
INFORMATION TO USERS

This manuscript bas been reproduced from the microfilm master. UW

films the text directly from the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter face, while others may be

from any type ofcomputer printer.

The quality of this reproduction is depeodent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be· removed, a note will indicate

the deletion.

Oversize materials Ce.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directIy to

order.

UMI
A Bell & Howell1nformation Company

300 North Zeeb Roa~ ADn Arbor MI 48106·1346 USA
3131761-4700 800/521~600





(

{

NON-LINEAR FREE VIBRATION

OF A SPINNING TETHER

by

BYUNGNO MIN

Department of Mechanical Engineering
McGill University, Montreal

August 1996

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirement of the degree of

Master of Engineering

© Byung No MIN, 1996



1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue WeUington
Ottawa ON K 1A ON4
Canada

You' liIlr Vot,. relMr1nc8

The author has granted a non
exclusive licence a1lowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts frOID it
may he printed or otherwise
reproduced without the author' s
peTmlSSIon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29616-4

Canada



{

(

(

Abstract

Non-linear vibration of a spinning tether is studied in this thesis. The tether is

thought to be a part of a spinning tethered satellite system in the station-keeping phase so

that the tether has a constant nominal length and is forced to spin at a constant rate about

its nominal axis. Using the extended Hamilton's principle the goveming equations of

motion are derived retaining non-linear terros up to the third order that originate from

geometric non-linearity. They are discretized by the assumed-modes method, truncated to

one-mode equations, and transfonned to the phase-space fonn. Then the method of

averaging is applied.

When the tether has high nominal tension, averaging with two variables results in a

closed fonn solution, which shows dependence of the frequency contents on the initial

amplitude parameters of the system. In the case of very low nominal tension, averaging

with a single variable is useful to obtain the steady state and the limit steady state

solutions, both of which result in a circular whirling motion like a skip-rope. Without

damping, a general transverse mode appears to he quasi-periodic but it cao he periodic

under certain initial conditions. Numerical investigations reveal that the material damping

through the longitudinal mode derives the steady state to the Iimit steady state. AIso,

several interesting shapes are observed in phase plots.
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Résumé

Cette thèse étudie les vibrations non linéaires d'un fil en rotation. On considère le

fil faisant partie d'un système satellisé en rotation dans la phase de maintien en position.

Ceci nous permet de présumer que le fil a une longueur nominale fIXe et qu'il est contraint

à tourner autour de son axe principal avec une vitesse constante. Les équations du

mouvement sont fonnulées à partir du principe d'Hamilton en gardant les tennes non

linéaires jusqu'au troisième ordre. Ces derniers apparaissent en raison de la géométrie non

linéaire du système. Les équations du mouvement sont discrétisées en utilisant la méthode

des modes imposés, où seul le premier mode est considéré. Ensuite, ces équatior.'s sont

transfonnées dans l'espace des phases avant d'y appliquer la méthode de la moyenne.

Lorsque le fil a une tension nominale élevée, en appliquant la méthode de la

moyenne avec deux variables on obtient une solution analytique. Ceci démontre que les

fréquences et les amplitudes initiales du système sont interdépendentes. Dans le cas où la

tension nominale du fil est faible, en appliquant la méthode de la moyenne avec une seule

variable on obtient la solution ainsi que la solution limite à l'état stationnaire. Ces

solutions représentent un tournoiement circulaire ressemblant au mouvement d'une corde

à sauter. En omettant les effets d'amortissement, on observe qu'un mode transversal se

comporte d'une façon quasi-périodique. Cependant, ce dernier peut devenir périodique

sous certaines conditions initiales. Plusieures recherches démontrent que la présence

d'amortissement dans le matériau, dans le mode longitudinal, peut entraîner un état

stationnaire à la limite. De plus, plusieurs fonnes intéressantes sont observées dans les

courbes de phase.
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Chapter 1

INTRODUCTION

1.1 Introductory Remarks

Introduction

(

Tethered satellite systems are considered as one of the promising technologies in

space development programs. This simple concept, connecting satellites or space

structures with long thin tethers, has led to a large number of proposaIs for practical

applications[l, 2]. Bekey[3] has summarized the potentiaI uses of space tethers putting

them into five categories. These are:

• Atmospheric uses: Observation of high altitude atmosphere;

Orbital wind tunnel;

Aerobraking in planetary missions for orbital capture.

• Electrodynamic uses: Electric power generation;

Electrodynamic brake for re-entry.

• Artificial gravity uses: Variable micro-gravity laboratory.

• Constellations: To tie and connect several space platforms together.

• Transportation uses: Orbit transfer of payloads;

Simultaneous shuttle de-orbit and space station re-boost;

Waste disposaI from the space station.

Two types of tethered satellite systems have been studied and flown in space. One

is the non-spinning type such as the SEDS(Small Expendable Deployer System; USA) and

TSS(Tethered Satellite System; USA-Italy) missions[Fig. 1.1], while the other is the

spinning type like in Gemini XI(USA) and OEDIPUS(Observation of Electric field
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Distribution in Inospheric Plasma - a Unique .Strategy; Canada} missions[Fig. 1.2]. Both

types are in comparatively early stage of development and there is a strong need to

understand the complex dynamics of the tether in arder to manage the missions

successfuIly. In spite of the simple configurations, it requires rigorous and complicated

analysis to understand their dynamics.

The operation of tethered satellite systems is nonnally composed of three phases:

deployment, station-keeping, and retrieval. The deployment and retrieval phases involve a

variable tether Iength that makes the goveming equations of the system complex.

Moreover, the retrieval has been reported to he intrinsically unstable. That is why many

earlier research works were focused on the control of the variable length tether. In the

station-keeping phase, during which most of the scientific experiments are conducted,

tether length is constant, but the tension in the tether can become very small and the

dynarnics can belong ta the non-lînear regime. A comprehensive survey of earlier works

on the dynamics and control of tethered systems was done by Misra and Modi[4].

Beletsky and Levin[5] revised and generalized many interesting results published on the

theory of space tether dynamics.

1.2 Literature Review on Vibrations of Tethered Satellite Systems

ln conjunction with the TSS mission of NASA-ltaly, a lot of research work has

been conducted on trie non-spinning configuration. The earlier studies paid less attention

to the tether oscillations compared to its librations, and the vibrations of tether were

analyzed usually by the linear theory. Von Flotow[6] suggested the appropriate

approximations ta keep the bare minimum of the physical effects of a tethered system.

Because of the large spectral separation between the motions, he decoupled the fast

oscillations of the tether defonnation and the attitude motions of the end-bodies from the

slow librations of the deformed rigid configuration. Pasca et al.[7) derived the linearized

2
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equations of motion with variable coefficients and solved the corresponding eigenvalue

problems by means of a perturbation method. They showed that the in-plane transverse

and longitudinal vibrations are weakly coupled with gyroscopic terms such that they could

he decoupled from each other approximately. Bergamaschi et al.[8] were able to expIain

weIl sorne of the results from the spectral analysis of TSS-l mission using the linearized

equations derived by Bergamaschi and Catinaccio(9] with an averaged longitudinal stress,

and they observed several combination tones of the fondamental modes, which were

presumed to be due to non-linear coupling. On the other hand, Luongo and Vestroni[ 10]

considered non-lïnear oscillations; they used two integro-differential equations with

weakly quadratic non-linear terms after ignoring the longitudinal inertia and showed that

the frequencies and shapes of the vibrations depended upon the amplitudes.

One of the purposes of spinning the tethered system is to generate an artificial

gravity for the spacecraft connected to the ends of the tether and to maintain station

keeping with the sufficient tether tension. In that case, the system is forced to spin about

an axis nonnal to the nominal tether line like a cartwheeI. Gemini XI and the proposed

BICEPS(BIstatic Canadian Experiment on Plasmas in Space) are examples of this[ll, 12].

Elastic oscillations of such tethered systems have been carried out by Quadrelli and

Lorenzini[13].

In OEDIPUS missions, on the other hand, the tether spins about an axis parallel to

the nominal tether line, and the spin of tether is induced by the end-body rotations for spin

stabilization of the attitude. In the first OEDIPUS flight, the attitude of the end-bodies

showed sorne deviation from that expected prior ta the flight without detailed

consideration of the tether effects. Tyc and Han[14] took tether interactions into account

in the analysis of the attitude dYnamics in two aspects; by considering the tether tension

exerted on the end-bodies and by including the additional energy dissipation. The results

of their parametric study were in good agreement with those of the real flight. They,

however, did not deal with the motion of the tether. Tyc et al.[15] included tether motion

3
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in the dynamic modeling and obtained cIosed~fonn conditions for asymptotic stability of

the system from the linearized equations. They showed that the spin of the tether had

significant effects on the dynamics and stabiIity. In a later related study, Luo et aI.[16]

focused their attention on the oscillations of a spinning tether and derived the non-linear

equations up to the third order. The resonance and stability conditions were deduced.

1.3 Literature Review on Non-Linear Vibrations of an Elastic String

Motion of an elastic string on which a space tether is modeled has been studied for

a long time because it is a simple mechanicai system which can verify the mathematicaI

fonnulation and it can provide good physical intuition. The famous wave equation was

fonnulated over a century ago and could he solved under a variety of boundary conditions.

