
Robotic Object Manipulation with Full-Trajectory
GAN-Based Imitation Learning

Haoxu Wang

Master of Computer Science

School of Computer Science
McGill University

Montreal, Quebec, Canada

September 2020

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Computer Science

c©Haoxu Wang, 2020

Abstract

Our work aims to approach the difficult problem of robotic imitation learning from human
demonstrations. We propose a Generative Adversarial Network (GAN)-based manipulation
trajectory planner, which was integrated into a prototype learning system, and deployed on
a state-of-the-art commercial robotic arm. The system fulfills simple tasks in two phases:
grasping and manipulation. We adapted an open-source deep learning planner for grasping,
and developed a GAN-based neural network that directly outputs the complete manipula-
tion trajectory. The networks were trained with very few demonstrations, and tested in
untrained scenarios.

Experiments were conducted in both a simulated and a physical environment. The sys-
tem extracts trajectories from the recorded demonstrations via classical computer vision
methods, and then performs grasping and manipulation to complete the learned task. Our
GAN-based approach and three baseline solutions all performed comparably on a simple
object interaction task. For a complex task, namely pouring, our approach displayed better
performance in comprehending the complicated manipulation motions, including plausible
tilting and pausing.

i

Abrégé

Ce travail vise à traiter le sujet complexe de l’apprentissage par imitation des gestes hu-
mains par les robots. Il propose un plan de trajectoire de manipulation fondé sur un Genera-
tive Adversarial Network (GAN), qui a été intégré à un prototype de système d’apprentissage
et déployé à l’aide d’un bras robotique commercial de pointe. Le système permet de réaliser
des tâches simples en deux phases : il peut attraper des objets et les manipuler. Un plan
d’apprentissage profond open-source a été adapté pour lui permettre d’attraper des objets,
et un réseau neural basé sur un GAN a été développé pour produire directement la trajec-
toire de manipulation complète. Les réseaux ont été formés à l’aide de peu de gestes, et
testés dans le cadre de scénarios sans entraînement.

Des expériences ont été réalisées dans des environnements simulés et physiques. Le
système extrait les trajectoires des gestes enregistrés via des méthodes classiques de représen-
tation assistée par ordinateur, puis réalise le geste de saisie et de manipulation pour ainsi
effectuer la tâche apprise. Pour permettre des comparaisons, cette approche en GAN et trois
solutions de référence ont été appliquées sur une simple tâche impliquant une interaction
avec un objet. Pour une tâche complexe, dans le cas présent, le fait de verser un liquide,
notre approche a montré de meilleurs résultats dans la compréhension de mouvements de
manipulation compliqués, comprenant une inclinaison et des temps de pause plausibles.

ii

Contributions

Under Professor David Meger’s supervision, Haoxu Wang designed and prototyped the
learning system, as well as conducted experiments to examine the viability of the system.
Haoxu Wang wrote this manuscript in consultation with Professor David Meger.

iii

Acknowledgements

I would like to thank my supervisor, Professor David Meger of the School of Computer Sci-
ence at McGill University. Professor David Meger is very knowledgeable, patient, helpful
and passionate in both researching and teaching. It was only with his continuous guidance
that I was able to complete my Master’s degree.

I would also like to thank my family and all my dear friends for being wonderful pres-
ences in my life.

Back in 2009, I journeyed to the opposite side of the world with a lone bag of clothing.
A decade later, I have been gifted a home, a family, a few friends and a son. I would like
to thank every person who supported me along the way. Life goes on without a moment of
pause. Ultimately, the cornerstone of my life is not the things that kept me busy everyday,
but the thoughts and stories of the people I care about.

iv

Contents

1 Introduction 1

2 Robotic Object Manipulation 5
2.1 Formulation . 6
2.2 Motion Planning . 7

2.3 Grasping . 9

3 Learning to Grasp 13
3.1 Convolutional Neural Networks for Perception 15

3.2 Dex-Net 2.0 . 18
3.2.1 Custom Denoising Module . 20

4 Learning to Manipulate by Imitation 22
4.1 Reinforcement Learning and Markov Decision Process 23

4.2 Imitation Learning Algorithms . 25

4.2.1 Policy Imitation . 27

4.2.2 Learning Rewards . 30

4.3 Generative Adversarial Algorithms . 33

4.3.1 Generative Adversarial Networks 33
4.3.2 Generative Adversarial Imitation Learning 35

5 Method: Imitating Full Trajectories 38
5.1 Method Overview . 38
5.2 Architecture of the Networks . 39

5.2.1 Generator Architecture . 40
5.2.2 Discriminator Architecture . 42

v

5.3 Training . 44

6 Experimental Setup 48
6.1 Tasks of Interest . 49
6.2 Neural Network Graphs . 51

6.3 Baseline Methods . 53
6.4 Demonstration Process . 54
6.5 Computer Vision Pipeline . 56

6.5.1 RGBD Camera . 56
6.5.2 Color Marker Annotated Objects 62

6.5.3 Filtering and K-means Clustering 62

6.6 The JACO2 Assistive Robot Arm . 64
6.7 Trajectory Visualization . 67

7 Results 73
7.1 Viability of the System . 73

7.2 Qualitative Comparison . 75

7.3 Learning Curves and Progression of Predictions 77

7.3.1 Full-Trajectory GAN . 78

7.3.2 State-to-State GAIL . 82
7.3.3 Full-Trajectory BC . 85

7.3.4 State-to-State BC . 88
7.3.5 Without Long Skipping Edges . 90

7.4 Visualized Trajectory Predictions . 91

7.5 Hyperparameters Exploration . 95

7.6 Manipulation Trajectories Performed in Simulation 101

8 Conclusions and Future Work 103
8.1 Conclusions . 103
8.2 Future Work . 104

Bibliography 105

vi

A Supplemental Figures 124

vii

List of Figures

1.1 Executing the Learned Pick-and-Place Trajectory (Video available) 2

1.2 Our Workspace Setup . 3

2.1 The Kinova JACO Robotic Arm (reprinted from [des19]) 5

2.2 Frame of Reference and Gripper Pose . 6

2.3 Form Closure (left) and Force Closure (right) Grasping a Number "8". . . . 10

2.4 An Example of a Caging Grasp (reprinted from [DSFK08]) 11

3.1 Various Objects in the Grasping Database Proposed by [KBS15] (reprinted
figure) . 14

3.2 Architecture of a Convolutional Neural Network (reprinted from [CMM`11]) 16

3.3 Upside Down Mounted Tripod and Camera 18

3.4 Sampled Grasps [MLN`17] . 19

3.5 GQCNN model architecture [MLN`17] 20

3.6 Dex-Net 2.0 Workspace [MLN`17] . 21

5.1 Architecture of the Generator with Skip Edges (the circles in P denote
repeated subgraphs) . 42

5.2 Architecture of the Discriminator . 44

6.1 System Flowchart . 50

6.2 Network Architecture of the Generator (22M params) and Discriminator
(4M params) . 52

6.3 Demonstrating Using a Grabber . 56

6.4 Kinect V2 Front Panel [WS16] . 57
6.5 IAI Kinect2 calibration (photo reprinted from [Wie15]) 58

6.6 Camera Color Channel . 60

viii

https://youtu.be/ywvo9tqk1q0

6.7 PCD Visualization . 60
6.8 The Kinova JACO2 R©Assistive Robot . 64

6.9 A Snapshot of Demonstration Recording 68

6.10 Visualizing the Arm’s Pose in a 3D Plot 69

6.11 Original Demonstration Trajectory for Pouring 70

6.12 Trajectory Visualization from Multiple Perspectives 71

6.13 Original Demonstration Trajectory for Pouring 72

6.14 Re-sampled Demonstration Trajectory for Pouring 72

7.1 Demonstration Trajectory . 74

7.2 Predicted Trajectory . 74

7.3 Another Example Executing the Learned Pick-and-Place Trajectory (Video
Available) . 75

7.4 Negative Rewards from Train . 77

7.5 Negative Rewards from Eval . 77

7.6 Train Accuracy of State-to-Full-Trajectory GAN 78

7.7 Eval Accuracy of State-to-Full-Trajectory GAN 78

7.8 Predictions From State-to-Full-Trajectory GAN (EvalSeed #0) 80

7.9 Predictions From State-to-Full-Trajectory GAN (EvalSeed #7) 81

7.10 Train Accuracy of State-to-State GAIL . 82

7.11 Eval Accuracy of State-to-State GAIL . 82

7.12 Predictions From State-to-State GAIL (EvalSeed #0) 83

7.13 Predictions From State-to-State GAIL (EvalSeed #7) 84

7.14 MSE Loss Learning curve of State-to-Full-Trajectory BC 85

7.15 Predictions From State-to-Full-Trajectory BC (EvalSeed #0) 86

7.16 Predictions From State-to-Full-Trajectory BC (EvalSeed #7) 87

7.17 MSE Loss Learning curve of State-to-Full-Trajectory BC 88

7.18 Predictions From State-to-State BC (EvalSeed #0) 89

7.19 Predictions From State-to-State BC (EvalSeed #7) 90

7.20 Progression of Model Predictions, for State-to-Full-Trajectory GAN Model
Without Long Skipping Edges . 91

7.21 State-to-Full-Trajectory GAN Prediction Compared to Demonstration . . . 92

ix

https://youtu.be/ywvo9tqk1q0

7.22 State-to-Full-Trajectory BC Prediction Compared to Demonstration 93

7.23 State-to-State GAIL Prediction Comparing to Demonstration 94

7.24 State-to-State BC Prediction Compared to Demonstration 95

7.25 Consistency of Training Evaluated by Train Dataset 96

7.26 Consistency of Training Evaluated by Eval Dataset 96

7.27 Training Consistency . 97

7.28 Effect of Synthetic Dataset Size . 98

7.29 Discriminator Steps Per Iteration . 99

7.30 Generator Steps Per Iteration . 100

7.31 One Example of the Final Predictions . 101

7.32 Executing the Learned Pouring Trajectory in Gazebo Simulation 102

A.1 Proposed Generator Network Diagram . 125

A.2 Proposed Discriminator Network Diagram 126

A.3 Baseline State to Action Generator Network Diagram 127

A.4 Baseline State to Action Discriminator Network Diagram 128

A.5 Baseline State to Action Behavior Cloning Network Diagram 129

A.6 Baseline Full Trajectory Behavior Cloning Network Diagram 130

A.7 Pick-and-Place Demonstration Trajectory #0 131

A.8 Pick-and-Place Demonstration Trajectory #3 132

A.9 Pick-and-Place Demonstration Trajectory #6 133

A.10 Pick-and-Place Demonstration Trajectory #9 134

A.11 Pouring Demonstration Trajectory #0 . 135

A.12 Pouring Demonstration Trajectory #3 . 136

A.13 Pouring Demonstration Trajectory #6 . 137

A.14 Pouring Demonstration Trajectory #9 . 138

x

List of Tables

4.1 Notations and Concepts . 23

7.1 Comparison of Averaged Negative Rewards 77

xi

1
Introduction

With the advent of data-rich deep learning, many successful applications emerged in the
realm of Reinforcement Learning (RL). As a data-driven approach, both the training dataset’s
distribution and the algorithm’s data efficiency are crucial factors to deep RL. Meanwhile,
in the world of robotics, expert demonstrations can be in limited supply or expensive to
produce. This research thesis addresses this challenge. We introduce an IL-based solution
for building a teachable robotic system, which learns simple tasks from extremely few hu-
man demonstrations and was examined on a state-of-the-art commercial robotic arm. In
particular, our research emphasizes building a teachable robot system, leveraging the ex-
isting programmable industrial robotic systems, which learns from extremely few demon-
strations.

1

Introduction

Figure 1.1: Executing the Learned Pick-and-Place Trajectory (Video available)

As the main technical contribution, we introduced a full-trajectory prediction deep neu-
ral network model, which implements a variation of the Generative Adversarial Network
(GAN). Our network uses the initial positions of the object and the arm’s end-effector as in-
put, and outputs the full manipulation trajectory. Figure 1.1 shows the arm performing1 the
learned pick-and-place task. We believe directly predicting the complete trajectory con-
tributes to a more coherent state-to-state transition. Compared to Generative Adversarial
Imitation Learning (GAIL), our approach reduces the difficulty of training by not requiring
estimated state-action value functions. During execution, we control the agent with existing
joint-state-controller software solutions to follow the initially planned trajectory; however,
this course correction feature sacrifices the potential capability for the agent to react to
new information provided by real-time feedback. Overall, our method performed well on

1Video available at youtu.be/ywvo9tqk1q0 .

2

https://youtu.be/ywvo9tqk1q0
https://youtu.be/ywvo9tqk1q0

Introduction

pouring, a complex real-world task.

We also implemented three baseline models. One of the most successful classical ap-
proaches for IL is behavior cloning (BC) implemented by supervised learning. While in-
tuitively designed, this method imposes strict requirements for large and well-distributed
training data. On the other hand, GAN relaxed those requirements by improving data ef-
ficiency, enabling the DNN to perform better on high-dimensional complex environments,
which is a common characteristic of real world robotic problems. Compared to full tra-
jectory prediction, state-to-state prediction is commonly used in the realm of reinforce-
ment learning. To explore the aforementioned two aspects, our experiments compared our
method with three different approaches, namely state-to-state BC, state-to-full-trajectory
BC, and state-to-state GAIL.

To conduct real-world experiments, we constructed a prototype system using the Mi-
crosoft Kinect V2 camera as the eye of the system and the Kinova JACO2 Robotic Arm
as our agent. The system was built upon the Robotic Operating System (ROS), bridging
different infrastructural components of the system. This includes producing real-time point
cloud data streamed from Kinect’s RGBD video feed, recognizing affiliated objects in the
scene, and parsing demonstration videos into coordinates of motion trajectories and points
of interest.

Figure 1.2: Our Workspace Setup

3

Introduction

The manipulation trajectory planner of the system was built with a GAN-based DNN,
which was able to imitate complex motions. The model exhibited improvements compared
to the three baseline solutions. At execution time, the system first identifies relevant objects
in the scene, then it utilizes a open-source grasp planner to acquire the object of interest
in the gripper. After which, the deep neural network motion planner would suggest a ma-
nipulation trajectory by performing inference, using the position of the gripper and objects
as input to the network. The trajectory will then be translated into 7 sets of joint angular
positions and velocities using a joint-state controller, and finally executed by the JACO2
arm to complete the learned task.

Figure 1.2 shows the workspace used to conduct the experiments, highlighting a Kinect
camera and tripod mounted against the ceiling, looking downwards, a JACO2 arm mounted
on a table, a color-marker-annotated grabber and a laptop running the software.

Chapter 2 introduces the formulation of the robotic object manipulation problem and
the classical solutions. Our work decomposes the fulfilment of a task into grasping and
manipulation. Chapter 3 discusses the deep learning approach for the grasping problem,
while Chapter 4 briefly discusses the theoretical foundations of deep imitation learning and
its applications in object manipulation planning. Chapter 5 presents the main contributions
of our research: a novel trajectory planning deep neural network network, as well as data
engineering and training techniques.

Our experiments were conducted on both the simulated and the physical robot, with
demonstrations recorded in the real world. Chapter 6 illustrates details regarding the ex-
periments process, model parameters, baselines, the numerous software and hardware en-
gineering challenges, as well as our solutions.

Finally, Chapter 7 attempts to scrutinize the results of our experiments, while Chapter
8 concludes this thesis.

4

2
Robotic Object Manipulation

A robotic arm functions by interacting with the world using its end-effector. This thesis
studies the particular class of robotic arms which employ mechanical grippers as the end-
effector. In this chapter, we will briefly introduce the classical approach to motion planning
and grasping. In the next two chapters, we will discuss the motivation and advantages of
the more modern, data-driven approach.

Figure 2.1: The Kinova JACO Robotic Arm (reprinted from [des19])

5

2.1 Formulation

2.1 Formulation

Gripper-based robotic arms are designed to first grasp objects, and then perform the task of
interest by executing manipulation trajectories, defined by

τ “ t~st0 , ~st1 , ..., ~stHu , (2.1)

where tt0, t1, ..., tHu is a sequence of timestamps, and ~st “ rx, y, z, yaw, pitch, rolls de-
fines the pose of the gripper at time t, as indicated in Figure 2.2. Meanwhile, the gripper
is mobilized by the angles of joints, described by ~Θ “ t~θ0, ~θ1, ..., ~θD´1u

1. The state of the
arm can be described in Cartesian space as ~s, or in joint space as ~Θ.

Figure 2.2: Frame of Reference and Gripper Pose

1The subscription D is the degrees of freedom of the robot.

6

2.2 Motion Planning

Kinematics

Forward Kinematic (FK) studies the static geometrical problem of computing the position
of the gripper from a given set of joint angles ~Θ [Cra09]. Pose ~s of the gripper is calculated
by a function denoted as FK

~s “ FKp~Θq . (2.2)

The concept of workspace describe the physical space that the gripper can reach, which is
the set of possible values of ~s, defined as

~sj, ...|~sj “ FKp~Θq
(

, s.t. D~Θ . (2.3)

Inverse Kinematics (IK), on the other hand, studies the problem of mapping back from
a desired position of the gripper ~s to the set of all possible ~Θ solutions of FKp~Θq by a
solver function denoted as IK. The set is given by

IKp~sq “

~Θj, ...|~s “ FKp~Θjq
(

. (2.4)

Some modern industrial robots include high-level controller software solutions, which
are facilitated by feedback sensors and actuators that are customized for their intended task
domain [Cra09]. For example, the Kinova JACO Robotic Arm provides a driver capable of
executing2 a set of joint angles from time t0 to tH , given by

t~Θt0 , ~Θt1 , ..., ~ΘtHu. (2.5)

2.2 Motion Planning

Both FK and IK study the positioning and motion of robots that are constrained in a
workspace. Meanwhile, they do not incorporate acceleration and force into consideration,
which are crucial to practical robotic applications. Considering the following scenario, at
each t, ~Θ can be solved independently without considering the current joint angle states at

2The desired ~Θt`1 may not be possible to execute due to hardware limitation or the current ~Θt.

7

2.2 Motion Planning

the previous timestamp. Trajectory τ is solved by

t~Θt0 , ~Θt1 , ..., ~ΘtHu

s.t. @t , ~Θt P IKp~stq, ~st P τ .
(2.6)

Because consecutive joint angles ~Θtk and ~Θtk`1
could have large difference in value, the

resulting motion would likely be incoherent and inefficient. A sophisticated joint state plan-
ner is required to plan smooth motion for τ while avoiding unintended contact with envi-
ronmental obstacles. MOVEit is a popular motion planning framework in the open-source
community, which provided motion planning, trajectory generation and environment mon-
itoring [CSC12]. One naive way to plan a coherent motion trajectory τ could be

t~Θ˚
t0
, ~Θ˚

t1
, ..., ~Θ˚

tH
u “MP pτ, Envq

s.t. @θ, θ ă Ψ, while θ P tθj, ...|θj “ p~Θtk`1
´ ~Θtkqu 0 6 k ă H, .

(2.7)

where MP is a motion planning function, Env denote relevant factors in the environment
and Ψ is the threshold joint angular speed. The Equation constrains the first order deriva-
tive, velocity, under a certain threshold Ψ. A more fluent motion may constrain the second
order derivative, acceleration.

Solving questions in Equation 2.7 requires motion planning in continuous state spaces.
Given a desired trajectory τ , motion planning solves for a ideal sequence of joint angles

t~Θ˚
t0
, ~Θ˚

t1
, ..., ~Θ˚

tH
u “MP pτ, Envq, (2.8)

which can be executed collision free and low-cost. Our work considers the latter studies
the higher level problem of coming up with the desired τ that fulfills some task of interest.
Manipulation trajectory planning is discussed in Chapter 4.

