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Sharp interface limits of phase-field models
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The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for
a class of phenomena that includes order—disorder transitions, spinodal decomposition and Ostwald ripening,
dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the
“sharp-interface limit” from phase-field models which have interfaces that are diffuse on a lengthéstale
particular, phase-field equations are mapped onto sharp-interface equations in the&dimitsand é&v/D
<1, wherex andv are, respectively, the interface curvature and velocityRuslthe diffusion constant in the
bulk. The calculations provide one general set of sharp-interface equations that incorporate the Gibbs—
Thomson condition, the Allen—Cahn equation, and the Kardar—Parisi—Zhang equation.

DOI: 10.1103/PhysRevE.64.021604 PACS nuner81.30.Hd, 05.70.Ln, 64.60.My, 64.60.Cn

[. INTRODUCTION the materials community, the use of continuum field models
is associated particularly with the work of Cahn and collabo-
Many inhomogeneous systems involve domains of wellrators[7,8].

defined phases separated by thin interfaces. These include Phase-field models provide a description at length scales
nonequilibrium systems undergoing phase separation bgreater than some microscopic scale of the order of a lattice
spinodal decomposition or by nucleation and grofdth or ~ spacing, but are not necessarily appropriate for a particular
where solidification occurs by dendritic growit], or by the ~ system. These models apply to a large number of micro-
growth of eutectic crystal§3]. The phenomenological de- Scopic systems only whefiis much larger than any particu-
scription of these phenomena involves the motion of well-lar microscopic length, such as the lattice spacing, involved
defined sharp interfaces. The origin of such descriptions i§ the surface structure. Interpreted in the sense of describing
often transparent, being obtained by symmetry argumentd!€ universal features of many microscopic modglss a

and common sense. Nevertheless the properties of sharE—eSOSCOp'C length representative of the microscopic struc-

interface models can be quite subtle as is the case for detre- In @ similar manner, sharp-interface models apply to a
dritic growth. large number of continuum field models of pattern formation

or phase separation in the limit that the length scales defined

Unfortunately sharp-interface models are difficult to . .
simulate since this usually involves solving a diffusion equa—by the patterns are much larger thanAn important differ-

tion subject to moving boundary conditions at the interfaces. - exists, however, in the construction of the two ap-
A ) ient 9 hy o simulat dels whi roaches. Standard sharp-interface models are constructed

more convenient approach 1S 1o simulate models whicty,, ., phenomenological descriptions of interfaces, while
describe the bulk phases as well as the interface structur

i X X ; hase-field models can be constructed to obey explicitly the
While these models are wasteful in terms of simulating bulkingamental principles of statistical mechanics. In principle,

regions[4], no explicit boundary tracking is need_ed. This is 4 phase-field model will describe a system in thermal and
the key element to a popular method for studying systemgyechanical equilibrium with its environment and its evolu-
out of equilibrium, called “phase-field” modeling. In such an tjon from some nonequilibrium state towards its ultimate
approacrl one or more continuous fields which are functiongquilibrium state and must contain a sharp- or thin-interface
of spacer and timet are introduced to describe the phasesdescription as a particular limit.
present. Typically these fields vary slowly in bulk regions  While continuum phase-field models provide a fundamen-
and rapidly on length scales of the order of the correlatiortal approach which is clear and workable, it is important to
length, &, near interfaces. The free energy functiotfatle-  establish the connection between this description and the
termines the phase behavior and, with the equations of masharp-interface description. The main difficulty which arises
tion, gives a complete description. In other contexts, such ais how to take account of the finite thicknessf the diffuse
critical dynamics[1,5], the fields are the order parametersinterface of the continuum model. There has been a great
distinguishing the phases. In a binary alloy, for example, theleal of discussion in the literature on how this process is to
local concentration or sublattice concentration can be debe undertaken. Some workers have extracted the interface
scribed by such fields. The ideas involved in this approactequations by taking the limit where the interface width of the
have a long history, going back to van der Wd#@k Within  phase field model goes to zd®) for the Stefan problem of

a pure material. This approach is not very useful since the

interface width is always finite. More recently these calcula-

*Electronic address: elder@oakland.edu tions have been extended for special choices of the free en-

1063-651X/2001/642)/02160418)/$20.00 64 021604-1 ©2001 The American Physical Society



ELDER, GRANT, PROVATAS, AND KOSTERLITZ PHYSICAL REVIEW B4 021604

ergy functionalF to include an interface of nonzero width conserved and nonconserved fields describing the invasion of
[10,11. a supersaturated liquid phase by a stable phase is discussed.

The purpose of this paper is to provide a clear and de&lso, the widely used phenomenological model of solidifica-
tailed derivation of the sharp interface equations. The aption is discussed as a special case of the more general model
proach follows the projection operator method of Kawasakiconsidered here and several results which were previously
and Ohta[12], is generally applicable, and eliminates the derived numerlcally are rederived analytically. A brief sum-
counterintuitive necessity of limiting the derivation of the mary of the paper is in Sec. VI. Several technical details of
sharp interface limit to some artificial form of the free energythe sometimes rather 'gedlous mathematical formalism are rel-
functional  [10]. This general calculation provides one set€gdated to the Appendixes.
of equations that relate the parameters of the phase-field
equations to those of the sharp interface equations for a Il. DESCRIBING INTERFACE PHENOMENA USING
broad class of phenomena including order—disorder transi- PHASE-FIELD MODELS
tions, dendritic growth, phase separation in binary alloys,
eutectic growth, and surface roughening. In particular, ther-
modynamic consistency is automatic in the present approach To see the relationship between the two approaches, it is
for nonzero interface widths. This is in contrast to the un-useful to construct the simplest equilibrium and nonequilib-
physical approach of taking the limit of a zero interfacerium descriptions of surfaces by both methods. The main
width, which requires fine tuning of the free energy to obtainideas developed below appear in the more general case dis-
a thermodynamically consistent theory. cussed in the following sections. These ideas are present in

The structure of the paper is as follows. In Sec. Il a genthe work by Allen and Cahf8] on the motion of antiphase
eral discussion of out of equilibrium interface phenomenadoundaries in the kinetics of an order—disorder transition in a
from both the phase-field and from the sharp-interface apbinary alloy. This work recovers the sharp-interface descrip-
proach is given. The advantages of the former from a statistion from the phase-field model in the appropriate limit and
tical mechanics viewpoint are also pointed out. This containgredicts an experimentally testable consequence of a finite
three subsections: Sec. Il A in which systems with a noncon- First, consider a surface in equilibrium. The reason why
served field only are described, Sec. Il B where the inclusioriiroplets are spheres and interfaces are locally flat is that
of a conserved field representing temperature or chemicdhese shapes minimize surface area. The excess free energy
concentration is discussed, and Sec. 11 C in which the fre@f a surface is proportional to its aréa
energy or appropriate thermodynamic potential and dynami-
cal equations for a eutectic system with both conserved and AF=oA, @)
nonconserved fields are introduced. Possible equilibrium here the proportionality constant is the surface tension
phase diagrams are also discussed. Next, in Sec. lll, shar%his sim Ief) cgmmon sgnse anproach is the essence 01; the
interface equations are obtained by projecting the dynamic harp.i tp f del PP
of the conserved and nonconserved fields onto the interfacg & P_Nterace model. ,
by a projection operator methdd2]. This rather technical Contragt this with the phase-field approach. Th? free en-
derivation involves an “inner” expansion near the interface €rgy functionalF(¢) for the scalar order parametg(r) has
in Sec. A in terms of curvilinear coordinates and an the following familiar form, consistent with reflection sym-
“outer” expansion far from the interface, Sec. Il B. In Sec. Mmetry F(#) = F(— )