It was possible to extract the resonant frequencies and mode shapes of vibration of a

stretched string. It, however, was restricted to Iinear analysis with the assumption of

infinitesimaI deformation. Several phenomena, such as jump responses, sub/super

harmonie resonances, saturation, and amplitude-modulated motions, which could not he

explained by the linear theory \Vere discovered and they were taekled by introducing non

Iinear terms into the formulations [17, 18].

Lee[19] considered the local variation of tension caused by the strain up to the

second order and derived a modified wave equation with a non-lïnear tenn. He obtained

an approximate amplitude-frequency relation for a planar forced vibration of a string, but

the result was compatible with the experiment in a qualitative way only. Oplinger[20] took

the global variation of tension into account and fonnulated an integro-differentiaI

equation. In case of a specific boundary condition, he could obtain an exact solution and

the results of bis formulation were compatible with those of the experiment until the out

of-plane motion occurred. Murthy and Ramakrishna[21] extended the previous theories to

include the out-of-plane vibration, which was coupled with the in-plane vibration

4
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nonlinearly. Using the hannonic balance method, they derived the amplitude-frequency

relations from the coupled non-lïnear equation's and explained the tubular whirling motion

and the jump phenomena as the nonnal pattern of resonance response of stretched strings.

The stability analysis of these phenomena was done by Miles[22]. Anand[23] considered

the coupling between the longitudinal and transverse modes of vibration. Because of the

large spectral separation between the two modes, the longitudinal inertia tenn was ignored

and the modified equations for the transverse vibrations were obtained. His formulation

was used as a standard in many later analyses. Eller[24] conducted the stability analysis

based on a modified and extended fonn of Anand' s theory and compared it with the

experiment.

Recently, studies on vibrations of an elastic string were focused on more complex

behavior, such as bifurcation phenomena and chaos. Using the method of averaging, many

researchers transformed the goveming equations of motion into a set of phase-space

fonnulation and tried to observe the behavior by manipulating it. Miles[25] revisited the

problem of stability of the string vibrations under a simple hannonic planar excitation and

classified the bifurcation points in the frequency parameter domain along with the variation

of damping parameter. In the same system, Johnson and Bajaj[26, 27] identified limit

cycles, period-doublings, and chaotic attractors for smali enough damping. Q'Reilly and

Holmes[28] added the experiment and more rigorous theoretical analysis.

1.4 Scope and Outline of the Thesis

Spinning tethered satellite systems have emerged recently as a practical application

in space. As mentioned in the Iiterature review, the earlier works and real flights have

shown the crucial effects of the tether on the dynamics of the system and referred to the

need of comprehensive study about the dynamics of the spinning tether. Little research

5
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work, however, has focused on iL It is appar~nt that the study on non-lînear behavior of

the spinning tether is in an early development stage.

On that account, the present work considers non-linear free vibration of a spinning

tether, which can he regarded as a part of a spinning tethered sateIlite system in the

station-keeping phase. The tether is assumed to spin about its nominal axis due to the

rotation of the massive end-satellites and to he under very low nominal tension. It is the

most typical condition for a spinning tether in space. Using the extended Hamilton's

principle, a set of partial differential equations and boundary conditions that constitute the

goveming equations of motion are derived. Unfortunately, they are coupled by non-Iïnear

terms (retained here up to the third order) and are not amenable to exact solution. Since

the energy expressions have heen set up during the derivation of the equations of motion,

the assumed-modes method is adopted to discretize the system. Il results in a set of

simultaneous ordinary differential equations that are coupled hetween the longitudinal and

transverse modes as weIl as between the lower and higher frequency modes. AIthough

they can he solved by a numerical technique, they are truncated to a set of one mode

equations, which makes it possible to investigate the significant non-linear features of the

system in an analytical way. Van der Pol transformation maps the one mode truncated

equations into the phase-space forro and then the method of averaging is applied to the

formulation.

When the nominal tension is high, averaging is carried out with two variables and

results in a closed fonn solution for the response. On the other hand, when the tension is

low, ooly a single variable is used for averaging. The steady state condition and the

corresponding response are obtained, and the effect of the damping, which is modeled as a

simplified version of the material damping aIong the longitudinal mode, is considered as

weIl. Several numericaI investigations are presented and discussed. Then, the conclusions

follow at the end of the thesis.

The thesis is organized as foIIows:

6
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• Chapter 2 describes the syste~ configuration and presents the basic

assumptions on which the thesis is based. The governing equations of motion

are derived using the extended Hamilton's principle.

• Chapter 3 discretizes the system using the assumed-modes method. After

truncation to the one mode equations, they are mapped into the phase-space

fonn by the Van der Pol transformation.

• Chapter 4 introduces the method of averaging applied to the phase-space forro.

Two variables are used for the high nominal tension case, while a single

variable is used for the low nominal tension case. The steady state condition,

its stability, and the closed fonn response are obtained, and the effect of

damping is analyzed.

• Chapter 5 investigates and discusses severa! cases of numericaI simulation.

• Chapter 6 presents sorne conclusions of the thesis and recommendations for

future work.

• The Bibliography contains the references.

7
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Chapter 2

EQUATIONS OF MOTION

2.1 Description of the System and Basic Assumptions

Equations of motion

(

A schematic diagram of a spinning tethered satellite system is shown in Figure 2.1.

A long and thin tether connects two satellites which are supposed to spin at a constant

angular rate il about their own symmetric axes aligned with the tether. The nominal tether

axis passes through the two attachment points, 0 and E, of the tether with the satellites,

and the x-axis of a tether frame is aIigned with il. Two transversal axes are set arbitrarily at

o in the plane nonnaI to the nominal tether axis to complete a right-handed coordinate

system. This tether frame rotates about the x-axis at the same angular rate as that of the

satellites. The unit vectors aIong the tether frame are denoted by i, j, and k, respectively.

The basic assumptions used in the derivation of the equations of motion are as

follows:

• The tethered system is in the station-keeping phase. 50, the nominallength of

tether, l, is constant.

• The length of the tether is not very long so that the gravity gradient effect on

the tether motion is negligible.

• The mass of the satellites is much larger than that of the tether. Hence, the

vibration of the tether does not alter the global motion of the system and the

tether attachment point 0 can he regarded to he fixed inertially.

8
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• The nominal tether axis is alignedwith the axes of symmetry of the satellites

and its direction remains fixed.

• The spin rate of the tether is the same as that of the satellites such that the

tether experiences no twist.

• Extemal forces on the system, such as aerodynamic drag and electrodynamic

force, are negligible.

• The material properties of the tether are unifonn.

• The constitutive relation of the tether material is given by the Hooke's law.

• The deformations of the tether are not infinitesimaI but smalI.

• There is no internaI resonance.

2.2 Kimematic Variables

AIl points on the tether are described in terms of the nominal tether coordinate x.

As shown in Figure 2.1, a point B at x in nominal configuration defonns to A which is a

point in the deformed configuration. u, V, and w are the defonnations of the tether a10ng

the longitudinal and two transverse directions, respectively, in the tether frame and are

functions of the axial coordinate x and time t. Since the origin of the tether frame, which is

the tether attachment point 0, is assumed to he fixed inertiaIly, a position vector of the

mass point on the tetrler at x cao he expressed as

r(X,t) = [x+ u(x, t)]i + v(x. t)]+w{x, t)k (2.1)

(

Differentiation of the position vector (2.1) with respect to time, which is composed

of the differentiation in the rotating frame and the effect due to the rotation of the frame,

produces velocity

9
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,.
V =r+nixr

Equations of motion

(2.2)

where the subscript t represents partial differentiation with respect to time t.

Figure 2.2 depicts two infinitesimal elements of the tether in a slightly exaggerated

manner. A nominal element BB' of length dx defonns to a stretched element AA'. The

length ds of the deformed element can he calculated by the Pythagorean mie from the

geometry:

A local engineering strain is defined as the ratio of the net extension to the nominal

length of the element as follows:

-.{
ds

EE--I
dx

= [(I+uJ2
+ v./ +w/]! -1

Using the binomial expansion formula

(
_ { 1 (·1 2 1·}·3:1 1·1·3·5 4

I+~)' =I+-z---z + z - z + ...
2 2·4 2·4·6 2·4·6·8

the strain expression of Eq. (2.4) becomes

E=U;r +t(v/ +w/)-tu;r(v/ +w/)
_ J. (v 2+ w 2)2 + J. U 2(v 2+ w 2) + ...

8;r ;r 2;r;r .:r

(2.3)

(2.4)

(2.5)

(2.6)

(

in which the expansion is retained up to the fourth order under the assumption that the

deformations, u, v, and w, are not infinitesimal but small.

10
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2.3 Energy Expressions

Equations of motion

The system has two kinds of energy, those are kinetic energy and potential energy

due to the elasticity of the tether. From the velocity expression (2.2), the kinetic energy of

the system is simply

T =t f~v . vpdx

=tf~[pu/ +p(v, _OW)2 +p(w, +OvY]dt

where p is the Iinear density of the tether defined as mass per unit nominal length.

