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Abstract 55 

Regular, standardized population inventories have been suggested as an 56 

important component to the recovery of declining populations of boreal 57 

caribou (Rangifer tarandus caribou). Current survey methods typically 58 

employ manned aircraft, which can be noisy, expensive to operate, and 59 

dangerous for the people conducting the surveys. Small Unmanned Aerial 60 

Systems (sUAS) have garnered attention as a promising alternative for 61 

conducting aerial surveys in manned aircraft. Our research investigates 62 

the feasibility of using an UAS to conduct aerial surveys and determine 63 

which factors affect the detection of surrogate caribou targets, and hence 64 

might affect detection of real caribou. In the fall of 2013, we tested the 65 

capabilities of the Brican TD100e, a small, electric-powered fixed-wing 66 

UAS, to fly beyond line of sight (BLOS) near Goose Bay, Labrador. Seven 67 

surveys were done using different flight paths to collect aerial images of 68 

26 surrogate caribou targets placed in six different habitats. Mixed effects 69 

logistic regression models were used to evaluate how habitat type, 70 

distance of the target from the image centerline, photo analysts’ 71 

experience level, flight time, and the target contrast against the landscape 72 

influenced the detection of surrogate caribou targets. We found that 73 
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habitat type, target contrast, and the flight time affected target detection. 74 

Overall, 77.5% of the targets were detected; the odds of a photo analyst 75 

detecting a target in open habitat were roughly 10.5 times higher than in 76 

burned habitat and 42 times higher than in heavy forest. Target detection 77 

was influenced by the contrast of the target against the landscape, where 78 

a higher CID was associated with greater target detection. The detection 79 

of targets was 87% during evening flights and 75% for morning flights. 80 

This study was the first of its kind to successfully fly a UAS beyond line of 81 

sight over land for non-military applications in Canada and the findings of 82 

our research provide recommendations for using UAS to survey caribou in 83 

the future. 84 
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Résumé 93 

La realization fréquente d’inventaires et d’estimations démographiques 94 

font partie des stratégies misent en oeuvre pour protéger le caribou 95 

boréal. Les outils couramment utilisés dans ce type de recherche sont les 96 

avions et les hélicoptères. Cependant, ces pratiques sont coûteuses, 97 

bruyantes et parfois même dangereuses.  La mise en place de système 98 

d’aéronef sans pilote (UAS) s’impose en tant que méthode révolutionnaire 99 

pour effectuer des observations aériennes et réaliser des inventaires 100 

fauniques. Ce projet de recherche vise à déterminer la qualité des 101 

informations recueillies par l’UAS lors du ratissage de la zone d’étude et 102 

trouver les conditions qui affectent la détection de cibles ressemblant aux 103 

caribous. Nous avons testé le Brican TD1000e, un petit avion a voilure 104 

fixe et a moteur électrique ne nécessitant aucun pilote, durant l’automne 105 

2013 près de la base militaire de Goose Bay au Labrador.  L’UAS à 106 

effectuer sept vols qui ont permis de recueillir des images aériennes de 26 107 

cibles placées dans six habitats distincts. Pour ces enquêtes, nous avons 108 

utilisé le modèle à régression à effet mixte pour déterminer dans quelles 109 

mesures le type d’habitat, la position et le contraste des cibles dans les 110 

photos, le temps de vol et le niveau d’expérience de l’observateur, 111 
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pouvaient influencer la détection des cibles. En tout, 77,5% des cibles ont 112 

été détectées : les chances pour qu’un photo analyst détecte une cible 113 

dans un habitat à ciel ouvert étaient à peine 10,5 fois plus élevées que 114 

dans un habitat dévasté par le feu et 42 fois plus élevées que dans un 115 

habitat où la forêt était dense. Les résultats de notre recherche 116 

permettent, entre autre, de fournir un guide des facteurs pratiques à 117 

considérer en utilisant un UAS pour effectuer les observations aériennes 118 

des caribous boréals.119 
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CHAPTER 1:   

GENERAL INTRODUCTION AND LITERATURE REVIEW  

1.1 Background on Boreal Caribou in Labrador 

In Canada, the range of caribou extends from the West Coast all the way to the 

East Coast and the island of Newfoundland (Thomas and Gray 2002).  Although 

there is only one species of caribou recognized worldwide, populations vary 

widely in their ecology, genetics, behavior, and morphology, which has led to 

challenges in the past when trying to classify and distinguish different groups. In 

Canada, caribou were previously classified into four existing subspecies 

including the Peary caribou (Rangifer tarandus pearyi), the barren-ground 

caribou (R.t. groenlandicus), Grant’s caribou (R.t. granti) and the woodland 

caribou (R.t.caribou) based on differences in morphology, geographic occurrence 

and ecology (Banfield 1974). Alternatively, caribou have also been classified 

based on their life history strategies; Bergerud (1996) identified two broad 

ecotypes which included those that were sedentary and those that were 

migratory.  Prior to calving, the migratory ecotype travel to calving grounds 

located above the treeline into areas with lower predator densities, forming large 

aggregations during the calving season (Bergerud 1988, 1996;  Schaefer 2003). 

Conversely, the sedentary ecotype do not migrate long distances, opting instead 

to spatially isolate themselves from other individuals on the landscape to reduce 
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the probably of encountering predators (Bergerud 1985; Bergerud et al. 1990; 

James et al. 2004).  To reduce predation risk, the sedentary ecotype will also 

tend to avoid habitat preferred by predators and alternate prey species, such as 

moose (Alces alces) (Rettie and Messier 2000; James et al. 2004; Courtois et al. 

2007).  Recently, the nomenclature for distinguishing caribou populations has 

been changed by COSEWIC (2011) to reflect a more updated understanding of 

the spatial, behavioural, ecological and genetic differences between caribou 

populations. Based on this new classification, there are twelve discrete and 

ecologically significant groups of caribou in Canada, including the boreal caribou 

which was previously recognized as the woodland caribou subspecies and as 

being part of the sedentary ecotype. 

Boreal caribou are found across northern Canada ranging from the 

western corner of the Yukon to central and eastern Labrador and on the island of 

Newfoundland (Thomas and Gray 2002). They inhabit large, undisturbed habitat 

dominated by mature coniferous stands, as well as peatland and bog complexes 

(Rettie and Messier 2000). In the last three decades, boreal caribou have been 

experiencing range contractions and steady declines in population size across 

Canada (Rettie and Messier 1998; Schaefer et al. 1999). The number of boreal 

caribou in Canada is estimated to be somewhere between 31,000 to 39,000 

(excluding the island of Newfoundland)(Environment Canada, 2008) and they are 
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listed as either threatened or endangered in six of the nine provinces and 

territories where they occur (COSEWIC 2011). 

In Labrador, boreal caribou populations are divided into three distinct 

herds including the Lac Joseph, Mealy Mountain and the Red Wine Mountain 

herds (Schmelzer et al. 2004). All three populations are listed as threatened 

under both provincial and federal legislation (Thomas and Gray 2002). In 

Labrador, boreal caribou populations are declining at an estimated rate of 13-

26% per year (Schaefer et al. 1999), which is faster than those estimated for 

populations in other provinces (Ouellet et al. 1996; Stuart-Smith et al. 1997; 

Rettie and Messier 1998). The decline is likely a combination of direct and 

indirect factors including: a reduction in the availability and quality of suitable 

habitat; climate change; hunting and predation; increase in land development 

and the creation of roads, pipelines, and other linear features; and an increase 

presence of human activity in previously undisturbed areas (Bergerud 2000: 

Schmelzer et al. 2004). 

 

1.2 Conducting population inventories on boreal caribou 

The widespread decline of caribou across Canada has raised concerns 

about their conservation status and the sustainability of current management 

practices. Conducting regular population inventories is an important step towards 
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their recovery (Schmelzer et al. 2004). Frequent surveys are especially important 

since population sizes have been known to change rapidly (Gunn et al. 2006; 

Cuyler 2007) and the confidence intervals around most population estimates are 

too high to confirm changes without several surveys. A population of caribou 

located on three islands in Nunavut declined by 98% within a 15-year period from 

6048 individuals to roughly a hundred. An absence of survey data during that 

time frame delayed the detection of the decline and limited our understanding of 

what caused it, making the recovery of these populations challenging (Gunn et 

al. 2006). Despite the importance of regular population inventories, there is an 

absence of accurate population size estimates and population trends for many 

boreal caribou herds (Courtois et al. 2003; Callaghan et al. 2011). The Scientific 

Review for the Identification of Critical Habitat for Woodland Caribou recognized 

57 local populations of boreal caribou across Canada (excluding Newfoundland), 

of which 5.3% populations were increasing in size, 29.3% were declining, 28.1% 

were reportedly stable and the status of the remaining 36.8% was unknown 

(Environment Canada, 2008). Gathering population data on boreal caribou has 

been a notoriously challenging task because they occur at densities that can be 

as few as 1.5 caribou/km2, they form small herds that are sparsely distributed 

over expansive areas (Crête 1991; Courtois et al. 2001), and they live in forested 

habitat that reduce detection during surveys. 
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The challenges associated with estimating boreal caribou population sizes 

have led to variation in survey techniques. Mark-recapture (resight) surveys have 

previously been used (Brown 1986; Schaefer 1997), but more frequently, 

manned aircraft surveys are preferred. Aerial surveys typically involve delimiting 

the survey area, dividing it into plots or transects, and then using either a fixed-

wing aircraft or helicopter to fly over selected areas to conduct strip censuses, 

simple random sampling, stratified random sampling, or complete coverage 

surveys (Courtois et al. 2003). In many cases, telemetry data or past survey 

results are used to delimit the area that will be surveyed and to potentially 

classify the survey area into strata based on caribou presence from previous 

years. It is important to consider the annual and seasonal range of caribou as 

well as the environmental factors that limit their range such as snow depth, land 

topography, elevation and vegetation structures (Ministry of Sustainable 

Resource Management 2002). Based on boreal caribou life history strategies and 

the objectives of the survey, most are conducted between October to April during 

the rut, winter or pre-calving season (Schmelzer et al. 2004).  

