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1- Abstract  English 

Recent studies have identified large scale brain networks based on the 

spatio-temporal structure of spontaneous fluctuations in resting-state fMRI 

data. It is expected that functional connectivity based on resting-state data 

is reflective of- but not identical to the underlying anatomical connectivity.  

However, which functional connectivity analysis methods reliably predict 

the network structure remains unclear. Here we tested and compared 

network connectivity analysis methods by applying them to fMRI resting-

state time-series obtained from the human visual cortex. The methods 

evaluated here are those previously tested against simulated data in Smith 

et al. (Neuroimage, 2011). 

To this end, we defined regions within retinotopic visual areas V1, V2, 

and V3 according to their eccentricity in the visual field, delineating central, 

intermediate, and peripheral eccentricity regions of interest (ROIs). These 

ROIs served as nodes in the models we study. We based our evaluation 

-

anatomical connectivity in the monkey visual cortex. For each evaluated 

method, we computed the fractional rate of detecting connections known to 

- th percentile of the 
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distribution of interaction magnitudes of those connections not expected to 

exist.   

 Under optimal conditions, including session duration of 68 minutes, a 

relatively small network consisting of 9 nodes and artifact-free regression 

of the global effect, each of the top methods predicted the expected 

connections with 75%-83% c-sensitivity. Partial Correlation performed best 

(PCorr; 83%), followed by Regularized Inverse Covariance (ICOV; 79%), 

Bayesian Network methods (BayesNet; 77%), Correlation (75%), and 

General Synchronization measures (75%). With decreased session 

duration, these top methods saw decreases in c-sensitivities, achieving 

66%-78% and 60%-70% for 34 and 17 minute sessions, respectively. With 

a short resting-state fMRI scan of 8.5 minutes (TR = 2s), none of the 

methods predicted the real network well, with ICOV (53%) and PCorr 

(51%) performing best. With increased complexity of the network from 9 to 

36 nodes, multivariate methods including PCorr and BayesNet saw a 

decrease in performance. However, this decrease became small when 

using data from a long (68 minutes) session. Artifact-free regression of the 

global effect significantly increased the c-sensitivity of all top-performing 

methods. In an overall evaluation across all tests we performed, PCorr, 

ICOV and BayesNet set themselves somewhat above all other methods.  
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We propose that data-based calibration based on known anatomical 

connections be integrated into future network studies, in order to maximize 

sensitivity and reduce false positives. 
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2- Abstract  French 

-

-temporelle des fluctuations 

os soit 

 et al. 

(Neuroimage, 2011). 

-
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-

e percentile de la distribution 

inexistantes. 

Sous conditions optimales, incluant une longueur de session de 68 

attendues avec une c- -

meilleure 

s abaissements 

en c- -78% et 60%-70% pour des 

-variantes incluant 

-
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4- Introduction and Literature Review 

 

Advancements in the understanding of the human brain continue 

every day, and yet we still have a very limited understanding of the 

structures of the networks it contains.  Since the development of nuclear 

magnetic resonance imaging (MRI) technology i

Mansfield and Paul Lauterbur, the potential to learn through imaging of the 

human brain has exploded.  In 1990 Seiji Ogawa et al. originated 

functional MRI (fMRI) measurements, allowing the examination of a 

change in signal from the brain over time.  It was quickly observed that 

fMRI activations from networks of regions of the brain are observed in 

relation to certain tasks or states.  A stimulus presented to human subjects 

evokes increases in brain activity in the areas responsible for response to 

that stimulus. Modern MRI scanners, which detect changes in blood flow or 

blood oxygenation, are capable of detecting such increases in brain activity 

indirectly. Since increases in brain activity draw more blood to the active 

regions of the brain, these increases in blood flow can be detected and 

interpreted as increases in brain activity (i.e. fMRI measurements).  

The development of this technology led to interest in examining the 

functional connectivity  (i.e. synchronous increases and decreases in 
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activity) between brain areas in the many task response conditions and 

brain states one can occupy.  Some earlier such studies include a look at 

human visual cortex responses, namely in V1, with presentation of a 

patterned-flash photic stimulation (Kwong et al., 1992), imaging of the 

human primary motor cortex during task activation (Bandettini et al., 1992), 

generation (Hinke et al., 1993).  More recent studies have led to 

developments in our understanding of many things from group-ICA results 

of data collected during cinema viewing (Pamilo et al., 2012) to frontal-

amygdala connectivity alterations during emotion down-regulation in 

Bipolar I Disorder (Townsend et al., 2012).   

Studies have also demonstrated changes in fMRI-measured brain 

activity when the subjects are in a state of rest. Importantly, it has been 

shown that these spontaneous (i.e. without any external stimulation) 

fluctuations in fMRI signals demonstrate functional connectivity over large 

parts of the human brain (Xiong et al., 1999). These large parts of the brain 

correspond to regions that are active together in response to external 

stimuli (Cordes et al., 2000). It has been suggested that spontaneous brain 

activity is an important principle of brain function (Fox and Greicius, 2010).  
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Here we tested and compared functional connectivity analysis 

methods by applying them to fMRI resting-state time-series obtained from 

the human visual cortex. The text to follow will provide an introduction and 

background on the topics relevant to the study presented in this thesis.  

We begin with an introduction to functional connectivity and the resting 

state.  Next we introduce the use of network models to analyze functional 

brain networks using fMRI data, followed by a look at some of the more 

popular models used to date, and comments on the interpretation of the 

results of such models.  Finally we introduce the human visual cortex and 

the localization of lower retinotopic visual areas using fMRI as well as 

factors to consider during the preprocessing of fMRI data. These topics will 

lead to the presentation of the goals of our study and the specific 

hypotheses we make. 

Functional connectivity 

 Functional connectivity is defined as the correlations between 

spatially remote neurophysiological events (Friston, 2011) and thus a study 

of functional connectivity can lend insight into functional brain networks.  

For example, if a positive correlation is found between the time series from 

two areas of the brain in data obtained when a task is being performed, we 

would conclude that these two areas are active simultaneously and belong 
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to a network which supports the processing of a certain group of tasks 

related to the task which was done.  Likewise, for spontaneous activity, if 

ies are found to be correlated, this means that they 

show synchronized slow fMRI fluctuations, i.e. the blood oxygenation fMRI 

signal is synchronized.  Furthermore, since the blood oxygenation fMRI 

signal is correlated with locally recorded neurophysiological activity 

(Shmuel and Leopold, Human Brain Mapping, 2008; Scholvinck et al., 

PNAS 2010), the spontaneous fluctuations of the neurophysiological 

activity of these areas are also correlated, indicating that the areas belong 

to a network that processes information jointly.   The relationships can also 

reflect additional underlying information including anatomy (De Luca et al., 

2006; Fox and Raichle, 2007; Koch et al., 2002; Quigley et al., 2003; van 

den Heuvel et al., 2009), or inherent co-fluctuation of areas (Fox et al., 

2006; Broyd et al. 2009; Fornito et al., 2012).  In order to extract the 

information which is interesting in your study from the functional imaging 

data, proper paradigms and methodologies must be used.   

The resting state 

The resting state of the brain is one particular type of activation 

which is very interesting and may contain information relevant to our 
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-

 brain state in which the subject is awake and aware, however 

they attempt to keep their mind clear, not focusing on a task or idea; it is 

often done with eyes closed.  Recently the neuroscience community has 

taken particular interest in resting state brain activations because of its 

potential to explain the brain on a fundamental level.   The human brain 

neuronal signaling.  Task related processing shows increases in neuronal 

metabolism of less than 5% in most cases, a very small amount compared 

to the resting energy use (Ames, 2000; Attwell and Laughlin, 2001; Lennie, 

2003; Shulman et al., 2004; Raichle and Mintun, 2006).  This is particularly 

striking when one considers the likelihood that resting patterns of activity 

are simply superimposed, as seen in a recent study in the somatomotor 

system (Arfanakis et al., 2000).  These ideas together propose that the 

major functioning of the brain is contained in resting activations.   Koch et 

al. (2002), Quigley et al. (2003), and van den Heuvel et al. (2009) among 

others, have theorized that from functional connectivity in the resting state 

we can extract the anatomical connections between areas due to findings 
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linking functional and anatomical connectivity in diffusion tensor imaging 

studies and studies of patients with absent anatomical connections.   

Most functional studies will consider brain activations following a 

task or stimulus which leads, in general, to stronger signal strengths in the 

task response areas relative to the rest of the brain unlike in unprovoked 

resting activations.  There is evidence that supports the idea that upon 

presenting the brain with a task, the regions responsible for responding to 

the task increase their relative ensemble activity while those involved in the 

ongoing non-task activations, see a decrease in the collective quality of 

their activity, resulting in a greater contrast in network activations 

(Hampson et al., 2004; Lowe et al., 2000; Morgan and Price, 2004; Jiang 

et al., 2004; Bartels and Zeki, 2005; Sun et al., 2006).  Considering that 

this is not the case in resting conditions, in order to reliably detect 

connections using resting state data, we consider the strongest 

connections we can expect to observe.  Direct connections, mediated by 

an axon emerging in one area and terminating in another, are often 

associated with stronger functional connectivity than indirect connections 

since in indirect connections there is more energy lost in the propagation of 

the signal through additional brain areas (Reiss et al., 2011).  
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Network models 

 Many mathematical models aim to predict brain networks, however 

thus far their successes have been largely limited to networks on a large 

spatial scale.  Adjustments in the approaches taken with these models will 

need to be made in order to optimize for use on smaller scale networks.  

Methods of determining the functional connectivity of a brain network are 

varied.  A recent paper by Smith et al. (2011), summarizes a selection of 

the more popular and promising methodologies including correlation 

analyses, Granger causality, and mutual information.  Each of the 

considered models has its shortcomings such as the ability to differentiate 

direct versus indirect connections, sensitivity, or practicality.  The models 

also have their unique strengths and so the analysis type in which one 

would use each of the models should be chosen carefully.  In the Smith et 

al. (2011) paper, as we will do here, an exploration of how a set of models 

can perform in the context of anatomical network modeling is in question.  

The most popular models for network analyses using fMRI data are 

correlation based analyses, coherence based analyses, lag based 

analyses, and Bayesian network analyses.   
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Correlation based models 

 The most popular of all the methods are the correlation models 

which are appealing because of their simplicity and intuitiveness.  

Correlation considers how the variation in one region co-varies with the 

variation in another.  If the way the two regions vary is related, then they 

are said to be correlated.   Correlati

using fMRI data are plentiful and have looked at many things from the 

modular organization of functional networks in children with frontal lobe 

epilepsy (Vaessen et al., 2012), to language networks in subjects with 

anophthalmia (Watkins et al., 2012), to the reliability of the identification of 

the default mode network (Long et al., 2008).  Partial correlation is also a 

widely used method which seeks to identify direct connections, rather than 

the direct and the indirect as identified with correlation (Smith et al., 2011), 

by regressing out information from all additional regions in the network in 

considering the relationship between two regions.  Partial correlation has 

been used in studies looking at cortical networks mediating object motion 

(Calabro and Vaina, 2012), network abnormalities in patients with 

schizophrenia (He et al., 2012), and the effects of electro-acupuncture 

stimulation on the default mode network (Liu et al., 2009), to name only a 

few.  Independent component analysis (ICA) is another very commonly 
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used correlation based approach to studying fMRI brain activations.  In the 

reverse of usual correlation analyses, it seeks to identify which regions in a 

network are uncorrelated and by default, any items which are not 

uncorrelated, would be exhibiting functional connectivity.  ICA analyses 

have been used in fMRI studies such as the study by Esposito et al. (2008) 

where the authors examined individual and subject level ICA of the default 

mode network and are often used to segregate seeds regions which may 

show unique behavior in full brain data sets (Long et al., 2008;Li et al., 

2012; Arbabshirani  and Calhoun, 2011). 

