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A B S T R A C T 

In the last decade Support Vector Machines (SVMs) have emerged as an 

important learning technique for solving classification and regression problems 

in various fields, most notably in computational biology, finance and text 

categorization. This is due in part to built-in mechanisms to ensure good 

generalization which leads to accurate prediction, the use of kernel functions 

to model non-linear distributions, the ability to train relatively quickly on 

large data sets using novel mathematical optimization techniques and most 

significantly the possibility of theoretical analysis using computational learning 

theory. In this thesis, we discuss the theoretical basis and computational 

approaches to Support Vector Machines. 
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ABREGE 

Au cours des dix dernires annees, Support Vector Machines (SVMs) est 

apparue etre une technique importante d'apprentissage pour resoudre des 

problemes de classification et de regression dans divers domaines, plus partic-

ulierement en biologie informatique, finance et categorisation de texte. Ceci est 

du, en partie aux mecanismes de construction assurant une bonne generalisation 

qui conduit a une prediction precise, une utilisation des fonctions de kernel 

afin de modeliser des distributions non-lineaires, et a la possibilite de tester 

de facon relativement rapide sur des grands ensemble de donnees en utilisant 

de nouvelles techniques d'optimisation, en particulier, la possibilite d'analyses 

theoriques utilisant la theorie d'apprentissage informatique. Dans cette these, 

nous discutons des bases theoriques et des approches informatiques des Sup­

port Vector Machines. 
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1 

INTRODUCTION 

The first step in supervised learning is the observation of a phenomenon or 

random process which gives rise to an annotated training data set: 

§ = {Xi,yi}i=1 XiEl, ViE)} 

The output or annotation space V can either be discrete or real valued in which 

case we have either a classification or a regression task. We will assume that 

the input space X is a finite dimensional real space Rd where d is the number 

of explanatory variables. 

The next step is to model this phenomenon by attempting to make a 

causal link / : X —» ^ between the observed inputs {xi}f=1 from the input 

space X and their corresponding observed outputs {?/i}"=1 from the annotation 

space ^; in a classification task the hypothesis/prediction function / is com­

monly referred to as a decision function whereas in regression it is simply called 

a regression function. In other words we seek to estimate the unknown con­

ditional probability density function that governs the random process, which 

can then be used to define a suitable hypothesis: f(xt) = maxyey P(y\xt). 

The hypothesis must minimize some measure of error over the observed 

training set while also maintaining a simple functional form; the first condition 

ensures that a causal link is in fact extracted from the observed data while the 

second condition avoids over-fitting the training set with a complex function 

that is unable to generalize or accurately predict the annotation of a test 

example. 

The complexity of the hypothesis / can be controlled by restricting the 

capacity of the hypothesis space; but what subset of the space of all possible 

maps between the input and output spaces Vx should we select as the hypoth­

esis space M c ^ 1 ? It must be rich or large enough to include a hypothesis 

function that is a good approximation of the target concept (the actual causal 
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link) but it must be poor enough to not include functions that are unneces­

sarily complex and are able to fit the observed data perfectly while lacking 

generalization potential. 

The Support Vector Machine (SVM) is one approach to supervised learn­

ing that takes as input an annotated training data set and outputs a gener-

alizable model, which can then be used to accurately predict the outcomes of 

future events. The search for such a model is a balance between minimizing 

the training error (or empirical risk) and regulating the capacity of the hy­

pothesis space. Since the SVM machinery is linear we consider the hypothesis 

space of all d — 1 dimensional hyperplanes. The 'kernel trick' may be applied 

to convert this or any linear machine into a non-linear one through the use of 

an appropriately chosen kernel function. 

In binary SVM classification (SVMC), each input point is assigned one of 

two annotations V = {+1 , -1} . The training set is separable if a hyperplane 

can divide Rd into two half-spaces corresponding to the positive and negative 

classes. The hyperplane that maximizes the margin (minimal distance be­

tween the positive and negative examples) is then selected as the unique SVM 

hypothesis. If the training set is not separable, then a further criterion is opti­

mized, namely the empirical classification error. In SVM regression (SVMR), 

the margin boundaries are fixed in advance at a value e > 0 above and below 

the potential regression function; those training points that are within this 

e-tube incur no loss in contrast to those outside it. Different configurations 

of the potential hypothesis, which is again taken to be a hyperplane, lead to 

different values for the loss which is minimized to find the solution. 

The thesis is organized as follows; in Chapter 2 we consider modeling 

non-linear causal links by using kernel functions that implicitly transform the 

observed inputs into feature vectors x —> 4>(x) in a high-dimensional feature 

(flattening) space 4>(x) <= $ where linear classification/regression SVM tech­

niques can then be applied. An information theoretic analysis of learning is 

considered in Chapter 3 where the hypothesis space is restricted 5F C ^x on 

the basis of the amount of training data that is available. Computational con­

siderations for linear SVMC and linear SVMR are given separately in chapters 

4 and 5 respectively; the solution in both instances is determined by solving 

a quadratic optimization problem with linear inequality constraints. 
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the potential regression function; those training points that are within this 

€-tube incur no loss in contrast to those outside it. Different configurations 

of the potential hypothesis, which is again taken to be a hyperplane, lead to 

different values for the loss which is minimized to find the solution. 

The thesis is organized as follows; in Chapter 2 we consider modeling 

non-linear causal links by using kernel functionsthat implicitly transform the 

observed inputs into feature vectors i ----t cp(i) in a high-dimensional feature 

(fiattening) space cp(i) E s:- where linear classificationjregression SVM tech­

niques can then be applied. An information theoretic analysis of learning is 

considered in Chapter 3 where the hypothesis space is restricted s:- C 1jx on 

the basis of the amount of training data that is available. Computational con­

siderations for linear SVMC and linear SVMR are given separately in chaptérs 

4 and 5 respectively; the solution in both instances is determined by solving 

a quadratic optimization problem with linear inequality constraints. 
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KERNEL METHODS 

All kernel methods make use of a kernel function that provides an implicit 

mapping or projection of a training data set into a feature space $ where 

discriminative classification or regression is performed. Implicitly a kernel 

function can be seen as an inner product between a pair of data points in the 

feature space, explicitly however it is simply a function evaluation for the same 

pair of data points in the input space X before any mapping has been applied. 

We will introduce the basic mathematical properties and associated function 

spaces of kernel functions in the next section and then consider an example 

known as the Fisher kernel. 

2.1 EXPLICIT MAPPING O F OBSERVATIONS T O FEATURES 

The complexity of a training data set, which is sampled from the observa­

tion space, affects the performance of any learning algorithms that might make 

use of it; in extreme cases certain classes of learning algorithms might not be 

able to learn an appropriate prediction function for a given training data set. 

In such an instance we have no choice but to manipulate the data so that 

learning is possible; for example in figure 2.1 we see that if we consider empir­

ical target functions from the hypothesis class of discriminative hyperplanes 

then a quadratic map must first be applied. 

In other instances the training data might not be in a format that the 

learning algorithm accepts and so again a manipulation or mapping of the 

data is required. For example the data may be nucleotide sequences of which 

a numerical representation is required and hence preprocessing steps must be 

taken. 

As we will see later, the most important reason for transforming the train­

ing data is that the feature space is often endowed with a structure (definition 
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Figure 2—1: [left] Circular decision boundary in K2: x\ + a-2, = 1. [right] Data is replotted 
in a S 3 feature space using a quadratic map: $>(xi,X2) = (a'f, x\, \/2x\Xi) and is then 
linearly separable. 

2.3.7, theorem 2.3.2) that may be exploited (section 2.5, theorem 2.3.3) by the 

learning algorithm. 

Now that we have established that a mapping is necessary, we must decide 

how to represent the mapped data and then define a corresponding mapping 

function. The simplest representation [SS01] results from defining a (often 

non-linear) mapping function $(•) € 'K over the inputs %{ G X in our training 

set; 

S = {£,;, y%YL\ x{ e X, yt e y 

and then representing the data as the set of mapped data 

{$(£,) , ^ K U *.(xi) € IK, m e y 

There are several problems that arise from representing the data indi­

vidually by applying the mapping to each input example; the most common 

of which is computational since <3> may map elements into a feature space of 

infinite dimension. 

2.2 F I N I T E K E R N E L I N D U C E D F E A T U R E S P A C E 

We now consider a different approach to the issue of data representation; 

instead of mapping each training example x, individually into features $(ir,) 

using the map $ : X —> 3", kernel methods represent the data as a set of 

pairwise computations 

A ' : X x l - . l (2.1) 
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2.3.7, theorell1 2.3.2) that ma}' be exploitecl (section 2.5, theorem 2.3.3) by the 

learning algOl'ithll1. 

Now that we have established that a mapping is necessary, we must clecide 

how to represent the mapped data and then define a corresponding ll1apping 

function. The simplest representation [8801] results from defining a (often 

non-linear) mapping function <P (.) E Je over the inputs Xi E X in our training 

set; 

and thell representillg the data as the set of ll1appecl data 

{<r.( -<.) .}11 
l' Xl 'YI i=l 

There are sever al problems that arise from represellting the data indi­

vidually by applyillg the ll1apping to each input exall1ple; the ll10st COll1mon 

of which is C'oll1plltational sinee <P may map elements into a feature space of 

infinite dimensioll. 

2.2 FINITE KERNEL INDUCED FEATURE SPACE 

We now consicler a different approach to the issue of data representatioll; 

illstead of mappillg each training exall1ple Xi individually into features <p( :r;) 

using the map <P : X - :J, kernel ll1ethocls represent the data as a set of 

paiT'wise computations 

K:XxX-lPi. (2,1) 
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Such a kernel function K is defined over a possibly infinite space X; we 

restrict its domain to observations in the training set S and thereby define a 

finite kernel: 

K§ : xi x x) —> R Vi : 1 < i < n 

Finite kernels can be represented as square n x n matrices where kij = 

Ks(xuXj)eR 

hi 

hi 

hi 

hi • 

hi • 

kni • 

hn 

hn 

• k ""an 

Although the kernel representation may seem unintuitive at first, it has 

many benefits over the explicit use of a mapping function <3>; later in Theorem 

2.3.3 we will see that both these approaches are in fact equivalent and there 

exists an implicit mapping (2.53, 2.54) and an associated feature space (2.41, 

2.44) for every kernel function that is positive-definite. The class of comparison 

functions is clearly limited by considering only positive-definite kernels but this 

restriction is applied so that we can make use of an essential 'trick' (section 

2.5) that simplifies the objective function of the quadratic optimization that 

gives rise to the final solution; this trick is possible due to Mercer's Theorem 

(2.3.3) for which positive definiteness is a necessary and sufficient condition. 

Furthermore, depending on the nature of the data to be analyzed it might 

be significantly more complicated [SS01] to find individual representations of 

the observations than to consider pairwise comparisons between them. For 

example, representing a set of protein or DNA sequences as pairwise compar­

isons between members of the set is easier and potentially more relevant than 

using vectors for each attribute individually. 

The most significant advantage that kernel functions have over the use 

of an explicit mapping function is that it generalizes the representation of 

the input data so that an absolute modularity exists between the prepro­

cessing of input data and the training algorithm. For example, given inputs 

{xi,x2, • • • ,xn} € X we could define two mapping functions to extract dif­

ferent features <fip € Rp and cpq G M9; now if the dimension of the feature 

spaces are not equal p ^ q then we have sets of vectors of different lengths 

{0p(xi) , (f)p(x2), ••• , <f)p(xn)} and {<j>q(xi), <f>q(x2), • • • , <j>q{xn)} and so the train­

ing algorithm must be modified to accept these two different types of input 

(2.2) 

r~ . } 

5 

8uch a kernel function K is defined over a possibly infini te space X; we 

restrict its domain to observations in the training set Sand thereby define a 

. fini te kernel: 

Finite kernels can be represented as square n x n matrices where kij = 

KS(Xi' Xj) E lR 

(2.2) 

Although the kernel representation may seem unintuitive at first, it has 

many benefits over the explicit use of a mapping function <1>; later in Theorem 

2.3.3 we will see that both these approaches are in fact equivalent and there 

exists an implicit mapping (2.53, 2.54) and an associated feature space (2.41, 

2.44) for every kernel function that is positive-definite. The class of comparison 

functions is clearly limited by considering only positive-definite kernels but this 

restriction is applied so that we can make use of an essential 'trick' (section 

2.5) that simplifies the objective function of the quadratic optimization that 

gives rise to the final solution; this trick is possible due to Mercer's Theorem 

(2.3.3) for which positive definiteness is a necessary and sufficient condition. 

Furthermore, depending on the nature of the data to be analyzed it might 

be significantly more complicated [8801 J to find individual representations of 

the observations than to consider pairwise comparisons between them. For 

example, representing a set of protein or DNA sequences as pairwise compar­

isons between members of the set is easier and potentially more relevant than 

using vectors for each attribute individually. 

The most significant advantage that kernel functions have over the use 

of an explicit mapping function is that it generalizes the representation of 

the input data so that an absolute modularity exists between the pre pro­

cessing of input data and the training algorithm. For example, given inputs 

{Xl' X2,··· ,xn } E X we could define two mapping functions to extract dif­

ferent features CPP E lRP and CPq E lR5; now if the dimension of the feature 

spaces are not equal p =J. q then we have sets of vectors of different lengths 

{cpp( Xl), CPp(X2) , ... ,cpp(xn )} and {cpq (Xl), CPq( X2), ... ,CPq( xn )} and so the train­

ing algorithm must be modified to accept these two different types of input 



6 

data. However, regardless of the kernel function used but more significantly 

regardless of the dimension of the feature space, the resulting kernel matrix 

is square with dimensions n x n since we consider only pairwise comparisons 

between the inputs; the only drawback is that there is less control over the 

process of extracting features since we relinquish some control of choice of the 

resulting feature space. 

Provided the inputs are defined in an inner product space, we can build 

a linear comparison function by taking the inner product 

K{xi,Xj) = (xi-Xj)x (2.3) 

or dot product if X is a real vector space: 

K{xi,Xj) = (Xi-Xj) (2.4) 

Geometrically, the dot product calculates the angle between the vec­

tors Xi and Xj assuming they are normalized (section 4.1) such that ||fj|| = 

y/(xi • fj) = 1 and ||fj|| = 1. 

If inner products are not well-defined in the input space X then we must 

explicitly apply a map $ first, projecting the inputs into an inner product 

space. We can then construct the following comparison function; 

K(Xi,Xj) = ($&)•, Qfa))*: (2.5) 

An obvious question one could ask is does the simple construction define the 

entire class of positive-definite kernel functions? More specifically, can every 

positive-definite kernel be decomposed into an inner product in some space? 

We will prove this in the affirmative and also characterize the corresponding 

inner product space in the following sections. 

2.3 FUNCTIONAL VIEW OF THE KERNEL INDUCED FEATURE 

SPACE 

So far we have seen a geometrical interpretation of finite kernels as im­

plicit/explicit projections into a feature space; the associated linear algebra 

using finite kernel matrices over S x S, was realized in a finite dimensional 

vector space. Now we consider an alternative analysis using kernel functions 
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Figure 2-2: Explicit (0) and implicit (A) mapping of inputs to features. 

defined over a dense space (no longer restricted to a finite, discrete space S x S) 

and integral operator theory in an infinite dimensional function space which 

serves as the hypothesis space; a hypothesis being a function from X —> ^. 

If we are to predict in a classification/regression task, then any potential 

hypothesis function will need to be evaluated at a test data point and hence 

we will require that they are point-wise defined so that all function evalua­

tions exist within the space of annotations y. We will denote the space of 

all real-valued, point-wise defined functions on the domain X by Rx . Finally, 

convergent sequences of functions in the hypothesis space should also be point-

wise convergent; this is shown to hold in Reproducing Kernel Hilbert spaces 

(2.38) whereas it does not hold in general for Hilbert spaces, in particular for 

L2. 

||/n - / I k ^ 0 = > lira fn(x) - f(x) = 0, W e X (2.6) 
n—>oo 

Furthermore, we will show that point-wise convergence in 'K implies the con­

tinuity of evaluation functionals (2.11) on %. In fact, in the following chapter 

we will see that an even stronger convergence criterion, that of uniform con­

vergence, is necessary for learning. 

In this chapter we show how a certain class of kernel functions exist in all 

(and in some sense generate) Hilbert spaces of real valued functions under a few 

simple conditions. The material for this section was referenced from [CS02], 

Chapter 2 of [BTA04], [Zho02], [Zho03], [Gir97], Chapter 3 of [Muk07], [LV07], 

[QuiOl], [CMR02], [HN01], [SSM98], [SHS01], [STB98], [SS05] and [Rud91]. 
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Figure 2-2: Explicit (cp) and implicit Pl) mapping of inputs to features. 
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defined over a dense space (no longer restricted to a finite, discrete space S x S) 

and integral operator theory in an infinite dimensional function space which 

serves as the hypothesis space; a hypothesis being a function from X ---t ~. 
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Ilfn - fllJi: ---t 0 ~ lim fnUi) - f(i) = 0, Vi E X (2.6) 
n-->oo 

Furthermore, we will show that point-wise convergence in 9{ implies the con­

tinuity of evaluation functionals (2.11) on 9{. In fact, in the foUowing chapter 

we will see that an even stronger convergence criterion, that of uniform con­

vergence, is necessary for learning. 

In this chapter we show how a certain class of kernel functions exist in all 

(and in some sense genemte) Hilbert spaces of real valued functions under a few 

simple conditions. The material for this section was referenced from [C802], 

Chapter 2 of [BTA04], [Zho02], [Zho03], [Gir97], Chapter 3 of [Muk07], [LV07], 

[QuiO 1], [CMR02], [HNOl], [88M98], [8H80l], [8TB98], [8805J and [Rud91 J. 
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2.3.1 HILBERT SPACES 

A Hilbert space is a complete inner product space and so distances1 and 

angles2 are well defined. Formally a Hilbert space is a function space "K 

along with an inner product (h, g) defined for all h,g € % such that the norm 

defined using the inner product \\h\\-K — (h.h)^ completes the space; this 

is possible if and only if every sequence {hi}^ with hi £ % satisfying the 

Cauchy criteria; , 

Ve 3N(e) G N such that Vn, m > N(e) : \\hn - hm\\oi < e 

converges to a limit contained within the space; 

lim hi e M 
i—>oo 

Given either an open or closed subset A'" of a Hilbert space 3i, we define its 

orthogonal complement as the space: 

N± = {leK:(l,g) = 0, V<? G N} 

noting that the only instance when (g,g) = 0 is if g is identically zero which 

implies that N D N1 — {0}. The direct sum of these two complementary 

spaces 3 equals "K: 

<K = N © N1 = {g + I : g e N and I € N1} (2.7) 

although the union of these same subspaces need not cover "K: 

NijN^C'K (2.8) 

So any function h € "K can be represented as the sum of two other functions; 

h = g + l (2.9) 

1 Every inner product space is a normed space which in turn is a metric 
space, d(x, y) = \\x - y\\ = \/(x,y) 

2 Orthogonality in particular; determined by the inner product 

3 The closure of N and its orthogonal complement N1, both of which are 
Hilbert spaces themselves 
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where g € N1 and / € N. Therefore every Hilbert space % can be decomposed 

into two distinct (except for the zero vector) closed subspaces; however this 

decomposition need not be limited to only two mutually orthogonal subspaces. 

Infinite-dimensional Hilbert spaces are similar to finite-dimensional spaces 

in that they must have (proof using Zorn's Lemma combined with the Gram-

Schmidt orthogonalization process) an orthonormal basis {hi, h2, • • • : hi € !K} 

satisfying 

• Normalization: \\hi\\ = 1 Vi 

• Orthogonality: (hi, hj) = 0 if i ^ j 

so that every function in 3i can be represented uniquely as an unconditionally 

convergent, linear combination of these fixed elements 

• Completeness: \/h € !K, 3{ai, a2, • • • : ĉ i G M} such that h = X ^ i ai^i 

Note that an orthonormal basis is the maximal subset of !K that satisfies the 

above three criteria. It is of infinite cardinality for infinite-dimensional spaces. 

Let Ni be the space spanned by hi then: 

% = Nx © N2 © • • • e Nt © • • • 

although as before 
NiUN2U---UNi{J---C3< 

Finally, when the Hilbert space is infinite dimensional, the span of the 

orthonormal basis need not be equal to the entire space but instead must 

be dense in it; for this reason it is not possible to express every element in 

the space as a linear combination of select elements in the orthonormal basis. 

We will assume henceforth that Hilbert spaces have a countable orthonor­

mal basis. Such a space is separable so it contains a countable everywhere, 

dense subset whose closure is the entire space. When the Hilbert space is a 

finite-dimensional function space then there exists a finite orthogonal basis so 

that every function in the space and every linear operator acting upon these 

functions can be represented in matrix form. 

2.3.2 LINEAR FUNCTIONALS 

A functional J is a real-valued function whose arguments are also functions 

(specifically the hypothesis function / : X —> V) taken from some space 3i: 

7 : ft(X -> V) -+ M 
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An evaluation functional £#[/] : IK(X) —> V simply evaluates a hypothesis 

function / G IK at some fixed point x € X in the domain: 

£*[/] = /(£) (2.10) 

Point-wise convergence in the hypothesis space ensures the continuity of 

the evaluation functional: 

fn(x) - f(x), Vx = » £*[/„] - £*[/], Vf (2.11) 

Linear Junctionals are defined over a linear (vector) space whose elements can 

be added and scaled under the functional: 

7 (aihi + a2h2) = a\T (fti) + a2f (h2), Vfti, h2 G IK 

The set of functionals themselves form a vector space j if they can be added 

and scaled: 

7i{cnh) + T2(aih) = ( a ^ i + ct2T2)(h), ^7uTi e y,Vhe IK 

The null space and image (range) space of the functional ^ are defined as: 

nul l , = {ft G IK : 5 (ft) = 0} 

imgy = {!F (ft) : h E IK} 

and are subspaces of the domain IK and co-domain R respectively. The Rank-

Nullity Theorem [Rud91] for finite-dimensional spaces states that the dimen­

sion of the domain is the sum of the dimensions of the null and image sub-

spaces: 

dim(IK) = dim(nully) + dim(imgy) 

A linear functional is bounded if for some constant a the following is satisfied 

\r(h)\<a\\h\\K VfteiK 

Furthermore, boundedness implies continuity of the linear functional. To see 

this, let us assume we have a sequence of functions in a Hilbert space that 

converge to some fixed function ft; —> ft so that ||ft; — h\\w —> 0. Then the 

continuity criteria for the linear bounded functional f is satisfied: 
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this, let us assume we have a sequence of functions in a Hilbert space that 

converge to sorne fixed function hi ---t h so that IIhi - hll~ ---t O. Then the 

continuity criteria for the linear bounded functional ~ is satisfied: 
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Ve > 0, 3N G N, such that Vi > N (2.12) 

\7 (hi) - r {h)\ = \f{hi-h)\ <a\\hi-h\\oi-^Q 

Let {hi,}i2,- • • : hi £ %} be an orthonormal basis for a Hilbert space 

which in a linear combination can be used to express any vector h € Oi. 

oo oo 

h = ^/aihi = ^P(/i,/ij)/ij 

where the second equality follows from: 

(h, hj) = \^2 aihh hi ) ~ zL a^hh hi aj 

i= i / i=i 

where the second equality follows from the linearity and continuity (which is 

necessary since we have an infinite sum) of the inner product and the third 

equality follows from the orthogonality of the basis. So any linear and contin­

uous functional over an infinite-dimensional Hilbert space can be decomposed 

into a linear combination of linear functionals applied to the orthonormal basis 

using the same coefficients as above: 

oo oo 

!F(h) = J2(h^i)^(hi) = Y,(h,hifF(hl)) (2.13) 
i=l i=l 

DEFINITION 2.3.1 (PROJECTION OPERATOR) A projection P :"K —>• L over 
a (vector) space 3i — G®L is a linear operator that maps points from !K along 

the subspace G onto the subspace L; these two subspaces are complementary, 

the elements in the latter are mapped by P to themselves (image of P) while 

those in the former are mapped by P to zero (nullity of P). 

