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Abstract

We prove uniform and tangential approximation theorems for superharmonic functions in abstract
harmonic spaces. Our tangential approximation theorem differs from traditional ones by the absence of
the so-called long islands condition. The result is new also in the case of the classical potential theory.

1. Introduction

Let Ω be a locally compact, locally connected, connected, second countable
topological space. We assume that there is a sheaf of continuous functions satisfying
Axioms 1, 2, 3 of Brelot (for more details, see [4, 10, 3]). We also assume that Ω has
a base of determining domains (Axiom D), that 1 is superharmonic, and that there
is a positive potential on Ω. Denote by Ω∗ = Ω ∪ {∗} the one-point (Alexandrof)
compactification of Ω by an ideal point ∗.

For a closed subset E ⊂ Ω, we denote by C+(E) the class of strictly positive
functions continuous on E. Let H(E), S(E) represent the classes of functions
harmonic and superharmonic, respectively, on E (that is, on an open neighbourhood
of E), while H(E, Eo) and S(E, Eo) stand for the classes of functions continuous
on E and, respectively, harmonic and superharmonic on the interior Eo of the set
E. As usual, we say that a subset A ⊂ Ω is bounded if its closure is a compact
subset of Ω. Suppose that L is a closed set. We denote by L̂ the union of L and the
bounded connected components of Ω \ L. The properties of the space Ω imply its
metrisability. Assume that d(·, ·) is a metric on Ω, and for a given subset L ⊂ Ω and
δ > 0, denote by (L)δ the closed δ-neighbourhood of the set L:

(L)δ = {x ∈ Ω : d(x, L) 6 δ}.
In [7], the following result is proved.

Theorem A. Suppose that E is a closed subset of the harmonic space Ω. Then
the following are equivalent.

(a) For any u ∈ S(E, Eo) and ε ∈ C+(E), there exists a function v ∈ S(E) such
that u < v < u+ ε on E.

(b) For any u ∈ H(E, Eo) and ε ∈ C+(E), there exists a function v ∈ H(E) such
that u < v < u+ ε on E.

(c) (i) Ω \ E and Ω \ Eo are thin at the same points of E.
(ii) For each compact subset K of Ω, there exists another compact subset L

of Ω such that all components of Eo having non-empty intersection with
K are contained in L.
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In the part referring to harmonic functions, this result was first proved for
the classical case, for which it was also shown that approximation from above is
equivalent to approximation in modulus (see [5, Theorem 4]). We refer to [6] for an
account of classical harmonic and superharmonic approximation.

Condition (c)(ii) is called the long islands condition. We show that tangential ap-
proximation of a different, quite natural type (see statement (a) in Theorem 1 below)
in the case of superharmonic functions does not imply tangential approximation for
harmonic functions as in Theorem A.

As usual, we say that the sequence (Ωk)
∞
k=1 of compact subsets of Ω constitutes

a compact exhaustion of Ω if (a) Ωk ⊂ (Ωk+1)o, k = 1, 2, . . ., and (b)
⋃∞
k=1 Ωk = Ω.

In what follows, we consider unbounded subsets E ⊂ Ω satisfying the following
condition.

(A) Suppose that (Ωk)
∞
k=1 is an exhaustion of Ω by compact subsets such that

Ω̂k = Ωk . Then for any k > 1, every connected component of Ω \ Ωk has non-void
intersection with Ω \ E.

It is immediate that condition (A) is independent of the choice of the exhaustion
by compact subsets with the property Ω̂k = Ωk .

We now state the main result of this paper.

Theorem 1. Suppose that E is a closed subset of the harmonic space Ω satisfying
condition (A). Then the following are equivalent.

(a) For any u ∈ S(E, Eo) and ε ∈ C+(E), there exists a function v ∈ S(E) such
that |u− v| < ε on E.

(b) For any u ∈ S(E, Eo) and positive number δ, there exists a function v ∈ S(E)
such that u < v < u+ δ on E.

(c) For any u ∈ H(E, Eo) and positive number δ, there exists a function v ∈ H(E)
such that u < v < u+ δ on E.

(d) Ω \ E and Ω \ Eo are thin at the same points on E.

We give an example for the classical case of superharmonic functions in the unit
disc.