Coherence based models 

 Coherence based analyses look at the spectral density of two 

regions, examining the relationship of their power at the contained 

frequency elements.  These types of analyses are commonly done in order 

to see how the data relates in certain frequency bands.  Some examples of 

coherence models include Wavelet Coherence (Grinsted et al., 2004) and 

a normalized cross-spectral density (Zhou et al. 2009).  Some relevant 

past studies include Sun et al. (2004) where interregional functional 

connectivity was examined under different motor tasks and Salvador et al. 

(2005) where whole brain networks were estimated. 
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Lag based models 

The lag-based methods, such as Granger causality, seek to identify 

the causal relationship between two regions given information from a set 

number of previous time points in the two time series.  If the data from 

previous time points in the time series of one region improves the 

e series) then the first is 

said to granger-cause the second (Seth, 2007).  This method was first 

used to study neural interactions in 1999 by Bernasconi and Konig.  

Today, there are many variations which exist including a sparse 

multivariate autoregressive model (Valdes-Sosa et al., 2005), nonlinear 

models (Freiwald et al., 1999), time-varying models for non-stationary data 

(Havlicek et al., 2010; Hesse et al., 2003), and models with the structure of 

non-parametric spectral factorization (Dhamala et al., 2008) (Stephan and 

Roebroeck, 2012).  The use of these methods with functional MRI data has 

been criticized partly because of a mismatch in the time frames of the 

studied neuronal communications and the scanner image acquisition time 

(Smith et al., 2011; David et al., 2008).  Most fMRI studies to date have 

been done with repetition time of 2 or more seconds, meaning a full 2 

second will pass before the scanner can acquire the next image of a given 
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slice of the brain.  For studies of small scale brain networks, such as in the 

visual cortex, the flow of information between areas is expected to be quite 

fast, on the scale of a few tens to hundreds of milliseconds (Schmolesky et 

al., 1998), thus in these networks with fast spreading information, it seems 

unlikely that a study solely based on the progression over time would be 

effective.  However in studies of slower acting influence, such as verbal 

comprehension, a repetition time (TR) of around 2 seconds may be able to 

capture the influence it aims to (Yang and Shu, 2012).  Some believe that 

with adjustments the lag based methods can still be used in network 

analyses with long TR relative to the neuronal  spread of information, such 

as David et al. in their 2008 study (TR= 3s) where they deconvolve the 

hemodynamic response function (HRF).   

Bayesian Network models 

 Bayesian network approaches are showing promise for their use 

with fMRI data, as seen in Smith et al. (2011) where they were among the 

top models in tests using simulated data and network structures, as well as 

in Sun et al. (2012) where they were able to produce meaningful, 

consistent and reproducible network predictions from fMRI data of the 

human brain during video watching.  These approaches assume that each 

region in a network has a set of parent regions: some subset of regions in 
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the system which was activated before the one in question.  The Parent 

subset is defined such that all earlier activated regions not in the subset 

are conditionally independent from the node in question (Scheines et al. 

1996).  This conditional independence test (often a g-square test) allows 

one to establish which regions in the network are connected and which are 

not.  The Bayesian network models also attempt to extract causal 

information from the data by establishing a set of criteria for the edges 

between regions and testing for the likelihood of one type/ direction of 

connection versus other possible types.  These criteria and the way in 

which one tests the likelihood of an 

vary between models.  Some examples of different models include the 

Peter and Clark (PC) model where acyclic networks are forced and no 

latent regions are accounted for (Meek, 1995), the Cyclic Causal Discovery 

(CCD) model where cyclic structure is allowed (Richardson and Spirtes, 

2001), and the Greedy Equivalence Search (GES) model where a validity 

score is associated with the network given each added or removed edge 

and the optimal score is sought (Chickering, 2003; Ramsey et al., 2010).  

Some Bayesian network studies that have been conducted using fMRI 

data thus far include a dynamic Bayesian network modeling study for 

longitudinal brain morphometry (Chen et al., 2012), and a large-scale 
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connectivity study between several resting-state networks  in the human 

brain (Li et al., 2011). 

Statistical interpretations 

 While the correct statistical approach to extract information from 

data is of great importance, how the results is interpreted is equally so.    

Consider correlation:  most often correlation analyses will result in nearly 

all brain areas considered being correlated to some extent (Schwarz and 

McGonigle, 2011; Tohka et al., 2012) so how does one decide which of 

these correlations are significant?  Statistical tests exist to determine the 

statistical significance of interactions measures, however in order to 

achieve real statistical significance, while accounting for multiple 

comparisons, avoiding circularity, and satisfying assumptions, many of 

these tests end up being unusable or impractical.  Hochberg and 

Benjamini (1990) and Turkheimer et al. (2001) found that traditional 

approaches to multiple comparisons corrections are impractical in many 

medical studies including neural network studies as they eliminate a large 

number of true connections.  Often statistical tests require the 

independence of sources, a criterion which is not necessarily met in fMRI 

studies (Wang et al., 2003).  Moving outside of strict statistical methods for 

significance, one often sees thresholding implemented as in Buckner et al. 
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(2009) and Tomasi and Volcow (2010).  The problem with thresholding is 

that it is largely arbitrary and thus it is likely to be imprecise in terms of 

really sorting the true interactions from the false (Turkheimer et al., 2000).  

Oftentimes in thresholding a high number of false positives exist or with a 

stricter threshold, a large proportion of true positives are missed (Tomasi 

and Volc

measure from network analyses are currently being sought as in Smith et 

al. (2011) where they considered a thresholding based on the data and 

some background information/ assumptions of the truth and falseness of 

the measures.  In this, working with simulated networks, they were able to 

establish a threshold based on the false positive distribution.  Others who 

have proposed post processing approaches include the following: Cole et 

al. (2010) have created a weighted global brain connectivity measure 

which can quantify inter-subject consistency while avoiding arbitrary 

connection strength thresholding

-based contrast procedure for 

resting state fMRI that does not need a priori information to define an ROI 

and characterizes a connection without an arbitrary threshold. 
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The visual cortex and retinotopy  

  One area of the human brain which is relatively well understood 

due to its testability and its relatively straight forward organization is the 

visual cortex.  The concept of retinotopy was established in 1900 by Tatsui 

Inouye during his experiments involving victims of war with gunshot 

wounds to the head (Inouye, 1900).  Further studies have refined our 

knowledge of the human visual cortex such that we are now in a position to 

quite reliably define visual areas using fMRI data, as is well outlined in 

Larsson and Heeger (2006).  Visual stimuli changing in the visual field 

according to polar angle and according to eccentricity allow for the 

delineation of visual areas by identifying where the gradient of the polar 

angle is reversed. With these delineations being defined orthogonally to 

eccentricity phase lines, early visual areas V1, V2 and V3, among others, 

can be reliably identified on a subject by subject basis. 

Fluctuations of non-neuronal origin and fMRI data preprocessing 

 Non-neuronal physiological fluctuations in fMRI studies and scanner 

instabilities which may impact the signals are real concerns (Glover et al., 

2000; Tanabe et al., 2002; Wise et al., 2004; Birn et al., 2006; Lund et al., 

2006).  Blood Oxygenated Level Dependent (BOLD) fMRI, as is most 

commonly used in recent years, in essence captures the change in 
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presence of deoxyhemoglobin brought on by activation in regions of the 

brain.  Thus one can agree that the signal captured by the MRI would be 

influenced by things affecting blood flow and the oxygen content of the 

blood such as the heart beat and breathing.  Also significant is the major 

effect motion has on the magnetic field within the scanner and thus the 

signal the sensors perceive.  There are processing approaches to correct 

these unavoidable confounds such as motion correction and a field 

gradient which attempt to align scans and adjust for field changes (Ing and 

heartbeat and rate of breathing to extract those frequency components 

from the measured signal (Glover et al., 2000; Birn et al., 2006; Lund et al., 

2006), and removing the signal which is common to all regions, called the 

global signal (Zarahn et al., 1997; Macey et al., 2004; Fox et al., 2005; 

Carbonell et al., 2011).  While motion correction is now widely accepted as 

a necessary step in fMRI studies (Churchill et al., 2012), the consensus on 

the removal of the global signal has not yet been met.   While it seems 

probable that such a signal would not contain information interesting in 

studies which contrast the differences in activations of brain areas (Macey 

et al., 2004; Fox et al., 2009; Carbonell et al., 2011; Smith et al., 2011), 

some believe that it may contain useful information in potentially contained 
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networks (Golland et al., 2007), or that its removal will alter the relationship 

structures across regions in the brain (Aguirre et al., 1998; Desjardins et 

al., 2001; Gavrilescu et al., 2002; Laurienti, 2004; Macey et al., 2004). 

Goals of the study 

Our goal in this work is to identify the most appropriate network 

models for use with real human resting state fMRI data, and improve the 

usage of all models by means of a data calibration.  The methods we test 

here against human resting state data are those previously tested against 

simulated data in a paper by Smith et al. (2011).   

We have chosen to focus on the human visual cortex in the resting 

state and use our knowledge of monkey anatomy in our ground truth 

network.  Evidence showing the relationship between the human visual 

cortex and the monkey visual cortex was found in Engel et al. (1997), 

Tootell et al. (1997), and Hinds et al. (2008), to name a few.  Strong 

resemblances have been found thus far and they are expected to be 

robustly maintained in the lower visual areas. 

 Our hypotheses include: 1- The ability of a mathematical model to 

predict network connections between brain regions may differ when 

implemented using simulated or real data.  Real data has any number of 
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confounds including physiological and mechanical, whereas simulated 

data will have a finite number of confounds as established by the neural 

model.  2- Even the best mathematical network models are not able to 

accurately predict brain networks and improvements will need to be made 

in order to make them usable in predictive studies.   The shortcomings to 

overcome will be a high number of false positive connection predictions, 

and/or a low number of true connections predictions.  We hope to propose 

shortcomings.  3- The parameters of the analysis and steps in data 

preprocessing will impact the successfulness of the models at accurately 

predicting networks.  We expect that a fine balance between the presence 

of noise in the signal and the inclusion of additional useful information will 

need to be met and hope to shed light on the important elements of that 

balance.  4- The human visual cortex behaves similarly to the macaque 

monkey cortex between visual areas V1, V2, and V3.  5- Resting state 

BOLD fMRI functional connectivity reflects the anatomical connectivity 

between brain areas, but is not identical to the anatomical connectivity due 
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Introduction 

One of the most widely used and insightful methods for measuring activity 

in the brain is functional Magnetic Resonance Imaging (fMRI; Kwong et al., 

1992; Ogawa et al., 1992; Bandettini et al., 1992).  Efforts are constantly 

being made to improve processing techniques, data interpretation, and 

modeling of such data. A widely used analysis method is that of computing 

functional connectivity measures associated with resting-state data, 

connectivity correlations between spatially remote 

neurophysiological events.  While this is the working definition, measures 

other than correlation per se can quantify a relationship in the temporal 

domain between neurophysiological events.  Here we evaluate the 

performance of network modeling methods applied to resting-state fMRI 

time-series obtained from the human brain.  