Application of the projection twice is equivalent to applying it a single 

time, the operator is therefore idempotent: 

P = P2 

The operator (/ — P) is then the complimentary projection of "K along L onto 

G. A projection is called orthogonal if its associated image space and null 

space are orthogonal complements in which case P is necessarily self-adjoint. I~ 
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When the space 3i over which P is defined is finite-dimensional, i.e. 

dim(J{) = n, the projection P is a finite-dimensional n x n matrix whose 

entries are a function of the basis vectors of L. In figure 4-1 we see an or­

thogonal projection of x onto w, in which case the projection matrix is given 

by: 
_ w wT 

Jw|| ||w|| 

so that any vector orthogonal to w (parallel to the hyperplane fj which we will 

assume intersects the origin so that the bias term 6 = 0) is mapped to zero. 

The orthogonal projection is then given by the vector: 

P -_ (J!L ^L\ -
\\\w\\ \\w\\J 

which is equivalent to the vector resolute defined in (4.7). 

More generally, let us consider the subspace L C "K with an orthonormal 

basis {li, l2, • • • , /(}. The projection matrix is then given by the square of the 

matrix Lp whose columns are the vectors that form the orthonormal basis: 

PL = LpLl = [h\l2\---\lt) [h\h\---\ltY 

If the vectors do not form an orthonormal basis then the projection matrix is 

given by 'normalizing' the above projection: 

PL = Lp(Lp Lp)~ Lp 

Note the similarity to the normal equations used in linear regression. 

2.3.3 INNER PRODUCT DUAL SPACES 

If "K is a Hilbert space then the associated inner product4 can be used to 

define a linear (bounded) functional: 

4 which can be shown [HN01] to be a bounded mapping and hence by (2.12) 
must be continuous 
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The functional defined in terms of a kernel (2.1) function Kg = K(x, •) G %, 

is given by: 

for some input vector x £ X. So essentially every element g & Di (or K(x, •) € 

!K) has a corresponding linear bounded functional in a dual space !K*: 

The dual space 'K* of all linear bounded functionals on a Hilbert space % is also 

Hilbertian [HN01] and has a dual basis that is a function of the orthonormal 

basis of the original space. The spaces % and its dual "K* are isomorphic 

so that each element (function) in the former has a corresponding element 

(functional) in the latter and vice versa. The null space of the functional fixed 

at a basis vector g is then given by 

nul l 7 s = {heM: Tg{h) = (h,g)M = 0} (2.14) 

and consists of all the vectors (including the zero vector) in % that are orthog­

onal to g. The null space therefore has dimension one less than the dimension 

of !K since g is orthogonal to all the basis vectors except itself. Hence the 

dimension of the space orthogonal to the null space is one by the Rank-Nullity 

Theorem: 

dim((null^)±) = 1 

We now state an important theorem that will help establish a subsequent 

result: 

THEOREM 2.3.1 (RIESZ REPRESENTATION THEOREM) Every bounded (con­

tinuous) linear functional J over a Hilbert space % can be represented as an 

inner product with a fixed, unique, non-zero vector rT G "K called the repre-

senter for f: 

Br, e'K(3grTe,K*) : f (h) = (rr,h)M = gr,(h), VheM (2.15) 

For an evaluation functional we therefore have: 

Vf € X, 3r£x e % : f(x) = £*[/] = (rEx, f)K = grEx(f), V/ e % (2.16) 
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Proof When % is finite dimensional the proof is trivial and follows from 

(2.13) since the finite summation can be taken inside the dot product so that 

the representer is a function of the finite basis of the space: r7 = X)"=i ? (hi) hi-

We now consider the case where !K is infinite-dimensional; in subsection 

(2.3.2) we saw that a bounded linear functional f must also be continuous 

which in turn implies that null,- is a closed linear subspace of %. Hence 

by the Projection Theorem there must exist a non-zero vector z € % that is 

orthogonal to the null space of T: 

Z-Lnully 

In fact, the basis vector that is orthogonal to the null space is unique so that 

the number of linearly independent elements in the subspace orthogonal to the 

null space of f is one: 

dim((null5)x) = 1 

This implies that any vector in (null, ) x can be expressed as a multiple of a 

single basis vector g 6 ( n u l l , ) 1 C %. Using this single basis vector and a 

scalar value a^ we can decompose any vector h E 'K a,s 

h = ahg + l (2.17) 

where a^g € (null,)-1 and I € nu l l , which after application of the functional 

gives: 

T{h) = !F(ahg) + !F(l)=ahr{g) (2.18) 

from the linearity of the functional and the definition of the null space. If we 

take the inner product of (2.17) with g while assuming that \\g\\ji = 1, we 

have: 

(h,g) = (ahg,g) + (l,g) 

= ah(g,g) + 0 (2.19) 

- <*h\\g\\li (2-20) 

= ' ah (2.21) 

= r(h)/7(g) . (2.22) 

where (2.19) follows from the orthogonality of I and g, (2.20) follows from the 

definition of the norm, (2.21) follows from our assumption that the vectors g 

be normalized and (2.22) follows from (2.18). Rearranging gives the functional 
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be normalized and (2.22) follows from (2.18). Rearranging gives the functional 
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in terms of a dot product: 

T{h) = {h,gr{g)) (2.23) 

from which we see that the representer for 7 has the form: 

r,=9!F(g) (2.24) 

• 

2.3.4 SQUARE INTEGRABLE FUNCTION SPACES 

As an example let us consider the infinite-dimensional space L2(Z) of all real-

valued, square integrable, Lebesgue measurable functions on the measure space 

(Z, E, /i) where E is a cr-algebra (closed under complementation and countable 

unions) of subsets of Z and \x is a measure on E so that two distinct functions 

are considered equivalent if they differ only on a set of measure zero. We could 

take the domain Z to be either the closed Z — [a, b] or open Z = (a, b) intervals 

both of which have the same Lebesgue measure //(Z) —b — a since the closure 

of the open set has measure zero. 

More generally, any closed or open subset of a finite-dimensional real 

space Z = Mn is Lebesgue measurable in which case the space L2(R") is 

infinite-dimensional (if the cr-algebra E has an infinite number of elements 

then the resulting I?(Z) space is infinite-dimensional). When we consider an 

infinite-dimensional measure space (Z, E) then the Lebesgue measure is not 

well defined as it fails to be both locally finite and translation-invariant. An 

inner product in terms of the Lebesgue integral is then given as: 

(f,9)v = Jf(Z)g{Z)dn{z) (2.25) 

Moreover, we define the norm (that completes the space) as 

|L2 = V U / V . (2-26) 

The space L2(Z) contains all functions that are square-integrable on Z: 

L2(Z) = {femz: \\f\\L2 = y/{fJ)T2= ^ / ( f ) X ^ y 2 < o o l (2.27) 
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then the resulting L2 (Z) space is infinite-dimensional). When we consider an 
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inner product in terms of the Lebesgue integral is then given as: 
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M?reover, we define the norm (that completes the space) as 

(2.26) 

The space L 2 (Z) contains all functions that are square-integrable on Z: 

L' (Z) ~ {f E ]Rz : IIfIlL' ~ ,J (J, f) L' ~ (1 f(z)'dl'(Z) ) 1/2 < oo} (2.27) 



16 

The function space L2{Z) is a Hilbert space since it is an inner product 

space that is closed under addition: 

f,g(=L2(Z)=>f + gzL2{Z) 

and is Cauchy complete (Riesz-Fischer Theorem). Hence, if we take a 

Cauchy sequence of square-integrable functions {hi, h2, • • • : hi• € CK} satisfy­

ing: 

lim \\hi — /I,-||L2 = l i m ( / {h%{z) — hj(z))2 djji{z) ) = 0 
i,j->oo zj-+oo \Jz J 

then there exists some square-integrable function h 6 "K that is the mean limit 

of the above Cauchy sequence: 

lim I 7 
^°° \Jz 

1/2 

{hi{Z) - h{z)f dii{z)\ = 0 

From the Reisz representation theorem it follows that every bounded, 

real-valued, linear functional on the Hilbert space L2 is of the form: 

7 (g) = {rT, g)v = / rf (z)g(z)dfi(z) = gr, (g) (2.28) 
Jz 

We can generalize the L2(Z) function space as follows: 

LP (Z) = | / € RZ : ||/ir = Qf | / |^ (*)) ' " < oo 1 (2.29) 

It is important to note that only in the case that p = 2 the resulting space is 

Hilbertian. When p — 1 then the space Ll{Z) contains all functions that are 

absolutely integrable on Z: 

L1 (Z) = {/ € R2 : | | / |k = ll/H - ^ |/(2)|d/x(2) < oo 

When p = oo we use the uniform norm defined using the supremum 

operator instead of a dot product and obtain the space of bounded functions: 

L°°(Z) = ^ / e R* : ll/IU, = sup | /(2) | < oof ' (2.30) 

Convergent sequences of functions in L°° are uniformly convergent. Elements 

of the LP spaces need not be continuous; discontinuous functions over domains 

of compact support are Lebesgue integrable as long as their discontinuities 
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have measure zero. In other words, when the discontinuous function is equiva­

lent to a continuous one (which is Riemann integrable) almost everywhere (i.e. 

on a set of measure one) then their Lebesgue integrals are equal. These unmea-

surable irregularities imply ([CMR02]) that functions in LP are not point-wise 

well defined. 

Since L? is a Hilbert space, it must have a countable orthonormal basis and 

hence is separable (has a countable everywhere dense subset) which implies 

that there exist square (Lebesgue) integrable functions almost everywhere. 

Furthermore, continuous functions are also dense in L? (as long as the domain 

has compact support); so any function in L? can be approximated infinitely 

accurately by a continuous function. Essentially, L2 is the Cauchy completion 

of the space of continuous functions C° with respect to the norm (2.26) and 

includes those functions which although discontinuous, are almost everywhere 

equal to elements in C°. 

2.3.5 SPACE O F CONTINUOUS FUNCTIONS 

The space of all real-valued, continuous functions on the domain X that are 

differentiable up to k times is denoted by Ck (Rx). Most frequently we will 

consider: the space C° of continuous functions, the space C1 of continuous 

functions whose derivative is also continuous, the space C2 of twice differ­

entiable functions and the space of smooth functions C°° that are infinitely 

differentiable. One essential difference between L? and C° is that the latter 

is not Cauchy complete and is therefore not a Hilbert space. In fact, as men­

tioned previously, L? is the Cauchy completion of the function space C° or in 

other words, continuous functions on X are dense in L2(X). 

2.3.6 NORMED SEQUENCE SPACES 

We consider a special case of the LP spaces where the measure \i is taken to be 

the counting measure and a summation is taken instead of an integral. Essen­

tially we have a function from the natural numbers to the real line represented 

as a vector z of countably infinite length. The norm is then given by: 

/ oo \ VP 
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Convergence of the above series depends on the vector z; so the space £? is 

taken as the set of all vectors z of infinite length that have a finite ^p-norm: 

P>(Z) = {zeZ:\\z\\iP <oo) 

It is important to note that the size of the £p space increases with p. For 

example £°° is the space of all bounded sequences and is a superset of all other 

£p spaces: d1 is the space of all absolutely convergent sequences, t2 is the space 

of all square convergent sequences and £° is the space of all null sequences 

(converges to zero). Of these only £2 is a Hilbert space and in fact, as we will 

see later, a reproducing kernel Hilbert space (RKHS). 

2.3.7 COMPACT AND SELF ADJOINT OPERATORS 

The linear algebra of compact operators acting on infinite-dimensional spaces 

closely resembles that of regular operators on finite-dimensional spaces. 

DEFINITION 2.3.2 (COMPACT OPERATOR) A bounded (continuous) linear op­

erator T is compact if, when applied to the elements of any bounded subset of 

the domain, the resulting image space is precompact (totally bounded) or equiv-

alently, if the closure of the resulting image space is compact (complete and 

totally bounded). 

Note however that the entire domain itself might be unbounded but an 

operator acting on it may still be compact. If the domain is bounded and an 

operator acting upon it is compact then the entire image space is precompact. 

So a bounded (continuous) linear operator from one Hilbert space to an­

other, 

T : L2(RX) -> L2{RX) 

is compact if for every bounded subset S of the domain L2(RX), the closure 

of the image space 

{(77) :fES}c L2(RX) 

is compact. 

DEFINITION 2.3.3 (SELF-ADJOINT OPERATORS) A linear operator T is said 

to be self-adjoint if it is equal to its Hermitian adjoint T* which satisfies the 

following: 

(Th,g) = (h,T*g) 

~, 
f ' 
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All the eigenvalues of a self-adjoint operator are real. In the finite dimensional 

case, a self-adjoint operator (matrix) T is conjugate symmetric. 

By the Reisz Representation Theorem we can show the existence of the adjoint 

for every operator T that defines a bounded (continuous) linear functional 

f : / j H (g,Th), \/h,g<E%: 

3ry e % : f (h) = (g, Th) = (ry, h), V/ i6J{ 

so we can define the adjoint as T*g = rT. We will now characterize and 

show the existence of the basis of the image space of a compact, self-adjoint 

operator. 

THEOREM 2.3.2 ( T H E SPECTRAL THEOREM) Every compact, self-adjoint op­

erator T : %£> —> %R when applied to a function in a Hilbert space f £ "K has 

the following decomposition: 

oo 

Tf = ̂ aiPxi[f]eH (2.31) 

where each cti is a complex number and each %i is a closed subspace of %D 

such that Pjii[f\ is the orthogonal projection of f onto CKj. 

The direct sum of these complementary (orthogonal) subspaces (excluding 

the null space or zero eigenspace "K0 of the domain) equals the image space of 

the operator: 

%R = IKi © %2 8 0i3 8 • • • 

When the operator T induces the following decomposition: 

T<*..= v& (2.32) 

we call £j an eigenfunction and Vi an eigenvalue of the operator. The eigenfunc-

tions of T form a complete, countable orthonormal basis of the image space: 

hence each %i has a basis of eigenfunctions all with the same eigenvalue; so 

we can rewrite the decomposition as follows: 

oo 

27 = X>iU/] (2-33) 
3=1 

where P^[f] is now the projection of / onto the (normalized) eigenfunction <̂ -. 

Different subspaces have different eigenvalues whose associated eigenfunctions 
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are orthogonal: 

%i^%j = > Vi i- Vj = > (Q , <;J)X = 0 

The reverse is however not true; two orthogonal eigenfunctions may have the 

same eigenvalue and be basis vectors for the same subspace. When the domain 

of the operator "K is a finite n-dimensional space then there are n eigenfunc­

tions and associated eigenvalues. When the operator is positive then [Rud91] 

the eigenvalues are positive and absolutely convergent (elements of 0} so that 

they decrease to zero). 

As an example let us consider a single function in the domain / £ L2(X) 

and take a bounded subspace 23 around it, for example the ball of unit length: 

2> = {geL2(X):\\f-g\\Li<l} 

Then application of the compact operator T to elements in this bounded sub-

space S yields an image space whose closure is compact and hence finite-

dimensional. So applying T to any function in 3 yields a function which can 

be decomposed into a finite linear combination of orthogonal basis vectors in 

the form (2.31) or (2.33). 

2.3.8 INTEGRAL OPERATORS 

Essentially, what we would like to achieve is the transformation of a function 

from a space where it is difficult to manipulate to a space where it can be 

represented as a sum of simple functions which are easier to manipulate. An 

associated inverse transform, if it exists, can then transform the function back 

into its original space. We begin by defining this transformation operator and 

its associated kernel: 

DEFINITION 2.3.4 (INTEGRAL OPERATOR) A linear operator TK : L2(X) —• 

L2(X) is integral if for a given kernel function K G L^X x X) the following 

transformation of one function space into another holds almost everywhere for 

allfeL2(X): 

(TKf)(-)= [ K(;x)f(x)d^(x) (2.34) 
Joe 

where [i is the Lebesgue measure. 

When the image space is finite-dimensional, the integral transformation 

TK changes the representation of the input function / to an output function 
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(Txf) expressed as a linear combination of a finite set of orthogonal basis 

functions: 
b 

(TKf) = Yla^ s u d l t h a t (/«> fi) = 0 Vz,j < 6 (2.35) 

DEFINITION 2.3.5 (POSITIVE KERNEL) A function K e ^ ( l x X) such 

that any quadratic form over it is positive: 

f f K(x,y) <r(£) <;(y) dfx(x) dfi{y) > 0 V<r € L2{X) 
JxJx 

is called a positive kernel. 

It is easy to see that when a finite kernel is positive-definite over all possible 

finite sets of vectors in the space X x X then the kernel is positive; furthermore 

if all functions in the domain are positive (/ > 0) then the integral operator 

is also positive Tf > 0 and vice versa. 

DEFINITION 2.3.6 (CONTINUOUS KERNEL) A function K e C°(X x X) is 

continuous at a point {b,c) € X x X if it satisfies: 

Ve > 0, 35 > 0, (2.36) 

Wx,se X, b — 5 < x < b + S, c — 6 < s < c + d 

=^ K(b, c)-e< K(x, s) < K(b, c) + e 

If the kernel K is symmetric, then the integral operator T# (2.34) must 

be self-adjoint. To see this, consider two hypothesis functions f,g & "K: 

{(TKfU)v = f 9®(^j KiMfWd^dptf) 

= 9(y)K(y,x)f(x)dn(x)dfi(y) 
JocJx 

= / / 9{y)K(y,x)f(x)dn(y)dn(x) 
JXJX 

f{x) ( / K(x, y)g(y)dfi(y) J dfi{x) 

= (f,(TK9))v 

where the third equality (switching the order of integration) follows from ap­

plying Fubini's Theorem. Assume further that the kernel K is continuous 
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K e C°(X x X): 

/ K(x,y)2dii(x)dn(y) < oo 
•J JCx X 

Now for any bounded subspace of the domain X x X one can show that the 

image space under the operator TK is precompact in L2(X) and hence that 

the integral operator TK defined in (2.34) is compact. 

So when the kernel K is positive, symmetric and square integrable the 

resulting integral operator TK is positive, self-adjoint and compact. It there­

fore follows from the Spectral Decomposition Theorem that TK must have 

a countable set of non-negative eigenvalues; furthermore, the corresponding 

eigenfunctions {qi, q2, " ' •} must form an orthonormal basis5 for L2(X) assum­

ing they have been normalized W^WL2 = 1-

THEOREM 2.3.3 (MERCER'S THEOREM) For all positive (2.3.5), symmetric 

and continuous (2.37) kernel functions K £ L2(X x X) over a compact domain 

X x X, defining a positive, self-adjoint and compact integral operator TK with 

an eigen-decomposition (2.32) the following five conditions are satisfied: 

1. {t>i, V2, • • •} € h •' the sequence of eigenvalues are absolutely convergent 

2. Vi > 0, Vi : the eigenvalues are strictly positive 

3. Q £ Loo(X) : the individual eigenfunctions $ : X —> R are bounded. 

4- supj Ĥ ULOO < °° •' ^e set of all eigenfunctions is also bounded 

5. Vs,x e X : K(s, x) = YZx "i s(S) <*&) = <*(*). $(2))L* 

where (5) converges absolutely for each (x,y) £ X x X and therefore converges 

uniformly for almost all (x, y) € X x X. 

Proof Since TK is a compact operator we can apply the Spectral Decomposi­

tion Theorem which guarantees the existence of an orthonormal basis (eigen-

decomposition) in terms of eigenfunctions and eigenvalues: 

Tq(s) = / K(t,s)^dfj,ff} = Viq(s) 

5 Strictly speaking, the eigenfunctions span a dense subset of L2(X). 

K E C°(1: x X): 

r K(i, iJ) 2dJ1(i)dJ1(iJ) < 00 
J'Xx 'X 
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Since the eigenfunctions form an orthonormal basis for L2(X), it follows 

that' 

|Q||L2 = / ^(x)2dfi(x) = 1 
Jx 

(1) easily follows from (5) and the boundedness (which is implied by 

continuity over a compact domain) of the kernel function K e Loo(^ x X); 

integrating both sides of the kernel expansion in (5) and taking s = x gives: 

OO p OO p 

\]vi / Si(x)2dn(x) = 2_]vi = / K(x,x)d/j,(x) < oo 
i=l ^ X i = l ^ X 

(2) follows from the positivity of the integral operator TK which is implied by 

the positivity of the kernel function. 

(3) and (4) follow from the continuity of the kernel and the eigenfunc­

tions over a compact domain; if V{ ^ 0 then its associated eigenfunctions are 

continuous on X since: 

Ve > 0, 35 > 0, : \x - y\ < 5 ==• (2.37) 

kt(£)-s(i7)l = •— (K(s, x) - K(s, y)) q(s)dfi(s) 
x 

< ^- f \K(s,x)-K(s,y)\\^\d^g) 
N Jx 

[ \K(s,x)-K(s,y)\diJ,(s) 
Jx \Vi\ JX 

< e 

where the last inequality follows from the continuity of K so that the difference 

\K(s,x) — K(s,y)\ can be made arbitrarily small. 

We can bound the following infinite sum, a proof of which is found in 

[Hoc73], which implies the absolute convergence in (5): 

OO OO -. n p 

y ^ i k i C O ^ s ) ! = y^i—r / K(x,T)qi(x)dn(x) / K(x,s)<;i(x)diJ,(x) 
~i 7~1 N Jx Jx 

• 
2.3.9 REPRODUCING KERNEL HILBERT SPACES 

A Reproducing Kernel Hilbert Space (RKHS) is the 'working' hypothesis 

(function) space for Support Vector Machine algorithms; elements from the 

observation space are mapped into a RKHS, in which the structure necessary 

.~ .. 
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to define (and then solve) a given discriminative or regression problem already 

exists. Any observations can be transformed into features in a RKHS and 

hence there exists a universal representational space for any given set from 

the observation space. The explicit form the features take are as a kernel-

ized distance metric between any two observations which implicitly can be 

expressed as an inner product; essentially a RKHS combines a (restricted) 

Hilbert Space with an associated positive kernel function (definition 2.3.5). 

DEFINITION 2.3.7 (REPRODUCING KERNEL HILBERT SPACE) A Hilbert space 

(3i, (•, -);K) that is point-wise defined (on Rx) and where every evaluation func­

tional £ J / ] : !K(X) —•> R is continuous is a Reproducing Kernel Hilbert Space 

(RKHS). 

Hence all point-wise evaluations are bounded and then by the Reisz Rep-

resenter Theorem (2.3.1) every function evaluation at some fixed point x G X 

has a fixed representer function r^x G %K essentially satisfying (2.16). 

It is easy to show that norm convergence in a RKHS always implies point-

wise convergence and vice versa: 

Wfn - / I k - 0 «=> lim fn(x) = lim £*(/„) = lim £*(/) = / (£) , Vx G X 
n—>oo n—•oo n—>oo 

(2.38) 

where the second equality on the right follows from the continuity of the 

evaluation functional and the assumption that fn converges to / in norm. 

Recall that point-wise convergence (2.6) was the second of two restrictions 

deemed necessary for all functions in the hypothesis space. 

DEFINITION 2.3.8 (REPRODUCING KERNEL) A kernel function K of a Hilbert 

space L2(X x X) that satisfies the following for all x G X: 

1. Kg € Oi : the kernel fixed at some point x G X is a function over a 

Hilbert space 

2. V/ G % the reproducing property is satisfied 

(f,KS) = m 

and in particular when f = Kg : 

(Ks, Ks) = K0) = Ks(s) = K(s, x) 
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So by definition the reproducing kernel is such that for all vectors in the input 

space x G X, the function Kg is the unique representer for the evaluation 

functional £>g(f). 

Vf G X, 3Kg G KK : f(x) = Es[f] = {K3, f)xK = qrt (/), V/ G ft (2.39) 

The only difference between (2.16) and (2.39) is that the latter requires the 

representer to have the form of a kernel function r^ = Kg — K(x, •) fixed in 

its first argument at some point in the input space. Therefore it follows that 

every function in a RKHS can be represented point-wise as an inner product 

whose first argument is always taken from the same set {Kgx, Kg2, Kg3, • • • } 

of distinct (representer) kernel functions and whose second argument is the 

function itself. 