(2.7)

The tether is assumed to he made of an elastic material and its defonnation is

associated with an elastic potentiai energy or strain energy. According to Hooke' s law the

tension in the tether is given by

( (2.8)

where E is the Young's modulus and A is the cross-sectional area of the tether. Nu is the

nominal tension when the tether is in its nominal configuration and may result, for

example, from the gravitY gradient effect in an orbit. Since the constitutive relation (2.8)

between tension and strain is Iinear, the potentiaI energy of the system becomes

(2.9)

(

and substituting the strain expression (2.6) into (2.9) Ieads to

Il
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In the above, the defonnation variables are kept up to the fourth arder to take non-linear

effects into account. It is a geometric non-linearity rather than that of the material. In most

cases of practicaJ importance, the nominal tension No is much smaller than the longitudinal

rigidity EA, so the strain energy could he rewritten without losing much accuracy as

follows:

From Eqs. (2.7) and (2.11), the Lagrangian of the system can he obtained as

(2.12)

2.4 Governing Equations

According to the extended Hamilton's principle,

rr2 (ÔL +ôW)dr =0Jrl

(2.13)

(

for any arbitrary time interval (tr, (2) where ôL is the variation of the Lagrangian L, while

ôW is the virtual work done by the applied forces. The stationary condition of Eq. (2.13)

results in a set of partial differential equations and the corresponding boundary conditions,

which constitute the goveming equations of motion. The detailed derivation can he found

12
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in Appendix A at the end of the thesis. Under the condition of unifonn material property

of the tether, the goveming equations are:

P.D.E.

(2.14. a)

{

(2.14. c)

- EA {(u.l" - U / + 1- v/ + -! W.l" 2 )w.u + (u.:c.r - 2u.l"u.u + v.ly.u )W.l" } =q."..
P

u=v=w=O at x =0 and x = l (2.15)

(

In Eqs. (2.14), qu, ql:. and q..... are generalized forces per unit mass along the longitudinal

and the two transverse directions, respectively. These are calculated from the extemal

loading applied to the system and the dissipative force due to damping. The partial

differential equations (2.14) and boundary conditions (2.15) constitute the mathematical

fonnulation for the continuous system of the spinning tether. The fonnulation can he

comparable to that of Anand's[23] that has been used as a standard in many works on the

string vibrations. The fonnulation (2.14) of the present work contains all the terms of

Anand' s; in additiont it has the gyroscopic coupling tenns and a few more non-Iînear

terms. The gyroscopic terms arise from the spin of the tether about its nominal axis, while

13
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(

(

the supplementary non-linear terms are caused by the expansion of the strain expression

up to the fourth order rather than the second in Anand' s.

The two transverse equations (2.14. b, c) are coupled gyroscopically and all the

three equations of motion are coupled to each other by highly non-linear tenns as weIl. It

is impossible to obtain the exact closed fonn solution, and hence there is no choice but to

resort to an approximate method.

14
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Chapter 3

DISCRETIZATION

3. 1 Assumed-Modes Method

Discretization

For non-linear continuous systems~ it is usually not possible to obtain the exact

c10sed form solution of the goveming equations. This is due to the difficulties in solving

non-linear partial differential equations. Nonetheless, these equations can he transformed

to a set of ordinary differentiaJ equations by eliminating the spatial dependence from the

problems through discretization~ and these can then he solved by analytical or numericaJ

methods. This process, however, implies a certain degree of approximation, although the

accuracy of the solution can he achieved up to the level desired.

There is a variety of discretization procedures. They can be categorized into two

classes. One is that of analytical procedures~ such as the assumed-modes and Galerkin

methods, based on the expansion of the solutions in a finite series of known functions. The

other is the physical discretization procedure, such as the Iumped parameter method or the

finite element method. Each procedure has its own features~ advantages and

disadvantages~ which have been discussed by Meirovitch[31].

Since the kinetic and potential energy expressions as weIl as the Lagrangian of the

system have been derived in the previous chapter, the assumed-modes method is preferred

here since it is a variational method based on the energy of the system. According to this

method, the following forms of the solution are assumed.

(
N

u(x, t) =!<pj(x)U j Ct) =q>;U;
i=l

15
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N,

v(x, t) =L ~i (x)~(t) ="; v:
1=1

Nf

w(x. t) =L '1' i (x)~ (t) = 'V;~
,=1

Discretization

(3.1. b)

(3.1. c)

(

where Vi, \1;, and W; are the generalized coordioates of the discretized system, while cp;, ~i,

and 'Vi are the assumed shape functions that satisfy the boundary conditions cp; = 'Ôi = 'Vi =
oat both x =0 and x =/. As mentiooed earlier, the assumed-modes method is a variational

method based on the energy of system, and hence the shape functions need to he only

admissible functions, i.e. they need satisfy only the geometric boundary conditions but oot

necessarily the natura! boundary conditions. The specific foons of the shape functions are

specified later. NI and Nt are the oumbers of the shape functions utilized for the

longitudinal and the transverse displacements, respectively. Note that the tensor

summation convention has been used in Eqs. (3.1) for brevity.

Substituting the approximate solution forms (3.1) into the system Lagrangian

(2.11) produces the Lagrangian in terms of the discretized coordinates:

(

L =*(pln.rn.)00 ++(p~ô.)VV ++(p111 .," .)WW
- "t','Y) , } - I} 1 J - 'Y,"t'JI}

- n(p~;", j )~~ +n(P'I'jô j )~~

- +(EAq>;cpj )UjUj - (Noq>;)U,

+ 1-{n2(p~i~ j) - (No~:~j)}~Vj

+ t {~12 (PlV iVj) - (No'l';'Vj)}~"j

-t(EA<p;Ôj~~)Ui ~~ -t(EA<p;Vj'l'~)Ui"j~

+ t(EAcp;cpj ô;,,; )U;Uj "*~ + +(EAcp;cp~ 'V~",; )UiUj~~

-t(EA~;ÔjÔ~~;)V:~~~ - t(EAÔ;Ôj",~",;)V;\j~~

-t(EA"';'I'j'V;"';)~~~~

16
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where the angle bracket (.) means the integral from 0 to l in the nominal coordinate x, i.e.,

(.) =f~·dx.

The general Euler-Lagrange's equations of motion for a discrete system have the

form

!!-(aLJ _aL =Q
dt ai ax (3.3)

in which x and Q are the generalized coordinate and force vectors, respectively. By

introducing the Lagrangian (3.2) into Eq. (3.3), the discretized equations of motion are

obtained as follows:

{

(P~iq>j)Üj +(EACP;~j)Uj +t(E4CP;i}jt}~)~~ +t(EAq>;'Vj\fl~)Rj~

- (EAq>;q>jt}; t}; )Uj l't V; - (EAcp;cpj'V~ 'V;)Uj~~ + (NoQ);) = Qu,

(Pt}i t)J)~ - 2n(p"i'l'J)~ + {(No t};Ôj) - n 2(pt};"j)}~

+ (EAt};t}jCP;)~UJ: - (E4i};"jcp;cP; )~UJ:UI

+ t(fA";"j ô; t};)~~ ll, + t(EA";"j'l'~"';)~Ri~ = Qv,

(P'I'i'l' j)~ + 2n(P'I'i i} j ) ~ + {(No'V;'I'j) - 0 2 (P'I'i '1' j)}Wj

+ (EA'I';'VjCP~)"jU1 - (EA'V;\fIjQ)icp;) RjUtU1

+t(EA",;",j"i";)~ ~ ll, +t(EA'V;'Vj'V;'V;)"'i~ ~ = Qlv,

(3.4. a)

(3.4. b)

(3.4. c)

(

The above is a set of simultaneous second order ordinary differential equations and the

number of degrees of freedom is NI + 2N,. AlI the equations are coupled to each other

non-linearly. It is still not feasible to obtain the c10sed fonn solution for Eqs. (3.4) and

further simplification is required.

17
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3.2 Non-Oimensionalization and Truncation

Discretizalion

Many practical considerations require the tether to have uniform material

propenies such as unifonn mass distribution, uniform geometry, and constant longitudinal

stiffness. In that case, introducing the following dimensionJess variables makes the analysis

convenient.

{x/l. U/l. VII. W/l. t(EA/PI2)1} ~ {x. U. V. W. t} (3.5)

From now on ail variables are dimensionless, and the discretized equations (3.4)

become

(

where

(qJ;CfJj)Ü) +(q>;q>j)Vj +t(<p;~jÔ;)~~ +t(CfJ;'Vjv~)"j~

- (cp;q>jt}~ô; )V)~~ - (CfJ;<pjv~V; )Uj WI;~ + no2(qJ;) = qu,

(Ôjt}))~ - 2y(il,'V))~ + {nu2(ô;ilj) - y2(il/Ô j)}\j
+ (ô;ô jcp; )~V t - ( i);ô jcp; cP; )\-jUJ; VI

+ t(i};ôj~;ô;)~~ \1; + -t (ô;ôj 'l'; 'l';)~~~ =qv,

('l'i'JI) )W) + 2Y('V;Ôj)~ + {nu2("';'Vj ) - y2(p'V;'Vj)}~

+(v;vjcp; )"jUI; - ('V;",jq>~<p;) ~UtVI

+t('V;'Vj~;ô;)"'j~\I; +t(",;vjv;'V;)"i~~ =qw,

qo =t4..)/EA

y =n(EA/p[2rt

1

no = (No/EA)!

