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Author's statement 

The original work contained in this thesis consists 

of the following: 

1) The construction of the early distorted trajectory 

(DT) model discussed in chapter III and the determination of 

its propertiesi 

2) The analysis of the right half plane asymptotic 

behavior of the CHKZ modeli 

3) The derivation of restrictions on general DT models 

(chapter IV)i 

4) The construction of the revised DT model discussed 

in chapter V and the determination of its propertiesi 

5) various physical applications of the revised DT 

model which appear in chapter VI. 
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Abstract 

Dual, crossing symmetric representations with resonances 

having finite width are proposed and developed in detail. 

In particular, the asymptotic behavior over the whole complex 

energy plane is studied and it is shown that certain recently 

proposed scattering amplitudes le ad to non-Regge contributions 

in most ( or aIl) of the physically important regions of the 

kimematical variables. Conditions for Regge behavior are 

developed, a class of models satisfying these conditions ( along 

with other physically important requirements ) is presented 

and a simple model obeying them is studied in detail. A number 

of physical applications are also presented, including an 

explanation of the Dalitz plot distribution for pn + 3TI, the 

behavior of the most important TITI phase shifts and a determi

nation of the TITI S-wave scattering lengths. 
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I. Introduction 

Since the end of 1968 one of the most important developments 

in the the ory of strong interactions of elementary particles 

has been the construction by Veneziano (1968)* of a simple 

model combining crossing symmetry and Regge asymptotic behavior 

together with the property of duality. The subsequent 

successful explanation by Lovelace (1968) of the Da1itz plot 
- - - + distribution for the process pn~~ ~ ~ , the derivation of ~~ 

scattering lengths and of a number of other Current Algebra 

results, the application of the representation to phenomenological 

calculations at high energy and its relatively simple extension 

to production reactions (N-point function) are several of the 

reasons responsible for the great interest in this model 

shown by particle theorists. 

Soon after the Veneziano proposaI, the problem of introducing 

the property of unitarity into the original scheme started 

attracting a considerable amount of effort. The attempts in this 

direction fall roughly into five categories: 

i) The K-Matrix approach. This was suggested by Lovelace 

in order to study low energy ~~,K~ and KK phase shifts (Lovelace 

1969). As we shall discuss in chapter VI, this method destroys 

the crossing symmetry which was built into the Veneziano model. 

Siüce crossing symmetry is difficult to reintroduce while 

retaining unitarity, this approach is, in a sense, a step 

backwards. 

* References will be indicated by the surname of the first author, the year of publication and, if the reference 
is a text, the relevant chapter. 



ii) The perturbative approach. This approach was first 

suggested by Kikkawa, Sakita and Virasoro (Kikkawa 1969) and 

by Fubini and Veneziano (Fubini 1969a). It consists of 

treating the original Veneziano amplitude as a Born term and 

using the mu1tipartic1e Veneziano formula (see Alessandrini 

1971) ta obtain higher order terms. A1though this method is 

made more systematic by the operator forma1ism of Fubini, Gordon 

and Veneziano (Fubini 1969b), it has not yet come close to 

providing a simple unitary amplitude. 

iii) The Roskies approach. This procedure, which has been 

examined by Roskies (1968) and used by Lovelace (1968), consists 

of substituting trajectories which are complex above thresho1d 

into the original Veneziano form. The resu1t is that, at a 

given mass, resonances of arbitrarily high spin ("ancestors") 

are introduced. 

iv) The Martin approach. Martin (1969) smeared out the 

Veneziano amplitude by integrating it with an appropriate 

weighting factor. With this method it is possible to introduce 

Regge cuts but the resulting amplitudes have no Regge pole 

behavior. More recent work along these lines has been 

undertaken by Friedman, Nath and Srivastava (Friedman 1970). 

v) Modified Beta function approach. These attempts, dating 

from the work of Suzuki (1969), substitute a modified Beta 

function for the one appearing in Veneziano's formula. The 

modifications consist of changing slight1y the integrand of the 

usua1 integral form for the Beta function*. In a sense, these 

* Properties of the Beta and Gamma functions and related 
functions can be found in Carrier (1965,ch.5) and in 
Gradshteyn (1965,ch.8). 
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models are like those of type iv) except that the smearing is 

done inside the Beta function integrand rather than outside. 

The models of types i) and ii) clearly suffer significant 

drawbacks. The models of types iii) and iv) may prove worth 

studying, but they lack the simplicity necessary for practical 

application. We shall therefore concentrate on the models of 

type v). 

In chapter II we shall examine the ordinary Veneziano model 

and, in particular, the properties most relevant to the 

developments of the subsequent chapters. We shall use methods 

which are directly applicable to the study of the basic problems 

of this work. 

In chapter III we shall examine three early models of type 

v) and analyze some of their most important shortcomings. 

Particular emphasis will be given to the difficult problem of 

the asymptotic behavior of these models as 151 + 00 with t fixed 

and 5 in the right half of the complex s-plane. 

Chapter IV will be concerned with restrictions arising 

from the requirements of Regge asymptotic behavior <151 + 00, 

t fixed), Mandelstam analyticity, threshold behavior and 

asymptotic behavior for large 5 with u or e fixed. 
5 

In chapter V we present an amplitude which satisfies the 

restrictions obtained in chapter IV. Again, particular care 

is devoted to the study of its asymptotic behavior for 151 + 00 

with t fixed as weIl as to certain other properties. 

Chapter VI presents a number of physical applications of 

3 

this model including the behavior of the Dalitz plot distribution 

- - - + for the reaction pn + ~ ~ ~ , the determination of the physical 
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features of the most important TITI phase shifts and the 

comparison of the TITI scattering lengths with both experimental 

and Current Algebra results. The p_f o trajectory used is found 

to be in reasonable agreement with the (almost linear) one 

observed experimentally. The satisfaction of the elastic 

unitarity condition for the most important partial waves is also 

examined. 