 Past considerations to modeling of networks using fMRI data have 

found that careful model design and selection are required for the results 

of the study to achieve a semblance of validity.  The more robust the 

model is, the more accuracy we can expect from the model.  Specifically, 

successful models include as many network confounds as possible, such 

as forward, backward, or cyclic connections (Friston, 2011) as well as any 
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number of foreseeable contributions from non-neuronal, physiological 

sources (Fox and Raichle, 2007). Flexibility is also an important quality in a 

model; it should be able to represent the parameters and conditions of a 

wide array of experiments (Roebroeck et al., 2009).    

A major shortcoming of many network models is the inability to 

distinguish indirect from direct connections based on fMRI data (Fox and 

Raichle, 2007). Such a task is even more difficult when analyzing strong 

activations such as in fMRI experiments with stimulus presentation. 

Studying functional connectivity with measurements of task evoked 

responses have been useful in identifying larger brain regions which co-

activate (Bullmore et al., 1996; Calhoun et al., 2001; Mizuhara et al., 

2004), however due to the strength of the responses and the fact that they 

are time-locked to the onset of a stimulus or a task, the details achievable 

in these connectivity analyses are limited.  It has been suggested that the 

much lower amplitude signal of resting state activity is a fraction of the task 

response amplitude (Jiang et al., 2004;  Ng et al., 2011) and thus that 

connectivity analyses of the brain at rest may give insight into functional 

connectivity at a finer scale; in fact it is expected that functional 

connectivity based on resting-state data is reflective of anatomical 

connections (De Luca et al., 2006; Fox and Raichle, 2007; Koch et al., 
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2002; Quigley et al., 2003; van den Heuvel et al., 2009), although this 

reflection is not trivially identical (Honey et al. 2010).   

In a recent paper by Smith et al. (2011), the abilities of various 

network models to correctly predict networks of simulated fMRI data were 

evaluated.  The simulations considered a range of scenarios, including 

variations in number of nodes, session durations, connection strengths, 

input strengths, and other potential confounds thought to be present in real 

fMRI data.  The main result was that, with simulated data, Partial 

Correlation, Inverse Covariance, and Bayesian network models could often 

predict over 90% of correct network edges with greater connection 

strengths than the 95th percentile of the false positive distribution.  This 

being said, even these strongest methods showed weakness when faced 

with some of the tested confounds, indicating a necessity to test the model 

performances with real data, where any number of confounds may be 

significant. 

Here we explore the validity of various network modeling methods 

by evaluating their successes at predicting expected anatomical 

connections between different regions in the human visual cortex. We 

chose retinotopic visual areas V1, V2, and V3 for pursuing this evaluation 

because of the in depth understanding we have of the anatomical 



 

32 
 

connections within and between these areas based on studies of the 

macaque monkey brain. The methods we test here against human resting 

state data are those previously tested against simulated data in a paper by 

Smith et al. (2011).  Our goal is to identify the most appropriate models for 

-

 

detecting true connections.   We found that Partial Correlation, Regularized 

Inverse Covariance and Bayesian Network methods achieved the highest 

c-sensitivities across tests.  We propose to improve data-acquisition 

parameters and analysis by integrating a data-driven calibration into 

functional connectivity studies.   

 

Methods 

Data acquisition and preprocessing 

Subjects and scanning sessions 

Seven normally sighted subjects participated in this study after 

giving written consent in accordance with the Code of Ethics of the World 

Medical Association (Declaration of Helsinki). Each subject was scanned in 

two sessions: one to obtain high-resolution anatomical images and fMRI 
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for retinotopy and the other to obtain high-resolution anatomical images 

and fMRI in the resting-state. During the retinotopic mapping scans, the 

subjects were instructed to fixate their eyes on a fixation spot at the center 

of the screen through a projection mirror. During the resting-state 

functional scans, the subjects kept their eyes closed. 

MRI data acquisition 

Data were acquired on a 3T Magnetom TIM Trio scanner (Siemens, 

Erlangen, Germany). A phased array head coil was used, with 20 and 32 

channels employed for retinotopy mapping and resting state scans, 

respectively. Echo-planar imaging was used to measure blood oxygenation 

level-dependent (BOLD) changes in image intensity. Resting-state 

functional MRI was pursued in 8 runs per each subject.  Each run 

consisted of 256 contiguous EPI whole-brain functional volumes [repetition 

matrix = 112 112; field of view (FOV) = 224 mm; acquisition voxel size = 2 

 2  2.2 mm]. Retinotopic mapping was pursued with axial-oblique slices 

28 slices; matrix= 128; field of view (FOV) = 263 mm; acquisition voxel size 

= 2.05  2.05  3 mm]. In both sessions, T1-weighted (MPRAGE) 
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anatomical volumes were acquired with high resolution (1  1  1 mm) for 

between session co-registration of the fMRI data.  

Retinotopic mapping and definition of visual areas  

ponds spatially to 

the inverse of the visual field representation, a phenomenon called 

retinotopy (Inouye, 1900;  Holmes, 1945).  Using retinotopic analysis we 

can identify a hierarchy of regions which process different sub-fields of the 

visual field and at different levels of detail.  Here we focus on visual areas 

V1, V2, and V3, further defining the ROIs according to their eccentricities 

in the visual field.  Visual areas V1, V2, and V3 of each subject were 

defined according to conventional phase encoding retinotopy (Engel et al., 

1994; Larsson and Heeger, 2006; Sereno et al., 1995). The visual stimuli 

were projected from a liquid crystal display (LCD) projector at 1024  768 

resolution and 60 Hz refresh rate onto a translucent screen at the end of 

the scanner bore. The subjects viewed the screen at the total viewing 

distance of 138 cm through a mirror mounted to the coil, which yielded 

32 24  (40  along the diagonal) of viewing angle. During the retinotopic 

mapping scans, the conventional retinotopy mapping stimulus of 

expanding/contracting rings or clockwise/counter-clockwise rotating 

wedges periodically traversed the visual field every 64 seconds. The width 
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and expansion/contraction speed of the ring stimulus were logarithmically 

changed as a function of eccentricity in consideration of the cortical 

magnification factor whereas the arc angle of wedge stimulus was constant 

at 10 . The ring and the wedge stimuli consisted of checkerboard patterns 

where brightness and colors changed at a rate of 8 Hz to maximize the 

neural responses of the visual areas of interest. In order to aid the subjects 

in maintaining their fixation, it was requested that they report the direction 

of a 0.5  arrowhead which randomly changed directions (up, down, left, 

right) using a fibre-optic button box. 

In order to define visual areas, the temporal phases of the travelling 

waves of fMRI responses evoked by the ring and wedge stimuli were 

matched to the visual field locations in the polar coordinate system: the 

eccentricity and polar angle positions were taken from the ring and wedge 

stimuli respectively. To match the phase values of fMRI responses to 

visual field location, we shifted the time-series in accordance with 

hemodynamic delay (6 s, 3 TRs), reversed the time-series of contracting 

rings scans, averaged the time-series of the two types of ring scans, and 

took cosine coefficients of the fast Fourier transform of the resultant time-

series (Larsson & Heeger, 2006). The phase-encoded retinotopic maps 
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using the FreeSurfer package (http://surfer.nmr.mgh.harvard.edu/; Sereno 

et al., 1995; Dale et al., 1999); Fischl et al., 1999)(Fig. 1A). Retinotopic 

visual areas were identified according to the criteria documented in 

Larsson and Heeger (2006).   

 Preprocessing of resting-state fMRI and construction of resting-state time-

series 

The 3 first volumes were discarded in the preprocessing of each 

run, in order to avoid non steady-state effects.  The fMRI data were 

preprocessed using the NeuroImaging Analysis Kit (NIAK; 

http://code.google.com/p/niak/; Bellec et al., 2010) including slice 

acquisition time correction, motion correction, removal of ultra-slow time 

drifts (high-pass filter with a 0.01 Hz cut-off) and high temporal frequencies 

not contributing to resting state functional connectivity (low-pass filtering 

with a 0.1 Hz cut-off), and removal of modeled physiological noise 

(CORSICA; Perlbarg et al., 2007). Spatial smoothing and co-registration 

between subjects were not applied to avoid unnecessary signal spread 

over space.  

To obtain resting-state time-series, we regressed out confounds 

from the time series of each voxel. These include the first principal 

component (PC), motion correction parameters, and the linear trend 
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(http://www.math.mcgill.ca/keith/fmristat/; Worsley et al., 2002). The 

purpose of removing the first PC was to eliminate the spatially-global 

resting state fluctuations that were common to all regions in the imaged 

volume, without introducing artifactual negative correlations (Carbonell et 

al., 2011). After removing all of these covariates, the residuals were 

normalized by subtracting their mean over time and by dividing them by 

their standard deviations.  

Regions of interest and resting-state time-courses 

The resting-state fMRI time-series were integrated over the voxels 

which were classified into three eccentricity bins for each visual area we 

defined through retinotopic mapping. We projected the visual area ROIs 

originally defined on the cortical surface into the native functional image 

space where the resting-state fMRI data were acquired. For this projection, 

we aligned the high-resolution anatomical volume images from the 

retinotopy and resting state sessions (used for cortical surface extraction) 

using an automated robust image registration algorithm (Nestares & 

Heeger, 2000) to obtain the transformation matrices.  

 The phase values obtained from retinotopic mapping analysis were 

assigned to the individual voxels in the ROIs. Voxels from each area were 

classified into three eccentricity bins, i.e., central, intermediate, and 
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peripheral, with the boundaries 0.40  - 2.50 , 2.50  - 5.97 , and 5.97  - 

12.00  respectively.  The most central boundary was arbitrarily set to 0.4  

in order to avoid the region prone to reflect signals of response to the 

fixation point, yet still use as much information as possible. The steps were 

defined such that each region would span approximately the same length 

in the cortex based on the cortical magnification model from Duncan and 

Boynton (2003).  Given 3 visual areas and 3 eccentricity regions defined in 

each hemisphere, and given that we looked at the ventral and dorsal 

regions of these areas separately within a hemisphere, we had 36 ROIs to 

work with (3 areas x 3 eccentricity bins x 4 quadrants). The time courses of 

the spontaneous activity within the voxels in each bin were averaged. To 

prevent trivial enhancement of interactions due to the dependence of 

signal strength on the number of voxels in the bins, the voxel numbers 

were equalized across bins for each subject. To achieve this, we found the 

maximum number of voxels which could be selected evenly from all bins 

across areas in a given subject.  In the bins where more voxels were 

available than the identified maximum, the voxels which had corresponding 

phase values closest to the midpoint eccentricity between the boundaries 

were selected for inclusion. Thus, the number of voxels across areas and 
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eccentricity bins were equal within a subject.  The number of voxels used 

per bin for each of the 7 subjects was in the range of between 8 and 30. 

