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Most atomic force microscopes and cantilever-based sensors use an optical laser beam detection
system to monitor cantilever deflections. We have developed a working model that accurately
describes the way in which a position sensitive photodetector interprets the deflection of a cantilever
in these instruments. This model exactly predicts the numerical relationship between the measured
photodetector signal and the actual cantilever deflection. In addition, the model is used to optimize
the geometry of such laser deflection systems, which greatly simplifies the use of any
cantilever-based instrument that uses a laser beam detection system. © 2006 American Institute of

Physics. [DOL: 10.1063/1.2177542]

Atomic force microscopes (AFMs) and cantilever-based
sensors both rely on converting a cantilever deflection into a
physical quantity. For example, force sensing performed with
AFMs uses the cantilever deflection to infer the amount of
force applied to a sample. Cantilever-based sensors use the
cantilever deflection to obtain a measure of surface stress,
which then provides information on the chemical or physical
phenomenon of interest.

Since the invention of the AFM, many methods have
been proposed to monitor the cantilever deflection. Due to its
accuracy and ease of use, the laser beam deflection system
continues to be the most widely used.' This same detection
system has been used to monitor the cantilever deflection in
cantilever-based sensors.’ However, due to the exquisite sen-
sitivity of cantilever sensors, there has been a renewed inter-
est in the laser beam deflection system. For example, there
have been several papers that addressed the noise and reso-
lution limits of the beam deflection sys.tem,‘}_5 while others
have sought to develop a means to obtain a relationship be-
tween the cantilever deflection and the signal measured from
a position-sensitive detector (PSD).5"! Among these, it is
generally accepted that for small deflections, the detector sig-
nal is directly proportional to the cantilever deflection. Some
authors have proposed that the constant of proportionality is
a function only of the cantilever length (CL) and the
cantilever/PSD separation (L).® Although the assumption of
linearity is justified for small deflections, the constant of pro-
portionality is not simply related to CL and/or L. In fact, the
constant of linearity is strongly influenced by the incident
laser orientation (angle of incidence 6 and azimuthal angle
¢, see Fig. 1) and that of the photodetector. In this letter we
describe a model that, as we will show, characterizes the way
a laser detection system interprets the deflection of a canti-
lever. We will also show how this model can be used to
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optimize the geometry of a cantilever/laser detection system
in order to establish a linear relationship between the canti-
lever deflection and photodetector signal. This will greatly
simplify the calibration of cantilever-based instruments.

Figure 1 shows a schematic representation that describes
the geometry of a cantilever/laser detection system. In this
diagram, the cantilever surface is in the x-y plane and is
orientated in the positive x direction. The incident laser hits
the cantilever at a distance D from the base of the cantilever
chip. The incident laser is fixed at an angle of inclination 6
with respect to the x-y plane and at an azimuthal angle ¢
measured from the positive x axis. The laser reflects off the
free end of the cantilever and into a position-sensitive detec-
tor held at an initial distance L from the cantilever. The PSD
is itself inclined at an angle & also with respect to the x-y
plane. In Fig. 1, the line labeled N, is the surface normal to
the cantilever and is used to calculate the reflected laser
beam direction in accordance with the law of reflection.

All calculations shown here were performed with a com-
puter program using elementary geometric optics and stan-
dard vector geometry. - Unlike others who have attempted to

PSD

Cantilever length = CL ¢

FIG. 1. Schematic representation of a laser reflecting from a cantilever into
a PSD detector.
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FIG. 2. (a) and (b) Comparison between experimental (symbols) and calcu-
lated data (solid lines) for the PSD signal versus cantilever deflection for
different PSD detector angles & The fixed geometrical parameters of the
system were: D=382.5+0.5 mm, L=603.7+0.5 mm, CL=410.0+0.5 mm,
$=180.0+0.5°, and 6=69.9+0.5°.

calibrate the PSD signal/cantilever deflection, we have made
no approximations of any kind.®” The curvature of the can-
tilever was described by an end-moment deflection.”>* As
the cantilever deflects, the position of the laser beam travels
on the surface of the lever. The intersection point between
the incident laser and the cantilever surface was obtained
numerically. The end deflection of the cantilever was also
obtained numerically by solving the length equation. This
procedure takes into consideration the fact that during de-
flections, the end point of the cantilever along the x axis
(xmax) is smaller then the total length CL of the cantilever
(xmax =CL). Taking the proper cantilever curvature into con-
sideration is crucial for obtaining agreement with experimen-
tal results. The curvature of the cantilever not only estab-
lishes the laser/cantilever intersection point, but most
importantly, dictates the reflection angle of the laser away
from the surface normal (see Fig. 1). Software related to
this model has been made available for download
at www.physics.mun.ca/beaulieu_lab/papers/cantilever_
analysis.htm. Full details of this model are reported
elsewhere.'