Finally, in chapter VII, we shall make suggestions for 

future work in this area. 

The body of this work is followed by a short Appendix which 

examines in detail certain non-leading terms in the model of 

chapter V. 

Throughout this work we shall use the Mandelstam variables 

s, t, and u. In figure 1.1 these are defined in terms of the 

four-momenta of the particles being scattered. We shall also 

work with units such that 

4m~ = 1 (m
TI 

= pion mass) (1) 

so that for the process TITI+TITI the Mandelstam variables are 

constrained by 

s + t + u = 1. (2) 

Regge trajectories which are complex above threshold will 

be written in terms of the once subtracted dispersion relation 

00 

( ) =' b sfd' ~(s') a s AS + + TI s s'(s'-s) (3) 



We use the function '(s') rather than the usual Ima(s') since 

in part of the work we shall be interested in examining the 

integrand for values of s' away from the real, positive s'axis. 

Finally, we should mention some of the mathematical notation 

which we shall use. The symbol "ex" will be used for 

p roportionali ty. The symbol "'\.,,, stands for "asymptotic to" 

F(s) '\., G(s) (s+so) im'plies lim F(s) = l 
~ G(s) . 

S-'-So 

(4) 

The symbol "~,, will be used for approximate equality while the 

symbol " " stands for asymptotic proportionality: 

F(s) - G(s) (s+so) implies lim F(s) = eonstant . (5) 
~ G(s) 

S-'-So 
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II. The Veneziano Model 

In this chapter we shall review sorne of the properties of 

the Veneziano model (Veneziano 1968)*. The usual procedure for 

discussing this model appeals to the we1l known properties of 

the Gamma function. We shal1 not use this procedure in most 

of this chapter. Instead, we sha11 use methods applicable to 

the models which will be discussed in 1ater chapters. 

II.1 The Form of the Amplitudes 

According to the Veneziano model, invariant amplitudes for 

the process 1+2+3+4 can be written 

l ) _ f yst ( )f(p-au(s))f(g-av(t)) 
A (s,t,u - Lv ~vI p,q,r r(r-a~(s)-av(t)) 

~, , 
p,q,r 

+ Permutations. 

The first term in this equation corresponds to figure II.1a 

(1) 

while the permutations refer to figures II.lb and II.lc. The 

indices ~ and v refer to trajectories which can be exchanged in 

the corresponding channels. The numbers p, q and rare limited 

to those which yield correct asymptotic behavior and poles in 

the proper positions and with correct residues. st 
The y I(p,q,r) 

~v 

are constants and l is included to indicate that there may be 

several invariant amplitudes. Finally, the trajectories are 

* An extensive bibliography of work on the Veneziano model and 
on related models is found in a review article by Sivers and 
Yellin (Sivers 1971) 
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given by 

a~(s) = Às t b~ (2) 

where À is a universal slope and b~ is the intercept of the 

trajectory of type ~. 

We shall now consider two examples of such amplitudes. 

Both are dominated by the degenerate p_f o trajectory. The 

first process is the reaction TITI+TIW. The invariant amplitude 

is defined in terms of the T-matrix by (Veneziano 1968) 

(3) 

where e~ is the polarization four-vector of the W and qi are 

the four-moment a of the pions. The invariant amplitude is 

given by 

A(s,t,u) = S[A(s,t) t A(s,u) t A(t,u)] (4) 

where S is a constant and 

A(s,t) f(l-a(s»f(l-a(t» 
= f(2-a(s)-a(t» 

(5) 

In terms of (1) we therefore have 

st( ) su Ypp 1,1,2 = Ypp (1,1,2) tu Q = Ypp (1,1,2) = f.J (6) 

Equation (1) still allows the addition of "satellite terms" 



such as (p,q,r) = (1,1,3) but these are usually ignored for 

simplicity. 

The second process is ~~+~~. This has three invariant 

amplitudes corresponding to the three possible isospin states. 

The invariant amplitudes for the s-channel isospin decomposition 

are (Lovelace 1968) 

where 

3 = I[C(s,t) t C(s,u)] 

A1(s,t,u) = C(s,t) - C(s,u) 

A2 (s,t,u) = C(t,u) 

C(s,t) f(1-a(s»f(1-a(t» 
= -y f(l-a(s)-a(t» 

tSf(l-a(s»f(l-a(t» 
f(2-a(s)-a(t» 

As with the previous amplitude we can easily identify the 

coefficients in equation (1). Notice that we now have a 

"leading" contribution (p,q,r) = (1,1,1) and a "satellite" 

contribution (p,q,r) = (1,1,2). 

II.2 Properties of the Amplitudes 

(7) 

(8) 

8 

We notice first that the functions (5) and (8) can be written 

A(s,t) = B(l-a(s),l-a(t» (9 ) 
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and 

C(s,t) = Y(Às + Àt + c)A(s,t) (10) 

where c = 2b-I+S/y and B is the Beta function. It is therefore 
sufficient to examine the properties of the Beta function in 
order to find the properties of A(s,t) and C(s,t). With the 
Integral representation for the Beta function we have 

(11) 

for Rea(s)<l, Rea(t)<l. 