Conducting frequent aerial surveys can be expensive and time- 

consuming, as well as dangerous for humans aboard the manned aircraft. 

Monitoring overall population trends has been suggested as an alternative 

method for managing boreal caribou populations by, for example, using total 
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coverage surveys in a few control areas as a proxy of overall population trends 

(Bourbonnais et al. 1997; Courtois et al. 2003) as well as using observations 

made during moose surveys conducted in hunting zones to track population 

sizes (Courtois et al. 1996). The first method produces population estimates that 

cannot be accurately extrapolated to the entire range of the population and is 

very expensive, and the second method fails to provide detailed information 

about the location of caribou herds (Courtois et al. 1996).  

The lack of accurate, unbiased, standardized survey methods has resulted 

in an absence of reliable population estimates for boreal caribou. There have 

been efforts to address this issue by evaluating survey methods and identifying 

those that best balance between cost and effectiveness (Courtois et al. 2003; 

Carr et al. 2012). The method used by Courtois et al. (2003) involved a two-

phase survey in which track networks were located in the first phase, and then 

plots from the area were randomly selected to conduct full coverage surveys in 

the second phase. This method had a visibility rate of caribou (i.e. proportion of 

collared individuals that were detected) at 0.85 and cost approximately $4/ km2, 

for a survey area of 42,539 km2. Although their methodology proved to be more 

economical compared to the two surveys conducted in that area in previous 

years, it is important to explore alternative methods to help reduce costs, 
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increase safety, reduce disturbance to wildlife while still maintaining accuracy 

and repeatability of the survey methods. 

Outside of traditional survey methods, there has been a shift towards less 

invasive alternatives, particularly in the case of species that are sensitive to 

human disturbance, such as boreal caribou.  Among those methods, genetic 

analysis of fecal samples has been shown to accurately estimate boreal caribou 

populations (Carr et al. 2012; Hettinga et al. 2012). Unfortunately, this method 

remains expensive when compared to other techniques (Carr et al. 2012). 

Finding an accurate, non-invasive, and inexpensive method to estimate boreal 

caribou populations has been very difficult, but newly emerging technologies 

might provide a solution. Several researchers have suggested the use of a small 

Unmanned Aircraft System (UAS) to conduct aerial surveys (Jones et al. 2006; 

Chabot and Bird 2012; Koski et al. 2013) because they are safer, less obtrusive, 

and more affordable compared to manned aircraft surveys. A growing number of 

wildlife studies have used UAS to survey a wide range of species (Soriano et al. 

2009; Rodriguez et al. 2012; Hodgson et al. 2013; Vermeulen et al. 2013; Chabot 

et al. 2014; Kadaba 2014); however, most non-military applications of UAS have 

been restricted to line of sight, or about 1 km from the pilot.  
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1.3 Unmanned Aircraft Systems in Wildlife Research 

In wildlife research and management, manned aircraft are an essential tool for 

counting, tracking and observing wildlife.  Despite their utility, manned aircraft 

can be expensive, obtrusive and dangerous for individuals onboard (Wiegmann 

and Taneja 2003). Between 1937 and 2000, light manned aircraft crashes have 

caused 60% of fatalities for wildlife biologists in the United States (Sasse 2003). 

There has been a surge of interest in the use of UAS as a possible 

complementary and/or supplementary tool to manned aircraft for a number of 

applications because they offer a safer, more convenient and less invasive 

platform for collecting aerial data. Unmanned aircraft systems, which have also 

been referred to as Unmanned Aerial Vehicles (UAVs) or drones, are aircraft that 

operate without an onboard pilot and have the option to be flown autonomously. 

Unmanned aircraft systems consist of several components including the aircraft 

or UAV, a ground control station, a pilot that can operate the aircraft remotely 

when necessary, and a spotter who monitors the aircraft. Small UAS include 

models that weigh less than 25 kg with both rotary and fixed wing aircraft. Rotary 

wing models can be vertically launched, can hover in place and are more 

maneuverable, making them ideal for flying in tight spaces that might otherwise  
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be inaccessible, whereas fixed wing planes are generally faster, have a longer 

range and are useful for covering larger areas (Chabot et al. 2014). A large 

variety of available different models come in various shapes and sizes as well as 

a range of sensors that can be mounted on the aircraft (Hardin and Jensen 2011; 

Watts et al. 2012; Nex and Remondino 2013). 

The advent of a non-invasive aerial platform for remotely collecting data on 

wildlife and their environment is not novel (Flamm et al. 2000; Nowacek et al. 

2001); one of the first platform designs entailed using a helium-filled balloon 

equipped with a video camera to collect images of marine mammals. Flamm et 

al. (2000) also used this platform to assess the life-stage structure of manatees 

(Trichechus spp.) and Nowacek et al. (2001) gathered imagery with sufficient 

resolution to observe prey fish behaviour as well as identify individuals. They 

emphasized that this platform provided more complete behavioural data when 

compared to observations made for a marine vessel (Nowacek et al. 2001). 

Despite the potential applications of these technologies, they did not generate 

much interest among researchers until recently, coinciding with the advent of 

modern UAS platforms and sensors, as well increased accessibility and 

affordability for non-military applications (Anderson and Gaston 2013). 

 In the early stages, methods for collecting data on wildlife with more modern 

UAS were pioneered by Abd-Elrahman et al. (2005) and Jones et al. (2006), who 
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each used a small UAS to photograph different species of wildlife. The imagery 

collected was of sufficient resolution that individual animals could be 

distinguished and counted. Since then, the use of UAS in wildlife research has 

experienced a surge of interest for remotely sensing habitat and vegetation 

structures (e.g. Hardin and Jackson 2005; Rango et al. 2009; Breckenridge and 

Dakins 2011; Laliberte et al. 2011; Dunford et al. 2009; Hervouet et al. 2011; 

Getzin et al. 2012) as well as wildlife studies (e.g. Chabot et al. 2014; Rodriguez 

et al. 2012; Kabada 2014). Examples of this kind of research include work done 

by Rodriguez et al. (2012) who tracked the daily foraging routes of lesser kestrels 

(Falco naumanni). They used data loggers to track the routes travelled by 

individuals and then subsequently programmed the GPS coordinates of their 

movements into a UAS to visit locations visited by the kestrels to capture real-

time, high-resolution imagery of selected foraging habitats. Similar habitat 

assessment was done by Kabada (2014) who used a UAS to study habitat 

selection of the desert kit fox (Vulpes macrotis arsipus) in the Mojave and 

Colorado deserts in California by collecting aerial imagery of burrows and 

vegetation with a small rotary wing UAS. Chabot et al. (2014) used a small fixed 

wing UAS to remotely sense wetland habitat occupied by breeding least bitterns 

(Ixobrychus exilis). The imagery collected was used to create a high resolution 

map used to assess habitat predictors of breeding density of least bitterns. They 
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compared the water vegetation ratios obtained from UAS data to those obtained 

from conventional ground-based surveys and found similar results, but 

suggested that UAS estimates are likely closer to the actual values and that they 

provide superior detection of interspersed water. Unmanned aircraft systems 

lend themselves well for this branch of research as they can be deployed readily, 

can collect high resolution imagery, are maneuverable and can be programmed 

to repeatedly fly the same path, making it possible to capture changes occurring 

on both temporal and spatial scales that might otherwise go undetected by other 

remote sensing technologies (Whitehead and Hugenholtz 2014).  

 In addition to using UAS to study wildlife habitat selection, a number of 

studies have used UAS to survey wildlife (Chabot and Bird 2012; Sarda-

Palomera et al. 2012; Grenzdorffer 2013; Hodgson et al. 2013; Vermeulen et al. 

2013; van Gemert et al. 2014; Chabot et al. 2015; Ratcliffe et al. 2015). 