In classical motion planning, both the arm and objects in the environment are explicitly
modeled, often using polygons [AAS99], polyhedrons [SLG90] or voxels [LK02]. For sim-
plicity of discussion, in this section, we refer to parts as all rigid bodies in the environment,
which includes the objects and each mobile components of the robot arm.

With all parts modeled, the possible motions of the parts are reasoned with rigid body

8

2.3 Grasping

transformations, which can be loosely defined as a type of transformations that does not
change the geometric integrity of the rigid object.

Meanwhile, not all parts of the environment can be freely transformed. For example,
the links on robot arms are connected by joints with a limited range of angles. The possible
transforms are studied by configuration space, which is formally defined by [LaV06] as

Definition 2.2.1. The state space for motion planning is a set of possible transformations

that could be applied to the robot.

Sampling-Based Motion Planning

With the key concepts established, we introduce the sampling-based motion planning ap-
proach, which has been successfully applied to various real-world problems, including so-
lutions implemented using classical software programming languages [BKV10] [KF10]
[BB07] [PH10]. This approach also had groundbreaking achievements when implemented
with deep learning models [IP19] [IHP18] [YA17].

Sampling-based motion planning attempts to find high-quality solutions by sampling
and searching. The algorithm samples possible solutions Θ to individual desired states ~s
in the configuration space denoted C. Metric Space is established to measure the distance

between different solutions Θ P C. The algorithm then solves the optimization problem,
the search for the optimal sequence, by minimizing total distance.

2.3 Grasping

Now that we briefly introduced motion planning for an end-effector, we may hope to use
it to interact with objects. In this thesis, we will focus on robots with a mechanical gripper
as the end-effector. Grasping is to firmly acquire the object of interest using the robotic
arm’s gripper. The fulfillment of many simple tasks can be decomposed into two phases:
grasping, followed by manipulation. Firstly, grasp the object of interest, then manipulate
the object to interact with the environment. Furthermore, many real-life single-hand chores
can be accomplished by executing one or a sequence of those simple tasks. In this section,
we briefly discuss the classical approaches for robotic grasping.

9

2.3 Grasping

Form Closure and Force Closure

Mechanical grippers are designed to close on objects and grasp with surface contact. Two
important properties of grasping, form closure and force closure, are defined as the capa-
bility of the robot to inhibit the motions of the object in spite of externally applied forces
[Bic94]. Form closure defines the immobilization of objects using geometrics, such that the
relative movement of the object requires bending the gripper. The latter prevents relative
movement by equilibrium.

We define wrench as a vector of length 6 that describes the force and torque being
applied on a rigid body, and intensity vector as a vector of contact force and moment com-
ponents [PT16]. Force closure is achieved if, and only if, for any arbitrary external wrench

~w that the environment may apply, there exists an intensity vector λ satisfying the contact
constraint inequalities [BK00], such that

Wλ “ ~w (2.9)

where W is the combined wrench. While both form closure and force closure are ideal
conditions to facilitate object manipulation, the difference in the concepts is demonstrated
in Figure 2.3.

Figure 2.3: Form Closure (left) and Force Closure (right) Grasping a Number "8".

Grasping Quality and Grasping Planner

As important as the gripper’s physical capabilities, the location on the object to grasp also
greatly affects the outcome. Various grasping quality measurements has been established

10

2.3 Grasping

to quantify the preference of grasping configurations [FC92] [LS88] [HSSR05]. We use
GQ to denote functions for calculating grasping quality, and µ to denote grasping config-
urations, which may include pose of the grasp, wrench vectors, and other relevant factors
of the gripper.

Given an object described as Φ, a grasping planner function GP solves the optimal
grasping configuration µ˚ by maximizing grasping quality, given by

µ˚ “ GP pΦq “ argmaxµGQpΦ, µq , (2.10)

where the candidate grasping configurations µ is proposed by a grasp sampler, often im-
plemented as uniformly random or based on heuristics. The goal of a grasping planner is
to suggest the ideal configuration µ˚.

Caging Configurations

Caging is an influential grasping planning method based on geometrics analysis [RMF12]
[MKE12] [HNY13]. The work done by [DSFK08] defines3 a caging configuration as

Definition 2.3.1. Caging configuration is a grasp configuration µ that lies in a compact

connected component of Mf

Ş

Mµ, where Mf denotes the gripper’s free movement space,

and Mµ denotes the set of all configurations obtained by rigid body transformations from

µ.

Figure 2.4: An Example of a Caging Grasp (reprinted from [DSFK08])

3The definition of 2.3.1 is based on [DSFK08]. However it has been rephrased, and the symbols are
adapted to our notations.

11

2.3 Grasping

Their work implements GP by identifying caging configurations as µ˚. An example is
shown in Figure 2.4; on the left is a caging configurations µ, which leaves many possible
configurations Mf . As the fingers on the gripper closes, using rigid body transformations,
Mµ converges. Eventually Mf

Ş

Mµ becomes a set of configurations that achieves form

closure.

Grasp Wrench Space Epsilon

In contrast, the work done by [WA12] uses Grasp Wrench Space Epsilon (εGWS) as grasp-

ing quality metric, which allows analysis of force closure solutions. Their work uses the
widely cited εGWS metric [FC92], given by

εGWSpµq “ argmaxε

!

t ~w | ||~w||2 ă εu Ď convexhullpµq
)

, (2.11)

where ||~w||2 is the L2-norm of wrench vector ~w, and grasp configuration µ is defined by
the contact wrenches of the gripper. The optimal grasping configuration µ˚ is then found
by

µ˚ “ argmaxµ
“

εGWSpµq
‰

. (2.12)

Classical grasping methods often rely on explicitly modeled objects, and are compu-
tation intensive. Due to imperfect perception of the real world and limited computation
power, the classical approach to grasping models real objects with oversimplified geome-
tries and approximated material properties, and puts significant hardware constraints on
real-time applications. Classical grasping analysis often requires controlled environments
with prior knowledge [Sta90] [HPA`90].

This concludes our short discussion on the fundamentals of classical robotic motion
planning and grasping. In the next two chapters, we will dive deep into learning-based
grasping planning and manipulation planning. After that, we will be ready to present our
proposed method.

12

3
Learning to Grasp

In the previous chapter, we discussed the challenges of classical grasping analysis, namely
imperfect modeling of the real world and high computational cost. We will begin this chap-
ter by introducing the data-driven approach to grasping, which has made groundbreaking
progress in empowering practical grasping applications. Then, we will take a detour to
introduce the relevant neural network layers used by our work, with an emphasis on Con-
volutional neural networks (CNN). After the necessary machine learning building blocks
have been established, we will conclude this chapter by presenting a state-of-the-art open-
source grasping planner, Dex-Net, as well as the custom modifications made to adapt it to
our laboratory environment.

The Data Driven Approach

Grasping planners based on geometric analysis have proven successful with simple ob-
jects [Cra09], such as the work-pieces of an automated factory. However, everyday ob-
jects may have obscure geometry, either by design or due to damage. In order to build
more versatile robots, more recent research has taken a data-driven approach. Those re-
searchers aim to plan robust grasping on various objects and textures by learning from
pre-constructed grasping databases. For example, [KBS15] proposed a large-scale database
containing grasps that are applied to a large set of objects from numerous categories. The
database contains objects that are represented by polyhedron models, and candidate grasps
for those objects. Some examples in the database are shown in Figure 3.1.

13

Learning to Grasp

Figure 3.1: Various Objects in the Grasping Database Proposed by [KBS15] (reprinted
figure)

A number of other researches have also proposed similar grasping databases, such as the
popular The Columbia Grasp Database [GCDA09], Human Grasping Database [FB11],
Dex-Net [MPH`16], and more [ZZMC13] [BL13] [LOJ14]. By providing a database of
items and grasping quality estimations, those work paved the way for machine learning-
based grasping planners, which have proven to be more effective for practical applica-
tions in complex environments [LPK`18] [MCL18] [JMS11] [JLD16]. A number of works
combined learning-based grasping with one shot imitation learning [WD10] [VPSP17]
[HEKL`13] [TTS`18] [CAGT18] [KW15].

The aforementioned digital databases were labeled by either the use of sophisticated
physical simulations or human labelers. Instead of learning with an existing database,
[PG16] learns to grasp in the real world using trial-and-error on real objects. Taking this
approach farther, [LPK`18] conducted large-scale data collection using many robots ex-
perimenting in parallel and learning with the congregated dataset.

Deep learning-based grasping research solves Equation 2.12 by function approxima-
tion using neural networks. Given the object’s feature vector, denoted by ~φ, the suggested
grasping configuration µ is computed by

µ “ Hp~φq, (3.1)

whereH is a function approximate maximizing GQp~φ, µq.

14

3.1 Convolutional Neural Networks for Perception

3.1 Convolutional Neural Networks for Perception

The field of robotic grasping has achieved groundbreaking success with the advent of deep
learning [LPK`18] [JLD16] [FBH`18] [CAGT18]. Meanwhile, CNN have been push-
ing the limits of cognitive computing [SU15], especially for visual applications such as
image classification [HHW`15], object detection [HCH`17] and semantic segmentation
[CPK`17]. Moreover, CNN was been a key component of both the open-source grasping
planner [MLN`17] used during our experiments, and our proposed manipulation planning
network.

Standard Convolutional Layer

Perceptrons [MP17] are the most basic type of neurons in machine learning1 networks.

~y “ fp~x ~w `~bq, (3.2)

where given ~x the input vector of the perceptron, the weight vector, the bias vector, and ~y
is the output vector.

A fully connected layer (FC) [SU15] uses Perceptrons to connect each pixel of the
previous layer to each pixel of the next. Compared to a FC, which perceives the information
from the previous layer all at once, a convolutional layer introduces a shifting window,
which sets a limit on the information available locally. By doing so, the model takes the
underlying geometrical relationship of the input information into consideration. If applying
a fully connected layer is to gaze into the night sky, applying a convolutional layer is
comparable to scanning through the sky with a telescope.

A classical convolutional neural network is typically constructed by repetitively apply-
ing pairs of convolutional layers and pooling layers. As they get deeper down the network,
those pairs of layers reduce the width and height of intermediate tensors’ shape, while in-
creasing the number of channels [MZZS18] [HMDC16] [TSM`16]. The design pattern of
CNN is usually justified by the following reasoning: In the raw input image, information is

1To limit scope of the background chapter of this thesis, we will omit the introduction to the basics of
machine learning.

15

3.1 Convolutional Neural Networks for Perception

geometrically structured on a 2D panel, and, as each layer is evaluated, low-level informa-
tion in the tensors gets extracted and encoded into higher-level abstraction represented by
each channel.

CNN has proven to be viable with 1D sequences [KIG15] [Mit15] [Kim14], 2D images
[KSH12] [XRLJ14], while promising researches [MS15] [KCL`15] have also demon-
strated its potential, classifying objects in scenery represented by 3D point clouds. This
trend demonstrated CNN can comprehend various datasets by adapting the shapes and
ranks of its kernels, which defines the behavior of the shifting window of perception.

In the following sections, we discuss popular variations of CNN in the context of 2D
space within the image processing domain, as those are the most typical and successful
use cases of CNN so far, in terms of both research activity and commercialized industrial
applications. Note that 2D convolution takes 3D tensor as input, because each pixel at a 2D
panel can have multiple channels, representing different signals, such as RGB color values
or other abstract concepts.

Figure 3.2: Architecture of a Convolutional Neural Network (reprinted from [CMM`11])

Convolutional layers are designed to extract high-level features from the input tensor

16

3.1 Convolutional Neural Networks for Perception

[LB`95]. At each location, feature extraction is done by computing the Frobenius inner
product of a trainable weight tensor against the overlapped input tensor, which is called
a kernel or a filter. The output is a measurement of how well local information in the
input tensor matches the learned feature of interest. This is the basic unit of operation,
which is called convolving. The operation is repeatedly performed for each 2D location,
by shifting the observation window on the 2D panel of the input tensor, while the kernel
remains the same in value. Convolving a 3D input tensor with a 3D kernel weight tensor
produces a 2D output tensor. The results of multiple convolvings with multiple kernels
are stacked together into a 3D output tensor. Convolutional layers have more expressive
capacity compared to fully connected layers; the latter can be considered as a special case
of the former. While Figure 3.2 shows one example of a Convolutional Neural Network,
Listing 3.1 shows a C implementation of a vanilla 2D convolution layer, without padding
nor striding.

Listing 3.1: Vanilla 2D Convolution Algorithm
1 // in : 3D input tensor of shape [inHeight, inWidth,

inChannels]
2 // k : 4D kernel tensor of shape [outChannels,

kernelHeight, kernelWidth, inChannels]
3 // out : 3D output tensor of shape [(inHeight -

kernelHeight + 1), (inWidth - kernelWidth + 1),
outChannels]

4 for (int h = 0; h < inHeight - kernelHeight + 1; h++) {
5 for (int w = 0; w < inWidth - kernelWidth + 1; w++) {
6 for (int oc = 0; oc < outChannels; oc++) {
7 out[h][w][oc] = 0;
8 for (int kh = 0; kh < kernelHeight; kh++) {
9 for (int kw = 0; kw < kernelWeight; kw++) {

10 for (int ic = 0; ic < inChannels; ic++) {
11 out[h][w][oc] +=
12 in[h+kh][w+kw][ic] * k[oc][kh][kw];
13 }
14 }
15 }
16 }
17 }
18 }

This concludes our introduction of the neural network layers most relevant to our work.

17

3.2 Dex-Net 2.0

3.2 Dex-Net 2.0

With building blocks of neural networks established, we are ready to present the open-
source grasping planner that we adapted to validate the viability of our learning system.
Because we designed our learner to learn tasks in two separate phases, namely grasping
and manipulation, a robust solution that enables the robot to acquire the object of interest
is a prerequisite.

Dex-Net 2.0 is a state-of-the-art robotic object grasping research project [MLN`17].
Our work adopted a part of their grasping framework, as well as a pre-trained grasping
planner network checkpoint, which is trained by [MLN`17] with the public Grasp Quality
Convolutional Neural Network (GQCNN) database. In addition, we implemented a custom
denoising module that adapted the pre-trained network to our laboratory environment.

Figure 3.3: Upside Down Mounted Tripod and Camera

Dex-Net includes code, datasets, models and algorithms for robotic grasping. We lever-
aged its pre-trained grasping planner network, which is capable of predicting robust grasps
from RGBD images of the object of interest. As a requirement of the framework, the direc-

18

3.2 Dex-Net 2.0

tion of the view has to be the same as the direction of grasping. Although a single camera
cannot guarantee a full view of every point of interest, to better the chance of having a clear
view and to avoid unnecessary background noise, we set up the camera directly above the
scene, as shown in Figure 3.3.

Figure 3.4: Sampled Grasps [MLN`17]

Initially, the camera takes a depth image snapshot of the scene, which is sent to the
GQCNN pipeline. The pipeline includes multiple heuristic samplers, which pick potentially
viable grasping points from the depth image. Each grasp is described by 4 values: 3D
positions and the orientation of the parallel gripper. For each grasp, a smaller depth image
would be produced by resizing the original image to the same scale required by GQCNN,
rotated to align with the supposed gripper’s direction, and finally clipped to the same size.
As annotated by the red bounding boxes in Figure 3.42, each of the sampled images3 would
represent a candidate grasp.

2Figures for Dex-Net were copied from the original paper published by Berkeley Automation Lab.
3The grey images are depth maps, with lighter pixels closer to the camera, darker pixels farther. Red lines

are not a part of the original image, but only visual annotations.

19

3.2 Dex-Net 2.0

Figure 3.5: GQCNN model architecture [MLN`17]

Our work took a checkpoint from the open-sourced GQCNN model, which was pre-
trained by a large set of labeled training images similar to our sampled grasp candidates. As
shown in Figure 3.5, the model used a typical CNN architecture, which consists of a stack
of convolution layers, fully connected layers, and pooling layers. At the very last layer, the
signal was passed through a softmax function, which outputs the estimated quality of the
grasp.

At last, the grasp candidate with the highest estimated grasp quality would be selected
by the GQCNN package, which then would be executed by our high-level JACO2 arm
controller. Interestingly, those training images, labeled with supposed ground truth, are
synthetically produced by sophisticated simulations. The images are rendered depth maps
of virtual 3D object models, while the labels are grasp-quality values estimated by a so-
phisticated physics simulator.

3.2.1 Custom Denoising Module

Backed by the experimental results of both the original Dex-Net research and ours, the
model adapted very well from simulation to the real world. However, we found that, be-
cause the original model was trained with perfect depth images rendered from simulation,
the model is extremely sensitive to background noise, including small cracks on the table,
uneven surface of objects, and noise introduced by the depth sensor error. Since the original
research was for grasping only, as shown in Figure 3.6, the visible area of the workspace
is very limited and mostly free of visual distractions. However, our work needs a full view

20

3.2 Dex-Net 2.0

of the larger workspace, while working around the limitations of the Kinect V2 camera’s
50cm minimum depth range. As a result, we also developed a lightweight, heuristic-based
depth signal denoising project implemented with the Point Cloud Library (PCL). PCL uses
a range of sophisticated filtering techniques [HJW`17], removing obvious sensor errors,
as well as the nuances on object surface. Eventually, with the denoised depth image, the
GQCNN package demonstrated ideal performance in our experimental environment.

Figure 3.6: Dex-Net 2.0 Workspace [MLN`17]

Although Dex-Net requires grasps to be made by parallel-jaw, the gripper on the JACO2
arm has 3 fingers. We only used 2 of those to function together as a parallel-jaw. In practice,
this was proven to be a reasonable approximation. The final software product was able to
consistently suggest robust grasps, and to work in conjunction with the robotic arm to
reliably grasp various objects. We will postpone the experimental verification of this unit
until Chapter 7.

In this chapter, we presented the neural network layers relevant to our thesis, and also
discussed data-driven grasping planners. Both are key components that made our experi-
ments possible. In the next chapter, we are finally ready to discuss imitation learning, which
is the main research field of this thesis.

21

4
Learning to Manipulate by Imitation

In the previous chapters, we discussed the machine learning approach for both robotic
motion planning and grasping. Now that we can move the robot and acquire objects with
its gripper, we have an opportunity to use the object as a tool to interact with the world.

In specific, Chapter 2 established the motion planning problem, where given the desired
trajectory τ , we can control the robot using joint angles solved by

t~Θt0 , ~Θt1 , ..., ~ΘtHu “MP pτ, Envq . (4.1)

In this chapter, we will discuss the problem of planning the trajectory τ to perform high-
level tasks, such as pouring.

Most real-world object manipulation tasks can be performed by many equally viable
trajectories. For example, there can be infinite ways to peel an orange, while the orange
can also be presented in infinitely many different scenarios. Although software solutions
such as MOVEit [SMK12] can solve joint motion for given trajectories, developing a rule-
based planner for each manipulation scenario is not viable for complex environments and
objects. In addition, the system cannot be easily expanded for new tasks; a new system has
to be programmed again to peel bananas.

One way to build a versatile robotic system is to make it capable of performing imi-
tation learning (IL) with a demonstration dataset that is easy to produce. In the same way
a human apprentice learns, ideally, robots should be able to learn various tasks by simply

22

4.1 Reinforcement Learning and Markov Decision Process

Env Environment: Everything the robot can interact and observe
t Time: The current timestamp
S State: Observed information of the agent
A Action: Instructions issued to the robot’s controller
τ Trajectory: A sequence of actions and their resulted states
T Transition Probability Matrix: Probabilities that models the environment dynamics
π Policy: The strategy to decide the next action, given the current state
R Reward: A quantified feedback from Env at a certain timestamp
γ Discount Factor: May weigh immediate reward to be more valuable than future reward

Table 4.1: Notations and Concepts

watching expert demonstrations, without requiring explicitly hard-coding the reaction for
every possible situation.