We DOW examine the properties of the two amplitudes 
introduced above. 

i) Crossing Symmetry. This requirement demands that the 
amplitudes for the processes 

1 + 2 + 3 + 4 

1 + 3 + 2 + 4 
(12) 

and 1 + 4 + 3 + 2 

be related by analytic continuation in the variables s, t and u. 
Consider first the reactions w + ~l + ~2 + ~3 and w + n2 + -
~l + ~3. In the first process the s-channel is physica1 while 
in the second the t-channe1 is physical (see figure II.2). 
The T-matrix elements for these reactions, including isospin 
terms, are 

-.; 
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(13) 

ànd 

(14) 

+ 
where Ui are the isospin vectors of the pions. If we make the 

changes V ++ p, p ++ q and use the fact that E E 
~vpa pqr = 

E E then we see that (13) and (14) are the same function ~pva qpr 

provided that A(s,t,u) = A(t,s,u). The latter condition is 

satisfied provided that 

A(s,t) = A(t,s) (15) 

We can show that (15) is satisfied by making the substitution 

s ++ t and the change of variables z ++ 1-z in (11). Thus the 

Veneziano representation for Uu+uw is crossing symmetric. 

We next considerthe reactions Ul + U2 + U3 + U4 and 
-Ul + U3 + Ua + U4. These processes are shown in figure II.3. 

Using (7) and the isospin projection operators for uU+UTI, we 

can construct the T-matrix for the first process. We find 

T(UIU2+U3U4) = ~u~u~~~~~[C(s,t)+C(s,u)-C(t,u)J 

+ !u~TI~U~TI~[C(s,t)+C(t,u)-C(s,u)J (16) 

+ ~u~~~u~~~[C(s,u)+C(t,u)-C(s,t)J • 

Comparing figures II.3a and II.3b we find that the T-matrix 



Il 

for the second process is 

T(TIln3+n2TI4) = ~ TI~n~TI~TI2[C(t,s)+C(t,u)-C(s,u)] 

+ ! TI~TI~TI~TI2[C(t,s)+C(s,u)-C(t,u)] (17) 

+ ~ TI~;fTI~TI~[C(t,u)+C(s,u)-C(t,s)] 

Again, we see that the two T-matrices are the same provided that 

(15) 1s satisfied. The Veneziano representation for TITI+TITI is 

therefore crossing symmetric. 

It shou1d not be surprising that the amplitudes described 

above are crossing symmetric since th~y were constructed that 

way. What we have seen here is that crossing symmetry follows 

from the symmetry in sand t of A(s,t). If A(s,t) is 

generalized to the form 

1 

A(s,t) = JdZ F(s,z)F(t,l-z) 
o 

then the amplitudes will retain their crossing symmetry. 

ii) Singularity Structure. The representation (11) for 

(18) 

A(s,t) converges for Re~(s)<l, Re~(t)<l. In order to examine 

the properties of (9) and (10) outside of this region, we sha11 

need to find an analytic continuation of (11). In order to do 

this for finite s and Re~(t)<l, we first write 

= IdZ z-a(s)(l_z)-a(t) 

Q 

1 
+ JdZ z-~(s)(l_z)-~(t) 

v 

(19) 



The first integral converges for Rea(s)<l while the second 

converges for Rea(t)<l. We can rewrite Iov by expanding the 

(l-z) term in powers of z. We have 

v 

12 

= y r(k+a(t» fd zk-a(s) Iov(s,t) k=O k:r(a(t» a (20) 
o 

The Integration in (20) can be performed for Rea(s)<l with the 

result 

00 r(k+a(t»vk+l-a(s) 
Iov(s,t) =k~O k:r(a(t»(k+l-a(t» 

The representation (21) provides an analytic continua~ion of 

(21) 

IOV into the region Rea(s»l. With (21) it is easily seen that 

A(s,t) has poles at 

a(s) = k + 1 (k = 0,1,2, .•• ) (22) 

whose residues are polynomials of degree k in a(t). Since 

a(t) is a linear function of t these residues are also 

polynomials of degree k in t. 

We shall now examine the consequences of the above expansion 

for the process nn+nn. From (10) and (21) we see that C(s,t) 

has poles at a(s) = j (j = 1,2, •.. ) whose residues are 

polynomials of degree j in t. The extra power of t comes 

from the factor Y(Às+Àt+c) in (10). The variable t is related 

to the angle of scattering in the s-channel center of mass 

system (see figure II.4) by 
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t = ~(1-s)(1-cos8 ) (23) 
s 

Thus the pole of C(s,t) at a(s) = j has a residue which is a 

polynomial of degree j in cos8. In terms of the usual 
s 

partial wave decomposition of C(s,t) 

co 

C(s,t) = L(2 j tl)Cj (s)P
j 

(cos8 ) 
j =0 s 

(24) 

it is clear that the pole at a(s) = j will contribute to C.(s), 
J 

Cj_l(s), ••. ,CO(s). The pole at a(s) = 1, for example, is just 

the p resonance. 

We can now examine the singularity structure of the 

invariant amplitudes (7). Notice first that if the s-channel 

is physical we have t<O and u<O. Since b~!<l for the p_f o 

trajectory we have Rea(t)<l and Rea(u)<l. In this region the 

representation (11) for A(t,u) converges and is analytic. 

Therefore C(t,u) has no singularities in the physical s-channel. 

From the third equation in (7) we immediately see that the 

process TITI+TITI has no 1=2 resonances. 

The procedures used in the discussion of C(s,t) can be used 

for C(s,u) as weIl. The only difference is that 

so that 

u = !(1-s)(ltcos8 ) s 

co 

C(s,u) = L (2jtl)C.(s)P.(-cos8 ) . 
. 0 J J s 
J= 

(25) 

(26) 



14 

Since P.(x) = (-l)jp (-x) we find that the 1=0 resonances have 
J j 

even j while the 1=1 resonances have odd j. 

A plot of the "resonances" occuring in (7) according to 

their (mass)2 and angular momentum is shown in figure II.5. 