Compared to conventional aircraft surveys, there are advantages to using aerial 

imagery to estimate wildlife populations; it produces a permanent record which 

allows for repeated analysis, facilitates the application of different analysis 

techniques, and can be examined by multiple observers.  Chabot and Bird (2012) 

used a small UAS to detect and quantify staging flocks of snow geese (Chen 

cearulescens) and Canada geese (Branta canadensis) from aerial imagery. 

When they compared the survey results from the UAS to those obtained from 
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ground surveys, they found that the performance of the UAS was strongly 

dependent on the contrast of the species against the landscape in the captured 

images and in some cases, the UAS was able to detect birds that were not seen 

in ground surveys (Chabot and Bird 2012). In similar studies, Sarda-Palomera et 

al. (2012) used a small UAS to survey a breeding population of black-headed 

gulls (Chroicocephalus ridibundus) and Grenzdörffer (2013) used a UAS to 

perform an automatic bird count of a common gull colony (Larus canus). Having 

proven to be an efficient platform for surveying waterbirds, it has been used to 

survey other bird species (Watt et al. 2010, Potapov et al. 2013; Chabot et al. 

2015), and generated interest as a possible platform for surveying marine wildlife 

(Koski et al. 2009, 2013; Martin et al. 2012). Most reported uses of UAS for 

surveying marine mammals have focused on breeding pinnipeds, as well as 

sirenians because they congregate in predictable locations where they can 

readily be surveyed (Jones et al. 2006; Martin et al. 2012).   

Some recent studies have also explored the possibility of using UAS to 

survey terrestrial species such as elephants (Koh and Wich 2012; Vermeulen et 

al. 2013). However, studies that utilize UAS to study terrestrial wildlife are limited 

to flying within visual range of the pilots which has prevented their use for 

surveying large terrestrial ungulates such as deer, caribou or moose. 
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1.4 Research Purpose and Objectives 

In order to assess the feasibility of using a UAS for the purpose of 

surveying a wide-ranging terrestrial mammal, it is first necessary to test the ability 

of the aircraft to conduct beyond line of sight (BLOS) missions and to assess the 

detectability of the target species in their natural habitat. In the fall of 2013, we 

obtained permission to use a small electric UAS to fly BLOS in the airspace 

controlled by the military near Goose Bay, Labrador, and we evaluated the 

capabilities of an UAS to operate BLOS safely for the purpose of wildlife surveys. 

The aircraft was equipped with a digital single lens reflex (DSLR) color camera, 

mounted to provide a nadir image (i.e. positioned to provide a direct overhead 

view of the ground). The primary objectives were to test the ability of the UAS to 

fly BLOS for the purpose of conducting wildlife surveys and to collect aerial 

images of surrogate caribou targets to evaluate how habitat type, photo analysts’ 

experience level, timing of aerial surveys, the contrast of the target against the 

landscape in imagery, altitude and the distance of the target from the image 

centerline influenced the detection of surrogate caribou targets.  This study was 

the first of its kind to successfully fly a UAS beyond line of sight over land for 

non-military applications in Canada and the findings of our research will 

undoubtedly provide an evaluation for using UAS to survey caribou in the future. 
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CONNECTING STATEMENT 

Unmanned aircraft systems are emerging as a useful tool for researchers and 

wildlife managers for a variety of applications. However, UAS might not 

necessarily be the best option for all purposes; their performance will depend 

largely on the objectives and limitations of the project. Once these are clearly 

defined, it is necessary to select the appropriate aircraft and payload, and then 

test their ability to satisfy the demands of the project prior to conducting large-

scale missions.  

Using UAS for the purpose of wildlife surveys has generated much 

interest, but there have been no studies to date that have successfully flown 

BLOS for terrestrial surveys of wildlife. Before these types of medium- and long-

distance surveys can be done, it is important to evaluate the performance of the 

aircraft and the payload for this purpose. The study described in Chapter 2 

evaluates the feasibility of using a small, fixed wing UAS for surveying boreal 

caribou by testing its ability to fly BLOS, collect aerial imagery with a DSLR 

camera and then by conducting a post-assessment of the factors that affect the 

detectability of surrogate caribou targets in a controlled study. This work provides 

recommendations for using UAS to survey caribou and other wildlife in the future. 
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CHAPTER 2: 

 EVALUATION OF AN UNMANNED AIRCRAFT SYSTEM FOR DETECTING 

SURROGATE CARIBOU TARGETS IN LABRADOR  

2.1 Abstract 

Regular, standardized population inventories have been suggested as an 

important component to the recovery of declining populations of boreal caribou 

(Rangifer tarandus caribou). Current survey methods typically employ manned 

aircraft, which can be noisy, expensive to operate, and dangerous for the people 

conducting the surveys. Small Unmanned Aerial Systems (sUAS) have garnered 

attention as a promising alternative for conducting aerial surveys in manned 

aircraft. Our research investigates the feasibility of using a UAS to conduct aerial 

surveys and determine which factors affect the detection of surrogate caribou 

targets, and hence might affect detection of real caribou. In the fall of 2013, we 

tested the capabilities of the Brican TD100e, a small, electric-powered fixed-wing 

UAS, to fly beyond line of sight (BLOS) near Goose Bay, Labrador. Seven 

surveys were done using different flight paths to collect aerial images of 26 

surrogate caribou targets placed in six different habitats. Mixed effects logistic 

regression models were used to evaluate how habitat type, distance of the target 

from the image centerline, photo analysts’ experience level, flight time, and the 
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target contrast against the landscape influenced the detection of surrogate 

caribou targets. We found that habitat type, target contrast, and the flight time 

affected target detection. Overall, 77.5% of the targets were detected; the odds 

of a photo analyst detecting a target in open habitat were roughly 10.5 times 

higher than in burned habitat and 42 times higher than in heavy forest. Target 

detection was influenced by the contrast of the target against the landscape, 

where higher contrast was associated with greater target detection. The 

detection of targets was 87% during evening flights and 75% for morning flights. 

This study was the first of its kind to successfully fly a UAS beyond line of sight 

over land for non-military applications in Canada and the findings of our research 

will undoubtedly provide recommendations for using UAS to survey caribou in the 

future. 

2.2 Introduction 

Boreal caribou (Rangifer tarandus caribou) are found across northern 

Canada ranging from the western corner of the Yukon to central and eastern 

Labrador and on the island of Newfoundland (Thomas and Gray 2002). Under 

the species caribou, boreal caribou are classified by COSEWIC as one of twelve 

distinct groups based on differences in behavior, morphology, ecology and 

genetics (COSEWIC, 2011). In the last three decades, boreal caribou have been 

experiencing range contractions and steady declines in population size across 
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Canada (Rettie and Messier 1998; Schaefer et al. 1999). The number of boreal 

caribou in Canada is estimated to be between 31,000 to 39,000 (excluding the 

island of Newfoundland) (Environment Canada, 2008) and they are listed as 

either threatened or endangered in six of the nine provinces and territories where 

they occur (COSEWIC 2011), including Labrador (Thomas and Gray 2002). In 

Labrador, boreal caribou populations are declining at an estimated rate of 13–

26% per year (Schaefer et al. 1999), which is faster than those estimated for 

populations in other provinces (Ouellet et al. 1996; Stuart-Smith et al. 1997; 

Rettie and Messier 1998).  

The widespread decline of caribou across Canada has raised concerns 

about their conservation status and the sustainability of current management 

practices. Conducting regular population inventories is an important step towards 

their recovery (Schmelzer et al. 2004). Frequent surveys are especially important 

since population sizes have been known to change rapidly (Gunn et al. 2006; 

Cuyler 2007) and the confidence intervals around most population estimates are 

too high to confirm changes without several surveys. A population of caribou 

located on three islands in Nunavut declined by 98% within a 15-year period from 

6048 individuals to roughly a hundred. An absence of survey data during that 

time frame delayed the detection of the decline and limited our understanding of 

what caused it, making the recovery of these populations challenging (Gunn et 
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al. 2006). Despite the importance of regular population inventories, there is an 

absence of accurate population size estimates and data on population trends for 

many boreal caribou herds (Courtois et al. 2003; Callaghan et al. 2011). The 

Scientific Review for the Identification of Critical Habitat for Woodland Caribou 

recognized 57 local populations of boreal caribou across Canada (excluding 

Newfoundland), of which 5.3% populations were increasing in size, 29.3% were 

declining, 28.1% were reportedly stable and the status of the remaining majority 

36.8% was unknown (Environment Canada 2008).  Gathering population data on 

boreal caribou has been a notoriously challenging task because they occur at 

densities as low as 1.5 caribou/km2, they form small herds with a clustered 

distribution over a wide area (Crête 1991; Courtois et al. 2001), and they live in 

forested areas that reduce detection during surveys. Aerial surveys conducted by 

people have been the preferred technique for estimating caribou populations; 

however, manned aircraft can be expensive, their noise can disturb sensitive 

wildlife, and they are dangerous for individuals onboard (Wiegmann and Taneja 

2003). From 1963 to 2000, a crash in manned light aircraft was the leading cause 

of mortality for biologists in the United States (Sasse 2003).  