18
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Because of the symmetry of the tether. about the nominal axis, the two transverse

modes can he expanded by the same set of shape functions. Besides, it is expected from

many earlier studies that the response in the higher modes would he smaller than that of

the fundamental mode. Contribution to the motion from the higher modes could he

negligible unless internaI resonance occurs and the response described by the fundamental

mode could show most of the salient characteristics of the system. With that in mind, to

obtain approximate solutions, the following is assumed:

v; =V, w-w1-

u=V=w=o
1 1 1 '

i =2,3,4, ... (3.8)

{

Applying Eqs. (3.8) to Eqs. (3.6) and simplifying lead to the one-mode truncated

equations of motion:

(3.9. a)

(3.9. b)

(3.9. c)

where the dimensionless forces and the coefficients are given by

(3.10)

(

v = {(cp,2 )/(cp2)}! 1 (J) = no {(~,2 )/(~2)}i

~ =(cp/~'2)/(2cp2), ~ =(~'2qJ/)/(~2)

kt =(cp/2~/2)/(cp2), k2=(~/2cp/2)/(2~2), k3=(l}/4)/(2l}2)

19
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3.3 Phase-Space Formulation

Discretization

The left-hand sides of the truncated set of equations (3.9) are linear and the

general solutions with the right-hand sides put equal to zero can he found without much

difficulty. From those, the following form of solution for Eqs. (3.9) is suggested:

Uer) =a1(r)cos[Vt + ~l(t)]

V(t) =al (t)cos[(ro - y) + ~2 (t)]+ a3(t)cos[(œ + y)t + 133(t)]

(3.12. a)

(3.12. b)

(3.12. c)

The above reduces to the linear solution when both aï's and ~;'s become constants. A set

of equations (3.12) is a sort of transformation from the configuration-space (U. V. lV) to

the phase-space (a), a2, a3. ~l. ~2, ~3)' Sometimes it is called the Van der Pol

transfonnation. It is obvious that the phase-space variables, a/s and ~;'s, in the

transfonnation (3.12) cannat he determined completely, because the dimension of the

phase-space is six as opposed to that of the configuration-space which is three. Hence,

three more restrictions are needed. Thus, one can impose three conditions that the time

derivatives of the discretized coordinates have the same form as they do when the phase

variables are constants, Le.,

Ù(t) =-a1(t)v sin[vt + ~I (t)] (3.13. a)

(

Ver) = -a2(t)(ro-y)sin[(ro - y) + f32(t)]- a] (t)(ro+y)sin[(ro+y)t + 133 (r)]

.......... (3.13. b)

W(t) =a2 (r)(ro-y)cos[(ro-y)t + 132 (r)]- a] (t)(ro+y)cos[(oo+y)t + 133 (r)]

.......... (3.13. c)

20



(
Chapler 3 Discretizalion

Substituting the transfonnation (3.12) i.nto bath the restriction (3.13) and the set of

equations of motion (3.9) and then rewriting them in matrix fonn yield

[
cas[VI + ~l] - sin(VI + ~I J][ à: ]
sin(VI + ~l] cas(VI + ~I] a R

ItJl
(3.14. a)

(

cos[(oo - y)1 + ~: ] -sm[(oo - y) + ~:] cos[(co +y)r + ~l ] -sin[(w +y}t +~l]
à:

s;n[(w-y}t +~:] co.{(co - y}t + ~:l - sin[(w + y, + ~l] -cos[(co + y)- +~,] a:~2

-(co-y)s;n[(oo - 1)' + ~:] -(oo-y)co.r[(co - y)- +~:] -(w+1)sin [(w +y)r +~l] -(oo+y)cos[(CJ) + 1)r +~]] al

(oo-y)cos[(w - y)1 +13: ] -(w-y)s;n[(oo - y)1 +~:] -(00+1)cos[(w +y, + ~l] (00 +y) sin [(co + Y)1 + ~,]
a1J3,

o
o

Iv +{-hl a. caf [ VI +~I] +kl a,: cos: [VI +~I] - 11 (al: +a,: + 2ala] cos[2Wl +~l +f31])}

x {a: cos[(w - Y)I +~:] +a, cos[(w +Y)I +~I]}

.......... (3.14. b)

In the case of free oscillations with Iight material damping, which is a practical

situation for tethers in space, dissipative forces act on the tether although no extemal force

is applied ta the system. The dissipative force due to material damping corresponds to the

rate of defonnation of the material, and it can he approximated to he along the

longitudinal direction if the configuration of the system is linear such as a string or tether.

Then, the generalized forcing terrns in Eqs. (3.14) could he expressed as
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lu =-2ÇÜ = 2ÇalV sin[Vr + ~I.]

Iv =0

Iw =0

where çis a damping parameter.

Discretization

(3.15)

{

(

The coefficient matrices of Eqs. (3.14. a, b) are invertible. Pre-multiplication of

Eqs. (3.14. a, b) by their inverses and use of Eqs. (3.15) result in a set of first order

simultaneous ordinary differential equations in phase-space as follows:

-2Ça, sin2[vt + ~I]+~{~ sin[vr + ~l] - k1al cos[vt + ~1]sin[vt + ~I ]}

X {a2
2 + aJ

2+ 2a2tz3 cOS[2rot + ~2 + ~3]}

-2Ça1 cos[vr + ~I ]sin[vt + ~I]+ ~ {~ cos[vt + ~l] - k1a1 cos2 [vt + f31]}

x {a 2
2 + aJ

2+ 2a2aJ COs[2IDt + ~2 + ~3]}

a2 io{-~al cos[vr + ~I]+ k2 a,2 cos2 [vr + ~1]- k3 (a2
2+a3

2 + 2a2 a3 cos[2oot + ~2 + ~J])}

x {-a) sin[2rot + ~2 + ~J]}

=

io{-~al cos[vt + ~I]+ k2a1
2 cos2 [vt + ~I]- kJ(a2 2+a3

2+ 2a2a3 cOS(2rot + ~2 + ~3])}

x {-a2 - aJ sin[2rot + ~2 + ~3]}

io{-~al cos[Vt + ~rl+ kZa1
2 cos2 [vt + ~rl- kJ(a/ +a/ + 2a2aJ cos[2rot + ~2 + ~3])}

x {-a2 sin[2rot + ~2 + f33]}

io{-~al cos[vr + ~I]+ k2al
2 cos2 [vr + ~1]- kJ(a2Z + aJZ + 2a2a3 cos[2rot + ~2 + ~J])}

x {-a2 cos[2rot + ~2 + ~3] - aJ }

.......... (3.16)
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Chapter 4

ANALYSIS USING THE

METHOO OF AVERAGING

{

(

4. 1 Averaging with Two Variables

Under the assumption of small defonnation the response of the system, Eq. (3.12),

has a small magnitude, i.e. the coefficients a;'s are small. When the nominal tension is

high, the transverse frequency parameter (J) is large and its reciprocal hecomes sufficiently

small. Besides, the longitudinal frequency parameter v is a1ways high and its reciprocal is

small. Then the right hand side of the phase-space equation (3.16) cao he regarded to have

small elements and so do the derivatives of the phase-space variables. It can he interpreted

that the phase-space variables, aj' s and ~i' s, are slowly varying functions of time and the

variations in these variables are negligible compared to the main response of the system.

According to the method of averaging, the effect of the minute variations in slowly

varying functions cao he accounted for by taking an average with respect to the rapidly

varying variables.

It can easily he noticed that the right-hand side of the phase-space equatian (3.16)

is composed of the terms which are either constant or periodic with a period of 21t with

respect to the variables vt and 2OY. Since the longitudinal frequency v is usually high and

so is ID as mentianed in the previaus paragraph, both vr and 20Y are rapidly varying

variables and can he used as averaging variables in arder ta discard the minute variations
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caused by the rapidly varying variables in the phase-space equation (3.16). Averaging the

phase-space equation over a period with respect to the variables VI and 20l', one obtains

f.
2Jtf.2lt R.H.S.

= 4~' [Of ]dCVt)d(2rot)
Eq. (3.16 )

o 0

(4.1)

which results in the following approximate equation:

al -ça]

{ al~l ~ (2 2)-2v al a2 +a3

a2 0

= (4.2)
a2~2 ..L { 2 k (2 2)}400 a2 -Is.a[ + 2 3 a2 + 2a3

Q3 0

a3~3 -L {k 2 (2 2)}400 ~ - 2al + 2k] 2a2 + a3

The above equation is easy to solve. First, the solution for the amplitude variables is

1
-Çt

al =aloe

a2 = a20

a3 = a30

(4.3)

(

where aio's are constants of integration dependent on the initial conditions. Inserting them

into the equations governing the phase angle variables, the ~;'s in Eq. (4.2), and

integrating, one obtains
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~ 1 = - ~ (a 20 2 + aJo 2 )1 + ~ 10

P2 = -icn{-~al.z(I-e-2~)+ 2k, (a,o 2+2a,o2)t}+P20

P, =-icn{-~alO' (l_e-2~ )+2k,(2a202+a,o2)t}+P,o

(4.4)

where f3io'S are constants of integration.