From the model presented in Fig. 1, it is possible to
identify different geometries, characterized by the value of
¢, which could be used in cantilever-based systems. While
most cantilever-based sensors and AFMs are constructed
with ¢=180°, other geometries have been used.®'® In this
letter we focus our attention on the ¢p=180° system. In order
to demonstrate the accuracy of the model, a macrosized can-
tilever was constructed. Experiments were conducted on
such a system because of the inherent ease to measure and
adjust all of the parameters (D, L, CL, ¢, 6, and &) shown in
Fig. 1.

Figures 2(a) and 2(b) show experimental (symbols) and
calculated data (solid lines) of the measured PSD signal ver-
sus cantilever deflection for various PSD angles & As the
data show, excellent agreement is obtained between the ex-
perimental and calculated data. The PSD signal is given in
units of length which describes the motion of the reflected
laser spot along the PSD. We stress the fact that no adjust-
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FIG. 3. (a) PSD signal versus cantilever deflection for D=325 um, CL
=375 um, L=29 cm (—M@—), L=3.0cm (— ¢ —), L=3.1 cm (—@®—),
$=180°, #=70°, and £€=36.05°. In this case the solid lines represent calcu-
lated data while the symbols represent linear fits. (b) Difference between the
calculated data and the straight line fit for L=2.9 cm, L=3.0 cm, and L
=3.1 cm. (c) Slope of the optimized PSD/cantilever deflection curves versus
PSD/cantilever separation L. Calculated data is shown by solid dots while
the solid line shows a linear fit to the data.

able or fitted parameters were used to produce the calculated
data. The values of D, L, CL, ¢, 6, and & uniquely charac-
terize the system. Similar measurements performed with ¢
=0° and ¢=90° and with different types of cantilever load-
ing gave identical results (in accuracy).15 This model has
also shown similar agreement when used to describe the mo-
tion of the laser spot on the cantilever surface upon
deflection.'

Figures 2(a) and 2(b) show how the concavity of the data
changes as the value of £ is changed (similar results occur if
D, L, ¢, and & are fixed and 6 is varied). In fact, for &
=39.17°, the relationship between the PSD signal and canti-
lever deflection is linear. We have found that for any fixed
geometry, D, L, ¢, 0 (or &) (notably ¢=0°, 90°, or 180°), it
is possible to obtain (by the method of least squares) a PSD
angle ¢ (or incident laser angle 6) that produces a linear
relationship between the measured PSD signal and the can-
tilever deflection. To illustrate this, Fig. 3(a) shows calcula-
tions for a setup with the following geometry: D=350 um,
L=3.0 cm, CL=375 um, ¢=180°, and #=70°. For this set
of parameters, the optimized PSD angle, obtained by a least-
squares fit, is §{=36.05°. This geometry is characteristic of a
typical cantilever sensor setup used in our laboratory. Figure
3(a) shows a comparison between calculated data (black line)
and a linear fit (4 ). Figure 3(b) shows, on a much-reduced
scale, the difference between the optimized linear PSD
signal/cantilever deflection curve and the straight line fit.

The optimization of the beam deflection system is de-
pendent on the cantilever deflection. The data shown in Fig.
3 was calculated for a maximum cantilever deflection of
40 pm. For such a large deflection, the linear fit has an av-
erage deviation of 17 wm (recall the PSD signal is measured
in units of length). For a more realistic maximum cantilever
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deflection of 1 wum, the linear fit of the optimized geometry
has an average deviation of only 0.0006 um, which corre-
sponds to a cantilever deflection of 0.2 nm. Such a deflection
is well within the experimental error of any cantilever based
system. For a point-load type bending with a maximum can-
tilever deflection of 1 um, the optimized geometry gives a
similar average deviation of 0.0005 um.