This chapter begins with a brief illustration of the imitation learning algorithms that
are fundamental or most relevant to our research. In later sections, we present the Genera-
tive Adversarial Networks (GAN), and its IL adaptation, Generative Adversarial Imitation
Learning (GAIL).

4.1 Reinforcement Learning and Markov Decision Pro-
cess

Alongside supervised learning and unsupervised learning, Reinforcement Learning (RL) is
one of three main branches of machine learning, which attempts to deduce the strategies by
learning from the agent’s interactions with the environment. Table 4.1 summarizes key no-
tations and concepts of RL. The overall goal is to find a learner policy πl which maximizes
the total reward over a limited time.

Markov decision processes (MDP) are the theoretical foundation for reinforcement
learning algorithms. MDP has frequently been used as the go-to solution or baseline ap-
proach for optimization problems in many domains [HS15] [OVR14] [AET`14] [DFL14]
[EDK14] [Ser09]. A MDP is a process which satisfies the Markov property, which is de-
fined [OPN`18] as

23

4.1 Reinforcement Learning and Markov Decision Process

Definition 4.1.1. A process s0, ..., st has Markov property if at any time t, the future prob-

ability to arriving into states st`1, st`2, ... depends on the history s0, ..., st only through the

present state st.

Many reinforcement learning researches use MDPs to model Env and solve for the
optimal decision making policy function π. Reinforcement learning introduces actions and
rewards to MDP, denoted by set A and set R, respectively. At each timestamp t, an action
at P A is taken, causing the agent’s state to transition from st to st`1, where s P S.
Meanwhile, the agent is expected to be rewarded by

ras´ąs1 “ Errt`1|st “ s, at “ a, st`1 “ s1s, (4.2)

where r P R, s P S and a P A.

In a stochastic environment, a given action may possibly bring the agent to different
states. This is modeled by a transition probability matrix T,

Tas´ąs1 “ ppst`1 “ s1|st “ s, at “ aq. (4.3)

As time progresses, the agent collects rewards. The goal of the agent is to maximize the
total reward accumulated under finite time [0, tH]. To regulate the agents to complete tasks
sooner rather than never, a discount factor γ is introduced to insert preferences to early
rewards. The overall goal is measured by a goodness function,

Jpπq “ Eπ

”

tH
ÿ

t“0

pγtrt|st “ sq
ı

. (4.4)

The parameters of an MDP, such as R or T, may be handcrafted, or learned using data-
driven approaches, such as deep learning. Eventually, we aim to find an optimal policy π˚

that maximizes total rewards,

π˚ “ argmaxπJpπq . (4.5)

24

4.2 Imitation Learning Algorithms

With a parameterized MDP, we can compare if one state is preferable to another, using
the State Value Function,

Vπpsq “ Eπ

”

tH
ÿ

k“t

γk´trk`1

ˇ

ˇ

ˇ
st “ s

ı

. (4.6)

Given a state, we can also compare if taking one action is preferable to another, using
the State-action Value Function,

Qπps, aq “ Eπ

”

tH
ÿ

k“t

γk´trk`1

ˇ

ˇ

ˇ
st “ s, at “ a

ı

. (4.7)

4.2 Imitation Learning Algorithms

With the help of motion planning, robots can be programmed to execute the trajectories
with incredible efficiency and precision. However, in order to build a versatile robot, there
is a gap between a desired high-level task and planning out a trajectory that fulfills the task.
Machine learning algorithms use a data-driven approach to enable machines to bridge this
gap. By generalizing the problem-solving strategies, those algorithms attempt to learn to
perform similar tasks, without requiring explicit coding for each scenario.

As a branch of RL, IL also attempts to deduce the strategies by indirectly observing
the expert agents’ demonstrations. IL aims to open the possibility to demonstrate in het-
erogeneous space, where the robot agent could directly learn from humans, rather than
learning from another agent controlled or programmed by humans. In addition, IL could en-
able robots to learn from observing, rather than deliberate teaching. Many researches have
made significant progress with this approach [FYZ`17] [DAS`17] [YALF18] [ZWM`18]
[YALF18] [JBD18] [ZMJ`18].

Value Iteration

With the MDP-based value functions defined, value iteration computes the optimal state
value function by iteratively improving the estimate of Vπpsq. Eventually V and Q would

25

4.2 Imitation Learning Algorithms

converge to reach the optimal policy π˚,

Vπpsq “ argmaxa

”

Qπpsq
ı

. (4.8)

Policy Iteration

However, the state-action value function’s space can be much larger than the policy func-
tion’s space. To address this issue, we can directly optimize the parameterized policy func-
tion by updating at each state s P S with

π˚psq “ argmaxa

!

Eπrr|s, as ` γ
ÿ

s1PS
pps1|s, aqVπps

1
q

)

. (4.9)

Trust Region Policy Optimization

With machine learning, the policy π is approximated by a differentiable function πθ, which
is implemented by a neural network parameterized with θ. Equation 4.9 is updated by
taking a gradient step on the function evaluated on a batch of inputs. However, the best size
of the gradient step is unclear. Errors made at each state accumulate, where taking a large
step on a particular batch may regress the overall true objective of the policy function. As
a result, the performance of the policy may oscillate during training.

Trust Region Policy Optimization (TRPO) seeks a more monotonic improvement of the
policy by1 performing

θk`1 “ arg max
θ
Lpθk, θqs.t. ~DKLpθ||θkq ď δ, (4.10)

where Lpθk, θq is the surrogate advantage, a measure of how policy πθ performs relative
to the old policy πθk , using data from the old policy,

1The equations were a summarization of the OpenAI Spinning Up’s education material, which is available
at https://spinningup.openai.com/en/latest/algorithms/trpo.html .

26

4.2 Imitation Learning Algorithms

Lpθk, θq “ s, a „ πθk
πθpa|sq

πθkpa|sq
Aπθk ps, aq, (4.11)

and, in order to measure the distance between policies across states visited by the old
policy to the new, TRPO uses average KL-divergence [KL51] ~DKLpθ||θkq,

~DKLpθ||θkq “ s „ πθkDKL pπθp¨|sq||πθkp¨|sqq. (4.12)

4.2.1 Policy Imitation

While the core idea is to imitate various tasks from demonstrations, there are currently
two main families of imitation learning algorithms – one directly optimizes the learner’s
policy function by imitating expert policy function, while the other, firstly, learns the un-
derlying reward functions, then deduces the learner’s policy function [OPN`18]. The two
approaches are called behavior cloning and inverse reinforcement learning, respectively.

Policy imitation attempts to directly mimic the expert’s reaction to each different sit-
uation, predicting what action would the expert take under a given state. Assuming the
expert’s behavior is based on a fixed policy πpS|Aq “ Pra|s, θs, where θ represents a pa-
rameter carefully selected by the expert to perform the task. Policy imitation algorithms
directly learn π, without reasoning about the underlying motivation.

Behavior Cloning

Learning expert policy πe is simply learning its state-to-action mapping. Ideally, if we can
sample a large enough amount of state-action pairs from πe, where s sufficiently covers
the whole state space, then the problem can be solved by supervised learning. As the size
of this balanced training data increases, the learner should be able to clone the expert’s
behavior in any given situation. This is the core idea behind the widely successful behav-
ior cloning (BC) algorithm. In recent years, various practical engineering problems have
adopted machine learning-based solutions [CSKX15] [MDGK18] [CSLG19], rivaling or
out-performing classical software engineering approaches in many cases. This approach
is particularly successful in industrial applications where the ground truth solution can be

27

4.2 Imitation Learning Algorithms

easily labeled. In the simplest scenario, the model memorizes all the state-action pairs in
the training dataset, and simply plays back the action during testing; however, this data
distribution assumption is not practical.

While the overall goal is to learn a policy that completes a task by reproducing the
expert’s trajectory, given a current state, the problem can be further broken down into either
a question of what is the desired next state, or what is the desired next action. The former,
categorized as model-based BC [OPN`18], assumes the state transition probabilities are
known, and then the desired action can be solved accordingly; meanwhile, the latter is
categorized as model-free BC, which directly learns the expert’s action [SB18]. As a trade-
off for relaxing the assumption of known environment dynamics, model-free BC naturally
requires more training data samples to implicitly estimate the transition probabilities.

In a practical application with human demonstrations, the expert’s experience often
progresses along the successful paths in the state space, where the agent follows ideal
trajectories. Because the learner agent’s data distribution depends on its past actions taken
and states arrived, the learner’s experience could be vastly different from the expert’s. The
naive version of BC suffers heavily from covariate shift in the training data distribution. To
explain in detail, a different action chosen at an earlier time or an external random factor
might cause a butterfly effect and lead the agent to a completely unfamiliar state space,
and then the agent would essentially be operating in untrained space. Moreover, each error
diverging from the ideal trajectories requires a correction; such recovery interactions are
often never demonstrated by the expert, as those undesired situations were avoided by the
expert in the first place. As the compounding error grows exponentially, the agent may be
trapped in an untrained situation and never find the way back.

Although BC suffers from covariate shift [Pom89] [LMDBS18] [MBC`06], success-
ful applications have been developed in demonstration rich scenarios, such as unmanned
aerial vehicle (UAV) navigation [GGC`15]. For this particular problem, a large amount
of demonstration data could be easily produced by a hiker with a mounted camera. Also,
the navigation software of UVA provides an abstract interface, which reliably executes
high-level movement instructions, essentially simplifying the problem to a model-based
scenario. Our work also assumes a model-based scenario, taking advantage of the Kinova
JACO2 robotic arm’s high-level control interface.

28

4.2 Imitation Learning Algorithms

Dataset Aggregation

For imitation learning problems involving a human expert, the state distribution from train-
ing data is not independent and identically distributed (i.i.d). As previously discussed, the
supervised learning BC approach suffers heavily from covariate shift.

Dataset Aggregation (DAgger) [RGB11] addresses this issue by explicitly having the
expert to demonstrate actions for states encountered by the learner. This is done by:

1. Training a learner’s policy πl on the original state-action pair dataset D

2. Running πl to produce a trajectory τ “ tps0 Ñ al0q, ps1 Ñ al1q, ps2 Ñ al2q, ...u

3. Running expert’s policy πe on ts0, s1, s2, ...u, to produce tae0 , ae1 , ae2 , ...u

4. Aggregating tps0 Ñ ae0q, ps1 Ñ ae1 , ps2 Ñ ae2q, ...u to D

5. Improving πl with D using supervised learning

6. Repeating step 2 to 5 many times

In step 2, the learner policy has the opportunity to directly interact with the environ-
ment. In steps 3 to 5, the learner gets tailored feedback from the expert, guiding it to im-
prove πl towards mincing πe. This makes policies trained by DAgger strictly better than
naive supervised learning on the original D. As shown by [RMBS`13], this algorithm can
be effective in solving real-world UVA problems. However, both step 2 and step 3 could be
very limiting when applying DAgger to solve large-scale problems.

Step 2 imposes a constraint on the viability of online demonstration. Considering an
autonomous driving example, the online demonstration would require a human driver to
pseudo-drive a car, but only record the state-action pairs tps0 Ñ ae0q, ps1 Ñ ae1 , ps2 Ñ

ae2q, ...u, while ignoring the expert’s control and letting the learner πl operate the car at
the same time. Putting the learner policy πl in control could be expensive and dangerous
in practice, with undesired trajectories resulting in crashing into obstacles or pedestrians.
This obvious issue of practicality imposes significant constraints in developing practical
applications of DAgger.

Step 3 requires the expert to explore trajectories produced by the learner, which makes
DAgger not directly applicable to another important subarea of imitation learning, where

29

4.2 Imitation Learning Algorithms

the robot and expert are in heterogeneous state and action spaces. An example could be
when humanoid robots learning to perform a basic human movement from human demon-
stration. Industrial applications of this approach have been fruitful in animations, computer
generated imagery, as well as in physical robot products. In this type of problem, the ex-
pert and the robot agent would have different skeletons, joint properties, and other phys-
ical properties. Meanwhile, because DAgger requires the expert to suggest actions at the
learner’s state spaces, a mapping between the two spaces has to be established, which, in
itself, creates another research area.

4.2.2 Learning Rewards

This family of imitation learning algorithm attempts to deduce the underlying goals of the
expert policy, rather than simply mimicking the behavior of the expert. Reward learning
algorithms attempt to breakdown the overall task into quantifications of many internal ob-
jectives. The algorithm is implemented by first learning a set of reward functions which
accumulatively contributes to the overall goal. The target policy is then inferred by finding
the state action pairs which optimizes the previously learned reward functions.

Reward functions can be handcrafted equations or, more commonly in machine learn-
ing, learned by neural networks trained by demonstration datasets. In practice, those func-
tions only imperfectly reflect the true causation connection between the current state and
progress of the task: oversimplifying the system dynamics, while neglecting less notable
factors relevant to the task. The nature of this data-driven approach dictates that, if the
learned reward function model fails to keep generalization error under control, the reward
function could display undesired behavior in untrained state space. Those issues are com-
mon in the realm of machine learning affecting the effectiveness of learning. After all, one
can argue that humans would face similar challenges when attempting to master a new task.

Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL), also known as Inverse Optimal Control (IOC), at-
tempts to learn from experts by first deducing their internal motives [NR`00]. To solve the
original reinforcement learning task, we define an IRL problem which is the dual of the
RL problem. In specific, the IRL problem here is to infer the hidden reward functions from

30

4.2 Imitation Learning Algorithms

demonstration trajectories produced by a fixed expert policy, which we assume is capable
of always maximizing the reward functions. Then the remaining part of the puzzle becomes
to deduce a learner policy which, in turn, maximizes those reward functions. This idea can
be traced back from researches as early as the Linear Quadratic Regulator.

Similar to BC, IRL can also be classified into model-based or model-free. The former
requires known state transition probabilities, which adds significant assumptions to the en-
vironment. In contrast, model-free IRL not only indirectly learns reward function, but also
indirectly approximates the system dynamics. Both factors require a large size of training
samples and intensive computation to learn. In practical robotic applications, it is crucial to
properly model the uncertainty introduced by noise and stochastic factors in the environ-
ment. While intuitive and elegant, model-free learning requires a large amount of training
data to neutralize noise and stochastic factors, as well as to improve generalization.

For real world IRL applications, the modeling of rewards using handcrafted formulas is
often an oversimplification. Some notable variation of the IRL algorithm improved learning
by explicitly modeling the decision making process, which indirectly models the reward
mechanism. Two of the most notable approaches are introduced below.

Maximum Entropy Inverse Reinforcement Learning

Maximum Entropy IRL [ZMBD08] learns the internal reasoning of a Markov Decision
Process, and solves the maximum likelihood of the reward function parameterizing the
MDP. The deep learning adaptations of the algorithm have also achieved much success
[WOP15] [GH18] [PSS`16] [HZAL18] riding the surge of deep learning. The algorithm,
shown in Listing2 4.1, attempts to train neural networks to estimate the optimal policy
πpa|sq, which is learned by taking gradient steps with

∇θL “
1

|D|

ÿ

τdPD
fτ d `

ÿ

sPS
pps|θ, T qfs, (4.13)

where fτ d is the feature vector extracted from the batch of demonstration trajectories

2The pseudo code was replicated from a slide of UC Berkeley’s online course, CS 294 episode 14 of Deep
Reinforcement Learning.

31

4.2 Imitation Learning Algorithms

and fs is the feature vector extracted from s P S.

Listing 4.1: Maximum Entropy Inverse Reinforcement Learning Algorithm
1 Notation:
2 τ: trajectory = {(s_1,a_1), ..., (s_t,a_t), s_T}
3 Input:
4 DE: demonstration dataset
5 T, state transition dynamics
6 θ, parameters for the reward function
7 f, feature vector extracted from trajectory
8 Algorithm:
9 Initialize θ

10 Solve for optimal policy πpa|sq with respect to θ with
value iteration

11 Solve for state frequencies pps|θ, T q
12 Update θ with gradient step using Equation 4.13

Bayesian Inverse Reinforcement Learning

Bayesian IRL algorithm [RA07] models the decision making process with Gaussian Pro-
cess (GP), which attempts to improve learning under imperfect environment modeling and
possibly insufficient demonstration training data. Like Maximum Entropy IRL, Bayesian
IRL also benefits from the advent of deep learning [OA16] [ZLN14] [CK14] [IBN18]. The
algorithm [CK11] models the reward function by assuming a behavior previously defined
as

P pRq “
ź

sPS,aPA

P pRps, aqq. (4.14)

The likelihood function was then defined as an independent exponential distribution
with

P pX|Rq “
M
ź

m“1

H
ź

h“1

P pamh , s
m
h , Rq. (4.15)

Finally, the posterior P pR|Xq reward distribution can be deduced by combining the
previous and the likelihood function using Bayes theorem, as

32

4.3 Generative Adversarial Algorithms

P pR|Xq ∝ P pX|RqP pRq. (4.16)

4.3 Generative Adversarial Algorithms

The field of robotic object manipulation has also achieved groundbreaking success with
deep learning [LPK`18] [JLD16] [FBH`18] [CAGT18]. Many modern robotic systems
are capable of performing various tasks [CHC`12] [AHS`09].

Meanwhile, many real-world robotic problems require unsupervised learning, because
they often lack ground truth datasets, or a way to quantify the rewards. Generative adversar-
ial algorithms made significant progress in studying those tasks, which supposedly require
human-level intelligence and creativity.

Our work studied an IL problem, which is very suitable for generative adversarial algo-
rithms. In this Section, we will first introduce GAN, and discuss how it could be applied to
IL problems. Then, we will introduce Generative Adversarial Imitation Learning (GAIL),
which is a successful adaptation of GAN into RL.

4.3.1 Generative Adversarial Networks

Generative Adversarial Networks [GPAM`14], introduced by Ian Goodfellow and his col-
leagues at the University of Montreal, has made a significant contribution to semi-supervised
learning and reinforcement learning [KMWK17] [LSE17] [CCK`18] [LTH`17] [WZX`16]
[SAS17]. GAN has seen remarkable success in learning tasks which intend to generate
novel solutions that have the same distribution and characteristics as the training data.
Its quintessential applications are in domains such as image generation [LTH`17], image
translation [CCK`18] and 3D modeling [WZX`16]. The algorithm essentially constructs a
zero-sum game between a Generator and a Discriminator. The Generator network learns to
generate solutions by using random noise, or seeds, as the network’s input. This is achieved
by learning a Generator network, which was fitted by gradient defined by

33

4.3 Generative Adversarial Algorithms

∇θG
1

m

m
ÿ

i“1

logp1´DpGpzpiqqqq, (4.17)

where notations will be defined in Listing 4.2.

Meanwhile, its counterpart, the Discriminator, learns to discriminate the Generator’s
solutions from a ground truth dataset sampled from a targeted distribution. This is achieved
by learning a Discriminator network, which was fitted by gradient defined by

∇θD
1

m

m
ÿ

i“1

rlogDpxpiqq ` logp1´DpGpzpiqqqqs, (4.18)

where notations will be defined in Listing 4.2.

If the Discriminator has realized all its potential, but the Generator can still generate so-
lutions that confuse the Discriminator, then it means learning is effective, and the generated
solutions can approximate the targeted distribution. The algorithm is shown in Listing3 4.2.