THEOREM 2.3.4 (MOORE- ARONSZAJN THEOREM) Every positive-definite ker­

nel K(-, •) onXxX is a reproducing kernel for some unique RKHS of functions 

on X. Conversely, every RKHS has an associated unique positive-definite ker­

nel whose span is dense in it. In short, there exists a bijection between the 

set of all reproducing kernel Hilbert spaces and the set of all positive kernel 

functions. 

Proof Given a RKHS 'KK, by the Reisz Representation Theorem there exists 

a representer in %K for all evaluation functionals (which are continuous by 

definition of a RKHS) over %K; the representer is given by Kg (see 2.42 or 

2.46) and the reproducing kernel (which can be shown to be positive and 

unique) is therefore given by 

K(x,s) = (Kg,Ks)xK, V s e X (2.40) 

Conversely, given a positive kernel K we define a set of functions {Kg1, Kg2, • • • } 

for each X{ G X and then define the elements of the RKHS as the point-wise 

defined functions in (the completion of) the space spanned by this set: 

MK=lfeRx:f = J^ a{KSv \\f\\KK < oo, a{ G E 1 (2.41) 
V l i S X ) 

~, 
l ' 
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xiEX 
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The reproducing property is satisfied in this space: 

(Ks,fWK = U,,Y,PjKr\ (2.42) 
\ i ' % 

j 

= m 
so that Kg.ls in fact the representer of the evaluation functional £?(•). Evalua­

tion functional in this space are necessarily bounded and therefore continuous: 

|£*(/)| = |/(f)| = \(Ks,f)\ < | |^|k||/|k = a||/|k 

where the second equality is due to the reproducing property of the kernel 

and the third inequality is due to the Cauchy-Schwarz Inequality. Norms in 

this space || • H ^ are induced by the inner (dot) product which is defined as 

follows: 

,Xj) 

which can easily be shown to be symmetric and linear when the kernel is 

positive. 

We complete the space spanned by the kernel function K by adding to 

it the limit functions of all Cauchy sequences of functions, if they are not 

already within the space. The limit functions that must be added (and which 

can therefore not be expressed as a linear combination of the kernel basis 

functions, i.e. the span of the kernel is dense in the space) must be point-wise 

well defined. However we have already seen that in a RKHS, norm convergence 

(and in particular Cauchy convergence) implies point-wise convergence so that 

the limit function is always point-wise well defined; so all Cauchy sequences 

converge point-wise to limit functions whose addition to the space completes 

it. • 

So given any positive-definite kernel function we can construct its associ­

ated unique reproducing kernel Hilbert space and vice versa. As an example 

The reproducing property is satisfied in this space: 

(K..JhK = / K" L /3jK~) 
\ J J-CK 

L {3j(Ks, Kr)J-CK 
j 

L {3jK(s, 0) 
j 

f(8) 
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(2.42) 

so that K sis in fact the representer of the evaluation functional ë s(')' Evalua­

tion functionals in this space are necessarily bounded and therefore continuous: 

where the second equality is due to the reproducing property of the kernel 

and the third inequality is due to the Cauchy-Schwarz Inequality. Norms in 

this space II· IIJ-CK are induced by the inner (dot) product which is defined as 

follows: 

/ L n,K." L/3jK.,) 
\ t J J-CK 

- L L Œi{3jK(Xi, Xj) 
j 

(2.43) 

which can easily be shown to be symmetric and linear when the kernel is 

positive. 

We complete the space spanned by the kernel function K by adding to 
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ated unique reproducing kernel Hilbert space and vice versa. As an example 
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let us consider the Hilbert space L2 that contains functions that have dis­

continuities (evaluation functionals are therefore not bounded and hence not 

continuous and so it is not a RKHS) of measure zero and are therefore not 

smooth, as are all the elements of C°° which is however not a Hilbert space; 

hence we seek to restrict the Hilbert space L2, removing all functions that are 

not smooth as well as some that are, ensuring that the resulting space is still 

Hilbertian. Define L\ as the subspace of L2 that includes the span of the 

functions Kg, x G X as well as their point-wise limits. The resulting space is 

Hilbertian. If the kernel reproduces in the space and is bounded then L\ is a 

reproducing kernel Hilbert space. 

Alternatively, we can construct a RKHS by using Mercer's Decomposition 

(Condition 5 of 2.3.3); consider the space spanned by the eigenfunctions (which 

have non-zero eigenvalues) of the eigendecomposition of the integral operator 

defined using some kernel K: 

XK = I f e RX : / = ] T ate, \\f\\xK < oo, a{ e R, $ € Loo(X) I (2.44) 

so that the dimension of the space %K is equal to the number of non-zero 

eigenvalues of the integral operator. Then define the norm on this RKHS in 

terms of an inner product: 

/ oo oo \ 

{f,9)ocK = ( l > ^ I > s ) (2-45) 

It then follows from Mercer's Theorem that the function Kg is a representer 

of the evaluation functional £$ and therefore reproduces in the RKHS "KK'-

I oo oo \ 

\ i = l i = l / "KK 

Vi 

oo 

It.-

oo 

- E 
1=1 

00 . 

= J^ai?i(a ..AX) 
i=l 
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00 

L QiÇi(X) 
i=l 

- f(x) 
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So instead of minimizing the regularized risk functional over all functions in 

the hypothesis space: 

/* = arginf J £*(/ , {£,#}) + A||/||^ 1 (2.47) 

we can minimize the following functional over all sequences of expansion co­

efficients {«!, Qf2, • • • }: 

( n / oo \ 2 ^ 

E M E ^ ( - ) ' ^ ^ +AE? (2-48) 
which follows from (2.44) and (2.45). The number of expansion coefficients is 

equal to the number of non-zero eigenvalues which is also the dimension of the 

RKHS constructed in (2.44); since this number is possibly infinite the above 

optimization is possibly infeasible. 

More generally we can construct a RKHS by completing the span of any 

basis set. The RKHS constructions (2.41) and (2.44) are equivalent (see [CS02] 

for a proof). The inner products defined in (2.45) and (2.43) can also be shown 

to be equivalent. 

2.4 RKHS AND FUNCTION REGULARITY 

Now that we have introduced the RKHS family of hypothesis spaces we 

introduce some further restrictions and discuss why they are necessary. The 

hypothesis that the learning algorithm selects will need to conform to three 

basic criteria: 

DEFINITION 2.4.1 (WELL-POSED OPTIMIZATION) An optimization^ is well-

posed provided the solution f* : X —> ^: 

1. Exists: if the hypothesis space is too small then the solution may not 

exist. 

3/* e% : /* = arginf* 

2. is Unique: if the hypothesis space is too large or the training set is too 

small then the solution may not be unique. 

V / r , / 2 * G ^ : A*,/2* = arginf* = > /* = /* 
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j j * E 9{ : j* = arg inf W 
!E'J{ 
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vj;, j; E 9{ : j;, j; = arginfW ==} j; = j; 
!E'J{ 
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3. is Stable: f* depends continuously on the training set, so that slight 

perturbations in the training set do not affect the resulting solution, es­

pecially as the number of training examples gets larger. 

As we will see in the following chapter, the prediction function output by the 

learning algorithm must be generalizable and well-posed. The third criterion 

above is especially important as it relates to the generalization ability of a 

hypothesis: a stable transform is less likely to overfit the training set. 

The ERM principle guarantees the existence of a solution assuming Oi is 

compact and the loss function £ (and hence the empirical risk Rn) is continu­

ous; in general neither of these conditions are satisfied. ERM does not however 

guarantee the uniqueness (all functions that achieve the minimum empirical 

risk are in the same equivalence class but there is only one amongst this class 

that generalizes well) or the stability (removing a single example from the 

training set will give rise to a new prediction function that is fundamentally 

different) of the solution; the method is therefore ill-posed. 

We must resort to using prior information to determine which solution 

from within the equivalence class of functions of minimal empirical risk is 

best suited for prediction. This can be done for example by constraining the 

capacity of the hypothesis space. We will consider two regularization methods 

that attempt to do this, thereby ensuring the uniqueness and stability of the 

solution. The question of how to constrain the hypothesis space is answered by 

Occam's Razor which essentially states that the simplest solution is often the 

best, given that all other variables (i.e. the empirical risk) remain constant. 

So in a nutshell, regularization attempts to provide well-posed solutions 

to a learning task, specifically ERM, by constraining the capacity of the hy­

pothesis space through the elimination of complex functions that are unlikely 

to generalize, thereby isolating a unique and stable solution. 

We can explicitly constrain the capacity of the hypothesis space (Ivanov 

Regularization) or implicitly optimize a parameter (Tikhonov Regularization) 
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that regulates the capacity of the hypothesis space. Both methods are equiva­

lent6 and make use of a measure of the " smoothness" 7 of a function to regulate 

the hypothesis space. It is easy to show that the norm functional serves as an 

appropriate measure of smoothness given that the associated kernel serves as 

an appropriate measure of similarity. 

DEFINITION 2.4.2 (LIPSCHITZ CONTINUITY) A map f : X —> y is Lipschitz 

continuous if it satisfies: 

\f(Sl)-f(x2)\<M\S1-x2\ 

The smallest M > 0 that satisfies the above inequality for all X\,x2 € X is 

called the Lipschitz constant of the function. Every Lipschitz continuous map 

is uniformly continuous which is a stronger condition than simple continuity. 

Functions in a RKHS are Lipschitz continuous; take two points in the 

domain X\,x2 G X then from the Reisz Representation Theorem it follows 

that: 

|/(afi)-/(f2)| = \(f,KSl)xx-(f,K£2)xx\ (2.49) 

< \\f\\Moc(KSl - K,2)
2 

where the Lipschitz constant is given by the norm of the function M = ||/||:Kpc 

and the distance between two elements in the domain is given by the square 

of the difference of their kernelized positions. As the Lipschitz constant (in 

this case the norm of the function) decreases, the function varies less in the 

image space for similar (as measured by the kernel) points in the domain. This 

justifies the use of the norm in the regularized risk functional defined in (2.47) 

and now used in the following regularization methods. 

6 The Lagrange multiplier technique (5.1) reduces an Ivanov Regularization 
with constraints to a Tikhonov Regularization without constraints 

7 Intuitively, a function is smooth when the variance in the image space is 
slow for points in the domain that are similar. The similarity of points in a 
RKHS can naturally be measured by the associated kernel function (2.49). 

r', 
1 
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2.4.1 IVANOV REGULARIZATION 

Ivanov Regularization requires that all functions in the hypothesis space / € 

% j , of which there might be an infinite number, exist in a T-bounded subset 

of a RKHS %K: 

f* = arginf Rn{f] subject to pi\WK < 7 (2.50) 

fe"K 

Another way to see why this works is to consider functions from two 

hypothesis spaces, one significantly less complex (functions are smoother) than 

the other; 

X7i = {/ : / e %K and | | / | | ^ < %}, i e {1,2}, 7X « 72 

Small perturbations in the training data cause prediction functions from the 

more complex class "K^ to fluctuate more whereas functions from the smoother 

class "K7l remain relatively stable. In [Rak06] we also see that for ERM in par­

ticular, stability and consistency (3.13) are in fact equivalent. Furthermore, a 

bounded, finite-dimensional RKHS Oi^ is a totally bounded space and hence 

must have a finite epsilon-net (definition 3.4.1) which implies the covering num­

ber (definition 3.4.3) of "K^ may be used in deriving generalization bounds. 

Yet there is no specified methodology for choosing the value of T and so we 

must resort to using another related regularization technique. 

2.4.2 TIKHONOV REGULARIZATION 

The Tikhonov Regularization differs in that it penalizes the complexity and 

instability of the hypothesis space in the objective function of the optimization 

instead of explicitly bounding it by some constant; 

/* = arginf {^[ /1 + A H / l l ^ j (2.51) 

where A is a regularization parameter that must also be optimized to ensure 

optimal generalization performance as well as the stability and uniqueness of 

the solution [Rak06]. In the following theorem we see that although the hy­

pothesis space is potentially an infinite dimensional Hilbert function space, the 

solution of the Tikhonov optimization has the form of a finite basis expansion. 
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fEX,>' 
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where À is a regularization parameter that must also be optimized to ensure 

optimal generalization performance as weIl as the stability and uniqueness of 

the solution [Rak06]. In the foIlowing theorem we see that although the hy­

pothesis space is potentially an infinite dimensional Hilbert function space, the 

solution of the Tikhonov optimization has the form of a finite basis expansion. 
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fc(-.c) • .1 /(•) = *(•, a) + *(., 6) + fc(.,c) 
^Possibly infinite dimensional RKHS j (finite linear combination) 

Figure 2—3: Each training data point is mapped to a basis function (in blue) which can 
then be used to define the solution (in red) as a linear combination of the basis functions. 

THEOREM 2.4.1 (REPRESENTEE THEOREM) Consider the objective function 

of the Tikhonov Regularization Method that optimizes the sum of a loss func­

tion and a regularization term: 

f = arginf I £ *(/, {xu ft}) + T(||/|&) 

TTien if I is a point-wise defined loss function (i.e. V{XJ, ft} £ § : £(/, {XJ, $}) G 

RJ and T is monotonically increasing then the solution to the optimization ex­

ists and can be written as a linear combination of a finite set of functions 

defined over the training data; 

n 

where K$i is the representer of the (bounded) evaluation functional £j-(/) = 

f{xj) for all feOi. 

Proof The functions Kgt, VXJ G § span a subspace of "K: 

U = s p a n { ^ :l<i<n} = lfeW:f = ^ a ^ 
I i=i 

Denote by Pu the projection that maps functions from %K onto U, then any 

function Py[f\ can be represented as a finite linear combination: 

VPU[/] € U : Pu[/] = £ > # * , 
i = l 
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Then if e is a point-wise defined loss function (i. e. V{ Xi, Yi} ES: eu, {Xi,;ija) E 

IR) and Y is monotonically increasing then the solution to the optimization ex­

ists and can be written as a linear combination of a finite set of functions 

defined over the training data; 

n 

f* = 2...: ŒjKxj 
j=l 

where KXj is the representer of the (bounded) evaluation functional ëxj(f) = 

f(xj) for all f E 9-{. 

Proof The functions KXi' VXi E S span a subspace of 9-{: 

li = span{KXi : 1 ~ i ~ n} = {f E 9-{: f = tŒiKxi} 
~=l 

Denote by Pu the projection that maps functions from 9-{K onto li, then any 

function Pu[J] can be represented as a finite linear combination: 

n 

v Pu[J] E li : Pu[J] = 2: ŒiKxi 
i=l 



33 

Hence any function / G "K can be represented as: 

n 

f = Pu[f] + (I - Pu)[f] = J2caKXt + (I- Pu)[f] 
i = l 

where (/ — Pu) is the projection of functions in 3i onto UT whose elements are 

orthogonal to those in 11. Now applying the reproducing property of a RKHS 

and noting that the function KSj is orthogonal to all vectors in UT: 

I n 

J2aiKSi + (I-Pu)[f),KS] 

n 

= Y,ai{K^KSi)^{{I-Pu)[flK,j) 

n 

i = l 
n 

2 = 1 

so that the evaluation of functions in the hypothesis space is not dependent 

on corresponding components in the subspace UT but is dependent on the 

coefficients {oti,i = 1, • • • ,n} which must be determined. Now since the loss 

function needs only to be evaluated point-wise over the training set, we can 

group all functions that have the same point-wise evaluation over S (and hence 

the same risk) into an equivalence class: 

/ = g <«==>. / ( £ . ) = g[Si), Vfi G S 
n n 

<=> f(xi) = Y^ ajH$i, xj) = ̂ 2 Pik(xu XJ) = g(xi), Vfi G S 
3=1 3=1 

= * £(/,§) = *((/, S) 

=» 4[/]4M 

Now for # G II and Z G U such that / = g +1 we have: 

it then follows that the optimal function within the equivalence class of min­

imum risk must have \\1\\M — 0 since otherwise it increases H/H^ (and hence 
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function needs only to be evaluated point-wise over the training set, we can 

group aIl functions that have the same point-wise evaluation over S (and hence 
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• 

n n 

~ f(Xi) = Lajk(xi,Xj) = Lf3jk(Xi,Xj) = g(Xi), 'VXi E S 
j=l 

===} eu, S) = e(g, S) 

===} Rn [f] = Rn [g] 

j=l 

Now for 9 E U and l E UT such that f = 9 + l we have: 

Y(llfll~) = Y(llgll~ + IlllI~) 

it then foIlows that the optimal function within the equivalence class of min­

imum risk must have IllllJ{ = 0 since otherwise it increases "fll~ (and hence 
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Figure 2—4: Each function e,f,g£j{ has a distinct set of expansion coefficients. However 
/ and g are equivalent in the sense that their function evaluations over the training set are 
equal: g(xi) = £ " = 1 fakfe, Xj) = £ " = 1 ajk(xi, xj) = /(£,). 

increases the evaluation of the monotonically increasing function T) but leaves 

the loss unaltered. We can therefore rewrite the objective function as: 

/* = argmin \ Y] i(g, {xu #}) + T(||#||^) 
fex,g=pu{f) [ ^ 

In this way we have linked the search for the global optima in "K with a search 

for the optimal coefficients {aci,i — 1, • • • , n} that define a function in the 

subspace U; 

/* = argmin S £ M £ aiK*j> &, Vi) + T ] P J ^ ai^jK(xi, Xj) 

(2.52) 

In contrast to (2.48), the optimization defined above is feasible as it is per­

formed over a finite number of basis expansion coefficients. So in summary 

to arrive at a solution in a finite dimensional space IX, the optimization first 

identifies the equivalence class of functions in % that have minimal risk and 

then within this class, it identifies the hypothesis whose component in the 

complementary (orthogonal) subspace UT has a norm equal to zero. • 

The solution can also be expressed as a linear combination of a finite num­

ber of eigenfunctions as long as they serve as representers for the evaluation 

functional: 
m 

/* = £&* 
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complementary (orthogonal) subspace UT has a norm equal to zero. 0 
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ber of eigenfunctions as long as they serve as representers for the evaluation 
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1* = L(3jÇi 
j=l 
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The solution /* can then be substituted into the optimization (2.52) so that 

the values of the expansion coefficients can be numerically calculated; when 

the loss function is quadratic then this amount to solving a linear system and 

otherwise a gradient descent algorithm is employed. 

So instead of searching through the entire infinite dimensional hypothesis 

space IK/f, as defined in (2.41), we will only consider a finite-dimensional 

subspace of U that is spanned by a finite number of basis functions. Within 

this finite dimensional subspace the solution may still not be unique if we 

optimized over the loss function alone since there can be several functions 

that linearly separate (for zero-one (4.1) or hinge loss (4.3) functions) or near-

perfectly pass through (for e-insensitive loss (5.1) function) the entire data set 

to achieve minimal risk; the addition of the regularization term guarantees 

uniqueness. 

2.5 THE KERNEL TRICK 

The kernel trick simplifies the quadratic optimizations used in support 

vector machines by replacing a dot product of feature vectors in the feature 

space with a kernel evaluation over the input space. Use of the (reproducing) 

kernel trick can be justified by constructing the explicit map <fr : X i——> E x in 

two different ways both of which map a vector x G X in the input space to 

a vector in a (feature) reproducing kernel Hilbert space; the first method is 

derived from the Moore-Aronzajn construction (2.41) of a RKHS and defines 

the map as: 

The reproducing property can then be used to show that the inner product 

of two functions in the feature (RKHS) space is equivalent to a simple kernel 

evaluation: 

($(£), $(S)):K* = {Ks, Ks)xK = K(x, s) (2.53) 

The second method is derived from Mercer's Construction (2.44) of a RKHS 

and defines the map as: 

<J> : x -> {y/vi<;i{x), y/vitoix), • • • } € f 

From condition (5) of Mercer's Theorem it then follows that the L2 inner 

product of two functions in the feature space is equivalent to a simple kernel 
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evaluation: 

<$(£), $(s))L2 = J2V^(X)Q(S) = K(x,s) (2.54) 

Mercer's Theorem proves the converse, specifically that a positive, continu­

ous, symmetric kernel can be decomposed into an inner product of infinite-

dimensional (implicitly) mapped input vectors. 

2.5.1 KERNELIZING THE OBJECTIVE FUNCTION 

As an example let us consider the dual quadratic optimization used in support 

vector regression (5.16) which includes the inner product (4>(xi) • 4>{XJ)) in its 

objective function; 

maximise < 

> 

- A ) ( a j - / ? j ) (4>{xi) • <f>{xj)) 
%=i j=i 

n n 

—e 

subject to 

]T(at + Pi) +^yi(ai - fy) 
i=l i=l J 

n 

J2(ai ~ A) = o 

« i ,Ae [0,C] 

The process of applying the projection or mapping (j) to each input and 

then taking inner products between all pairs of inputs is computationally in­

tensive; in cases where the feature space is infinite' dimensional it is infeasible; 

so we substitute a kernel evaluation for this inner product in the objective 

function of the quadratic program and by Theorem (2.3.3) we see that the 

inner product is now performed implicitly in the feature space; 

r i 
~o J2 E ( a i ~ A)(ai - Pi) K&> *i) 

maximise < 
t=i j = i 

subject to 

e ^2(ai + Pi) + YlVi(ai ~ A) 
i = l 

n 

X > ; - Pi) = 0 

i=l 

i = l 

auPiE [0,C] 

36 

evaluation: 

(2.54) 

Mercer's Theorem proves the converse, specifically that a positive, continu­
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1 n n 

-2 L L(ai - (3i)(aj - (3j) (<f;(Xi) . <f;(Xj)) 
i=l j=l 

n n 

i=l i=l 
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then taking inner products between aIl pairs of inputs is computationally in­

tensive; in cases where the feature space is infinite' dimensional it is infeasible; 
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function of the quadratic pro gram and by Theorem (2.3.3) we see that the 
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maximise n n 

i=l i=l 

subject to 
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2.5.2 KERNELIZING THE SOLUTION 

The solution f(xt) to a kernelized classification task (4.12) is given in terms 

of the weight vector w (which is orthogonal to the separating hyperplane), 

which in turn is computed using a constraint derived from the dual form of a 

quadratic optimization (4.22) and expressed as a linear combination of support 

vectors (section 4.2.2) which must be mapped (using <fi) into the feature space: 

w = ^aiy^Xi) 
i 

The hypothesis function can be kernelized (so that prediction is possible 

even in infinite dimensional spaces) by first mapping the test example xt in 

its definition using the map <f> and then substituting a kernel evaluation with 

the dot-product; 

f(xt) = sgn(<i>(xt)-w + b) (2.55) 

= sgn j <f){x\) • ^2 aiVi^ixi) + b j 

= sSn ( YlaiVi (0(^*)> ^ < ) > + b I ( 2- 5 6) 

= sgn I ^ aiVi K% • Xi) + b J (2.57) 

We refer to equation (2.55) as the primal solution, to equation (2.56) as 

the dual solution and to equation (2.57) as the kernelized dual solution. The 

solution f(xt) to a regression task (5.18) can be kernelized in a similar fashion. 

It is important to note that this (2.55 and 2.57) is simply an example that 

reveals how kernel functions correspond to a specific map into a specific feature 

space; in general however it is not necessary to know the structure of either the 

implicit map or feature space associated with a kernel function; so although 

'learning' is performed implicitly in a complex non-linear feature space, all 

computation is performed in the input space; this includes the optimization 

of all learning parameters as well as the evaluation of the solution. 
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STATISTICAL LEARNING THEORY 

In searching for an optimal prediction function the most natural approach 

is to define an optimization over some measure that gauges the accuracy of 

admissible prediction functions over the training set S = {xi, Vi}™=1 C X; by 

applying such a measure or loss function £(f, {x, y}) to each hypothesis in the 

hypothesis space / € 'K we get a resulting space of functions known as the 

loss class: 

Now to test a hypothesis, its performance must be evaluated by some fixed loss 

function over the entire observation space. However, since the generation of 

observations is governed by the distribution P(x, y), making some observations 

more likely than others, we will need to integrate with respect to it: 

DEFINITION 3.0.1 ( T H E EXPECTED RISK) is the average loss or error that 

a fixed function produces over the observation space X x y, integrated with 

respect to the distribution of data generation 

Rx[f] = J Je(f,&y)) dP&y) = I Je(f,{x,y})P&y) dxdy 
O *Su (J Jis 

A learning method can now simply minimize the expected risk over all mea­

surable functions in the hypothesis space "K for some fixed loss function £: 

r = arginfi?x[/] (3-1) 
few 

to find the function /* that, in the case of a binary classification task, separates 

the n positive and negative training examples with minimal expected loss; we 
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11 :x 11 :x 
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sur able functions in the hypothesis space 9-C for sorne fixed loss function f: 

f* = arg inf Rdf] 
!E'J{ 

(3.1 ) 

to find the function f* that, in the case of a binary classification task, separates 

the n positive and negative training examples with minimal expected loss; we 
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refer to this quantity as the actual risk for a given function class: 

RA{K) = inf Rx[f] (3.2) 

Since P(x, y) is unknown and also since annotations are not available for the 

entire input space (which would make learning quite unnecessary) finding /* 

using (3.1) is technically impossible. 