Substituting Eqs. (4.3) and (4.4) into Eq. (3.12), the first arder approximations for

the response in discretized coordinates are obtained in cIosed forms as follows:

(4.5. a)

(

V(t) =a20 COS[ (00 - y)r+~{-~alO2(1_ e-2Y )+ 2k,(a202+2a,o')t}+P,o]

+a,o co{(00 +y)t +~{-~alO2(1_ e-'Çr)+ 2k,(2a202+a,o')t}+ P'o ]

.......... (4.5. b)

W(t) = a20 sin[(00 - y)t +~{-~alo'(l-e-2Çr)+ 2k,(a,o' +2a'o')t}+ p'oJ
- a,o sin[(oo +y)r +ic.ï{-4tal.2(1_ e-2~)+ 2k,(2a2o' +a,o')t}+ P,. ]

.......... (4.5. c)

The response (4.5) shows sorne interesting characteristics. The amplitude of the

longitudinal vibration decays exponentially due to the damping but those of the transverse

vibrations are not affected. On the other hand, the frequency content shows the reverse

behavior. By differentiating the arguments of the sinusoïdal functions in Eqs. (4.5), the

longitudinal and transverse frequency contents are respectively given by

( (4.6)
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1
IDI =oo-y+-k{-IsaI02e-2Çr +2Js(a1u

1 +2a3,/)}

00 2 =Cl)+y+~{-k2aI02e-2Çr +2k3(2a 20
2+a30

Z
)}

(4.7)

The frequency content of the transverse motion is affected by the structural damping while

that for the longitudinal motion is not, at least up to the tirst order. Both of them,

however, depend on the initial amplitude parameters aio's, which is one of the typical

features in non-lînear oscillations.

Afler a transient period, the response (4.5) approaches a limit state, which can he

easily deduced by replacing the exponential tenns with zero.

When the damping is absent, the Iimit process

(
1 -2Çr

lim - e = r
ç-+o 2Ç

(4.8)

can be used, which changes Eqs. (4.5) to yield free undamped vibration response given by

U(t) = a,,, cos[{v -~(a,,,' + a,.,')} + ~'o ]

Ver) =a20 cos[{(O) - y)+ io(-lsalo
2+ 2k3{a20

2+ 2a302})} + ~20 ]

+a30 COS[{(O) + y)+ 470(-kzQto 2 + 2k3{2a20
2 + a]o 2

} )}t + ~30 ]

W(t) =a20 sin [{(oo - y)+io(-~alo2 + 2k]{azo
2 + 2a30

2})}t + ~20 ]

-Q30 sin[{(oo+Y)+io(-J;ato
2 +2k]{2a20

2+a302})}t+~30]

(4.9. a)

(4.9. b)

(4.9. c)

(

It may he noted that the longitudinal vibration (4.9. a) is purely hannonic with the

frequency of

26



(
Chapter4 Analysis using the method of averaging

(4.10)

while the two transverse vibrations are quasi-periodic with the frequencies of

1
COI =Cl) - y +~ {-k2Q IO 2 + 2k3(a2/ + 2a30

2)}

C0 2 =co+y+~{-k,.alo2 +2's(2a20
2 +a30

2
)}

4.2 Averaging with a Single Variable

(4.11)

(

In the case of small nominal tension, which is usual condition for short tethered

satellite systems in the station-keeping phase, the transverse frequency parameter 0) is

small so that the corresponding time variable 2C1Y is no longer fast-varying. Renee, it

cannot play a role as an averaging variable in the method of averaging.

The longitudinal frequency parameter v, however, is still high and vt is acceptable

as an averaging variable. Taking an average on the phase space equation (3.16) over a

period 21t with the fast varying time vt only, one has

(

I
21t

R.H.S

=2
1
7[ [ of ]dCVf)

Eq. (3.16)
o

which results in the following approximate phase-space fonn:

27

(4.12)



(
Chapter4 Analysis using the method of averaging

=

. -Ça)

-~al {a2
2 + a3

2 + 2a2~ cos[2rot + 132 + 133]}

io-{-tk2aI2+~(a/ +a/ +2a2a3cos[2ror+132 +f33])}

X {a3 sin[2rot + P2 + 133 ]}

io-{-t k2a/ + ~(a/ + a/ + 2a2a3 cos[2rot + 132 + f33])}

X {a2+ a3COS[2IDt + 132 + f33]}

io-{-tk2aI
2 +k3(a/ +a/ +2a2a)cos[2rot+J32 +f33])}

X {a2 sin[2rot + 132 + (3)]}

io-{-tk2a I
2 +k3(a/ +a/ +2a2a)cos[2ror+132 +(3)])}

X {a2cos[2rot + P2 + 133] + a3 }

(4.13)

Eq. (4.13) is a set of coupled ordinary differential equations with six dependent

variables. By introducing a new variable of compound phase, Tl = 2rot + 132 +133' it is

possible ta divide Eq. (4.13) into a set of core ordinary differentiai equations involving

three dependent variables a2, a), and 11

{

a2a3ti =2roa2a3 +ïh{-1'sa)2 +k)(a/ +a/ +2a2a) cos 11)}

X {2a2~ +(a/ + a/) cos Tl}

and the following supplementary equations.

28
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~2 =k J~[{-tk2a12 +kJ(a/ +a/ + 2aZa3 cosTl)}'{1 + ~ COSTl}~t+~20

~3 = 2~ f;[{-t k2 a1
2

+kJ(a/ +a/ +2a2 aJ COSTl)}'{~ COSll+I}~t+~3o

.......... (4.15. b)

{

(

where ~i(J'S are constants of integration.

Eq. (4.15. a) gives the longitudinal amplitude as an exponential function of time

and completes Eqs. (4.14) as a set of simultaneous ordinary differential equations that

govem the phase-space response. In general. since al is a fonction of time. Eqs. (4.14) are

non-autonomous so that their general solution requires the use of numerical means. In

sorne restricted cases. however, it can he solved analytically to yield the steady state

response. After solving Eqs. (4.14) the phase angle variables ~i' S can he detennined by

integrating Eq. (4.15. b).

4.3 Steady State Solution

The steady state of a dynamical system can he characterized as a state in which the

system repeats a certain kind of regular motion. In the phase-space, the steady state is

identified as a stationary point. Hence, the steady state solution can he obtained by soIving

the equations goveming the phase-space for their stationary solution.

When damping is absent, the longitudinal amplitude al becomes a constant alo

detennined from the initial conditions and plays a role as a constant parameter in Eqs.

(4.14), which become an autonomous set of ordinary differential equations of the form
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Q2 =k{-t k2 al0
2

+k](a/ +a/ +2a2a] cosTl)}-a] sin 11
== .t; (a2 , a], 11)

a] =k{-t~al02 +k3 (a/ +a/ +2a2a3 cosl1)}.a2 sinT\

== h (a2 , a3• 11)

a2a3n =2roa2a3 +k{--tk2aI2 +k3(a2
2 +a32 +2a2a3cos Tl)}

x {2a2a3 +(a/ + a/) cos 11}
== f](a2 , a3, Tl)

(4.16. a)

(4.16. b)

(4.16. c)

(

The above set of equations govems the phase-space of the undamped system. It can he

expected that the set of Eqs. (4.16) contains sorne stationary solutions that detennine the

steady state solutions of the system.

In steady state, the principal variables of Eqs. (4.16), a2, a3, and Tl, have no

variation with time and respectively become constants, a2s, a3s, and 11s, such that they

satisfy the following algebraic equations:

0= 2coa2sa3s +~{-tJsaIO
2 + k](a2/ +a3./ + 2a2sa3S COS11J}

x {2a2,ra31 + (a2.r
2 +a3s

2 )cosfls}

(4.17. a)

(4.17. b)

(4.17. c)

Since the degenerate case in which both ab and a3s are zero should he avoided, Eqs. (4.17.

a, b) suggest

(

sinlls = 0 ~, ={

30

o
1t

(4.18)
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Substituting the above values into Eq. (4.17. c) and solving for al}' one obtains the steady

state condition in the phase-space:

(4.19)

{

f

,

where the positive and negative signs correspond to 11s =0 and 1t, respectively. Of course,

one can choose the bracketed term in Eqs. (4.17. a, b) to he zero as another possibiIity.

Eq. (4.17. c) then forces either a2s or a31 to he zero, and the corresponding solution is also

included in the steady state condition of Eq. (4.19).

Using the condition (4.19), the phase angle variables cao he obtained from Eq.

(4.15. b) to be as follows:

(4.20)

where ~;;s are constants of integration such that ~'" + ~30 =Tl, ={ ~ .

By inserting bath the phase angle variables ~;'s of Eq. (4.20) and the steady

amplitude variables into Eq. (3.12) and then replacing ~30 with 11s - ~20, the response of

the steady state in the discretized coordinates becomes

(

(4.21. a)
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(4.21. b)

(4.21. e)

The expressions of Eqs. (4.21. b, c) for the transverse motion can he interpreted as a

circular whirling motion of the tether about its longitudinal axis(skip-rope mode) though

the longitudinal oscillation aIso exists. It is interesting to note that the steady transverse

vibrations have a characteristic of monofrequency, which could not he expected in linear

theory.

