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Modeling Elasticity in Crystal Growth
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A new model of crystal growth is presented that describes the phenomena on atomic length and
diffusive time scales. The former incorporates elastic and plastic deformation in a natural manner, and
the latter enables access to time scales much larger than conventional atomic methods. The model
is shown to be consistent with the predictions of Read and Shockley for grain boundary energy, and
Matthews and Blakeslee for misfit dislocations in epitaxial growth.
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The appearance and growth of crystal phases occurs in
many technologically important processes including epi-
taxial growth and zone refinement. While a plethora of
models have been constructed to examine various aspects
of these phenomena, it has proven difficult to develop a
computationally efficient model that can be used for a wide
range of applications. For example, standard molecular dy-
namics simulations include the necessary physics but are
limited by atomic sizes (Å) and phonon time scales (ps).
Conversely, continuum field theories can access longer
length (i.e., correlation length) and time (i.e., diffusive)
scales, but are difficult to incorporate with the appropriate
physics. In this paper a new model is presented that in-
cludes the essential physics and is not limited by atomic
time scales.

To illustrate the features that must be incorporated, it is
useful to consider two examples. First, consider the nucle-
ation and growth of crystals from a pure supercooled liquid
or vapor phase. In such a process, small crystallites nucle-
ate (heterogeneously or homogeneously) and grow in arbi-
trary locations and orientations. Eventually, the crystallites
impinge on one another and grain boundaries are formed.
Further growth is then determined by the evolution of grain
boundaries. Now consider the growth of a thin crystal film
on a substrate of a different crystal structure. The sub-
strate stresses the overlying film which can destabilize the
growing film and cause an elastic defect-free morphologi-
cal deformation [1,2], plastic deformation involving misfit
dislocations [3], or a combination of both. Thus, the model
must be able to nucleate crystallites at arbitrary locations
and orientations and contain elastic and plastic deforma-
tions. While all these features are naturally incorporated
in atomistic descriptions, they are much more difficult to
include in continuum or phase field models.

Historically, many continuum models have been devel-
oped to describe certain aspects of crystal growth and
liquid/solid transitions in general. At the simplest level,
“model A” in the Halperin and Hohenberg [4] classifica-
tion scheme has been used to describe liquid/solid transi-
tions. This model treats all solids equivalently and does not
introduce any crystal anisotropy. Extensions to this basic
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model have been developed to incorporate a solid phase
that has multiple states that represent multiple orientations
[5,6] or, recently [7], an infinite number of orientations.
Unfortunately, these models do not properly include plas-
tic and elastic deformations. Other models [8–12] have
sought to include elastic and plastic deformations, but can-
not account for multiple orientations.

In this work, these limitations are overcome by consid-
ering a free energy that is minimized by a periodic hexago-
nal (i.e., solid) state. Such free energies have arisen in
many other physical systems [13,14] (such as water/
surfactant systems, copolymers, Rayleigh-Bénard convec-
tion, and ferromagnetic films) and in some instances have
even been described in terms of crystalline terminology
[14]. The model used in this work describes the statics
and dynamics of a conserved field, c, by the following
free energy and equation of motion:

F �
Z

d �r �c��q2
o 1 =2�2 2 e�c�2 1 c4�4� , (1)

and

≠c�≠t � =2�dF �dc� 1 h , (2)

where h is a stochastic noise, with zero mean and correla-
tions �h��r , t�h��r 0, t0�	 � 2G=2d��r 2 �r 0�d�t 2 t0�, and
G � 0 hereafter, qo and e are constants. The field c rep-
resents the local mass density. The specific free energy
given in Eq. (1) was chosen as it is the simplest form that
produces periodic states. The simplicity is important, as
it leads to computationally efficient numerical schemes.
Producing periodic structures is crucial, as such states
naturally allow for elastic and plastic deformations,
multiple orientations, and can accommodate free surfaces,
as required for a crystal phase. The dynamical equation
of motion, Eq. (2), was chosen to conserve the local mass
density.

The focus of this paper is on two dimensions (2D); it is
straightforward to extend these calculations to 3D. In 2D,
this free energy is minimized by striped �cs�, hexagonal
�ch�, and constant �cc� states depending on the average
value, c̄, of c. To estimate the phase diagram, these states
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can be approximated by cs � As sin�qsx� 1 c̄, ch �
Ah�cos�qhx� cos�qhy�

p
3 � 1 cos�2qhy�

p
3 ��2� 1 c̄ , and

cc � c̄. Substituting these expressions into Eq. (1) and
minimizing subject to the constraint

R
d �r c � c̄ gives

the values for the characteristic amplitudes A and wave
number q [15] and the phase diagram shown in Fig. 1a.