[l C the inner and outer solutions are matched in a region
yvhere both are vglid. An.ambiguity'ir) the 'definit.i(.)n of the ]_—{w}:f dF[%K¢(§¢)2+f(¢)], )
interface position is exploited by defining this position as the

Gibbs surface which eliminates the ambiguity. This is a solv- S . .
ability condition. In Sec. IV expressions are given for quan—WhereK »>0 so that the square gradient interaction gives the

tities such as the capillary lengtty, the surface tensiot, free energy cost for inhomogeneities and the local bulk free

and the kinetic undercooling coefficieBtwhich are param- energy h:.is a dauble well form satisfyifgy) = (). An
eters of the sharp-interface equations in terms of the fregxample is they™ form

energy functionalF. It is also shown thas>0 for noncon- a b

served model A dynamicgg<<0 for conserved model B dy- f=— -2+ - y* 3
namics, and is of either sign for the physically important case 2 4

of model C dynamicg$5]. In Sec. V, the dynamics of fluc-
tuations about almost planar interfaces is discussed in ter .
of the sharp-interface equations of Sec. Il in three ca@gs. perature an_db>_0 IS a CO”S‘a'ﬁt- .

In Sec. VA, the noiseless Kardar—Parisi—Zhang equation is The motivation for employing such free energy function-

derived for a nonconserved fieli) In Sec. V B the disper- als is as follows. First, the free energy 'functional is con-
sion relationw(Kk) is derived for spinodal decomposition in structed of local or bulk terms(4), which interact through

pure conserved model B dynamics and the crossover frof{'€ 9radient term. Secon# must be an analytic function
wx—k® at smallk to w= — k? at largek. The influence of the ~ SinceZ1¢(r)] is the free energy of a particular configuration
kinetic undercooling coefficien8<0 is also discussediii) of ¢(r) which has spatial variations on scales larger than

Then, in Sec. V C, the physically important case of coupledsome microscopic cutoff length which is of the order of an

A. Nonconserved field

n¥¥here ax(T,—T)>0 with T, the mean field critical tem-
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interparticle separation or a lattice spacig F describes a  from which Eq.(1) follows immediately. In contrast to the
mesoscopic  system and should not be Com<use§harp-inten‘a_ce approach, this yields an explicit form for the
with the true thermodynamic free energy,F  Surface tension

=—kgTInX, exp(-F #l/kgT), wherekg is Boltzmann’'s -

constant, which is nonanalytic at a phase transiti8j. The —K J d %) ©)
square gradient term is the simplest way for the model to be Ty=Ry | QY ay | -

well defined on small length scales. Higher-order gradient

terms, such ak,(V2¢)? could, in principle, describe corre- For the particular form o) of Egs.(2) and(3), one finds
lations on still smaller scales, such as the internal structure of

the interface. This is analogous to what is described by the A y

Percus—Yevick or hypernetted-chain theories of dense fluids Pm(y)= l//eqtan"(z—g) (10
[14]. In the absence of any specific experimental motivation,

however, terms proportional 0, may be ignored. From the and
point of view of identifying and studying a well-defined mi-
croscopic model, the square gradient free energy provides a
complete description. Alternatively, the square gradient
theory describes a large class of microscopic models pro-
vided we consider mesoscopic scalgK)/a,>1.

It is particularly convenient that the microscopic phase-The contrast between the sharp-interface model and the
field description is so “close” to mean field theory. In that phase-field model is revealing. Both give the same macro-
approximation,f is simply the bulk free energy density. In scopic description but the phase field approach gives a com-
practice, the form of the free energy function&lcan be plete description which is accurate at large length scales and
constructed straightforwardly with reference to the phasénterpolates down to the smallest length scales without de-
diagram of interest. While one can also construct micro-stroying any important physid4.3].
scopic lattice gas models of phenomena such as phase sepa-Now consider a sharp interface that is in local but not
ration and dendritic solidificatiof15], using similar argu- global equilibrium due to a gentle curvature. For simplicity
ments of universality and simplicity, such models do notconsider phenomena where the order parameter is not con-

2K wwgq
3¢

o= (11

have this convenient feature. served, such as occurs when a binary alloy undergoes an
If fluctuations are small, the equilibrium behavior of the order—disorder transition angt is the sublattice concentra-
model is determined by the mean field approximation tion. The interface moves to locally reduce the surface area
and surface free energy with an interface velogitfExpand-
OF 5 of ing v in a Taylor series in powers of gives
Ep——KlpV lﬂ'f‘w—o. (4)
V=—VK (12
The homogeneous bulk solutions, valid well beldw, are
given by df/dipeq=0 and are equal to to lowest order in the curvature. This is the sharp-interface
theory for the motion of anti-phase boundaries. Note that,
Y= = eq= = alb (5)  sincev is the only coefficient which enters the theory and

has dimensions of a diffusion constant, any time-dependent

for the bulk free energy given in E¢9). Fluctuations around 1€ngthR(t) must satisfy
the bulk solutions satisfy

R(t)=(»t)" (13)
- 0)— thoql) ~& ¢ 6
(L)~ feall 4107 e © by dimensional analysis, where the growth exponent
for r>¢, where é=K,/2a and (---) represents an en-
semble average. n=1/2. (14)

Now consider a system with a flat interface located at

=0 wheny(r) depends only oy and the interface profile
JM(y) is the solution of

Such an approach was first done by Lifshit6] and by
Turnbull [17]. The sharp-interface treatment alone cannot
predict the value of.. An additional argument, which turns
out to be incorrect for the motion of antiphase boundaries,

5
—K a_lp'” afl = (7) ~ Wwas used to predict=o,I',, wherel', is a mobility.
v ay?> oy A first principles approach to this phenomenon is due to
Allen and Cahrj8]. Neglecting noise, the equation of motion
with ¢"(* o) =+ theq- Solving by quadratures gives for the nonconserved sublattice concentratiofilis,§|
1K o 2—1‘ in 8 W r o7 _ r, —K,v? +(?f 15
25 2y =f(y") 8 ot~ Lugy =Ty ~KVUH ). (15
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Allen and Cahn denoted the position of the antiphase boundwith vy(c)occ. This allows one to simulate Kolmogorov-

ary by a curved, time-dependent interfasg,t)=0. They ~ Avrami-Johnson-Mehl growth of drople{20] and, in the
then looked for solutions of the form(;,t):(pin[u(;’t)]_ presence of noise, Kardar-Parisi-Zhang dynamic roughening

This gives [21].
o 3¢in aZIpin (win of B. Including a conserved field
AT Y PhE: —Kyk—rt oyl Other processes can be simulated when one of the phases

(16) is metastable and the growth of the stable from the meta-
stable phase is controlled by a conservation law. This de-
scribes solidification of a metastable supercooled liquid
phase and the growth of the stable solid is limited by the
diffusion of latent heat from the surface of the moving solid
front. The external fielc is then proportional to the latent
Heat. In the sharp-interface formulatianpbeys a diffusion
equation in the bulk phases

—=D_VZc, (22

wherex=—V -n with n=Vu/|Vu| the unit vector normal to

the interface andJ(F,t) a coordinate in the directiom.
Eliminating df/d4" using Eq.(7) gives Eq.(12) where, in
contrast to the sharp interface theory, one obtains an explic
expression for the transport coefficient,

Results in the presence of stochastic noise have been ob-
tained by many authors, particularly Bausch, Domb, Jansse
and Zia[18] and by Kawasaki and Oh{d 2].