-2 . The set of parameters S=O, À=.90 GeV ,b=.48 1S used while the 

elastic partial widths are normalized to rp=112 MeV. It is 

easily seen that the resonances lie on a series of para1lel, unit 

spaced Regge trajectories~ 

As was the case with crossing symmetry, it should not be 

surprising that the above resu1ts were obtained since the 

invariant amplitudes (7) were constructed that way. Similar 

methods can be used for the process TITI~TIW although the partial 

wave decomposition is not so simple. The important result here 

is the method by which the singu1arities of A(s,t) were 

determined. Notice in particu1ar that the s-channe1 singularities 

arose from the divergence of the integrand of (11) near z=O. 

iii) Regge Asymptotics. We now wish to examine (11) as 

Isl ~ 00 for t fixed. For s in the left ha1f plane the 

representation (11) converges. For Rea(s»l, however, we shal1 

need an analytic continuation. 

To begin the discussion we make the change of variables 

(Suzuki 1969) z=e-x in (11) to ob tain 

00 

A (s, t) 
-x(l-a(s» -x -a(t) e (l-e ) (27) 

o 

This integra1 i5 convergent in the region -tTI<~ ~arg(l-a(s»<tTI, 
s 

Rea(t)<l. As Isl ~ 00 in this region we expect that the major 
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contribution to the integra1 will come from the region of 

integration near x=O. In order to show this exp1icit1y we write 

(27) as 

A(s,t) = l + 1 2 + 13 = l 

\le -i~s \1 00 
(28) 

= f + J + fdX 
-x(l-a(s» -x -a(t) e (l-e ) 

0 -i~ \le s \1 

where \1 is a rea1 constant. Notice that since the t term of the 

integrand has a singularity at x=O it is not immediate1y obvious 

that the contour deformation (27) + (28) (see figure II.6) can 

be performed. In order to validate the rotation near x=O we must 

show that 

lim 
r+O 

r 

This condition is satisfied for Rea(t)<l. 

(29) 

We now examine the asymptotic behavior of the three integrals 

in (28). An upper bound on 113 1 is given by 

00 

\1 
00 

< e\lRea(s) fdX e-x(l_e-X)-Rea(t) 

\1 

+ e-vÀlslcos~s l_v1-Rea(t) 

l-Rea(t) 

as Isl + 00. The final term in (30) vanishes faster than any 

(30) 



inverse power of s provided that -~TI<~s<~TI. Thus 13 does not 

contribute to the asymptotic expansion of A(s,t). The same 

16 

situation prevai1s for 12 since the integrand vanishes faster 

than any power of s-l as Isl + 00 for I~sl < iTI. The asymptotic 

expansion of (28) is therefore given by the asymptotic expansion 

of Il. With the change of variables y=x(l-a(s» and some 

a1gebra we have 

vI1-a(s) 1 

Il = (l-a(S»a(t)-lf dY e-yy-a(t)H(y,s,a(t» (31) 

o 

where 

H(y,s,a(t» = (l-exP{-Y/(l-a(S»})-a(t) 
y/(l-a(s» . 

(32) 

The fo11owing conditions are satisfied for the integra1 in 

(31): A) The integra1 exists; B) For an arbitrari1y sma11 E 

independent of y we can choose an So such that IH(y,s,a(t» I<E 

for a11 Isl>so and for a11 y in some interva1 (0, IslYl) with 

Yl>O; C) For an arbitrari1y sma11 E independent of y we can find 

an So such that IH(y,s,a(t»e-Y2Y I<E for a11 Isl>so and for a11 

y in (lsI Yl ,vI1-a(s) 1) with Y2<1. Under these conditions we can 

take the 1imit Isl + 00 of the integra1 in (31) with the resu1t 

00 

(33) 

as Isl + 00 for I~sl < ~TI. The non-1eading terms can be found 
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by expanding the function H(y,s,a(t)) in powers of y/(I-a(s)). 

We now turn to the problem of finding an analytic 

continuation of (27) into the right half s-plane. We begin by 

taking sand t in the region Ima(s»O, Rea(s)<l, Rea(t)<I. 

We are free to rotate the path of integration of (27) counter-

clockwise through some angle ~n-~ to obtain (see figure II.7) 

(34) 

,There are three points which must be checked here. First, that 

the analogue of (29) is still valid. This is the case since 

Rea(t)<l. Second, that the contour at infinity can be neglected: 

Rei(!n-~) 

lim fdX e-x (l-a(s))(I_e-x)-a(t) = 0 . 
R+oo 

R 

This is satisfied provided that Rea(s)<I, Ima(s»O and ~~O. 

(35) 

Finally, we must make sure that no singularities are encountered 

during the deformation. There are, in fact, singularities at 

x = ±2nni (n=O,I,2, .•. ) coming from the t term in the integrand. 

It is precisely this set of singularities which prevents our 

taking ~<O. 

The representation (34) converges for ~-n<~s<~' We can 

therefore use it to determine the asymptotic behavior of A(s,t) 

in that region. We change (34) to 

A(s,t) = fdX e-x (l-a(s)) (l_e-x)-a(t)= 11+12+13 (36) 

Cl tC 2tC 3 

where the paths of integration Cl' C2 and C3 are shown iri 
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figure II.8. In order to avoid the singularity at x=2TIi we 

must take v<2TI where v is the radius of the arc C
2 • The final 

two integrals of (36) have integrands which vanish faster than 

any power of s-l as Isi + 00 for -TI+~+E<~s<~-E where E is small 

and positive. The first integral of (36) is identical to Il 

of (28). Therefore the asymptotic behaviors of A{s,t) in the 

regions -TI+~+E<~s<~-E and l~sl<~TI are identical. 