Fig. 1



approximation on long islands 49

Example 1. Taking Ω = {|z| < 1} and

E = Ω \
∞⋃
n=1

{∣∣∣∣z − (1− 1

n

)∣∣∣∣ < 1

2(n+ 1)2

}
,

we obtain an example of a long island (a closed set with a unique ‘unbounded’
connected interior) which is a tangential approximation set with arbitrary speed
(see Fig. 1). On the other hand, for the same space Ω = {|z| < 1} (or for the
space Ω = {0 < |z| < 1}) and E = Ω \ {|z| < 1/8}, we are in a situation where
the complement of E in Ω does not satisfy condition (A), and for this case our
Theorem 1 does not provide any information. The set E filling out the vicinity of the
‘ideal’ boundary of Ω (or some component of it) does not allow for a superharmonic
function to decrease by modulus to zero with arbitrary speed. That a positive
superharmonic function cannot converge arbitrarily rapidly to zero is shown in
[7]. Our conjecture is that the necessary oscillation will force the superharmonic
function to produce minima which are not permitted. We have been unable to give
a complete answer for this case.

The following statement deals with the case of tangential approximation by
globally superharmonic functions.

Theorem 2. Let Ω and E be as in Theorem 1. Then the following are equivalent.

(a) For any u ∈ S(E, Eo) and ε ∈ C+(E), there exists a function v ∈ S(Ω) such
that |u− v| < ε on E.

(b) For any u ∈ S(E, Eo) and positive number δ, there exists a function v ∈ S(Ω)
such that u < v < u+ δ on E.

(c) (i) Ω \ Ê and Ω \ Eo are thin at the same points on E.
(ii) Ω∗ \ Ê is locally connected at ∗.

Remark 1. The case of compact subsets E in both Theorems 1 and 2 obviously
reduces to uniform approximation. Therefore, in the proofs below it is assumed
that E is a closed non-compact (that is, non-bounded) subset of Ω. Notice that
the proof of necessity of (c)(ii) in Theorem A is essentially based on the strictness
of the inequality in (a) (and/or (b)) in Theorem A. This agrees with the situation
in Theorems 1 and 2, asserting that the less demanding character of the estimate
v − ε < u < v + ε makes, in fact, condition (c)(ii) redundant.

Remark 2. That there is no harmonic analogue to the equivalence between
properties (a) and (c) in the above Theorems 1 and 2 (under whatever further
restrictions on the space Ω) follows at once from the Theorem in [1] (see also the
final remark there). We note also that in every statement on tangential approximation
with arbitrary speed known to the authors thus far, be it in the complex analytic or
in classical or abstract harmonic cases, the long islands condition has been essential.

Remark 3. The construction applying Lemma 1 below obviously produces
analogies to the widely known fusion lemma type statements. Fusion statements in
abstract harmonic spaces, along with their application to approximation problems,
will be discussed in a later paper.
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2. Proof of Theorem 1

The implication (a)⇒(b) is obvious. The implication (b)⇒(c) is achieved in a
routine way (see, for instance, [7]), and the implication (c)⇒(d) is part of the theorem
on uniform approximation, proved exactly as in [7]. (One has to take h = 1 in the
reasoning on page 1010 of [7].) It remains to prove the implication (d)⇒(a).

We shall make use of the following.

Proposition 1. There exists an exhaustion (Ωk) of Ω by compact subsets such that
for every k > 0, the set (Ω2k+1)o \ Ω2k consists of only a finite number of connected
components all of which have non-empty intersection with Ω \ E.

Proof. Notice first that for any compact exhaustion (Lk)k>0 of Ω, the sequence

(L̂k)k>0 also represents an exhaustion. Hence we can assume in advance that the

given exhaustion (Lk)k>0 is such that L̂k = Lk , for k > 0. From Lk ⊂ (Lk+1)o, it

follows that there exist δk > 0 such that (Lk)δk ⊂ (Lk+1)o, and also ̂(Lk)δk ⊂ (Lk+1)o

because L̂k+1 = Lk+1. We see that ( ̂(Lk)δk )k>0 is an exhaustion of Ω. Assume that for

some k, the interior of ̂(Lk)δk has infinitely many connected components. Since every
such component will contain points of Lk, we can choose a sequence (xn)n>1 ⊂ Lk of

points belonging to distinct components of the interior of ̂(Lk)δk . By the sequential
compactness of the space, we can assume that xn → x0 for some point x0 ∈ Lk .
On the other hand, because of the local connectedness of the space, there exists a
(possibly smaller) connected neighbourhood of x0 in its δk-neighbourhood. Hence
all xn from some number on belong to the same connected component of ̂(Lk)δk ,
and this is in contradiction with the xn belonging to distinct components.