The material for this chapter was referenced from [CS02], Chapters 8 and 

9 of [Muk07], [Che97], [Zho02], [LV07], [BBL03], [PMRR04], [Rak06], [CSTOO], 

[HTH01], [EPPOO], [Ama95], [Vap99], [Vap96] and [VapOO]. 

3.1 E M P I R I C A L R I S K M I N I M I Z A T I O N ( E R M ) 

Since evaluating the expected risk is not possible we can instead try to 

approximate it; a Bayesian approach attempts to model P(x, y) = P(x)-P(y\x) 

and then estimate it from the training data so that the integration in (3.0.1) is 

realizable. A frequentist approach uses the mean loss or empirical risk achieved 

over the training data as an approximation of the expected risk; 

Rn[f] = ̂ itt(f,{xuyi}) (3.3) 
1=1 

The Empirical Risk Minimization (ERM) methodology then minimizes the 

empirical risk Rn in search of a hypothesis, that hopefully has minimized 

expected risk as well so that it is able to accurately predict the annotations of 

future test examples that are generated by the same input distribution P{x) 

that was used in generating the sample set from which the empirical risk was 

initially calculated: 

/* = axginfA»[/] (3-4) 

The remainder of this chapter discusses conditions under which ERM's 

choice of hypothesis /* is equal to the best possible hypothesis /*. To begin 

with we would like to measure the deviation between the expected risk (or test 

error) of the hypothesis /* that has minimal empirical risk and the actual risk 

as defined in (3.2); moreover we would like to study the asymptotic behaviour 

of this deviation; this quantity is the sample error and will be considered in 

detail in later sections; 

39 

refer to this quantity as the actual risk for a given function class: 

(3.2) 

Sinee P (x, y) is unknown and also sinee annotations are not available for the 

entire input spaee (which would make learning quite unneeessary) finding 1* 
using (3.1) is technically impossible. 

The material for this chapter was referenced from [CS02], Chapters 8 and 

90f[Muk07], [Che97], [Zho02], [LV07], [BBL03], [PMRR04], [Rak06], [CSTOO], 

[HTHOl], [EPPOO], [Ama9S], [Vap99], [Vap96] and [VapOO]. 

3.1 EMPIRICAL RISK MINIMIZATION (ERM) 

Sinee evaluating the expected risk is not possible we can instead try to 

approximate it; a Bayesian approach attempts to model P(X, y) = P(x).P(ylx) 

and then estimate it from the training data so that the integration in (3.0.1) is 

realizable. A frequentist approach uses the mean loss or empirical risk achieved 

over the training data as an approximation of the expected risk; 

(3.3) 

The Empirical Risk Minimization (ERM) methodology then minimizes the 

empirical risk Rn in search of a hypothesis, that hopefully has minimized 

expected risk as well so that it is able to accurately predict the annotations of 

future test examples that are generated by the same input distribution P(X) 
that was used in generating the sample set from which the empirical risk was 

initially calculated: 

f~ = arg inf RnU] (3.4) 
jE'J{ 

The remainder of this chapter discusses conditions under which ERM's 

choice of hypothesis f~ is equal to the best possible hypothesis 1*. To begin 

with we would like to measure the deviation between the expected risk (or test 

error) of the hypothesis f~ that has minimal empirical risk and the actual risk 

as defined in (3.2); moreover we would like to study the asymptotic behaviour 

of this deviation; thisquantity is the sample error and will be considered in 

detail in later sections; 



40 

Rs = Rx[ft] ~ Rx[f*} (3.5) 

There are two subtleties that must first be considered; to begin with it 

is clear that the effectiveness of ERM is highly dependent on its associated 

exploration algorithm which is primarily responsible for searching through the 

hypothesis space, i.e. iterating through each element of the space "K so that 

computing the infimum in (3.4) is possible. Minimization of the empirical risk 

is only half of the ERM learning problem; it must be supplied with the argu­

ments over which it can apply the minimization. It is possible for the learning 

algorithm, which is a combination of ERM and the exploration algorithm, to 

find a local minima not far from its starting position and get stuck; potential 

solutions to this problem will be discussed later. 

Secondly, when no data is available the empirical risk (or training loss 

in this case) is zero and remains as such as long as the prediction function 

correctly classifies all elements in the training set. As more data becomes 

available it increases as the prediction function fails to correctly classify an 

increasing number of training set elements; so the empirical risk is a monoton-

ically increasing function of n. Furthermore, it never surpasses the expected 

risk; in the limit the empirical risk plateaus but to be able to examine the 

convergence of the empirical risk in more detail, we introduce a probabilistic 

generalization bound. 

LEMMA 3.1.1 (CHERNOFF'S INEQUALITY) For a fixed function f e 0i and 

a bounded loss function A < C (/) < B, the probability of at least an absolute 

e-difference between expected and empirical risks is bounded from above; 

P (Rxlfl ~ Rn[f] > c) < e—2«B~A)2 (3.6) 

and varies only with e and n as well as the loss function bounds A and B. 

This is essentially a quantitative expression of the law of large numbers: as 

n increases the bound 2e~2ne is reduced exponentially fast; this implies an 
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exponential convergence in probability so that the empirical risk is a proba­

bilistically unbiased estimate of the expected risk: 

l i m , ^ Rn{f}f,B,x[f) ' (3.7) 

•^=> Ve > 0 38 = e-'^/(B-Af git> p (Rx[f] _ Rnlf] >e\<5 

<=> Ve > 0 38 = e-™
2KB-A)* sL p (Rx[f) - Rn[f] <e) >l-6 

The e defines a one-sided confidence interval while the 8 is its correspond­

ing confidence level. 

This closeness of the empirical risk to the expected risk defines the notion 

of generalization] it gives us an assurance that by minimizing the empirical 

risk (3.4). we are more likely to select a function that will have a small ex­

pected risk as well or in simpler terms; when test (expected) performance 

and training (empirical) performance are highly correlated which allows the 

learner to determine the parametrization of an accurate prediction function. 

Conditions for generalization and a diminishing sample error R$ are the focus 

of this chapter. 

The generalization error is defined as the difference between the empirical 

and expected risks; (3.6) is an example of a generalization bound that attempts 

to link the performance of a prediction function on some training set to its 

potential performance on an unseen test set; since there exists the possibility 

that the distribution of the training set is highly unrepresentative of the actual 

distribution P{x,y), generalization bounds only hold with a certain probabil­

ity. Furthermore, the generalization bound is void if the value of e (in 3.6) 

exceeds the largest possible generalization error. Finally, the generalization 

potential of a learning method lies in its ability [VapOO] to regulate the rate of 

convergence defined by some generalization bound. 

The convergence in (3.7), as well as others we will see in the sections 

that follow, define what is commonly referred to as a Probably Approximately 

Correct (PAC) Generalization; suppose we would like to specify with a certain 

confidence when generalization is likely to occur; then we can select a value for 

6 which as we see above is a function of both n and e; PAC Generalization then 

occurs when with probability at least 1 — 8. the empirical risk is e-approximately 

equivalent to the expected risk or in simpler terms; the generalization error is 

almost surely very close to zero. 
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Figure 3—1: If we restrict the hypothesis space by considering only linear hypothesis; the 
number of admissible classification functions (which in this case implies perfect separation of 
the blue and red examples) decreases as the size of the training set (solid circles) increases; 
the generalization potential of functions in this reduced set simultaneously increases as they 
classify test examples (open circles) more accurately. However even amongst the set of 
admissible functions there is one unique function (which is possibly equivalent to the target 
function) that generalizes better than all others. 

However, a learning algorithm that returns a prediction function with 

low empirical risk that is un-generalizable is of no use; conversely a prediction 

function that is able to generalize satisfying (3.7) but that has a large empirical 

risk is impossible to identify using the ERM approach. 

Prediction functions chosen by ERM alone are often unable to generalize; 

this is because there can be infinitely many functions that have minimal risk, 

amongst which a single unique element maintains the highest generalization 

potential. As an example let us consider the hypothesis space that consists 

of all possible functions so that any training set can be fitted with an (un­

necessarily complex) function whose empirical risk is zero but that has no 

generalization potential whatsoever; if we do not restrict the capacity of the 

hypothesis space then learning is simply not possible! 

In section 2.4 we consider two regularization methods that exclude those 

sections of the hypothesis space that we know a priori will not contain the 

empirical target function; as more training data becomes available, we can 

make stronger assumptions on the distribution of the data and hence regulate 

the capacity of the hypothesis space further still. 
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3.2 UNIFORMLY CONVERGENT GENERALIZATION BOUNDS 

It is obvious that for any fixed value of n, the function /* defined in 

(3.1) that minimizes the expected risk is not necessarily equivalent to the 

function /* defined in (3.4) that minimizes the empirical risk. This is due 

to a significant weakness of the convergence (3.7) in that it is a point-wise 

limit implying that the rate of convergence may differ amongst the various 

functions in the function space !K so that even for very large n where we have 

'convergence' for some subset of % there might exist functions that have not 

yet even begun to approach their limits; we must consider the worst-case in 

our analysis of the convergence of the empirical risk and hence need to extend 

Chernoff's Inequality to consider all functions collectively by bounding from 

above the supremum of the generalization error: 

snp(Roc[f}-Rn{f])<e (3.8) 

This is a stronger generalization criteria than (3.7): intuitively, since we do 

not know in advance which function is optimal at future stages of the learning 

process, we must consider the worst case of every function and union these 

together to form a uniform (pessimistic) bound. 

A generalization bound similar to Chernoff's inequality but for all func­

tions in "K may be derived by taking the union over "K and then using the 

sub-additivity property of probability measures where the probability of the 

union is bounded from above by the sum of the individual probabilities in 

(3.6): 

P (3f e 0< : (Rx[f] - Rn[f] > e)) = P(yfex(Rx[f\-Rn\f\>e)) 

< \ ^ e-ne*/(B-A)* 

= \3i\e-ne2/^-A)2 (3.9) 

We can rewrite (3.9) in a form similar to (3.8) where if the supremum of 

the generalization error is bounded from above by e then all functions in "K 

must also be bounded by e: 
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3.2 UNIFORMLY CONVERGENT GENERALIZATION BOUNDS 

It is obvious that for any fixed value of n, the function 1* defined in 

(3.1) that minimizes the expected risk is not necessarily equivalent to the 

function j* defined in (3.4) that minimizes the empirical risk. This is due 

to a significant weakness of the convergence (3.7) in that it is a point-wise 

limit implying that the rate of convergence may differ amongst the various 

functions in the function space 9-C so that even for very large n where we have 

'convergence' for sorne subset of 9-C there mlght exist functions that have not 

yet even begun to approach their limits; we must consider the worst-case in 

our analysis of the convergence of the empirical risk and hence need to extend 

Chernoff's Inequality to consider aH functions collectively by bounding from 

above the supremum of the generalization error: 

sup ( RxU] - Rn [1]) ::; E 
jEJ{ 

(3.8) 

This is a stronger generalization criteria than (3.7): intuitively, since we do 

not know in advance which function is optimal at future stages of the learning 

pro cess, we must consider the worst case of every function and union these 

together to form a uniform (pessimistic) bound. 

A generalization bound similar to Chernoff's inequality but for all func­

tions in 9-C mal' be derived by taking the union over 9-C and then using the 

sub-additivity property of probability measures where the probability of the 

union is bounded from above by the sum of the individual probabilities in 

(3.6): 

P (31 E 9-C: (RxU]- RnU] ~ E)) P (UjEJ{ (RxU]- RnU] ~ E)) 
< LP (RxU]- RnU] ~ E) 

jEJ{ 

< L e-m2/(B-A)2 

jEJ{ 

19-Cle-m2 /(B-A)2 (3.9) 

We can rewrite (3.9) in a form similar to (3.8) where if the supremum of 

the generalization error is bounded from above by E then an functions in 9-C 

must also be bounded by E: 
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p( sup( i2x [ / ] - iU / ] )<e ) = P(vf€M:(Rx\f]-Rn\f\<e)) 

= l-p(3feK:(Rx\f\-Rn\f]>e)) 
Jew 

> 1 - \M\e-™2/{B~A)2 

Now let 5 = |!K|e"n<; /(B~-4) ; then solving for e we have 

« - i / * ( f ) ^ 
LEMMA 3.2.1 (HOEFFDING'S INEQUALITY) 4̂ distribution-free fronnd i/iai guan-

tifies the deviation of the empirical mean Rn[f] from its true value R%[f] over 

% , 

sup (KM - kM) < ^ / l o g ( f f l ) ( ^ (3.11) 

and which holds with probability at least 1 — 8 for a finite hypothesis space 

ja-cj < oo. 

The convergence is still exponentially fast (3.9) but the generalization bound 

now depends only on the choice of function class Di, the size of the training 

set and a parameter S : 0 < 5 < 1; it is said to be distribution-free because it 

holds independently of P(x,y), the distribution of data generation. Also the 

bound holds with probability at least 1 — 5 for the ERM prediction function /* 

defined in (3.4); moreover it holds (with the exact same probability 1—5) for all 

other hypothesis in the function space % and hence is a uniform convergence 

bound. To see this let us first formally define the notion of one-sided uniform 

convergence: 

Ve > 0 3N e N such that \/n > N and V / e M (i?x[/] - Rn[f]) < e 

(3.12) 

Now for any choice of e > 0, we can show that (3.11) satisfies (3.12) by 

taking a value of N(e, S) € N large enough so that Hoeffding's bound is itself 

bounded by e for all n > N(e, 5); 

fW^1 2 

< e 
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P (Vf E:H: (R:x[J]- ÎLn[J] ::; E)) 
1 - P (:3f E:H: (R:x[J]- ÎLn[J] ~ E)) 

> 1 _ 1:Hle-m2/(B-A)2 

Now let 6 = 1:Hle-n~2/(B-A)2; then solving for E we have 

(3.10) 

LEMMA 3.2.1 (HOEFFDING'S INEQUALITY) A distribution-free bound that quan­

tifies the deviation of the empirical mean Rn [JJ from its true value R:x[J] over 

:H. 

( ) log ( 
1 :H
6 

1) (B -n A)2 sup R:x[J] - ÎLn[f] ::; 
!E'J{ 

(3.11) 

and which holds with probability at least 1 - 6 for a fini te hypothesis space 

I:HI < 00. 

The convergence is still exponentially fast (3.9) but the generalization bound 

now depends only on the choice of function class :H, the size of the training 

set and a parameter 5 : 0 ::; 5 ::; 1; it is said to be distribution-free because it 

holds independently of P(X, y), the distribution of data generation. Also the 

bound holds with probability at least 1- 6 for the ERM prediction function j* 
defined in (3.4); moreover it holds (with the exact same probability 1-6) for all 

other hypothesis in the function space :H and hence is a uniform convergence 

bound. To see this let us first formally define the notion of one-sided uniform 

convergence: 

VE> 0 :3N E N such that Vn > N and Vf E:H (R:x[J]- Îln[J]) < E 

(3.12) 

Now for any choice of E > 0, we can show that (3.11) satisfies (3.12) by 

taking a value of N( E, 5) E N large enough so that Hoeffding's bound is itself 

bounded by E for all n > N(E,6); 

log (J2il) (B - A)2 < E 

6 n· 
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The value of N (which depends on our choice of e and S) is called the sample 

complexity of the learning algorithm; more specifically it is a probabilistic 

estimate of the number of training examples that are necessary and sufficient 

for an algorithm to learn (generalize) some (unknown) target concept; instead 

of solving for e in (3.10) we solve for n to get: 

so with probability (at least) 1 — 5 and (at least) n> N samples the general­

ization error is epsilon bounded for all functions. 

Now does satisfying Chernoff's inequality imply uniform convergence of 

the empirical risk to the expected risk over the entire function space 3il Com­

paring the bounds in (3.9) and (3.6) we see that the former is simply a multiple 

(by the size of the hypothesis space) of the latter and hence both bounds are es­

sentially equivalent. So if every function / e % satisfies Chernoff's inequality 

individually then it must satisfy Hoeffding's inequality collectively and hence 

(3.12) is satisfied. 

It is important to note that there are two ways in which the general­

ization bound (3.11) can be tightened; by either bounding the capacity of 

the hypothesis space (whose cardinality can then be roughly measured even 

if it is uncountably infinite) or by bounding the stability (definition 2.4.1) or 

sensitivity of the prediction function, output by some learning algorithm, to 

perturbations in the training set (definition 2.4.2). 

The search for an optimal prediction function is conducted in the loss class 

defined over some hypothesis space and not in the hypothesis space itself, we 

have so far ignored this technicality; we can extend the notion of uniform 

convergence over a hypothesis space and characterize uniformly convergent 

loss classes as follows: 

DEFINITION 3.2.1 (UNIFORM GLIVENKO-CANTELLI CLASS ( U G C ) ) is a class 

of functions £,(%) = {£(f) '• f € !K} for a fixed bounded loss function 

A < £ < B such that the functions f € 'K are integrable with respect to the 

probability measure P(x, y) and the following one-sided uniform convergence 

is satisfied; 

V e > 0 l i m P f sup (Rx[f}-Rn{f})>e)=0 
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loss classes as follows: 

DEFINITION 3.2.1 (UNIFORM GLIvENKO-CANTELLI CLASS (uGC)) is a class 

of functions 'c(9i) = {CU) : f E 9i} for a fixed bounded loss function 

A < C < B such that the functions f E 9i are integrable with respect to the 
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is satisfied; 

\:lE > 0 lim P ( sup (R:x[J] - ÎLn[J]) > E) = 0 
n-->oo C(f)E.c(Ji:) 
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In the following subsection we will prove that a necessary and sufficient 

condition for consistency of ERM is that the loss class £(!K) is uGC. 

3.3 GENERALIZATION AND THE CONSISTENCY OF ERM 

In this learning framework, the key quantity that is being estimated is the 

actual risk; so we say the learning method is consistent [VapOO] for function 

class Di. and the distribution P(x, y) if the empirical risk (for the prediction 

function /„ output by the learning algorithm) converges in probability to the 

actual risk: 

lim iU/n] - ^ inf i2x[/] «=* 

V e > 0 36 s.t. P Rn[fn] - inf Rx[f] 
j€Jx 

>e)<8 (3.13) 

There are two essential differences between consistency as defined above and 

generalization; firstly, consistency is defined by a convergence of the empirical 

risk of the prediction made by the learning algorithm (i.e. choice of the pre­

diction function is dependent on n) whereas the weaker generalization (3.7) 

is a point-wise convergence over a fixed prediction (i.e. choice of the predic­

tion function is independent of n) and the stronger generalization (3.11) is a 

uniform convergence over all predictions; so in this respect consistency is de­

pendent on the learning algorithm (of which the exploration of the hypothesis 

space is an essential part) although generalization is not. In fact we will later 

show that uniform convergence (strong generalization) and consistency of the 

learning algorithm ERM are essentially equivalent. 

Secondly, the limit of the consistency convergence is the minimized ex­

pected risk. Consistency is therefore stronger than the weaker generaliza­

tion but weaker than the stronger generalization criteria and requires that the 

learning algorithm speculate on optimality of functions in the hypothesis space 

(which involves its exploration) before precisely estimating its expected risk. 

The performance of ERM is optimal if the function f* that minimizes the 

empirical risk is equivalent (in probability) to the function /* that minimizes 

the expected risk; 

3N e N such that Vn > N : /* - arginf A,[/n] -arginf Rx[f] = f* 
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In the following subsection we will prove that a necessary and sufficient 

condition for consistency of ERM is that the loss class L(Ji) is uGC. 

3.3 GENERALIZATION AND THE CONSISTENCY OF ERM 

In this learning framework, the key quantity that is being estimated is the 

actual risk; so we say the learning method is consistent [VapOO] for function 

class Ji and the distribution P(i, y) if the empirical risk (for the prediction 

function in output by the learning algorithm) converges in probability to the 

actual risk: 

lim Rn[in] ~ inf Rx[J] {=> 
n ..... oo fE'J{ 

VE> 0 :l5 S.t. P (IRn[Jn] - j~~Rx[J]12 E) ~ 5 (3.13) 

There are two essential differences between consistency as defined above and 

generalization; firstly, consistency is defined by a convergence of the empirical 

risk of the prediction made by the learning algorithm (i.e. choice of the pre­

diction function is dependent on n) whereas the weaker generalization (3.7) 

is a point-wise convergence over a fixed prediction (i.e. choice of the predic­

tion function is independent of n) and the st ronger generalization (3.11) is a 

uniform convergence over aIl predictions; so in this respect consistency is de­

pendent on the learning algorithm (of which the exploration of the hypothesis 

space is an essential part) although generalization is not. In fact we willlater 

show that uniform convergence (strong generalization) and consistency of the 

learning algorithm ERM are essentially equivalent. 

Secondly, the limit of the consistency convergence is the minimized ex­

pected risk. Consistency is therefore st ronger than the weaker generaliza­

tion but weaker than the stronger generalization criteria and requires that the 

learning algorithm speculate on optimality of functions in the hypothesis space 

(which involves its exploration) before precisely estimating its expected risk. 

The performance of ERM is optimal if the function i~ that minimizes the 

empirical risk is equivalent (in probability) to the function 1* that minimizes 

the expected risk; 

:lN E N such that Vn > N i~ = arg inf Îfn[Jn] P arg inf Rx[J] = 1* 
fE'J{ fE'J{ 
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inf Rx[f] 

MRnlf] 
j€3 

Pin 
Figure 3—2: Uniform convergence of the empirical risk (red) to the expected risk (blue) 
implies a consistent learning method. 

So for ERM in particular whose choice in prediction function satisfies 

(3.4), consistency is also implied [Gun98] by: • 

lim arginf Rn[fn] = arginf Rx[f] = f* (3.14) 

So is the consistency of the ERM learning algorithm implied by the uni­

form convergence. (3.12) in probability of the generalization error to zero and 

vice versa, i.e. is a uGC loss class sufficient for consistency of ERM? Yes it is, 

in fact the reasoning that led us to move from a point-wise to a uniform con­

vergence at the beginning of Section 3.2 was precisely so that the consistency 

criteria (3.13) would be satisfied. 

To see this more formally; let us assume that we have uniform conver­

gence (strong generalization) so that the supremum of the generalization error 

is bounded by some e > 0; looking at Figure 3-2 we see that the empirical risk 

evaluated for any prediction function must then lie wholly within an e-tube 

defined around the expected risk; in particular the empirical risk of the func­

tion /* that minimizes the expected risk (and the function f^ that minimizes 

the empirical risk) must lie within this e-tube which leads to the implications 

Rx[j] 

Rn[j] 
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i.nf Rx [j] +-----,I....-..-----~_..,....__+----_I 
jE'J \-----'----f-----+Rn [j*] 

inf Rn [j]+---------+~----__I 
fE'J 

f* f,: 

Figure 3-2: Uniform convergence of the empirical risk (red) to the expected risk (bIlle) 
irnplies a consistent learning rnethod. 

80 for ERM in particular whose choice 111 prediction function satisfies 

(3.4), consistency is also irnplied [Gun9S] by:' 

lim arg inf Rn [In] ~ arg inf R:x[j] = .f* (3.14) 
77-+QG !EJ-( fE'){ 

So is the cOllsistellcy of the ERlVI learnillg algorithm implied by the llni­

form convergence (3.12) in probability of the generalization error to zero and 

vice versa, i.e. is a uGC loss class sufficient for consistency of ERM? Yes it is, 

in fact the reasoning that led us to move from a point-wise to a uniform con­

vergence at the beginning of Section 3.2 was precisely so that the consistency 

criteria (3.13) would be satisfied. 