Using the same method but rotating the contour of (27) 

clockwise we find that the asymptotic expansion remains the same 

in the region E-~<~s<TI-~-E. Since ~~O we therefore have the 

result 

A(s,t) ~ (-Às)a(t)-lr(l-a(t» (37) 

for Rea(t)<l, -TI+E<~s<TI-E. Substituting this result into the 

Veneziano formulae for TITI+TITI and TITI+TIW we find that the 

asymptotic behavior is characteristic of processes dominated by 

exchange of the degenerate p_f o trajectory. 

As an example we consider the I=l amplitude of (7) as 

Itl + 00. Substituting the form (37) for A(t,s) and A(u,s) and 

using the fact that s+t+u=l we obtain 

(38) 

Notice that a signature factor arises from the combination of 

the two terms. 

i 
~ 



19 

There are several points to be mentioned before proceeding 

further. First, the result (37) can be shown to hold even for 

Rea(t»l. In order to do this we integrate (27) by parts 

until the resulting integral converges in the desired region of 

the t-plane. We then proceed with the same analysis as above. 

Second, the Veneziano model does not give Regge behavior for 

\s\ + 00, arg(s)=O. The reason for this is that A(s,t) has an 

infini te series of poles on the real, positive s-axis. If 

the trajectory functions are given an imaginary part above 

threshold then the poles can be shifted onto the second sheet 

of the s-plane and Regge behavior can be obtained for arg(s)=O 

(Roskies 1968). 

iv) Duality. This property, while not firmly established, 

has been built into the Veneziano model. In contrast to 

interference models, in which the amplitudes are built from 

direct channel resonances plus crossed channel Regge pole 

contributions, dual models are built either from resonances or 

from Regge poles. The simplest quantitative statement of duality 

is found in terms of finite energy sum rules (FESR) (see Jackson 

1970 for a review). If resonances, are used to saturate the left 

hand side of an FESR th en the right hand side should show 

characteristic Regge pole behavior. 

As an example for the Veneziano model, we saturate the FESR 

N 

~ Ids ImC(s,t) 

o 

= 1iyci(t) (ÀN)a(t) 
(a(t)tl)r(a(t)tl) 

(39) 

with the zero width "resonances" of C(s,t). We define C(s,t) 
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by choosing S=O in (8). The left hand side of (39) can be 

integrated explicitly to give 

N 

~ IdS ImC(s,t) 

o 

= TIya(t) f(Mta(t)t2) 
ÀN f(a(t)t2)f(Mtl) (40) 

M is the largest integer such that ÀNtb-l>M. The right hand 

sides of (39) and (40) are compared in figure tI.9 with b=.5, 

y=l.O and À=l GeV- 2 for ÀN=2 and ÀN=4. 

v) Asymptotic Behavior, es=TI. The fact that C(s,t) and 

C(s,u) exhibit Regge behavior as Itl + 00 with s fixed is not 

sufficient to guarantee that the 1=0 amplitude of (7) is Regge 

behaved. We must still make sure that the C(t,u) term does not 

cause any difficulty in this limit. To keep the discussion 

consistent with our earlier examination of Regge behavior we 

sha1l examine the function A(s,t) in the limit Isi + 00, u fixed. 

In terms of figure II.la this corresponds to Isl + 00, es + TI. 

We begin by making the change of variables e-x=z(l-z)-l 

(Suzuki 1969) in (11) to obtain 

A(s,t) -x(l-a(s» -x 2b-2-À(u-l) e (1 te ) • (41) 
_00 

This representation converges for 2b-ltÀ(1-Reu)<Rea(s)<1. 

If we take Ima(s»O then we can rotate the integration contour 

of (41) in the manner shown in figure II.10. The rotation is 

hindered on1y by the fact that the second term in (41) has 

singu1arities at x = ±(2n+l)TIi (n = O,l,~ •. ). There are no 

singularities in the right half x-plane. The new representation 



converges for ~-TI<~s$-~TI, 2b-1+À(1-Reu)<Reœ(s). It is easily 

seen that for ~-TI<~s<-~TI-Ô the integrand of (41) vanishes 

-1 
faster than any power of s as we move away from the point 

x = i(TI-€) a10ng either Cl or C2 • The leading behavior of 

(41) is thus 
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A (s , t) 'V 0 (e - (TI - €) 1 l mœ (s) 1 ) ( 42) 

as Isl + 00, u fixed, -TI<~-TI<~s<-!TI-ô. This resu1t can a1so be 

shown for !TI+ô<~s<TI-~<TI by rotating the contour in the opposite 

direction. 

Notice that the rea1 s-axis is excluded as it was in the case 

of Regge behavior. If we set l~sl=TI then we no longer obtain 

the exponentia11y decreasing behavior (42). It is hoped that 

when trajectories which are comp1ex above threshold are 

introduced the decreasing behavior will persist even on the rea1 

s-axis. This prob1em has been studied in the context of the 

Veneziano model by Roskies (1968) 

~inally, we should point out that the region Isi + 00, 

u fixed, ~<I~sl<!TI can be studied by examining the behavior of 

A(s,t) for Itl + 00, u fixed, !TI<I~tl<TI-~. The same exponentially 

damped behavior as in (42) will naturally persist. 

