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Optimal Discretization-Based Load Balancing
for Parallel Adaptive Finite-Element
Electromagnetic Analysis
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Abstract—The potential benefits of employing optimal dis-
cretization-based refinement criteria to achieve load balancing in
parallel adaptive finite-element electromagnetic analysis are con-
sidered. Specifically, the ability of this class of adaption refinement
criteria to resolve an effective domain decomposition based on
initial discretizations with only relatively few degrees of freedom
are examined. The new load-balancing method is evaluated with
adaptively refined finite-element solutions for benchmark systems
using practical adaption models.

Index Terms—Adaptive systems, electromagnetic analysis,
finite-element methods, parallel processing.

1. INTRODUCTION

DAPTIVE finite-element analysis (AFEA) for electro-

magnetic simulations is now a well-established research
area [1], [2]. Adaptive solution strategies are capable of
intelligently evolving efficient distributions of degrees of
freedom (DOF) over the problem domain, by establishing
solution error distributions and selectively adding DOF to the
discretization to correct them. Hence, the primary benefit of
AFEA is the efficient and accurate computational analysis of
large continuum problems, for only a relatively small fraction
of the cost of nonadaptive finite-element methods [1].

Despite the advantages of AFEA, the electromagnetic simu-
lation of very complex structures can still be intractable within
conventional sequential programming models [3]. The main dif-
ficulty is that a very large number of DOF are necessary for com-
puting accurate solutions. Currently, one promising approach to
overcome this computational barrier is to combine AFEA with
high-performance computing (HPC) methods, such as parallel
and distributed simulations [4], [5]. However, parallel and dis-
tributed AFEA simulations introduce challenging implementa-
tion issues that do not arise with simpler solution strategies [5].
In particular, adaptive algorithms evolve nonuniform discretiza-
tions that can make the task of balancing processor computa-
tional workload more difficult than with uniform structures. For
example, load balancing can be especially problematic for dis-
tributed programming models when using domain decompo-
sition based approaches to partition finite-element discretiza-
tions into subdomains, which are then assigned to specific pro-
cessors. Essentially, some subdomains require more refinement

Manuscript received July 1, 2003. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada.

The author is with the Department of Electrical and Computer Engi-
neering, McGill University, Montreal, QC, H3A 2A7 Canada (e-mail: dennis.
giannacopoulos @mcgill.ca).

Digital Object Identifier 10.1109/TMAG.2004.824713

than others as a discretization is adapted. Thus, an initial dis-
cretization that is evenly distributed among processors in terms
of workload, can lead to a severe workload imbalance as the
adaption progresses toward more highly enriched and nonuni-
form discretizations [5].

Various types of load-balancing approaches for AFEA have
been proposed [5]. However, one common drawback is the
high communication costs of assessing the severity of the load
imbalance, computing a more balanced work load distribution,
and redistributing the improved work load among the available
processors at a given iteration of the adaptive process. The
purpose of this contribution is to investigate the practical value
of an alternative approach of addressing the load-balancing
problem for AFEA, which requires substantially less commu-
nication overall. Specifically, the ability of a class of adaption
refinement criteria [2] to resolve an effective domain decompo-
sition based on initial discretizations with only relatively few
DOF are examined.

II. OPTIMAL DISCRETIZATION-BASED LOAD BALANCING

Typically, remapping or redistribution of DOF to avail-
able processors is performed repeatedly by load-balancing
algorithms, at various stages of the adaption. In the case of
remapping, a domain decomposition is recomputed to repar-
tition the entire discretization into subdomains that, ideally,
represent equal amounts of computation. Alternatively, DOF
can be redistributed among existing subregions in order to
balance the processor workload. Relatively sophisticated algo-
rithms have been developed based on both approaches over the
past several years [5]. However, the communication-to-compu-
tation cost ratios involved can still be quite high and reduce the
overall efficiency of the AFEA process.

An alternative load-balancing approach for AFEA, which re-
quires considerably less communication among processors, is to
predict an efficient domain decomposition for the entire adap-
tion process based on a single initial discretization containing
relatively few DOF. The main advantages of this approach are
twofold: it avoids having to solve the load-balancing problem re-
peatedly on large discretizations, and interprocessor communi-
cation, for the purpose of load balancing, is required only once.
Clearly, the effectiveness of this type of approach is strongly de-
pendent on its ability to predict how a coarse initial discretiza-
tion will evolve throughout the adaptive process.

In this work, optimal discretization-based refinement criteria
[2] are used to assess the relative solution error over an ini-
tial finite-element discretization during the early stages of the
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adaption. Subsequently, subregions are defined by equally dis-
tributing the total estimated solution error over each subregion,
as predicted by the refinement criteria. Thus, if the number of
subregions created is an integer multiple of the number of avail-
able processors, each processor can be assigned a partition of
the initial discretization with approximately equal estimated so-
lution error. Each processor may then apply AFEA to its corre-
sponding partition until solution convergence is achieved. The
hypothesis that must hold for this approach to yield a balanced
work load, is that having approximately equal error in each par-
tition of the initial mesh will result in equal work for the proces-
sors in the ensuing computations. The validity of this hypothesis
is examined with fundamental benchmark systems in the fol-
lowing section.

