0.17	0.11	0.15	0.15
MgO	3.13	3.06	2.16	3.3.8	2.74	3.92	4.63
CaO	4.99	5.81	4.32	5.31	5.33	6.53	6.71
Na ₂ O	4.65	4.17	4.77	4.50	4.11	3.98	4.02
K ₂ O	2.46	2.54	2.93	2.61	2.90	2.24	2.10
P_2O_5	0.30	0.18	0.41	0.23	0.35	0.44	0.39
Total	96.32	98.21	98.07	95.83	96.42	99.71	99.22
Ba	464	676	650	477	937	413	378
Ce		49	84			64	61
Cr	12	15	3	49	6	37	41
Cu	15	8	16	10	9	23	30
Ga		18	20			21	20
La		23	30			32	29
Nb	27	8	19	29	26	19	19
Nd		21	41			32	26
Ni	22	25	4	31	14	28	46
Pb		15	18			10	9
Rb	77	72	75	80	89	60	52
Sc		12	12			20	20
Sr	492	583	371	483	873	446	452
Th		5	8			8	6
U		2	2			3	3
V		93	145			179	154
Y	11	16	29	14	10	31	30
Zn	110	65	102	100	83	92	96
Zr	187	150	241	182	167	217	230

1	. •	1
(cor	nfini	ied)
	ILIIL	icu)

	BB-2012-02b-	BB-2012-02b-		BB-2012-03b-	BB-2012-03b-		
Sample	1	2	M14-1B ²	1	2	M12-1B ²	M12-2B ²
Magma group	enclaves	enclaves	Dome 14 enclaves	enclaves	enclaves	enclaves	enclaves
0	11S	11S		11S	115		
UTM	0322262/4195 540	0322262/4195 540		0321340/4196 196	0321340/4196 196		
SiO ₂	59.68	59.29	57.85	50.06	52.68	54.59	52.60
TiO ₂	1.40	1.43	1.49	2.38	2.09	0.94	2.08
Al ₂ O ₃	15.51	15.92	15.87	17.26	17.12	17.46	17.48
FeO _T	6.99	6.96	8.02	11.02	9.59	9.23	10.15
MnO	0.13	0.13		0.19	0.16		
MgO	3.58	3.66	4.04	5.09	5.00	4.47	4.25
CaO	5.36	5.64	5.84	8.49	7.84	7.76	7.64
Na ₂ O	4.04	4.01	3.84	3.73	3.65	3.38	3.79
K ₂ O	2.66	2.62	2.55	1.25	1.48	1.66	1.58
P_2O_5	0.32	0.33	0.37	0.43	0.39	0.39	0.31
Total	99.68	100.00	99.87	99.90	100.00	99.88	99.88
Ba	283	311	303	429	383	358	444
Ce	62	62	59	52	44	45	47
Cr	32	32	39	29	25	19	10
Cu	21	21		34	31		
Ga	21	20		22	22		
La	31	29	27	24	18	20	21
Nb	19	20	22	18	18	18	19
Nd	30	28	29	30	26	22	27
Ni	35	35	35	36	34	27	21
Pb	13	13		4	9		
Rb	82	78	71	33	35	45	35
Sc	17	15	15	26	23	19	18
Sr	348	374	374	643	588	592	643
Th	9	9		3	4		
U	3	3		2	4		
V	131	127	136	249	212	197	196
Y	30	30	32	33	27	25	26
Zn	81	80		112	99		
Zr	207	209	212	188	168	159	171