Because of the exponentially decreasing behavior just off 

the rea1 axis, the C(t,u) terms in (7) are usual1y ignored 

asymptotica11y (Itl + 00, s fixed). 

vi) Asymptotic Behavior, fixed angle. For completeness, we 

examine the behavior of A(s,t) as Isi + 00 with es fixed. 
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In order to simplify the discussion we define the quantity 

Xs = ~(l-coses) (43) 

so that (23) gives t=(l-s)Xs for TITI elastic scatte:ing. With 

the change of variables e-x = z(l-z)-XS (11) becomes 

00 

A(s,t) 
-x(l-Às) -bel )Xs(l-À)tl-b e z-z 

1- (l-Xs) z (44) 

where z=z(x). Notice that for Xs=O(l) the change of variables 

above reduces to that used for the fixed t(u) case. The 

representation (44) converges for l>Rea(s»Àtbt(b-l)/Xs. If we 

also take Ima(s»O then we can perform the path rotation of 

figure II.ll. It is easily seen that the first singularity 

which interferes with the deformation is a pole coming from the 

(l-z+zXs)-l term of (44) at 

x = P = (l-Xs)ln(l-Xs)tXsln(Xs)tiTIXs (45) 

where Xs is real. The new representation converges for 

~-TI<~s<-~TI, Rea(s»Àtbt(b-l)/Xs. The major contribution to the 

integrand will come from near the point P of figure II.ll. 

Since similar arguments can be used for ~TI<~s<TI-~ we finally 

ob tain 

A(s,t) 'V O(exp(RePxRea(s) - TIXsllma(s)I» (46) 

as 1 si + 00, !TI< 1 ~s 1 <TI-~<TI, es fixed. Since O<Xs<l, the factor 
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multiplying Rea(s) is negative. Thus (46) vanishes exponentially 

with s as Isl + 00 in the above region. As usual, we must take 

<p non-negative. Notice, however, that if we set cI>=O, IcI>sl=1T we 

will receive contributions from near aIl of the poles in 

figure II.11. Because these poles are in the left half x-plane, 

A(s,t) will still be exponentially decreasing. 

vii) Zeros of the Amplitudes. The poles which were found 

in part ii) of this section should be observed experimentally 

as "bumps" in the scattering cross sections. These bumps 

represent only half of the structure of the Veneziano model. 

t-le shoùld also expec t to find "ho les " where the ampli tudes have 

zeros. In order to find these zeros we use the representation 

(5) for A(s,t). Using the weil known properties of the Gamma 

function we find that A(s,t) has zeros when 

a(s) + a(t) = n + 2 (n = 0,1,2, ••. ) (47) 

unless a(s) or a(t) is a positive integer. 

In addition to the zeros (47), the function C(s,t) has a 

zero at 

s + t = -c/À = (1-2b-S/Y)/À (48) 

If B=O then (48) is a member of the set (47) with n=-l. 
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11.3 Summary 

We have seen that the Veneziano model has an infinite 

number of poles lying on parallel, unit spaced Regge trajectories. 

The most leading of these poles can be chosen to correspond to 

observed resonances in both mass and angular momentum cont~nt. 

The behavior of the term C(s,t) is satisfactory as Isl + 00 for 

t fixed, u fixed or for fixed angle provided that we stay away 

from the real, positive s-axis. The properties of duality and 

crossing symmetry are built into the model. 

Many of the difficulties of the Veneziano model can be 

traced to one fact: The trajectories have no imaginary part 

above threshold. For example, the model cannot be unitary. 

Near the p pole the j=l partial wave projection has an imaginary 

part 

(49) 

The elastic unitarity relation, 

(50 ) 

therefore has a factor Ô(S-M~) on the left and a factor 

ô 2 (s-Mp) on the right. This difficulty would be avoided if the 

p resonance had a nonzero width. Notice also that if the 

trajectories had an imaginary part with the proper behavior at 

infinity then the asymptotic behavior discussed above could be 

extended to the real axis (Roskies 1968). Finally, we should 



mention that for many physica1 applications of the Veneziano 

mode1 it is necessary to use trajectories which are comp1ex 

above thresho1d in order to have a smooth behavior. Certain 

applications of the Veneziano mode1 will be discussed in 

chapter VI. 

The introduction of comp1ex trajectories into the Veneziano 

mode1 is not simple. In the mode1s of Lovelace (1968) and 

Roskies (1968) there are resonances with the same masses as 

those 1ying on the 1eading trajectory but with higher spin. 
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The remainder of this thesis will be concerned with mode1s which 

avoid these "ancestors" whi1e introducing comp1ex trajectories 

into a Veneziano-1ike form. 
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III. Early Mode1s 

In this chapter we sha11 examine three models which 

introduce finite-width resonances into a Veneziano-1ike form 

while avoiding the problem of ancestors. A11 of these mode1s' 

have double spectral functions which are non-vanishing in 

reasonab1e regions. Two of the models (Cohen-Tannoudji 1971, 

Gaskell 1972) can be adjusted to provide the correct thresho1d 

behavior for both the rea1 and imaginary parts of a1l partial 

waves. These properties are not shared by the Veneziano mode1. 

However, each of the mode1s has serious difficu1ties (Atkinson 

1972, Gaskell 1972). These will be discussed be10w in detai1.* 

111.1 Mode1s to be Examined 

AlI of the mode1s of this and succeeding chapters will 

redefine A(s,t) by rep1acing the Beta function integra1 

representation (11.11) with the representation 

(1) 

The three mode1s which we now describe differ on1y in their 

definitions of a(s,z) and a(t,l-z). 

i) The Suzuki Mode1 (Suzuki 1969). In this mode1 the 

trajectory function is defined by 

* Other mode1s which have been proposed a10ng these 1ines are 
those of (Bugrij 1971), (Ramachandran 1971), (Mestres 1971) 
and (Schmidt 1971). AlI of these suffer from the difficu1ties 
mentioned in this chapter. 



where 

and 

a(s,z)= a(s) - y(z)~a(s) 

a(s) = As + b + ~a(s) 

~a (s) 

co 

= -1TsfdS' 'l'(s') 
s'(s'-s) 

(2) 

(3) 

(4) 

The function y(z) is a Van der Corput neutralizer, defined such 

that 

y(O) = y(l)-l = 0 (5 ). 