A. Optimal Discretization-Based Refinement Criteria

Optimal discretization-based refinement criteria origi-
nate from an explicit formulation for computing optimal
finite-element discretizations directly [2]. Namely, in [2] a
set of optimization equations are developed for the geometric
discretization parameters (i.e., the element vertex positions),
which can be used to define AFEA refinement criteria. Thus,
the relative discretization errors over a finite-element mesh
can be estimated in terms of how well these equations are
satisfied. Hence, the optimal discretization-based refinement
criteria are defined implicitly as measures of the residuals of the
geometric optimization equations [2], [7], [8]. Therefore, the
newly proposed approach is based on equally distributing these
residuals over each partition in a discretization. The essential
components of the underlying derivation are discussed next.

Consider the scalar Helmholtz equation

V. (pVu)+k*u=g (1)
in the enclosed region 2 bounded by the surface S, with
boundary conditions u = ug4 on Sg and du/dn = 0 on Sy,
where u is the electromagnetic field unknown to be solved for,
p is a material-related parameter equal to ¢, u~*, or 1, k is the
wave number of the system, and ¢ is a source function. If the
surface S bounding the entire problem region €2 is comprised
of the union of the Dirichlet and Neumann surfaces, i.e.,
S = S4+ S, then a corresponding functional may be written
as

F(u) = % /Q{qu -Vu — k*u? + 2gu} dQ
2)

for which the true solution to (1) is the admissible function u
that renders the above functional F' stationary. For example, in
two-dimensional (2-D) Cartesian problems, where v = u(x,y),
the optimization equations for the scalar triangular element with
vertex positions (z,y;),l = 1,2, 3, corresponding to x; and y;,
respectively, are given by the matrix forms

1 k?

§uTVu - blEuTBu +bu’Bg =0 (3)
and

L k? T T

§u Wu—cl?u Bu+¢gu'Bg=0 @

evaluated over the elements that share the vertex in question.
Here, u and g are the field solution and source term vectors,
respectively. The square matrices V and W are related to the
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Laplacian part of the functional (2), and their entries are defined
by

1< A(Cmen
et

- (bmbn + Cmcn>bl:| Iijmn (5)

and

- (bmbn + Cmcn)cl:| Iijmn (6)

where A is the elemental area, and b; and ¢; are geometric pa-
rameters related to an element’s vertex positions and can be de-
fined as follows, with the subscripts progressing modulo 3

bi = Yi+1 — Yi—1, and ¢; =Ti1 — Tiy1- @)

I;jmn is the elemental integral (in homogeneous coordinates)
of the product of the derivatives of the +th and jth basis func-
tions, with respect to the mth and nth simplex coordinates. The
second and third terms in (3) and (4) are related to the wave
and source functional terms, respectively, where B;; is the ele-
mental integral (in homogenous coordinates) of the product of
the ¢th and jth basis functions. These functional-based formulae
are valid for any choice of legitimate finite-element basis func-
tions and may be computed for uniform- or mixed-order meshes,
as may be required by specific refinement models such as h-,
p-, or hp-adaptive methods. Analogous one-dimensional (1-D)
and three-dimensional (3-D) formulas are given in [2]. Once the
optimization equations for the vertex positions have been evalu-
ated numerically for a given mesh, they may be used in various
ways as refinement criteria [2], [7], [8]. One simple approach,
referred to as “Type-A” in [7], is to assess a weighted sum of the
residuals of the vertex-based optimization equations for each el-
ement and use these values to rank the elements for refinement.
The practical benefits of using these types of refinement criteria
for load balancing in parallel AFEA are examined in the next
section.

B. Mesh Partitioning Algorithms for Load Balancing

To focus ideas, three mesh partitioning strategies for
achieving load balancing are considered in this work. The first
approach, labeled Uniform/Nonadaptive, is based on a uniform
partitioning of an initial mesh into subregions containing equal
numbers of DOF. The second strategy, Uniform/Adaptive, is
based on uniformly partitioning the discretization into subre-
gions containing equal numbers of DOF after several adaptive
refinements of the initial mesh. Finally, the new approach is
based on using optimal discretization-based refinement criteria
to partition the same mesh as for the second method above into
subregions of equal estimated solution error, as explained in
the previous section.