C	BB-2012-05b-	BB-2012-05b-	BB-2012-05b-	M10 1D 2	DD 2012 045
Sample Magma	I Dome 18	Z Dome 18	J Dome 18	Dome 18	N. Deadman
group	enclaves	enclaves	enclaves	enclaves	enclaves
UTM					11S 0321865/4176572
SiO ₂	55.01	56.46	60.44	61.73	61.63
TiO ₂	1.81	1.64	1.32	1.20	1.03
Al ₂ O ₃	16.57	16.18	15.38	15.31	16.31
FeO _T	8.60	8.02	6.49	6.63	5.51
MnO	0.15	0.14	0.12		0.10
MgO	4.73	4.48	3.53	3.01	2.11
CaO	6.96	6.58	5.28	4.82	4.15
Na ₂ O	4.04	3.96	3.90	3.99	4.38
K ₂ O	2.04	2.22	2.81	2.96	3.38
P_2O_5	0.42	0.47	0.29	0.27	0.24
Total	100.34	100.15	99.57	99.92	98.83
Ba	379	315	255	298	961
Ce	70	62	61	62	63
Cr	39	52	40	26	5
Cu	23	20	18		9
Ga	21	20	20		21
La	31	28	28	31	33
Nb	19	20	19	21	14
Nd	31	31	27	29	27
Ni	43	43	34	30	6
Pb	9	10	15		16
Rb	52	59	85	87	81
Sc	21	18	16	12	11
Sr	465	419	331	308	405
Th	6	7	10		9
U	4	4	3		2
V	168	153	123	111	103
Y	31	31	30	30	22
Zn	92	89	134		73
Zr	231	211	195	198	290

 Table 2 (continued)

¹ Data from Varga et al. (1990).
 ² Data from Kelleher and Cameron (1990).

Sample	Magma group	⁸⁷ Sr/ ⁸⁶ Sr _i	¹⁴³ Nd/ ¹⁴⁴ Nd	E Nd	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	δ ¹⁸ Ο
BB-2011-22	Basalt	0.706160 1	0.512580 1		19.250 ¹	15.670 ¹	38.890 ¹	7.42
BB-2011-24	Basalt	0.705380 1	0.512670 1		19.220 ¹	15.660 ¹	38.830 ¹	7.95
BB-2012-03b-1	Dome 12 enclaves	0.704869	0.512758	2.34	19.137	15.672	38.869	7.79
BB-2011-05b-2	Dome 14 enclaves	0.704535	0.512785	2.87	19.094	15.665	38.864	6.82
BB-2012-02b-2	Dome 14 enclaves	0.704520	0.512749	2.17	19.122	15.668	38.886	6.89
BB-2012-05b-1	Dome 18 enclaves	0.704421	0.512779	2.75	19.105	15.674	38.895	12.68
BB-2012-05b-3	Dome 18 enclaves	0.704516	0.512754	2.26	19.114	15.661	38.865	7.15
BB-2011-14	Mono domes	0.706024	0.512602	-0.70	19.127	15.666	38.902	9.02
BB-2011-20	Mono domes	0.705960	0.512614	-0.47	19.138	15.677	38.939	6.91
BB-2012-05	Mono domes	0.706905	0.512618	-0.39	19.173	15.697	39.008	7.73
BB-2012-04b	N. Deadman enclaves	0.705640	0.512646	0.16	19.174	15.673	38.920	7.97
BB-2011-01	Negit Island	0.706239	0.512537	-1.97	19.209	15.696	38.992	7.73
BB-2011-23	Negit Island	0.706209	0.512581	-1.11	19.186	15.690	38.978	8.82
BB-2012-14	Negit Island	0.706429	0.512527	-2.16	19.240	15.709	39.036	8.11
BB-2011-10	Paoha Island	0.705998	0.512571	-1.31	19.176	15.707	39.033	9.44
BB-2011-11	Paoha Island	0.706094	0.512594	-0.86	19.172	15.686	38.968	11.55
BB-2011-16	Paoha Island	0.705873	0.512563	-1.46	19.153	15.689	38.970	7.58
BB-2011-15c-2	Inyo enclaves	0.706225	0.512520	-2.30	19.202	15.694	38.977	6.89

Table 3: Isotopic compositions of the Mono Basin lavas.