We now show that for any exhaustion (Lk)k>0 with the condition L̂k = Lk ,
k > 0, the sets Ω \ Lk can have no more than a finite number of connected
components. Assume that this fails for some Lk . There exists a δ > 0 such that (Lk)δ
is precompact. In each connected component of Ω \Lk , we take a point xn such that
δ/2 6 d(xn, Lk) 6 δ. The existence of such points follows from the connectedness of
the space. By the sequential compactness property, we may assume that xn → x0 for
some x0 ∈ Ω. Now, on the one hand we have δ/2 6 d(x0, Lk), and, since the points
xn are separated from each other by the set Lk because of the connectedness of Ω,
we have also x0 ∈ Lk , which gives a contradiction.

Now, if Lk is an exhaustion for which both (Lk)
o and Ω \ Lk consist of no more

than a finite number of connected components, then this same property will hold
also for the sets (Ln)

o \ Lk for any n and k with n > k + 1.
In view of condition (A), taking as (Ωk)k either the exhaustion (Lk)k itself or one

of its appropriate subsequences, we shall arrive at an exhaustion having the required
properties.

We assume that (Ωk) is an exhaustion as in Proposition 1, and in addition let
Ω−1 = Ω−2 = Ω−3 = ?. Denote A[k, m] = Ωm \ Ωo

k , 0 6 k < m, m > 1.
The following result provides the main tool for the proof of Theorem 1.

Lemma 1. For any k > 0, there exists a function χk ∈ S(E ∩ A[2k − 3, 2k + 2])
such that

χk =

{
0 on E ∩ A[2k − 1, 2k],
1 on E ∩ (A[2k − 3, 2k − 2] ∪ A[2k + 1, 2k + 2]).



approximation on long islands 51

Proof. For a given k > 0, take a regular neighbourhood L of

E ∩ (A[2k − 2, 2k − 1] ∪ A[2k, 2k + 1])

such that every component of the set (A[2k − 2, 2k − 1] ∪ A[2k, 2k + 1])o has non-
empty intersection with the set Ω \ L̄. Let U1, U2 be disjoint open neighbourhoods
of, respectively, M = A[2k− 3, 2k− 2] ∪A[2k+ 1, 2k+ 2] and A[2k− 1, 2k]. We can
choose U1, U2 in such a way (shrinking them if necessary) that every component of
(A[2k − 2, 2k − 1] ∪ A[2k, 2k + 1])o \ (U1 ∪U2) (the number of which is assumed to
be finite due to the choice of the exhaustion) has non-empty intersection with the
set Ω \ L̄.

Fig. 2

Further, let V be a regular open neighbourhood of A[2k − 3, 2k + 2] \ (U1 ∪U2)
not intersecting M ∪A[2k−1, 2k]. Since the points on ∂L are regular for Ṽ = V ∩L,
the harmonic measure of ∂L is strictly positive on ∂(U1∪U2)∩Ṽ in every component
of Ṽ . Let s be the solution of the generalised Dirichlet problem, for boundary values
equal to 2 on ∂Ṽ ∩∂V , and so small on ∂L∩∂Ṽ that s is negative on ∂(U1∪U2)∩ Ṽ .
Now define

χk =


s on Ṽ \ (U1 ∪U2),
1 on U1 \ V ,
0 on U2 \ V ,
min(1, s) on U1 ∩ Ṽ ,
min(0, s) on U2 ∩ Ṽ .

(2.1)

Obviously, the functions χk have the properties listed in the lemma.