and 

= dmy(!_Z) 1 

dz z=O 
= 0 (m=l,2",,) , (6 ) 

The function chosen by Suzuki to satisfy these requirements is 

z 
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y(z) = ~fdX (_lnx)lnx(_ln(l_x»ln(l-x) (7a) 

where o 
1 

c = fdX (_lnx)lnx(_ln(l_x»ln(l-x) 

o 

ii) The Distorted Trajectory (DT) Model (Gaskell 1972), 

In this model we define the trajectory function by 

a(s,z) 

l/(l-z) 

= a(s) - ..ê..
1T

fdS' '!I(s') 
s' (s'-s) 

1 

(7b) 

(8) 

where a(s) is given by (3) with (4), The use of 'P(s') rather 

than Ima(s') in the dispersion relation now becomes important 

J 



since l/(l-z) is not necessari1y on the 1ine SI = (1,00). 

iii) The CHKZ Model (Cohen-Tannoudji 1971). This model 

uses the trajectory function 

a(s,z) = a(s(l-z» + f(s(l-z»/(lnz) 

In the original work the functions 
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(9) 

a(y) = Ày + b + n(l-y)! (10) 

and 

f(y) = S(l-y)k (11) 

are used where Sand n are constants. 

111.2 Properties of the Models 

We sha11 now examine the above mode1s in detai1, comparing 

the resu1ts with those found in chapter II for the Veneziano 

mode1. 

i) Narrow Resonance Limit. If we take o/(Sl) = 0 then both 

the Suzuki and DT mode1s reduce to the Veneziano form (11.11). 

This property is not shared by the CHKZ mode1. 

ii) Crossing Symmetry. Since (1) is in the form (11.18), 

the amplitudes constructed from these mode1s will be crossing 

symmetric. 
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iii) Singu1arity Structure. The integra1 (1) converges 

on1y for Rea{s)<l, Rea(t)<l in aIl the mode1s under consideration. 

In order to examine the singu1arities in Rea(s»l we sha11 need 

an ana1ytic continuation. As with the Veneziano mode1, the 

singu1arities of A{s,t) in the s-channe1 come from the z~O region 

of integration in (1). We therefore need on1y examine this 

region. 

In the region Rea{s)<l, Rea(t)<l the Suzuki form of (1) can 

be ~l1ri t ten 

1 
A(s,t) = JdZ z-a(s,z)(l_z)-a(t,l-z) 

v 
00 1 J -a(s) -Àt-b . + r j!k! dz{z (l-z) [y(z)lnz~a(s)JJ 

(12) 

j,k=O 0 x[(Y{l-z)-l)ln(l-z)~a(t)Jk}. 

The first integra1 in (12) converges as long as Rea{t)<l. Since 

y(z) and y{l-z)-l vanish faster than any power of z as z+O, on1y 

the j=k=O term of the sum in (12) diverges as we move into the 

region Rea(s»l. The j=k=O integra1 can be performed. Writing 

the convergent terms mentioned above as a remainder we have 

A(s,t) = Bv {l-a{s),l-Àt-b) + Rv{s,t) (13) 

for Rea{t)<l. Bv is the incomp1ete Beta function. Thus A{s,t) 

in the Suzuki mode1 has a series of po1es at a(s) = n + 1 

(n=O,1,2, .•• ) with residues which are po1ynomia1s of degree n 

in t. This is precise1y the same as the singu1arity structure 

of the Veneziano mode1 except that if ~{s'»O for l<s'<oo the 
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pales are shifted onto the second sheet of the s-plane 

becoming resonances with finite positive width. Notice that 

a(s) has a branch point at s=l so that A(s,t) has a cut starting 

there. This branch point and the poles mentioned above are the 

only s-channel singularities in Suzuki's model. 

The leading singularities of the other two models can be 

determined with the above method. In the DT model the trajectory 
functions have the z+O limits 

a(s,z) + a(s) 

(14) a(t,l-z) + Àt + b 

Thus the leading singularities of the DT model are given by 

A(s,t) -a(s) -Àt-b z (l-z) 

(15) 

- Bv(l-a(s),l-Àt-b) 

This is the first term in an expansion similar to (12). The 

singularity structure of (15) is the same as that obtained from 

the Suzuki model. Similarly, the expansion of the CHKZ model 

has the first term 

v 
A(s,t) ~ e-f(S)Ja~ z-a(s)(l_z)-a(O)e-f(tz) . (16) 

o 

Since f(y) is analytic near y=O the final term in the integrand 

of (16) can be expanded in powers of tz. We find that the 

CHKZ model also has pales at a(s) = n + 1 (n=0,1,2, •.• ) with 
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polynomial residues of degree n in t. 

Variations of the Suzuki model can be found which possess 

additional singularities such as cuts. The CHKZ and DT models, 

however, must have additional singularities coming from non-

leading terms in the expansions analogous to (12). In the CHKZ 

model these additional singularities are multiple poles lying 

on non-leading trajectories. The extra singularities in the 

DT model may be non-leading simple poles, multiple poles or cuts 

depending upon the precise form of ~(s'). It is possible to 

choose ~(s') so that no multiple poles appear in the DT model. 

Final1y, notice that the functions A(s,t) in both the DT 

and CHKZ models have branch points at s=l. These arise because 

-1 in both models a(s,z) has a singularity at z=l-s . As s~l, 

this singularity encounters the lower endpoint of the integration 

(1) giving a siniularity at s=l. 

None of the mode1s has singularities on the physical sheet 

of the s-plane except for the cut along the real, positive 

s-~xis starting at s=l. 

iv) Double Spectral Region. This region is defined as the 

part of the rea1 s - real t plane in which 

(17) 

The function p(s,t) is called the double spectral function. 