Listing 4.2: Algorithm For Training Generative Adversarial Networks
1 Notation:
2 Pg: Generator distribution
3 Pdata: Training data distribution, the ground truth
4 Input:
5 t: The number of training iterations
6 k: The number of steps to apply to the Discriminator
7 Pzpzq: A pre-defined noise prior
8 X , x, Training data
9 Z, z, Noise, seed to the network

10 G,D, Generator and Discriminator, both differentiable
functions represented by multi-layer perceptrons

11 Algorithm:
12 for t iterations do
13 for k steps do
14 ‚ Sample minibatch of m noise samples {zp1q, ... ,zpmq}

from noise prior Pgpzq

15 ‚ Sample minibatch of m examples samples {xp1q, ... ,
xpmq} from data generating distribution Pdatapxq

16 ‚ Update the Discriminator by ascending its

3The pseudo code was replicated from the original GAN paper [GPAM`14].

34

4.3 Generative Adversarial Algorithms

stochastic gradient with Equation 5.13
17 end for
18 ‚ Sample minibatch of m noise samples {zp1q, ... ,zpmq}

from noise prior Pgpzq
19 ‚ Update the Generator by descending its stochastic

gradient with with Equation 5.15
20 end for

Attention from both academia and industry has been attracted by GAN’s successful
adaptation in various problem domains. GAN thrives with tasks involving mimicking train-
ing data distribution, and even exhibited some level of creativity. High-profile successes are
often in fields such as visual imagery [DRG15] [LPMG17] [MJS`17] [OOS17], and time
series synthesis [EHR17] [DMP18] [HSB18] [LCS`19]. The latter is closely related to the
research of this thesis.

For the IL object manipulation problem that we studied in this thesis, we are given a
small number of expert demonstration trajectories Pdata that perform a certain task. Those
trajectories are sampled from a much larger distribution P ˚ of all potentially viable trajec-
tories that fulfill the task. If we can use the GAN Generator G to produce trajectory τg from
P ˚, then we can use G to be a manipulation trajectory planner for this task.

4.3.2 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning [HE16] is a more recent addition to the IRL
family. As the name implies, GAIL is an adaptation of GAN, which was introduced in
Section 4.3.1, into the realm of imitation learning. As a generative adversarial algorithm,
the GAIL algorithm also consists of two sub-networks. One is a GAIL Generator that
reassembles the learner’s policy, which was trained by gradient descent on

∇G “ Êτir∇θlogpπθpa|sqQps, aqs ´ λ∇θHpπθq,
(4.19)

whereQp~s,~aq “ ÊτirlogpDwi`1
ps, aqq|s0 “ ~s, a0 “ ~as, andHpπq defined byEπrlogπpa|sqs

35

4.3 Generative Adversarial Algorithms

is the -discounted causal entropy [3] of the policy π.

The other is a GAIL Discriminator, which can be considered a trainable loss function
of the Generator. It is trained by gradient descent on

∇D “ Êτir∇wlogpDwps, aqqs ` ÊτE r∇wlogp1´Dwps, aqqs. (4.20)

The network learns by alternatively improving the two players. When the Discriminator
can no longer distinguish generated distribution from the ground truth demonstrations, then
the learner policy has learned to imitate the expert policy. The algorithm is shown below.

Listing 4.3: Generative Adversarial Imitation Learning Algorithm4

1 Notation:
2 πE: Expert policy
3 τ: trajectory
4 Input:
5 τE: Expert trajectories sampled by πE
6 D: Discriminator with initial parameters w0

7 G: Generator with initial parameters θ0
8 N: Number of iterations
9 Algorithm:

10 for i from 0 to N do
11 ‚ Sample trajectories τi by πθi
12 ‚ Update the parameters from wi to wi`1 of D with

gradient of Equation 4.20
13 ‚ Take a policy step for θi to θi`1 of G, ‘using the

TRPO rule with cost function logpDwi`1
ps, aqq.

Specifically, take a KL-constrained natural
gradient step with Equation 4.19

14 end for

Generative Adversarial Algorithms are infamously difficult to optimize [PV16], espe-
cially due to the high variance gradient descent step of the Generator. Tackling this issue
is critical for applications in large environments. The original GAIL research integrated
TRPO [SLA`15] to optimize backpropagation of the Generator. As mentioned in Sec-
tion 4.3.2, taking a KL-constrained natural step contributes to preventing the policy from
changing too much due to noise in the policy gradient update. Another work [BACM17]
approached the same issue by using a forward model to make the computation fully dif-

36

4.3 Generative Adversarial Algorithms

ferentiable, which enables training policies using the exact gradient of the Discriminator.
Doing so essentially connects the two networks, updating the Generator’s parameters di-
rectly using the Discriminator’s feedback.

The effectiveness of GAIL largely benefited from the unsupervised learning nature of
GAN, which empowered the algorithm to take on various real-world learning problems
[BAM16] [TZLB18] [PV16] [SRSE18] [FDSF18]. Previously, classical imitation learn-
ing algorithms often relied on precisely modeled environment dynamics and well crafted
reward functions. In solving real-world problems with intricate dynamics and complex
objectives, either criterion could be difficult to fulfill. In contrast, GAIL relaxed those de-
pendencies with a data driven approach that implicitly learns both.

We have previously discussed robotic motion planning in Chapter 2, and learning based
grasping in Chapter 3. In this chapter, our discussion had led to GAN and GAIL, which are
the state-of-the-art IR manipulation trajectory planning algorithms. In the following chap-
ters, we will piece the different components together, and propose a GAN-based, teachable
robotic system which is capable of learning simple tasks from human demonstrations.

37

5
Method: Imitating Full Trajectories

In this chapter, we will present our GAN-based deep learning manipulation trajectory plan-
ner that imitates full trajectories. With GAN’s data efficiency, our method can perform IL
from human demonstrations. In addition, instead of taking the MDP approach to predict
state-action pairs, the planner’s Generator network directly predicts the entire sequence
of states. We believe, by incorporating the long-term dependency between the poses, the
planner can output trajectories with more coherent motion.

5.1 Method Overview

Generative adversarial algorithms are suitable to address this imitating learning problem,
which uses real-world expert demonstrations. For example, when teaching a robot to pour a
cup of water into a container, demonstrations might differ in the pace of motion, pouring an-
gles, container positioning, and more. At the same time, all those demonstrations do share
key features that define them as pouring, from a essentialism perspective. To learn pouring
is to learn those features. However, the manipulation trajectories extracted from the demon-
strations may not be directly comparable. Simple loss functions, such as mean square error,
cannot correctly compare time-series trajectories with possibly misaligned starts, different
paces of motion, or different pouring angles. The GAN’s deep learning-based Discrimina-
tor essentially serves as a learned loss function approximation by distinguishing authentic
expert demonstrations from the Generator’s prediction. In doing so, it guides the Generator
to produce predictions close to the demonstration distribution.

38

5.2 Architecture of the Networks

We designed the planner’s neural network to output trajectories that can be executed
to perform the tasks of interest. Those planned trajectories have to start with the gripper’s
initial pose, and adapt to the positions of any objects relevant to the task. For simplicity of
discussion, we will refer to the initial gripper pose and object position together as initial

pose.

Given the desired initial pose, we designed the GAN Generator to predict full manipula-
tion trajectories, which are sequences of temporal contiguous gripper poses. Consequently,
the GAN Discriminator is also designed to distinguish full trajectories. Compared to GAIL,
which predicts one pose at a time, we believe that, by processing the entire sequence of
gripper poses at once, both of the GAN’s networks can perceive the long-term dependency
context more easily. Specifically, exposing long sequences of poses to the Discriminator
makes the unsmooth transitions between consecutive states more obvious to detect, which,
in turn, forces the Generator to output trajectories with coherent motion. GAIL is also a
promising approach, which we used in our experiments as a baseline.

To summarize, we designed the planner using a GAN-based full-trajectory prediction
imitation learning model. Because our experiments use very few expert demonstrations, we
expanded our training dataset with data augmentation by applying rigid transformations.

5.2 Architecture of the Networks

We built the planner with a GAN-based deep imitation learning model. The Generator
G of the GAN model is designed to preserve long term dependency by predicting full
trajectories at once. For timestamps, t0, t1, ..., tH , which monotonically increase in equal
intervals. Given ~sz as the input noise to G, the predicted trajectory τG is given by

τG “ Gp~szq “ t ~st0 , ~st1 , ..., ~stHu , (5.1)

where @t, ~st is the gripper’s pose at time t. To provide information regarding the envi-
ronment of the task, the desired initial pose sg is used as the input noise sz. Meanwhile,
to ensure the predicted trajectory starts at the gripper’s initial position, the first pose ~st0

39

5.2 Architecture of the Networks

is set to be the initial pose of the gripper. Using our pouring experiment1 to illustrate our
methodology, input tensor G is set to be the initial pose sg, which is both the current pose
of the gripper and the starting pose of the predicted trajectory, given by

~sg “ ~sz “ ~st0 . (5.2)

Finally, the desired trajectory prediction τG that starts with the gripper’s pose can be
written as

τG “ Gp~sgq “ t~sg, ~s1t1 , ~s1t2 , ..., ~s1tHu . (5.3)

where ~sg is hard-wired to the output of G, and @t, ~s1t is inferenced by the deep neural
network layers of G.

Meanwhile, the Discriminator is trained to distinguish predicted trajectories τG from
expert demonstration trajectories τE , given by

d “ Dpτq , (5.4)

where d is the binary classification of D, τ is trajectory input from either predictions τG or
expert demonstration τE .

Inspired by the design pattern of several popular networks, such as MobileNet, SqueezeNet,
and ResNet, both G andD were built by repeatedly stacking subgraphs of similar structures.
Each of those subgraphs contains multiple towers of stacked layers. The rest of this chapter
illustrates the details of the model architecture and training techniques.

5.2.1 Generator Architecture

To insert control over the output of our GAN model, G receives initial pose

~sg “ rx, y, z, yaw, pitch, rolls (5.5)

1As would be discussed in Section 6.1, this experiment learns the gesture of pouring, where the expert
demonstrates a pouring motion from various initial poses towards various unmarked target positions. In the
pick-and-place, initial pose contains both the gripper’s initial position and the target placing position.

40

5.2 Architecture of the Networks

of shape r1, 6s as input, and output a tensor of shape r64, 6s that describes a full trajectory
τG , given by

τG “ t~s0, ~s1, ..., ~s63u “ Gp~sgq. (5.6)

The input ~sg is sent to a CNN-based deep learning graph, denoted by P , which pro-
duces an intermediate tensor of shape r63, 6s. At the very last layer of G, ~sg and Pp ~sgq are
concatenated together, forming a complete trajectory, τG , of shape r64, 6s, given by

τG “ Gp~sgq

“ t~sg,Pp ~sgqu

“ t~sg, ~s11,
~s12, ...,

~s163u .

(5.7)

Skip Edges

Due to the Generator network’s complex structure and large parameter space, gradient
estimation suffers from high variance [BACM17]. We constructed P using residual neural
networks [HZRS16], utilizing short skip edges, colored green in Figure 5.1. If a subgraph in
P covered by a short skip edge does not contribute to reducing loss, backpropagation may
silence the signal produced by that subgraph, and the short edge can forward the original
signal, essentially bypassing the subgraph. P is constructed by 1D transposed convolution

layers and fully connected layers, and elementwise add layers. The short edges are shown
in Figure 5.1, colored green.

41

5.2 Architecture of the Networks

Figure 5.1: Architecture of the Generator with Skip Edges (the circles in P denote repeated
subgraphs)

In addition, we introduce long skip edges to the graph. The input tensor was connected
to a multilayer perceptron [SW89]M. Its output,Mp~sgq, was then elementwise added with
the output signal of each subgraph in P . We believe the information provided by the long
skip edges provides supplemental signals with low variance. The long edges are shown in
Figure 5.1, colored orange. Experimental results regarding the effect of the long edges are
presented in Section 7.3.5.

5.2.2 Discriminator Architecture

The Discriminator network D aims to distinguish authentic expert demonstrations τE from
the Generator’s prediction τG . It consumes input trajectory data τ of shape r64, 6s, and
outputs a binary discrimination value d of shape r1s,

d “ Dpτq, (5.8)

42

5.2 Architecture of the Networks

where τ is trajectory input from either predictions τG “ Gpsgq or expert demonstrations τE .

At the very beginning of the Discriminator network, we handcrafted the network to
append the first degree derivative of each of the original 6D poses to the channel dimension,
i.e., forcing the network to compute the positional and angular velocity. The velocities are
given by

V “ t~v1, ~v2, ..., ~v63u

“ tp~s1 ´ ~s0q, p~s2 ´ ~s1q, ..., p ~s63 ´ ~s62qu ,

where t~s0, ~s1, ..., ~s63u “ τ .

(5.9)

Then an intermediate tensor E with extended feature is produced by appending V to the
input τ , given by

E “ t~s0, 0, ~s1, ~v1, ~s2, ~v2, ..., ~s63, ~v63u

where t~s0, ~s1, ..., ~s63u “ τ ,

and t~v1, ~v2, ..., ~v63u “ V .

(5.10)

In practice, we found this simple feature engineering method can greatly improve the learn-
ing outcome, and reduce the complexity of the required network. D quickly learns that the
demonstration trajectories have less extreme values in velocity.

Similar to the Generator’s design, E is also fed to a CNN-based deep learning graph,
denoted by Q, constructed by 1D convolution layers, fully connected layers, pooling lay-
ers, and dropout layers. The result of QpEq is an intermediate scalar value, which is then
regularized by a softmax activation function. The calculation for d is given by

d “ Dpτq “ softmaxpQpEqq . (5.11)

Promote Network Generalization

As a classification network, the Discriminator D trades off between generalization and
memorization. Because the expert demonstration dataset was sampled from a vastly large
space, it is crucial to promote the generalization of D. At the earlier stage of our research,
we built a complex D network as deep and wide as G. Pairing with the relatively small and
less-diverse training dataset, the resulting models achieved extremely low training loss, but

43

5.3 Training

high evaluation loss. Those types of networks excelled in memorization, not generalization.

Figure 5.2: Architecture of the Discriminator

Essentially, D needs to learn the general characteristics of the desired trajectories, not
memorize their specific values. In response, we especially promoted regularization of D,
including added L1 kernel regularizers, reduced the number of parameters in the network
and inserted multiple dropout layers. All skip edges were also removed. The architecture
design is shown in Figure 5.2.

5.3 Training

For each training iteration, we first created a minibatch of m noise Z , which are randomly
selected from the training dataset, denoted by

Z “

z1, ..., zm
(

where @zi P Z, zi “ p ~st0| ~st0 P τEiq ,
(5.12)

44

5.3 Training

where τEi is randomly sampled from the training dataset with replacement. Then D is
updated by gradient computed with both τEi and τGi

∇D
1

m

m
ÿ

i“1

rlogDpτEiq ` logp1´DpτGiqs , (5.13)

where @zi P Z , τGi “ Gpziq. Optionally, the update for D may be repeated multiple times
with different samples of Z .

Next, to update G, we generate a minibatch of random noise Z 1, by

Z 1 “

z11, ..., z
1
n

(

, (5.14)

where z follows a set of heuristics constraining the corresponding poses reachable by the
robotic arm. We then update the Generator by taking a gradient computed by

∇G
1

n

n
ÿ

j“1

logp1´DpGpz1jqqq , (5.15)

where z1j P Z 1. Optionally, the update for G may also be repeated multiple times with
different samples of Z 1.

By receiving the concatenated trajectory τG , D was designed to learn to penalize un-
smooth transitions between the initial pose and the trajectory segment predicted by the
neural network. In turn, this feedback would enforce the Generator G to output smooth
trajectories that start at the gripper’s initial poses.

We expected the accuracy of the Discriminator to start high and gradually decrease to
50%, at which point, we considered the model converged.

Loss Functions and Convergence

Accuracy metrics are a natural way to evaluate the performance of the binary classification
outputs from D. For simplicity, denote the evaluation accuracy of D as ACCD. At the
beginning of GAN training,ACCD is expected to be high, because the randomly initialized
G would produce low quality τG . After multiple iterations, ACCD is expected to oscillate

45

5.3 Training

around 0.5, which would indicate it is no longer able to distinguish expert demonstrations
τE from predictions τG . If ACCD remains high, it would indicate ineffective learning by G.
To summarize, effective training of GAN should have ACCD that starts high and decreases
to around 0.5, at which point, the model is considered converged.

Data Augmentation

Generative adversarial networks are infamously difficult to train, especially working with
a small training dataset. In the case of GAN, training data for D contains both prediction
τG , produced by G, as well as ground truth trajectories τE from the demonstration dataset.
While the supply of the former is limitless, the latter are in limited supply. Meanwhile,
training would be more effective using a balanced and well-distributed dataset.

As will be discussed in Chapter 6, the number of demonstration trajectories in our ex-
periments is extremely low. Due to the practical constraints of real robotic data collection,
we expanded our demonstration dataset with synthetic variations of the original trajecto-
ries. This is done firstly with 2 random demonstrations as an evaluation dataset (Eval),
while designating the remaining as training dataset (Train). It is important to not contam-
inate Eval. Then we expanded both the two datasets with rigid body transformations by
adding randomly translated and rotated copies of the original trajectories from the same
dataset. A synthetic trajectory τE1 consists of

τE1 “ t~s10, ~s11, ..., ~s163u ,

@t , ~s1t “ Rpθq p~st ` ~vq
T ,

(5.16)

where @t, ~st P τE , and Rpθq is a random 3D rotation matrix capable of performing yaw
rotation2 of angle θ. Lastly, ~v is a random 3D translation vector. In practice, both θ and ~v
are constrained with heuristic limits to prevent creating invalid trajectories outside of the
robot’s workspace.

In practice, our training dataset contains 10 demonstrations. For each of the demonstra-
tions, we appended 999 additional variations using Equation 5.16. As a result, we intro-

2To be compatible with our learning scenario, the 3D rotation matrices are constrained to never introduce
pitch and roll.

46

5.3 Training

duced 9990 synthetic trajectories, expanding the training dataset into a size of 10000. We
consider those synthetic trajectories as ground truth during training, not to be distinguished
from the original expert demonstrations.

Avoid Training with Evaluation Dataset

One caveat of creating synthetic data is the possibility of accidentally creating training tra-
jectories with initial poses equal to or very close to initial poses from Eval. Rigorous pre-
cautions were implemented to prevent training data from contaminating testing data. After
the synthetic trajectories were created, we pruned any trajectory in Train with a starting
pose too close to the starting pose of any trajectory in Eval, where the threshold distance
is defined by the average distance of the starting poses across all original demonstration
trajectories.

This concludes the discussion of our main contribution, the GAN-based IL manipula-
tion trajectory planner that learns from a human expert. Therefore, the planner has to be
examined in the real-world environment. In the next chapter, we will discuss in details of
the experiments, including the experiment process, model parameters, baselines and the
numerous software and hardware engineering challenges that we had to overcome.