To see this more formally; let us assume that we have uniform conver­

gence (Strollg generalization) so that the suprernum of the generalization error 

is bounded by some é > 0; looking at Figure 3-2 we see that the empirical risk 

evaluated for any prediction function must then lie wholly within an é-tube 

defined around the expected risk; in particular the 8mpirical risk of the fUllc­

tion f* that minimizes the expec:ted risk (and the function f~ that minimizes 

the empirical riflk) must lie within this é- tube which leads to the implications 
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(3.15) and (3.16). 

sup (Rx\f] - Rn[f}) < e = » inf Rx[f]-Rn arginfi?x[/] 
L fe-Ji 

R-xin-Rnir] < e 
(3.15) 

sup [Rx[f] -Rn[f})< e=>Rx 
/61K 

irginf Rn[f] 
L fex 

-v^Rn{f] = Rx[f*]-Rn[f*]<e 

(3.16) 

Also, since /'* minimizes the expected risk (3.1) and /* minimizes the empirical 

risk (3.4) the following are trivially satisfied: 

Rnim < knir 
Rxin < Rx[/: 

(3.17) 

Combining inequalities (3.16) and (3.17) together we have the following: 

Rxlf*} < Rxift) < Rnlfn] + e < Rnin + t < Rx[f] + 2e (3.18) 

So we have shown that Rnlfn] a n d Rxlf*} are eequivalent in the limit which is 

in fact the definition of consistency for which uniform convergence is therefore 

a sufficient criteria; 

sup (RX[J} - Rn[f}) < e =* inf Rx[f]-Rn 
tew \ / /eM feoi 

arginf Rn[f] 
feO< 

= Rxin-Rnif:} < e 
(3.19) 

The sample error R§ was defined in (3.5); intuitively it gauges the true error of 

the optimal prediction made by the empirical process. Generalization dictates 

that Rnlfn} tends to Rxlf'n] while a small sample error implies that Rx[fn) 

tends to Rx[f*}] so consistency demands generalization of the empirical process 

and a sample error R$ that diminishes to zero. Combining the inequalities 

(3.15), (3.16) and (3.17) together we have the following: 

Rx[fn] < Rn[ft] + C < Rnlfl + * < « x [ T ] + ^ (3.20) 

The first and last terms in the above sequence of inequalities include those in 

the definition of the sample error as well as 2e which is arbitrarily small to begin 

with, so the exponentially fast rate of uniform convergence is approximately 

half the rate at which the sample error is guaranteed to diminish to zero. 

So we have shown that the learning process depends on the distribution 

P(x, y) but more significantly on the function space "K; this is because the 
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(;3.15) and (3.16). 

sup (Rx[f]- Rn[f]) ::; E ==? in,f Rx[f]-Rn [arginf Rx[f]] = R~rlj*]-Rn[f*] < E 
fO{ jE.J{ !EJ{ 

(3.1.5) 

sup (Rx[f]- RnU]) ::; E ==? Rx [arginf RnU]]- inf RnU] = Rx[f~]-RnU~] < E 
fE~}{ fE~{ feJ{ 

(3.16) 

AIso, sinee f* minimizes the expected risk (3.1) and fi: minimizes the em pirical 

risk (3.4) the following are triyially satisfied: 

Rn [f~] < Rn [1*] 

Rx[f*] < Rx[f~] 

(3.17) 

Combining inequalities (3.16) and (3.17) together we have the following: 

RxU*] ::; RxU~] ::; RnUI~] + E ::; R,Jf*] + E ::; Rx[f*] + 2E (3.18) 

So we have shown that Rn[f~l and Rx[f*] are E-equivalent in the limitv\'hich is 

in fa.ct the definition of consistency for which unifarm convergence is therefore 

a sufficient criteria; 

sup (RxU]- RnU]) < E ==? inf RxU]-Rn [arginf Rn[J]] = RxU*]-R,Jfr:] < E 
!E~{ jEJ{ fE~{ 

(3.l9) 

The sample erTOT Rs was defined in (3 .. 5); intuitively it gRuges the true error of 

the optimal prediction made by the elllpirical process. Generalization dictates 

that Rn[f~] tends to Rx[fr:l while a small sample errar illlplies that Rx[f~] 
tends to Rx[f*]; so ccmsistency demands generalization of the empirical pro cess 

and a sample errar Rs that diminishes to zero. Combining the inequalities 

(3.1.5)~ (:3.16) and (3.17) together we have the following: 

(3.20) 

The first and last terms in the above sequence of inequalities include those in 

the definitioll of the salllple errar as weIl as 2E \vhich is arbitrarily small to begin 

with, so the exponentially fast rate of ulliform convergence is approxirnately 

half the rate at which the sample errar is guaranteed to diminish to zero. 

So we have shown that the learning pro cess depends on the distribution 

P(:Y!, y) but mare significantly on the function space J{; this is because the 
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uniform convergence of the empirical risk to the expected risk and hence the 

consistency of the learning method is dependent on it. We would now like 

to study properties of loss classes (and their associated function spaces) that 

guarantee that it is uGC and hence that learning is in fact possible. 

3.4 VAPNIK-CHERVONENKIS THEORY 

One serious limitation of Hoeffding's bound (3.11) is that it was necessary 

to assume that the function space is-finite \K\ < oo since we use the finite sub-

additivity of probability measures to derive it in (3.9); it is possible to extend 

Hoeffding's bound for countably infinite hypothesis spaces [BBL03] however 

we would like to examine learning in an infinite uncountable function space 

for which the union bound does not hold. 

Since we cannot use the cardinality of the hypothesis space in deriving 

.a generalization bound since it is possibly infinite, we need to find a new 

measure that relates to the notion of generalization; specifically we need to 

know why, for a given learning task, functions from one infinite space are able 

to generalize whereas those from another infinite space are not. In previous 

sections we saw that for ERM, generalization and consistency were equivalent 

which in turn was necessitated and guaranteed by the uniform convergence of 

the empirical risk to the expected risk; this much has not changed. 

The cardinality of a function space is a count of the number of functions 

in it and is essentially a measure of its complexity; since we are dealing with 

infinite hypothesis spaces we will now consider various other measures through 

which we can gauge the complexity of a hypothesis space and then relate it 

to the uniform convergence of the generalization error to zero in order to 

determine if learning is possible. We begin by defining a measure that is 

essentially an e-count of the number of functions in a function space in terms 

of the supremum norm: 

DEFINITION 3.4.1 (EPSILON N E T ) Given a function space "K and some e > 

0, we say that a subset it C "K is an e-net (or e-cover) for "K if 

V / G M 3 / € it such that \\f, /||oo < e 

Members of the set it are referred to as prototype functions. If for all e > 0, 

% has a finite e-net then it is totally bounded (or precompact) which along 
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The cardinality of a function space is a count of the number of functions 

in it and is essentially a measure of its complexity; since we are dealing with 

infinite hypothesis spaces we will now consider various other measures through 

which we can gauge the complexity of a hypothesis space and then relate it 

to the uniform convergence of the generalization error to zero in order to 

determine if learning is possible. We begin by defining a measure that is 

essentially an E-count of the number of functions in a function space in terms 

of the supremum norm: 

DEFINITION 3.4.1 (EpSILON NET) Given a function space Je and some E > 
0, we say that a subset il c Je is an E-net (or E-cover) for Je if 

v f E J{ 3J E il such that Ilf, JILXJ < E 

M embers of the set il are referred to as prototype functions. If for all E > 0, 

Je has a finite E-net then it is totally bounded (or precompact) which along 
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with Cauchy completeness implies compactness. The converse also holds true 

so that a space which is compact must also be Cauchy complete and totally 

bounded (generalization of the Heine-Borel Theorem) and hence have a finite 

e-net. Finally, a space that is bounded must also be totally bounded although 

the converse is not necessarily implied. We can also define the e-net Q of a 

single function ft € "K as the set of functions that are within its 'reach' as 

measured by the supremum norm: 

V / G Q | | / -Al loc < e 

So the basic intuition behind VC-Theory is that in any function (hypoth­

esis) space, if two functions are e-close then it is reasonable to assume that 

they will perform similarly on a fixed training set (or any fixed test set) and 

hence any generalization bound that holds for one function will naturally hold 

for the other. 

Since the measure defined above groups functions together by ensuring 

that each one is entirely contained in the e-tube of at least one of a fixed set 

of functions, we will also require a contrasting measure to assess the size of 

the gap between functions as measured by the infimum norm: 

DEFINITION 3.4.2 (EPSILON SEPARATION) Given a function space "K and 

some e > 0, we say that a subset of I functions of "K are e-separated if 

{/i}'=i c ^ satisfies \\fu / J > e Mi ^ j 

3.4.1 COMPACT HYPOTHESIS SPACES % 

All hypothesis that produce the same classification (or the same e-close regres­

sion) on a given training data set can be grouped together into an equivalence 

class since, from the perspective of ERM, they are alike in that they have 

the same empirical risk. The number of such equivalence classes is called the 

VC-Entropy of "K when the outputs are binary y e {+1, —1} and analogously 

in the case of regression estimation is called the covering number of %. We 

now define the latter as well as a related measure: 
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the converse is not necessarily implied. We can also define the E-net Ct of a 

single function ft E J-C as the set of functions that are within its ireach' as 

measured by the supremum norm: 

So the basic intuition behind VC-Theory is that in any function (hypoth­

esis) space, if two functions are E-close then it is reasonable to assume that 

they will perform similarly on a fixed training set (or any fixed test set) and 

hence any generalization bound that holds for one function will naturally hold 

for the other. 

Since the measure defined above groups functions together by ensuring 

that each one lS entirely contained in the E-tube of at least one of a fixed set 

of functions, we will also require a contrasting measure to assess the size of 

the gap between functions as measured by the infimum norm: 

DEFINITION 3.4.2 (EpSILON SEPARATION) Given a function space J-C and 

some E > 0, we say that a subset of l functions of J-C are E-separated if 

{fd~=l C J-C satisfies 1 !fi , hll > E Vi =1- j 

3.4.1 COMPACT HVPOTHESIS SPACES J-C 

AlI hypothesis that produce the same classification (or the same E-close regres­

sion) on a given training data set can be grouped together into an equivalence 

class since, from the perspective of ERM, they are alike in that they have 

the same empirical risk. The number of such equivalence classes is called the 

VC-Entropy of J-C wh en the outputs are binary y E {+ 1, -1} and analogously 

in the case of regression estimation is called the covering number of J-e. We 

now define the latter as well as a related measure: 
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DEFINITION 3.4.3 (EPSILON COVERING NUMBER) Given an infinite cardi­

nality function space %, the covering (or entropy) number N(3i, e) is the min­

imal c e N such that 

3 lfi\ where V/ G IK 3t:l<t<c such that \\f - f ^ < e 

Essentially, it is smallest number of functions in "K that can serve as an e-

net for %. Geometrically, N(IK, e) is the minimal number of disks in % with 

radius e needed to cover rK. The empirical covering number is restricted to the 

training data set Sn = {Si, £2, • • • , xn}; denoted by N(!H, e, Sn) it is then the 

minimal c s N such that 

\fi\ where V / e l K 3t: 1 <t < c such that max /(£,•) — ft(xj) < e 

Since the empirical covering number is dependent on the data we must work 

with its expected value, which is taken with respect to the input distribution 

and denoted as EgnK(IK, e, Sn). 

Use of the expected empirical covering number in a generalization bound 

results in its dependence on the input distribution P(x, y); since in practice the 

true covering number for most compact real spaces of interest is not calculable, 

finding distribution independent bounds is generally quite difficult or not even 

possible. 

DEFINITION 3.4.4 (EPSILON PACKING NUMBER) Given a function space "K, 

the packing number D(IK, e) is the maximal I € N such that: 

{/t}|=i C "K satisfies \\fh fj\\p > e Vi ^ j 

Essentially, it is the maximal number of functions in 3i that can be e-separated. 

The following inequalities upper and lower bound the covering number in 

terms of the packing number; 

D ( J ( , 2 e ) a ( J { , e ) < 2 ( 3 { , e ) (3.21) 

therefore we can use the latter in computing an approximation to the former. 

In [Muk07] we see derivations for such approximations. 
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In [Muk07] we see derivations for such approximations. 
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In section 2.4 the RKHS %? was bounded which implies it is totally 

bounded (precompact) and therefore must have a finite, minimal (not neces­

sarily unique) e-net it = {/i, /2, • • • fc} C "Kj where c is the covering number 

N(%j,re(£)); the radius re(£) of the covering is dependent on both the loss 

function I and the value of e we use to bound the supremum of the generaliza­

tion error. Let us denote the e-net of the prototype function ft by Ct which 

satisfies the following: 

(3.22) 

Let us now consider two distinct functions; a prototype function ft of the 

space "K and any other function / 6 Q . Our goal is to bound the difference 

between the generalization errors of ft and / ; this will lead us to a new gen­

eralization bound involving the covering number instead of the cardinality of 

the hypothesis space. 

\Rx(f) - Rn(f) ~ Rx(ft) + Rn(ft)\ < \Rx(f) ~ Rx(ft)\ + \Rn(f) ~ Rn(ft)\ 

e(f,{2ty})-t(ft,{2,y})dP(2,y) 

+ ft 
(3.23) 

DEFINITION 3.4.5 (LIPSCHITZ LOSS FUNCTIONS) are a class of functions 

that satisfy the following inequality 

| | € ( / l , - ) - ^ ( / 2 , 0 | | o o < i i | | / l - / 2 | | o o 

for a given Lipschitz constant L. Examples of Lipschitz loss functions include 

the e-insensitive function, the square loss function (only when the annotations 

can be bounded) and the hinge loss function. 

So for any Lipschitz loss function, the integral in (3.23) can then be bounded: 

Je(f,{x,y})-£(ft,{x,y})dP(x,y) < J \\e(f, {x,y}) - e(ft, {f, y})^ dP(x,y) 

t{f,&v})-t(fu&v})\\ dP(x,y) 
Moo J 

£(f,{S,y})-i(fu{x,y})\\ 
lloo 

< £ | | / - / t | | oo (3.24) 
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In section 2.4 the RKHS ]-DT was bounded which implies it is totally 

bounded (precompact) and therefore must have a finite, minimal (not neces­

sarily unique) E-net il = {Il, 12,'" le} C 9-CT where c is the covering number 

N(9-CT , r€(f)); the radius r€(f) of the covering is dependent on both the loss 

function f and the value of E we use to bound the supremum of the generaliza­

tion error. Let us denote the E-net of the prototype function lt by Ct which 

satisfies the following: 

e 
U Ct = 9-CT (3.22) 

t=l 

Let us now consider two distinct functions; a prototype function h of the 

space 9-C and any other function f E Ct. Our goal is to bound the difference 

between the generalization errors of lt and f; this will le ad us to a new gen­

eralization bound involving the covering number instead of the cardinality of 

the hypothesis space. 

IRx(f) - Rn(f) - Rx(/t) + Rn(h)1 < IRx(f) - Rx(/t) 1 + IRn(f) - Rn(/t) 1 

If f(f,{x,y}) -f(h,{x,y}) dp(x,y)1 

+ 1 ~ L f(f, {x, y}) - f(h, {x, y}) 1 (3.23) 

DEFINITION 3.4.5 (LIPSCHITZ Loss FUNCTIONS) are a class of functions 

that satisfy the following inequality 

for a given Lipschitz constant L. Examples of Lipschitz loss functions include 

the E-insensitive function, the square loss function (only when the annotations 

can be bounded) and the hinge loss function. 

So for any Lipschitz loss function, the integral in (3.23) can then be bounded: 

J eu, {x, y}) - eat, {x, y}) dP(x, y) < J lieu, {x, y}) - eat, {x, y} )1100 dP(x, y) 

IIf(f, {x,y}) -f(h, {x,y})lloo f dP(x,y) 

- IIf(f,{x,y})-f(h,{x,y})lIoo 

< Lllf - ltlloo (3.24) 
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Similarly for the sum in (3.23) 

^X>(/,{2,y})-*(/t,{5?,y}) < ^ £ | | * ( / , {*,*})-*(&{*,!/}) 

= |*( / ,{* ,y})-*( /« ,{* , i/}) 

< ^ | | / - / t | | o o 

n 

Prom which it then follows that: 

\Rx(f) - Rn(f) - Rx(ft) + Rn(ft)\ < L\\\f-ft + L 

< 2L Wf-ftl 

11/ ~ ft\\oo 

(3.25) 

If we consider a square loss function £(f, {x, y}) — (f(x) — y)2 that is obvi­

ously positive but also bounded from above £(/, •) < B then we can derive 

([PMRR04],[Muk07]) a value for the Lipschitz constant; following from (3.23) 

we have: 

(f(x)-y)2-(ft(x)-y?dP(x,y) 
ft 

f(x) - / ( £ ) (f(x) + ft{x) - 2y) dP(x,y) 

+ 

< 11/ - /tlloo f | {fix) - y + m - y) | dP(x, y) 

+11/ - Mlool | E (/(f) - y + m - y) 

< \\f-ft\\ooj\i(f,{x,y})+£(ft,{x,y})\ dP(x,y) 

+11/ - /tlloo^ |X>(/, & y}) + t(L & v}) 

< 2B. | | / - / t l loo+ 2B| | / - / t l loo 

< 4B\\f-M\oo 

Let us return to the general case of Lipschitz loss functions and arbitrarily set 

the radius of the covering to be a function of e and the Lipschitz constant: 

V / e Q | | / - / t | | o o <re(*) = e/4L 

Similarly for the sum in (3.23) 

~ Leu, {x, y}) - e(}t, {x, y}) < ~ L lieu, {x, y}) - e(}t, {x, y} )1100 

- lieu, {x, y}) - e(}t, {x, y}) 1100 

< Lllf - ltlloo 

From which it then follows that: 

IRxU) - RnU) - Rx(}t) + Îln(}t) 1 < L Illf - ltllool + L Illf - ltllool 
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< 2L Illf - hlloo 1 (3.25) 

If we consider a square loss function eu, { x, y}) = U (x) - y) 2 that is obvi­

ously positive but also bounded from above eu, .) ::; B then we can derive 

([PMRR04],[Muk07]) a value for the Lipschitz constant; following from (3.23) 

we have: 

11U(x) - y)2 ~ (ft(x) - y)2 dp(x,y)1 + I~ LU(x) - y)2 - (}t(x) _ y)21 

- If (f(x) - lt(x)) (f(x) + lt(x) - 2Y) dp(X,y)1 

+ 1 ~ L (f(x) - h(x)) (f(x) + lt(x) - 2Y) 1 

< IIf - ltlloo 11 (f(x) - y + lt(x) - y) 1 dP(x, y) 

+lIf - ltlloo~ IL (f(x) - y + lt(x) - y) 1 

< Iif-hiloo 11~u,{x,y})+e(h,{x,Y})1 dP(x,y) 

+llf - ltlloo~ IL eu, {x, y}) + e(lt, {x, y}) 1 

< 2Bllf - ltlloo + 2Bllf - ltlloo 

< 4Bllf - ltlloo 

Let us return to the general case of Lipschitz loss functions and arbitrarily set 

the radius of the covering to be a function of E and the Lipschitz constant: 
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from which it follows that the difference between the generalization errors of 

ft and / is bounded by e/2: 

s u p | # x ( / ) - i W ) - ^ x ( / 0 + £n(/ t) | < 2 L H / - / I U (3.26) 
fect 

< 2Lre(£) 

= e/2 

So if the largest generalization error of functions in Ct is at least e then 

the generalization error of the prototype function ft must be at least e/2; 

sup \Rx(f) - i?n( /) | > e = * |(> e) - Rx{ft) + Rn{ft)\ < e/2 
/GCt 

.=* \Rx(ft) - Rn(f)\ > e/2 (3.27) 

When one event implies another as above, then the formers probability 

of incidence is always less than or equal to the latter's: 

P(sup \Rx(f) - Rnif)] > e) < P (\Rx(f) - A , ( / ) | > e/2) (3.28) 

We can apply Chernoff's Inequality (Definition 3.1.1) to the fixed proto­

type function ft: 

P (\Rx(ft) - Rn(ft)\ > e/2) < 2 e x p | - n ( ^ 2
) 2 | (3.29) 

which holds for all prototype functions of which there are a finite number; 

hence we can apply the union bound since (3.22) holds and then use (3.28) 

and (3.29) to get the following PAC bound that converges exponentially fast: 

p f s u p \Rx(f)-Rn(f)\>e) < Tp(sup\Rx(f)- H„(/) | > e) (3.30) 

M 
< Y,P{\Rx(ft)-Rn(ft)\>e/2) 

{e/2? 
t=i 

< 2N(MT)re(f)) exp<| -n 

2ESnN(M,r f(f),Sn) e x p ^ - n 

(B - Af 
(e/2)2 

(B-A)2 
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from which it follows that the difference between the generalization errors of 

h and f is bounded by E/2: 

So if the largest generalization error of functions in Ct is at least E then 

the generalization error of the prototype function h must be at least E/2; 

sup IRx(f) - Rn(f)1 2 E ==* 1(2 E) - RX(}t) + Rn(!t) 1 ::; E/2 
fEC t 

When one event implies another as ab ove , then the formers probability 

of incidence is al ways less than or equal to the latter's: 

P(sup IRx(f) - Rn(f)1 2 t) ::; P (IRx(}) - Rn(})1 2 t/2) (3.28) 
fECt 

We can apply Chernoff's Inequality (Definition 3.1.1) to the fixed proto­

type function h: 

which holds for all prototype functions of which there are a finite number; 

hence we can apply the union bound sin ce (3.22) holds and then use (3.28) 

and (3.29) to get the following PAC bound that converges exponentially fast: 

Illl 

P (:E~ IRx(J) - R,.(J)I 2 ,) :S ~ P (;~f.IRx(J) - R,.(J)I 2 ,) (3.30) 

Illl 

< L P (IRx(h) - Rn (!t) 1 2 E/2) 
t=l 



55 

Note that the supremum is now taken over the space CKj instead of over 

the cover Ct. Finally applying the logic of (3.9) we have our result: 

P sup Rx[f}-Rn[f] <e) > l -2E S n ^(J{ , r e (£ ) ,S n ) e x p ( - n - ( e / 2 ) ' 
{B-A)*\ 

(3.31) 

Upon careful inspection we see that it is almost identical to Hoeffding's Bound 

(3.10) with the exception of the substitution of \K\ for the expected empirical 

covering number ESri>f(IK, re(£), Sn).' Let S = 2ESnti(M, re{£), §„) e'
n^2^^B-A^, 

then solving for e we have: 

sup 
RM-*.W. ^ i{B_A).,**i*>.W,r.(e),»nn*xMS) 

n 

(3.32) 

Examining the above inequality we can rewrite the sufficiency condition for 

uniform convergence in terms of the covering number alone since all other 

terms diminish to zero; 

^ logEft(JC3,r.W) VE 
n—>oo n 

in [VapOO] this is referred to as the 'second milestone' in learning theory be­

cause it is sufficient and necessary for consistency (as well exponentially fast 

uniform convergence [SS01]); note that (3.33) is satisfied as long as the capac­

ity of the hypothesis space, as measured by the empirical covering number, 

increases at most polynomially in n; if it were to increase exponentially in n 

then the limit above does not converge to zero. So given a compact hypothesis 

space (which always has a finite cover) as well as a Lipschitz loss function, uni­

form convergence and therefore consistency are then implied; so compactness 

and Lipschitz loss are sufficient criteria for uGC classes. 