Although both approaches correctly find that the normal
velocity is proportional to the curvature, the Allen—Cahn re-
sult for v [8] is noteworthy. The earlier theory, which argued
veo,l', implies a strong dependence of the veloaityon

interfacial thickness sincex1/¢, from Eq.(11). In contrast, where the superscripts refer to the values of the normal

Allen and Cahn predict that is independent of interfacial 4 adient ofc on either side of the interface. The condition of
thickness. This was clearly demonstrated in an experimeng) equilibrium at the interface is

by Pindaket al. [19] where they studied orientational pat-

terns in freely suspended dipolar smectic C liquid crystal Sco k, (24)

films. Since their smectic C films have a permanent electric

dipole moment of magnitude, the director anglep can be  which is a Gibbs-Thompson condition relating the local ex-

oriented with an electric field of magnitude The free en- cess concentratiofic to the curvature. This says that excess

ergy is external driving force is balanced by the curvatuteln re-
gimes of high undercooling, this is sometimes supplemented

Q\IhereDC is a diffusion constant.
The steady state velocity of the interface is given by
integrating Eq.(22) across the interface to obtain

ven-(DSVe|T—D,; Ve|7), (23

- by an additive term proportional w0, describing kinetic un-
f=f dr[1K(V$)2—EPcosé], (18) dgmoo”ng_ prop 9
To study this by a phase-field approach, ¢ebe a con-
so the width of the interface, tinuous function of space and time which is conserved:
g 1NE (19 ac(r ) Ry -
at —lec 5_0' ( )

can be varied easily. The experiments directly verify that the

size of a domain of stable orientation grows B%t)  wherel. is the mobility of the fieldc. For the model to be

=(vt)"% wherev is independent of interface width in ac- well defined, a self-energy far or a positive additive con-
cord with the prediction of Allen and CaH®]. In addition,  tribution to F of the form

the experiments show that the sharp-interface resuili, is
independent of interface width providédR<1. N
It is straightforward to include an external fieddoupling fcc"f dr[z¢] (26)
linearly to . ThenF— F+ Fey With
must be included. Within a mean field approximation, this
- gives a homogeneous equilibrium solutiorr . Note that
Fexi=— J drey (20 the interface invades the metastable phase becaugg,pf
but it must also satisfy the conservation ®fs defined by
and one of the phases becomes metastable depending on thgs. (25) and (26). This implies that the interface deforms
sign of ¢, so that the interface translates even if it is flat.into a parabolic shape, dumping exces® the sides while
Hence propagating forward at a constant velocity. The parabolic
shape has a constant growth velocity in the forward direc-
v=vg(C)— vk (21)  tion, satisfying the fact that the system is driven with a con-
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stant thermodynamic force, while lateral growth has a veloc- CrT T T
ity ~t Y2 thereby satisfying the conserved diffusion - Liquid bendeitic ]
equation forc. Growth

It turns out that, although this is the right approach, the 0.2
implementation needs some fine tuning. First, when consid-
ering dendritic growth, the theory of microscopic solvability
[22] has shown that dendrites require an anisotropic surface

tension to be well defined. Hence one must &t

—K(Vyl|V]) in some convenient prescribed way. Next, in Spinodal Decomposition ]
a very useful paper, Kobayasf#3] has noted that, to keep | ostwald |
the equilibrium solutiong, from shifting appreciably when | Ripening
c is applied,F.,; of Eq. (20) should be modified to

| Solid

(T-Ty,) /Ty

-0.2 —

}—ext:_f dFC‘I’(l,/I), (27) : //V \ :

whereW () is an odd function of} satisfying 0.4 / P S S S \

IV dipeq=0. (28
FIG. 1. Mean field phase diagram obtained from the bulk free
For example, if yoq=*1, one can choos@&V¥/dy=(1 energy of Eq(33) for the parametera= 8=1.0 andu=0.6. In this
— %)?. Other forms are possible. Finally, one can choose tdigure the regions containing vertical and horizontal lines are liquid/
make thec field phase separate by replacing the self-energyolid and solid/solid coexistence regions, respectively.
term in the free energy of E@26) with a double well form,
analogous to Eq.3). This permits the study of eutectic crys- 2c  of

tallization[3]. (32

Kca_yz T Mea
C. The free energy functional
where uqq is the chemical potential of the uniform equilib-

Consider two fields, a nonconserved phase fieldnd a rium states. Integrating E¢32) over c gives the Maxwell’s

conserved field. The phase field distinguishes between, for _ &
example, liquid and solid phases and thigeld can be taken €dual area construction rulg ?dc(df/dc— o) =0, where
as a concentration. The free energy functional describing the; andc, are defined bwf/f90|cl,c2=,ueq-

system can be written as For a generid (c, ) there may be many possible equilib-
1 1 rium and metastable states contained in this free energy. For
f{l/llc}:f dr §K¢|ﬁ¢|2+§KC|€C|2+f(¢,C) , illustration, consider the following bulk free energy
(29)

-
where f(y,c) is the local bulk free energy density and the f(¢,c)=um[cInc+(1—c)|n(1—c)]

gradient terms account for interfaces and inhomogeneities as

2
discussed above. The dynamics of these fields are described 1) 1,1,
: . +| AT~ —=| |V ()—z ¢+ -y
by the equations of motion for the nonconservedsq. (15), “« B( 732 (v 2 v 4 v
and the conserved concentration (33)
ac , OF ) , of
o V5o =TV —KVoe+ -, (300 where W()=2¢—4y>%3+2y°5 and AT=(T—Ty)/Ty

with Ty, the melting temperature and the other phenomeno-
logical parameters are determined by matching to experi-

where S y,c}/ 5c= p is a chemical potential anH. is a ,
mental phase diagrams. If these parameters are chosen as

mobility. The usual additive noise terms, related to the trans="™ ™ - ! . ;
port coefficientsT, , by fluctuation-dissipation relations = /A= 1.0 andu=0.6, the mean field phase diagram shown in

[1,5], have been neglected for simplicity. In mean field Fig. 1 emerges. As can be seen, this phase diagram contains

theory, the equilibrium states of the system with an interfacdiduid/solid and solid/solid coexistence regimes. For this
normal to§/ are defined by symmetric free energy the melting temperatureatl/2 is

denotedT), and the critical point of the solid/solid coexist-
ence regime is atq( T) =(1/2,T;) with T,<Ty, . As the pa-

(//‘92_"/’: ﬂ (31) rameteru is decreasedl . increases until the solid/solid co-
ay? Y existence region collides with the liquid/solid coexistence
regime whenT.>Ty and a eutectic point is formed at
and (¢, T)=(1/2,Tg) as shown in Fig. 2.
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FIG. 2. Mean field phase diagram obtained from bulk free en-
ergy given in Eq.(33) for the parametera=8=1.0 andu=0.45.
In this figure the regions containing vertical and horizontal lines ar
liquid/solid and solid/solid coexistence regions, respectively.

FIG. 3. lllustration of inner and outer regions used in computa-
etions.