47

6
Experimental Setup

To conduct experiments, the high-level process consists of the following 5 steps, summa-
rized by the following table:

1. Record Demonstrations of simple tasks with an RGBD camera

2. Extract demonstration trajectories via Computer Vision Pipeline

3. Train a Manipulation Planner using Imitation Learning

4. Plan and Execute Grasping with the Dex-Net planner

5. Plan and Execute Manipulation motion with the GAN-based planner

Step 1 and 2 will be elaborated in Sections 6.4 and 6.5. Step 3 was discussed in
Chapter 5, and supplemented in Section 6.2. For step 4, grasping, we adopted a state-of-
the-art open-source grasping planner, Dex-Net 2.0 [MLN`17], and integrated the planner
with ROS framework and arm controller provided by the open-source project kinova-ros
[CLLL`19]. Dex-Net is denoted as DN . Given a depth image of the object of interest
denoted by Φ, the suggested grasping configuration µ˚ is given by

µ˚ “ DNpΦq , (6.1)

where DN is the grasping planner function implemented based on Equation 2.12. Sub-
sequently, µ˚ is executed by the arm controller interface to grasp the object. Denote the
relevant states of the system by ~sg, which includes the initial pose of the gripper, and all

48

6.1 Tasks of Interest

other objects in the environment.

For step 5, after the gripper acquires the object, the second execution phase is to ma-
nipulate. Our custom trained deep neural network plans a manipulation trajectory τ using
the Generator G, given by

τG “ Gp~sgq . (6.2)

The planned manipulation trajectory is then planned into joint angle space using motion
planning software, given by

tΘ˚
t0
,Θ˚

t1
, ...,Θ˚

tH
u “MP pτG, Envq, (6.3)

where MP is a motion planning function implemented by MOVEit [SMK12]. This se-
quence of Θ is finally executed by the robot. A flowchart of the experiment process is
shown in Figure 6.1

In this chapter, we first illustrate details regarding our experiments: the tasks selected
for learning, the specific neural network graph parameters used by our proposed GAN
model, and the baseline models used to evaluate our contribution. In the rest of this chapter,
we discuss the experiment process and the software engineering challenges, as well as our
solutions. At last, we illustrate the trajectory visualization method that we used to present
the results in the next chapter.

6.1 Tasks of Interest

Both the proposed method and the baselines were examined with experiments conducted
on two tasks. The first task, pick-and-place, is to simply pick up an object and place it on
a target location, where the initial pose of the arm, location of the object and the target
location are all variables. This experiment is considered successful if the learning is able
to grasp and place the object at the target location. The second task is pouring, where the
initial pose of the arm and the demonstrated pouring location are both variables. The exper-
iment is considered successful if there is a plausible pouring motion towards an arbitrary
target location, followed by pose resetting. This simplified experiment can be considered
as learning the gesture of pouring.

49

6.1 Tasks of Interest

Figure 6.1: System Flowchart

50

6.2 Neural Network Graphs

For each task, we recorded 12 demonstration episodes, which were all made to follow a
consistent behavior. Selected randomly, 10 episodes were used for training and 2 episodes
were used for evaluation. Obvious and intentional distractions, such as pausing and am-
biguous or turbulent motion, were avoided during demonstrations. Meanwhile, in order to
introduce diversity, all demonstration episodes have different object positions and initial
arm poses.

6.2 Neural Network Graphs

As the main contribution of our work, the proposed trajectory planner was implemented by
a full-trajectory prediction deep learning model based on the original GAN paper [GPAM`14].
The network graphs follow the architecture design previously discussed in Chapter 5, and
they are the results of many iterations of empirical results driven evolution.

Both the DiscriminatorD and Generator G networks were constructed with the popular
strategy of repetitively stacking basic subgraph structure. In the simplified network dia-
grams shown in Figure 6.2, or full network diagrams in Appendix Figure A.1 and Figure
A.2, G has 22,370,978 parameters, while G has 4,735,331 parameters. The two networks
were constructed by repeating the subgraph pattern in the orange boxes for 9 and 6 times,
respectively. Both networks were compiled using binary cross entropy as loss function
[DC97] and Adam [KB14] as the optimizer. During initialization of the training process,
all values in the trajectory datasets were normalized into the range between 0 and 1, and
the parameters for both D and G were initialized with Gaussian noise.

Guided by empirical results, we gradually increased the number of parameters in G net-
work. Notably, the long skipping edges introduced in Section 5.2.1 enabled us to largely
increase the network’s complexity without suffering heavily from exploding gradients. To
upscale the 1D sequence, we used transposed convolution. Alternatively, we also exper-
imented with nearest neighbors resizing1, which significantly reduced the number of pa-
rameters, but performed poorly.

As discussed in Section 5.2.2, G network’s complexity was deliberately constricted to

1Nearest neighbors resizing can be considered as a special case of transposed convolution, where all the
kernel weights are constant values based on a fixed formula.

51

6.2 Neural Network Graphs

Figure 6.2: Network Architecture of the Generator (22M params) and Discriminator (4M
params)

52

6.3 Baseline Methods

promote generalization. The initial input would pass through a stack of 1D convolutional

layers, max pooling layers, and dropout layers, which together act as an encoder, reducing
the width of the input while increasing in depth. Finally, the feature vector was sent to a
sigmoid activated fully connected layer, which quantifies the final verdict: whether or not
the input trajectory is deemed authentic.

Also, our empirical results suggest that G performed better when the core layers are ac-
tivated with tanh, while the Discriminator’s core layers performed better with leaky ReLU.
We believe this is likely because the former essentially serves as a regression network,
while the latter acts as a classification network.

Depending on the model architecture and training configurations, training2 time may
range from hours to days. While some hyperparameters were explored in Section 7.5, many
were not fine-tuned due to computation limitations.

6.3 Baseline Methods

We designed our experiments to examine the proposed method against reasonable base-
lines. To compare our approach with a classical solution of reinforcement learning, state-
to-state Behavior Cloning (BC), we implemented 3 baseline models, which are based on
state-to-state GAIL, state-to-state BC and full-trajectory BC.

We constructed the baseline state-to-state GAIL model with a Generator accepting 5
previous 6D poses as input seeds, and outputting 6 poses, which concatenate the 5 previous
poses with the next pose prediction. G then accepts 6 poses and outputs the classification
probability via a binary softmax function. The full model diagrams are shown in Figure
A.3 and A.4 in the Appendix. For the BC models, we constructed networks with the same
input and output shapes as the corresponding GAIL models3. Network diagrams are shown
in Figure A.5 and A.6 in the Appendix.

To compare our method with the baselines, we defined a cost function, shown in Equa-
tion 6.4, which is the minimum of the mean square errors between the predicted trajectory

2Trained on a bare-metal PC with GeForce GTX 1080Ti GPU.
3The only exception is that the state-to-state BC model also outputs a termination signal, and trajectory

inferencing was hardcoded to terminate at maximum length 64, preventing never-ending trajectories.

53

6.4 Demonstration Process

against all demonstration trajectories. Because the trajectories have different starting poses
~s0, we translated all trajectories to initiate from the origin by subtracting all poses in the
sequence from the starting pose. The goal of learning is to minimize J between timestamps
0 to H . Although far from perfect, we will use this function to quantify the quality of
predictions τG against all demonstrations τE ,

J “ minp
t“H
ÿ

t“1

pp~sG t ´ ~sG0q ´ p~sEt ´ ~sE0qq
2
q, (6.4)

where @t, ~sG t P τG , and @t, ~sEt P τE .

6.4 Demonstration Process

Although the experiment was set up in a simplified laboratory scenario, we still encountered
numerous engineering obstacles when building the prototype. In the rest of this chapter, we
illustrate the challenges and our solutions.

Recent research work on imitation learning has had more success inside of simulations
than in the real world. Notably, the OpenAI Gym [BCP`16] [Pal18] simulated environment
using the MuJoCo [TET12] physics engine has been wildly used in research [CDFM18]
[CG17] [PAR`18]. One significant reason is that deep learning algorithms usually require
a large amount of data [FYZ`17], where massive amounts of ground truth demonstrations
can be autonomously produced by other algorithms [AF17] [SVG`17].

Gathering a large training dataset is a different story in the real world. On one hand,
getting one expert demonstration is easier; some cutting-edge imitation learning tasks are
trivial for humans. For example, walking, pouring or making a sandwich. On the other
hand, it is often infeasible to produce thousands, or even millions, of real-world demon-
strations, which is not uncommon for researches conducted in simulation. The quality and
quantity of demonstrations are immensely important factors for the effectiveness of imita-
tion learning in general. Meanwhile, making demonstrations is tedious and tiresome, and
people inevitably make mistakes, especially when performing long and repetitive work.
While designing our pipeline, we kept in mind to reduce the effort and precision required
by experts during demonstrations, and we promoted built-in error tolerance features in the

54

6.4 Demonstration Process

system. In specific, we programmed software logic to address unintended pauses, turbulent
motions, large chunks of missing motion segments due to various hardware limitations,
and hindered or prematurely terminated recordings. Moreover, we simplified the labora-
tory scenario as discussed below.

Color-Coded Objects

To help ensure observations correctly reflect true states, all relevant objects are marked with
color stickers, which can be reliably detected by the vision system. During both demonstra-
tion and execution, we deliberately removed all occupied colors in the scene, and ensured
the color markers were visible by the camera at all times. Details regarding this design
choice will be elaborated in Section 6.5.2.

Relying on Low-Level Drivers

The JACO2 commercial robot arm was equipped with sophisticated hardware sensors and
joint controller drivers, supporting high accuracy positional and force feedback. Working
in conjunction with the MOVEit [SMK12] joint motion planner, they are able to reliably
bring the arm to the desired states.

Demonstrating with a Grabber

Instead of demonstrating directly by hand, we used a grabber to interact with the objects
in our experiment. By doing so, we force the demonstrator’s dexterity to match the JACO2
arm learner’s. When demonstrating with real hands, subtle manipulating applied with our
incredibly flexible fingers could be extremely difficult to identify, and potentially infeasi-
ble to imitate with the much simpler mechanical learner’s arm. As shown in Figure 6.3,
the grabber’s gripper is attached to a rigid stick body, which has dexterity similar to the
JACO2 arm’s gripper. By demonstrating with a gripper, we brought the two agents into
homogeneous action space, so the learner should be able to fulfill a task by executing the
expert’s trajectory. In other words, our learner’s goal is to learn a policy with the same
state-state pair in the expert’s policy. As discussed later in Section 6.5.2, using a simplified
end-effector also simplified the implementation of the color-based object tracking solution.

55

6.5 Computer Vision Pipeline

Figure 6.3: Demonstrating Using a Grabber

6.5 Computer Vision Pipeline

A computer vision pipeline was required to extract numerical trajectories from the raw
camera feeds. In this section, we illustrate the engineering challenges and our solutions to
this classical computer vision problem.

6.5.1 RGBD Camera

We deployed an RGBD sensor to capture the gripper motion and object position during both
demonstration and execution. Our choice of hardware is the well supported and popular
Kinect V2 sensor [But14] [FBR`15].

The Kinect V2 camera captures color and depth with two separate sensors of different
resolution and range. As shown in Figure 6.4, the color and depth cameras observe from
different perspectives, which have per-device manufacturing-specific intrinsics [WS16]. As
a result, each particular device requires software calibration to produce close-to-accurate
point cloud data (PCD).

56

6.5 Computer Vision Pipeline

Figure 6.4: Kinect V2 Front Panel [WS16]

Calibration and Hardware Limitations

We employed a well-known open-source Kinect2 Calibration solution, IAI [Wie15]. It cal-
culates the device-specific offsets and distortion intrinsics coefficients by analyzing camera
feedback of known patterns. Shown in Figure 6.5, a pattern was printed on an A4 paper with
precise ratio and pinged down to a ridged, flat board. Subsequently, we took snapshots of
the pattern from various angles and distances, 300 for the color sensor and 300 for depth
sensor. Finally, those snapshots were processed by the collaboration tool to calculate the
estimated intrinsics of our particular device. However, even after multiple attempts, there
are still significant errors in the estimated intrinsics matrices. By simple visual examina-
tion, notable mismatches between the PCD and reality were still pervasive. This causes
issues later on during object tracking. Due to distortion, a misregistered color point could
be mapped onto a neighbor point, which could have a significant difference in depth value.

The most common camera calibration error happens when the gripper or an object is

57

6.5 Computer Vision Pipeline

moving through the air close to the depth camera, due to imperfect distortion estimation.
In which case, the misregistered points may fall onto the next obstacle underneath, which
is the table. To combat this issue, we implemented two strategies in the computer vision
pipeline. We removed all points that are on or below the table surface; by doing so, we
eliminated the majority of the misregistered points. Secondly, we added a sanity check
mechanism using the relative distance between all the color markers attached to the gripper.
Because those markers are tapped onto a ridged grabber, the relative distances between each
marker are known. Therefore, when a heuristic tolerance threshold has been reached, we
can deduce the readings are the culprit.

Figure 6.5: IAI Kinect2 calibration (photo reprinted from [Wie15])

Working Around Camera Minimal Distance

Another hardware limitation is the blind-spot in front of the depth camera. The sensor
requires a minimal perception distance of 0.5 m. Meanwhile, due to the sensors’ limited
resolution, placing the camera too far from the demonstration scene would significantly af-

58

6.5 Computer Vision Pipeline

fect the quality of PCD output. After all, the Kinect camera was designed for tracking body
movements, not small objects. During demonstration recording, we had those limitations
in mind and tried to carefully maneuver the grabber and objects to stay within the visible
area of the workspace.

All the aforementioned solutions are a best-effort type of engineering approach. In prac-
tice, those heuristic-based sanity check mechanisms were developed with multiple itera-
tions of trial and error.

Synchronizing Color and Depth Channels

The color camera sensor provides a relatively high frame rate of 30 Hz. However, the depth
channel feed is not perfectly synchronized with the color channel feed, and, in practice,
we often experience missing frames in the depth channel. Therefore, we sampled with a
reduced frame rate of 2 Hz. For every 0.5 second interval, we picked the latest color image
and depth image in the buffer as a matching pair, and then waited to pick the next new
pair until the beginning of the next interval, while discarding the rest. Each pair is then
computed into a PCD file using point registration. However, due to point registration and
the hard disc writing speed limit, the final frame rate is only approximately 2 Hz, with large
variance and frequent missing frames.

To summarize, the RGBD input was gathered as a pair of a color image, shown in Figure
6.6, and a depth image. Together they are computed into a PCD file via point registration,
as visualized in Figure 6.7.

59

6.5 Computer Vision Pipeline

Figure 6.6: Camera Color Channel

Figure 6.7: PCD Visualization

Alternative Methods for Perception

Utilizing visual signals for planning is a common approach to building a smart robotic
system. Because humans rely heavily on vision to perceive the world, objects in our world

60

6.5 Computer Vision Pipeline

are usually created and arranged to be visually distinguishable. This makes robotic vision
sensors compatible with human-friendly environments.

Meanwhile, there are other options, such as miniature inertial sensors [RLS09], laser
rangefinders [ZG00], or combining multiple types of sensors [MZB12] as the information
source to perceive the surrounding environment. Those approaches usually work by attach-
ing a sensor on the object of interest, which can produce precise and real-time positional
feedback. Practical scenarios often involve robots operating within a precisely controlled
and mapped factory environment. In other words, everything, including the robot, the ob-
jects and the environment, are all well-designed to facilitate the task. This line of ideas
adepts very well in solving large scale industrial automation problems, where the goal is
clear and the environment is well prepared and maintained, as there was little room for
errors.

Our research addresses the polar opposite, where the environment is potentially unfa-
miliar, and the solution attempts to tackle a variety of tasks. To build a generalized operating
system, we aim to have as few assumptions and modifications to the workspace as possi-
ble. Although we placed color markers on all the relevant objects as a proof-of-concept
implementation, in a real-world application, the color tracker can be replaced by an object
deception modulo, for example, utilizing the Tensorflow Object Detection API [Mus18].

Another advantage of a visual perception-based robotic system is the amount of po-
tential demonstration data source. Although the theoretical foundation of machine learning
has been laid decades ago, intelligent machine learning systems have historically not been
viable for solving large-scale real-life problems. The relatively recent boom of machine
learning progress is largely enabled by the recent boom of accessible data and computa-
tional power. Subsequently, imitation learning can also take advantage of the vast amount
of easily accessible RGB videos on the internet, which can potentially be used as demon-
stration data for learning. With that motivation in mind, we decided to use visual feedback
as the primary source of input.

61

6.5 Computer Vision Pipeline

6.5.2 Color Marker Annotated Objects

As object detection and pose estimation are not at the core of our research interest, our
experimental scenario was designed to facilitate simple engineering solutions for extract-
ing trajectory data from demonstrations. There are many well established technologies for
annotating objects, for example, barcode, Bokode, QR code, Microsoft Tag and ArUco
Markers. The ArUco Marker [dSCGF`15] was our initial choice for object annotation. It
uses fixed-sized binary square fiducial markers to calibrate the marker’s coordinate system
with the camera’s, capable of providing precise linear and angular real-time pose estima-
tions.

While those sophisticated markers can provide rich information, one major issue of
those barcode-like markers is that they require a full view of the marker without any signif-
icant parts obscured. This is not a reasonable assumption for our scenario, where the object
and the grabber can overlap with each other from the camera’s perspective, or rotate to a
pose where the marker may no longer be clearly visible.

Instead, we used color-coded tags to annotate the relevant objects in the scene, as the
blue tags shown in Figure 6.6. In addition, key parts of the grabber were also wrapped with
colored tapes, so that the colored area would be visible from different angles. As previously
shown in Figure 6.3, the pose of the gripper4 can be calculated according to the coordinates
of the green and pink color markers. An orange marker was attached to a part inside of the
gripper, and it is only visible when the gripper is open. The markers enabled us to track the
gripper’s trajectory and its status.

6.5.3 Filtering and K-means Clustering

In practice, there were two main challenges we encountered when building an automated
object and gripper tracker.

4Front end of the grabber, which grips objects.

62

6.5 Computer Vision Pipeline

Workspace and Lighting

Although the color tape is well-manufactured, with uniform color, and the workspace is
intentionally organized to avoid clashing with the encoding colors, lighting can cause dras-
tic differences in camera perception. The same strip of tape can present in a wide range of
values when observed from different angles. Meanwhile, if we design the system to accept
a large range of value for each color, significant noise can occur in unexpected ways. For
example, the yellow-orange wooden table can cause pink glare when the image is taken
from certain angles. Or, in other cases, the reflective metal surface of both the JACO2 arm
and the gripper can display large blue point clouds, which turn out to be reflections of the
blue Jalousie window in our lab.

Silent Errors

Incorrectly identified color markers can silently corrupt the gathered data. While the goal
is to automate this tracking process for a large number of images, it is not ideal to manually
verify results for every image. Therefore, the tracked data yield in this step is expected to
be imprecise. This is a classic engineering problem to balance the cost of manual work and
data accuracy. In our case, the deep imitation learning network does allow tolerance, and
the quality of the tracked data only has to be reasonably accurate.

To address the aforementioned issues, firstly, we implemented a color range refiner tool
with OpenCV, which allowed a trial-and-error type of manual tuning with Trackbar5. Dur-
ing our experiments, some 10 thousand color marker annotated images were captured and
tracked. The color ranges were defined with hue, saturation and value (HSV), as opposed
to RGB, due to its power to express concepts similar to how human defines a color: hue
as the code of the color, saturation as the intensity of the color versus grey, and value as
brightness. This step is crucial to the overall effectiveness of the color tracking solution.

Noisy color spots were inevitably included in the filtered PCD. In addition to color
range filtering, we further refined the PCD by performing a statistical outlier removal pro-
cess to eliminate smaller groups of noisy clouds. Both the filtering infrastructures were
available as a part of the open-source Point Cloud Library (PCL) project.

5Trackbar is a popular OpenCV module for GUI numerical range selection

63

6.6 The JACO2 Assistive Robot Arm

Figure 6.8: The Kinova JACO2 R©Assistive Robot

Even so, multiple clusters of colored points can present in the filtered scene, although
often much smaller than the deliberately installed color taps. This makes simple K-mean
clustering very effective [SLL11], where we simply pick the center of the largest cluster of
color as the detected position of that color marker.