Finding an accurate, non-invasive and inexpensive method to estimate 

boreal caribou populations presents a difficult challenge, but newly emerging 

technologies could help address some of these difficulties. Several researchers 
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have suggested the use of a small unmanned air vehicle system (UAS) to 

conduct aerial surveys (Jones et al. 2006; Chabot and Bird 2012; Grenzdorffer 

2013; Koski et al. 2013; Vermeulen et al. 2013; van Gemert et al. 2014; Chabot 

et al. 2015; Ratcliffe et al. 2015) because they are safer, less obtrusive, and 

more affordable compared to manned aircraft surveys. For the purpose of 

conducting surveys, unmanned aircraft systems equipped with a camera can be 

used to gather aerial imagery or video footage that can later be analyzed to 

estimate the abundance of a target species.  

Aerial imagery collected by manned aircraft or satellites has been used in 

the past to estimate wildlife populations (Boyd 2000; Udevitz et al. 2008; 

Buckland et al. 2012; Fretwell et al. 2012).  Unmanned aircraft systems offer a 

more convenient platform for unobtrusively obtaining high resolution imagery or 

video footage of wildlife because they can fly at low altitude and can survey hard-

to-reach places. Imagery obtained from UAS provides very high spatial resolution 

(≤10 cm/pixel) compared to satellite imagery (≥ 60 cm/pixel) (Fretwell et al. 

2012). Unmanned aircraft systems have been used to detect animals including 

large and small terrestrial mammals, birds, reptiles and marine mammals as well 

as to identify evidence of wildlife such as nests and tracks (Jones et al. 2006; 

Koski et al. 2009, 2015; Chabot and Bird 2012; Sarda-Palomera et al. 2012; 

Potapov et al. 2013; Grenzdorffer 2013; Hodgson et al. 2013; Vermeulen et al. 
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2013; Mulero-Pazmany et al. 2014, van Gemert et al. 2014; Chabot et al. 2015; 

Ratcliffe et al. 2015). However, due to past regulatory restrictions involved with 

non-military BLOS flight of UAS in North America, most studies that utilize UAS 

to study terrestrial wildlife are limited to flying within visual range of the pilot 

which has prevented their use for surveying large terrestrial ungulates such as 

deer, caribou or moose. In order to assess the feasibility of using an UAS for the 

purpose of surveying caribou, it is first necessary to test the ability of the aircraft 

to conduct beyond line of sight (BLOS) missions and to assess the detectability 

of the target species in their natural habitats.  

In both traditional aerial surveys and those that use a digital medium for 

data collection, the detectability of target species is dependent on several factors 

that are often specific to the environment and the species of interest. Previous 

research has shown that the detectability of ungulates is influenced by group 

size, canopy cover, individual activity (bedded, standing, moving), ground terrain, 

and light conditions (Thomas and Gray 2002; Gilbert and Moeller 2008; 

Patterson et al. 2014; Peters et al. 2014).  Of these factors, vegetation cover, 

which is largely dependent on the habitat, is the most frequently reported factor 

known to affect the detectability of target wildlife during surveys (Gasaway 1985; 

Samuel et al. 1987; Gilbert and Moeller 2008; McIntosh et al. 2009; Jarding 

2010; Griffin et al. 2013). For this reason we chose to focus on the effect of 
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habitat on the detection of targets. The accuracy of wildlife population estimates 

generated from aerial surveys are also largely dependent on the experience level 

of the observers (Miller et al. 1998; Garel et al. 2005). Imagery or video footage 

collected by a UAS can be reviewed more slowly, which may help reduce error in 

detecting targets and help the photo analyst gain experience properly identifying 

the target species. If the photo analysts’ experience level is an important 

predictor affecting the detection of surrogate caribou targets, then correct target 

detection should improve as photo analysts gain experience. Although we did not 

include light conditions in our analysis, the timing of flight loosely captures the 

effect of light conditions on target detection; the implications are discussed 

further in the discussion. 

For surveys that use digital media for surveying wildlife, there some 

additional factors that we wanted to include in study, as they could affect the 

detection of target wildlife in aerial imagery. Chabot and Bird (2012) used a small 

UAS to detect and quantify staging flocks of snow geese (Chen cearulescens) 

and Canada geese (Branta canadensis) from aerial imagery, and they found that 

the detection of the target species was strongly dependent on the contrast of the 

species against the landscape in the captured images (Chabot and Bird 2012). 

The altitude at which surveys are conducted can also influence target detection, 

as it directly affects the swath width covered in video footage or images collected 
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in flight. Flying at a higher altitude provides greater coverage, but the ground 

resolution is decreased. We also wanted to test the effect of the distance of the 

target from the centerline of the image to control for chromatic imperfections in 

photos and the obscuring effect of landscape features at the edges of images. 

Even with high quality lenses, there are still some chromatic aberrations caused 

by the inability of the lens to focus all colour wavelengths on the same focal 

plane or at the same position on the focal plane. This can cause blurring, or 

noticeably colored edges around objects in the image. We also wanted to control 

for the obscuring effect of landscape features at the edge of images; targets 

located directly beneath the aircraft when the image was captured are less likely 

to be obscured by trees or other objects because they are imaged from directly 

overhead. Targets located farther away from the centerline towards the edges of 

the image are more likely to be obscured by trees and other landscape features 

as they are photographed at an angle.  

In the fall of 2013, we obtained permission to use a small electric UAS to 

fly BLOS in the airspace controlled by the military near Goose Bay, Labrador, 

and we evaluated its capabilities to safely operate BLOS for the purpose of 

wildlife surveys. The aircraft was equipped with a digital single lens reflex (DSLR) 

color camera, mounted to provide a nadir image (i.e. positioned to provide a 

direct overhead view of the ground). The primary objectives were to test the 
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ability of the UAS to fly BLOS for the purpose of conducting wildlife surveys and 

to collect aerial images of surrogate caribou targets to evaluate how habitat type, 

photo analysts’ experience level, timing of aerial surveys, the contrast of the 

target against the landscape in imagery, altitude and the distance of the target 

from the image centerline influenced the detection of surrogate caribou targets.  

This study was the first of its kind to successfully fly a UAS beyond line of sight 

over land for non-military applications in Canada and the findings of our research 

will undoubtedly provide an evaluation for using UAS to survey caribou in the 

future. 

2.3 Methods 

2.3.1 Study area 

All flights were done in the Practice Target Area (PTA) in Labrador, Canada (lat: 

52.297691°, long: -60.997204°), which is approximately 100 km south of Goose 

Bay. Brican Flight Systems Inc. and McGill University were given permission 

from the military authorities at 5 Wing Goose Bay and Transport Canada to 

conduct BLOS flights with an UAS in a restricted airspace falling within a 60 km 

radius of the PTA.   

The landscape in the region had a very uneven terrain with small hills and 

cliffs that rise up to 600 m above sea level.  However, the 4.1 km2 study area 

where the aerial surveys were conducted had a fairly even terrain that varied only 
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by 15-20 m.  The area was characterized by varying density of forest cover, 

which consisted predominantly of black spruce (Picea mariana) as well as low 

herbaceous vegetation, bog-complexes, and streams.  Reindeer lichen 

(Cladoniaaccae spp.) was common throughout the area and growing in patches 

varying in size. All targets were placed within a 4.1 km2 study area which 

contained a total of six different habitat types including:  i) heavy forest, ii) 

medium cover forest, iii) sparse cover with lichen ground-cover, iv) sparse cover 

with no lichen ground-cover, v) open and vi) recently burned areas (Fig. 2.1). We 

distinguished between sparsely forested habitat with and without lichen because 

the white reindeer lichen ground cover could influence how easily a target could 

be distinguished from the landscape.  In areas where there was no lichen, the 

ground cover was dominated by blueberry bushes and bare soil which provided a 

reddish-brown backdrop with higher contrast in aerial photos.  

2.3.2 Unmanned Aerial Vehicle System  

The UAS used in our study was the TD100E fixed-wing, propeller-driven, aircraft 

(Fig. 2.2) provided by Brican Flight Systems Inc. (Brampton, ON).  It consisted of 

a small electric-powered unmanned aerial vehicle, a pneumatic launch system, 

radio-controlled (RC) transmitter, antenna tracker, and ground control station.   

TD-110E Specifications 
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 The aircraft was made of carbon-epoxy composites.  This small aircraft (4.978 m 

wingspan, 2.0 m long, 24.9 kg gross weight) was powered by an electric motor 

and lithium polymer batteries.  This allowed flight times of about 120 minutes to 

loss of battery power or 80–90 minutes allowing for unexpected last-minute 

events. Flight speeds ranged from a minimum of 64 km/h (35 knots) to a 

maximum of 145 km/h (80 knots). The average flight altitude for the experiments 

was ~652 m and the median flight altitude was ~690 m above sea level at a flight 

speed of ~90 km/h. One flight was conducted at a lower altitude ~550-600 m 

above sea level, but for the remaining six flights, the altitude was maintained at 

~690m. We did not vary the flight altitude with the terrain because the terrain of 

the 4.1 km2 study area where the aerial surveys were conducted only varied by 

15-20 m. 