) ) system evolves towards its ultimate state of thermal and me-
‘As can be seen from the phase diagrams of Figs. 1 and Znanical equilibrium with its external environment.
this simple free energy contains many phases and, in con- The asymptotic analysis proceeds by expanding around a
junction W|th_appropr_|ate equations of motion, can be used t‘blanar equilibrium interface described by E¢&1) and(32).
study a wide variety of phenomena. A number of The jnterface can be taken out of equilibrium by either gen-
“quenches” have _been hlg_hhg_hted on these diagrams to "le curving it or by making one of the two bulk phases meta-
lustrate several different kinetic processes that may arise. taple. In the former case, a gentle curvature is one in which
quench is defined as a rapid change in temperature Whicthe radius of curvature #/is large compared to the interface
takes a system from one region of the phase diagram {0 agigih or correlation length. Thus one small dimensionless
other _and is often con5|d§red mstantangous in theoretlc%lxpansion parameter igt. In the latter case, the difference
modeling. In the next section the dynamics of an interfacgeyeen the free energy of the stable and metastable phases
separating a stable and a metastable phase is considered. ses the interface to propagate into the metastable phase. If
calculations are done in a general manner to include all thg,q free energy difference is small the propagation velagity
possible quenches shown in Figs. 1 and 2. To construct th smajl. In this context, a small velocity means that the
relevant sharp-interface equations no reference will be madgerface moves so slowly that a steady state diffusion field is
to the explicit form of the bulk free energy terfn It IS 4jj6wed to form in front of the interface. In other words, the
assumed thdthas been chosen merely so that all the phasegme for the diffusion field to relax when the interface moves
of interest are well defined. In the remainder of this paper, distancet should be much smaller than the tinie taken
detailed implementation of these ideas is presented, making e interface to move that distance. Since the diffusion
connections to the sharp- or thin-interface limit. time 7= £2/D, this leads to another small dimensionless pa-
rameterév/D which is known as the interface &et num-
lll. DERIVATION OF INTERFACE EQUATIONS ber. In the following analysis the interface equations will be
OF MOTION obtained to lowest order in both small parameters. Techni-
cally the expansion to lowest order in both small parameters
n be achieved if they are regarded as the same order in the
xpansion. In the calculations to follow both parameters will

The goal of this section is to derive the sharp inter-
face equations for systems described by a free energ
functional F [such as is given by Eq$29) and (33)] and be taken to b&(e) with e<1.

the Langevin equations given in Eqd.5) and (30). These The calculations make use of the fact that the fields be-

latter e‘?“""“‘,’”s shE)uId be Stipplemented by add'tl\/(:'r'1ave qualitatively differently close to and far from the inter-
stochastic noisesy,(r,t) and 7¢(r,t) of zero mean and  t5ce |n the region close to the interface, the fields vary rap-

correlations  (7,(r,t)n,(r',t'))=2,To(r—r")8(t—t")  idly over distances)(£) while, far from the interface, they
and (7(rt) nC(F’,t’))ZZFCTvzﬁ(F— r')s(t—t') with  vary over distance€(¢/€). If there exists a length scalg
(m,me)=0 as required by the fluctuation dissipation theo-such that & {/¢<1/e, then distinct “inner” and “outer”
rem. With these stochastic noises, the dynamical equationsegions can be defined, as shown in Fig. 3, and it is appro-
Egs. (15 and(30), are the simplest equations which respectpriate to solve in both inner and outer regions and match the
the macroscopic conservation laws and also ensure that ttslutions at the length scalg Formally, the technique re-
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quires an inner expansion near the interface and an outer

expansion far from the interface.

A. Inner expansion

Consider an inner region defined by, <u</{, whereu
is a coordinate normal to the interface and 3/ é<1/e. The

aim is to obtain asymptotic expansions for the solutions to

the evolution equation&l5) and (30) valid in this inner re-
gion. The latter can be written in a compact form as

1 dc
———stﬂ,

= (34

where

- of
Su=p(r) = peg= —KV2e+ — o Mea- (35

The first step is to partition the system into two regidhs

PHYSICAL REVIEW B4 021604

J'gd Jc
u_
ou O*

whereB=B1"+B" andS=S"+S~ with

B+S= —KeV2C— peg),

(39)

ach ( of

¢
du—|—
j_g Ju \ dc

!

1

B*=+ fdG o 39
= W’ [ airetiin T, @9

S ) L
*ZiJ' du—jg dS' - (6u'V'G==G~V'su’).
0 au Js,
(40)

An analogous formula forﬁ is obtained by multiplying Eq.
(15) by d¢glau, with ¢g(u) the solution of Eqs(31) and
(32), and integrating over {<u</{ [12] to obtain

1 (¢ ayn o Y

_j d o Y f du 'ﬁo(K¢V2
I'yJ-¢

Uon ot (41)

au &zﬂ)

andV_ bounded by surfaceS; andS_, respectively. The Each term in the above equations can be systematically ex-
regionV is defined by B<u<¢{ and similarly forV_. The  panded in powers of. In this paper, attention is restricted to
position of the interface between two bulk regions is defineche terms?(€) as much of the relevant physics is apparent at

asu(r,t)=0. These definitions are purely formal, but to fix this order. Going to higher order indoes not yield any new

ideas, the surfaca(r t)=0 may be regarded as the surface physical insight but does require considerable bookkeeping

near which the fields, ¢ vary rapidly over d|stance@(§)

It is then useful to define Green'’s funcUoGs(r,r ) in the
regions—{<u<0 (G7) and in O<u</{¢ (G™) obeying

V'2GE(r,r)=8(r—r") (36)
and satisfying the boundary condition@,(F,F’)=0 atu
=0 and u’'=0, aG(r,r')/gu=0 at  u=
+¢, dG(r,r')/gu’=0 atu’'==¢, and periodic in the
other directions. Note that both and r’ lie in the same
region,V, orV_.

Multiplying Eq. (34) by G* and integrating overr’
e V. gives

5 fd (r,r'y ac’
u(r)= r—— [

+3E dS - (8u'V'G*=G*V'su’), (37
S+

wheresu’ = du(r’) defined as in Eq(35), fv+dF’ denotes
integration overV, defined by G<u(F’)<§ and §S+d§’

denotes integration over the boundai$esenclosingv , and
similarly for V_ enclosed byS_. The interface dynamics

skill.
To facilitate the expansmnc(r,t), w(r,t), and the

chemical potentiap(?,t) are expanded in a power series in
6!

c(r,t)=cl[u(r)]+esch+ e2sch+ - - -,
WO =yTU() |+ 8y + 2505+

w(r,t)=ullu(r)]+esul+e2sul+---, (42
where the superscript in refers to the inner solution. To ex-
pand the Laplacian in powers ef it is useful to introduce a
curvilinear coordinate system with one coordinate&long

the local normal to the interface and{1) coordinatess
perpendicular ta and tangent to the interface. For simplicity
a two-dimensional system is considered wheigthe scalar
arclength. Note that the(€®) terms,cy' and ' in Eq. (42),
are the equilibrium planar interface solutions of E(&1)
and(32).

At this early stage of the calculations it is worth pointing
out that the exact position of the interface has not been speci-
fied. The choice of the exact interface position is somewhat
flexible to within a distanc& and there is no particular rea-
son for choosing the interface position to be defined by

z/;[u(F,t)zO]zO as is often done in the literature. Indeed,
this particular choice can lead to unreasonable constraints on

can now be obtained using by the projection method of Kathe free energy for a mapping between the phase-field model
wasaki and Oht412]. This is accomplished by multiplying and the sharp-interface limit to be possible. As shown by
Eq. (37) by dcli/gu wherecl(u) is determined by the solu- Kawasaki and Ohtd12] for models describing one field
tion of Egs. (31) and (32 for a planar interface in thermal (e.g., model A or B in the Halperin and Hohenberg classifi-
equilibrium and integrating over {<u<+{ to obtain cation schemd5]) it is convenient to define the interface
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position by setting terms similar t&4, to zero. In this work ¢ 3Ci(;1 _ of
the interface will be chosen to be the Gibbs surface defined dum wot+Kc£2V2%c— 7
so that the excess concentration is equal on both sides of the 7 ¢
interface. It will be shown that this is a solvability condition m
for the matchmg gquatmns, whqse physmaj mterpretatlon_ Is J’ du—[(MO+K ,coc'on_fium)
to ensure continuity of the chemical potential across the in-
terface. . . - . I ing(2,0)_ o, /ing(1,1)
The transformation from Cartesian to curvilinear coordi- + e(Ko( L 1¢g+ L odet) — et 20— syt hY)

nates(see Appendix Aleads to the formal expansion

2v7 2 2

Ve=Lot el + e Lot -+, 43

& 0T €L T E L (43 and

where the specific form of , depends on the expansion. In
the inner region, derivatives of the fields with respeat tore f du K,£2v2 ¢//—
much larger than derivatives with respect sovhich are Ky (91,//

identically zero when the curvatureand the Pelet number
vanish. This is taken into account by introducing the dimen- f F zp'(;‘
u

i il — (0,1)
sionless variables and s which areO(€% by u=¢u and T [(K%”ﬁ v ="
s=¢sle. As shown in Appendix A, this scaling leads to