 

Figure 1. Retinotopy and connections tested for use in c-sensitivity 

calculations. A) Visual areas V1, V2 and V3 were defined by examining the 

reversal of direction of increasing polar angle phases perpendicular to the 

iso-eccentricity delineation. Voxels from each area were further classified 

into three eccentricity bins: central, intermediate, and peripheral, with the 

boundaries  0.40  - 2.50 , 2.50  - 5.97 , and 5.97  - 12.00 , respectively. 

 On the left we see the functional response to a stimulus changing in terms 

of polar angle and on the right we see the response to a stimulus changing 

in terms of eccentricity.  B) Connections tested between ROIs for c-

sensitivity calculations.  Each hemisphere was divided for analysis 

according to its dorsal and ventral parts, based on the mapping of the 
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horizontal meridian, resulting in brain regions representing the four 

quadrants of visual space.  Within a quadrant, connections between 

adjacent ROIs within a visual area as well as those of the same 

eccentricity between visual areas were expected to be connected (left; 

represented in green lines).  Non-adjacent eccentricity regions in different 

areas were expected to not be directly connected (right; represented in 

red, pink, and yellow lines).  UVM = upper vertical meridian, HM = 

horizontal meridian, LVM = lower vertical meridian.  

 

Models 

The most promising variations of all models studied in Smith et al. 

(2011) are studied here.  They are briefly presented in Table 1.  We note 

that while many of these models attempt to predict the directionality of 

connections, here we prefer to focus on predicting the existence of the 

connections only. Thus we do not test the directionality aspect of their 

outputs. 

Retinotopic visual areas as a network model 

- d, 

anatomical connectivity in the macaque monkey visual cortex. We assume 

that the principles governing visuotopic anatomical connections within and 

between retinotopic visual areas V1, V2, and V3 are similar in humans and 

macaque monkeys. Indeed, numerous human fMRI studies (e.g. Sereno et 

al., 1995; Engel et al., 1997; Dumoulin and Wandell, 2008) have shown 
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that functional retinotopy of these areas in the human brain closely follows 

the well studied principles demonstrated in the monkey brain. More 

recently, it has been shown that resting-state functional connectivity 

between these areas is topographically specific too (Heinzle et al., 2011). 

These findings strongly indicate that the anatomical connections between 

V1, V2, and V3 in the human brain are retinotopically specific, just like their 

homologous connections in the monkey brain. We therefore test the 

network predictions of each method against network expectations from 

earlier studies on the monkey cortex.  ROIs within each of the considered 

areas that represent adjacent regions in the visual field have direct 

anatomical connections (Gilbert and Wiesel, 1979; Rockland and Lund, 

1982; Amir et al., 1993; Lyon et al., 1998), while non-adjacent ROIs do not. 

Visuotopic feedforward connections (Salin and Bullier, 1995) and 

visuotopic feedback connections with broader extent relative to 

feedforward connections (Salin and Bullier, 1995; ; Angelucci et al., 2002; 

Shmuel et al., 2005) exist between V1, V2, and V3. Although areas V1 and 

V3 are not adjacent, tight links have been shown between their 

retinotopically matched regions (Girard et al., 1991).  
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various models we studied. The regions of interest studied lie in visual 

areas V1, V2, and V3, each of these being divided into three regions 

according to eccentricity: central eccentricity (E1), intermediate eccentricity 

(E2), and peripheral eccentricity (E3).  Each hemisphere was divided for 

analysis according to dorsal and ventral delineations resulting in brain 

regions representing the four quadrants of the visual space. Connections 

between adjacent ROIs within a visual area were expected to be directly 

connected. Similarly, ROIs of the same eccentricity between visual areas 

were expected to be directly connected. ROIs representing non-adjacent 

regions of visual space in two different areas were considered as non-

directly connected. These considerations resulted in 15 expected 

connections and 6 pairs of ROIs expected to not be connected per 

quadrant (Fig. 1B) (or 60 expected and 24 unexpected connections per 

scan). 

Statistics 

Fig. 2 describes the statistical method we applied schematically. 

-series were input into the models which would each output a 

9X9 matrix of coefficients of interaction.  A null set of time-series was also 
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input into each model to obtain a null set of interaction coefficients usable 

in normalizing the raw connection strengths (utilizing the mean and 

standard deviation of the distribution), allowing better comparison of 

interaction strengths across models. The null data sets were created by 

testing for connections between time series from different subjects' 

datasets, which have no causal connections between them (i.e., the 

subject labels for each node in the network were randomly shuffled; Smith 

et al., 2011). Recall that we obtained data from 56 runs total (8 runs for 

each of 7 subjects) and attributed a mean (across voxels) time-series to 

each of 36 nodes.  The representation from the 7 subjects was distributed 

-

series from each of 5 randomly selected runs, the time-series then being 

randomly assigned to null nodes.  In order to create a 36 node null, a 6th 

-selected subject was used.  Eight 36 node 

nulls were created. Upon creating a 36 node null distribution, the data set 

was broken down into quadrants, 4 data sets of 9 nodes, as done with the 

real data.  We note that the nulls were only used to visualize the relative 

interaction magnitudes across methods (top panels in Figs. 3 and 6); 

quantitative evaluations were exclusively based on non-shuffled data, as 

described below.   
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Figure 2 .  Method of calibrating the data according to the distribution of 

unexpected connections.  This method is modeled after that used by Smith 

et al. (2011).  

 

For quantitative evaluations, for each network modeling method we 

identified the interaction magnitudes of the expected and unexpected 

connections outlined in Fig. 1B.  Note that the BayesNet models as well as 

GrangerB provide binary outputs, 1 for a predicted connection, 0 for no 

connection. In order to attribute an interaction magnitude to a pair of nodes 

using the

computed, and the (-log of the) least stringent setting which predicted a 

connection was attributed to that connection as its strength (Smith et al., 

2011).   
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For each network modeling method and for each of the 8 runs per 

subject, the 95th percentile of the interaction measures of the 24 

unexpected connections (6 per quadrant) was identified and used as a 

threshold above which interaction magnitude connections are likely to be 

-

magnitudes above this threshold were counted and their number was then 

divided by the total number of expected connections per run (60).   

In order to consider how session length would impact the 

performance of different network models, single runs of 8.5 minutes 

obtained from a subject were concatenated to give longer session 

durations  of 17 minutes (2 runs), 34 minutes (4 runs), and 68 minutes (all 

8 runs.) Since all of these runs were obtained in the same fMRI session 

with only short breaks in between, any inconsistencies occurring between 

runs are expected to be negligible. To avoid discontinuities due to small 

scanner-related gain differences between scans, we normalized the time-

courses of individual runs before concatenating them. To this end, 

individual runs were normalized to have mean of 0 and standard deviation 

of 1 only for the purposes of the concatenation, as this is not a requirement 

of the models.  Given 253 time-points (TR = 2 s) in each 8.5 minute 

session, discontinuities due to concatenation are not expected to introduce 
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notable biases. Indeed, based on concatenation of a significantly larger 

number (24) of significantly shorter duration (26.67 s, TR = 2.5 s) of 

resting-state blocks, Fair et al. (2007) concluded that the functional 

connectivity for concatenated resting periods is qualitatively and 

quantitatively very similar to that of continuous resting-state data. In 

addition, concatenation is commonly used in current resting-state 

functional connectivity studies (e.g., Smith et al., 2012).  

Given the success of the longer runs in the Smith et al. (2011) 

simulation study, we use the 68 minute sessions in our main analyses. 

 

Results 

Overall c-sensitivity results 

Fig. 3 (top panel) presents the normalized interaction measures of 

the expected and unexpected interaction coefficient magnitudes predicted 

by each model. We hoped to see as little overlap in the distributions as 

possible, this being especially important when a ground truth set of 

a model is the number of expected (60; in blue) or unexpected (24; in red) 

connections times the number of subjects (7). To evaluate the 

performance of each method, we first computed the separation between 
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the interactions measures obtained for the expected and unexpected 

connections. To this end, for each method we found the difference 

between the means of the distributions of the normalized interaction 

measures for the expected connections and the unexpected connections 

relative to the overall range of both distributions. Pcorr, fullcorr, fullcorr1/2, 

ICOV 5 and 100, GenSynchH1 and H2, N1 and N2, GenSynchS2, Patel-

Kapa, Patel-Kapa bin0.75, as well as MI and cohB all have separations of 

20-28%.  This is compared to poorly separated methods which have most 

often less than 5% separation between the respective means.  Notably, the 

BayesNet methods have by far the best separations between their 

expected and unexpected interaction magnitudes, the means being offset 

by 38% to 64%.  

We calculated the fraction of expected connections with connection 

strength greater than the 95th percentile of the strengths of the unexpected 

connections for each subject (68 minute session length).  The mean 

fraction across subjects is considered as the c-sensitivity score of a model; 

this is plotted in Fig. 3 (bottom panel).  As one would expect, the most c-

sensitive models show greater separation between the expected and 

unexpected connection magnitudes.  The top model was pcorr at 83% c-

sensitivity, followed by ICOV5 (79%), BayesNet methods PC, CCD, CPC, 
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and FCI (77%), fullcorr (75%), fullcorr1/2 (75%), ICOV 100 (71%), Patel-

Kapa (71%), Patel-Kapa bin0.75 (70%), GES (67%), and the GenSynch 

measures (67-75%).  The methods with the lowest c-sensitivity scores, all 

scoring below 20%, were the lag-based methods including Granger A and 

intermediate performance, scoring between 52% and 57% c-sensitivity. 

It is important to note that while a method may have good 

separation of normalized interaction measure means, its c-sensitivity may 

not necessarily be high since we set our threshold by the 95th percentile of 

the interaction measures of the unexpected connections, not the mean.  

The consequence of this is that even if the majority of the interaction 

measures of the unexpected connections are low, if 5% of them are 

relatively high, the threshold may still be high enough to eliminate a fair 

portion of the expected connections.  This is why the BayesNet methods 

have better separations than any other methods (Fig. 3 top panel), but do 

not achieve outstanding c-sensitivities (Fig. 3 bottom panel).  We still 

discuss the separation of the means, however, because we find it a good 

representation of the trends in the interaction measures of the expected 

and unexpected connections. 
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Figure 3.  Evaluation of the network modeling methods using resting-state 

data. In the top panel, Z scores of the expected (blue) and unexpected 

(red) connection interaction magnitudes predicted by each model are 

plotted.  The vertical scatter plots show the Z score of each connection for 

each run and subject.  In the lower panel, the fraction of expected 

connections that are estimated with higher connection strengths than the 

95th percentile of the unexpected connection distribution is plotted. The 
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vertical distributions shown here present the 7 subject fractions, where 

overlapping data points are horizontally adjacent -series 

were concatenated prior to input into the models for optimal model 

performances. The mean values from the lower plot represent the c-

sensitivity values of the models.  