The aircraft was launched using a pneumatic catapult (Brican Flight 

Systems Inc.) (Fig. 2.2). Once airborne, the plane was controlled using either 

direct command mode or autopilot mode. The plane had no landing gear, so 

landing the aircraft involved floating it to the ground and skidding to a stop. This 

was done either manually by a trained pilot or using the autopilot mode. All flights 

were pre-programmed, meaning the aircraft was being operated using the 

autopilot mode; direct control was only used when landing the plane. 

Communication Links 
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 The UAS had multiple data control links used to communicate with the aircraft. 

The primary communication links included the remote control link, which used a 

remote controller operating in conjunction with the autopilot.  It had an estimated 

visual range of 1.5 km and was used for manual control of the unmanned aircraft.  

The autopilot command and control link used a Microhard MHX910A modem and 

operated at 902-928 MHz within a range of up to about 35 km from the ground 

control station.  Also, a secondary autopilot communication system utilized an 

Iridium 9522B satellite transceiver and operated at 1.6 GHz. The latter system 

was used to provide secure communications for BLOS flight, and was operative 

at all distances from the ground control station. 

Autopilot Software 

The aircraft was equipped with a Micropilot 2128g2 autopilot. This allowed the 

unmanned aircraft to fly autonomously using pre-programmed flight paths. The 

autopilot software also controlled the camera that was set to take a picture about 

every 300 m along the flight path.  

The Payload   

The UAS was equipped with a digital single lens reflex (DSLR) colour camera — 

the Nikon D3X with a 50 mm focal length lens and 6048 × 4032 pixel resolution. 

The camera was mounted to provide a nadir image (i.e. positioned to provide a 
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direct overhead view of the ground). For most flights the camera used the 

following fixed settings for capturing photos: aperture set at f /4.5; ISO sensitivity 

250; and a shutter speed set at either 1/1000, 1/1250, or 1/800 s. The field of 

view (FOV) for the lens was 38.7 degrees.  The swath covered on the ground by 

the DLSR imagery was ~260 m which equated to ~4.3 cm/pixel. The environment 

was ideal for this type of sensor, especially when trying to detect a high-contrast 

target such as a caribou against the natural background of the Labrador 

landscape.   

2.3.3 Data Collection 

The UAS was pre-programmed to fly a grid pattern over the area where 

surrogate caribou targets had been randomly placed in different habitats. During 

all flights, the camera and flight altitude were adjusted to provide a swath width of 

~ 260 m. The median flight altitude was ~690 m above sea level.  The altitude 

was selected in order to obtain a resolution of one pixel on the ground of 0.04 m 

or better based on resolution tests done the previous year. A uniform distance 

between the center of each photograph was selected to fire the camera rather 

than a firing interval based on time to avoid variable overlap between successive 

photographs.   Variable overlap would result if the same time interval between 

photographs were used when the UAS was flying upwind versus downwind. The 

DGPS position information from the GCS triggered the camera to fire whenever 
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the UAS travelled 300 m.  The camera data were stored on board the TD100 and 

downloaded following the flight. Conducting flights required two operators, one to 

monitor the flight for safety issues and a second to operate the ground control 

station. The UAS was pre-programmed to fly transects in a grid pattern prior to 

each survey. A different flight pattern was used for each survey, and was created 

by offsetting the pre-defined grid by random amounts up to the transect spacing. 

The data recorded on the Nikon camera were archived onto a portable hard drive 

immediately following the flight.   

Surrogate Caribou Targets 

 We used unpainted 0.6 m × 1.2 m fir plywood boards of uniform shape and size 

as surrogate targets for the caribou.  These targets were approximately the same 

colour as caribou and they were also approximately the same size when viewed 

from an aerial perspective. It is important to note thoughthat these plywood 

targets would naturally be more easily detected in aerial photographs than real 

caribou because of their uniform colour and rectangular shape; however, 

capturing aerial imagery of these targets and assessing detectability provided 

useful information on factors that influence their detection. A similar study by 

Koski et al. (2009) used kayaks to evaluate the factors that could influence the 

detection of whales in aerial video-footage collected by a UAS.  

Target Placement 
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Using satellite imagery from Google Earth, we selected a total of 26 points within 

each of the six habitat types falling within the defined study area (Fig. 2.1). Use 

of Google Earth provided a coarse map of the study site which allowed for 

division of the site into different habitat types and random selection of locations 

for target placement. The GPS locations selected using Google Earth were 

entered into a hand-held GPS device, the Garmin Etrex Venture (Garmin 

International, Inc, Olathe, Kansas) with a mean error of 12.4 ± 4.36 m.  The Etrex 

was used to navigate to the selected locations for target placement at the 

beginning of the study and for target recovery at the end of the study.  In cases 

where the selected location did not match the habitat type viewed in Google 

Earth, we decided whether or not to move the target to a new location based on 

how many targets we had placed in each habitat type to ensure that each habitat 

type in our study was adequately represented. If we did not already have 5-6 

targets placed in that habitat type, we left the target in place and recorded the 

habitat class. If there were already enough targets placed in that habitat type and 

we required more targets placed in a different habitat category, we selected a 

new location from Google Earth and moved the target. A fire that passed through 

the area after the Google Earth imagery was obtained caused the discrepancy 

between the habitats shown on Google Earth and those that were present.  We 

left some of the targets in the area that had been affected by the forest fire, 
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because this ecosystem has a natural forest fire regime, but we did have to 

relocate three targets to ensure adequate sample sizes for all the habitat types. 

Once all targets were placed in the six different habitats, their position remained 

unmodified for the duration of all test flights conducted during this study. 

Survey Patterns  

Once all targets were placed, the unmanned aircraft was programmed to fly a 

pre-defined grid pattern of parallel transects. We conducted multiple surveys by 

offsetting the pre-defined grid by random amounts up to the transect spacing.  

This was done to capture images of each target at different positions from the 

transect center-line.  All flights were done in the morning from 07:00–9:30 or in 

the afternoon from 14:00–15:00. There were 464 individual targets captured in 

images during morning (AM) flights and 149 during evening (PM) flights.  The 

overlap between adjacent transects was designed to be ~10%, so some targets 

were detected on adjacent transects during the same survey.  The aircraft had a 

median flight altitude of 690 m and an average altitude of ~652 m (419–729 m) 

above sea level.  

Image acquisition 

We chose to program the autopilot to take a picture about every 300 m along the 

flight path to ensure there was sufficient overlap between images and that a 
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manageable number of photos were collected. If we had programmed it to take 

photos more frequently, the number of images can quickly accumulate into the 

thousands and become difficult to process during analysis.  Approximately 6100 

images were collected from seven test flights conducted from 6–10 September 

2013.  

2.3.4 Imagery analyses 

Reference Data Sheet 

A total of 26 targets were placed within the study area and photographed by the 

UAS during each survey. All images were geo-referenced using the WGS 84 

datum. The GPS data were extracted from the metadata of the photographs and 

converted to x-y coordinates in ArcGIS version 10.1 (Environmental Systems 

Research Institute, Inc., Redlands, California) using the Geotagged Photos to 

Points tool. The recorded locations for the targets were also plotted in Arcmap 

and the study area was defined as a rectangular polygon (area =  4.1 km2).  All 

aerial photos that were outside the study area were discarded. From the original 

6100 images collected, only 1314 images fell within this area.  A buffer of 350 m 

was set around each of the target locations, and all photos falling within the 

buffer zone were carefully examined for the presence of targets. Only 354 

images had targets present and were shown to photo analysts. 
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In each photo that targets were located, the pixel latitude, longitude, and 

the distance from the center-line of each individual target were recorded using 

XnView (Software available at http:// www.xnview.com). The centerline was 

defined as the line that intersects the nadir point in the image.  If every photo 

were taken at an exactly vertical position above the ground, the centerline would 

be drawn through the middle of the photograph. However, oftentimes, winds can 

shift the pitch and roll of the aircraft, causing the camera to tilt and capture the 

image at a slightly oblique angle, which displaced the centerline. In most of the 

photos we analyzed, the centerline fell at the center of the image. In cases where 

the nadir had shifted from the center of the image, it was approximated by 

looking at landscape features to approximate the nadir centerline. Every image 

was processed to extract the GPS coordinates of the photo, and the presence or 

absence of targets in the image. 

We used Image J (software available at rsbweb.nih.gov/ij/) to calculate the 

corrected integrated density (CID) of the targets in the images, herein referred to 

as ‘target contrast’. This was done by using the select feature to trace the 

contour of the target and then using the measure feature to extract information 

on the area, mean gray scale value and the integrated density of the selected 

pixels. A section of pixels surrounding the target was then selected and 

measured to extract the same information. These values were used to calculate 

http://rsbweb.nih.gov/ij/
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the corrected integrated density of the target against the landscape (or its 

contrast) using the formula CID = Integrated Density of the target – (Area of 

selected target X Mean gray scale value of the selected background). This value 

was used as a measure of how the targets appeared against the landscape 

(Fig.2.3).  