6.6 The JACO2 Assistive Robot Arm

The robot arm agent we employed is called the Kinova JACO2 R©Assistive Robot. Shown in
Figure 6.8, it features six-axis movement that corresponding to shoulder, elbow and wrist,
allowing us to mimic the smoothness and versatility of a fully functioning human arm.
While the JACO2 arm was originally designed as a manually controlled assistive device
for wheelchair users with upper extremity disabilities [MAFR11], our research explores its
application to be interfaced with a machine learning task-level controller.

Our experiments were conducted in both simulations and the real world. The official
kinova-ros driver project provided two vastly different low-level controller API for the two

64

6.6 The JACO2 Assistive Robot Arm

environments. To interface with them, we implemented two versions of controllers enabling
smooth execution of high-level motion trajectory commands.

Controller for Gazebo Simulation

The Gazebo simulated environment was built upon ROS. The kinova-ros project also offi-
cially supports the MOVEit joint motion planning framework, which makes implementing
a naive controller trivial. The controller simply needs to translate poses relative to the cam-
era’s reference frame into the arm’s local reference frame, and then pass those parameters
to MOVEit. The latter can be configured to plan joint-level instructions to complete the
desired motion while avoiding collision with the arm itself or known objects, such as the
table. Finally, kinova-ros provided joint controllers to change the arm model’s states in
ROS according to those instructions.

Initially, we built the system solely in Gazebo simulator. We implemented a high-level
controller, which allows the demonstrator to joystick control the arm using a keyboard.
After mastering controls, realistic demonstrations can be performed relatively easily on
various 3D object models with the simulated JACO2 arm. However, the physics engine
in ROS was not able to simulate contact between model surfaces. Most notably, the sim-
ulation could produce unexpected behavior or crashes when the gripper closes on rigid
objects. Therefore, the simulation controller was also programmed to detect those abnor-
mal states, to recover the robot to a normal state or otherwise restart the ROS world. In the
pouring experiment, we only experimented with an empty gripper, instead of holding a cup
as theatrical property.

In addition, the kinova-ros driver was not able to produce accurate motion. While the
movement instructions produced by the kinova-ros joint controllers are described by posi-
tion, velocity and acceleration, joint effort6 is not explicitly modeled by the kinova-ros arm
controller. In practice, if any instruction causes any part of the arm to go through another
part of the arm, objects or other rigid surfaces, the offending model could be assigned with
an unrealistic and undefined extreme velocity. For example, issues arise during grasping,
where both sides of the gripper try to close on a solid object, or when the object gets pushed
into the ground or a part of the arm. In both cases, the arm model or the object could be pro-

6Joint effort is a parameter to describe joint motions in ROS.

65

6.6 The JACO2 Assistive Robot Arm

jected away with maximum speed. In a worse case scenario, eventually the joint controller
would shut down, or the arm model could collapse into a non-recoverable state. Also, at
the time, the kinova-ros driver implementation had several major known issues that often
crashed the low-level joint controllers.

We eventually moved the experimental environment away from ROS Gazebo due to
various limitations of the physical engine and the kinova-ros driver package.

Controller for the Physical Arm

The kinova-ros project also implemented controllers for the real arm. At the lowest level,
each joint can be controlled by torque, in conjuncture with its per-joint position and force
feedback. With those basic building blocks, kinova-ros also provided a variety of higher-
level controllers. At the highest level, the end-effector’s pose can be directly controlled in
Cartesian space. For the interest of this research, we built a thin wrapper interfacing with
this Cartesian pose controller, which takes a trajectory file and completes the described
motion, including gripper’s movements, closing, and opening. Similar functionality can be
realized with per-joint velocity control, with the advantage of smoother motion and more
control over the arm’s pose.

Automated Reference Frames Calibration

When performing a task, the camera and the robot arm have to both calibrate into the
same global coordinate reference frame. Throughout the span of many experiments, subtle
displacement of the devices in the workspace often accumulate errors affecting the final
test results. Subsequently, we implemented a robust and efficient solution to dynamically
calibrate the different local coordinate systems against the global coordinate system.

As shown in Figure 1.2, the Kinect camera is installed on a tripod, which is strapped
upside down from the ceiling, while the arm is fixed on the table. Both the devices have 6
degrees of freedom, 3D in spatial displacement, and 3D in orientation.

To effectively reference the two different local coordinate systems, we defined a global
coordinate system using the user’s perspective when sitting behind the table. Firstly, we
established the global coordinate reference frame with a large Aruco marker with known

66

6.7 Trajectory Visualization

geometry, which was fixed onto the table. The coordinate system of the arm can be vi-
sualized by putting a marker pen on the arm and drawing onto the table with the arm’s
controller interface. The broad base of the arm’s foundation kept the Z-axis of the arm par-
allel to the global Z-axis. For simplicity, we rotated the arm until both the X and Y axis
were also aligned with global. Once satisfied with the arm’s pose, we fixed its foundation
to the table with two heavy-duty mounting clamps across the base. This reliably prevents
any significant displacements between the arm and the table. At last, a coefficient matrix
was calculated to translate the arm’s reference frame to the global frame.

Meanwhile, a small rotation of the camera’s coordinate origin can significantly offset
the coordinates of objects far away. To autonomously translate coordinates between the two
systems, we implemented a calibration software solution using OpenCV Python package.
At the beginning of each experiment, we took a snapshot image of the global Aruco marker
from the camera’s perspective. Using the pose estimation library provided by the Aruco
OpenCV module, we could drive the 6 coefficients required to translate camera frame to
global frame. Both sets of coefficients were written together to a yaml file, which gets
loaded by the tracking and controller component during runtime.

Implemented in C++, the complete computer vision pipeline fetches inputs from the
Kinect camera’s image feed buffer, and outputs a series of tracked poses for the gripper
and linear positions for the objects.

6.7 Trajectory Visualization

This section illustrates our trajectory visualization method as preparation to interpret the
experimental results in the next chapter. To begin with, consider a trajectory τP extracted
by the pipeline. An example of the snapshots taken during the pouring demonstration is
shown in Figure 6.9.

67

6.7 Trajectory Visualization

Figure 6.9: A Snapshot of Demonstration Recording

We first parse the demonstration recordings into features composed of a 6D-point fixed-
length time-series of poses, which consist of 3D linear positions and 3D angular positions7.
A trajectory τ can be represented by a 1D time series from t0 to tH ,

τP “ t~st0 , ~st1 , ..., ~stHu, (6.5)

where ~s is a pose vector of rx, y, z, yaw, pitch, rolls, and t0, t1, ..., tH are variable times-
tamps which increase monotonically and have potentially uneven intervals. The arm’s pose
can be visualized by Figure 6.10, where the arrows in the figure represent the poses of the
arm.

7Due to the limitation of our simple tracking system, roll was not possible to be detected, thus resulting
in all roll values to be 0. However, we decided to overlook this application specific property of the training
data in order to design a generic learning network.

68

6.7 Trajectory Visualization

Figure 6.10: Visualizing the Arm’s Pose in a 3D Plot

The full trajectories for pouring can then be visualized by examples in Figure 6.11.
The plotted Euclidean space represents the real-world 3D space, with all axes using meters
as units. Each arrow corresponds to the end-effector’s poses sampled at a fixed frequency,
while the color reflects time elapsed since the beginning of the trajectory. The initial pose
was marked by the red arrow, and the subsequent poses were marked by arrows gradually
fading into yellow.

For the rest of this thesis, we will use red to yellow for demonstration trajectories, and
blue to cyan for predicted trajectories. As the elapsed time increases, the color of the arrows
gradually fades from red into yellow or blue into cyan.

69

6.7 Trajectory Visualization

Figure 6.11: Original Demonstration Trajectory for Pouring

The origin of the coordinate system is collaborated to align with the arm’s coordinate
system. For better visualization, Figure 6.12 shows the same demonstration trajectory from
multiple viewing angles.

70

6.7 Trajectory Visualization

Figure 6.12: Trajectory Visualization from Multiple Perspectives

Due to hardware limitations during the recording and tracking process, some frames
could be lost from the collected trajectories. Moreover, demonstration point cloud data were
recorded at approximately 2 Hz, while duration varies from around 20 s to 30 s depending
on the positioning of the objects. We first mirror padded a random number of points on
both ends, and adjusted the original timestamps to ensure all episodes of demonstrations
had a duration of 31.5 s.

Next, we re-sampled 64 points from the original trajectory at precisely 2 Hz, which
conveniently makes the feature vectors have a fixed shape of r64, 6s, resulting in a re-
sampled trajectory τE , given by

τE “ t~s10, ~s10.5, ..., ~s131.5u, (6.6)

where ~st denotes the pose of the end-effector at timestamp t. Due to hardware lim-
itations, which would be discussed in 6.5.1, evenly sampled points were calculated by

71

6.7 Trajectory Visualization

performing linear interpolation on the original trajectory. For a given timestamp t, the re-
sampled pose is calculated by

~s1t “
~stk ˚ pt´ tkq ` ~stk`1

˚ ptk`1 ´ tq

tk`1 ´ tk
, (6.7)

where tk ă“ t and tk`1 ą“ t such that ~stk and ~stk`1
are valid points in τP . Conse-

quentially, τE would have a fixed length of 64, while the ordering of each point implicitly
indicates its elapsed time during the demonstration.

Figure 6.13: Original Demonstration Trajec-
tory for Pouring

Figure 6.14: Re-sampled Demonstration
Trajectory for Pouring

While Figure 6.11 shows one of the original demonstrations τP , Figures 6.13 and 6.14
compare the original and re-sampled trajectories of τE .

In the next chapter, we will illustrate the results of our experiments.

72

7
Results

Our experiments can be divided into two sets. The first set was conducted in the real world,
aimed at examining the overall viability of the integrated system as a whole. The second
set was conducted in simulation, aimed at investigating the performance of the proposed
GAN-based manipulation trajectory planner.

7.1 Viability of the System

To examine the viability of the teachable robotics system, the goal of our first experiment
was to evaluate our prototype system on learning one of the simplest tasks, pick-and-place.

Even the baseline models were able to consistently suggest viable pick-and-place ma-
nipulation trajectories. Figure 7.1 visualized one example of an expert demonstration, while
Figure 7.2 illustrated one of the trajectories predicted by state-to-full-trajectory GAN.

73

7.1 Viability of the System

Figure 7.1: Demonstration Trajectory Figure 7.2: Predicted Trajectory

Through collaboration between the object tracking infrastructure, the adapted Dex-Net
grasping planner, and the learned manipulation trajectory planner and the JACO2 arm, the
system was able to consistently perform pick-and-place on scenarios with arbitrary starting
and target positions.

A short example video demonstration is available at youtu.be/ywvo9tqk1q0. In the ex-
ample, a color marked object was placed at an arbitrary location, the system locates the
object using the camera, and finally performs pick-and-place using the grasping planner
and the manipulation planner. Figure 7.3 animates one example of the experiment, where
each snapshot was evenly sampled from the original video.

74

https://youtu.be/ywvo9tqk1q0

7.2 Qualitative Comparison

Figure 7.3: Another Example Executing the Learned Pick-and-Place Trajectory (Video
Available)

7.2 Qualitative Comparison

In the rest of this chapter, we will compare the manipulation planners implemented by our
proposed method against the baselines. While all four approaches succeeded at pick-and-
place, only the proposed full-trajectory GAN-based model was able to reliably suggest a
viable trajectory to complete pouring.

To quantifiably compare the four methods, Figures 7.4 and 7.5 visually illustrate the
goodness values for each method, which was defined by Equation 6.4. To avoid terminol-
ogy clashing with "cost" or "loss", which were also used during training, we will refer
to this goodness value as Negative Rewards. Negative Rewards were plotted on the Y-axis,

75

https://youtu.be/ywvo9tqk1q0

7.2 Qualitative Comparison

against the total amount of data trained plotted on the X-axis. The following two paragraphs
clarify details regarding the figures.

Rewards were quantified on two sets of data, named Train and Eval. Our extremely
small demonstration dataset only consists of 12 trajectories, which are divided into 10 for
the training dataset (Train) and 2 for the evaluation dataset (Eval). Both datasets were ex-
panded with synthetic trajectories by the procedure illustrated in Section 5.3. The expanded
Train dataset was then used for model fitting, where 10% was designated for validation. We
separately evaluated the models with seeds extracted from both Train and Eval.

Although trained with different algorithms, all four methods were plotted on the same
x-axis. As a generative adversarial network, the generative adversarial models were trained
with units of iterations, where each iteration uses a minibatch of seeds1 randomly drawn
from the training data, sampled with replacement. On the other hand, the BC models were
trained with epochs of the entire training dataset. To provide a reasonable comparison,
the GAN-based methods’ total amount of data trained is calculated to be the product of
iterations multiplied by the size of minibatch. For the BC-based methods, it is calculated
to be the product of training data size, multiplied by epochs. Overall, the proposed method,
plotted in blue, delivered significantly better performance.

For GAN, each minibatch was randomly sampled from all demonstrations in the train-
ing dataset; those demonstrations are unique, although including synthetic trajectories.
Similarly for BC, each epoch was trained on the whole training dataset with every demon-
stration unique.

1The seed to the Full-Trajectory Prediction GAN is the initial pose of the gripper, while the seed to the
State-to-State Prediction GAIL is the last 5 poses of the gripper.

76

7.3 Learning Curves and Progression of Predictions

Figure 7.4: Negative Rewards from Train Figure 7.5: Negative Rewards from Eval

Table 7.1 summarizes the quantitative results using average Negative Rewards mea-
sured from models trained with 650,000 and 750,000 trajectories. That particular range
was chosen based on the respective learning curves, as will be discussed in Section 7.3. As
the results show, state-to-full-trajectory prediction models performed significantly better
than state-to-state prediction models, and GAN-based approaches performed better than
BC-based approaches.

Method Evaluated by Train Seeds Evaluated by Eval Seeds

State-to-Full-Trajectory GAN 0.011 0.012

State-to-Full-Trajectory BC 0.021 0.038

State-to-State GAIL 0.068 0.065

State-to-State BC 0.072 0.070

Table 7.1: Comparison of Averaged Negative Rewards

7.3 Learning Curves and Progression of Predictions

We begin discussing the qualitative results by presenting learning curves.

During training, we also periodically evaluated the models with seeds from the Eval

77

7.3 Learning Curves and Progression of Predictions

dataset, which were carefully prepared to avoid in training, as discussed in Section 5.3.
Those evaluation trajectories are also visualized to show how predicted trajectories progress
during training.

7.3.1 Full-Trajectory GAN

Figure 7.6: Train Accuracy of State-to-Full-
Trajectory GAN

Figure 7.7: Eval Accuracy of State-to-Full-
Trajectory GAN

The learning curves for state-to-full-trajectory GAN-based model agrees with the expec-
tation of model convergence established in Section 5.3. This suggests the training was
effective. The metrics in Figure 7.6 were measured against the Train dataset after each it-
eration. The Discriminator’s post-fitting accuracy generally remained above 0.5 after each
backpropagation, which means it was able to consistently distinguish the counterfeit tra-
jectories. Although the Generator’s post-fitting accuracy remained low, which reflects its
hardship in learning to deceive its counterpart, there are interesting spikes where it learns
to successfully generate plausible trajectories in the Discriminator’s perspective. When the
spikes occurred, the Discriminator’s accuracy dropped to around 0.5 for a short period,
during which it adapted and learned to distinguish the new characteristics of the predicted
trajectories again.

The metrics in Figure 7.7 were measured against the Eval dataset after each iteration.

78

7.3 Learning Curves and Progression of Predictions

Near iteration 5, 500, both networks’ accuracy overlapped at 1. This is because they are
calculated from different inputs. Due to the particular nature of GANs, the Generator’s
output does not have ground truth labels. We measured its accuracy by feeding Eval seeds
through the combined GAN. Therefore the correct prediction should all be 0s. The Dis-
criminator’s accuracy was measured by feeding Eval data to the standalone Discriminator
network. Therefore, the correct prediction should all be 1s.

After iteration 3, 000, the Eval accuracy of both networks notably decreased to around
0.52. This is the desired behavior indicating convergence of GAN training, where the Dis-
criminator is no longer able to distinguish the Generator’s predictions and the ground truth
demonstrations.

2The learning curves, model performance largely vary between different experiments. In some experi-
ments the Eval accuracies of the Discriminator were shown to consistently hover around 0.5; however, to
avoid selection bias of machine learning, we did not deliberately pick the experiments with ideal learning
curves.

79

7.3 Learning Curves and Progression of Predictions

Figure 7.8: Predictions From State-to-Full-Trajectory GAN (EvalSeed #0)

80

7.3 Learning Curves and Progression of Predictions

Figure 7.9: Predictions From State-to-Full-Trajectory GAN (EvalSeed #7)

Figures 7.8 and 7.9 shows how prediction improved as training took place, with two
examples with different seed input (EvalSeed #0 and #7).

81

7.3 Learning Curves and Progression of Predictions

7.3.2 State-to-State GAIL

Figure 7.10: Train Accuracy of State-to-
State GAIL

Figure 7.11: Eval Accuracy of State-to-State
GAIL

In Figures 7.10 and 7.11, the learning curves for state-to-state GAIL-based model suggest
that the training was also effective. Comparing to state-to-full-trajectory GAN, the curves
had fewer sharp changes, as the networks had much fewer parameters and easier to train.
Signaled by the Eval accuracy of the Discriminator, the model converged around iteration
4, 000.

82

7.3 Learning Curves and Progression of Predictions

Figure 7.12: Predictions From State-to-State GAIL (EvalSeed #0)

83

7.3 Learning Curves and Progression of Predictions

Figure 7.13: Predictions From State-to-State GAIL (EvalSeed #7)

Figures 7.12 and 7.13 show how prediction progressed as training took place, with two
examples with different seed input (EvalSeed #0 and #7). The predicted pouring trajectories
were not ideal, even after training converged.

84

7.3 Learning Curves and Progression of Predictions

7.3.3 Full-Trajectory BC

Figure 7.14: MSE Loss Learning curve of State-to-Full-Trajectory BC

Figure 7.14 shows that the state-to-full-trajectory BC-based model converged around epoch
25. Figures 7.15 and 7.16 show the progression. The predicted trajectories do not smoothly
transition between the initial poses3 and the predicted segments, nor resemble the behavior
of pouring.

Although the seeds’ values were not equal in the two figures, the predicted trajectory
segments are almost identical4. Regardless of the requested starting pose, which was used
as input to the network, the model always produces the same prediction as the rest of
the trajectory. This means the model memorized solutions minimizing the loss function;
however, it failed to learn the task.

3The initial 5 poses were used as seed input of the network. The final trajectory prediction is a concate-
nation of the initial points and outputs of the network.

4Both figures contain 9 trajectories visualized on a 3x3 grid, and the trajectories are compared against the
trajectories of the other figure at the same position.

85

7.3 Learning Curves and Progression of Predictions

Figure 7.15: Predictions From State-to-Full-Trajectory BC (EvalSeed #0)

86

7.3 Learning Curves and Progression of Predictions

Figure 7.16: Predictions From State-to-Full-Trajectory BC (EvalSeed #7)

87

7.3 Learning Curves and Progression of Predictions

7.3.4 State-to-State BC

Figure 7.17: MSE Loss Learning curve of State-to-Full-Trajectory BC

Figure 7.17 shows that the state-to-full-trajectory BC-based model converged around epoch
15. As shown in Figures 7.18 and 7.19, while the network was able to output smooth and
diverse predictions, the trajectories do not resemble the behavior of pouring.