¹ Sr, Nd, and Pb data for the Black Point and June Lake basalts from Cousens (1996)

Sample	09112013_BB-2012- 17_Glass_1	09112013_BB-2012- 17_Glass_3	09112013_BB-2012- 17_Glass_4	09112013_BB-2012- 17_Glass_5	BB-2011- 05_Glass_2	BB-2011- 05_Glass_3	BB-2011- 05_Glass_4
Magma group	Mono domes	Mono domes	Mono domes	Mono domes	Mono domes	Mono domes	Mono domes
SiO ₂	74.41	75.87	76.52	76.10	54.94	48.49	50.92
TiO ₂	0.07	0.00	0.06	0.06	1.80	3.13	3.47
Al ₂ O ₃	11.97	12.42	12.49	13.56	15.03	16.31	16.73
FeOT	0.67	0.82	0.79	0.74	8.61	11.07	8.62
MnO	0.03	0.00	0.05	0.01	0.22	0.18	0.18
MgO	0.00	0.00	0.01	0.00	3.40	4.20	4.00
CaO	0.45	0.45	0.46	0.61	8.89	8.74	9.21
Na ₂ O	3.89	3.89	3.90	4.53	4.52	4.12	4.18
K ₂ O	4.64	4.58	4.68	4.43	1.72	1.52	1.34
P2O5	0.00	0.00	0.04	0.01	0.57	0.65	0.63
Total	96.13	98.03	99.00	100.05	99.70	98.40	99.27

Table 4a: Electron microprobe analyses of Mono Basin glasses. Major elements reported in wt.%.

Sample	BB-2011-05_Glass_5	BB-2011-05_Glass_6	BB-2012- 11b_Glass_1	BB-2012- 11b_Glass_2	BB-2012- 11b_Glass_3	BB-2012- 11b_Glass_4	BB-2012- 11b_Glass_5
Magma group	Mono domes	Mono domes	Mono domes	Mono domes	Mono domes	Mono domes	Mono domes
SiO ₂	52.17	76.20	75.05	76.23	76.42	75.89	75.73
TiO ₂	2.49	0.10	0.06	0.05	0.12	0.03	0.00
Al ₂ O ₃	15.73	12.45	11.85	12.46	12.48	12.43	12.52
FeO _T	9.73	0.87	0.74	0.85	0.93	0.94	0.82
MnO	0.34	0.06	0.06	0.05	0.02	0.04	0.06
MgO	3.85	0.02	0.01	0.02	0.01	0.03	0.00
CaO	9.58	0.46	0.51	0.55	0.52	0.53	0.46
Na ₂ O	4.10	4.02	3.78	4.08	4.00	4.03	4.08
K ₂ O	1.32	4.91	4.62	4.58	4.84	4.67	4.66
P2O5	0.50	0.00	0.00	0.02	0.01	0.00	0.00
Total	99.79	99.08	96.68	98.87	99.34	98.57	98.32

 Table 4a (continued)

Table 4a (continued)						
Sample	BB-2012- 11b_Glass_6	BB-2012- 16_Glass_1	BB-2012- 16_Glass_2	BB-2012- 16_Glass_3	BB-2012- 16_Glass_6	09112013_BB-2011- 10_Glass_1	09112013_BB-2011- 10_Glass_10
Magma							
group	Mono domes	Mono domes	Mono domes	Mono domes	Mono domes	Paoha Island	Paoha Island
SiO ₂	76.43	75.79	75.51	74.78	74.19	67.23	70.20
TiO ₂	0.09	0.02	0.00	0.02	0.05	0.42	0.44
Al ₂ O ₃	12.55	12.46	12.44	12.13	11.99	18.07	15.92
FeO _T	0.86	0.70	0.84	0.69	0.82	1.19	1.65
MnO	0.04	0.07	0.03	0.05	0.04	0.06	0.06
MgO	0.01	0.01	0.01	0.00	0.00	0.09	0.15
CaO	0.55	0.52	0.54	0.46	0.53	2.25	1.12
Na ₂ O	4.20	4.12	4.06	3.96	3.93	6.24	5.30
K ₂ O	4.72	4.63	4.45	4.58	4.45	3.83	5.14
P2O5	0.05	0.00	0.00	0.00	0.00	0.13	0.12
Total	99.48	98.31	97.88	96.66	96.03	99.50	100.09