+e<@(£1¢3‘+£oawi{‘
Lo=dyy, —oyf02— s+ 0(ed)], (49
‘C].: KaU, where f(n m)_an+mf/(9C (9¢ |¢m in, ECEKC/é‘Z' Elﬂ

_ =K,/&°, and = ¢/ & Terms of O 60 vanish by construc-
Ezzﬁg_KZU&U, ng g gg ( ) y
- tions on combinations of tern{25]
where the dimensionless curvatures éx/ e, is O(€).
Lastly, the time derivatives in Eq$39) and (41) must be — _goh[_ 22
expanded ine. For these calculations, it is convenient to f{du—_o( KC——fi(2v0)> 5cil”
-

work in the frame in which the interface is stationary so that du Ju?

— 2 in
d d > = = dU(SCm K :_f_(Z,O) ——
—=| == —v-V, (44 -7 e 2 ou
ot ; ot ws)
o
o _ ing(1,1)
wherev is the interface velocity which has components nor- - fgd ey fi U (49)
mal and tangential to the interface. The time derivative on
the right-hand side corresponds to relaxational dynamics not
accounted for by motion of the interface. When this operatof
acts on the fields; and ¢, the tangential component and time
derivative are?(e%) and can be droppd@4]. Thus toO(e), 7 _,wgw T _
al at|; becomes du—| K,— — 02| sy
7 ou\ ou?
4 vy d — P g
- :_6——_+0(€2)+"', (45) _ ZdUé in K__f_(O,Z) 0
e i R v L Py
where the normal velocity has been expanded in a power ¢ — 07Ci(§'
series ine, = | duoyfitt— (50
D romar= — &_uzé 2 (46)  since derivatives ofj andyj vanish atu={ in the limit
Tm= [={E>1.

tion. For later use, it is convenient to perform partial integra-

To complete the calculation, the left-hand sides of Egs.

Using these expansions and expancﬁragoundcg‘ and w‘g (38) and(41) are expanded to lowest order én The expan-
the right-hand sides of Eq§38) and (41) become sion for ¢ in Eq. (41) is straightforward
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CL o e (T oUb ocg  Ter
r o G e TR %9
v1é Ty 5 . . ) -
=—e— W'FO(G ), (51 Integrating Eq(59) twice, first fromu to ¢ and then from 0
T Rl to ¢ yields
where
v,&?
¢ 5‘/’8 ? SuL(L, + lr
The equivalent expansion far is more complicated. The j ducg"(u)—cf(u)] (60)

algebra is given in Appendix B. Formally, the results of these
calculations can be written as
and similarly for 5,u M- {) From Egs.(55 and (60) we

B+S=e(By/m+8))+€(Byl7+S,)+---, (53  obtain
where B, andS,, are given in Appendix B. — 35
Putting all these results together gives the following two  Acsu!f N+¢,5)=— ——I—Ali Acg #
equations ta0(e) 3 au -7
E&:_ﬂ_Al (54) 1§J _du[cg"(u)—cf(w)]?
(95 in
and - J _du[cd"(u)—cg(u)]
Acé,u '(0,8)
_ Iouy ou
Ok v1(8)€% (7 — — i — s i J du[c0 (u) — c (u)]
= AL chdu[com—co(u)] ;
Idu +Ac vd? tZdu[c o) —cil(u)]
- f _du[c"(u)—cM(u)] e Jo 0 oM
(61)
(95,“1
J du[cg“‘(u) c (u)] (55 The integrals in Eq(61) can be written in a more useful

form by noting that{>1 in the inner region so thactg‘

+ +
whereAc= c (g) c G 5) is the miscibility gap, (= u) C )(:22) for |u|>§ Equation(61) becomes

_ [0, u<o n—_ Tc _osu
Cgut(u)z{ci(;( i) i (56) Acduy(£{,9)= f +Ac¢ —| _
C0(+€)i U>01 +7
i Ul(g)gz too
- ¢ &Cg] 2 _ dU[C U) Cout(u)]z
Uc=KcJ£dU(E> , (57) TIiC J_w
Iduy
and - aﬁ f du[cd"(u)—cl(u)]
u
a8 . sl [+
we o -l S )
u —
14

Equation (55) gives the chemical potentiat of the inner

X D2 o
solution at the interface(i.e., at u=0) which must be +Acv1(s)§ J* dufc2¥(u)— c(u)7.
matched to the outer solution at = . An expression for e Jo
5,u1(+ g) can be obtained by expanding E&4) to O(e) (62

021604-9
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One last result will be needed and is obtained by integrating C. Matching and the Gibbs surface
Eq. (59) over —{<u<{, To solve the diffusion problem of E@67), initial values
- - sud'(u=03) are required. These are to be obtained by
e [ dou déu ) ) ) i — =
v1=— 5 | - (63 matching to the inner solutiorbu;'(u,s) at u=¢. The
Acé”| au [, du ’72 matching of 8u'(u,s) to su$"(u,s) and 98u(u,s)/du to

&6M‘j”‘/aﬁ looks problematical, but it should be remembered
that x"(r,t) and x®"(r,t) are exactly the same function ex-
pressed in terms of different variables,§) and U= eu,s
B. Outer expansion =§), respectively, reflecting the scales over whjel and
wCUvary. Both are expanded as a power series and the
functions and their derivatives matched where both expan-
sions are valid. Both are expressed in terms of the same
variables (1,s) and matched an=¢. This is spelled out in
gome detall in the rest of this section.

To obtain sul"(U=0%5) from Sul'(u==+7,s)
=6u'(u==¢,s) with T=¢(, it is useful to Taylor expand

The solution for(S,uiln(iE) must be matched to the solution
in the outer region.

Far from the interface, the fieldg andc vary slowly in
space and are close to the bulk equilibrium valygg and
Ceq- Variations of the fields in the bulk regions far from the
interface take place on length scat@&é/ €) in all directions
which implies that suitable dimensionless space and tim

coordinates arel(s,t)=(eu/ ¢, es/ &, €%t/ 7).
Expanding :p(F,t) about the bulk equilibrium solution

(1 1) = 8¢°(r 1) + eq, EQ.(15) becomes aboutu={,
t 2 e s o out
98y “r, vaz&pout_ﬂ _ T syen SpU(U,8) = ou( =79+ UFD) ;fl T
at I eq (9‘//2 eq u +7
(68)
1 % , 1o 5 ~ ~
513 (5y° al-Tiowr (8y°9°—---|. In the outer region{<1 and this expansion is valid at
L P L =0
(64) -
N ou T — out' 1\ = =
By definition, (9f/dy)eq="0 and, since3y°“(r,t)=0 in the Sp(£¢,9)=6u3"(08) ¢ aﬁ e (89
limit e—0, Eg. (64) is linear at O(€). Furthermore, *¢