The model also shows the linearity of the PSD signal/
cantilever deflection is independent of the cantilever/PSD
separation L, which is difficult to physically measure within
1-2 mm. Figure 3(a) shows two additional curves that illus-
trate how the PSD/cantilever deflection system remains lin-
ear even though the system was optimized for one specific
set of variables. The first line shows calculated data (solid
line) and linear fit (@) for the same optimized parameters as
described above with the exception that the cantilever/PSD
distance has been increased to L=3.1 cm. In the same way,
the third line shows calculated data (solid line) and linear fit
(M) for L=2.9 cm. The difference between the calculated
data and the linear fits are shown in Fig. 3(b) (with their
representative symbols), which illustrates that the difference
between the optimized data (L=3.0 cm) and the nonopti-
mized data (L=2.9 and 3.1 cm) are of the same magnitude.

We now show how this can be used to set up a
cantilever-based instrument so as to obtain the PSD signal/
cantilever deflection relation (i.e., the slope of the straight
line) without having to physically measure the PSD/
cantilever distance L with an accuracy of more than
1-2 mm.

Consider a cantilever-based instrument built to the fol-
lowing specifications: D=325 um, CL=375 um, ¢=180°,
0=70°, £=36.05°, and L=(3.0+0.2) cm. As shown in Fig.
3(a), an accuracy of 0.2 cm on the distance L is unsatisfac-
tory to obtain precise cantilever deflection measurements
since the slope of the PSD/cantilever deflection relation var-
ies by 7%. Figure 3(c) shows how the slope of the PSD/
cantilever deflection curve changes as a function of L (for the
optimized geometry described earlier). These data indicate
that the relationship between the slope of the PSD signal/
cantilever deflection versus L is also linear. To obtain the
value L, all that is necessary is to force a cantilever to deflect
by a value AX while monitoring the signal with the PSD.
This could be, for example, the L=3.1 cm line (—@—)
shown in Fig. 3(a). At this point we do not know the value of
AX, which means that the slope of the curve is given by o
=Ay/AX (where Ay is known). Moving the detector by AL
(in a direction parallel to the reflected laser beam) and re-
peating the above gives a second PSD displacement curve
such as the line (— € —). With these data, the value AX can
be obtained by solving Eq. (1).

1—(72= Ay, - Ay,
AL ALAX

Slope offrom Fig. 3(c)]= z (1)
Once AX is obtained, the exact value of L is then calculated
from our model. In performing this calibration [Eq. (1)] two
things are important. Firstly, the cantilever deflection AX
must be the same in both cases. This can be accomplished
using a piezolever or by heating a cantilever that has been
coated on one side with a material that has a different coef-
ficient of thermal expansion then the cantilever. Another way
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can be to simply pull on the free end of the cantilever with a
mechanical drive. Whichever method is used to bend the
cantilever, it is important that the proper curvature be used in
the geometric model. Because an end-moment type deflec-
tion (cantilever sensors) does not bend the cantilever in the
same way as a point load (AFM force sensing) (see Fig. 3 in
Ref. 9), both will give a different optimized setup. However,
once all the parameters (D, L, CL, ¢, 6, and &) are deter-
mined, the exact relationship between the cantilever deflec-
tion and PSD signal can be determined with absolute accu-
racy for any kind of cantilever bending even if the PSD
signal/cantilever deflection relationship is no longer linear.

Having an accurate PSD signal/cantilever deflection cali-
bration is especially important when performing differential
cantilever sensor measurements.'®!” In such experiments, it
is necessary to subtract the signals of two (or more) cantile-
ver deflections in order to isolate the measurement of a spe-
cific physical or chemical phenomenon. Error in the cantile-
ver deflections will lead to an increased error on the
measured physical quantity.

In this letter we have shown how our model can be used
to improve the design of the next generation of cantilever-
based sensors and atomic force microscopes. Using this
model to optimize the system’s geometry promises to signifi-
cantly simplify the use of such instruments. Moreover, due to
the accuracy of this model, it can also be used to obtain an
exact numerical relationship between the PSD signal and
cantilever deflection of any existing system for any kind of
cantilever deflection provided a method is found to measure
the parameters D, L, CL, ¢, 6, and & with sufficient accuracy.
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