Table 4a	(continued)						
Sample	09112013_BB-2011- 10_Glass_11	09112013_BB-2011- 10_Glass_2	09112013_BB-2011- 10_Glass_3	09112013_BB-2011- 10_Glass_4	09112013_BB-2011- 10_Glass_5	09112013_BB-2011- 10_Glass_6	09112013_BB-2011- 10_Glass_7
Magma							
group	Paoha Island	Paoha Island	Paoha Island	Paoha Island	Paoha Island	Paoha Island	Paoha Island
SiO ₂	69.29	68.38	66.51	69.15	69.52	69.04	64.06
TiO ₂	0.32	0.53	0.52	0.55	0.66	0.47	0.70
Al ₂ O ₃	17.15	16.58	17.77	16.64	14.57	14.55	16.54
FeO _T	1.20	1.50	2.10	1.32	2.83	3.00	4.40
MnO	0.04	0.02	0.02	0.00	0.08	0.17	0.13
MgO	0.07	0.25	0.30	0.13	0.61	1.01	1.27
CaO	1.88	1.76	2.56	1.60	0.86	1.11	3.32
Na ₂ O	5.80	5.74	6.44	5.70	4.49	4.54	5.41
K ₂ O	4.36	4.46	3.46	4.78	5.86	5.26	3.70
P2O5	0.13	0.16	0.13	0.18	0.17	0.16	0.89
Total	100.23	99.38	99.81	100.05	99.65	99.31	100.41

Sample	09112013_BB-2011- 10_Glass_8	09112013_BB-2011- 10_Glass_9	BB-2011- 10_Glass_3	BB-2011- 10_Glass_4	BB-2011- 10_Glass_5	BB-2011- 10_Glass_7	BB-2011- 10_Glass_8
Magma							
group	Paoha Island	Paoha Island	Paoha Island	Paoha Island	Paoha Island	Paoha Island	Paoha Island
SiO ₂	69.81	68.87	67.25	69.23	70.71	68.77	71.06
TiO ₂	0.44	0.77	0.33	0.73	0.40	0.37	0.40
Al ₂ O ₃	15.34	13.95	16.34	14.35	14.23	15.44	15.06
FeO _T	1.67	5.53	2.03	2.08	1.89	2.57	1.48
MnO	0.05	0.09	0.05	0.05	0.07	0.10	0.04
MgO	0.23	0.15	0.54	0.12	0.28	0.68	0.13
CaO	1.21	0.56	2.12	1.06	0.75	1.64	1.10
Na ₂ O	5.03	4.37	5.62	4.50	4.63	5.11	4.86
K ₂ O	5.27	5.72	4.11	5.46	5.49	4.70	5.17
P2O5	0.04	0.09	0.23	0.26	0.10	0.08	0.06
Total	99.10	100.10	98.63	97.83	98.54	99.47	99.37