Unfortunately, the notion of covering numbers and e-nets does not trans­

late well to binary classification; and so the generalization bound (3.32) above 

cannot be applied either. This is because binary thresholding is scale insensi­

tive , i.e. the zero-one loss function does not satisfy the Lipschitz criteria; two 

classification functions that are only slightly different can have a difference in 

loss of one. 
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3.4.2 INDICATOR FUNCTION HYPOTHESIS SPACES 23 

In [SS01] we see distribution dependent generalization bounds that are derived 

in terms of another measure of the complexity of a function class known as 

the VC-Entropy (or the related measure VC-Annealed-Entropy); distribution 

independent bounds are also derived in terms of the growth function. We begin 

by defining these measures for binary classification: 

DEFINITION 3.4.6 ( V C - E N T R O P Y ) is the finite number of permutations of 

annotations assigned, by all hypothesis in the potentially infinite (fixed) space 

23, to an entire (fixed) observation vector set §>n; it varies with the space 23 

as well as the set Sn and so is denoted by N(23, Sn); since there are only two 

possible annotations, it can attain a maximum value of2n. Each equivalence 

class (whose members impose the same classification on the training set) will 

be denoted by Q and satisfies (3.22) as before; furthermore we will select a 

single representative ft from each class; this prototype function can be any 

member of Ct; the set of prototype functions is denoted by il. Since the VC-

Entropy depends on the training data we must integrate it with respect to the 

input distribution over all observation sets of size n so that it can be used in a 

generalization bound that is applicable to any given data set; hence we define 

the Annealed VC-Entropy which is simply the logarithm of the expected value 

of the VC-Entropy and is denoted by logE§n3Nf(23, Sn). 

DEFINITION 3.4.7 (SYMMETRIZATION) Given a second independent 'ghost' 

sample set S also of size n, the generalization error can be bounded as follows: 

P (sup Rx(f) - Rnif, S) > e) < IP (sup £ , ( / , S) - £»(/ , §) > ^ ) 

(3.34) 

Intuitively, if the difference in empirical risk between two independent samples 

tends (uniformly) to zero then they should both tend (uniformly) to the expected 

risk as well For a proof refer to [BBL03]. 

Now we can derive a generalization bound in terms of the Annealed VC-

Entropy; let us denote the VC-Entropy of the set S U S by k = N(23, S U S) 

then the supremum of the loss between the training S and ghost S samples 

over the space 23 is equivalent to the supremum of the same loss over each 

representative ft from each equivalence class Q which collectively form the 

set it = {/i,/2,- • • fk} of size k; we can then apply the union bound since 
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In [8801] we see distribution dependent generalization bounds that are derived 
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P (sup R:x(J) - Rn(J, S) 2: E) ~ 2P (sup Rn(f, S) - Rn(f, S) 2: E/2) 
fE'B • fE'B 

(3.34) 
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risk as well. For a proof refer to [BBL03j. 
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Entropy; let us denote the VC-Entropy of the set SuS by k = N('B, SUS) 

then the supremum of the loss between the training Sand ghost S samples 
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set II = {Il, 12, .. ·ld of size k; we can then apply the union bound since 
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there are a finite number of equivalence classes: 

2P f s u p ( / U / > S ) - ^ ( / , S ) ) > e / 2 ' 

= 2P (sup ( £ , ( / , S) - 4 ( / , § ) ) > c/2 

fc 

< 2 ^ p ( ^ n ( / l , S ) - J R n ( / i , S ) > e / 2 ) (3.35) 
i=i 

= 2N(S, § U S) P (A,(/i , S) - Rn(fl S) > e/2^ 

< 2N(£,SUS) exp{-(e/2)2n} (3.36) 

< 2ESnN(S,Sn) exp{-(e/2)2n} (3.37) 

where (3.36) follows from an application of Chernoff 's Inequality while (3.37) 

results from taking the expected value over the training set; if (3.36) holds for 

all possible training sets then it must naturally hold for the expected value 

as well. Note that although we have derived the above generalization bound 

using a ghost sample set, in practice this set need not be generated and is used 

only when theoretically applying the symmetrization principle. 

Combining (3.34) and (3.35) we have the following distribution dependent, 

exponentially fast PAC generalization bound: 

P (supRx{f) - Rn(f) >e)< 2exp{logE§nN(3,Sn) - e2n} (3.38) 

A condition similar to (3.33) can be procured from the above generalization 

bound; it too serves as a criteria for testing if learning is in fact possible when 

the zero-one loss function is employed: 

h W W J = 0 , V£ (3.39) 
n—>oo n 

DEFINITION 3.4.8 (GROWTH FUNCTION) or shattering coefficient is defined 

as the maximal (worst-case) VC-Entropy over all observation vector sets of 

size n: 

na3(n) = sup{K(S,S n ) |VS n €X} 

Note that ILB(TI) depends only on the class of functions 15 under consideration 

as well as the size of the training data set n; therefore only one set of patterns 

in X might attain the maximal value Ils(n). 

{\ 
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there are a finite number of equivalence classes: 
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ftEU 

k 
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i=l 
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DEFINITION 3.4.8 (GROWTH FUNCTION) or shattering coefficient is defined 

as the maximal (worst-case) VC-Entropy over all observation vector sets of 

szze n: 

Note that II:B(n) depends only on the class of functions 13 under consideration 

as well as the size of the training data set n; therefore only one set of patterns 

in X might attain the maximal value II:B(n). 
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The growth function serves as an upper bound for both the VC-Entropy 

and the Annealed VC-Entropy: 

N(3, Sn) < logES nN(3, Sn) < nB(n) < IIs(n) (l + log U ^ 
nBn.) 

To derive a generalization bound in terms of the growth function, we 

can make use of the above inequalities and replace the Annealed VC-Entropy 

in (3.38) with the growth function which gives us the following distribution 

independent, exponentially fast PAC bound: 

P (sup Rx(f) -Rn(f)>e)< expflog nB(n) - e2n} (3.40) 

Let 8 = exp{logns(n) — e2n} then after solving for e we have the most 

significant PAC generalization bound: 

THEOREM 3.4.1 (VAPNIK AND CHERVONENKIS) For all hypothesis / € 3 

and some 5 : 0 < 5 < 1 the following generalization bound, given in terms of 

the growth function ofB, holds with probability 1 — 6 independent of the input 

distribution; 

sup (RM) - i U / ) ) < >« n*W-KK*(l /*) (3.41) 
fe-Bv / V n 

A limit can be procured from the above generalization bound which serves 

as a criteria for testing if learning is possible when the zero-one loss function 

is employed; 
U m logT^n) = Q) ^ 

n—KX> n 

in [VapOO] this is referred to as the 'third milestone' in learning theory because 

it is sufficient and necessary for consistency and exponentially fast uniform 

convergence for all underlying input distributions; it is therefore more general 

than either (3.33) or (3.39). 

We can now try to illustrate why restricting the capacity of the hypothesis 

space (as was the case with Ivanov and Tikhinov Regularization, Section 2.4) 

is absolutely necessary for learning to occur; if for some training set of size 

n, the functions in 3 can shatter it so that U%(n) = 2" then (3.42) does not 

converge to zero which implies there exists input distribution(s) for which the 

generalization error does not converge uniformly to zero. So we see that it is 

important that choice of the hypothesis space must be made with reference to 
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Figure 3—3: Consider the hypothesis space comprising of all discriminant hyperplanes in 
the feature space R2; [row 1] any configuration and labeling of 2 points can be separated by 
a hyperplane and hence V > log 2. [rows 2 & 3] there exists a non-collinear configuration 
of 3 points that can be shattered and hence V > log 3. The VC-Entropy of a collinear 
configuration [row 4, left] of 3 points is less than that of the previous configuration; the 
former cannot be shattered by a hyperplane. Finally, no configuration of 4 points can be 
shattered by a hyperplane and hence V = log 3. More generally, the VC-Dimension of 
half-spaces in Rd is d + 1. 
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Figure 3-3: Consider the hypothesis space comprising of all discriminant hyperplanes in 
the feature space ]R2; [row 1] any configuration and labeling of 2 points can be separated by 
a hyperplane and hence V ;:::: log 2. [rows 2 & 3] there exists a non-collinear configuration 
of 3 points that can be shattered and hence V ;:::: log 3. The VC-Entropy of a collinear 
configuration [row 4, left] of 3 points is less than that of the previous configuration; the 
former cannot be shattered by a hyperplane. Finally, no configuration of 4 points can be 
shattered by a hyperplane and hence V = log 3. More generally, the VC-Dimension of 
half-spaces in ]Rd is d + 1. 
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the current size of the training set; in particular the hypothesis space is too 

rich if it can shatter the training set. 

DEFINITION 3.4.9 (VC-DIMENSION) Intuitively, it is the maximum number 

of observation vectors for which the hypothesis space 15 is unbiased; a rough 

measure of the capacity of 15.' Technically, it is the logarithm of the maxi­

mum number of observation vectors that can be shattered or separated into 

two classes in all possible ways by functions in a particular hypothesis space 

V(3) = logsup{n : n 2 (n) = 2n} 

The VC-Dimension has value log n if there exists even a single (maximal) set 

of n patterns in X that can be shattered. The VC-Dimension is infinite if for 

any n it is possible to shatter n observation vectors with functions taken from 

It is also possible to define VC-Dimensions for hypothesis spaces of real-

valued functions, see [EP99] for details. Let us assume that the VC-Dimension 

for a particular class 15 is finite; if the VC-Dimension is greater than the size 

of the training set then it can obviously be shattered by functions in the 

hypothesis space so that the growth function has value log 2". Sauer's Lemma 

provides a bound for the growth function when n exceeds the VC-Dimension: 

nB(n) = ^ ^ v / r a ^ (en\V 
= log 2n when n < V 

< E L a ) < ( f ) V w h e n n > V 

We have already seen that when the growth function attains its maximum 

value (log 2n) then learning is not always possible; it is now interesting to note 

that this is always the case when the VC-Dimension is greater or equal to 

the number of training examples available; intuitively we must have enough 

training examples to represent all sections of the space shattered by a hypoth­

esis. Hence the algorithm is unable to learn properly until it has more than V 

training examples for which reason we ignore the first case of the above bound. 

Using the above bound for the case when n > V along with (3.41) we can 

now bound the generalization error in terms of the VC-Dimension; following 

from (3.42) we have a PAC (VC-Confidence Interval ) bound that holds with 
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probability (VC-Confidence Level) 1 — 5: 

sup (Rx(f) - Rn(f)) < W V l 0 g v + l Q g * (3.43) 

In contrast to (3.33), (3.39) and (3.42), the following constructive (can 

actually be computed) criteria for learning can be derived from the above 

generalization bound: 

V log 21 V( l + logS) ' , 
lim ^ = lim V & v ; = 0, Ve (3.44) 

n—»oo n n—>oo n 

Necessary and sufficient conditions [DGZ91] for the consistency of the 

ERM method and the fast (uniform) convergence of the generalization error 

to zero (the loss class is uGC) over all underlying input distributions can now 

be succinctly given as a single criteria; the finiteness of the VC-Dimension. 

Moreover, the number of training examples required (sample complexity), to 

approximate (learn) the target concept well, must exceed the VC-Dimension 

V since this forces the term n _ 1 log ^ (and hence the entire limit (3.44) as long 

as V is finite) to tend to zero. 

The next section explores how we can choose an appropriate learning 

space (model selection), for a particular data set, using the concept of VC-

Dimension. 

3.5 STRUCTURAL RISK MINIMIZATION (SRM) 

We must redesign the machine for each different size of training data, and 

we must have some clever way of picking the right complexity a priori to avoid 

the above trade off. 

So far we have considered PAC bounds for single fixed hypothesis classes; 

we can apply these PAC bounds individually to a whole collection of hypothesis 

classes and in this way select a space (or model) that best suits the current 

training data set. 

The first step in SRM is defining a nested sequence of spaces Si C Si • • • C 

Sk such that they have increasing capacity, as measured by the VC-dimension,: 

V(Si) < V(S2) < • • • < V(5fe). For instance in a classification task, we could 
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take the following sequence of linear functions: 

Si = {/ : f(x) = sgn[b + WiXi]} 

S2 = {/ : f(x) = sgn[b + wxxi + w2£2]} 

St = { / : / ( f ) = sgn[6+(<!/•£)]} 

where t is the size of an observation vector and the VC-Dimension increases 

linearly and is equal to the number of free parameters; V(Si) = 2, V(5,2) = 

3, • • • , V(Si) = t + 1. Alternatively, we could define the following sequence of 

families of non-linear classification functions: 

Si = {f:f(x)=sgn[b + (w-x)}} 

S2 = {f:f(x) = sgn[b + (w-x) + (w-x)2}} 

We could also consider a sequence of linear classification functions with 

bounded weight vectors: 

Si = {/ : f(x) = sgn[b + (w • x)] such that 2/||w|| < #1} (3.45) 

S2 = {/ : f(x) = sgn[b + (w • x)} such that Kx < 2/\\w\\ < "R2} 

or we can reformulate it in terms of the geometric margin: 

Si = {/ : fix) = sgn[b + (w • x)] such that 7* > 91} (3.46) 

£2 = {/ : f(x) = sgn[b + (w • x)] such that 7* > g2 > g{\ 

The choice of nested models to use can be made by considering a priori in­

formation about the classification/regression task, for instance if the data is 

assumed to be non-linearly distributed then we can consider polynomial clas­

sification/regression functions of increasing degree; however this decision must 

be made before the training set is generated so as to satisfy the VC condi­

tion of distribution-independence. However, choice of the geometric margin 
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depends on the training set; so technically, SRM cannot be applied to SV clas­

sification where maximizing the geometric margin is essential. See [STB98] for 

alternatives. 

If a particular family is too simple (where the VC-Dimension is low) then 

the empirical risk will likely be high since it becomes difficult to correctly 

classify the entire training set; on the other hand if the family is too complex 

then the VC-Confidence Interval will be large. So the next step in the SRM 

procedure is to find an optimal parametrization for each space using the em­

pirical risk minimization methodology and then finally to add this minimized 

empirical risk to the value of the PAC bound (3.43) on the generalization error 

for the space in question: 

/ - \ h(Si) log ==*" + log i 
i2™(SO=mh(j2»(/)) + y - ^ 7 P ~ . (3-47) 

The family that minimizes the above expression has optimal generaliza­

tion potential since we have an optimal balance between the capacity of the 

family in question (measured before generation of the training set) and the 

empirical risk (within each Si and hence is dependent on the training set); it 

is optimal because moving to the next space in the sequence Si+i does not 

reduce the empirical risk sufficiently to accommodate the increase in capac­

ity (V(Si+i) — V(Si)) and moving to the previous space in the sequence St-i 

increases the empirical risk beyond the decrease in the capacity of the hypoth­

esis space. As we have seen in section 2.4 this is essentially a regularization 

method. 
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SUPPORT VECTOR MACHINES FOR BINARY 

CLASSIFICATION 

Provided with n input vectors in the Hilbert space Ji — Rd and their corre­

sponding binary annotations: 

S = {(xu Vl), (£2, y2), • • • , (xn, yn)} C R J x {+1, - 1 } = % x V 

all of which are identically and independently distributed (iid) according to 

some probability distribution P(x,y) = P(x) • P(y\x), we seek a prediction 

function f(x) that will predict the correct annotation in the presence of noise: 

yt = max P(y\xt) 
J/G{+1,-1} 

for a test example xt. The search for an optimal prediction function f(x) 

is usually performed in a restricted functional space using the principle of 

empirical risk minimization (ERM) as outlined in the previous chapter. 

For binary classification the zero-one loss function 

'e\f,&v}] = \m-v\ C4-1) 

may be used in which case the expected risk is then just the probability of 

misclassification; to see this note that the loss function \f(x) — y\ can be 
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xxy 

written as (1 — lf(x),y) and then the expected risk 

Rx[f] = J l-lm,ydP(x,y) (4.2) 

ldP{x,y)- / If(x)tydP(x,y) 

*\i X Q .A. X (J 

= 1 - 1 I/(a.)iW dP(£, i/) 

xxy 

is simply 1 minus the total probability of generating training examples which 

have been correctly classified: lf(x),y = 1-

The zero-one loss function is not a Lipschitz function (definition 3.4.5); 

it is discontinuous and scale insensitive; it is also impossible to provide a 

confidence in the classifiers predictions. The hinge loss is f-insensitive to scale 

and is given by: 

tv[f,{x-,y}} = max[0,v-yf(x)} (4.3) 

so that only those points whose classification we have a high confidence in 

(are at least v away from the decision boundary) do not contribute to the loss, 

even if they are correctly classified. In the rest of this chapter we consider 

optimality conditions for (and justify our choice of) prediction functions of 

the form f(x\w, b) — sgn [{w • x) + b] so that the empirical risk is given by: 

Rn[f] = -T^f(^,b),{x,y}) (4.4) 
n ^—' 

4.1 GEOMETRY OF THE DOT PRODUCT 

We begin by defining a linear function in a real-valued, pre-Hilbert (inner 

product) space 3i = Rd, parameterized in terms of a weight vector w e Rd 

and a threshold or bias b G R (a total of d + 1 free parameters): 

rj (x) = (w • x) + b 

The scalar resolute is the length of the perpendicular projection of x onto 

w and is given by the dot product 

(w • x) — \\x\\ cos# (4.5) 
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4.1 GEOMETRY OF THE DOT PRODUCT 

We begin by defining a linear function in a real-valued, pre-Hilbert (inner 

product) space 9-{ = IRd , parameterized in terms of a weight vector w E IRd 

and a threshold or bias b E IR (a total of d + 1 free parameters): 

~ (x) = (w . x) + b 

The scalar resolute is the length of the perpendicular projection of x onto 

w and is given by the dot product 

(tû· x) = Ilxll cose (4.5) 
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v'W\) 

Figure 4-1: The inner product as a perpendicular projection 

where w = w/\\w\\ is a unit (normalized) vector and 0 is the angle between w 

and x. We can now rewrite the dot product in the definition of h(x) as 

(w • x) = \\w\\ \\x\\ cos(9) 

We can use the dot product as a similarity measure between two input 

vectors (x\ and x2) by comparing their corresponding dot products with some 

fixed weight vector w; it is important to note that the dot product can dis­

tinguish between two vectors that lie in the same direction but have differing 

magnitudes: 

ll^iII = \\%21| and #i = 02 = > (w • xi) = (w • x2) = > £1 = £2 

\\x.i\\ 7̂  ||£2|| and Oi = 92 ==> (w • £1) ^ (w • x2) =>• Xi ^ x2 

where 0i (and 02) is the angle between xi (and x2 ) and w. Similarly 

the dot product can also distinguish between two vectors that have the same 

magnitude but lie in different directions: 

0i = 92 and ||a?i|| = ||x2|| ==> (w • X\) = (w • x2) = > x\ = x2 

0i 7̂  02 and ||fi|| = ||x2|| =>• (w • £1) 7̂  (tu • £2) =*> £1 7̂  ^2 

But if neither the magnitude or direction of two input vectors is equal then it 

is impossible to make any general inferences about the equality of the vectors 

since we can decrease cos(0i) (increase 0i) and then increase the magnitude of 

a vector X\ by an equal amount to produce a new vector £2 that has the same 

\ 
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Figure 4 -2 : The distance of a. point x from the hyperplane S) is the difference between the 
length of the perpendicular projection of x on w and the distance of the hyperplane from 
the origin: (x • -S -b 

Nil 

dot product; 

(w • X]) = (w • x2) =fr X\ — X'z (4.6) 

This is an inherent weakness of the dot product. 

Since (4.5) is a scalar it does not have direction; the vector resolute com­

bines the scalar value (w • x) with the direction of w and is given by multiplying 

the scalar resolute by w: 
w ( w 

w \w\ 
X (4.7) 

4.2 REGULATING THE HYPOTHESIS SPACE 

The primary concern in binary classification is dividing the input space 

into two half-spaces, one each corresponding to the positive and negative 

classes; a hyperplane in an affine subspace of dimension d — 1 achieves this: 

9) = {x GWd: \){x) = 0 } (4.8) 

so that the positive and negative classes are defined as the disjoint sub-

spaces {x | f)(.r) > 0} and {x | h(x) < 0} respectively. From this def­

inition of the hyperplane we see that the weight vector w is perpendicu­

lar to Sj since for any two points X\ and x2 satisfying 4.8 we have that 

(x\ — x2) • w = 0 => (xi — X2) -L w, while the scalar bias b translates S) 

-1> 

IIu711 (
il' ) 

.f. Illvll 
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Figure 4-2: The distance of a point if from the hyperplane S:J is the difference between the 
length of the perpendieular projection of if on w and the distance of the hyperplane from 

the Ol'igin: (:f. ii:~li) - li~li' 
.: .: 1:: 

dot product: 

( 4.6) 

This is an inherent weakness of the dot product. 

Since (4 . .5) is a scalar it does not have direchon; the vector resolv.te COlll­

bines the scalar value (ÛJ' i) with the direction of tU and is given by llluitiplying 

the scalar l'esolute by 77): 

(4.7) 

4.2 REGULATING THE HYPOTHESIS SPACE 

The primary concern in binary classification is dividing the input space 

into two half-spaces, one each corresponding to the positive and negative 

classes; a hyperplane in an affine subspace of dimension ci - 1 achieves this: 

Sj = {i E ]Rd : f) (i) = ()} (4.8) 

so that the positive and negatiye classes are defined as the d.ü.,joint sub­

spaces {:ë 1 f)(:r) > O} and {:r 1 f)(i) < O} respectively. From this def­

inition of the hyperplane we see that the weight vector u} is perpendicu­

laI' to Sj since for any two points :i\ and i 2 satisfying 4.8 we have that 

(il - ;[2) . tU = 0 =} (;[1 - :[2) .1 'U}, while the scalar bias b translates Sj 
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F i g u r e 4—3; The margin boundaries f) + and S)- lie on either side of the classification 
boundary Sj and are defined by the support vectors. The geometrical margin for the canon­
ical hyperplane f) is l/||uT||; the distance of a point x from Sj is h(a?)/jjh'(;?)jj; changes to the 
bias term b cause the hyperplane 9) to shift in a perpendicular direction. 

in a parallel direction so that the perpendicular distance of Sj from the origin 

is —6/||uJ||. The distance.of a point x from the hyperplane $j can then be 

calculated as follows: take any point XQ (see Figure 4-2) on the hyperplane S), 

then calculate the euclidean distance between the perpendicular projections 

of x and x0 on tv: 

(p! ' f ) " (pil'*°) = M[("'f)~(^'fo)] 

= M[("'f) + 6] 

where the second equality follows from (4.8). 

4.2.1 DISCRIMINANT HYPERPLANES 

In the previous chapter we saw that regularization methods (section 2.4) bound 

the capacity of hypothesis spaces to ensure well-posedness (uniqueness, exis­

tence and stability) of the ERM solution, which as a result is able to generalize 

well to unannotated test examples since it does not over-fit the training data. 

In the following sections the search for a suitable prediction function is re­

stricted to the hypothesis space of discriminant hyperplanes: 
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Figure 4--3: The margin boundaries 5)+ and 5)- lie on either side of the classification 
houndary 5) and are c1efined by the support vectors. The geometrical margin for the canOfl­
ical hyperplane 5) is l/ilûTII; the distance of a point 5: [rom 5) is IJ(:r)/11 ry'(J"1) Il: changes to the 
hias term b cause the hyperplane fJ to shift in a perpendieular direction. . 

in a parallcl direction so that the perpendicular diRtance of Sj from the origin 

is -b/lluill . . The distance of ct point f from the hyperplane Sj can then be 

calculated as follows; take any point fo (see Figure 4-2) on the hyperplane Sj, 

then calculate the euc:lidean distance between the perpendicular projections 

of :"i and :"io on ,u: 

111~11 [(1[1· f) - (0· :"io)] 

II~II [(lU' i) + b] 

11f),tf) Il f)(:r) 

where the second equality follows from (4.8). 

4.2.1 DISCRIMINANT HYPERPLANES 

In the previous chapter we saw that regularization metllOds (section 2.4) bound 

the c:apacity of hypothesis spaces to ensme weH-posedness (uniqlleness. exis­

tence and stability) of the ERM solution, whichas a result is able to generalize 

weIl to unaunotated test exampleR sinee it do es Ilot oœr-fit the training data. 