In order to verify the stability of the steady states, let us introduce the disturbance

variables, Cl2, ClJ, and ç, such that
{

!~ =Q3s +a3

11 =11 s + ç
(4.22)

By applying Eq. (4.22) to the autonomous set of Eqs. (4.16) and taking series expansions

up to the first order about the steady state, the following disturbance equation is obtained

in rnatrix form:

(4.23)

(

where the specifie expression for the coefficient rnatrix is
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o

.......... (4.24)

{

The characteristic of solutions of the disturbance equation (4.23) governs stability

of the steady state. It mainly depends on the eigenvalues of the coefficient matrix (4.24). If

one of the real parts of the eigenvalues has a positive value, the solution of Eg. (4.23)

would diverge, and the steady state would he unstable. If ail of the real parts are negative,

then the solution of Eg. (4.23) would go to zero and the steady state would he stable. If ail

the real parts are zero, then the steady state would helong to neutral stability.

The three eigenvalues of the coefficient matrix (4.24) are calculated to he

a

(4.25)

(

The real pans of aIl the eigenvaIues are zero. It means that the circular whirling steady

state response has neutral stability under the condition of no damping.
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4.4 Limit Steady State Solution

Analysis using the method of averaging

The lintit steady state is a steady state after a long time when the transient response

decays out. If there exists a limit steady state in the system, then it should satisfy certain

conditions.

According to Eq. (4.15. a), the longitudinal amplitude variable al would decay to

zero. If the system approaches the steady state such that the phase-space variables, a2, a3,

and Tl, approach steady values, a2_, a3_, and Tl-, respectively, their first derivatives with

respect to time would vanish. Then, the equation set (4.14) produces aIgebraic equations

for the lirnit steady state as follows:

:{

(4.26. a)

(4.26. b)

.......... (4.26. c)

It can he seen at a glance that Eqs. (4.26) are identicaI to the set of algebraic equations

(4.17) for the steady state when the alo terms' are dropped off and the subscript s is

substituted by 00. Hence, the limit values of the amplitude parameters must satisfy Eq.

(4.19) with al o = 0, i.e.,

(4.27)

(

Since the amplitude variables are non-negative, it is apparent that the case corresponding

to the positive (+) signs in Eq. (4.27) is not valid, Le. ooly the case corresponding to the

negative (-) signs must he chosen, which, from Eq. (4.18), means that Tl- goes to 1t only.

Therefore, the first condition for the limit steady state becornes
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Tl_ = Tt

(a 2_ - Q3-r 4m 2

=--
k3

Analysis using the method of averaging

(4.28)

Multiplying Eq. (4.14. a) and Eq. (4.14. b) by Q3 and Q2, respectively, and then

subtracting, one obtains

(4.29)

which is vaIid at ail times. The left-hand side of the above equation is an exact differential

fonn, so the integration of Eq. (4.29) yields the second condition for the Iimit steady state:

(4.30)

where G-20 and a30 are constants detennined from the initial conditions.

Eqs. (4.28) and (4.30) constitute the two algebraic equations to determine the two

limit values Q2- and a3-. It should he noted that the compound phase, Tl, has only a single

value 1t for the limit steady state instead of 0 and 1t for the steady state.

Under these conditions, Eq. (4.15. b) leads to the asymptotic fonn of the phase

angle variables

~2 ~ 2(0
a

2
_

t+~_
Q2- -QJ-

~3 ~ -2m Q2-
t-~_+1t

Q2- -aJ_

as (4.31)

(

in which ~_ is a constant of integration but it is not determined directly from the initial

conditions because Eq. (4.31) is an asymptotic expression. Substituting the above phase

angles and the amplitudes determined by Eqs. (4.28) and (4.30) into Eqs. (3.12) results in

the response of the limit steady state as follows:
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(4.32. a)

(4.32. b)

(4.32. c)

(

The above response of the timit steady state is sunilar to that of the steady state of Eqs.

(4.21). The two transverse components produce a perfectIy circular motion in a plane.

Since the longitudinal motion decays out to zero, the entire tether motion in the timit

steady state can he interpreted as circular whirling.

Verification of stability for the limit steady state solution follows a similar

procedure as that for the steady state solution in the previous section. Unlike the case of

no damping when Eq. (4.14) is autonomous. it is non-autonomous in the present case. To

get an autonomous set of equations. let us mociify Eq. (4.15. a) to a differential fonn.

Then, Eqs. (4.15. a) and (4.14) constitute an autonomous set of

Q2 =g2(a\,a2,a3,11)

Q3 =g3(a.,a2,a3•11)

a2a3Tt =g4 (al' Q2' Q3' 11)

(4.33)

(

where g2, g3, and g4 represent the expressions in the right hand sides of Eqs. (4. 14),

respectively. The stationary values of Eq. (4.33) are the limit steady state values

(0, a2.., Q3-, 1t).

The disturbance variables. (XI, (X2, ct3, and ç, are defined as
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al =0 + (lI =(l]

a
2

= a
2

_ +0.
2

a3 =a3_ + 0.3

Tt =1t+ç

Analysis using the method of averaging

(4.34)

Substituting Eq. (4.34) into the autonomous set of Eq. (4.33) and taking a series

expansion up to the tirst order about the limit steady state values, one obtains the

perturbation equations in the matrix fonn:

al (lI

0. 2 =[ iJ(g, gl g3 g.) ] Cl 2

a) a(a l al a3 11) _ (l3

ç ç

where the coefficient matrix is

{
-~ 0 0

[ iJ(g, ~lJ=
0 0 0

g2 83

a(a l al a3
0 0 0

0
2k" (~ ...._~_}3 + 200 2k" (~ ...._lZ:J_}3 + 200

-ur ~_~_ ~ .... or- ~-lZ:J- ~.

(4.35)

o
k" C )2-'!êi)a3- a2_ - a3_

- 2~ a2.Cal_ -a3_t
o

. (4.36)

Examining matrix (4.36), it cao easily he seen that the perturbation equation (4.35) cao he

decoupled such that

(4.37. a)

(

[~]=
o
o

_ 2k, (~__~_)3 +~
ëiî ~_~_ ~_
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Eq. (4.37. a) tells us that the disturbance :variable al decays out and therefore the

longitudinal limit steady state value 0 is stable. The stability for the other variables is

detennined by the eigenvalues of the coefficient matrix in Eq. (4.37. b). The three

eigenvalues are

o

(4.38)

(

(

in which ail the real parts of the eigenvalues are zero. Hence, it can he concluded that the

limit steady state values, Q2...., Q3-, and 1t, of the two transverse amplitude variables and

compound phase angle, respectiveIy, have neutraI stabiIity.
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Chapter 5

NUMERICAL INVESTIGATION

(

The introduction of the phase-space variables a;'s and ~;' s, onto which the

discretized coordinates of the system are mapped by the Van der Pol transfonnation, has

led to the phase-space formulation and allowed us to examine the system in an analytical

manner. In sorne cases it is possible to obtain cIosed fonn results as was seen in the

previous chapter. The analytical results, however, are restricted to a limited number of

cases and in general the analysis of the phase-space formulation needs augmentation by a

numerical method.

From the closed form results for the system responses such as Eqs. (4.9), (4.21),

and (4.32), it can easily he observed that the phase angle variables ~/s increase to large

values with rime t. It is not easy in that case to grasp the characteristics of the system

response obtained from numerical analysis. For better understanding, the following

variables are introduced:

{ q; = ai COS~i

p; = ai sinf3i
i =1.2,3 (s. 1)

The above is a sort of transformation from the polar coordinates of the phase-space

variables (a;, ~i) to the rectangular coordinates (qj, Pi). Using Eqs. (S.1) and (3.12), the

response of the tether motion in the configuration-space can he represented as:

(
U(t) = ql cosvt- PI sinvr

39
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V(r) = q2 cos(OO- y)r - P2 sin(ro- y)r + q3 cos(m+ y)r - P3 sin(oo+ y)r (5.2. b)

WCr) =P2 cos(c.o- y)r + q2 sin(œ- 1)1 - P3 co.s{co+ Y)1 - q3 sin{co+ y)1 (5.2. c)

(

(

In the qi - Pi plane each method discussed in the previous chapter leads to a distinct

feature. When damping is absent, a response of the linear approximation is represented as

a point, because both the amplitude and the phase angle variables are constant. The results

from the averaging with two variables, on the other hand, appear as a circle whose radius

is equal to the constant amplitude as the phase angle variables vary with time. In the case

of averaging with a single variable, a variety of shapes show up in qi - Pi plane and they are

dependent upon the system parameters such as the nominal tension, longitudinal stiffness,

initial conditions, and so on.

Severa] cases have been investigated numerically. Since the present work considers

the vibration of the fundamental mode of the tether whose ends are fixed, the haIf sine

function has been used for the shaPe functions, cp and 'Ô. It vanishes at bath ends so that it

satisfies the conditions for the admissible function. VaIues of the system parameters and

the initial conditions for each case are shown in Table 5.1. The results of the Iinear

approximation are calculated from Eqs. (3.12) with constant parameters. The results of

the averaging with two variables are obtained from Eqs. (4.5). In the case of averaging

with a single variable, calculations are based on a set of first order ordinary differentiaI

equations (4.14) and the expression (4. 15. a) for the longitudinal amplitude. After solving

them, the phase angle variables are integrated by (4.15. b) and the response is obtained.