The linear elastic properties of the hexagonal phase can
be determined by calculating the change of energy [as de-
scribed by Eq. (1)] under shear, bulk, or dilational defor-
mations within the approximation given for ch above. For
example, the energy for a compression or expansion can be
estimated by substituting Eq. (3) into Eq. (1), minimizing
Eq. (1) with respect to Ah, and then determining the change
in F as a function of qh, since qh is inversely proportional
to the periodicity or lattice spacing. This change in energy
can then be related to elastic constants in the standard fash-
ion [16]. Using this method, it is straightforward to find
the elastic moduli for the isotropic solid. For the free en-
ergy given in Eq. (1), the results are C12 � C44 � C11�3,
where C12 � ��3c̄ 1

p
15e 2 36c̄2 �q2

o�2�75, which are
consistent with an isotropic solid. For these coefficients
[17], the Poisson ratio is n � 1�3 and the shear modulus
is m � C44.

The energy per unit surface length, EL, between grains
that differ in orientation by an angle u was determined nu-
merically and, in Fig. 1b, compared with the prediction of
Read and Shockley [18], i.e., EL � EMu�1 2 ln�u�uM��,
where EM and uM are constants. The parameters of the
simulations were �e, c̄, qo� � �4�15, 1�4, 1�. In all the
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FIG. 1. (a) Mean field phase diagram. In this figure the
“hatched” regions are coexistence regions. (b) Grain boundary
energy. The points are from numerical simulations and the
line a fit to the Read-Shockley equation. (c) Grain growth. In
this figure, the number defects is plotted and the solid line is
a guide to the eye. (d) Epitaxial growth. The points are from
numerical simulations and the lines are best fits.
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simulations conducted, the time and space size were Dt �
0.01 and Dx � p�4, respectively. The Read-Shockley
form closely fits the data for uM � 27.85± and EM �
0.064. The maximum angle uM is similar to those ob-
served in experiment [18]. The maximum energy/length,
EM , can be estimated using the Read-Shockley equation
[18] in 2D [17] using the elastic constants estimated above,
EM � m�1 1 n�b�4p � C12b�3p, where b � 2p�qh

is the magnitude of the Burgers vector. For the parame-
ters used in the simulations, this gives EM � 0.044, as
compared to our measured value of 0.064. This is a
reasonable result considering the inherent approximations
in the Read-Shockley equation and the approximate form
chosen for ch used in calculating the elastic constants.

The main advantage of the current approach over mo-
lecular dynamics simulations is the time scales that are
accessible. To illustrate this point, it is useful to calcu-
late the diffusion time using a standard Bloch-Floquét
linear analysis. In such an approach, the dynamics of
a perturbation �dc� around an equilibrium crystal state
�ceq� is obtained by first substituting c � dc 1 ceq
into Eq. (2) and linearizing in dc. Substituting appro-
priate forms for the equilibrium state, i.e., ceq � c̄ 1P

an,m exp�i�nqxx 1 mqyy��, and perturbation along
one of the three principal axes, i.e., dc �

P
dan,m�t� 3

exp�i��nqx 1 Q�x 1 mqyy��, and integrating over
exp�i�kqxx 1 lqyy�� gives an equation of motion for the
modes dan,m. Using the approximation for ceq given
by ch and four modes da61,61 for the perturbation, the
resulting equations can be solved analytically, assuming
dan,m 
 exp�2vt�. The smallest eigenvalue is equal to
v � 3q4

oQ2 implying a diffusion constant of 3q4
o . In

terms of time steps, this implies it takes roughly 1000 time
steps for a diffusion time, tD [19], for the simulation
parameters used in this paper.

The ability of the continuum model to describe multiple
crystals in arbitrary orientations and locations with the ap-
propriate grain boundary energies on diffusive time scales
makes it ideal for the study of grain boundary growth.
To study this phenomenon, a system of size 4096Dx 3
4096Dx was simulated with parameters �e, c̄, qo� �
�0.1, 0.05, 1�. To begin the simulations, 256 crystals
were nucleated at arbitrary locations by placing large
fluctuations in c at each nucleation site. As time evolves,
the small crystallites grow from the initial seeds until
impingement. Eventually, the entire system is filled with
the hexagonal phase, and further evolution continues
by motion at grain boundaries. A portion of a sample
configuration is given in Fig. 2. At this stage in the
simulations, there were approximately 236 000 particles.
To study the subsequent dynamics, the number of defects,
where a defect is defined as a particle that does not have
six nearest neighbors, was monitored. The number of
defects is shown in Fig. 1c as a function of the logarithm
of time. Initially [log�t� , 1.7] the number of defects
increases as the total droplet surface area increases. When
245701-2
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FIG. 2. Grain growth. Gray scale plot of the order parameter
c at t�tD � 700. This plot contains 1�64 of the full simula-
tions cell.

the droplets impinge, the number of defects begins to
decrease as local rearrangements take place. At later
times [log�t�tD� . 2.0], the grain boundaries evolve at a
very slow rate. In these simulations, it is found that the
number of defects decreases logarithmically at late times.
The slow growth is distinctly different from foams and
froths, where growth is mainly determined by the motion
of triple junctions and curvature relaxation, and cannot be
attributed to impurity pinning [20] since these simulations
were conducted for a pure material.