 

 

Figure 4.  C-sensitivity values plotted for different MRI session lengths. All 

connections tested lie within a quadrant, as shown in figure 1B and the 

network considered is that of the quadrant, with 9 nodes.  The session 

durations tested are multiples of the run length, which is approximately 8.5 

minutes.  We tested 1, 2, 4, and 8 runs, or 8.5, 17, 34, and 68 minutes by 

concatenating timeseries of the 8.5 minute runs. 
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Session duration 

 Recall that we obtained from each subject a total of 8 runs of 8.5 

minutes each, resulting in resting-state fMRI sessions of over 1 hour.  In 

most resting-state studies, less data are collected per session. To test 

whether the decreased data would affect the results significantly, we 

conducted the same analysis as above with 9 input nodes and all 8 runs 

concatenated, this time concatenating only 1, 2, or 4 runs of data.   

As in the 8 run case, we concatenated the runs in the order they were 

obtained to assure as little variation between runs as possible, such as can 

occur because of a change of state of the subject over time.  The eight 8.5 

minute null runs were concatenated in the same way as the subject runs in 

these tests.   

 Fig. 4 shows the c-sensitivity results from each of these session 

durations.  The 8.5 minute session length yielded low c-sensitivity for all 

methods.  In this case, only pcorr and ICOV5 obtained c-sensitivities 

slightly higher than 50%, in the range of 51- 53%.  As one would expect, 

with longer session duration, the results obtained from most of the 

networks were more reliable. With the doubling of the session length from 

8.5 to 17 minutes, a sizeable increase in c-sensitivities occurs in the top 

models, now most achieving in the range of 60-70% c-sensitivity.  Further 
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doubling of session length does result in increased c-sensitivities with the 

top models, however the increase is not as large as seen in the initial 

doubling. The same models which perform best in our main test using 68 

minute sessions, also perform well with other session durations.  The 

models which performed poorly in our main test (lag-based, 

tau, LiNGAM), also performed poorly with session duration shorter than 68 

minutes. They often do not show a clear trend of improved results with 

increasing session duration.   

Number of nodes 

 As many of the models we looked at were multivariate, the results 

could depend largely on the number of nodes input to the model.  Upon 

dividing the visual cortex into quadrants, we saw a logical definition of 

networks based on 4 quadrants or 2 hemispheres or the entire visual 

cortex.  Recall that we also tested the effect of session duration by 

concatenating scans.  After concatenation, the number of extended scans 

These network definitions equated to 9 nodes (one quadrant; resulting in 4 

quadrants x 7 subjects [9 x effective number of scans] time-series inputs 

for the models), 18 nodes (one hemisphere; resulting in 2 hemispheres x 7 

subjects [18 x effective number of scans] time-series inputs for the 
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models), and 36 nodes (2 hemispheres = the entire visual cortex; resulting 

in 7 subject [36 x effective number of scans] time-series inputs for the 

models) respectively.  Fig.  5 shows the c-sensitivity plots for each of these 

networks in the case of 17 minute sessions. In general, for many of the 

models c-sensitivity remained almost unchanged with differing number of 

nodes, but this was expected as many of the models are bivariate.  Partial 

Correlation, the BayesNet methods, and to a lesser extent ICOV showed 

decreased performance with increased number of nodes.  Partial 

Correlation seemed to suffer most with increased number of nodes, which 

could be expected due to the increased number of time-series that it had to 

regress out.  We were curious if increased data would compensate for the 

noise in the larger networks so we also pursued this analysis with 68 

minute sessions.  When the session duration is increased, the models 

which had seen variation in their c-sensitivities in the shorter (17 min) 

session duration test still showed decreases in c-sensitivities, however less 

dramatic, and sometimes no decrease at all.  Given this, and that the 

connections we tested lay within a quadrant and not spanning quadrants, 

the 9 node network was sufficient and most practical for further evaluation 

in other parts of our study since it also required the least computational 

time. 
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Figure 5.  C-sensitivity values plotted for different network sizes. The visual 

cortex networks considered are those of the quadrant (9 nodes), 

hemisphere (18 nodes), and both hemispheres (36 nodes).  All 

connections tested lie within a quadrant, as shown in figure 1B.  The 

session duration tested is 17 minutes. Shaded methods are multivariate 

and expected to vary with different network sizes, other methods are 

bivariate and should show no more than small variation due to rounding.  

 

Without removal of the global effect 

 We next tested the case where we do not remove the global signal 

in preprocessing. For the majority of the methods, the effect of including 

the global effect was to decrease the separations between normalized 

interaction measures of expected and unexpected connections.  
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Figure 6. Evaluation of the network modeling methods using resting-state 

data without the removal of the global signal (here approximated as the 

first principle component). Results are for the 9 node network with 68 

minute fMRI sessions.  Panels are as in figure 3.  
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The separations of expected and unexpected connection magnitude 

means are now from 30% to 53% for the BayesNet methods, 19% for 

pcorr, and from 7% to 12% for fullcorr, fullcorr1/2, ICOV5 and 100, the 

GenSynch Measures, cohA and B, MI, Patel-Kapa, and Patel-Kapa 

bin0.75 (Fig. 6, top panel).  

The distribution of c-sensitivities across models with the global signal not 

removed (Fig. 6, bottom panel) is significantly lower than the distribution 

obtained in our main test which does include removal of the first principal 

component (Fig. 3, bottom panel).  By far, the top model in this case is still 

pcorr, achieving here only 65% c-sensitivity; the next best models are the 

BayesNet models with 48-51% c-sensitivity.  The other top models see 

drops in c-sensitivities into the range of 22-39%.   

Effect of adjusting the threshold: ROC analysis 

 The choice of threshold involves a trade-off between a strict 

threshold which eliminates nearly all false positives while potentially 

eliminating true positives, and a more lenient threshold which obtains more 

true positives but also increases the number of false positives. In order to 

best demonstrate this trade-off, we plotted receiver operating characteristic 

(ROC) curves (Fig. 7).  Here we define a true positive (TP) as an expected 

connection which does indeed have interaction magnitude greater than the 



 

59 
 

set threshold. Likewise, a false positive (FP) is an unexpected connection 

with interaction magnitude greater than the threshold. Since we recognize 

that most often 68 minutes of resting data is not available, we plot an ROC 

curve for the cases of 17 minute sessions (Fig. 7A) as well as 68 minute 

sessions (Fig. 7B).  In both of these plots, there is a clear separation 

across all threshold levels between the more c-sensitive models 

BayesNet methods) and all others.  With the increased session duration 

(Fig. 7B), MI also separate itself from the poor models and begins to show 

similar trends as seen in the better models.  When the sessions are long, 

most of these top models, such as pcorr, ICOV, fullcorr, and some 

GenSynch and BayesNet, have curves with small slopes even at low FP 

fractions (for example, pcorr has a slope of 0.34), indicating that not much 

is to be gained by decreasing the threshold, and that these methods have 

very good separation between the interaction magnitudes of the expected 

GenSynch methods, 

slope of 1.2) indicating that there would be more gain in terms of TPs with 

increased allowance for FPs.  However with the shorter sessions, the 

slopes are somewhat steeper in general at low FP fractions (for example, 
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pcorr has a slope of 0.96) in which case steps of 0.05 in increased 

fractional FP could result in an increase of nearly 0.05 in fractional TP. 
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Figure 7.  Receiver operating characteristic (ROC) curve of the models in 

the case of the 9 node network with 17 (A) and 68 (B) minute sessions.  

Plotted is the fraction of expected connections surpassing the unexpected 

connection threshold (true positives (TP)) versus the fraction of 

unexpected connections surpassing the threshold (false positives (FP)) 

(this value is generally equivalent to 1-threshold with the rare exception of 

when multiple connections with the same interaction strength exist at the 

threshold).  

 

Discussion 

C-sensitivity performances of the methods 

 The main analysis that we conducted was around a 9 node network, 

with 68 minute sessions and with the global signal regressed from the ROI 

time-series.  These choices were made because we expected they would 

optimize results given preliminary analyses.  In this analysis, we observed 

Bayesian Network models, and the GenSynch measures.  Partial 

Correlation was expected to do well in separating the direct from indirect 

connections because it uses the information from all nodes in the network 

to assess whether a third node may be an intermediate in the 



 

62 
 

expectations, noting particularly in Fig. 3 that the interaction magnitudes of 

the unexpected connections scatter around zero correlation.   

Where full correlation is concerned, the c-sensitivity results may 

deceivingly imply general success, but this is not the case as it does not do 

well at identifying only direct connections. Here it is successful because 

the interaction magnitudes of the direct connections were reliably greater 

than the magnitudes of the non-existing connections (Fig. 3), but its 

success depended on the calibration method we applied. The calibration 

method used here by setting a threshold at 95% of interaction measures of 

non-existing connections implicitly changes the utility of this method such 

that it becomes more sensitive to direct connections. Without prior 

knowledge of non-existing connections, full-correlation would end up with 

relatively high rates of false positives or low rates of true positives.  

This appears to also be the case with the GenSynch measures (also only 

considering two nodes at a time), whose unexpected connections do not 

center near zero, but do maintain a sizeable separation in the interaction 

magnitudes of the direct, expected connections, and those expected to not 

be direct. The correlation methods and GenSynch methods, while differing 

in approach, have in common their simplicity, and the idea that if the signal 

magnitudes vary similarly over time in two nodes, there is a likely 
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connection existing between these nodes.  Correlation considers given 

time points and examines the signal amplitude, while GenSynch considers 

given signal amplitudes and examines the time occurrences.   

The Bayesian network m

measures employ Bayesian criteria which use information from previous 

time points to determine a relationship between nodes.  The Tau measure 

conceived and optimized to be a measure of directionality, rather than of 

connection strength.  

  The Bayesian Network models in particular are very impressive 

with clear separation between expected and unexpected interaction 

magnitudes.  These approaches incorporate a time influence consideration 

in order to determine a general likelihood of influence, not in order to 

observe a directly linked pattern of progression over time, as the lag-based 

methods do.  This utilization of multivariate probabilistic analyses over a 

range of time points is able to take advantage of a larger pool of 

information all at once, more than most other models considered, which 

between nodes over time is a factor in these models, a faster repetition 

time in fMRI data acquisition may improve the results of these methods. 
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We also note that as the interaction magnitudes obtained with Bayesian 

Network models for the expected and unexpected connections were very 

well separated in all tests, these models may be the best among those 

tested here for use when no prior knowledge of the network is available. 

Mutual Information and Coherence are mid-performance models 

here.  The coherence models calculate an interaction measure similarly to 

correlation, using cross wavelet power distributions.  This similarity to 

correlation is a probable explanation for why it sees relative success.  

Mutual information also has its simplicity in common with Correlation and 

GenSynch.  These simple approaches are quite intuitive as to why their 

criteria would correctly predict a connection.  

While many of the lag based methods are also intuitive, they did not 

perform well in our analysis. We expect that we did not have the time 

resolution one would require in order to detect the flow of information in the 

tight, highly connected network we considered. Here we completed our 

analyses with data having a TR of 2 s, thus the period between time points 

in the data is far greater than the time required for flow of information 

through areas (on the order of 100ms) (Schmolesky et al., 1998).  Different 

experimental parameters or different variations on the models may prove 

to be successful at establishing connections between brain regions.   
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In the case of the LiNGAM method, it may be simply that there was 

not enough data to allow it to reach its potential, although the session 

duration of 68 minutes used here is already in a non-practical, non-

economical range.  Smith et al. found that LiNGAM did poorly even with 60 

minutes of simulated data, and only once there was 4 hours worth of data 

did it begin to see good c-sensitivity results. Given these observations, we 

expect that LiNGAM is not a good choice for resting-state networks 

analysis. 