Sample	BB-2011-17_Glass_2	BB-2011-17_Glass_3	BB-2011-17_Glass_5	BB-2011-18_Glass_2	BB-2011-18_Glass_3	BB-2011-18_Glass_4	BB-2011-18_Glass_5
Magma group	Paoha Island	Paoha Island	Paoha Island	Negit Island	Negit Island	Negit Island	Negit Island
SiO ₂	70.94	71.26	70.81	65.84	66.18	69.82	64.85
TiO ₂	0.16	0.19	0.14	0.71	0.68	0.81	0.90
Al ₂ O ₃	14.57	14.84	14.69	16.80	17.07	14.99	15.99
FeOT	1.75	2.03	1.95	2.78	2.45	2.03	4.05
MnO	0.06	0.05	0.08	0.05	0.07	0.04	0.07
MgO	0.16	0.13	0.15	0.50	0.58	0.17	1.48
CaO	1.04	1.08	1.05	3.05	3.28	1.66	3.28
Na ₂ O	4.48	4.61	4.53	5.04	5.24	4.62	4.66
K ₂ O	5.19	5.11	5.14	3.56	3.72	4.86	3.61
P2O5	0.07	0.00	0.06	0.22	0.31	0.21	0.37
Total	98.43	99.29	98.59	98.55	99.58	99.20	99.24

 Table 4a (continued)

Table 4a ((continued)	1
1 anie 4a (commuted	1

Sample	BB-2011-05b-2_Glass_3	BB-2011-05b-2_Glass_6	BB-2011-05b-2_Glass_8				
Magma group	Dome 14 enclaves	Dome 14 enclaves	Dome 14 enclaves				
SiO ₂	76.44	64.73	59.90				
TiO ₂	0.03	0.84	0.56				
Al ₂ O ₃	12.95	16.11	15.13				
FeO т	0.72	3.58	5.69				
MnO	0.04	0.04	0.13				
MgO	0.04	0.90	3.73				
CaO	0.31	1.35	6.15				
Na ₂ O	3.11	4.62	5.81				
K ₂ O	5.92	5.78	1.59				
P2O5	0.00	0.15	0.76				
Total	99.56	98.11	99.44				
						BB-2011-	BB-2011-
--	---------------	---------------	---------------	---------------	---------------	--------------	--------------
Sample	BB201110-C1-1	BB201110-C1-2	BB201110-C5-1	BB201110-C6-1	BB201110-C7-1	12_amph_1	12_amph_2
Magma group	Paoha Island	Paoha Island	Paoha Island				
SiO ₂	42.14	42.83	42.87	41.69	42.36	42.19	42.14
TiO ₂	3.869	3.422	3.428	3.769	3.750	3.832	3.955
Al ₂ O ₃	10.61	10.37	10.32	10.47	10.70	10.88	11.14
FeO _T	12.65	12.78	13.60	12.82	12.96	13.06	13.48
MnO	0.259	0.247	0.281	0.246	0.225	0.226	0.237
MgO	13.42	13.67	13.39	13.27	13.13	13.68	13.25
CaO	10.88	10.89	10.47	11.17	10.84	10.93	10.91
Na ₂ O	2.475	2.495	2.423	2.519	2.568	2.562	2.509
K ₂ O	0.913	0.960	0.921	0.869	0.943	0.977	0.957
Cr ₂ O ₃	0.000	0.000	0.007	0.000	0.000	0.000	0.000
Cl	0.016	0.004	0.019	0.000	0.004	0.007	0.002
F	0.252	0.319	0.306	0.307	0.294	0.173	0.390
Total	97.37	97.85	97.90	96.99	97.64	98.45	98.81

Table 4b: Electron microprobe analyses of Mono Basin amphiboles. Major elements reported in wt.%.

Table 4b (continued)						
Sample	BB-2011- 12_amph_3	BB-2011- 12_amph_4	BB-2011- 12_amph_5	BB-2011- 17_amph_1	BB-2011- 17_amph_3	BB-2011- 17_amph_4	BB-2011- 17_amph_5
Magma group	Paoha Island						
SiO ₂	41.67	41.92	42.32	42.40	42.61	42.44	42.44
TiO ₂	3.992	4.031	3.795	3.359	3.249	2.961	3.197
Al ₂ O ₃	10.98	10.93	10.90	10.82	10.90	10.66	10.89
FeOT	13.04	13.08	13.18	14.36	14.46	15.66	15.64
MnO	0.225	0.215	0.246	0.222	0.274	0.260	0.259
MgO	12.78	13.34	13.48	12.43	11.64	12.09	11.91
CaO	10.96	11.04	10.95	10.79	10.77	10.61	10.56
Na ₂ O	2.509	2.548	2.545	2.363	2.443	2.356	2.351
K ₂ O	1.012	0.989	0.953	0.851	0.906	0.920	0.912
Cr ₂ O ₃	0.000	0.016	0.000	0.000	0.000	0.000	0.010
Cl	0.013	0.004	0.029	0.019	0.025	0.012	0.033
F	0.405	0.585	0.280	0.229	0.004	0.220	0.224
Total	97.41	98.46	98.56	97.75	97.26	98.10	98.31