The inclusion of elastic and plastic deformations al-
lows the study of morphological instabilities in epitaxial
growth. When a film grows on a bulk material that has a
different lattice constant, the film can become corrugated
(“buckle”) in an attempt to relieve the strain [1]. The buck-
ling of the surface relieves the strain in some regions but
increases the strain in others. At these locations dislo-
cations eventually nucleate. The critical height, Hc, at
which these nucleate can be approximated by the Matthews
and Blakeslee equation [3] which has the functional form,
Hc � Ho�1 1 ln�Hc�b���E , where Ho is a constant and
E is the mismatch between the film and bulk lattice pa-
rameters; i.e., E � �afilm 2 abulk��abulk, where a is a
lattice constant.

To study these phenomena, a thin film with qo � qf

was grown on a bulk sample (qo � 1) with the parame-
ters �e, c̄� � �1�4, 1�4� for various values of qf . The sys-
tem had a width of 8192Dx and a height of 1024Dx. A
small portion of a sample simulation is shown in Fig. 3
for a lattice mismatch of 6.4%, [i.e., E � �2p�qf 2

2p�qo���2p�qo � � 0.064]. The buckling phenomena are
shown in Fig. 3a and the nucleation of dislocations in
245701-3
FIG. 3. Epitaxial growth. In this figure, the film and bulk
particles (defined as local maxima of c) are plotted as open and
closed circles, respectively. Defects are plotted as solid squares.
Figures (a) and (b) are shown after an average of 
13 and

21 layers have been grown, respectively. Figure (a) shows the
buckling of the surface and (b) shows defects at the location of
maximum buckle in (a). Figure (b) also shows that the creation
of a defect leads to less buckling.

Fig. 3b. The numerical results for Hc shown in Fig. 1d
are consistent with the functional relationship proposed by
Matthews and Blakeslee [3]. Figure 3 clearly shows that
the nucleation of dislocations in epitaxial growth is highly
correlated with surface buckling and must be included to
obtain a quantitatively correct expression for the critical
thickness. It is also noteworthy that the surface roughness
decreases after dislocations appear, in accord with very
recent rms surface roughening measurements on SiGe�Si
heterostructures [21].

The one component model described by Eqs. (1) and
(2) does not support other metastable crystal phases and
thus cannot be used to, for example, study structural phase
transitions. However, it is straightforward to extend the
model to include more than one kind of particle which can
give rise to other metastable crystal phases. For example,
a binary system can be easily modeled by a free energy of
the form

F �
Z

d �r�c1��q2
1 1 =2�2 2 e1�c1�2 1 c4

1 �4

1 c2��q2
2 1 =2�2 2 e2�c2�2

1 c4
2 �4 1 ac1c2� , (3)

and the equations of motion, ≠c1�≠t � G1=2dF �dc1 1

h1 and ≠c2�≠t � G2=2dF �dc2 1 h2, where a is a cou-
pling constant. The properties (i.e., lattice constant, bulk
compressibility, etc.) of the individual atoms are controlled
by the parameters with subscripts 1 or 2 and by the average
245701-3
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FIG. 4. Binary alloy. In this figure, the open circles and solid
squares are the maxima of c1 and c2, respectively. Two differ-
ent crystal structures have been highlighted by joining nearest
neighbors of the same species.

value of c1 and c2. When an individual binary alloy
droplet is grown, a hexagonal pattern typically emerges.
However, when a random initial condition is used, the pat-
terns usually contain more than one crystal phase since the
energy of the hexagonal state is very close to a face cen-
tered cubic. One such configuration is shown in Fig. 4.
Eventually, the system will evolve to a hexagonal state.
Thus, the model can be used to study structural phase
transitions.

In conclusion, Eqs. (1) and (2) model elastic and plas-
tic behavior of crystals on atomic length scales and lead
to simulations that are many orders of magnitude times
faster than other approaches, such as molecular dynamics.
For example, the current model can simulate one diffusion
time in 1000 time steps, while molecular dynamics simu-
lations would require 
109 time steps for a diffusion time
of 1 ms, 
1012 time steps for a diffusion time of 1 ms
(appropriate for copper at 650 ±C), etc. Thus, this model
should provide a useful tool for studying the crystallization
phenomena.
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