In the following sections the search for a suitable prediction fUllction is re­

stricted to the hypothesis space of discriminant hyperplanes: 
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3 = { 5D : V w, b e Rn+l } (4.9) 

This' is the first of three restrictions that are placed on the hypothesis 

space; of these three restrictions only the first and third will affect the ca­

pacity (VC-Dimension) of the hypothesis space. An extension to non-linear 

discriminant surfaces, through kernelizing the algorithm, is detailed in section 

2.5; in this case the restriction 4.9, as well as restrictions 4.10 and 4.14, are 

removed from the input space and applied instead to an expanded space or 

feature space J. 

The training data is said to be linearly separable when there exists some 

hyperplane that can divide the input space X such that each half-space con­

tains examples with identical annotations; in this case the empirical risk is 

zero since no training example is miss-classified. 

4.2.2 CANONICAL HYPERPLANES 

Multiplying both w and b by the same scalar constant doesn't change the 

orientation or position of a hyperplane although its parametric representation 

does change since the function \)(x) changes; the VC-Dimension of each of 

these parameterizations are the same since they define the same hyperplane. 

We arbitrarily select a unique representation from amongst this infinite class 

of parameterizations by isolating the so called canonical hyperplane that is 

parametrized such that the points closest to it are a distance of 1 away: 

min|(iy-Xi)+6| = l (4.10) 

This is the second restriction on the hypothesis space. It is important 

to note that any separating hyperplane can be transformed into a canoni­

cal hyperplane by multiplying the parameters w and b by the inverse of the 

perpendicular distance from the hyperplane to the nearest training example. 

Training data points that satisfy \(w, Xi)+b\ — 1 are called support vectors] 

these vectors shoulder the hyperplanes S)+ = {x : (w • Xj) + b = +1} and 

.fj_ = {x : (w • Xi) + b = — 1} on either side of $) and in doing so define the 

margin or space between fi+ and #_. 

Although we have already fixed the distance between two support vectors 

x™ and xs*, one each on the hyperplanes fj+ and i j_ , by removing the scaling 

freedom of the parameters; it is useful to view this distance in geometric terms 
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3 = { 5): V w, b E jRn+l } (4.9) 

This' is the first of three restrictions that are placed on the hypothesis 

space; of these three restrictions only the first and third will affect the ca­

pacity (VC-Dimension) of the hypothesis space. An extension to non-linear 

discriminant surfaces, through kernelizing the algorithm, is detailed in section 

2.5; in this case the restriction 4.9, as well as restrictions 4.10 and 4.14, are 

removed from the input space and applied instead to an expanded space or 

feature space J'. 

The training data is said to be linearly separable when there exists sorne 

hyperplane that can divide the input space X such that each half-space con­

tains examples with identical annotations; in this case the empirical risk is 

zero since no training example is miss-classified. 

4.2.2 CANONICAL HYPERPLANES 

Multiplying both w and b by the same scalar constant doesn't change the 

orientation or position of a hyperplane although its parametric representation 

do es change since the function ~(x) changes; the VC-Dimension of each of 

these parame"terizations are the same since they define the same hyperplane. 

We arbitrarily select a unique representation from amongst this infinite class 

of parameterizations by isolating the so called canonical hyperplane that is 

parametrized such that the points close st to it are a distance of 1 away: 

( 4.10) 

This is the second restriction on the hypothesis space. It is important 

to note that any separating hyperplane can be transformed into a canoni­

cal hyperplane by multiplying the parameters w and b by the inverse of the 

perpendicular distance from. the hyperplane to the nearest training example. 

Training data points that satisfy 1 (w, xi)+bl = 1 are called support vectors; 

these vectors shoulder the hyperplanes SJ+ = {x : (w· Xi) + b = + 1} and 

Sj_ = {x : (w· Xi) + b = -1} on either side of Sj and in doing so define the 

margin or space between 5)+ and SJ-. 
Although we have already fixed the distance between two support vectors 

x~v and x~v, one each on the hyperplanes SJ+ and SJ-, by removing the scaling 

freedom of the parameters; it is useful to view this distance in geometric terms 
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by taking the difference between their normalized perpendicular projections 

onto w 

^L . Ssv\ _ (j»_ . Ssv\ _IZ± _ - 1 - 6 
I -•II + I I II -*ll - / ~~ II -»ll II - I I 

Ml / VIMI / IMI Ml un\ 

IMI 

Since two points (TT|T • Xs?) and (•M̂TT • Xs?) on opposite sides of Sj (both of 

which lie on the vector w) are T^L apart, they must each be TJ4JT away from Sj; 

the size of the margin is now an expression of n of the (n + 1) parameters that 

define the classification boundary ft (excluding the bias b) - this is convenient 

since it is now possible to define an optimization in terms of w to regulate 

both the orientation of Sj as well as the size of the margin. 

DEFINITION 4.2.1 The functional (perpendicular, signed) distance between a 

training example (xuyi) and a hyperplane ft is: 

1% = V% t)(xi) 

The functional margin 7 between a set of training examples 8 and a hyperplane 

Sj is then simply the minimum over all functional distances between Sj and each 

example in §: 

7 = min 7J = min y{ fj(fj) 

DEFINITION 4.2.2 The geometric (normalized, euclidean) distance between 

the hyperplane S) and 

li =Vi 
w _ \ b 

7^77 -Xi) +rr-, 
\W{\ I \\W 

The geometric margin 7* is the minimum over all geometric distances 7* be­

tween JO and each example in §. 

The classification of a test example (xt, yt) can be verified through the 

condition 7t > 0 since f)(x() > 0 is the subspace associated with yt > 0 and 

\){xt) < 0 is the subspace associated with yt < 0; the resulting classification 

rule or decision/prediction function is defined as: 

. yt = f(xt) = sgn [\)(xt)\ = sgn {(w • xt) + b] (4.12) 
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by taking the difference between their normalized perpendicular projections 

anta w 

( w ~sv) (w ~sv) 1 - b -1 - b 
Ilwll . x+ - Ilwll' x_ = Ilwll - Ilwll 

2 
(4.11) 

Ilwll 

Since two points (II~II . x~) and (II~II . x~) on opposite si des of fJ (both of 

which lie on the vector üJ) are II~II apart, they must each be II~II away from fJ; 
the size of the margin is now an expression of n of the (n + 1) parameters that 

define the classification boundary Sj (excluding the bias b) - this is convenient 

since it is now possible to define an optimization in ter ms of w to regulate 

both the orientation of .fj as weIl as the size of the margin. 

DEFINITION 4.2.1 The functional (perpendicularJ signed) distance between a 

training example (Xi, Yi) and a hyperplane fJ is: 

The functional margin Î between a set of training examples S and a hyperplane 

Sj is then simply the minimum over all functional distances between Sj and each 

example in S: 

Î - min Îi = min Yi ~(Xi) 
(Xi,Yi)ES (Xi,Yi)ES 

DEFINITION 4.2.2 The geometric (normalizedJ euclidea.n) distance between 

the hyperplane fJ and Xi is: 

The geometric margin Î* is the minimum over all geometric distances Î; be­

tween fJ and each example in S. 

The classification ofa test example (Xt, Yt) can be verified through the 

condition Ît > 0 since ~ (Xt) > 0 is the subspace associated with Yt > 0 and 

~ (Xt) < 0 is the subspace associated with Yt < 0; the resulting classification 

rule or decisionj prediction function is defined as: 

( 4.12) 
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Figure 4—4: As the size of the margin (as indicated by the margin boundaries f)+ and 5j_) 
decreases, the number of possible separating hyperplanes increases implying an increase in 
the VC-Dimension. 

If the positive and negative training examples can be separated using a 

hyperplane then it must also be the case that the geometric margin is positive; 

the converse also holds so that if the geometric margin is negative then the 

training data has not been linearly separated by the current hyperplane. In 

the remainder of this section as well as the next, it is assumed that the training 

examples are linearly separable. 

4.2.3 MAXIMAL MARGIN HYPERPLANES 

The final restriction is the toughest to deal with and will eventually require us 

to solve a quadratic optimization whose unique solution is the separating hy­

perplane that has the highest generalization potential. Now assume the train­

ing set is sparse and real-valued; it is then possible to apply an infinitesimally 

small transformation (rotation or translation) to any canonical separating hy­

perplane to generate a new canonical separating hyperplane whose geometric 

margin is different. So the existence of a single separating hyperplane implies 

the existence of an infinite class of distinct canonical separating hyperplanes 

all with varying geometric margins. From amongst this infinite set we must 

select a single generalizable hyperplane using insight provided by the training 

data. The following theorem links the generalization potential of a hyperplane 

with its margin; 

THEOREM 4.2.1 (VAPNIK, 1995) Let the hypersphere enclosing the entire 

training data set § have radius r so that \\x\\ < r. Then the VC-Dimension of 

the space 3P of canonical hyperplanes with bounded weight vectors \\w\\ < p is 

• • 
• • 

CI CI G 

o 

o 
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Figure 4-4: As the size of the margin (as indicated by the margin boundaries n+ and n-) 
decreases, the number of possible separating hyperplanes increases implying an increase in 
the VC-Dimension. 

If the positive and negative training examples can be separated using a 

hyperplane then it must also be the case that the geometric margin is positive; 

the converse also holds so that if the geometric margin is negative then the 

training data has not been linearly separated by the current hyperplane. In 
the remainder of this section as weIl as the next, it is assumed that the training 

examples are linearly separable. 

4.2.3 MAXIMAL MARGIN HYPERPLANES 

The final restriction is the toughest to deal with and will eventually require us 

to solve a quadratic optimization who se unique solution is the separating hy­

perplane that has the highest generalization potential. N ow assume the train­

ing set is sparse and real-valued; it is then possible to apply an infinitesimally 

small transformation (rotation or translation) to any canonical separating hy­

perplane to generate a new canonical separating hyperplane whose geometric 

margin is different. 80 the existence of a single separating hyperplane implies 

the existence of an infinite class of distinct canonical separating hyperplanes 

aIl with varying geometric margins. From amongst this infinite set we must 

select a single generalizable hyperplane using insight provided by the training 

data. The following theorem links the generalization potential of a hyperplane 

with its margin; 

THEOREM 4.2.1 (VAPNIK, 1995) Let the hypersphere enclosing the entire 

training data set S have radius r so that Ilili :::; r. Then the VC-Dimension of 

the space (Jp of canonical hyperplanes with bounded weight vectors Ilüill :::; p is 
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given by: 

V(^)<min{4r2p2 ,n} + 1 

Since the VC-Dimension is finite, consistency of the classifier is guaranteed. 

Maximizing the margin (4.11) reduces the value of the norm of the weight 

vector ||w||; hence we can lower the value of the upper bound p on the weight 

vector. Prom the above theorem we see that the VC-Dimension is reduced 

once we enlarge the margin so that V(3) > V(dp) is satisfied, where ft is 

the space of canonical hyperplanes with unbounded weight vectors. Now if 

we consider the PAC bound (3.43) we see that for a training set of size n 

there is a particular hypothesis space (with a particular VC-Dimension) that 

minimizes the generalization bound; since we can control the VC-Dimension 

(by adjusting the margin) we can perform structural risk minimization (SRM) 

for the sequence of spaces given in (3.45) to find the optimal capacity V(3P) 

for a given training data set. Intuitively, the further away from the margin 

boundaries (beyond which the classification changes) a test example is, the 

more confident we are in its predicted classification and so we would like all 

training examples to be as far away from the separating hyperplane which 

basically amounts to maximizing the margin. 

Finally, it is important to note that the maximum margin hyperplane is 

constructed on the basis of the positions of the support vectors alone in whose 

predicted classification we are not entirely confident since they are closest 

to the decision boundary; whilst making predictions the rest of the training 

examples may be ignored and this leads to significant generalization. 

4.3 HARD MARGIN CLASSIFIERS 

Based on our choice of parameters for the canonical hyperplane, for which 

7 = 1, we have already shown that 7* = TTL. TO summarize, the following 

inequalities defined in terms of the functional 

7« = Vi [& "tv)+b]>l 

and geometric margins: 

7?=yi [ ( X V M ) + > 
\w\ 

(4.13) 
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given by: 

Binee the VC-Dimension is finite, consistency of the classifier is guaranteed. 

Maximizing the margin (4.11) reduces the value of the norm of the weight 

vector Ilwll; hence we can lower the value of the upper bound p on the weight 

vector. From the above theorem we see that the VC-Dimension is reduced 

once we enlarge the margin so that '\7(3) ?:: '\7(3p ) is satisfied, where 3 is 

the space of canonical hyperplanes with unbounded weight vectors. Now if 

we consider the PAC bound (3.43) we see that for a training set of size n 

there is a particular hypothesis space (with a particular VC-Dimension) that 

minimizes the generalization bound; since we can control the VC-Dimension 

(by adjusting the margin) we can perform structural risk minimization (SRM) 

for the sequence of spaces given in (3.45) to find the optimal capacity '\7(3p ) 

for a given training data set. Intuitively, the further away from the margin 

boundaries (beyond whiCh the classification changes) a test example is, the 

more confident we are in its predicted classification and so we would like aIl 

training examples to be as far away from the separating hyperplane which 

basically amounts to maximizing the margin. 

FinaIly, it is important to note that the maximum margin hyperplane is 

constructed on the basis of the positions of the support vectors alone in whose 

predicted classification we are not entirely confident since they are close st 

to the decision boundary; whilst making predictions the rest of the training 

examples may be ignored and this leads to significant generalization. 

4.3 HARD MARGIN CLASSIFIERS 

Based on our choice of parameters for the canonical hyperplane, for which 

, = 1, we have already shown that ,* = II~II' To summarize, the following 

inequalities defined in terms of the functional 

,i = Yi [(Xi' w) + bJ ?:: 1 

and geometric margins: 

( 4.13) 
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are satisfied for all training data examples. The maximal margin hyperplane 

{x : [)(£) = (w* -x) +b* — 0} is then given [SS01] by the following optimization 

for the parameters w* and b*: 

w*,b* = argmax {7*} 
w.b 

W 

— argmax < mm 7 
w,b i = l 

argmax < mm yi 
w,b { i=l 

J n -
argmax < mm yi 

w,b { i = 1 

W 

sgn 

/ \\w\i 

w ^\ b 
7-̂ 77 • Xi ) + r-= 

\w\\ I \\w\ 

w _\ b 
\w\\ I \\w\ 

w,b 
argmax < min^ f(x) 

i = i \w\ 
b 

Xi]+W\\ 

w,b 
= argmax < min^/i f(x 

i=l 

W • Xi _ 

\\w\\2 

b _ 
;W 

W 

(4.14) 

where the fourth equality follows from splitting a vector into its sign and 

size components. The last equality includes a norm taken over the sum of two 

vectors; the first is the vector resolute defined in (4.7) and the second 6u;/||iZ;||2 

has the same direction as w and ends right on the boundary of the hyperplane 

$) since the perpendicular projection of this vector onto w is also a distance of 

—6/|| w 11 from the origin; 

b 

uww, 
w 

w w 
(4.15) 

Geometrically, the optimization attempts to maximise the difference in 

lengths of (4.7) and 6w/||w||2 and thereby maximizes the margin. Finally the 

constraints defined in (4.13) are included as part of the optimization; 

w , b* = argmax {7*} subject to yt [(xt • w) + b] > 1 Vi (4.16) 
w,b 

Using (4.13) we can rewrite this as a minimization in terms of the weight 

vector; 

w*,b* = argmin < -||w|| \ subject to ^ [(xi • w) + b] > 1 Vz (4.17) 
w,b 12 J 
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are satisfied for aIl training data examples. The maximal margin hyperplane 

{x : f) (x) = (w*· x) + b* = O} is then given [SSO 1] by the following optimization 

for the parameters w* and b*: 

w*, b* = argmax {1*} 
w,b 

= argmax {rin 1;} 
w,b t=l 

= ar~~ax {IfJr Yi [( II~II . Xi) + Il!''] } 
= ar~~aJ+;;ry; [sgn ((11:11 . x}+ II~II)II (11:11 . x;) + II~IIII]} 
= ar~~ax { IfJr Yi f(x) Il (II~II . Xi) + Il!IIII} 
= ar~~ax { rp]r y; f (x) Il ( ~~I~ w ) + 1I~1I2 wll } 

( 4.14) 

where the fourth equality follows from splitting a vector into its sign and 

size components. The last equality includes a norm taken over the sum of two 

vectors; the first is the vector resolute defined in (4.7) and the second büi/llüill 2 

has the same direction as üi and ends right on the boundary of the hyperplane 

5) since the perpendicular projection of this vector outo üi is also a distance of 

-b/llüill from the origin; 

( 4.15) 

Geometrically, the optimization attempts to maximise the difference in 

lengths of (4.7) and büi / Il üill 2 and thereby maximizes the margin. Finally the 

constraints defined in (4.13) are included as part of the optimization; 

üi*, b* = argmax {1*} subject ta Yi [(Xi' üi) + b] ;:::: 1 Vi (4.16) 
w,b 

Using (4.13) we can rewrite this as a minimization in terms of the weight 

vector; 

üi*,b* = argmin {!llüill } subject ta Yi [(Xi ·üi) +b];:::: 1 Vi (4.17) 
-b 2 w, 
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Figure 4—5: The minimum distance between a canonical separating hyperplane and a 
data point is r = l/||iu|| so we can enclose each training point in a hyper-sphere of radius r, 
so that the hyperplane does not bisect any hyper-sphere, [left] many hyperplane classifiers 
are admissible [right] as the radius of the hyper-sphere increases, the number of admissible 
hyperplanes decreases. So maximizing the margin leads to a restricted hypothesis space 
with lower VC-Dimension. Intuitively we expect that when a training example x is far away 
from the margin boundary, then small perturbations in the training space xt = (x + e) 
should leave the classification unchanged: f(x) = f(xt). Additionally, small perturbations 
to the parameters (w + e) are also more likely to leave the classification unchanged. 

4.4 S O F T MARGIN CLASSIFIERS 

So far we have assumed that the geometric margin is positive; in such 

cases the training data is said to be linearly separable; when this is not the 

case we make use of margin slack variables & (that allow the training data to 

cross either the margin boundaries S)+ and 5}_ or the classification boundary 

S)) which are then used to define relaxed inequality constraints; 

yi[(2i-i3)+b]>l-Zu £ > ( ) • (4.18) 

There are three possible values for &: 

i £j = 0: Xi is correctly classified; it lies on or beyond the margin boundary 

for its class 

ii 0 < & < 1: Xj is correctly classified; it lies between the margin boundary 

and the classification boundary for its class 

iii & > 1: Xj has been misclassified: it lies on the wrong side of the classi­

fication boundary 

So we see that the classification of a training example (using 4.12) is 

correct only when its geometric margin is positive in which case its associated 

slack variable is less than or equal to 1. An upper bound on the training 
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Figure 4-5: The minimum distance between a canonical separating hyperplane and a 
data point is T = l/llwll so we can enclose each training point in a hyper-sphere of radius T, 

so that the hyperplane do es not bisect any hyper-sphere. [left] many hyperplane classifiers 
are admissible [right] as the radius of the hyper-sphere increases, the number of admissible 
hyperplanes decreases. 80 maximizing the margin leads to a restricted hypothesis space 
with lower VC-Dimension. Intuitively we expect that when a training example x is far away 
from the margin boundary, then smaU perturbations in the training space Xt = (x + f) 
should leave the classification unchanged: f(x) = f(xt). Additionally, small perturbations 
to the parameters (w + f) are also more likely to leave the classification unchanged. 

4.4 SOFT MARGIN CLASSIFIERS 

So far we have assumed that the geometric margin is positive; in su ch 

cases the training data is said to be linearly separable; wh en this is not the 

case we make use of margin slack variables Ç,i (that allow the training data to 

cross either the margin boundaries fJ+ and fJ- or the classification boundary 

fJ) which are then used to define relaxed inequality constraints; 

( 4.18) 

There are three possible values for Ç,i: 

Ç,i = 0: Xi is correctly classified; it lies on or beyond the margin boundary 

for its class 

Il 0 < Ç,i S 1: Xi is correctly classified; it lies between the margin boundary 

and the classification boundary for its class 

iii Ç,i > 1: Xi has been misclassified: it lies on the wrong si de of the classi­

fication boundary 

So we see that the classification of a training example (using 4.12) is 

correct only when its geometric margin is positive in which case its associated 

slack variable is less than or equal to 1. An upper bound on the training 
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classification error (or empirical risk under the zero-one loss function) is given 

by the norm of the margin slack vector ||£|| since satisfying condition (ii) does 

not constitute a miss-classification. 

Even in cases where the data is linearly separable it might not be optimal 

to restrict the search to only those hyperplanes that satisfy (4.13); for example 

training data may include a single noisy outlier which should be ignored (in 

the sense that we modify its functional margin so that it becomes a support 

vector and affects choice of the hyperplane as such), which is essentially what 

(4.18) achieves with non-zero margin slack variables. However by making all 

& large enough it is possible to satisfy all the constraints defined in (4.18) for 

any choice of hyperplane and so it is therefore crucial to restrict the size of 

the margin slack variables by constraining ||£||. 

We consider optimizing two quantities; maximizing the size of the mar­

gin while minimizing the size of the margin slack variables subject to the 

constraints defined in (4.18). We can define an optimization based on these 

criteria by modifying (4.17) so that we have the following which is said to be 

in its primal form: 

w*,b*,C = argmin(i||tZ;|| + C7||ll|) (4.19) 

subject to yi \{xi • w) + b] > 1 — £j, & > 0 Vi 

We must now reexamine how the maximum margin is constructed; lets 

assume we have the hyperplane from the optimization above parametrized in 

terms of w*,b*,t,* - it is clear that only a fraction of those examples satisfying 

£* = 0 serve as support vectors, specifically those which lie on the margin 

boundary. This is in contrast to those points satisfying £* ¥" 0 which are all 

support vectors since they are forced onto the margin boundary of their class. 

So the choice of parameters in (4.19) are affected by all vectors satisfying (ii) 

and (hi) and a subset of those satisfying (i). 

We must also scrutinize the affects of the parameter C on the results of 

the primal optimization; as its value decreases it gradually switches from con­

straining the training classification error to showing a preference for maximal 

margin hyperplanes instead; so as C decreases the size of hypothesis space di­

minishes which in turn reduces the computational complexity and run-time of 

the optimization. When the value of C is high enough so that non-zero margin 
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classification error (or empirical risk under the zero-one loss function) is given 
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slack variables are highly penalized, the resulting hyperplane is equivalent to 

the hard margin hyperplane. 

So we have shown that the optimal hyperplane in a binary classification 

task has maximal geometric margin and can be found by optimizing the primal 

form given in (4.19), in the following section we will see that finding such a 

hyperplane is in its dual form, a quadratic programming problem. 

4 .5 Q U A D R A T I C P R O G R A M M I N G 

Using the method of Lagrange multipliers for nonlinear constrained opti­

mizations, we define the Lagrangian A as the objective function plus a linear 

combination of the constraints: 

1 n 

A(w,6,e | a) = - H I + C||f|| - 5 > i (yi(xi • w) + Vib - 1 + 6 ) (4.20) 

where â  > 0, /?» > 0 are dual variables or Lagrange multipliers which must be 

non-negative since this is implied by the non-negativity of their corresponding 

constraints: 

yi(xi •w)+yib-l + {,i>Q =4> a{ > 0 

Now we can rewrite (4.19) in its dual form as an unconstrained maximiza­

tion over the dual (Lagrange) variables: 

a* — argmax < argminA(u;, b, £ | a) > (4-21) 

To find the minimum we differentiate the Lagrangian with respect to the 

parameters w, b and £ and set it equal to zero: 

n 

'Y^Oiiyixi = w (4.22) 
i=l 
n 

5 ^ onyx = 0 
i=i 

a = 2C£ 

dA 
dw 

dA 
~db 

8A 

0 

0 

.~ 
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( 4.21) 

To find the minimum we differentiate the Lagrangian with respect to the 

parameters W, band { and set it equal to zero: 

8A 
n 

L - - ( 4.22) 8w =0 ===? aiYiXi = w 
i=l 

8A 
n 

8b = 0 ===? LaiYi = 0 
i=l 

8A 
5=2C{ --::; = 0 ===? 