Target detection by human analysts 

Four photo analysts were selected to examine ~300 images each. All photos 

were examined using the Evolution II QNIX high resolution 27” IPS monitor with 

2560 x 1440 pixel display to control for image display quality. Aerial images were 

collected while the plane was flying pre-programmed transects, causing 

considerable overlap between images. To prevent continuity of the images being 

examined by photo analysts, the photos were divided by randomly selecting a 

starting point and then allocating images one at a time to each of the four photo 

analysts until they were all distributed. No photo was examined more than one 

time by the same analyst. None of the photo analysts had previous experience 

detecting targets from aerial imagery prior to their involvement with this study. 

Each photo analyst was instructed to look at approximately the same number of 

photos per day and given a limit of two weeks to complete the survey. They were 

to record the observation day, which was a measure of accumulated experience 

looking for targets in the images. Both photos with and without targets were 
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examined by analysts to ensure that they were not identifying marginal targets 

because they anticipated a target in each photo. For each photo, analysts 

recorded the presence or absence of any targets, and how confident they were 

that their response was correct using a scale of 0-5. A rating of zero indicates 

they have no confidence and a rating of five indicates they are very confident. 

When targets were present, the photo analysts recorded the x and y pixel 

coordinates of the center of the target. After all photos were show to the photo 

analysts, their responses were evaluated for accuracy by crosschecking their 

responses with the known locations of targets in each photo. It was then possible 

to record whether the photo analyst correctly identified the presence or absence 

of any targets as well as false positive and false negative detections.  

 2.3.5 Statistical Analysis 

All graphical and statistical analyses were carried out in the statistical software 

package R (version 3.1.2) (R Development Core Team 2013). To conduct our 

analysis, we used general linear mixed models (GLMMs) and followed the 

recommendations outlined by Grueber et al. (2011). These types of models are 

ideal for dealing with data that are unbalanced, non-normally distributed, or have 

missing data. They also provide a powerful tool for evaluating the size and 

direction of effects while simultaneously accounting for random effects (Bolker et 

al. 2009). For our analysis, we aimed to evaluate which predictors had the 
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greatest effect on the detection of surrogate caribou targets. We only included 

photos where targets were present, and we also removed all false positive 

detections of targets as well. False positives were excluded from the analysis 

because there were too few false positives in our dataset to provide a useful 

analysis. The majority of those false positive detections were the result of an old 

piece of metal debris that had been left in the woods. When photo analysts 

correctly identified a target, it was labelled as a “success”; when they failed to 

find the target, it was labelled as “failure”, and these outcomes were coded as 1 

and 0, respectively. Before conducting our analysis, we built a linear model that 

included all the fixed effects and calculated the variance-inflation factors (VIF) to 

assess for multicollinearity between the explanatory variables. All values were 

less than the cutoff of VIF <5 (O’brien 2007), suggesting that multicollinearity did 

not present a serious issue. 

Our models were fit using the glmer function from the lme4 package 

(Bates et al. 2014). We used Laplace approximation of maximum likelihood with 

a binomial error structure and a logit link function. We were primarily interested in 

the influence of fixed effects so the random effect of ‘photo analyst ID’ was 

included in all models. We included photo analyst ID as a random effect to 

account for the lack of independence between survey responses as well as the 

inherent differences in performance between individuals. The fixed effects 
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included: ‘habitat type’, ‘photo analysts’ experience level’, ‘distance of the target 

from the image centerline’, ‘target contrast’, and ‘flight time’ (Table 2.1). The 

variable ‘Altitude’ was originally included in the analysis, but the distribution of the 

data collected for altitude was not normally distributed, and the majority of 

images were collected within a narrow altitude range between 675-715 m.  For 

these reasons, we ultimately decided to exclude altitude from the remainder of 

our analysis. Interactions were not included as they were not considered relevant 

for the intent of our analysis. To facilitate direct comparison, we centered 

continuous predictors by subtracting the mean and dividing by two standard 

deviations (Gelman 2008) using the standardize function the arm package 

(Gelman et al. 2009). The categorical and binary predictors were left unchanged. 

We generated a model set using the dredge function from the MuMIn package 

(Barton 2012) that included all combinations of the six explanatory variables, all 

of which included the random effect.  

To compare our models, we used the Akaike Information Criterion 

corrected for small sample sizes (AICc) (Aikaike 1973) and Akaike weight (wi) to 

rank models. The Akaike weight can be interpreted as the likelihood that a given 

model from within a set best fits the data with regards to fit and overall parsimony. 

We delineated the top model set using the top 2AICc of models (Burnham and 

Anderson 2002). There was only one top model, so model averaging was not 
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used, and instead, we used this model to compute 95% confidence intervals for 

the fixed effects as well as the odds ratios. Tukey’s HSD analysis was performed 

using the glht function from the multcomp package (Piepho 2004) to determine 

the differences in detection between different habitat types for the best fitting 

model.  

2.4 Results 

Our model set included 32 different models; the best fitting model for target 

detectability included the habitat type, flight time, and target contrast (Table 2.2). 

These three variables appeared in all three of the top candidate models, with the 

only difference between the three top candidate models being the inclusion of 

one additional predictor in the last two (either distance from the centerline or 

observation day) (Table 2.2). Observation day, a proxy for the photo analysts’ 

experience level, did not appear in our top model. However, it should be noted 

that the results from our analysis might have been affected by the low number of 

photo analysts as well as the low sample sizes for some days in the 14-day 

period. Although participants were instructed to look through their allotted images 

within two weeks and to look at roughly the same number of photos per day, 

most of our photo analysts were consistent for the first week and then left the rest 

until the end of the week. Consequently, we did not acquire a true measure of 

photo analysts’ experience level.   
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 All inferences regarding target detectability were made using the best 

fitting model (Table 2.3).  Overall, 77.5% of the targets were detected; the 

percentage of targets detected was highest in open habitat (97%), and lowest in 

heavy cover forest (25%) (Fig. 2.4). The odds of a photo analyst detecting a 

target in open habitat were roughly 42 times higher than in heavy forest and 10.5 

higher than in burned habitat.  When compared to open habitat, target 

detectability was significantly different for targets in areas with sparse cover and 

no lichen (B= -1.8912, SE = 0.7528 , z =  -2.512,  p= 0.012) , burned habitat (B= -

2.3504, SE =0.7628, z = -3.081,  p= 0.002), medium cover forest (B= -1.9019, 

SE= 0.6980, z = -2.725, p = 0.006), and heavy cover forest (B= -3.7348, SE = 

0.8182 , z =  -4.565,  p< 0.001). There was no significant difference in target 

detection between open habitat and sparsely covered areas with lichen 

groundcover (B= -0.9786, SE= 0.7133, z= -1.372, p= 0.170). Pairwise 

comparisons of different habitat types using Tukey’s HSD test revealed that the 

detection of targets was significantly lower in heavy forest compared to all other 

habitat types. Detection of targets was higher in open habitat compared to 

burned areas and heavy forest. There were no significant differences between 

open, sparse cover (no lichen), sparse cover (lichen), and medium cover forest. 

There were also no differences in detection between habitat with sparse cover 



 

61 

(no lichen), sparse cover (lichen), burned habitat, and medium cover habitat (Fig. 

2.5). 

Target detectability was influenced by the contrast of the target against the 

landscape (B= 6.3960, SE = 0.9011, z= 7.098, p<0.001) as well as the timing of 

aircraft surveys (B= 1.1096, SE= 0.3465, z= 3.202, p= 0.00136). The detection of 

targets was 87% during evening flights and 75% for morning flights (Fig.2.6). 

2.5 Discussion 

As a platform for use in wildlife research and conservation, UAS have 

definitely sparked much interest (Jones et al. 2006; Koski et al. 2009,, 2013,, 

2015; Soriano et al. 2009; Koh and Wich 2012; Rodriguez et al. 2012; Hodgson 

et al. 2013; Vermeulen et al. 2013; Chabot et al. 2014; Kadaba 2014). Our study 

demonstrated that a small UAS equipped with a basic payload can successfully 

fly BLOS for the purpose of surveying wildlife. The payload we used was a Nikon 

D3X, and we were able to capture imagery with a ~ 4.3 cm/pixel ground 

resolution. The UAS was able to survey different habitat types and collect 

imagery with sufficient resolution to identify targets and fine-scale habitat 

features, making it possible to discern targets from other objects in the 

environment. The imagery collected was successfully used to identify the 

parameters influencing target detection. 
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The best fitting model did not include photo analysts’ experience level, 

measured as the number of days (from 1 to 14) that a photo analyst had 

previously spent looking through images. Although photo analysts’ were 

instructed to look at approximately the same number of photos per day and given 

a limit of two weeks to complete the survey, most of the photo analysts looked at 

the same number of photos per day at the beginning of the first week, but left the 

rest of the images until the end of the second week. Consequently, the data 

might not have adequately captured the effect of photo analysts’ experience level 

on target detection. Although positive target detection did not improve with 

experience level for photo analysts, we did find that some individuals were 

inherently better at correctly identifying targets compared to others.  Therefore, 

using aerial imagery or video footage collected by a UAS could be 

advantageous, as the data can be stored and reviewed by multiple observers, 

which would reduce bias caused by differences in performance between 

analysts.   