Table 4b (continued)						
Sample	BB-2011- 17_amph_6	BB-2011- 15_amph_1	BB-2011- 15_amph_2	BB-2011- 15_amph_3	BB-2011- 15_amph_4	BB-2011- 15_amph_5	BB-2011- 15_amph_6
Magma group	Paoha Island	Inyo domes					
SiO ₂	42.56	47.20	44.00	42.95	47.98	46.82	45.65
TiO ₂	3.324	1.202	2.468	2.869	1.163	1.276	1.670
Al ₂ O ₃	10.91	6.267	8.786	9.429	5.654	6.709	7.313
FeOT	13.69	16.52	17.45	17.18	15.72	16.24	17.19
MnO	0.218	0.657	0.609	0.639	0.634	0.651	0.664
MgO	11.99	12.44	10.97	10.85	13.59	12.93	11.85
CaO	11.15	11.45	11.22	11.17	11.33	11.50	11.22
Na ₂ O	2.379	1.444	1.973	2.091	1.315	1.553	1.682
K ₂ O	0.896	0.685	0.853	0.794	0.565	0.782	0.835
Cr ₂ O ₃	0.006	0.000	0.000	0.027	0.000	0.000	0.000
Cl	0.017	0.043	0.046	0.037	0.042	0.061	0.068
F	0.285	0.077	0.128	0.167	0.233	0.193	0.187
Total	97.30	97.94	98.44	98.13	98.11	98.63	98.24

Table 4b (continued)						
Sample	BB-2011- 15_amph_7	BB-2011- 15_amph_8	BB-2011- 15_amph_9	BB-2011- 15_amph_10	BB-2011- 15_amph_11	BB-2011- 15_amph_12	BB-2011- 15_amph_13
Magma group	Inyo domes	Inyo domes	Inyo domes	Inyo domes	Inyo domes	Inyo domes	Inyo domes
SiO ₂	46.56	46.45	46.27	45.72	45.55	45.58	45.54
TiO ₂	1.366	1.394	1.483	1.462	1.519	1.652	1.650
Al ₂ O ₃	6.985	6.854	7.347	7.439	7.405	7.500	7.370
FeOT	17.00	16.60	16.59	17.31	17.28	16.44	16.41
MnO	0.674	0.672	0.599	0.643	0.592	0.605	0.579
MgO	12.31	12.24	12.54	11.95	11.53	12.66	12.57
CaO	11.31	11.25	11.35	11.32	11.22	11.25	11.15
Na ₂ O	1.668	1.574	1.682	1.702	1.643	1.683	1.686
K ₂ O	0.792	0.736	0.838	0.899	0.880	0.903	0.852
Cr ₂ O ₃	0.019	0.000	0.000	0.000	0.000	0.000	0.000
Cl	0.042	0.053	0.040	0.048	0.062	0.068	0.067
F	0.197	0.274	0.055	0.249	0.320	0.400	0.254
Total	98.82	97.97	98.76	98.62	97.84	98.56	97.99