For the numericai solutions, the second order ordinary differentiai equations (3.9) are

integrated directly.

Through the first three cases, results from the four methods - the linear

approximation, averaging with two variables, averaging with a single variable, and

numericai - are compared with each other. VaIues of the nominal tension vary from

reasonably high to very low. As expected, the longitudinal modes reveal higher frequency
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(

oscillations than the transverse modes and the~ are not much affected by variations in the

nominal tension. As shown in Figs. 5.1 (a) - 5.3 (a), ail the four methods yield aImost the

same response for the longitudinal motion such that the four curves in each graph look like

one. For this reason, the linear approximation cao he regarded to be accurate enough for

representing the longitudinal mode.

In transverse modes, however, the response with the linear approximation deviates

significantly from those of the other methods even in the high nominal tension of case 1.

Responses from both the averaging with a single variable and the direct numerical

integration show preny good agreement with each other such that it is hard to distinguish

between them in Figs. 5.1 (b, c) - 5.3 (h, c). Since the solutions from the direct numerical

integration are thought to he exact, it cao he said that averaging with a single variable

gives sufficient accuracy to analyze the system hehavior properly even in the case of low

nominal tension.

Results obtained by averaging over (Wo variables are in good agreement with those

of the averaging with a single variable and the numerical method in the case of high

tension, but they deviates from the exact as the tension decreases. These tendencies can he

observed in Figs. 5.4 - 5.6 as weil. When the tension is high the phase diagrams in qi - Pi

plane obtained from averaging with a single variable look like circles as shown in Figs. 5.4

(d) and (O. As discussed earlier, these responses can he interpreted as those obtained from

averaging with two variables. As the tension goes down to a low value, diagrams in qi - Pi

plane deviate from circles showing a lot of fringes in Figs. 5.5 (d, 0 and 5.6 (d, f), so

averaging with two variables cannot he thought to he accurate any more. Nevertheless,

averaging with two variables can he used to analyze high tension systems quite efficiently

hecause it is possible to derive a closed form solution.

Investigation of the steady state mentioned in section 4.3 has been conducted

through cases 4 - 10. Values for the initial amplitude parameters aio's are chosen so as to
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satisfy the steady state condition (4.19). It c~ he observed that only positive (+) sign

condition is valid for the steady state condition (4.19) when the steady amplitude

parameters a2s and Q3s are close to each other. In that case ooly zero is aIlowed to he the

steady value for the compound phase angle 11 and the lower and higher frequency

components of the transverse mode are in-phase. This is the situation for cases 4 - 6,

where the sum of ~20 and 1330 is set to 0 as an initial value of the steady compound phase

angle. Without damping the two components of the transverse motion constitute an exact

circle as shown in Fig. 5.7 Ch), and the response is in perfect agreement with that of the

closed form deduced in section 4.3.

When damping is involved, the system shows severa! interesting features. The

damping is modeled as a simplified version of material damping through the longitudinal

mode of the motion. So, its primary effect appears in the longitudinal phase-space

variables ql and Pl, and they decay out such that the curve in ql - Pl plane spirals in

toward the origin of the graph as shown in Figs. 5.8 (a) and (b). The damping affects the

transverse mode, too, but in a quite different manner. In the heginning the two pairs of the

transverse phase-space variables, (q2, P2) and (q3, P3), decay up to a certain time. The

former, starting with a bigger initial amplitude value than the latter, experiences phase

change from 0 to 1t, and after that each element of the (Q2, P2) pair grows slightly to

converge to the timit steady state[Fig. 5.8 (c)]. In q2 - P2 phase plane[Fig. 5.8 (d)], the

curve spirals in and at a certain instant its direction reverses completely experiencing a

phase change. Afterwards, it spirals out to approach a circle whose radius has the value

predicted by the limit steady state conditions of Eqs. (4.28) and (4.30) in section 4.4. In

contrast, the pair (q3' P3) does not experience any phase change but decreases completely

to zero magnitude when (q2' P2) experiences the phase change. Subsequently it recovers,

grows, and converges to the timit steady state[Figs. 5.8 (e, 0]. In configuration-space, the

pair of the transverse components (V, W) shows a very similar feature as (Q2, P2) as

presented in Figs. 5.8 (g) and (h). They decay in the beginning, at a certain time the phase

42



1
Chapler 5 Numerical Investigation

(

(

change occurs~ and after that the response con\f~rges to the limit steady state that is

predicted by Eqs. (4.32).

In case 6 the initial values for the transverse mode are reversed with respect to

case 5 such that the pair (q3, P3) corresponding to the higher frequency content has bigger

initial magnitude than (Q2' P2) corresponding to the lower frequency content. Since the set

of differential equations (4.14) in the phase-space fonnulation by the averaging with a

single variable is symmetric between a2 and a3~ the amplitude variables of the lower and

higher frequency contents~ respectively, the transverse phase-space results of case 6 must

he in reverse order compared to those of case 5. Figure 5.9 shows that the (q2~ P2)

response of case 6 is identicai to the (Q3, P3) response of case 5 and the (Q3~ P3) of case 6 is

the same as the (q2~ P2) of case 5. The response in the configuration-space, however~

shows a difference. As opposed to the phase change in case 5, the transverse motion in the

configuration-space in case 6 does not experience it, spirals in and approaches the limit

steady state without any change of direction. It should he noted that the radius of the

circle in Fig. 5.9 (h), to which the trajectory approaches, is identical to that in Fig. 5.8 (h)~

aIthough the frequencies are different in the two cases. It means that the limit steady state

of case 6 is different from that of case 5. It is natural hecause the initial conditions in the

configuration-space are different in the two cases.

When the steady amplitude parameters a2.J and Q3s are not close to each other, both

positive (+) and negative (-) sign conditions are valid in Eq. (4.19). For the positive (+)

sign condition the steady value of the compound phase angle should he O~ and hence the

two initial phase angle parameters ~20 and ~30 are chosen such that their sum 110 is O. This

is the case when the lower and the higher frequency components for the transverse mode

are in-phase. For the negative (-) sign condition under which the two components of the

transverse mode are out-of-phase, the sum should he 1t. These are examined through cases

7 - 10. Without damping, both positive (+) and negative (-) sign conditions lead to

circular whirling motions as shown in Figs. 5.10 and 5.12.
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In the presence of damping, the system exhibits sorne interesting features similar to

those in cases 5 and 6. Since the damping acts mainly aIong the longitudinal component of

motion, the trajectory in the q. - Pl plane for the longitudinal mode spirals in and decays

out in cases ofboth positive and negative sign conditions[Figs. 5.11 (a, b) and 5.13 Ca, b)].

Under the positive sign condition, the component corresponding to the lower frequency of

the transverse mode, which starts from a bigger initial magnitude than that of the higher

one, decays, experiences phase change, and grows slightly to the limit steady state[Figs.

5.11 (c, d)]. The component corresponding to the higher frequency decays completely to

zero without experiencing phase change and recovers to approach the limit steady

state[Figs. 5.11 (e, f)]. In the transverse plane of the conflguration-space, the motion

spiraIs inward and at a certain point it reverses direction. After that it spiraIs in

continuously to converge to the limit steady state that is predicted by Eqs. (4.32). The

response is very similar to that of case 5 which has smaller initial values than the present

case[Figs. 5.11 (g, h)].

In contrast. under the negative sign condition when the lower and higher frequency

components of the transverse mode are out-of-phase, the response shows sorne

differences compared to the in-phase case. It is examined in case 10. As can he seen in

Figs. 5.13 (c) and (e), both components corresponding to the lower and higher frequencies

grow to approach the limit steady state vaIues, respectively, without experiencing phase

change. It should he noted that this does not imply the energy increment of the transverse

mode. It can he seen easily that the higher frequency component (Q3, P3) increases at a

much larger rate than the lower one (Q2, P2). Since the amplitude of the transverse motion

is detennined by subtracting the magnitude of higher frequency component from that of

lower one while the system approaches the limit steady state of Eqs. (4.32), the amplitude

of transverse motion actuaIly decreases, which might he interpreted as the dissipation of

energy from the system. In the configuration-space. the transverse motion spiraIs in

monotonicaIly to converge to the limit steady state[Figs. 5.13 (g, hl].
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One of the interesting observations is ~at sorne initial parameters produce single

closed curve in the transverse plane as in Figs. 5.14 (h) and 5.15 Ch). A slight disturbance

appears, however~ around the curve under the very low nominal tension of case 12. The

time histories of the responses repeat regularly as seen in Figs. 5.14 (g) and 5.15 (g). This

might he interpreted that the transverse modes are periodic. Il is certain that they are not

results of the steady state from Eqs. (4.16) because the phase-space variables

fluctuate[Figs. 5.14 (d~ 0 - 5.15 (d, 0]. Unfonunately, these results could not he

predicted in an analytical way.

Several interesting patterns can he observed in the phase-space. These are Figs.

5.16 (d), 5.17 (d), and 5.18 (O. They are all closed curves 50 that they seem to he

periodic, aIthough the transverse modes in the configuration-space show quasi-periodicity.