88

7.3 Learning Curves and Progression of Predictions

Figure 7.18: Predictions From State-to-State BC (EvalSeed #0)

89

7.3 Learning Curves and Progression of Predictions

Figure 7.19: Predictions From State-to-State BC (EvalSeed #7)

7.3.5 Without Long Skipping Edges

In addition to comparing with baseline models, Figure 7.20 shows one example of learning
progression of unsuccessful learning, where the proposed model was duplicated, except
only the long edges were removed. The results suggest that the long skipping edges in the
networks were crucial to the information flow.

90

7.4 Visualized Trajectory Predictions

Figure 7.20: Progression of Model Predictions, for State-to-Full-Trajectory GAN Model
Without Long Skipping Edges

To summarize, only the proposed methods were able to make observable improvement
as training progressed.

7.4 Visualized Trajectory Predictions

We also visualized how final predictions compared to ground truth demonstrations5 for
each method.

5To avoid unclear visualization caused by overlapped starting points, we intentionally shifted the plotting
of predicted trajectories via geometric translation toward the positive direction on the x-axis.

91

7.4 Visualized Trajectory Predictions

Unsurprisingly, learning curves and trajectory prediction can be drastically different
when repeated with the same training configuration, influenced by the stochastic factors
during training. In this section, we visualized example predictions of the same seed input
(EvalSeed #0), hoping to reveal the common characteristics of the trajectories planned by
each method.

Figure 7.21: State-to-Full-Trajectory GAN Prediction Compared to Demonstration

The state-to-full-trajectory GAN-based model was able to produce fluent motions. Shown
in Figure 7.21, the arm’s pose starts from the deep blue colored arrows on the right side,
gradually lifts and shifts leftwards, then slowly tilts downwards. Each arrow’s pose would
be smoothly executed at a fixed frequency, so the high density of arrows on the left side
would lead to a pausing behavior during execution. Finally, the arm quickly lifts up and re-
sets its pose to the right side. Although the predicted blue-cyan sequence does not closely

92

7.4 Visualized Trajectory Predictions

follow the demonstrated red-yellow sequence, we can see that the overall trajectory indi-
cates a plausible pouring motion. As the model was trained with a variety of demonstra-
tions, with examples shown in Appendix Figures A.7 to A.14, we consider the result an
indication of effective learning, because the GAN-based learner appeared to able to extract
and recreate the essence of the pouring motion.

Figure 7.22: State-to-Full-Trajectory BC Prediction Compared to Demonstration

The state-to-full-trajectory BC-based model was also able to predict a plausible pour-
ing motion. However, the large and irregular oscillations6 indicates turbulent motion. More-
over, this BC-based model would often predict the exact same trajectories without adapting
to different initial poses in untrained scenarios. As previously shown in Figures 7.15 and

6In particular, obvious oscillation occurred in the deep blue sequence before 3 seconds elapsed and the
cyan sequence after 18 seconds had elapsed.

93

7.4 Visualized Trajectory Predictions

7.16, although the seeding input was different, prediction for the rest of trajectory was the
same. This indicates memorization, rather than learning.

Figure 7.23: State-to-State GAIL Prediction Comparing to Demonstration

The state-to-state GAIL-based model produced relatively smooth motion in bringing
the arm from the right side toward the left, and brought the arm back near the reset pose.
However, tilting and pausing was crucial for a pouring motion, which was lacking in the
predicted trajectory.

94

7.5 Hyperparameters Exploration

Figure 7.24: State-to-State BC Prediction Compared to Demonstration

Finally, the state-to-state BC-based model was able to produce smooth motion, but
failed to recreate the overall behavior of tilting, pausing and reset.

Overall, the proposed method demonstrated more effective learning.

7.5 Hyperparameters Exploration

To search for better hyperparameters, we firstly establish the stability of model training.
This is done by comparing the Negative Rewards, defined in Equation 6.4, of repetitive
experiments conducted with the same training configuration.

95

7.5 Hyperparameters Exploration

Figure 7.25: Consistency of Training Evalu-
ated by Train Dataset

Figure 7.26: Consistency of Training Evalu-
ated by Eval Dataset

The results are shown in Figures 7.25 and 7.26. Training progress can vary drastically
between different runs of experiments, but eventually, they were able to consistently con-
verge. Due to computation time constraints, those experiments were conducted with lite
training configurations. In contrast, the experiments in the previous sections were con-
ducted with the best known configurations.

96

7.5 Hyperparameters Exploration

Figure 7.27: Training Consistency

Merging the two figures together, in Figure 7.27, we can observe that, although the
Negative Rewards have large variance between experiments, given any single run of the
experiments, the rewards measured by Train and Eval tightly correlate.

97

7.5 Hyperparameters Exploration

Figure 7.28: Effect of Synthetic Dataset Size

Figure 7.28 explores the relationship between the size of the training dataset and Neg-
ative Reward measured on both Train and Eval. From the original 12 demonstrations, we
generated various sizes of synthetic trajectories, as described in Section 5.3. Due to the
measurement to avoid mixing the Eval dataset in training, Train trajectories with seeds
too close to any of Eval’s seeds were removed, with methodology illustrated in Section
5.3. The sizes shown in the figure describe the dataset after violating trajectories that were
pruned. Overall, the learning benefited from larger dataset size, even though they are mostly
synthetic.

98

7.5 Hyperparameters Exploration

Figure 7.29: Discriminator Steps Per Iteration

99

7.5 Hyperparameters Exploration

Figure 7.30: Generator Steps Per Iteration

Listing 4.2 presented the GAN training algorithm introduced by its original paper. In
each iteration, the Discriminator takes multiple gradient steps, while the Generator only
takes one step. With both networks compiled with the Adam optimizer7 and fitted with
mini-batches of size 128, we searched the hyperparameter space to optimize the number of
gradient steps for both of the two networks. As shown in Figures 7.29 and 7.30, by com-
paring Negative Rewards at iteration 6, 000 for our particular experimental settings, taking
1 step for Discriminator and 2 steps for Generator appeared to be the best configuration.

7The Adam optimizer was configured with learningRate = 0.0002, beta1 = 0.5 and beta2 = 0.999 .

100

7.6 Manipulation Trajectories Performed in Simulation

7.6 Manipulation Trajectories Performed in Simulation

Figure 7.31: One Example of the Final Predictions

The final predicted trajectory is a sequence of 64 poses. The prediction would be denor-
malized and passed to the MOVEit motion planner and JACO arm controller for execution.
Figure 7.31 presents one example of the predictions, while Figure 7.32 animated8 the mo-
tion of that particular trajectory, when it was executed in the ROS Gazebo environment.

8Unlike the animation of Figure 7.3, snapshots from Gazebo simulation were not evenly sampled: lagging
frames produced when waiting for MOVEit planning computation were manually pruned out.

101

7.6 Manipulation Trajectories Performed in Simulation

Figure 7.32: Executing the Learned Pouring Trajectory in Gazebo Simulation

102

8
Conclusions and Future Work

We proposed and prototyped a teachable robotic system, which learns simple tasks from
demonstrations. The system was deployed on a state-of-the-art commercial robotic arm.
The work overcame various practical engineering obstacles, examined various trade-offs
when designing the system, explored various training strategies for our GAIL-based deep
learning model, and eventually delivered a proof-of-concept teachable robotics system.

8.1 Conclusions

In experiments on the simple task of pick-and-place, the system was able to learn from raw
human demonstration recordings, eventually performing the task under untrained scenar-
ios. On the more complicated task of pouring, our approach outperformed the 3 baseline
models. The learned trajectory planner was able to consistently produce plausible trajecto-
ries, which led to smooth motion and successful pouring behavior.

As the main contribution of the research, we proposed a generative, adversarial network-
based full-trajectory prediction deep imitation learning model, which performed better than
the baselines, both qualitatively and quantitatively. Measured by a goodness function de-
fined by Equation 6.4, the quantitative results of our pouring imitation learning scenario
displayed two trends. The state-to-full-trajectory prediction models performed significantly
better than the state-to-state prediction models. We believe predicting full trajectory at once
benefited the CNN-based networks in capturing longer intra-trajectory dependency, which

103

8.2 Future Work

empowered those models to produce more coherent long-term predictions. Meanwhile, re-
sults from the GAIL-based models performed better than the BC-based models: the former
demonstrated better generalization, while the latter indicated memorization.

8.2 Future Work

Contemporary robots excel at following low-level instructions, often with precision and
efficiency that far exceeds human capabilities. However, until we figure out an efficient
way to enable robots to learn new tasks and adapt to new environments, those intelligent,
loyal friends in science fiction have to remain fictional. While the ubiquitous presence of
machine automation applications has been a major driving force of the modern industry, a
major challenge when building a general purpose smart robot is that the traditional robotic
systems require the agents to be explicitly programmed for each different circumstance
and environment. Our work took a small step in addressing this era-defining challenge, but
there is a long way to go.

Object Detection and Tracking

To simplify our experimental setting, we prearranged color-coded markers on parts of the
gripper, as well as all relevant objects in the scene. For a practical real-world application,
this unsaleable solution should be replaced with sophisticated object detection and tracking
neural networks, and possibly with other types of sensor. An end-to-end solution may be
viable with more demonstration data, or visual imagery transfer learning.

More Complex Tasks

The system could be scaled vertically to tackle more complicated tasks. The original com-
plex task may be segmented into a sequence of simple tasks, which can be planned and
executed separately. It is also possible to horizontally scale the system, where multiple
agents can learn to operate in collaboration.

104

Bibliography

Real-Time Manipulation Trajectory Planning

Our teachable robotic system attempts to plan the complete manipulation trajectory before
execution. This requires the robot to be operated in predictable and perfectly modeled en-
vironments. A real-world manipulation controller should be able to react to real-time feed-
back, with possibly the support of visual and force sensors. With robust hardware and so-
phisticated imitation learning methods, this could be done with explicitly modeled MDPs,
or implicitly modeled high-level deep learning controllers.

105

Bibliography

[AAS99] Pankaj K Agarwal, Boris Aronov, and Micha Sharir. Motion planning for
a convex polygon in a polygonal environment. Discrete & Computational

Geometry, 22(2):201–221, 1999.

[AET`14] Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin
Mocanu, Kurt Driessens, Gerhard Weiss, and Karl Tuyls. An automated
measure of mdp similarity for transfer in reinforcement learning. In Work-

shops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[AF17] Engr Akhtar and SM Farrukh. Practical Reinforcement Learning: Develop

self-evolving, intelligent agents with OpenAI Gym, Python and Java. Packt
Publishing, 2017.

[AHS`09] Joe Augenbraun, Linda Hirschhorn, Pankaj Shah, Nick Donaldson, William
Jayne, Juan B Gomez, and Joseph Pinzarrone. Multi-function robotic device,
June 30 2009. US Patent 7,555,363.

[BACM17] Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor. End-to-end differ-
entiable adversarial imitation learning. In Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, pages 390–399. JMLR.
org, 2017.

[BAM16] Nir Baram, Oron Anschel, and Shie Mannor. Model-based adversarial imi-
tation learning. arXiv preprint arXiv:1612.02179, 2016.

[BB07] Brendan Burns and Oliver Brock. Sampling-based motion planning with
sensing uncertainty. In Proceedings 2007 IEEE International Conference on

Robotics and Automation, pages 3313–3318. IEEE, 2007.

106

BIBLIOGRAPHY

[BCP`16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[Bic94] A Bicchi. On the form-closure property of robotic grasping. IFAC Proceed-

ings Volumes, 27(14):219–224, 1994.

[BK00] Antonio Bicchi and Vijay Kumar. Robotic grasping and contact: A re-
view. In Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-

tional Conference on Robotics and Automation. Symposia Proceedings (Cat.

No. 00CH37065), volume 1, pages 348–353. IEEE, 2000.

[BKV10] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi. Sampling-based motion
planning with temporal goals. In 2010 IEEE International Conference on

Robotics and Automation, pages 2689–2696. IEEE, 2010.

[BL13] Matteo Bianchi and Minas V Liarokapis. Handcorpus, a new open-access
repository for sharing experimental data and results on human and artificial
hands. In IEEE World Haptics Conference (WHC), 2013.

[But14] Thomas Butkiewicz. Low-cost coastal mapping using kinect v2 time-of-
flight cameras. In 2014 Oceans-St. John’s, pages 1–9. IEEE, 2014.

[CAGT18] Enric Corona, Guillem Alenyà, Antonio Gabas, and Carme Torras. Active
garment recognition and target grasping point detection using deep learning.
Pattern Recognition, 74:629–641, 2018.

[CCK`18] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim,
and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8789–8797, 2018.

[CDFM18] Maell Cullen, Ben Davey, Karl J Friston, and Rosalyn J Moran. Active in-
ference in openai gym: A paradigm for computational investigations into
psychiatric illness. Biological psychiatry: cognitive neuroscience and neu-

roimaging, 3(9):809–818, 2018.

107

BIBLIOGRAPHY

[CG17] Robert Chuchro and Deepak Gupta. Game playing with deep q-learning
using openai gym. Semantic Scholar, 2017.

[CHC`12] Doo-jin Choi, Seong-jong Han, Yun-Seo Choi, Young-Jun Park, and Jae-
hoon Kim. Multi-function robot for moving on wall using indoor global
positioning system, July 3 2012. US Patent 8,214,081.

[CK11] Jaedeug Choi and Kee-Eung Kim. Map inference for bayesian inverse rein-
forcement learning. In Advances in Neural Information Processing Systems,
pages 1989–1997, 2011.

[CK14] Jaedeug Choi and Kee-Eung Kim. Hierarchical bayesian inverse reinforce-
ment learning. IEEE transactions on cybernetics, 45(4):793–805, 2014.

[CLLL`19] Alexandre Campeau-Lecours, Hugo Lamontagne, Simon Latour, Philippe
Fauteux, Véronique Maheu, François Boucher, Charles Deguire, and Louis-
Joseph Caron L’Ecuyer. Kinova modular robot arms for service robotics
applications. In Rapid Automation: Concepts, Methodologies, Tools, and

Applications, pages 693–719. IGI Global, 2019.

[CMM`11] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella,
and Jürgen Schmidhuber. Flexible, high performance convolutional neu-
ral networks for image classification. In Twenty-Second International Joint

Conference on Artificial Intelligence, 2011.

[CPK`17] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. IEEE transactions

on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[Cra09] John J Craig. Introduction to robotics: mechanics and control, 3/E. Pearson
Education India, 2009.

[CSC12] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE

Robotics & Automation Magazine, 19(1):18–19, 2012.

108

BIBLIOGRAPHY

[CSKX15] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages
2722–2730, 2015.

[CSLG19] Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Ex-
ploring the limitations of behavior cloning for autonomous driving. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages
9329–9338, 2019.

[DAS`17] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho,
Jonas Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-
shot imitation learning. In Advances in neural information processing sys-

tems, pages 1087–1098, 2017.

[DC97] Rob A Dunne and Norm A Campbell. On the pairing of the softmax acti-
vation and cross-entropy penalty functions and the derivation of the softmax
activation function. In Proc. 8th Aust. Conf. on the Neural Networks, Mel-

bourne, volume 181, page 185. Citeseer, 1997.

[des19] Kinova’s ’jaco’ is a robotic arm designed to give independence to power
wheelchair users, Jul 2019.

[DFL14] Stefanos Doltsinis, Pedro Ferreira, and Niels Lohse. An mdp model-based
reinforcement learning approach for production station ramp-up optimiza-
tion: Q-learning analysis. IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, 44(9):1125–1138, 2014.

[DMP18] Chris Donahue, Julian McAuley, and Miller Puckette. Synthesizing audio
with generative adversarial networks. arXiv preprint arXiv:1802.04208,
2018.

[DRG15] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Train-
ing generative neural networks via maximum mean discrepancy optimiza-
tion. arXiv preprint arXiv:1505.03906, 2015.

109

BIBLIOGRAPHY

[dSCGF`15] Diego Brito dos Santos Cesar, Christopher Gaudig, Martin Fritsche,
Marco A dos Reis, and Frank Kirchner. An evaluation of artificial fidu-
cial markers in underwater environments. In OCEANS 2015-Genova, pages
1–6. IEEE, 2015.

[DSFK08] Rosen Diankov, Siddhartha S Srinivasa, Dave Ferguson, and James Kuffner.
Manipulation planning with caging grasps. In Humanoids 2008-8th IEEE-

RAS International Conference on Humanoid Robots, pages 285–292. IEEE,
2008.

[EDK14] Kyriakos Efthymiadis, Sam Devlin, and Daniel Kudenko. Knowledge revi-
sion for reinforcement learning with abstract mdps. In Proceedings of the

2014 international conference on Autonomous agents and multi-agent sys-

tems, pages 1535–1536, 2014.

[EHR17] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued
(medical) time series generation with recurrent conditional gans. arXiv

preprint arXiv:1706.02633, 2017.

[FB11] T Feix and Otto Bock. Human grasping database. Internet: http://web. stu-

dent. tuwien. ac. at/˜ e0227312/,[Sep. 10, 2010], 2011.

[FBH`18] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, and Mri-
nal Kalakrishnan. Multi-task domain adaptation for deep learning of in-
stance grasping from simulation. In 2018 IEEE International Conference on

Robotics and Automation (ICRA), pages 3516–3523. IEEE, 2018.

[FBR`15] Péter Fankhauser, Michael Bloesch, Diego Rodriguez, Ralf Kaestner, Marco
Hutter, and Roland Siegwart. Kinect v2 for mobile robot navigation: Evalua-
tion and modeling. In 2015 International Conference on Advanced Robotics

(ICAR), pages 388–394. IEEE, 2015.

[FC92] Carlo Ferrari and John F Canny. Planning optimal grasps. In ICRA, vol-
ume 3, pages 2290–2295, 1992.

110

BIBLIOGRAPHY

[FDSF18] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton Fookes.
Learning temporal strategic relationships using generative adversarial im-
itation learning. In Proceedings of the 17th International Conference on

Autonomous Agents and MultiAgent Systems, pages 113–121. International
Foundation for Autonomous Agents and Multiagent Systems, 2018.

[FYZ`17] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.
One-shot visual imitation learning via meta-learning. arXiv preprint

arXiv:1709.04905, 2017.

[GCDA09] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Peter K Allen. The
columbia grasp database. In 2009 IEEE international conference on robotics

and automation, pages 1710–1716. IEEE, 2009.

[GGC`15] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P
Rodríguez, Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen
Schmidhuber, Gianni Di Caro, et al. A machine learning approach to visual
perception of forest trails for mobile robots. IEEE Robotics and Automation

Letters, 1(2):661–667, 2015.

[GH18] Adam Gleave and Oliver Habryka. Multi-task maximum entropy inverse
reinforcement learning. arXiv preprint arXiv:1805.08882, 2018.

[GPAM`14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[HCH`17] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji, Zhuowen Tu, and
Philip HS Torr. Deeply supervised salient object detection with short con-
nections. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3203–3212, 2017.

[HE16] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning.
In Advances in neural information processing systems, pages 4565–4573,
2016.

111

BIBLIOGRAPHY

[HEKL`13] Bidan Huang, Sahar El-Khoury, Miao Li, Joanna J Bryson, and Aude Bil-
lard. Learning a real time grasping strategy. In 2013 IEEE International

Conference on Robotics and Automation, pages 593–600. IEEE, 2013.

[HHW`15] Wei Hu, Yangyu Huang, Li Wei, Fan Zhang, and Hengchao Li. Deep convo-
lutional neural networks for hyperspectral image classification. Journal of

Sensors, 2015, 2015.