Table 4b (continued)						
Sample	BB-2011- 15_amph_14	BB-2011- 15_amph_15	BB-2011- 15_amph_16	BB-2011-15c- 1_amph_1	BB-2011-15c- 1_amph_2	BB-2011-15c- 1_amph_3	BB-2011-15c- 1_amph_4
Magma group	Inyo domes	Inyo domes	Inyo domes	Inyo enclaves	Inyo enclaves	Inyo enclaves	Inyo enclaves
SiO ₂	46.58	45.03	45.60	47.44	45.29	45.39	45.74
TiO ₂	1.512	1.639	1.646	1.278	1.575	1.599	1.405
Al ₂ O ₃	7.436	7.720	7.430	5.742	6.898	7.201	6.850
FeOT	15.98	16.58	16.43	15.21	16.98	16.81	16.58
MnO	0.577	0.563	0.561	0.435	0.693	0.630	0.652
MgO	12.19	12.64	12.87	13.93	12.61	12.25	12.32
CaO	11.03	11.17	11.19	11.20	10.86	11.01	11.26
Na ₂ O	1.747	1.768	1.715	1.425	1.558	1.693	1.550
K ₂ O	1.063	0.925	0.840	0.648	0.757	0.805	0.766
Cr ₂ O ₃	0.000	0.000	0.000	0.000	0.005	0.000	0.021
Cl	0.059	0.037	0.046	0.028	0.057	0.064	0.071
F	0.236	0.395	0.153	0.092	0.239	0.282	0.249
Total	98.28	98.29	98.41	97.38	97.41	97.60	97.33

Table 4b (continued)						
Sample	BB-2011-15c- 1_amph_5	BB-2011-15c- 1_amph_6	BB-2011-15c- 1_amph_7	BB-2011-15c- 1_amph_8	BB-2011-15c- 1_amph_9	BB-2011-15c- 1_amph_10	BB-2011- 18_amph_1
Magma group	Inyo enclaves	Negit Island					
SiO ₂	46.78	43.17	43.96	46.30	43.86	43.62	41.21
TiO ₂	1.283	2.503	1.771	1.272	1.866	2.197	4.073
Al ₂ O ₃	6.451	10.42	9.222	5.512	9.273	9.822	11.35
FeOT	16.00	13.99	14.59	17.23	15.48	15.35	12.84
MnO	0.606	0.290	0.367	0.660	0.460	0.464	0.159
MgO	12.74	12.38	13.11	13.24	12.65	11.75	13.23
CaO	11.24	11.42	11.35	10.69	11.17	11.17	11.08
Na ₂ O	1.526	2.263	2.013	1.425	2.030	2.182	2.346
K ₂ O	0.701	0.846	0.798	0.605	0.809	0.782	0.790
Cr ₂ O ₃	0.019	0.000	0.000	0.029	0.000	0.000	0.000
Cl	0.049	0.033	0.028	0.063	0.035	0.048	0.008
F	0.175	0.244	0.227	0.344	0.206	0.111	0.025
Total	97.49	97.45	97.33	97.21	97.74	97.44	97.10

Table 4b (continued)					
	BB-2012-	BB-2012-			
Sample	15_amph_1	15_amph_2			
Magma					
group	Negit Island	Negit Island			
SiO ₂	41.99	42.00			
TiO ₂	3.681	3.578			
Al ₂ O ₃	10.98	10.67			
FeOT	12.89	13.19			
MnO	0.213	0.214			
MgO	13.90	13.86			
CaO	11.17	11.02			
Na ₂ O	2.443	2.450			
K ₂ O	0.761	0.764			
Cr ₂ O ₃	0.000	0.020			
Cl	0.016	0.013			
F	0.000	0.212			
Total	98.04	97.90			

Click here to access/download Supplementary Material ESM Table 1a.docx Click here to access/download Supplementary Material ESM Table 1b.docx Click here to access/download Supplementary Material ESM Table 1c.docx Click here to access/download Supplementary Material ESM Table 1d.docx Click here to access/download Supplementary Material ESM Table 2.docx Click here to access/download Supplementary Material ESM Table 3.docx Click here to access/download Supplementary Material ESM Figure 1.docx