The Smith et al. simulation which has parameters closest to ours is 

simulation 6. In simulation 6, there were 10 nodes used, 60 minute fMRI 

sessions, a TR of 3 s, 1% noise, and variations in HRF (haemodynamic 

response function) delay of standard deviation 0.5 s.  The top scoring 

models were pcorr, ICOV5 and 100, and the Bayes Net methods, followed 

closely by fullcorr, fullcorr1/2, the GenSynch methods, CohA and B, MI and 

-sensitivity above 

0.8. The performances of the models applied to real data in our study 

compare quite well with their performances with simulated data.   
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Effect of session duration 

 With increasing session durations, the methods which tended to be 

more successful gained further success, and those methods which tended 

to be less successful showed inconsistent trends.  These results are 

intuitive because an ineffective method will be ineffective regardless of the 

amount of data provided. Along the same lines, these findings strengthen 

our confidence in those methods we classify as successful.  It is promising 

to see the effective models showing improvements, particularly when the 

amount of data is initially doubled from 8.5 to 17 minutes, with jumps of 

0.2-0.3 in c-sensitivity of the best models.  This is compared to other data 

doubling (17 to 34 minutes, and 34 to 68 minutes) which result in increases 

of less than 0.2 in c-sensitivity.  We conclude that for any of these methods 

to be effective with resting state data obtained by conventional data 

acquisition methods at 3 Tesla from a network with more than just sparse 

connections, sessions of 8.5 minutes do not provide the models with 

sufficient information to make meaningful predictions.  Given our results, 

the minimum amount of data, in an experiment with comparable 

parameters to ours, should be 15-20 minutes.  Additional data beyond this 

will likely improve results further, but one may want to consider the trade-
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off between small incremental improvements and freeing subject and 

magnet time for use on other tasks.    

The above mentioned trend was also observed by Smith et al. in 

their simulations, where the best models showed greater success with 60 

minute sessions as compared to 10 minute sessions.  They also found that 

increasing the data further to 250 minute sessions allowed some of the 

less successful models to achieve high c-sensitivities, as in the case of the 

Granger methods which obtained up to 90% c-sensitivity. The importance 

of averaging has been emphasized also in task-based functional MRI: 

Saad et al. (2003) showed that brain regions considered to be inactive may 

pass the statistical threshold following considerable averaging.     

Effect of complexity of network 

 In Fig. 5 we see that the complexity of the network, or the number of 

nodes input into the models, does not impact the ability of most models to 

separate direct and indirect connections.  First, it is important to note that 

-series 

at a time, and so the number of nodes in a system is indeed expected to 

have no effect.  This expected result is what we see in models such as 

fullcorr and GenSynch. In multivariate models, though, additional nodes 

could have an effect on interaction predictions, due to the increased 
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number of degrees of freedom that multivariate methods need to take into 

account. Indeed, multivariate model saw decreased performance with 

increasing number of nodes, although the effect was moderate, especially 

for ICOV.  This is likely the case because the connections we test are 

selected for their strength relative to other connections in the visual 

system.  We hypothesized that any resting co-activations between regions 

outside of the quadrant would be significantly weaker than the interactions 

within a quadrant, based on the connections in the monkey model, thus the 

influence of out-of-quadrant nodes on the connections of interest should be 

minimal.  Our results suggest that these hypotheses are indeed valid.   

Effect of the global mean confound 

 The origin and significance of the global mean time-series as a 

component to overall measured fMRI time-series is currently not well 

understood and thus there is disagreement as to whether the mean should 

be regressed out, or if it should remain in the signal.  Here we assessed 

our results with and without the removal of the global mean confound.   

Our hypothesis in this regard was that regressing-out the global effect, 

irrespective of its origin, enhances the detection of connections known to 

exist at the anatomical level (as observed in Fox et al., 2009; Carbonell et 

al., 2011), and that this step results in no detriment to the analysis.  Our 
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results here corroborate these previous observations, as seen in Fig. 6.  

Thus, in order to reveal direct connections in a network, irrespective of the 

origin of the global signal, we recommend regressing-out the global effect 

by means of an appropriate method (Carbonell et al., 2011). 

Other potential confounds 

The simulations done by Smith et al. covered several potential 

confounds and demonstrated the expected effect if indeed they are 

present.  Here we discuss how some of these confounds and simulations 

may relate to the results we observe with real data. 

 GenSynch 

Smith et al. observed results quite similar to ours in their simulations 

13 and 22, where the GenSynch methods perform on a similar level to the 

correlation methods. In simulation 13, they modeled the presence of 

backward or inhibitory connections between nodes and in simulation 22 

they modeled non-stationary connection strengths.    The GenSynch 

measures aim to model systems with greater complexity than many of the 

other models, taking into consideration clusters of similar signals, rather 

than just individual signals; this added complexity is a likely explanation for 

their success at modeling real networks in our study which may have any 
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number of confounds, such as backward connections and non-stationary 

connection strengths (Chang and Glover, 2010; Sotero et al., 2012).   

The GenSynch measures were among the most sensitive to 

changes in strengths of connection, a conclusion made from the results of 

simulation 21 (Smith et al., 2011).  When connections strengths were 

increased in simulation 15, the GenSynch methods saw improvements of 

approximately 15%.  Given that the connections in lower visual cortex that 

heightened performance in our tests relative to the simulation tests. 

External inputs 

 External inputs affecting the apparent interaction of nodes in the 

network by jointly activating unrelated nodes are an unlikely confound in 

our network.  This is because of the elevated retinotopic nature of V1, V2, 

and V3 among areas of the visual system.  Inputs into the visual cortex 

come from the lateral geniculate nucleus into V1 and from there are spread 

to other visual areas such as V2 and V3.  That being said, since we are 

looking at resting state data, there is no prominent input arriving from the 

lateral geniculate and the result is that external inputs are not a major 

factor.  It may be possible that information could be fed back through the 

higher visual areas not considered in our network or through areas in other 
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quadrants.   We believe, however, that the impact of this feedback is not 

likely to be significant when compared to the strength of connections 

between V1, V2, and V3 within a quadrant. The reason for this belief is that 

V1, V2, and V3 show by far the finest retinotopic specificity when 

compared to all other areas. Therefore, the relative effect of non-

retinotopically-specific feedback must be small.  

Introducing Calibration in functional connectivity studies 

As evident in Fig. 3, many unexpected connections are predicted by 

the most c-sensitive models with non-zero interaction magnitudes.  This 

means that these models are not able to distinguish the true positives from 

the false positives without the use of additional statistical criteria, such as a 

threshold.  Even when applying thresholding, an arbitrary choice of 

threshold will result in either a high rate of false positives or in missing 

direct connections, due to overlap in the distributions of false and true 

positives.  Thus, in order to overcome this shortcoming, we propose to 

integrate a data-based calibration stage in all network studies, as we have 

done here using the false positive based percentile threshold.  Here we 

have used a form of calibration in order to evaluate network analysis 

methods. However, we propose that similar calibration can be applied to all 

data and analysis types in order to determine a statistical threshold that will 
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minimize false positives and maximize true positives.   A crucial condition 

is the prior knowledge of existence and non-existence of part of the 

connections for which data are available. In this context, we establish a set 

of connections expected to exist, and another set of connections we 

expect to not exist.  The unexpected connection interaction magnitudes 

output by the model in use are sorted and the magnitude of a certain 

percentile of these connections is utilized as a threshold.  This threshold 

defines the interaction magnitude above which all predicted connection 

magnitudes must be in order to be considered significant. The more 

expectations that can be set with confidence, the more robust this 

calibration will be. The percentile is chosen based on the confidence one 

requires.  We note that calibration also overcomes variations in results due 

to data acquisition parameter differences. 

Conclusion 

Throughout tests done here with human resting state fMRI data, we 

find the most consistently successful and reliable methods in predicting 

direct neural networks to be Partial Correlation and Bayesian network 

models PC, CCD, FCI, or CPC. This being said, with the implementation of 

the calibration method we propose, Correlation, Regularized Inverse 

Covariance, and General Synchronization methods are also consistent in 
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their success and perform on a comparable level to Partial Correlation and 

BayesNets.  In our 9 node, one visual quadrant test, we found the 

previously mentioned methods performed best, all predicting between 67 

and 83% of true connections with a magnitude of interaction greater than 

the 95th percentile of the unexpected connection distribution.   Importantly, 

we found that the fMRI session duration is very important to the 

successfulness of the network models, where longer sessions increasingly 

showed better results.  Use of fMRI data with longer session length, 

reduced TR, and increased signal to noise ratio are all expected to 

increase the success rate of methods tasked such as here.   We propose 

to integrate a calibration stage to functional connectivity studies, utilizing a 

threshold based on false positive statistical results for connections known 

to not exist.  Such a calibration will reduce false positives and maximize 

true positives, making the results more reliable.  This calibration is a vital 

step in any network study because false positives are a significant 

presence in the outputs of even the best models, and as such, we 

recommend implementing it in future studies of neural networks.  
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6- Discussion 

 

In the first part of the discussion, we address areas we felt could use some 

additional, more detailed commenting on issues surrounding the 

manuscript presented in chapter 5.  These comments go beyond the 

succinct discussion format in the manuscript. These include discussions on 

network selection, length of connections, ROI border definition, number of 

voxels in an ROI, and changes in results given a more conservative set of 

expected connections and more conservatively defined ROI borders.  In 

the second part of the discussion, we discuss ideas raised by the thesis in 

a more general manner and in a broader context. This part includes a 

discussion on the Bayesian Network models in greater detail than in the 

manuscript, including an in depth look at the c-sensitivities and a 

comparison with Granger Causality, remarks on group analyses, and the 

significance of the work.  

V1, V2 and V3 as a network 

 Here we explore the validity of various network modeling methods 

by evaluating their successes at predicting expected anatomical 

connections between different regions in the human visual cortex. We 
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chose retinotopic visual areas V1, V2, and V3 for pursuing this evaluation 

because of the in depth understanding we have of the anatomical 

connections within and between these areas based on studies of the 

macaque monkey brain.  Although including ROIs from other areas could 

make the model more complete  the overall SNR would be worse, 

because other areas are smaller, and their retinotopy tuning is much 

V1, V2 and V3 to test the different methods. 

Length of connections as a confound in resting-state functional 

connectivity 

This discussion is included because of the fact that in our study, 

most of the expected connections are shorter than those in the unexpected 

connections set.  Thus, it is reasonable to try and create a balance of 

longer and shorter connections and/or look at the effect of the length of a 

connection on the interaction strength in order to account for any impact 

this might have.  The nature of our study is such that we selected a set of 

connections we could be very confident about in determining whether or 

not they would exist directly.  This led to many close range connections 

that are expected and unexpected connections which were longer.  We 

cannot test different or additional connections because current knowledge 
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does not allow classifying them confidently as expected or unexpected.  