Returning to the proof of Theorem 1, suppose that (Ck) is an increasing sequence
such that Ck > maxA[2k−3,2k+2] |χk|. Further, assume that (εk) is a decreasing sequence
of positive numbers such that

εk <
1

4Ck+2
minA[2k−1,2k+4](ε), k > 0. (2.2)

Recall that the compact set L is called stable if Ω \L is not thin at any point on
∂L. According to [7, Lemma 1], for any k > 0 there exists a stable compact set Ω′k
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such that Ωk ⊂ (Ω′k)o and Ω′k ⊂ Ωo
k+1. Making use of condition (d) and the theorem

on uniform approximation on compact sets [2, Theorem 4.7], we conclude that for
any k > 0 there exists a function hk ∈ S(E ∩ Ω′2k+2) such that

|u− hk| < εk on E ∩ Ω′2k+2. (2.3)

Put h̃k = hk + (εk−1 + εk + εk+1)χk on a neighbourhood Wk of E ∩ A[2k − 3, 2k + 2],
where hk and χk are both superharmonic. This definition implies that for all k > 0,

h̃k−1 and h̃k+1 > h̃k on E ∩ A[2k − 1, 2k] (2.4)

(we assume h−1 = ∞). Indeed, for k > 1 we have, on E ∩ A[2k − 1, 2k],

h̃k−1 = hk−1 + εk−2 + εk−1 + εk

> u+ εk−2 + εk

> hk = h̃k.

And for k > 0 we have, on E ∩ A[2k − 1, 2k],

h̃k+1 = hk+1 + εk + εk+1 + εk+2

> u+ εk + εk+2

> hk = h̃k.

Since the functions h̃k are continuous on Wk , we may assume that the inequalities
(2.4) are indeed satisfied on Wk−1 ∩Wk ∩Wk+1 ∩ A[2k − 1, 2k], adjusting the sets
Wk , if necessary. Define h̃k = ∞ off Wk ∩ A[2k − 3, 2k + 2], and put h = infk>0 h̃k
on W =

⋃
k>0 Wk . Since on any W ∩ A[k, k + 1] only at most three functions h̃k

are finite, and they are also superharmonic there, the function h is superharmonic
on W . For any k > 0, due to (2.4) and since for j 6 k − 2 and j > k + 1, h̃j = ∞
on A[2k − 2, 2k − 1], we have h = min(h̃k−1, h̃k) on W ∩ A[2k − 2, 2k]. By the same
reasoning, h = min(h̃k, h̃k+1) on W ∩A[2k − 1, 2k + 1]. Since both of these functions
are continuous and superharmonic in the interiors of these sets, and coincide on
W ∩ A[2k − 1, 2k] (they are both equal to h̃k), we conclude that h ∈ S(W ) ⊂ S(E).

At points of E∩A[2k−1, 2k], due to (2.4) we have h = h̃k = hk , hence |u−h| < εk .

On E ∩ A[2k, 2k + 1] we have, in view of (2.2) and (2.3),

|u− h| 6 max{|u− h̃k|, |u− h̃k+1|}
< max{εk + (εk−1 + εk + εk+1)Ck, εk+1 + (εk + εk+1 + εk+2)Ck+1}
6 εk + (εk−1 + εk + εk+1)Ck+1

<
1

4Ck+2
minA[2k,2k+1](ε) +

3

4Ck+1
Ck+1minA[2k,2k+1](ε)

< min
A[2k,2k+1]

(ε).

Theorem 1 is proved.

Remark 4. For an arbitrary ε ∈ C+(E), let Wk be a neighbourhood of
E ∩ A[2k − 3, 2k + 2], where χk is superharmonic. Taking h̃k = (εk−1 + εk + εk+1)χk
on Wk ∩ A[2k − 3, 2k + 2] and equal to ∞ off this same set for εk chosen according
to (2.2), and defining h = infk>0 h̃k , we obtain a function h ∈ S(E) such that |h| < ε

on E.
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3. Proof of Theorem 2

The implication (a)⇒(b) is obvious. (b)⇒(c)(i) is proved as in Theorem 3 of
[9] (or as in [7], taking the function h = 1 on page 1010). (b)⇒(c)(ii) is proved as
in Theorem 4 of [9], taking into account that the proof in fact uses only uniform
approximation. It remains to prove the implication (c)⇒(a).

Thanks to condition (c)(i), any function u ∈ S(E, Eo) continues to a function
ũ ∈ S(Ê, (Ê)o) (see [8]). Since from (c)(i) it also follows that Ω \ Ê and Ω \ (Ê)o are
thin at the same points on E, and hence on Ê, by Theorem 1 there exists a function
v ∈ S(Ê) satisfying |ũ − v| < ε on Ê. By Theorem 1 in [9], thanks to (c)(ii) this
function can be extended continuously from a neighbourhood of Ê to a function in
S(Ω).

Theorem 2 is proved.
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