The contrast of targets in the aerial imagery was expected to influence the 

detection of surrogate caribou targets.  For example, previous research by 

Chabot and Bird (2102) showed that when comparing the performance of a UAS 

for surveying Canada geese and snow geese, the performance was better and 
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less variable for snow geese, a white-bodied species with a high contrast against 

bare ground, compared to brown-bodied Canada geese on a less contrasting 

background. Although we did find that target detection was positively correlated 

with target contrast against the landscape, we only included one measure 

affecting the visibility of targets in the imagery. The predictor we used was 

measured from the imagery post data collection, and was strongly dependent on 

image quality and the conditions under which the image was captured. To 

improve upon our results, we suggest that trials be conducted which involve 

several measures that affect image quality such as light intensity and cloud 

conditions.  

We also expected that the placement of surrogate caribou targets in 

different habitats would affect detectability.  We found that the odds of target 

detection were lowest in heavy forest and burned habitat. The targets placed in 

burned habitat were likely difficult to detect because numerous rocks and dead 

trees that were of similar shape, colour and size compared to the surrogate 

caribou targets cluttered the images.   As might have been expected, the targets 

placed in heavy forest cover had the lowest detectability compared to other 

habitats. During aerial surveys, it is very difficult to see wildlife in forested areas 

because of direct canopy cover, and the obscuring effect of shadows. To address 

these issues, researchers have developed sightability models to account for 
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visibility bias (Bodie et al. 1995; Pearse et al. 2008; Rice et al. 2009;) and have 

also resorted to technological solutions, e.g. thermal infrared sensing (Dunn et al. 

2002; Potvin and Breton 2005). These steps are especially important for 

maintaining the accuracy of population estimates generated from aerial surveys, 

because the number of individuals missed can be very high. For example, a 

survey conducted in Alberta in 1993 estimated sightability of caribou to be 

approximately 40% based on the detection of radio-collared individuals (Stuart-

Smith et al. 1997). 

We also found that the time of day when surveys were conducted affected 

target detection; detection was higher in the evening flights compared to those 

done in the morning. There are likely multiple factors to consider here, including 

differences in morning and evening light conditions, the effect of shadows, and 

cloud cover. Morning flights were conducted between 07:00 to 09;30 . Within this 

time period, the sun’s position in the sky starts at a lower angle and rises 

progressively as the time approaches midday. As the sun rises, the light 

becomes more direct and shadows become shorter. Afternoon flights were 

conducted between 14:30 to 15:00, so shadows were short but becoming longer 

as the sun was setting. It is likely that the long shadows observed earlier in the 

morning made it more difficult to identify targets located in habitats with trees or 

vegetation that can cast obscuring shadows. Also, the mornings were generally 
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clear and afternoons were typically overcast. When cloud cover was present, it 

created diffuse light conditions and reduced the obscuring effect of shadows, 

especially in environments with trees. Previous research has shown that light 

intensity and time of day can influence target detection (LeResche and Rausch 

1974; Allen 2005; Franke et al. 2012). LeResche and Rausch (1974) found that 

the detection of moose was higher in midday aerial surveys compared to those 

conducted in the mornings and evenings.  

Although we have identified important factors affecting the detectability of 

surrogate caribou targets, it is important to note the limitations of our study. First, 

the method used to select the placement of targets could have introduced bias in 

our results because site selection was not truly random. Although we were 

unable to see the fine-scale habitat features in the satellite imagery used to 

select target locations within the 4.1 km2 study site, the locations were ultimately 

selected by looking at a map, which could have introduced bias by avoiding the 

placement of targets near the edge of the study site or preferentially placing 

targets in areas with more cover.  A truly random approach would have involved 

randomly choosing latitude and longitude positions within the study area for 

target placement, but this would have made it difficult to ensure that all habitat 

types were equally represented in our study. Furthermore, the sites were 
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selected at a much smaller scale compared to that at which the imagery was 

collected, which would effectively reduce the effect of selection bias. 

Another consideration is that we did not include group size in our study, 

which has also been identified as an important factor affecting the detection of 

ungulates (Thomas and Gray 2002; Patterson et al. 2014; Peters et al. 2014). 

We had set up a trial with different sized groups of surrogate caribou targets, but 

adverse weather conditions and time limitations restricting flying opportunities 

prevented adequate sampling of the different group sizes. We also removed false 

positives from the analysis because there were too few in our dataset to provide 

a useful analysis. It is likely that the low number of false positive detections is a 

result of the distinct shape and uniform colour of the targets. Using more life-like 

surrogate caribou targets arranged in different positions (standing, bedded, or 

grazing) could have provided a more realistic evaluation of how frequently false 

positive detections might occur in caribou surveys with UAS. We were also 

unable to compare how the detection of surrogate caribou targets compared to 

real caribou. We originally intended to gather aerial imagery of caribou with the 

UAS, but there were no collared individuals within a reasonable flying distance of 

the PTA.  Since caribou are sparsely spaced across the landscape, and in 

general do not move long distances, it was not realistic to expect that they would 

have moved into an area we could fly over within the time frame of our study.  
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Lastly, the variable ‘altitude’ was removed from our analysis because there was 

not enough variability in altitude during flights to provide a useful analysis. The 

altitude at which the aircraft is flown directly affects the swath width covered in 

the survey as well as the pixel to ground resolution in any video or imagery 

collected. We tried to maintain our flight altitude at ~ 690 m above sea level, 

which gave a swath width of ~ 260 m and a ground resolution of approximately 

4.3 cm.  Flying at a higher altitude will increase the swath width, so the aircraft 

can survey a larger area in less time, but it must be balanced with the ground 

resolution to ensure adequate resolution for identifying the target species.   

2.6 Summary and Conclusions 

The primary objectives of this study were to test the ability of the UAS to fly 

BLOS for the purpose of conducting wildlife surveys and to collect aerial images 

to evaluate which factors influenced the detection of surrogate caribou targets. 

This study was the first of its kind to successfully fly a UAS BLOS over land for 

non-military applications in Canada. We achieved the first objective by 

demonstrating that a small UAS equipped with a basic payload can successfully 

fly BLOS to conduct aerial surveys and gather data. This is an important step 

towards incorporating UAS as a tool for surveying boreal caribou, as this species 

generally occupies large territories in remote areas that are difficult to access and 

thus, would require BLOS flight. The Brican TD 100e provides an ideal platform 
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for surveying sensitive species such as caribou because it is small and silent, 

allowing for inconspicuous data collection and thereby minimizing the risk of 

disturbance to the animals (Koski et al. 2009; Chabot and Bird 2012; Sarda-

Palomera et al. 2012).  

We completed our second objective by using the aerial imagery collected 

by the UAS to evaluate the different factors affecting the detection of surrogate 

caribou targets. Although the results obtained from detectability studies using 

decoys cannot be directly applied to surveys of wild ungulates, they do provide 

important insight into the primary factors influencing detection of wildlife (e.g. 

Koski et al. 2009; Strobel and Butler 2014). The results from our study indicate 

that habitat type, flight timing and target contrast influenced target detectability. 

For the purpose of surveying wildlife, UAS are most appropriate for detecting 

species that are distinguishable from the surrounding landscape (have a high 

contrast against the ground), and for small-scale surveys in environments with 

minimal concealing vegetation such as heavy forests. Ideal conditions for data 

collection would be flying at midday when there is minimal shadow. We found 

that there was a difference in the performance of the photo analysts, therefore 

using UAS imagery or video footage could be a useful tool for reducing observer 

bias, as data can be stored and interpreted by multiple observers (Nowacek and 

Tyack 2001; Watts et al. 2010). 
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The disadvantage of using aerial imagery or video footage collected by a 

UAS to evaluate animal abundance is that it can produce large quantities of data 

that are difficult to process and store (Koh and Wich 2012; van Gemert et al. 

2014). Our study involved processing thousands of images after only seven 

flights over a fairly small area. Manually processing such large quantities of data 

is labour-intensive, slow, and possibly very expensive. Efforts are underway to 

create and integrate automatic pattern recognition algorithms into data 

processing to help accelerate the process (Abd-Elrahman 2005), but to date, this 

type of software is not yet readily available to researchers.  