III. RESULTS

A simple 1-D free-space example is presented first in order
to examine the potential significance of the new load-balancing
approach for AFEA. In addition, the effectiveness of the newly
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TABLE 1
PERCENT OF TOTAL WORKLOAD VERSUS PROCESSOR NUMBER

Method Processor
1 2 3 4
Uniform/Non-adaptive 77.3% 9.09% 9.09% 4.54%
Uniform/Adaptive 36.4% 27.3% 22.7% 13.6%
New Approach 22.7% 27.3% 27.3% 22.7%

proposed load-balancing approach is examined with practical
AFEA models for a 2-D Laplace system. For both cases, the
three mesh partitioning strategies described above were consid-
ered and their relative performance assessed based on h-adap-
tion refinements.

A. 1-D: Free Space Point Charge Test System

This static benchmark system was first studied in [6] and is
based on the classical point singularity model in free space. The
objective for this benchmark system is to compute the functional
value for a radial neighborhood close to the point charge and
spanning a 100-fold decay in electric scalar potential: the point
charge, of magnitude 1072 /9 C, is located at the origin, and the
two boundaries of the problem domain are set at radial distances
of 0.1 m and 10 m away from the charge. The results for the
1-D analysis are given in Table 1. All results were computed
using standard first-order Lagrangian elements. Evidently, the
new approach is able to achieve a better workload balance than
the other two approaches considered.

Although a 1-D analysis for this system is possible, the for-
mulation used properly accounts for the entire 3-D volume asso-
ciated with the problem, in order to correctly apply the under-
lying variational principle. The primary feature of this system
is the rapid field solution variation close to the singularity. This
feature is common to many practical devices that contain sharp
material corners and has been shown to drastically reduce finite-
element solution convergence rate. In addition, this test system
was considered, primarily, to examine the potential of the new
approach more readily and with fewer obstacles than 2-D or 3-D
test systems permit.

B. 2-D: Laplace Test System

The 2-D Laplace benchmark system is described by Fig. 1.
It is one quarter of a square coaxial line in cross-section—the
standard “L” problem. The conductor boundary conditions are
1V and 0V, as indicated, and the symmetry planes are labeled
N. All results reported for this system were computed using
standard second-order Lagrangian elements. Performance re-
sults for the load-balancing studies are presented in Fig. 2. Note,
the new approach is able to achieve an almost ideal workload
balance among the processors compared to the other two ap-
proaches, which yield significant load imbalances.

For reference, sample partitioned meshes are shown in
Figs. 3-7 for the various load-balancing algorithms considered
in this work. Specifically, the initial eight element mesh used
for each of the three mesh partitioning strategies is shown in
Fig. 1, as well as the four partitions (labeled A, B, C, and D)
used for the Uniform/Nonadaptive load-balancing method.
Fig. 3 shows a sample mesh for the Uniform/Nonadaptive
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Fig. 1. Laplace 2-D benchmark system: initial mesh (eight triangles) and
partitions for Uniform/Nonadaptive method.

70

[ Partition "A"
Partition "B"
_— e
2T B Partition "D" ||
al
o
®
o
5
= 40F
] Ideal Workload
3
5wl -
§
@
o
a5l
3 ﬂ

Uniform/Non-adaptive Uniform/Adaptive New Approach
Load Balancing Method

Fig. 2. Laplace 2-D test system results.
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Fig. 3. Sample mesh for Uniform/Nonadaptive method (352 triangles).

method applied to the initial mesh with the partitions shown in
Fig. 1. The partitions for the Uniform/Adaptive strategy and
the new approach are shown in Figs. 4 and 6, respectively.
Note that both of these meshes are identical, by definition, but
the subdomains assigned to the various processors are quite
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Fig. 4. Partitions for Uniform/Adaptive method (52 triangles).
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Fig. 5. Sample mesh for Uniform/Adaptive method (372 triangles).
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Fig. 6. Partitions for the new approach (52 triangles).

different. For the Uniform/Adaptive strategy, the partitioning
is according to the criterion of equal numbers of DOF per
subdomain; for the new approach, equal error per subdomain
was the objective, as explained in the previous section. The
estimated solution errors for each of the partitions shown in
Fig. 6 were within 2.5 x 10~ of each other. Sample meshes
resulting from the two approaches are shown in Figs. 5 and 6,
respectively. It may be noted that for each approach considered,
the adaptive process was terminated when the global solution
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Fig. 7. Sample mesh for the new approach (372 triangles).

per cent error estimate was less than 0.1%, and the results
reported in Fig. 2 are based on these terminal meshes.

IV. CONCLUSION

A new load-balancing approach for parallel AFEA that uses
optimal discretization-based refinement criteria has been pro-
posed and evaluated for scalar electromagnetic systems. The re-
sults for the benchmark systems investigated demonstrate that
the new approach is able to achieve effective domain decompo-
sitions based on initial discretizations with only relatively few
DOF. Compared with existing techniques, the new approach
requires considerably less communication among processors.
These preliminary findings suggest that further algorithmic so-
phistications and experimental studies in 3-D may be merited.
For instance, future research should focus on possible exten-
sions of the method for application to transient problems in-
volving eddy currents or spatial motions.
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