Also, since retinotopy is a spatially continuous mapping from visual space 

to cortex, distance constitutes a confound when pursuing resting-state 

functional connectivity in the visual cortex. All of this being said, our aim 

here is to compare the performance of various network models, not to 

determine functional connectivity.  Thus, we currently take no action in this 

regard, though we recognize that it is something to be aware of.  A future 

study comparing the strengths of connections of different lengths is of 

 

On the horizontal connections and the scale of our ROIs 

 Horizontal connections could possibly introduce a confound in the 

way we have conducted our analyses.  Amir et al. (1993), Rockland and 

Lund (1982), Rockland et al. (1982), Sesma et al. (1984), and Lyon et al. 

(1998) observe that intra-areal connections in early visual areas appear to 

be relatively localized and rarely reach distances of more than a few mm, 

at least in area V1.  Thus, if we want to test for horizontal connections 

between eccentricity areas, the voxels we should consider would best be 

selected from a narrow strip of cortex along the eccentricity border.  Given 

our methodology for normalizing the number of voxels in each ROI, not 

only are we not limited to that narrow strip near the border, we exclude a 
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number of voxels farthest from the centre point of the ROI.  These 

considerations could bring into question whether the within-area 

connections are indeed predicted by known anatomy. Because of this, we 

have removed the horizontal connections from our set of ground truth 

expected connections and redone the analyses to observe any changes. 

Therefore, in our revised analysis, the expected and unexpected 

connections are based on inter-areal connections alone.  Results with this 

new set of expected connections are presented in a section below along 

with a discussion of the relevance of the results. 

 

Figure 1.  The reduced set of connections tested in the results below, 

horizontal connections within visual areas having been removed. 

Definition of the ROIs 

 We took the occasion of rerunning the analyses to re-evaluate our 

definition of the ROIs.  The original assignment of a voxel into a visual area 

was done such that the area which contained the highest weight of that 
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voxel was said to contain it.  This meant that some of the voxels along the 

borders between areas would have been partially contained in the adjacent 

visual area.  Given the results in Smith et al. (2011) regarding the blending 

of information from ROIs, or bad ROIs, we decided it was best to be 

stricter about the voxels we selected.  The new ROIs are defined with a 

gap between visual areas V1, V2, and V3, by means of selecting voxels 

with polar angle within  39.5  of the oblique meridian in each quadrant 

of the visual field. This leaves a 5.5  gap in polar angle between each 

included voxel and the closest possible voxel in another area across the 

inter-areal border, with included voxels being exclusively contained in a 

single visual area.  Between different eccentricity regions within the same 

visual area, the criteria are more relaxed, attributing a voxel to the region 

which contains the largest proportion of its volume.  These relaxed criteria 

are necessary in order to maintain higher voxel counts within each ROI.  

Since we do not include within area connections in the set of expected 

connections, it is less important to have a strict gap between ROIs.  

Importantly, in practice, there was most often a gap between adjacent 

ROIs from within the same visual area due to the voxel selection process.  

Voxels are selected starting from the middle of the eccentricity region and 

then moving outward toward the edges until the total number of voxels to 
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be selected is met.  In this way, most often only a few ROIs per subject 

have voxels very near the eccentricity borders.  Below is a figure 

presenting just this for subject 5. 

 

 

Figure 2.  Positions of voxels selected for inclusion in ROIs for subject 5.  

Each plot represents a visual area.  Within a plot, central eccentricity 

region voxels are in red, intermediate are in green, peripheral are in blue, 

and the eccentricity borders are represented by vertical lines.  Horizontal 

lines separate quadrants.  Notice how only the V2E2-V2E3 border in the 0 

to pi/2 cluster (quadrant) has voxels near it on both sides. 

Number of voxels in an ROI 
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 During the construction of our new ROIs, we originally tried to select 

the smallest maximum voxel count across ROIs for a particular subject, 

however we found that with this new criterium of exclusivity of voxels in a 

visual area, that in some cases the voxel count was very low (under 10) 

and in others much higher (over 30).  We sought to maximize the number 

of voxels for each subject as well as make the amount selected across 

subjects more comparable.  In the end, we remedied low voxel counts by 

identifying the forth lowest in the set of maximum voxel counts for each 

ROI of a particular subject and followed this with the selection of that 

number of voxels from each ROI (of course this is with the exception of the 

3 ROIs which had a lower maximum voxel count: their maximum was 

selected).  This also led to somewhat more comparable numbers of 

selected voxels across subjects (25-39).  The exceptions to this were 

subject 2, 3, and 6 who had lower 4th lowest voxel counts of 23, 14, and 19 

respectively.   

 All analyses have been redone with the new ROIs and the new set 

of expected connections.  Below are new figures, showing the results with 

only the new set of expected connections, followed by the results with the 

new ROIs and the new set of connections.   
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Results from the analyses using the original ROIs, excluding horizontal 

connections in the set of expected connections 

 In this case, the trends in all tests remain the same.  The change in 

results is a general decrease in c-sensitivity of about 0.1 for all models in 

all tests, and slightly steeper ROC curves.  The fact that c-sensitivities 

decreased in general, indicates that the horizontal connections were found 

to influence the network structure more often than not, and that the 

inclusion of these connections did not cause less than perfect c-

sensitivities. Instead, it was the inter-areal connections which were the 

major source of false negative results.  Possibly this is also evidence that 

some slightly longer range horizontal connections do exist or that the few 

voxels which do lie closer to the edges of the eccentricity areas reflect 

strongly enough the horizontal connections that using ROIs which include 

some voxels outside the range of these connections does not mask the 

coactivation.  
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Figure 3. C-sensitivities of the models without the inclusion of horizontal 

connections in the set of expected connections.   

 

 Figure 4.  Receiver operating characteristic (ROC) curve of the models in 

the case of the 9 node network and 68 minute sessions without inclusion of 

horizontal connections in the set of expected connections.   
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Results from the analyses using new ROIs, excluding horizontal 

connections in the set of expected connections 

 In this case, with gaps between the ROIs and the exclusion of the 

horizontal connections from the set of expected connections, we noticed a 

clear separation in the performance of subjects.  In the figure below, we 

see that subjects 2 and 3 have consistently low c-sensitivities, subject 6 

has mid-range c-sensitivities, and the remaining subjects have very good 

c-sensitivities.  Recall that subjects 2, 3, and 6 had lower 4th lowest 

maximum voxel counts than the other subjects.  Subject 3 had a very low 

4th lowest maximum voxel count relative to all other subjects as well as 

much lower voxel counts in the three ROIs with smaller maximum voxel 

counts (9, 10, 12).  These 3 ROIs were also involved in a high proportion 

of tested connections (10 of 15) making it such that the low voxel numbers 

contributed highly to the measured results. While subject 2 had only 

somewhat fewer voxels selected from each ROI, the 3 ROIs which had 

fewer voxels were also involved in a higher proportion of the tested 

connections (8 of 15).  Although subject 6 had a relatively low 4th lowest 

maximum voxel count, a smaller proportion of the connections tested 

involved the ROIs with lower voxel counts (4 of 15).  The other subjects 

had high voxel counts (>22) even in the ROIs which had less than the 4th 
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lowest maximum voxel count, and so regardless of the participation of the 

ROIs in the tested connections, sufficient voxels were involved. The 

consistently poor results together with a reduced voxel count in ROIs 

important to the connections in our analyses, led us to the exclusion of 

subjects 2 and 3 in the tests done with the new ROIs.  We consider the 

poor c-sensitivities of these subjects to be due to the lower numbers of 

voxels in the ROIs and thus their exclusion should not reflect any bias or 

data selection.  We note that in the previous analyses with the original 

somewhat more comparable to the other subjects, and while they were still 

among the less c-sensitive subjects, they were not as notably substandard 

in performance.  See figures 3 and 5 for the performances of each subject 

with the original ROIs and the new ROIs, respectively.   

 Care should be taken in ROI definition to include as much voxel 

information as possible in order to improve the sensitivity potential of the 

results.  This concept holds in voxel or pixel based ROI analyses outside of 

those focussed on connectivity, as increased sensitivity is a well known 

benefit of having a greater number of elements to average in a group study 

(in this case, a group of voxels).  This being said, there should still be a 
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strong confidence that voxels do indeed belong to the ROI, otherwise 

results may differ dramatically (Smith (JF) et al., 2011). 

 Considering the c-sensitivities of the models using only subject 1, 4, 

5, 6 and 7, we find that the trends in all tests are similar to those with the 

original ROIs.  The change in results observed relative to the results 

presented above with the new set of expected connections and the original 

ROIs is a general increase in c-sensitivity of about 0.1 for all models in all 

tests.  This improvement may be in part explained by removal of the poor 

results from subjects 2 and 3 however there are other effects at play here 

evidenced by the differences in subject c-sensitivity distributions between 

the old and new ROI tests.   
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Figure 5. C-sensitivities of the models without the inclusion of horizontal 

connections in the set of expected connections and using the new ROIs. 

The mean is computed across all subjects (grey line) and across subjects 

1, 4, 5, 6, and 7 (pink line).  

 One test which did provide results different form our tests with the 

original ROIs was the testing of the impact of the global signal.  With the 

new ROIs (excluding subjects 2 and 3) we saw smaller change in the c-

sensitivities of the models than we did with the old ROIs, the difference 

being of less than 0.25 for all but ICOV100  (recall that with the original 

ROIs many models saw drops greater than 0.3 in c-sensitivity). In most 

cases the removal of the 1st principle component resulted in somewhat 

better c-sensitivities than without its removal, this result being the same as 

we had originally observed. 
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 The main purpose for the redefining of our ROIs was to be sure that 

we had no contamination of data from outside of the intended visual area.  

With this done, it appears that perhaps the impact of other confounds, 

such as the global signal, become less pronounced.  Indeed in the tests 

done with shorter sessions, the drop in performance was less pronounced 

than with non-exclusive ROIs, particularly for the change from 8 to 4 runs 

where there was no drop in general.  Our results further support the finding 

by Smith et al. (2011) that careful definition of ROIs should be a main 

concern in designing an ROI-based connectivity analysis.   

C-sensitivity of Bayesian network models 

The c-sensitivities for Bayesian Network models PC, CCD, CPC, 

and FCI (equivalent in the determination of existence of a connection), 

which had excellent separation in general of the expected and unexpected 

interaction magnitudes, are on a similar scale to the correlation methods 

which had much less impressive interaction magnitude mean separations. 

The BayesNet c-sensitivities are not greater because of the presence of a 

few higher-magnitude unexpected connections which drive up the 

unexpected connection-based threshold.  These false positives 

(unexpected connections of magnitude greater than the threshold) were 

present in all subjects and the connections which occurred as false 
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positives varied.  The higher threshold resulted in some expected 

connections being below the threshold. 

Bayesian Network models and Granger Causality: a closer look 

 The contrast between the excellent performance of Bayesian 

network models and the poor performance of Granger causality models 

motivates a closer look at how BayesNet method PC determines the 

existence of a connection, followed by how Granger Causality does. We 

note that the two methods use amplitudes and time in order to determine 

connections; however, we found that their performances were different. 