8ç 
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Incorporating the first and third of the above into the dual form gives: 

A(w,6,f | a) Y^ aiy& 
i=i 

C a 
2t7 

- Y^ (aiVi& ' '">) + aiVib ~ Qi + Q&) 
2 = 1 

<XiOLj{yi -y^ixt-Xj) + (a • a 
4C 

i=\ j=l 

n I a \ n 

(=1 \ i=l 
n . n 

i = l 

9 X I H ai0ii fa' yj)& • fJ) + 
i=i i = i 

(a • a) v-^ 

4c + 5 > 

X^^a^-^)^ Xo 
(a -'a; 

AC 

So our final dual quadratic optimization is given by: 

n 

i=l 

a 

2C 

OCi 

a 
{ 1 " " 

axgmax - - J ] ^ 0*0,-<y* • y>)(£i • Xj) V + ^ ° 4 (423) 
t = l 

subject to the constraints: a,- > 0, V? and X^=i a ' ^ = 0- Typical quadratic 

optimizers solve the following minimization: 

a* — argmin l sra + -aT Ha I (4.24) 

sub jec t t o : Aa. — b and I < a <u 

We can rewrite (4.23) as a quadratic minimization in the matrix form 

given above as: 

1 1 
a* = argmin { -a Uyy) G (XX ! ) + — \a a 

->T -> sub j ec t t o : y a = 0 and a,- > CM. (4.25) 

There are several methods for solving this optimization, some more efficient 

than others; refer to [Pla98], [CBM02], [MM01] and [Joa99]. 
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1=1 

n / n ) 'Il -8aiYi \ii' ~aiYiii + ~ai - (â.() 

__ ~ ~ aa (y- . Y-) (i . T) + a· a + ""' a - 0: . ~ 
1 n n (-; -;) n ( -; ) 

2 L.t L.t . 1. .1 2 J 2' • ) 4C L.t . 1 . . 2C 
i=l j=1 i=1 

80 our final dual quadratic optimization is given by: 

{

ln n (........) n } .... * . .... -; a . a a = arO'mHX -- ~""' a.-a ./.y- . 'Y -) fT- . :c·) - + ~ a 
b _ 2 L.t L.t 1 ) \. 1 .l \ 1 J 4C L.t 1 

n i=1 j=1 i=1 

( 4.23) 

subject to the constraints; O:i 2: 0, Vi and L~1 Cl:iYi = O. Typical quadratic 

optirnizers solve the following minimization: 

.... * . (-;T.... 1 -;TH .... ) a = arg:l1m 8 0: + -0: a 
0: 2 

( 4.24) 

subject to: Aâ = b and r::; â ::; fi 

vVe can rewrite (4.2:3) as a qlladratic minimization in the matrix form 

given ab ove as: 

subject to: f{â = ° and O:i 2: OV-i (4.25 ) 

There are several rnetllOds for solving this optimization, some more efficient 

than others; l'efer to [Pla981, [CBM02], [rdl\IOl] and [.1oa99]. 
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Figure 4-6 : Results of binary classification task; 17 support vectors (green) define the 
decision boundary which separates the positive (blue) from the negative (red) examples. 
Notice that all the training examples that are rnisclassified by the learnt decision boundary 
serve as support vectors. 
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SUPPORT V E C T O R MACHINES FOR REGRESSION 

Support Vector Machine Regression (SVMR) is similar to SVM Classification 

(SVMC) in that the regression function that it learns is linear in some higher 

dimensional feature space and non-linear in the input space. The learnt func­

tion deviates the least from the training data amongst all such linear surfaces 

in the expanded space, according to some loss function. As an example con­

sider the e-tube loss function: 

[ \Vi- j{Xi)\-e otherwise 

We have already seen how to build optimal, linear decision boundaries in 

the feature space in the previous chapter on SVMC for a binary classification 

task. Now given a training set where the annotation space is real-valued V = R, 

we will still consider linear surfaces of the form: 

f(x) — (w • x) + b 

where w : X —>• ^ is a linear operator and b € ^ is a bias vector [SSTPH05]. 

However instead of attempting to separate and then maximise the region be­

tween the two classes, we will require that the input vectors are positioned 

within an e-tube around any hyperplane under consideration; the inputs fail­

ing to satisfy this will contribute positively to the loss. Ideally as the e-tube 

is reduced in size, we would like to find the linear regression surface that has 

minimal loss. Following from the optimization defined in (4.17) we define the 

following quadratic optimization: 
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Fi gure 5—1: Training examples within the e-tube (in black) do not incur a loss although 
those examples outside it (in gray) do with the loss increasing linearly as a function of the 
distance from the e-tube. 

min^ r(tu) = \wwT 

subject to: y$ — (w • Xj) — b < e 

{w- Xi) + b -Vi<e (5.2) 

It is possible that for a given value of e no function satisfying the constraint 

\f{xi) — Vi\ < e exists. So we define slack variables ^ > 0 and fa > 0 and 

re-write the (primal) optimization as: 

1 " 
min T(w, ijj, $) = -wwT + C Y2(*Pi + fa) 

subject to: y; — (it; • X{) — b < e + ipi 

(w • Xi) + b - yt < e + fa 

i>i > 0, fa > 0, \/n (5.3) 

This is a soft version of the previous (5.2) optimization similar to (4.19); the 

constant ( G R maintains the trade-off between how much deviation outside 

the e-tube is permitted versus the generalization or in this case the flatness of 

the regression function. 

80 

Figure 5-1: Training examp1es within the E-tube (in black) do not incur a 10ss a1though 
those examp1es outside it (in gray) do with the 10ss increasing linearly as a function of the 
distance from the E-tube. 

minw r(w) = ~wwT 

subject to: Yi - (w· Xi) - b ::; E 

(w· Xi) +'b - Yi ::; E (5.2) 

It is possible that for a given value of E no function satisfying the constraint 
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re-write the (primaI) optimization as: 

_ _ 1 n 

min_ r(w, 'l/J, cP) = "2 wwT + (L(1Pi + cPi) 
w,'Ij;,rjJ i 

subject to: Yi - (w· Xi) - b ::; E + 'l/Ji 

(w . Xi) + b - Yi ::; E + cPi 
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This is a soft version of the previous (5.2) optimization similar to (4.19); the 

constant ( E IR maintains the trade-off between how much deviation outside 

the E-tube is permitted versus the generalization or in this case the fiatness of 

the regression function. 
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5.1 LANGRANGIAN DUAL FORMULATION FOR REGRESSION 

Instead of solving the primal optimization, we will work with its dual form 

which often has a structure thats easier to work with and in many instances 

also has a more intuitive interpretation. We begin by defining the Lagrangian 

A as a linear combination of the objective function and the various equal­

ity/inequality constraints of the optimization (5.3): 

-* 1 " 
A{w,bJ,$\a,p) = -|M|2 + C ^ ( ^ + <̂ ) 

i=l 
n 

- ^aiie + ipi-yi + iwiXij + b) 
i= i 
n 

- ^piie + fa + yi-iw^J-b) (5.4) 
j = i 

where a, and fy are non-negative dual variables or Lagrange multipliers. The 

dual objective function Q of the original optimization is defined as: 

fi(a, P) — min A(w, b, </>,̂ |<3, (3) (5.5) 
w,b,(p,tp 

and has a value of — oo when the Lagrangian is unbounded from below. The 

Lagrangian Dual, which in this particular case is still a quadratic optimization, 

is then given by: 

max Q(a,P) 

—* 
subject to: a > 0 and /? > 0 (5.6) 

More generally, it is easy to see that the dual of all linear or quadratic programs 

remain as such. 

Weak duality is said [Wel07] to hold when any feasible dual solution lower 

bounds any feasible primal solution; in the case that they are equal it implies 

the optimality of both feasible solutions as we will see in the following theorem. 

Under certain conditions on the dual optimization, this lower bound is in 

fact always optimal and hence equal to the optimal primal solution; in such 

instances, Strong Duality is said [Boy07] to hold. 

THEOREM 5.1.1 (WEAK DUALITY THEOREM) Let(wf,bf,ipf,(ff) be any fea­

sible point for the primal and (5 / , /?/, iff, rj* f) any feasible point for the dual; it 

('. 
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1 n 
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follows that the primal objective function T and its dual Q satisfy the following 

inequality: 

Q(afJf)<r(wf,bfJfJf) (5.7) 

Proof All feasible solutions of the dual must satisfy (5.5) and hence are min­

ima of the Lagrangian function A: 

^(«/>Af) = mm A(w,b,$,tp\af,pf) 

< A(wf,bfJf,ijf\dfJf) 

< r(wf,bf,$f,iff) 

where the last inequality follows from the definition of the Lagrangian (5.4), 

the positivity of the Lagrange multipliers and the constraints that define the 

primal optimization. • 

Hence it follows that if the primal has a feasible solution then the dual ob­

jective function is bounded from above; alternatively if the dual is feasible then 

the primal is bounded from below. Furthermore, if the dual is unbounded from 

above (Q = oo) then the primal is infeasible and if the primal is unbounded 

from below (r = —oo) then the dual is infeasible. 

The duality gap is the difference between the values of the primal T and 

dual Q objective functions evaluated at some feasible primal and dual points 

respectively. The optimal duality gap is given by the difference between the 

optimal solutions of the primal and dual problems which still clearly satisfy 

(5.7): 

—> —* —* 
max Q,(a, j3) < mm^F(w,b,ip,(f)) (5.8) 

<5,/3 w,b,tp,<l> 

Note that when the primal is a maximization and the dual is a minimiza­

tion then the weak duality theorem gives us the opposite result, specifically 

that the primal objective function is bounded from above by the dual objective 

function. Finally, if the duality gap is zero for some feasible primal and dual 

points: 

Q(afJf) = r(wf,bf^fJf) (5.9) 
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(5.9) 
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it follows from the Weak Duality Theorem that (vjf, bf,ipf,(pf) is an op­

timal primal solution while (a/,/?/) is an optimal dual solution.1 To see this 

note that if (5.9) holds then the dual objective function has attained its max­

imum (optimal) value (since it is bounded from above by the primal objective 

function) while the primal objective function has attained its minimum (opti­

mal) value (since it is bounded from below by the dual objective function). 

DEFINITION 5.1.1 (STRONG DUALITY) When the existence of an optimal so­

lution to the primal implies the existence of an optimal solution to the dual and 

vice versa, the optimal duality gap must be zero. In other words, the existence 

of an optimal primal solution (w0, ip0, </>0, Co) implies the existence of Lagrange 

multipliers (a0,(30) satisfying 

Q(a0, /30) = T(w0, b0, tp0, $0) 

DEFINITION 5.1.2 (CONVEX OPTIMIZATION) A convex optimization has a 

convex objective function, convex inequality constraints and linear equality con­

straints. Every strictly convex optimization has a unique solution. 

The objective function of the dual Q is a concave (downward) function 

of the dual variables even when the primal objective function F is not convex 

(concave upward). This is because [Hin06] the dual is a point-wise minimum 

of a set of affine functions. Furthermore, when the primal problem is convex, 

then strong duality holds. Hence, in the case of quadratic programs which are 

always convex, the duality gap is always zero. 

5.2 C O M P L E M E N T A R Y S L A C K N E S S 

Let (a0, P0) and (w0, b0, tp0, 0O) be optimal solutions of the dual and primal 

respectively. Then Strong Duality implies that Q(a0,/30) = r(w0,b0,ip0,(j)0). 

1 It is important to note that the converse is not necessarily implied: primal 
and dual objective functions evaluated at optimal primal and dual solutions 
need not be equal but must satisfy (5.8). 
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The objective function of the dual 0 is a concave (downward) function 

of the dual variables even when the primaI objective function r is not convex 

(concave upward). This is because [Hin06] the dual is a point-wise minimum 

of a set of affine functions. Furthermore, when the primaI problem is convex, 

then strong duality holds. Henee, in the case of quadratic programs which are 

always convex, the duality gap is always zero. 

5.2 COMPLEMENTARY SLACKNESS 

Let (ao, /Jo) and (wo, bo, ;fa, :$0) be optimal solutions of the dual and primaI 

respectively. Then Strong Duality implies that O(ao, /Jo) = r(wo , bo, ;fa, :$0)' 

1 It is important to note that the converse is not neeessarily implied: primaI 
and dual objective functions evaluated at optimal primaI and dual solutions 
need not be equal but must satisfy (5.8). 
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From (5.4) and (5.7) we then derive the KKT conditions: 

oti{e + ipi~Vi + (w, Si) + b) = 0 

Pi(e + <j>i + yi- {w, x{) - b) = 0 

i = !,••• ,n (5.10) 

Proof 

r(w0,b0,ip0,$0) = Q(a0,p0) 

= min A(w, b, $, ip\a0,0O) 
w,o,<p,ip 

< A(w0,b0,(f)0,xfi0\d0,p0) 
n 

= T(w0, b0, $0, $0) - ] T ai(€ + ^i ~ Vi + (^' î) + b) 
i=l 

n 

- Y2 P*(e + & + yi - (™> %} -b) 
t = l 

< r(w0,60, <£0, $,) 

where the last inequality follows from the positivity of both the Lagrange 

multipliers and the constraints so that the following is implied: 

r(w0, b0,</>0, ip0) = A(w0 , b, (p0, tpo\a0, p0) 

A constraint is said to be active or tight if for an optimal primal solution 

(w0, b0, 4>0, ip0) its corresponding Lagrange multiplier is strictly positive which 

implies that the constraint evaluated at the optimal solution is zero: 

e + fa - yi + f(xi) = 0 implies on > 0 (5.11) 

e + ipi + Vi - f(xi) = 0 implies $ > 0 

Constraints are otherwise said to be inactive: 

e + <pi - Vi + f{xi) > 0 implies at = 0. (5.12) 

e + ipi 4- yi - f(xi) > 0 implies /% = 0 

The x*i with non-zero a% or /% are called support vectors; if we were to train the 

SVM on only these x{, ignoring all the examples for which CKJ = 0 and /% = 0, 

we would still induce the same regression surface. 

Ir--. 
From (5.4) and (5.7) we then derive the KKT conditions: 

Proof 

ai (E + 'l/Ji - Yi + (w, Xi) + b) - 0 

(Ji (E + CPi + Yi - (w, Xi) - b) - 0 

1,··· ,n 

O(ao, !Jo) 

min A( w, b, :$, ?,b'lao , !Jo) 
w,b,<fJ,'Ij; 

< A( wo, bo, :$0' ~Iao, !Jo) 
n 
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(5.10) 

- r(wo,bo,:$o,?,b'o)- Lai(E+'l/Ji-Yi+(W,Xi)+b) 
i=l 

n 

i=l 

where the last inequality follows from the positivity of both the Lagrange 

multipliers and the constraints so that the following is implied: 

A constraint is said to be active or tight if for an optimal primaI solution 

(wo, bo, CPo, 'l/Jo) its corresponding Lagrange multiplier is strictly positive which 

implies that the constraint evaluated at the optimal solution is zero: 

E + CPi - Yi + f(Xi) = 0 implies ai > 0 

E + 'l/Ji + Yi - f(Xi) = 0 implies (Ji > 0 

Constraints are otherwise said to be inactive: 

E + CPi - Yi + f(Xi) > 0 implies ai = o. 
E + 'l/Ji + Yi - f(Xi) > 0 implies (Ji = 0 

(5.11) 

(5.12) 

The Xi with non-zero ai or (Ji are called support vectors; if we were to train the 

SVM on only these Xi, ignoring all the examples for which ai = 0 and (Ji = 0, 

we would still induce the same regression surface. 
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THEOREM 5.2.1 (LAGRANGIAN SADDLEPOINT EQUIVALENCE THEOREM) / / 

the conditions for strong duality are satisfied (i. e. the optimal duality gap is 

zero and hence the complementary slackness conditions are satisfied) then the 

optimal primal and dual solutions must be saddle-points of the Lagrangian A; 

modifying the optimal primal solution will not decrease the Lagrangian and 

similarly modifying the optimal value of the Lagrange multipliers will not in­

crease the Lagrangian. The converse also holds so that if the Lagrangian has 

a saddle-point then there is no optimal duality gap (Strong Duality) which in 

turn implies that the complementary slackness conditions are satisfied. 

Proof By definition the dual optimization is given by: 

(a0,P0)= max min A(w, b, 0, ip\a, (3) (5.13) 
S>0,/3>0 v)M,rp 

It is easy to see that maximizing the Lagrangian over the dual variables, which 

can be set to zero in the case that either (e + ipi — y% + {w,Xi) + b) > 0 or 

(e + <pi + yi — (w, %i) — b) > 0, for any feasible primal solution (ulf, bf, (j)f, ipf) 

is equal to the primal objective function evaluated at the same feasible primal 

solution: 

max A(wf, bf, <j>f, ipf\a, (3) = T(wf, 6/, </>/, tpf) 
o>0,/3>0 

As a result the primal optimization can be rewritten in terms of the Lagrangian 

as follows: 

(w0, b0,4>0, ipo) = min max A(w,b,ip,ip\d,/3) (5-14) 
w,b,<p,ip a>O,0>O 

Since there is no optimal duality gap when strong duality holds we therefore 

have: 

min max A(uJ, b, <f>, tjj\a, (3) = max min A(w,b,(p,ijj\a,P) 
w,b,4>,ip S>O,0>O 3>0,/3>0 w'b'(l>^ 

So we can change the order of minimization and maximization and still arrive 

at the same optimal solution which must therefore be a saddle-point. • 
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. 02:0,,62:0 

As a result the primaI optimization can be rewritten in terms of the Lagrangian 

as follows: 

(5.14) 

Since there is no optimal duality gap when strong duality holds we therefore 

have: 

min ma} A(w, b,~, ~IŒ, iJ) = ma} min A(w, b,~, ~IŒ, iJ) 
w,b,<f>,1jJ 52:0,,62:0 02:0,,62:0 w,b,<f>,1jJ 

So we can change the order of minimization and maximization and still arrive 

at the same optimal solution which must therefore be a saddle-point. 0 
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We can identify the saddle-points of the Lagrangian by differentiating it 

with respect to the primal variables and setting the result equal to zero: 

^ = 0 = » ^ ( / ? i _ a i ) = 0 (5.15) 
i—l 

—= = 0 =^> w- ^2(c*i - Pi)xi = 0 

0(j)i 

To remove the dependence on the primal variables we substitute (5.15) into 

the Lagrangian (5.4): 

1 n n 

A(w,b,$,ijj\a,p) = - ^ Q a j - A) (ay - Pj)(xi • Xj 

n 

i = l i = l 
n 

i = i 
n 

- ' eJ^(aj + A) 
i = l 

n n 

+ ^2/t(ai-A) + ]T}(&~a*)6 

i= i t=i 
n / n 

i=l \j=l 

So the dual optimization can be given entirely in terms of the dual vari­

ables as: 

max 
3,0 2 

- n n 

=i i = i 

-eJ^(ai + A) + J^j/i(ai- A' 
i=i t=i 

n 

subject to: /_ ,( a i — A) = 0 
t = i 

ai ,A€[0,C] (5.16) 
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with respect ta the primaI variables and setting the resuit equal ta zero: 

aA = 0 
ab 

aA = 0 
av; 

aA = 0 
a(A 
aA 

anl, = 0 
'Pi 

(5.15) 
i=l 

n 

W - L(ai - !3i)Xi = 0 
i=l 

To remove the dependence on the primaI variables we substitute (5.15) into 

the Lagrangian (5.4): 

A( W, b,;j, ~Ia, iJ) 
n n 

+ L 'l/Ji(( - ai) + L <Pi(( - ai) 
i=l i=l 

i=l 
n n 

+ LYi(ai - !3i) + L(!3i - ai)b 
i=l i=l 

80 the dual optimization can be given entirely in terms of the dual vari­

ables as: 

max 
ëi,iJ 

subject to: 

n n 

-E L(ai + !3i) + LYi(ai - !3i) 
i=l i=l 

i=l 

(5.16) 
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We can rewrite (5.16) as a quadratic minimization in matrix form (4.24): 

(a*,P*) = argmin 
s,P 

1 
2 

a 

J. 
i -

(XXT) ~{XXT) 

~(XXT) (XXT) 

subject t o : 
- I T r 

a 

K 
a 

P 

+ 
el-y 

el + y. 
a 

0 

0 and aufce [0, C] 

The primal solution can be given in terms of the dual solution (5.15) 

when strong duality holds which is convenient since the dual optimization is 

typically easier to solve that the primal. 

5.3 SPARSE SUPPORT VECTOR EXPANSION 

The regression surface can also given entirely in terms of the dual variables 

as: 

f(x) = (w • x) + b = ^{on - Pi){xi -x)+b 
i = l 

Let ^ C {1, 2, • • • , n) such that Vz G * we have both at > 0 and /?* > 0. 

Then we can rewrite our regression function using a sparse expansion as: 

/(£) = Y^(ai - A)(̂ » -x) + b (5.18) 
i e * 

Prediction functions that are defined using a sparse expansion are able 

to generalize far better since they consider only the most 'important' training 

points or support vectors; in the case of binary classification the support vec­

tors were those points that lie along the margin boundaries and are therefore 

closest to the separating hyperplane. For regression, the support vectors are 

those points that lie on or beyond the boundary of the epsilon tube and are 

hence furthest away from the regression surface. 

5.4 NON-LINEAR SVM REGRESSION 

(5 

The machine we have described so far is linear but the data itself might 

be distributed non-linearly. As previously described in section (2.5), we first 

implicitly apply a mapping function 4> to our input data, essentially projecting 
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Fi gure 5—2: Over-fitting the training data; both functions pass through all five training 
points however the linear hypothesis is more likely to accurately predict the annotation of 
a test example. 

it into a higher dimensional feature space % and then apply our linear machin­

ery to find a linear regression in this new feature space. The corresponding 

regression surface in the input space will be non-linear. Explicitly, we make 

use of kernel functions that replace all dot products between feature vectors 

and in this way perform all computation in the input space while learning a 

linear regression surface in a higher dimensional feature space. 

. ~. 
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Figure 5-2: Over-fitting the training data; both .functions pass through aH five training 
points however the linear hypothesis is more likely to accurately predict the annotation of 
a test example. 

it into a higher dimensional feature space 9{ and then apply our linear machin­

ery to find a linear regression in this new feature space. The corresponding 

regression surface in the input space will be non-linear. Explicitly, we make 

use of kernel functions that replace all dot products between feature vectors 

and in this way perform an computation in the input space while learning a 

linear regression surface in a high~r dimensional feature space . 
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Figure 5 3: Training samples were randomly (normally) generated in the region around 
the target function (red line). The learnt regression function (blue line) approximates the 
target function better as the number of training samples increases, i.e. its slope and bias 
approach that of the target function. The support vectors (red stars) lie outside the e-tube 
(green lines) while the other data points (red points) lie within it. 

1<*' '* / ."':. ! 
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Figure 5·3: Training samples were randoml,'y" (normally) generated in the region around 
the target function (red line) , The learnt regression fUllCtÎOll (blue line) approximates the 
target. [unction better as the Ilumber of training samples increases) i.e. iLs Hlope and bias 
approach that of the target fUllctioll. The support vectors (red staTH) lie outi:iide the E-lube 
(green lines) while the other data points (red points) lie within it. 
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CONCLUSION 

A linear methodology for performing classification and regression has been 

described in detail starting with a discussion on kernel methods which when 

used in conjunction with SVMs are able to extend it making non-linear clas­

sification and regression possible. The kernel trick is also described, which 

replaces inner-products in the feature space with a kernel evaluation in the 

input space so that the SVM operates in a reproducing kernel Hilbert space. 

Subsequent discussions have focused on statistical learning theory which de­

scribe the circumstances under which learning is possible and on the actual 

mechanics of Support Vector classification and regression. 

The theoretical basis of Support Vector Machines has been researched 

intensively in the last few years. Advances include the use of new task spe­

cific kernel functions, quicker evaluation of the decision/prediction function 

and calibrating the SVM solution as a posterior probability. Advances in op­

timization theory have led to faster training methods such as the Sequential 

Minimal Optimization decomposition method [Pla98]. Many new applications 

of Support Vector Machines have also emerged including detecting remote pro­

tein homologies, forecasting weather, speaker verification, face detection and 

chaotic time series prediction, in particular estimating the price of derivative 

securities. 
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