(ﬂzf/awz)eq>0 so that §y°U{(r t) vanishgs exponentially Sincesu(=7) = 5Mi1n(i?), we can use Eq$62) and(69)
with time for all wavelengths. Thugy°U(r,t) is trivial i tg obtain
the outer region and can be ignored. It is convenient to ex-

pandc®{(r,t) and x°“(r,t) in the outer region as Acsul™(03)
out/ 4\ — ~out = out, =~ _ -
coU(r,t)=c"(r)+ esc(r,t)+- - -, oo W@ [
) R R (65) Z—?+A1— TJ dufcg'(u) —cg'(u)]
lu‘om(r1t):lu‘8m(r)+eéﬂgUt(rvt)+1 ¢ 700
. ISl o
wherecd"{(r) is given by Eq.(56). At O(€®) in dimension- _ o du[cS"(u)—cif(u)]
less variables, in the lab frame u | _77 -
out SN e
e =iﬁ25ﬂi’“‘, (66) — f dufcg"(u) —cg(u)]
at 3 Jdu T 0
(= . . . . . o) £2
where V=(¢/€)V is the scaled dimensionless derivative vi(S)E° (== — ., = inT
suitable for the outer region. This simplifies to a linear dif- +Aac . Jo dulco (W) Co(U)], (70
fusion equation for the chemical potential inside the bulk
phases which reads, in dimensional units, which gives the appropriate boundary Value@fcl)ut(o:é)_
ot The inner solutionsu'(0) differs from the outer solution
pm =D VZu, (67)  65u$"(0) since the matching is done at=¢ and extrapo-

lated linearly t_oﬁ=0 by Eq. (69). The extrapolation and
where DCEFC((?,LL"“t/ac"”‘)eq is a diffusion constant. The matching ofsu} to suS"is illustrated pictorially in Fig. 4.
value of D, depends on the bulk equilibrium phase consid- The right-hand side of Eq(70) appears to depend on

ered. whether the inner and outer solutions are matchad=af or
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Another result that will be needed is obtained from Eq.
(63) by matching the first derivative of the chemical poten-

—ous (u) tial. In dimensional units, this reads
St (0) ——= 8w IS
vAc=—T | o8| 28 (72)
u |,

Matching derivatives of the inner and outer solutions gor
and extrapolating back to=0* by Eq.(68), gives the stan-
dard result

out

Ip
au

aMOU
Ju

vAc=-T

) (73
o

c

ot

since u®(u) is linear for 0<|u|<{¢ from Eq. (69). Finally,
combining Eqgs(70), (71), and(73) gives the chemical po-
tential at a moving, curved interface

FIG. 4. Matching oféu(u) (dashed lingwith 5u"(u) (solid
line) atu=*¢. Ac[u®(0,5) — tegl= — ock +E%v+ €A+ O(€9), 70
74

u=—{ because of the last term. This ambiguity is eliminatedyhereA, is given by Eq.(58) and
by defining the interface to be a Gibbs surfacaiat0 de-

fined by the condition

1+ i
2= | _du(ef(wPP-[cgwd). (79

+oo :
du[c*(u)—c(u)]=0. 71
ffm [e5(u)—cg(u)] (72) IV. SUMMARY OF RESULTS

All the results can be combined into a single set of bound-
This can always be satisfied by choosing the position of thary layer equations that can describe many different physical
interface atu=0 to be such that Eq(71) is satisfied. In phenomena. Typically the boundary layer equations are writ-
essence, the interface position is determined by the conditioten in terms of the concentration, which, in the outer region,

that the excess concentration on one side of the interface is simply related to the chemical potential @(¢) by the
exactly compensated by the deficit on the other, as shown irelationship
Fig. 5. This can be regarded as a solvability condition.

I
Su=—| éc. (76)
cin(u) Jc eq
Combining this result with Eqs(74) and (54) gives the
Gibbs—Thomson relation in dimensional units
cgut(m)_
o6c(0,8)
Ac =—dyk(s)— Bv, (77)
f: du [ egut(u)—cin(u)| whered, is the capillary length given by
d z (79
u :—l
° (AC)H(9plC) q

o=o.+0, is the total surface tension given by

- g\ ()
O':J;wdu K,J,(W +Ke m

and B is the coefficient of kinetic undercooling given by

/L: du [c},“(u)—cg“‘(u)]

L 08“"(—00)

(79

FIG. 5. The Gibbs surface at=0 defined by Eq(71) which 1
matches the concentration deficit on one side with the concentration = 5
excess on the other. (Ac)“(duldc)eq

Ty

_ o2
Kyl'y ¢

: (80)
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which is obtained by eliminating; from Eq. (74) by using y
Eq. (54). Equation(77) provides a boundary condition at the
interface for the diffusion equation of E67) which can be
written as
déc _ )
7 = DCV oc, (81) i a
where |/ u=(y-n(x) coso)
|
p I - y-h&xt)
D.=T¢— (82 ! V1+(8h/8x%)?
Jc eq
h(x,t)
This must be solved in conjunction with E.3) which may h I
be written,
A _Ip déc déc 83 x
cu(9)=De7rl ~[Degy K (83
0 0
To understand the significance of each term that enters the FIG. 6. Interface in Cartesian coordinates.

above equations it is useful to consider some limiting cases.

First consider the case in which the concentration field is dix ideas, it is useful to consider an interface separating two
constant slightly different front,,, the equilibrium value, ~Pphases defined by the equatipr h(x,t) as shown in Fig. 6.
C=Ceqt oC. If Su is the chemical potential difference be- In the calculations to follow it will be assumed thﬁh(x,t)
tween the phases defined by the nonconserved field=at is a small parameter. This is an additional constraint not im-
+0o and —, then Eq.(77) reduces to the Allen-Cahn equa- plicit in the sharp-interface models.

tion in a field, To facilitate the analysis it is worth noting that the normal
A velocity and curvature can be written in terms of derivatives
ouAc :
b= _Kwrw( ot l; ) 84) of h as follows:
¥
du 1 oh
From this point of view the kinetic undercooling can be VET T ;E (87)

thought of as simply the relaxation of surface tension in a
nonconserved field. Thus the Gibbs-Thomson equation iﬁnd
equivalent to the Allen-Cahn equation in the appropriate
limit. 2

The other simplifying case is when the nonconserved field K= — i Q
is a constant as in a pure liquid or solid phase. In this case, y3 ax?’
the sharp-interface equations remain the same except the co-

efficientse and 8 become where y=\1+ (dh/x)?.

7T (85) A. Nonconserved dynamics
and As discussed in the preceding section, the sharp-interface
) equations reduce to the Allen—Cahn equation in a field when
B=—(&IAC)"I(dul3C)eq- (86)  the conserved field is a constant. When a single valued inter-
For th d f model B.is al i face as described above is considered,(B4).reduces to the
or the conserved case of madel B,is always negative. ardar—Parisi—Zhan(KPZ) equation[21] in the absence of

This term takes into account the lag of the concentration fielq . - - o
behind a moving front. When the interface is moving, theeglrfzeihglijr?ﬁtgiuvuegg Eqg87) and(88) into Eq.(84) and lin

interfacial profile cannot instantaneously relax to the correct

equilibrium shapa:ig‘. For the conserved field, this correc- oh 2h  \[oh\2
tion is roughly as important as dynamic relaxation in the E=v—2+§<&—) , (89
bulk phase, as will be seen in the next section. X X

where h—h—\t, v=I' K,, and\=—v duAc/o,. The
additive noise termy(x,t) in the standard KPZ equatid@l]

To illustrate the influence of the various terms that enterappears when stochastic noise is included in the fundamental
the sharp-interface model, it is interesting to study the dylangevin equations.
namics of fluctuations around an almost planar interface. To As a specific example, consider the following free energy:

V. LINEAR ANALYSIS
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a K b w
_ e ) ViG 120 = 4 e 2
]—"—Jdr( 21// + 5 |V +4¢ +décy+ 2(50)
(90)

wheredsc=c—c.qandcis a constant. For this free energy, a
planar interface is stationary wheh—0. This interface is
defined by the equations:

N L L L L L L L
P T T S W I Y T S SR Y SO SO S NN SO N S

u E-5
5t 7.
: d . -10
CIC?: Ceq™ w wl(?!
and
-15
Meq=0, (9 .
whereé= K ,/2a and 4= va/b. Thus the miscibility gap, log,,(K)
surface tension, and deviations of the chemical potential are
iven b FIG. 7. Dispersion relation for a planar interface separating two
g y
conserved phases of equal free energy. The four lines plotted in this
Ac=— gAz/;: _22 Ve, @2 figure correspond from right to left 8=0,10,100, and 1000.
w w B
2 - —2q°
2 Ky, w= — —,
oy=3 ‘”g 9, (93) 1-2q(1+|8)
and K=¢’-o. 97
o In the long wavelength limitK—0), k~q, and w~ —2k3,
Sp= %5c=wéc. (94  as expected. It is also interesting to note that in the short
wavelength limit k—x), q—1/(2+2|8|), and w~—k>.
Thus the coefficienk is given as The crossover from the diffusion limited~ —k? at short
wavelength to the asymptotic long wavelength behawior
Ay 3 [Kyb ~ —k3 occurs at smaller values &fas the kinetic coefficient
)\=F¢K¢(dﬁc)g—¢=1“¢,(d5c)a 2 (95 B becomes more negative. This behavior is sketched in Fig.

7.

This analysis shows that the terrs13| in Eq. (97) gives
rise to diffusive(i.e., o~ —k?) behavior and is associated

Now consider an almost planar interface separating tw@yith relaxation in the bulk and in the interface shape. For
phases of different concentration with the same free energ¥xample, if solutions of the forrg'k*—alul gre sought instead
as occurs, for example, in spinodal decomposition. Sinc%f Eq. (96) this term becomes simplyﬁl. Thus the “1”

concentration is a conserved field E¢87), (81), and (83 e . —
must be solved simultaneously. For simplicity, a two sidedfePresents diffusive relaxation in the bulk and ti3é repre-
’ sents relaxation of the interface shape.

model in whichdul/dc is the same on both sides of the A model | 4 10 stud odal d i
interface will be considered. This implies that the parameters model commonly used 1o study spinodal decomposition
d,, 8, andD are the same in both phases. It is straightfor-'> known as the Cahn-Hilliard model or model B in the Hal-
woard to perform the calculations in the more general case b erin and Hohenberg classification scheme. The free energy

this does not introduce any new physics and is not ver or this model can be written:

B. Conserved dynamics

illuminating. In the limit (@h/dx)2<1 it is convenient to a b K
seek solutions of E¢(81) of the form }'=f dF( — §c2+ ZC4+ 7C|§C|2 (98)
c(u,x) = 8c(0)elikx—alulron, (96)
and
whereu~y—h(x,t). For this perturbation it is easy to show P SF
that the dimensionless quantitieso=wd2/D., k —=I V>—. (99
— . . . - ot o6c
=kd,, g=qd,, and the dimensionless kinetic coefficient
B=pD./d, satisfy For this model a stationary planar interface is given by
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Y
oYik
whereé=\K./2a andce,= ya/b. The coefficients entering
the sharp-interface equations are then

ch= ceqtanl‘( (100

do= %f, (101
B=— Di_>__ -6, (102

and
D.=2T .. (103

C. Nonconserved and conserved dynamics

Now consider the stability of a stable phase invading a
supersaturated liquid phase at constant velocity. This is pre-

cisely the situation considered by Langetral. [2] in the

absence of kinetic undercooling and without relaxational ki-

PHYSICAL REVIEW B4 021604

108 @

0

0.05
k

FIG. 8. The linear dispersion relation for the Mullins—Sekerka
instability including the kinetic coefficieng, for | =100

netics in the bulk phases. It is easy to show that the only

solution for a planar front moving at constant velocity which
is consistent with the sharp-interface mofied., Eqs.(77),

(81), and(83)] is
exp(—vy'/D.)—1-Bu,
—pv, y'<0,

wherev is the velocity of the front ang’ =y—vut is a co-
ordinate in the comoving reference frame.
The stability of this moving front can be determined by

5C0 yl >0

studying perturbations about the planar front solution of Eq.

(104). We seek solutions of the form

|
(105

whereq,q’ >0, and the position of the perturbed front is at

sc sy | S explik-x+wt—qy’), y'>0

Ac Ac | s.expik-x+wt+q'y’), y'<O0,

y’ =h(x,t)=h, exp(ik - X+ ot). (106)

To linear order inh, and §; s, it is straightforward to show
that the dimensionless andk are determined by

q'=q-2/,

— 2(q=2/)[11—q(g— 1]
© 1-2(g-1D(1-B)

and

K=q(g-2/)-o, (107
where =2D/dw and f=pD./d,. The dispersion rela-
tion for w(k) is plotted in Fig. 8 forl =100 and several

values ofﬁ. Note that, in contrast to model B where the
kinetic coefficient has a definite sigh<0, in model C it can

have either sign. Note also that, wher-, Eq. (107) re-
duces to the result of Eq97) for conserved model B dy-
namics, as it should.

A simplified version of the general system discussed in
this paper has been extensively used to study single phase
solidification phenomen&l0]. The free energyF can be
written as

2
f=fdf(f(¢)+b%®2+w7|ﬁ¢|2), (108

whered=c+h(y) (calledu in Ref.[10]) with

2 4
=2+,
(109
15 2 2, 1
h(¥)=1|¥—3¥ +5¢¥)

With this form of f () the interface width i$V. The dynami-

cal evolution is governed by Langevin equations for the con-
served fieldc and the nonconserve@which, in the noiseless
limit, are

16F

-
- ng/’

at
(110

, O0F

E .

dc  Dg
gt bx

A stationary planar interface is given by
u
Wy2)'

cgi(u)=—h(yp).

yo(u)= tan*(
(11
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For an interface with curvature propagating with velocity
v, itis tedious but straightforward to use the Gibbs-Thomson | ---- -
relation of Eq.(77) to find I
F1T T~ fi(s N
oor— W[5 5 \( 7\ (2092 ; TN, T
O==1xN27) " |\a2/)\wx) | 7820 el T
W 112 =0y /T L
x| =] |v. --~.1 ~.
MK (112 /B e 1
\\\\\\ ~ \\ O
The term inside the square brackets of EHL2) is propor- IR \_1
tional to the kinetic coefficien and contains the sum of the T
positive model A contribution and the negative model B part. _R)(s) u=-
In principle the kinetic coefficienB can be of either sign in
solidification processes while it must be negative for any
process described by model B, such as phase separation in
binary alloys.
It is also trivial to show that X
5 (ﬁc Jc ) FIG. 9. Curvilinear coordinates.
V=" — - y
\oul, ou terms in the dynamical equations. Once such Langevin equa-
(113  tions are constructed, there should be no conceptual diffi-
ac ) culty in deriving the corresponding interface equations.
E =D.V-c.
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faces is discussed. The phase-field models involve interfaces
which are diffuse on a length scale §f Considering a gen- APPENDIX A: CURVILINEAR COORDINATES
eral class of phase-field models, it is shown how equations
describing the sharp-interface limit are obtained whkan
<1 andév/D<1. Itis also shown that the Allen-Cahn equa-
tion is a special case of the Gibbs-Thomson relation.