Note that BayesNet methods PC, CCD, CPC, and FCI are equivalent in 

how they determine the existence of connection and differ only in their 

decisions on direction of connection, which we do not consider here, so we 

only discuss PC. 

PC:   

As mentioned in the manuscript, the Bayesian Network models 

assume that each node in a network has a set of parent nodes: some 

subset of nodes in the system which was activated before the node in 

question.  The Parent subset is defined such that all earlier activated 

nodes not in the subset are conditionally independent from the node in 

question.  It is in the stage where the conditional independence between 
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the nodes is determined that the existence of a connection is predicted.  In 

the case of discrete data sets as we have used, the conditional 

independence of a set of nodes is determined using a g-square test.  This 

statistical test looks at the frequencies of the variables having given 

amplitudes and determines conditional independence by comparing the 

expected frequency to the observed frequency at those amplitudes.  I.e., 

 

where Observed is the observed frequency of the amplitudes, Expected is 

the expected frequency, and the summation is over all possible amplitude 

combinations.  For example, if we have 2 nodes, A and B, capable of 

having n and m different signal amplitudes respectively, we would look at:  

1) the observed number of timepoints, F, where Amplitude(A)=A(1), 

Amplitude(A)=A(2), ... Amplitude(A)=A(n), and where Amplitude(B)=B(1), 

Amplitude(B)=B(2), ... Amplitude(B)=B(m); 

2) The expected number of timepoints, E, where Amplitude(A)=A(i) and 

Amplitude(B)=B(j); Eij = Fi * Fj / (total number of timepoints from A and B) 

3) The observed number of timepoints where Amplitude(A)=A(i) and 

Amplitude(B)=B(j), Fij ; 

G2 2 Observed ln
Observed
Expected
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and then we would calculate the above G2 value summing over all 

combinations of  i and j (Scheines et al., 1996). 

We can now see that the utilization of the time dimension of the 

data is in the frequency of occurrence of the signal amplitudes we observe, 

not in terms of a progression of the signal as time advances. 

Granger:  

The Granger causality models determine the existence of a 

connection through the same calculation used to determine causality within 

a connection.  Consider two nodes, X1 and X2.   In this approach one 

examines the effect on the variance of a linear autoregressive model of our 

two node system.  We could initially model each node to have timeseries: 

. 

We would then like to see if the variances, E1 and E2 decrease with 

the inclusion of information from earlier time points of the other node: 

. 
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If the variance is indeed reduced by the inclusion of information 

from the other node, then these two nodes will have coefficients A 12 or 

A 21 significantly different from zero.  If there is no significant change in the 

variance, the coefficients A 12 or A 21 will not be significantly different than 

zero, and no connection will be predicted between the nodes (Seth 2007). 

Thus, Granger causality utilizes the time dimension in the data to observe 

a direct progression over time in hopes of observing a causal relationship 

between a set of nodes. 

Overall, although the two models, namely Bayesian networks and 

Granger causality make use of the same data, their approach to how to 

determine functional connectivity is different. This explains the contrast in 

performance we observed between these two methods when applied to 

our data from the visual cortex. 

Group-wise Bayesian network approach and group-based analysis in 

general 

Thus far, the thesis has addressed only how the methods apply to 

data on a single subject level, however group-based analyses are also an 

important generalization to consider.  Popular group-based models which 

have been used to study resting sate functional connectivity include ICA 

and PCA, as seen in Yang et al. (2012) where ICA was applied to a group 
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of subjects in order to identify differences and classify the subjects into 

sub-groupings, and in Beu et al. (2009) where group-PCA was used to 

identify patterns of functional connectivity across the whole brain.  Many of 

-wise 

studies.  One such model is BayesNet model GES, and so a natural 

curiosity is to see how well the model can perform with 

group-wise version of GES, Independent Multiple-sample Greedy 

Equivalence Search (IMaGES) (Ramsey et al, 2010), using all subject data 

in the 9 node network (original ROIs), with the 8 runs concatenated and 

without the removal of the global signal.  This particular test was chosen 

because it allowed a fair bit of room for improvement, whereas in the main 

test GES had already achieved a relatively high c-sensitivity (66%).The 

results are very promising, achieving a c-sensitivity much greater than all 

individual subject analyses (see figure 6 below).  Further tests of this 

nature using IMaGES would be useful in verifying this apparent promise as 

with only one set of subjects to calculate a c-sensitivity for, we cannot 

compare the results across different datasets.  Based on the results of this 

test and those of the single subject implementation, GES, this method 

shows strong potential for meaningful use in group-wise studies.  Other 
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studies where it has been tested and showed promise include Ramsey et 

al. (2010) and Sun et al. (2012).  Further work looking into the 

performances of network models in group-wise analyses would help to 

profile the potential of these models as well as the interpretability of resting 

state functional connectivity. 

 

Figure 6.  C-sensitivities of the models performed in a subject-wise manner 

juxtaposed next to the group-wise BayesNet model, IMaGES.  The pink 

line plots the average c-sensitivities across subjects for each model given 

a 9 node network and 68 minutes of resting fMRI data without the removal 

of the global signal.  The black dot plots the c-sensitivity of the IMaGES 

model using the data from all subjects. 
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Significance of the work 

 An important aspect of our work here is our proposition to include a 

calibration stage in network studies.  This procedure allows for an informed 

data-based decision on statistical significance. The standards for 

calibration can be defined on a group level, subject level, or even a scan 

level, depending on the needs of the study.  As the proposed calibration 

works on the strength of connectivity, it is transferable to studies done 

using data of many kinds (fMRI, EEG, MEG, PET, eCOG, etc) once it has 

been interpreted in terms of functional connectivity.  We believe that the 

implementation of calibration to future studies will help us to achieve 

ss of 

theories in cognitive neuroscience, and widening the scope of possibilities 

of interpreting imaging data.   

 The calibration of connectivity measures in a network context as we 

have done here can also be a tool for separating indirect from direct 

connections.  In nearly all tests done, fullcorr was able to perform on par 

with pcorr in the task of identifying a network of direct connections while 

avoiding false positive detection of a set of indirect connections.  

Traditionally fullcorr is unable to make this distinction.  For example, if we 

consider two nodes which are functionally connected to a third node but 
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not functionally connected to each other without the influence of that third 

node, fullcorr would generally attribute a positive correlation between the 

two indirectly connected nodes (and pcorr would attempt to identify the 

influence of the third node by regression analysis).  This being said, by 

measuring the correlation magnitudes of known indirect connections, we 

are able to set a meaningful threshold in order to calibrate the correlation 

predictions, and remove from our set of significant correlations many of the 

indirect connections, such as that mentioned above.  The importance of 

the separation of direct from indirect connections lies in its role as a 

progression in top-down models of the brain.  The more specific we can 

get about the components of the functional networks we observe, the 

better our models can become and the closer we come to understanding 

the brain in parts and in whole. 

Resting state data acquisition is particularly interesting and 

important for implementation in a clinical setting for the simplicity of the 

instructions to patients and since resting state activations can be obtained 

even when the subject is under sedation.  The better our techniques for 

interpreting resting state functional connectivity, the closer we get to 

establishing standard connectivity profiles that we can expect in healthy 

subjects, as well as in patients with any number of neurological 
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pathologies.  Work has already begun of this nature and there are 

promising signs that resting state contrasts between healthy subjects and 

patients will allow for help in diagnoses (Zhang et al., 2012), localization of 

affected areas (Pannekoek et al., 2012), and monitoring the progress of 

therapies (Kell, 2012).   

Continued work with models such as partial correlation and the 

proposed, should positively contribute to future studies leading toward 

regular clinical utilization of resting state functional connectivity.  Some 

intuitive future directions from this study include conducting similar tests 

and calibrations of models with different data types, such as 

magnetoencephalography (MEG) data, and in different brain networks 

where a set of known standard connections can be defined.   

 

  



 

97 
 

7- Summary and Conclusion 

 

Network modelling methods can be helpful in investigations of brain 

networks.  Functional connectivity in the resting state is reflective of the 

underlying anatomical connections and thus one way to evaluate network 

models is to compare their predicted networks using functional Magnetic 

Resonance Imaging data to a known anatomical network.  In our studies of 

the human visual cortex, we compared the predicted fMRI-based networks 

to specific connections in monkey anatomy which are expected to exist in 

humans.  We also considered a set of connections that do not exist in 

monkey anatomy, and expected that they should also not exist in the 

human network. 

 None of the models tested were able to predict the expected 

network while not predicting connections in our unexpected network.  The 

presence of false positives is a major shortcoming of network modeling 

approaches as they are traditionally used.  We propose to add a data-

based calibration stage to connectivity analyses in order to minimize false 

positives while maintaining as many true positives as possible.  The 

calibration should look at known expected and unexpected connections in 

a network related to the network of interest. Then, the calibration results 
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can be applied to the analysis of the unknown network of interest.  With 

each of the known networks, one should conduct connectivity analyses 

with a model of choice.  The interaction magnitude distribution of the 

unexpected network connections together with those of the expected 

network connections should be used to establish a threshold which will 

minimize the inclusion of false positive connections while minimizing 

losses of true positives.  Once an appropriate threshold is set, this should 

be used to calibrate the interaction measures in the unknown network, 

thereby setting a standard for the connection magnitudes in an informed 

manner. 

 The best models for use on 3T resting state fMRI data with a TR of 

approximately 2s are partial correlation, Regularized Inverse Covariance, 

or Bayesian Network models PC, CCD, CPC,  or FCI (which are equivalent 

in their determination of the connections existing in a network).  Correlation 

and the General Synchronization measures can also be successful with 

the inclusion of the calibration stage in the analysis.   

Longer fMRI sessions allow the models to converge closer to the 

true network; the shortest session which can provide reasonable results is 

15 to 20 minutes in length in an experiment with a similar set of 

parameters to ours.   
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Network size (i.e. total number of nodes considered at one time) 

can impact the level of success of multivariate models such as partial 

correlation and the Bayesian Network models.  The smallest contained set 

of nodes relevant to the network being tested will provide the best results 

as additional information from nodes unimportant to the network will have 

an effect similar to adding noise.   

There has been some controversy as to whether or not a global 

signal should be removed from data timeseries in the analysis of functional 

brain activity, as it could perhaps contain important information relevant to 

the activity.  We find that removing the global signal (approximated as the 

first principal component) leads to much better network predictions and so 

would recommend removing the global signal in resting state network 

analyses. 

The correct separation of regions of interest such that information 

from areas which process information separately does not get incorporated 

into the region, is very important in functional connectivity analyses.  

Reliable detection of network edges relies heavily on these ROI definitions.  

Also, the number of voxels contained within the ROIs can strongly impact 

the sensitivity of a network analysis, such that lower voxel counts result in 

unreliable networks. 
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 With the implementation of a data-based calibration stage to future 

network studies using functional brain activation timeseries, we hope to 

see an increase in network precision, and eventually to see our knowledge 

of brain networks on any spatial or temporal scale be made more refined 

and comprehensive.   It would be of interest to test in a future study the 

generalization of our findings with respect to functional domains other than 

the visual system, such as the relatively well known domain of the motor 

system. 
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