It was observed that they are quite sensitive to the initial conditions. Even a smalI change

in the initial conditions can eliminate these patterns. Further work is needed to analyze

them in detail.
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Chapter 6

CONCLUSIONS

6. 1 Summary of the Findings

Conclusions

{

(

This thesis studied non-linear free vibrations of a spinning tether. The tethered

system is assumed to be in the station-keeping phase so that the nominal length of the

tether remains constant and the tether is forced to spin at a constant rate about its nominal

axis. The goveming equations of motion were derived using the extended Hamilton's

principle, retaining non-linear tenns which originate from the geometric non-linearity up to

the third order. The equations have been discretized, truncated, and transfonned to the

phase-space forrn. The method of averaging made it possible to analyze the phase-space

fonnulation. From the analytical and numerical analyses, the following conclusions can he

drawn:

• The Iinear approximation is adequate to anaIyze the longitudinal modes but not

the transverse modes.

• The method of averaging with two variables is valid when the tethered system

has a high nominal tension. This leads to a closed fonn solution that shows the

dependence of the frequency content on the initiaI amplitude parameters.

• The method of averaging with a single variable is useful for the whole range of

nominal tension, especïally for very Iow tension. The corresponding solution

predicts the steady state and the limit steady state; in bath cases the system

shows a circular whirling motion.
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• Materia! damping in the longitudinal mode drives the steady state to the limit

steady state.

• General transverse motion is quasi-periodic, but it can be periodic depending

on the initial conditions of the system.

6.2 Recommendations for Future Work

There are many possibilities for extension of the present work. Sorne of them are

given below:

• The present work is confined to the case in which both ends of the tether are

fixed under the assumption of very large mass of the end-bodies. In general,

however, motions of the end-bodies and the tether would affect each other.

They should he considered simultaneously.

• The model for material damping in the longitudinal mode is 50 simple in the

present work that sorne phenomena might he missed. A more rigorous model

should he introduced for the darnping.

• Interaction between the Iower and the higher frequency modes should he

considered to include the case of internai resonance.

• The deployment and retrieval phases are part of the mission of a tethered

system along with the station-keeping phase. The preset work cao be modified

for the case of variable nominal length to study the deployment and retrieval

phases.
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case figure EA No "( ç .........~?t? ......_ .........~:?~......... remark
[N] [NI aJo l330

5.1 0.010 a..........................__.....................................-
5.4 4000. 100. 0.05 O. 0.020 a-............................-..........................

0.013 0
5.2 0.010 0........- ......._........................-.....................

2 5.5 4000. W. 0.05 o. 0.020 0._........_--...........................................-.
0.013 0

S.3 0.010 0............................ _- ......__ ....._----- ............
3 5.6 4000. 1. 0.05 O. 0.020 a......................-........ ........--- ....................

0.0]3 a
0.03396 a steady IC......................_--.... ..-.........-...............

5.7 4000. l. 0.05 o. 0.020 0 (+).......... -._-- ............. ................................

0.0]3 0
0.03396 0 steady le.. --........................ ............................

5 S.8 4000. l. 0.05 0.001 0.020 0 (+)............................... ..............._-_ ......._.....--

0.013 0
0.03396 0 steady IC....................-............... .............................

6 5.9 4000. 1. 0.05 0.001 0.013 0 (+)........ _-.......................... .................................
0.020 0
0.05347 0 sready le.............................. ............................. _.
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(
1

1:::g:g1r~·
0 stcady IC

1

.............................
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0
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0.02316 0 steady le.... ~ ..................... ............................ -
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0.013 rd3

0.0291 1 0 ,
1] 5.14 4000. 1. 0.05 o. :·§:O:~9.::r§·1
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( 0.013 0

Table 5. 1 Physical and initial parameters
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Appendix A Derivation of the equations of motion

APPENDIXA

DERIVATION OF THE
EQUATIONS OF MOTION

The equations of motion of the system are derived by the extended Hamilton' s

principle, which is a variationaI method based on the energy of the system. Insening the

Lagrangian (2.11) of the system into the variational expression (2. 12) results in

(

- N,,(Ôu[ + v[Ôv [ + w[ôw[)

-1 EA{2u[ôu [

+ (v [ 2 + w [1 )ôu[ + li [( 2v [Ôv [ + 2w»w[)

+ 1(v[:! + w/)(2v[ôv[ + 2w[ôwJ

-2u. (v :! + lV :!)ôu - Li :!(2v 8v + 2w Ôw )}
[[ [ [ [ [[ [{

+QllÔU + Q, Ôv + Q..Ôw ] dxdr

(A.l)

(

where Qu, QII, and Q~. are the generalized forces per unit nominal length along the

directions of the defonnations, u, v, and w, respectively. Collecting terms corresponding to

each variational variable together leads to

0= J: Il [ pu: . ôu, + p( Vr -.ow) ·ôv: + p(wr +.Qv). oWrr. 0

+QIl .ôu+{p(wr +.ov)n+Q\,}.ôv+{-p(wr -nv)n+Qw}'ôw

- {N + EA(u {l- v :! - W:!}+*{v 2 + l1/ !})}.8u (A.2)" [ .r { _ [ .r .r

- {N" + EA(u[ - U [ 2 + 1"{v/ + l\' [ 2 })}v.r .Sv[

-{Nf' + EA(u.r -u/ + 1{V1

2 + w/ })}w[ ·8w[ ] dxdt
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AppendixA Derivation of the equations of motion

Let us introduce the following substitutions into Eq. (A.2) for brevity.

A=No +EA(uz{l-v/ -wz
2 }+t{vz

2 +wz
1

})

B = {No + EA(uz -U.r 2 +t{v.r 2 +W.r 2 })}vz

C={No +EA(u.r -u/ +t{v,/ +w.r2})}wz

Integration by parts results in

(A.3)

(

o= ~:: ~ [ (pu1ôu)1-+ {P(VI - Ow)5v}, +{p(wl +Ov)5w}1

- puaÔu - ç{ Vil -nwl )5v - ~Wll +OvJ5w

-Qw5u -{p(wl +nv)n+Qv}aV-{-~VI -nw)n+Qw}sw (A.4)

-(A5u) -(B5v) -(C5w).r .r z

-Az 5u + B,lÔv + CzÔw ]dxdt

The integrand in the above equation contains the terms that are exact differentials with

respect to either time t or the nominal coordinate x. Integrating those terrns, one can

obtain

o=J~[puI5u +p(vl -nw)bv+p(w1 +nv)8wI dx

+ fI f [(-PUll +Az + Q)·5uIl 0

+ (p(vlt -nwl)+p(wr +Qv)Q+Bz +Q,).5v

+(-p(wa +nvl)-p(VI-nw)n+cz +Qw)'ôw ]dxdt

- rI;: [A5u + B5v+ CÔwldtJI1

(A.5)

(

Eq. (A.5) is composed of the three integral terms. According to the Hamilton's principle,

the first integral tenn becomes zero because the variational variables are assumed to he

specified both at the beginning and at the end of the arbitrarily selected time intervai. Also,
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Appendix A Derivation of the equations of motion

(

it can be easily seen that the third integral term is zero since the variational variables

vanish at the ends of the tether according to the boundary conditions of the system. which

is the case of bath ends fixed. FinaIly, the variational expression becomes as follows:

o=J,:= f:[ (-PUll +EA{uu(l-vr~-wr!)+(I-2uJ(vrvr.r +wrwu)}+Qu)'ou

+(-p{v - 2.Qw _Q2 V }+ N v
tt t " .r.t

+EA{(ur - ur 2 +1' l.',r 2 + 1w,r 2)l.'u + (uu - 2u ru u + \-1-'r W u)vr}+ Q~.) .Ôv

+ (-p{Wu + 2Ql.'r _.Q2W}+ N"wu

+EA{(Ut - il r; :! + t V r.2 + f W r; 2 )wu + (li r.r - 2u rU t.r + V rVu )W r; } + Q... ) .Ôw

]tlxdt

.......... (A.6)

Eg. (A.6) must be true for any arbitrary variations OU, Dl.', and Ol-V that vanish at the

boundary of the system. Therefore, coefficient of each of the variations in the integrand

should vanish. It results in the following goveming eguations:

P.D.E.

Urt -.&f {( 1- v r .2 - lVr .2 ) U u + (1- 2u ()( v r \.' u + w[ l-r.u ) } = qu

Nv -2.Qw _Q2v __
p
" v

tt; li

., N"
W

tt
+2.Qvr -n-w-pw

u

(A.7.a)

CA.? b)

CA.? c)

(
U=l.'=w=o at x= 0 and x =1

93

(A.8)



IMAGE EVALUATION
TEST TARGET (QA-3)

1.0 ~ I~ 12
.5

I~ ~ I~ 11111
2.2

La I~ -

111.1 L~ IIFO
""/1.8

111111.25 111111.4 I~~ 1.6

1

t.......

- 150mm ------.J-1....
-- 6" ---.J-1....

APPLIED .:â IMAGE 1_ .ne-== 1653 East Main Street
_ ..::. Rochester. NY 14609 USA-=-~ Phone: 7161482-0300

__ Fax: 7161288-5989

Cl 1993 Applied 1. mage. rne.. Ali Rlghts Reserved