In particular, it should be emphasized that these calcula-
tions are independent of the specific form of the free energ% >, . i Al
functional, providedF describes well-defined phases. Fur- WhereR is the position of the interface amy(s) is the nor-
thermore, the calculations are universal: a large class of fre@@l vector[see Fig. § The metric tensog,; of the trans-
energies give rise to sharp-interface equations which diffeformation from Cartesian to curvilinear coordinates is
only in the values of parameters but are of the same func- 1 0

o-| )

The curvilinear coordinateau(s) used in the text are re-
lated to the Cartesian coordinates in the following manner

r=R(s)+un(s), (A1)

tional form. To realize this goal, it is essential that the
“sharp-interface limit” involves an interface of finite width,
&. Expansions involving a zero width interface require a deli- _ )
cate and unphysical tuning of parameters in the free energyynere «=a6/4s is the curvature withy the angle between
for thermodynamic consistency. In this work, the small pa-the X axis and the tangent to the curve. The Laplacian in
rameters«<& andv &/D vanish when the curvature and the  (U.S) is then obtained in the usual manner

inverse diffusion lengtlv/D go to zero for a finite interface 1 5

thicknessé. Thus delicate tuning is not required for thermo- ve=> = % [[glg*f -~

0 (1l+uk)?

dynamic consistency in our approach which is based on the B ‘/|g| IXY g axP
fundamental principles of statistical mechanics.
This work opens the way to construct physically consis- 52 Kk 0 1 92 Ukg d

tent sharp-interface descriptions of more complicated mul-
tiple phase systems such as a solid in contact with a fluid
which can support flows. This will involve mode coupling (A2)

— —+ —— —,
gu?  lH+uk du  (1+uk)?9s® (1+uk)®9s
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wherex!=u, x?=s, andg®? are the components of the in-
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(92

verse of the matridyg and k= d«/ds. :zGl(EU’ ,s")=8(u—u')8(s—s') (B5)
In the inner region the fields vary much more rapidly in Ju
theu direction than thes direction. The coordinatesi(s) are . .
S ) . which has the solution
rescaled in dimensionless units as,g)=(u/¢,es/¢). The
dimensionless curvature= é«/ e andxs= £x/ €. In terms [ +us(s=§), —i<u'<u<o
of these dimensionless variables, the Laplacian becomes G,(usu’',s")=y _—_ _ _ _
+u'd(s—s'), —I¢<u<u’'<O,
£2v7— 2 €K 14 N €2 92 L L
A2 1teux du  (1+eux)? is? G g)o| OTS), Osuisusd
— —ud(s—s'), O<u<u'<+¢.
€UKkg Jd
- (1+ eur)? is The surface terms = of Eq. (40) can be expanded as
(72 . +§ _{9 in : +
=:2+;( €, (—eux)"| =+ 22 (n+1) S_Zif du— op(u’,s") —-
n=0 u 0 Ju
92 Uk ddu(u’,s")
X(—EUK)n):2 S( 32 (n+1)(n+2) - —
ds Ju B
N in
X(—EUK)n)—_ _ijiida‘?i_o s S S entm-1
s 0 ou Js  A=1m=o
= 2 3 ... + —_—
Eo"_ €£1+6 £2+€ £3+ y (A3) 6 (9Gr;| U,S;u,, ,)
where pnlU",S") o’
Lo=3?13U2, (A4) L ddun(u’,s)
—Gp(u,s;u’,s") o
- u
L= r«dldu, (AS) g
o =eS; +€255+ (B6)
L,=3%19s°— k?udl du, (AB)
where
and
ey — — — . +7 —acy Fleh L 98,
L3=—2Ukd?*l 9s*+ k3U?dl Ju— Ukl ds. (A7) + du— Sy ——Gi = ,
au’ au B
APPENDIX B: GREEN’'S FUNCTIONS in
. +§ _0" —_ &Gl aGZ
It will also be useful to develop an expansion for the Sg=if du— BdS Opo—="+0p1——
inverse of the Laplacian or Green’s function. The Green'’s 0 au u’ ou’
function of interest is defined by 0my 96y
2 e o - ~Gy— ~Gi—|| (87)
VEG(r,r)=6(r—r"). (B1) au au g

An expansion of the Green’s function can be obtalned in avhere the subscrif indicates that the mtegrands are evalu-

ated on the boundary al =0* and atu’ = =+,
The O(€) surface contribution becomes

straightforward manner. LetG(r r’) G (u s;u’ s)

+€Gy(u,s;u’,s') + - - - where
L,Go=0, (B2)
LG+ L£1Go=8(u—u')8(s—s'), (B3)
LoGo+ £4G1+ £,Go=0, (B4)

and so on. The solution fdB, is Gy=0, so that the lowest
order solution forG is G4, which satisfies the equation

021604-16
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o _ac  _ _asu(u’,s)
=f du—=| suN(08) + U———
—{ Ju 7;
7 —acg [—asuf(u’,s)
+f du—_ Uu————
0

Jau Jou

+5,u (03))
¢
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—5,u (OS)+

f G e~ ) — W]

SulM 7
+ a&‘ jgdu[cg‘(+§)—c'5‘(u)]. (B8)
au’ z 0

To evaluate the bulk contributiof, Eg. (39) is expanded
in powers ofe. Equation(39) reads

acn(r’ t)

B== at

1 :gd ach d GE
—+ _ I
_FJO u&u (r,r’)
(B9)

We note thatic™(r’,t)/at=vdc/ ou’ = (’)(e) since the nor-
mal interface velocityy=ev,+---, c"=cg+ eéc e

andG~=eG; +
that B* = O(€?), but changing variables' —u’,s’ yields

3 du’ds’
s ] e B B
L1+u eK(S)n 1m=1

n+m-—1

—(Cg+ edcy+ - - +)

=eBy+e?By+---, (B10)

proxt J iZd_J i do e 7D
;] =FX— u'ds’'v —_— =,
! I . Y au o

(v2Gi +v1G3

dU’d?
acy el acy gsch

_U]_EG ) _:/-FU]_ f — =
Ju Jdu du au’

(B11)

For the Green’s function introduced abow®, becomes
2p4(8) (7 — . — —
£uals) f *_du[c(u) - g1z
e J-%¢
(B12

Bi=Bl+Bi=—

. Naive power counting seems to imply
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APPENDIX C: TWO-SIDED MOBILITY

In this Appendix the sharp-interface equations are out-
lined for a mobility that takes on a constant value in each
phase. There is the question of consistency of such a theory
in the presence of stochastic noises in the underlying Lange-
vin equations which we do not attempt to answer. We con-
sider the system in the unphysical limit of zero noise. For
convenience, the mobility in the phase in the region
<0 (u>0) is denoted’; (T'J).

When the mobilityl’, is different in the two phases, the
equation of motion for the concentratiecrbecomes

SF\ - . L
FC-VE)=V(FC~V§,LL)=FCV25M+(VFC)-Vé,u.
(Cy

The procedure outlined in the main text gives

G(rr)(?c

ftdr Tt

—=0u— J' dS - (su'V'G™

-G*V'éu’)
- +,> > = ﬁré
+f dr'G=(r,r'")Véu' - ——.
Ve I'e
(C2

The last term in Eq(C2) is O(€®) and can be neglected. It is
straightforward to repeat the calculations of Sec. Il A for the
velocity of the interface and for the chemical potential at the

interface. All results remain the same except the diffusion
constantD has an obvious dependence Bp and

wd ) 0 d .
£2=Acf0 F—f[cS”t(U)—Cb”(U)]ﬂL fﬁm—?[cg‘(u)

C

du_
—cgi(u) )P+ for—f[c'(?(U)—CS“t(U)]z. (C3

c

and the interface position=0 is determined by the solv-
ability condition

cg(w)].
(C4

d[
—C
l_‘c

f:s—;[cS“t(u)—ci?(u)]: |
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