[HJW`17] Xian-Feng Han, Jesse S Jin, Ming-Jie Wang, Wei Jiang, Lei Gao, and Lip-
ing Xiao. A review of algorithms for filtering the 3d point cloud. Signal

Processing: Image Communication, 57:103–112, 2017.

[HMDC16] Caner Hazirbas, Lingni Ma, Csaba Domokos, and Daniel Cremers. Fusenet:
Incorporating depth into semantic segmentation via fusion-based cnn archi-
tecture. In Asian conference on computer vision, pages 213–228. Springer,
2016.

[HNY13] Daichi Hirano, Kenji Nagaoka, and Kazuya Yoshida. Design of underactu-
ated hand for caging-based grasping of free-flying object. In Proceedings of

the 2013 IEEE/SICE International Symposium on System Integration, pages
436–442. IEEE, 2013.

[HPA`90] Robert D Howe, Nicolas Popp, Prasad Akella, Imin Kao, and Mark R
Cutkosky. Grasping, manipulation, and control with tactile sensing. In
Proceedings., IEEE International Conference on Robotics and Automation,
pages 1258–1263. IEEE, 1990.

[HS15] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for par-
tially observable mdps. In 2015 AAAI Fall Symposium Series, 2015.

[HSB18] Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. Eeg-
gan: Generative adversarial networks for electroencephalograhic (eeg) brain
signals. arXiv preprint arXiv:1806.01875, 2018.

[HSSR05] Robert Haschke, Jochen J Steil, Ingo Steuwer, and Helge Ritter. Task-
oriented quality measures for dextrous grasping. In 2005 International Sym-

112

BIBLIOGRAPHY

posium on Computational Intelligence in Robotics and Automation, pages
689–694. IEEE, 2005.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[IBN18] Mahdi Imani and Ulisses M Braga-Neto. Control of gene regulatory net-
works using bayesian inverse reinforcement learning. IEEE/ACM transac-

tions on computational biology and bioinformatics, 16(4):1250–1261, 2018.

[IHP18] Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distri-
butions for robot motion planning. In 2018 IEEE International Conference

on Robotics and Automation (ICRA), pages 7087–7094. IEEE, 2018.

[IP19] Brian Ichter and Marco Pavone. Robot motion planning in learned latent
spaces. IEEE Robotics and Automation Letters, 4(3):2407–2414, 2019.

[JBD18] Stephen James, Michael Bloesch, and Andrew J Davison. Task-
embedded control networks for few-shot imitation learning. arXiv preprint

arXiv:1810.03237, 2018.

[JLD16] Edward Johns, Stefan Leutenegger, and Andrew J Davison. Deep learn-
ing a grasp function for grasping under gripper pose uncertainty. In
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 4461–4468. IEEE, 2016.

[JMS11] Yun Jiang, Stephen Moseson, and Ashutosh Saxena. Efficient grasping from
rgbd images: Learning using a new rectangle representation. In 2011 IEEE

International conference on robotics and automation, pages 3304–3311.
IEEE, 2011.

113

BIBLIOGRAPHY

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[KBS15] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. Leveraging big data for
grasp planning. In 2015 IEEE International Conference on Robotics and

Automation (ICRA), pages 4304–4311. IEEE, 2015.

[KCL`15] Konstantinos Kamnitsas, Liang Chen, Christian Ledig, Daniel Rueckert, and
Ben Glocker. Multi-scale 3d convolutional neural networks for lesion seg-
mentation in brain mri. Ischemic stroke lesion segmentation, 13:46, 2015.

[KF10] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algo-
rithms for optimal motion planning. Robotics Science and Systems VI,
104(2), 2010.

[KIG15] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-
specific ecg classification by 1-d convolutional neural networks. IEEE

Transactions on Biomedical Engineering, 63(3):664–675, 2015.

[Kim14] Yoon Kim. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882, 2014.

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951.

[KMWK17] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Im-
itating driver behavior with generative adversarial networks. In 2017 IEEE

Intelligent Vehicles Symposium (IV), pages 204–211. IEEE, 2017.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[KW15] Marek Kopicki and Jeremy L Wyatt. One shot contact learning. In Pro-

ceedings of the RSS Workshop on bridging the gap between data-driven and

analytical physics-based grasping and manipulation, Rome, Italy, 2015.

114

BIBLIOGRAPHY

[LaV06] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[LB`95] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[LCS`19] Dan Li, Dacheng Chen, Lei Shi, Baihong Jin, Jonathan Goh, and See-
Kiong Ng Mad-gan. Multivariate anomaly detection for time series data with
generative adversarial networks. arXiv preprint arXiv:1901.04997, 2019.

[LK02] Orion Sky Lawlor and Laxmikant V Kalée. A voxel-based parallel collision
detection algorithm. In Proceedings of the 16th international conference on

Supercomputing, pages 285–293, 2002.

[LMDBS18] Antonio Loquercio, Ana I Maqueda, Carlos R Del-Blanco, and Davide
Scaramuzza. Dronet: Learning to fly by driving. IEEE Robotics and Au-

tomation Letters, 3(2):1088–1095, 2018.

[LOJ14] Richard Leslie, Christopher J O’Donnell, and Andrew D Johnson. Grasp:
analysis of genotype–phenotype results from 1390 genome-wide associ-
ation studies and corresponding open access database. Bioinformatics,
30(12):i185–i194, 2014.

[LPK`18] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre
Quillen. Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection. The International Journal of

Robotics Research, 37(4-5):421–436, 2018.

[LPMG17] Christoph Lassner, Gerard Pons-Moll, and Peter V Gehler. A generative
model of people in clothing. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 853–862, 2017.

[LS88] Zexiang Li and S Shankar Sastry. Task-oriented optimal grasping by multi-
fingered robot hands. IEEE Journal on Robotics and Automation, 4(1):32–
44, 1988.

115

BIBLIOGRAPHY

[LSE17] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imita-
tion learning from visual demonstrations. In Advances in Neural Information

Processing Systems, pages 3812–3822, 2017.

[LTH`17] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun-
ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz,
Zehan Wang, et al. Photo-realistic single image super-resolution using a
generative adversarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690, 2017.

[MAFR11] Veronique Maheu, Philippe S Archambault, Julie Frappier, and François
Routhier. Evaluation of the jaco robotic arm: Clinico-economic study for
powered wheelchair users with upper-extremity disabilities. In 2011 IEEE

International Conference on Rehabilitation Robotics, pages 1–5. IEEE,
2011.

[MBC`06] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-road
obstacle avoidance through end-to-end learning. In Advances in neural in-

formation processing systems, pages 739–746, 2006.

[MCL18] Douglas Morrison, Peter Corke, and Jürgen Leitner. Closing the loop for
robotic grasping: A real-time, generative grasp synthesis approach. arXiv

preprint arXiv:1804.05172, 2018.

[MDGK18] Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Koltun.
Driving policy transfer via modularity and abstraction. arXiv preprint

arXiv:1804.09364, 2018.

[Mit15] Roni Mittelman. Time-series modeling with undecimated fully convolu-
tional neural networks. arXiv preprint arXiv:1508.00317, 2015.

[MJS`17] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc
Van Gool. Pose guided person image generation. In Advances in Neural

Information Processing Systems, pages 406–416, 2017.

116

BIBLIOGRAPHY

[MKE12] Yusuke Maeda, Naoki Kodera, and Tomohiro Egawa. Caging-based grasp-
ing by a robot hand with rigid and soft parts. In 2012 IEEE international

conference on robotics and automation, pages 5150–5155. IEEE, 2012.

[MLN`17] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,
Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learn-
ing to plan robust grasps with synthetic point clouds and analytic grasp met-
rics. arXiv preprint arXiv:1703.09312, 2017.

[MP17] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to

computational geometry. MIT press, 2017.

[MPH`16] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose Roderick, Michael
Laskey, Mathieu Aubry, Kai Kohlhoff, Torsten Kröger, James Kuffner, and
Ken Goldberg. Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated rewards.
In 2016 IEEE international conference on robotics and automation (ICRA),
pages 1957–1964. IEEE, 2016.

[MS15] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural
network for real-time object recognition. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 922–928. IEEE,
2015.

[Mus18] Pirkko Mustamo. Object detection in sports: Tensorflow object detection api
case study. no. January, 2018.

[MZB12] B Mustapha, A Zayegh, and RK Begg. Multiple sensors based obstacle
detection system. In 2012 4th International Conference on Intelligent and

Advanced Systems (ICIAS2012), volume 2, pages 562–566. IEEE, 2012.

[MZZS18] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 116–131,
2018.

117

BIBLIOGRAPHY

[NR`00] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, volume 1, page 2, 2000.

[OA16] Billy Okal and Kai O Arras. Learning socially normative robot navigation
behaviors with bayesian inverse reinforcement learning. In 2016 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 2889–2895.
IEEE, 2016.

[OOS17] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional im-
age synthesis with auxiliary classifier gans. In Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume 70, pages 2642–2651.
JMLR. org, 2017.

[OPN`18] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter
Abbeel, Jan Peters, et al. An algorithmic perspective on imitation learning.
Foundations and Trends R© in Robotics, 7(1-2):1–179, 2018.

[OVR14] Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning
in factored mdps. In Advances in Neural Information Processing Systems,
pages 604–612, 2014.

[Pal18] Praveen Palanisamy. Hands-On Intelligent Agents with OpenAI Gym: Your

guide to developing AI agents using deep reinforcement learning. Packt
Publishing Ltd, 2018.

[PAR`18] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen
Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter
Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464,
2018.

[PG16] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning
to grasp from 50k tries and 700 robot hours. In 2016 IEEE international

conference on robotics and automation (ICRA), pages 3406–3413. IEEE,
2016.

118

BIBLIOGRAPHY

[PH10] Erion Plaku and Gregory D Hager. Sampling-based motion and symbolic
action planning with geometric and differential constraints. In 2010 IEEE

International Conference on Robotics and Automation, pages 5002–5008.
IEEE, 2010.

[Pom89] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural net-
work. In Advances in neural information processing systems, pages 305–
313, 1989.

[PSS`16] Mark Pfeiffer, Ulrich Schwesinger, Hannes Sommer, Enric Galceran, and
Roland Siegwart. Predicting actions to act predictably: Cooperative par-
tial motion planning with maximum entropy models. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages
2096–2101. IEEE, 2016.

[PT16] Domenico Prattichizzo and Jeffrey C Trinkle. Grasping. In Springer hand-

book of robotics, pages 955–988. Springer, 2016.

[PV16] David Pfau and Oriol Vinyals. Connecting generative adversarial networks
and actor-critic methods. arXiv preprint arXiv:1610.01945, 2016.

[RA07] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement
learning. In IJCAI, volume 7, pages 2586–2591, 2007.

[RGB11] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imita-
tion learning and structured prediction to no-regret online learning. In Pro-

ceedings of the fourteenth international conference on artificial intelligence

and statistics, pages 627–635, 2011.

[RLS09] Daniel Roetenberg, Henk Luinge, and Per Slycke. Xsens mvn: Full 6dof
human motion tracking using miniature inertial sensors. Xsens Motion Tech-

nologies BV, Tech. Rep, 1, 2009.

[RMBS`13] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, An-
dreas Wendel, Debadeepta Dey, J Andrew Bagnell, and Martial Hebert.
Learning monocular reactive uav control in cluttered natural environments.

119

BIBLIOGRAPHY

In 2013 IEEE international conference on robotics and automation, pages
1765–1772. IEEE, 2013.

[RMF12] Alberto Rodriguez, Matthew T Mason, and Steve Ferry. From caging to
grasping. The International Journal of Robotics Research, 31(7):886–900,
2012.

[SAS17] Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation
learning. arXiv preprint arXiv:1703.01703, 2017.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[Ser09] Richard Serfozo. Basics of applied stochastic processes. Springer Science
& Business Media, 2009.

[SLA`15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on

machine learning, pages 1889–1897, 2015.

[SLG90] Ching-Long Shih, T-T Lee, and William A Gruver. A unified approach for
robot motion planning with moving polyhedral obstacles. IEEE Transactions

on Systems, Man, and Cybernetics, 20(4):903–915, 1990.

[SLL11] Bao-Quan Shi, Jin Liang, and Qing Liu. Adaptive simplification of point
cloud using k-means clustering. Computer-Aided Design, 43(8):910–922,
2011.

[SMK12] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning
library. IEEE Robotics & Automation Magazine, 19(4):72–82, 2012.

[SRSE18] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent
generative adversarial imitation learning. In Advances in Neural Information

Processing Systems, pages 7461–7472, 2018.

120

BIBLIOGRAPHY

[Sta90] Sharon A Stansfield. Knowledge-based robotic grasping. In Proceedings.,

IEEE International Conference on Robotics and Automation, pages 1270–
1275. IEEE, 1990.

[SU15] Alexander G Schwing and Raquel Urtasun. Fully connected deep structured
networks. arXiv preprint arXiv:1503.02351, 2015.

[SVG`17] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J An-
drew Bagnell. Deeply aggrevated: Differentiable imitation learning for se-
quential prediction. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 3309–3318. JMLR. org, 2017.

[SW89] Sharad Singhal and Lance Wu. Training multilayer perceptrons with the
extended kalman algorithm. In Advances in neural information processing

systems, pages 133–140, 1989.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

[TSM`16] Andru P Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux,
Michel De Mathelin, and Nicolas Padoy. Endonet: A deep architecture for
recognition tasks on laparoscopic videos. IEEE transactions on medical

imaging, 36(1):86–97, 2016.

[TTS`18] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter
Fox, and Stan Birchfield. Deep object pose estimation for semantic robotic
grasping of household objects. arXiv preprint arXiv:1809.10790, 2018.

[TZLB18] Lei Tai, Jingwei Zhang, Ming Liu, and Wolfram Burgard. Socially compli-
ant navigation through raw depth inputs with generative adversarial imitation
learning. In 2018 IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 1111–1117. IEEE, 2018.

121

BIBLIOGRAPHY

[VPSP17] Ulrich Viereck, Andreas ten Pas, Kate Saenko, and Robert Platt. Learning a
visuomotor controller for real world robotic grasping using simulated depth
images. arXiv preprint arXiv:1706.04652, 2017.

[WA12] Jonathan Weisz and Peter K Allen. Pose error robust grasping from contact
wrench space metrics. In 2012 IEEE international conference on robotics

and automation, pages 557–562. IEEE, 2012.

[WD10] Yan Wu and Yiannis Demiris. Towards one shot learning by imitation for
humanoid robots. In 2010 IEEE International Conference on Robotics and

Automation, pages 2889–2894. IEEE, 2010.

[Wie15] Thiemo Wiedemeyer. Iai kinect2. Institute for artificial intelligence, Uni-

versity Bremen, pages 2014–2015, 2015.

[WOP15] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy
deep inverse reinforcement learning. arXiv preprint arXiv:1507.04888,
2015.

[WS16] Oliver Wasenmüller and Didier Stricker. Comparison of kinect v1 and v2
depth images in terms of accuracy and precision. In Asian Conference on

Computer Vision, pages 34–45. Springer, 2016.

[WZX`16] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenen-
baum. Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling. In Advances in neural information pro-

cessing systems, pages 82–90, 2016.

[XRLJ14] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural
network for image deconvolution. In Advances in neural information pro-

cessing systems, pages 1790–1798, 2014.

[YA17] Gu Ye and Ron Alterovitz. Guided motion planning. In Robotics research,
pages 291–307. Springer, 2017.

122

BIBLIOGRAPHY

[YALF18] Tianhe Yu, Pieter Abbeel, Sergey Levine, and Chelsea Finn. One-shot hi-
erarchical imitation learning of compound visuomotor tasks. arXiv preprint

arXiv:1810.11043, 2018.

[ZG00] Li Zhang and Bijoy K Ghosh. Line segment based map building and local-
ization using 2d laser rangefinder. In Proceedings 2000 ICRA. Millennium

Conference. IEEE International Conference on Robotics and Automation.

Symposia Proceedings (Cat. No. 00CH37065), volume 3, pages 2538–2543.
IEEE, 2000.

[ZLN14] Jiangchuan Zheng, Siyuan Liu, and Lionel M Ni. Robust bayesian inverse
reinforcement learning with sparse behavior noise. In Twenty-Eighth AAAI

Conference on Artificial Intelligence, 2014.

[ZMBD08] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Max-
imum entropy inverse reinforcement learning. 2008.

[ZMJ`18] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Gold-
berg, and Pieter Abbeel. Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation. In 2018 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

[ZWM`18] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi,
Saran Tunyasuvunakool, János Kramár, Raia Hadsell, Nando de Freitas,
et al. Reinforcement and imitation learning for diverse visuomotor skills.
arXiv preprint arXiv:1802.09564, 2018.

[ZZMC13] Wenping Zhao, Jianjie Zhang, Jianyuan Min, and Jinxiang Chai. Robust re-
altime physics-based motion control for human grasping. ACM Transactions

on Graphics (TOG), 32(6):1–12, 2013.

123

A
Supplemental Figures

124

Supplemental Figures

Figure A.1: Proposed Generator Network Diagram
125

Supplemental Figures

Figure A.2: Proposed Discriminator Network Diagram
126

Supplemental Figures

Figure A.3: Baseline State to Action Generator Network Diagram
127

Supplemental Figures

Figure A.4: Baseline State to Action Discriminator Network Diagram
128

Supplemental Figures

Figure A.5: Baseline State to Action Behavior Cloning Network Diagram
129

Supplemental Figures

Figure A.6: Baseline Full Trajectory Behavior Cloning Network Diagram
130

Supplemental Figures

Figure A.7: Pick-and-Place Demonstration Trajectory #0

131

Supplemental Figures

Figure A.8: Pick-and-Place Demonstration Trajectory #3

132

Supplemental Figures

Figure A.9: Pick-and-Place Demonstration Trajectory #6

133

Supplemental Figures

Figure A.10: Pick-and-Place Demonstration Trajectory #9

134

Supplemental Figures

Figure A.11: Pouring Demonstration Trajectory #0

135

Supplemental Figures

Figure A.12: Pouring Demonstration Trajectory #3

136

Supplemental Figures

Figure A.13: Pouring Demonstration Trajectory #6

137

Supplemental Figures

Figure A.14: Pouring Demonstration Trajectory #9

138

	Introduction
	Robotic Object Manipulation
	Formulation
	Motion Planning
	Grasping

	Learning to Grasp
	Convolutional Neural Networks for Perception
	Dex-Net 2.0
	Custom Denoising Module

	Learning to Manipulate by Imitation
	Reinforcement Learning and Markov Decision Process
	Imitation Learning Algorithms
	Policy Imitation
	Learning Rewards

	Generative Adversarial Algorithms
	Generative Adversarial Networks
	Generative Adversarial Imitation Learning

	Method: Imitating Full Trajectories
	Method Overview
	Architecture of the Networks
	Generator Architecture
	Discriminator Architecture

	Training

	Experimental Setup
	Tasks of Interest
	Neural Network Graphs
	Baseline Methods
	Demonstration Process
	Computer Vision Pipeline
	RGBD Camera
	Color Marker Annotated Objects
	Filtering and K-means Clustering

	The JACO2 Assistive Robot Arm
	Trajectory Visualization

	Results
	Viability of the System
	Qualitative Comparison
	Learning Curves and Progression of Predictions
	Full-Trajectory GAN
	State-to-State GAIL
	Full-Trajectory BC
	State-to-State BC
	Without Long Skipping Edges

	Visualized Trajectory Predictions
	Hyperparameters Exploration
	Manipulation Trajectories Performed in Simulation

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Supplemental Figures