We were able to identify the factors that limit the detection of surrogate 

caribou targets, but the detection of wildlife could possibly be improved by using 

a combination of sensors such as infrared or hyperspectral cameras.  Previous 

studies have successfully used infrared camera surveys to detect wildlife (Garner 

et al. 1995; Haroldson et al. 2003; Kissell and Nimmo 2011; Israel 2011); 

however, species identification is not easily achieved using only infrared imagery 

and thermal infrared sensors can have difficulty detecting wildlife concealed by 

canopy cover (Garner et al. 1995; Dunn et al. 2002, Potvin et Breton 2005). 

Barring cost, the optimum payload would be a combination of sensors; for 

example, Franke et al. (2012) used a combination of infrared and natural colour 

imagery to survey and detect different ungulate species. They used the infrared 
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imagery to detect the presence of the animal and then identified the species 

using high resolution, natural colour imagery. For our study, the size of our 

aircraft limited the payload capacity such that we could only include a DSLR 

camera, but the potential for using a UAS equipped with a multi-sensor system is 

possible.  Based on the results from this research, it is suggested that 

researchers interested in using UAS should define the purpose of their study and 

then make an informed choice about the type of aircraft and payload they would 

need to use to satisfy their objectives. 
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Table 2.1.  Description of all covariates included in candidate models. 

No. Variable Definition 

 Response variable  

1 Detection Successful detection=1, No detection=0 

 Predictors  

 

2 

AM/PM The time that the flight was conducted (morning= 

AM (7:00-9:30), afternoon = PM (14:30-15:00). 

3 Distance from center-

line 

Measured distance in pixels of the target from the 

center-line (nadir) in the image 

4 Corrected Integrated 

Density (Target 

contrast) 

CID = Integrated Density of the target – (Area of 

selected target X Mean gray scale value of the 

selected background) 

5 Habitat Type Habitat where targets were placed, either i) burned, 

ii) open, iii) heavy forest, iv) medium forest, v) 

sparse forest with lichen, vi) sparse forest no lichen 

6 Photo Analyst 

Experience Level  

Number of days (from 1 to <9) that a photo analyst 

had previously spent looking through images 

7 Photo Analyst ID Identification number of the analyst 
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Table 2.2. Summary of top three mixed logistic regression models for the 

detection of surrogate caribou targets (n=26) from aerial images (n=613) 

collected by an unmanned aircraft system on the military training area near 

Goose Bay, Labrador, 2013. For model, we provide the number of estimated 

parameters (K), second-order Akaike's Information Criterion (AICc) the difference 

in AIC compared to lowest AICc of the model set (ΔAICc),  log-likelihood (logLik), 

and AICc wt (wi). 

 

Model (fixed effects) a K AICc Δ AICc logLik wi 

 HAB + AM/PM + CID  9  439.4  0  -210.562 0.692 

 HAB + AM/PM+ CDIST +CID  10  441.5   2.1 -210.562  0.246 

 HAB +AM/PM +OBSDAY+CID  17   445.8  6.4  -205.396 0.028 

 

a HAB = habitat type (Open, SNL= sparse cover without lichen, SPL= sparse cover with lichen, 

Burned = recently affected by forest fire, Heavy = heavy forest, Medium = medium forest); 

AM/PM = Flight time (AM= morning flight, PM= evening flight); CID= A measure of the contrast of 

target pixels  compared to background pixels (CID = Integrated density of the target– (Area of 

selected target X Mean gray scale value of the selected background).; CDIST = the distance in 

pixels of the center of the target from the centerline of the photograph; OBSDAY = A proxy of the 

photo analysts’ experience level measured as the number of days (from 1 to <9) that a photo 

analyst had previously spent looking through images.  
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Table 2.3. Summary of parameter estimates (on the logit scale) from the top 

mixed effects logistic regression model for the detection of surrogate caribou 

targets (n=26) from aerial images (n=613) collected by an unmanned aircraft 

system on the military training area near Goose Bay, Labrador, 2013.  

 

Parameter a Estimate 95% CI Std. Error Z value  

Intercept 4.3066 (2.848, 5.765) 0.7441 5.788  

AM /PM 1.1096 (0.4304, 1.789) 0.3465 3.202  

Habitat (Open)      

    SNL -1.8912 (-3.367, -0.4158) 0.7528 -2.512  

    SPL -0.9786 (-2.377, 0.4194) 0.7133 -1.372  

    Burned -2.3504 (-3.845, -0.8553) 0.7628 -3.081  

    Heavy -3.7348   (-5.338, -2.131) 0.8182 -4.565  

    Medium -1.9019 (- 3.270, -0.5339) 0.6980 -2.725  

CID 6.3960 (4.630, 8.162) 0.9011 7.098  

 

a AM/PM = Flight time (AM= morning flight, PM= evening flight); Habitat= (Open = reference 

group, SNL= sparse cover without lichen, SPL= sparse cover with lichen, Burned = recently 

affected by forest fire, Heavy = heavy forest, Medium = medium forest); CID= A measure of the 

contrast of target pixels compared to background pixels (CID = Integrated density of the target– 

(Area of selected target X Mean gray scale value of the selected background). 
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Fig. 2.1: The six different habitat types in which surrogate caribou targets were 

placed for aerial surveys with an unmanned aircraft system in Labrador:  A) 

heavy forest, B) medium cover forest, C) sparse cover without lichen ground-

cover, D) sparse cover with lichen ground-cover, E) recently burned areas, and 

F) open habitat. 
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Fig. 2.2. The unmanned aircraft system used in our study was the Brican TD100e 

model fixed-wing, propeller-driven, aircraft.  Note the pneumatic launcher. 
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Fig.2.3 Surrogate caribou targets with Corrected Integrated Density (CID) pixel 

grayscale values ranging from A) 3349, B) 27689, C) 76572 and D) 20,2106 . 

The CID is a measure of target contrast against the landscape using the formula 

CID = Integrated Density of the target – (Area of selected target X Mean gray 

scale value of the selected background).  
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Fig.2.4 The relative proportion of surrogate caribou targets (n=26) detected from 

aerial images (n=613) collected by an unmanned aircraft system on the military 

training area near Goose Bay, Labrador, 2013. Targets were placed in six 

habitats including: open areas (n=100 photos), habitat characterized by sparse 

ground cover with lichen (n=111), sparse cover without lichen (n=130), recently 

burned forest (n=85), heavy forest (n=48) and medium cover forest (n=139). 
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Fig.2.5. Tukey’s HDS pairwise comparison of the detection of surrogate caribou 

targets (n=26) detected from aerial images (n=613) collected by an unmanned 

aircraft system on the military training area near Goose Bay, Labrador, 2013. 

Equal letters indicate no significant differences between groups and different 

letters indicate significant difference at the 0.05 level of significance.  Targets 

were placed in six habitats including: i) open areas (n=100 photos), ii) sparse 

cover without lichen (n=130), iii) sparse cover with lichen ground-cover (n=111), 

recently burned forest (n=85), heavy forest (n=48) and medium cover forest 

(n=139). 
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Fig. 2.6. The relative proportion of surrogate caribou targets (n=26) detected from 

aerial images (n=613) collected by an unmanned aircraft system on the military 

training area near Goose Bay, Labrador, 2013 during morning (AM) (n= 464 

detections) or afternoon flights (PM) (n=149).  
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CHAPTER 3: 

 CONCLUSIONS AND FUTURE DIRECTIONS 

The objective of this thesis was to evaluate the feasibility of using a UAS for the 

purpose of surveying boreal caribou in sub-arctic boreal forest habitat. I sought to 

i) test the ability of the aircraft to fly beyond line of sight ii) identify which factors 

influence the detectability of surrogate caribou targets and iii) provide 

recommendations for researchers interested in using UAS for surveying wildlife.  

This study was the first of its kind to successfully fly a UAS beyond line of sight 

over land for non-military applications in Canada. We were able to successfully 

demonstrate that UAS can safely fly missions autonomously outside the visual 

range of the pilot for the purpose of collecting aerial imagery. The UAS was able 

to survey different habitat types with sufficient resolution to identify targets and 

fine-scale habitat features, making it possible to discern targets from other 

objects in the environment. The imagery collected was successfully used to 

identify the parameters influencing target detection. It was revealed that habitat 

type, flight time and the brightness of the target compared to the surrounding 

landscape affected target detection. For the purpose of surveying wildlife, UAS 

are most appropriate for detecting species that are distinguishable from the 

surrounding landscape, and for small-scale surveys in environments with minimal 

concealing vegetation. Ideal conditions for data collection would be either flying 
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at midday when there is minimal shadow or when there is cloud cover, given that 

other weather conditions are adequate. The detection of wildlife could possibly 

be improved by using a combination of sensors such as infrared or 

hyperspectral, but payload capacity would be a limiting factor. Additionally, there 

is a need for more research on the applications of hyperspectral sensors for 

detecting animals. Based on the results from this research, it is suggested that 

researchers interested in using UAS should define the purpose of their study and 

then make an informed choice about the type of aircraft and payload they would 

need to use to satisfy their objectives. 

 