The trajectory functions of the Suzuki representation are 

eut in the following regions: 
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Disc a(s,z) ~ 0 in s>l, s 
(18) Discta(t,l-z) ~ 0 in t>l 

Therefore, the double spectral function of the Suzuki model is 

nonzero in s>l,t>l. This region is shown in figure III.l. 

The trajectory functions of both the DT and CHKZ models are 

cut as follo,.,s: 

Disc a(s,z) ~ 0 s 
-1 in z<l-s , 

-1 in z>t 
(19) 

With (1) we see that these models have the double spectral region 

> 1 t > 1 S -l + t- l < 1 s , , (20) 

This region is shown in figure III.l along with the exact region 

for scattering of scal~r bosons in a ~3-interaction Lagrangian: 

s> l, t > l, (s-l)(t-l) > ~ (21) 

We should mention in passing that both the DT and CHKZ 

models can be altered slightly so that they have the ~3 double 

spectral region (21). In the DT model this is done by using 

(l-!z)/(l-z) as the upper endpoint of integration in (8). 

v) Threshold Behavior. For amplitudes satisfying the 

Mandelstam representation there exists a simple relationship 

between the boundary of the double spectral region and the 
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threshold behavior (see, for example Frautschi 1963, ch. 4). 

Since we do not know whether the three models under discussion 

can be expressed in the form of the Mandelstam representation 

with a fini te number of subtractions, we shall use a variation 

of the method. 

The behavior of A(s,t) near s=l can be examined by expanding 

this function in powers of t: 

00 

A(s,t) = L vk(s)t
k 

k=O 
(22) 

If the vk(s) are known then the behavior of the partial waves 

near s=l can be found. 

+ - +We shall examine the amplitude for the process n n +TI TI . 

With (11.7) and (11.10) we find the amplitude for this proc6ss 

to be 

+-A (s,t,u) = y(Às+Àt+c)A(s,t) (23) 

where A(s,t) is now given by (1). With (22) and (23) we have 

+-
A (s,t,u) = y(Às+c)vO(s) + 

00 

+YL [(Às+c)vk(s)+Àvk_l(s)]t
k 

k=l 

(24) 

With (11.23) we see that each power of t introduces a power of 

coses· 
-k As long as the vk(s) increase slower than (s-l) as k 

increases then the leading behaviors of (24) as s+l are given by 
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+-
Ao (s) ~ Y(À+c)vO(s) (25a) 

and 

(25b) 

where j~O in (25b). 

The functions vj(s) appearing in (25) cou1d be determined 

from the relation 

1 d
j 

1 v j (s ) = IT (-j A (s , t) ) 

dt t=O 

Instead of using (26), we sha11 estimate the v.(s) by using 
J 

the relation 

Vj(s) = 2;i 1dt ' A(s,t') t,-j-1 

C 

(26 ) 

(27) 

where the circu1ar path C is chosen to be sma11 enough to avoid 

the nearest singu1arity in t'. 

In a11 of the mode1s under discussion, A(s,t) is a rea1 

ana1ytic function for s,t<l and rea1. Using the Schwartz 

ref1ection princip1e, we therefore see that for s>l, rea1 and 

t<l, rea1, A(s,t) has the rea1 and imaginary parts 

ReA (s, t) 

ImA(s, t) 

= ~Sum A(s,t) - ![A(s+iE,t)+A(s-iE,t)] 
s 

= -!iDisc A(s,t) 
s 

(28a) 

(28b) 

In a11 three modè1s, Sum A(s,t) has a singu1arity at t=l. 
s 

Using the path of Integration of figure 111.2 and equation 
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(27) we therefore have 

2n 
(l-E)-j fd

n 
-inj in Revj(s) = e Sum A(s,(l-E)e ) 4n s (29) 

o 

where E is a sma11 positive number. In a11 of the mode1s 

Sum A(s,(l-E)e in ) + F(e in ) independent of s as s+l. Therefore, 
s 

as s+l, Rev.(s) + R~v.(l) finite. Thus we find, with (25), 
J J 

as s+l. 

In the model of Suzuki, the funetion Dise A(s,t) a1so has a 
s 

(30) 

singu1arity at t=l. With a treatment simi1ar to that above we 

find 

(31) 

As we sha11 see short1y, this behavior is ineonsistent with 

e1astie unitarity near thresho1d. 

With (20) and the definition (17), we see that Dise A(s,t) 
s 

in the DT and CHKZ mode1s has a singularity at 

t = f(s) _ s/(s-l) (32) 

With the path of integration shown in figure 111.3 and with 

equation (27) we have 

2TI 

ImVj(s)_(l~~~-j [S~l)j jdne-injDisesA(S,(l-E)f(S)ein) (33) 

o 

J 
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where € is small and positive. The trajectory functions in 

both models can be chosen so that* 

(34) 

as s+l. The function F(x) cannot be a polynomial of finite 

degree in x. If this were the case then (36b) below would 

fo1low on1y up to j=n+1 with n the degree of F(x). With (33) 

and (34), we have 

j +3/2 Imv. (s) - (s-l) 
J 

as s+l and finally, with (25), 

+- 3/2 
lmAo (s) - (s-l) 

(35) 

(36a) 

(j ;t0) (36b) 

+ - +-The e1astic unitarity relation for TI TI +TI TI can be written 

(37) 

R.(s) contains contributions from the TI-TI+ and TIoTI o intermediate 
J 

states and can be ignored without effecting the following 

arguments. If we substitute (30) and (36) into (37), we find 

* The function which accomp1ishes this in the CHKZ mode1 is 
very complicated. See footnote 2 of (Cohen-Tannoudji 1971). 
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that the power dependence on (s-l) is the same on both sides 

of (37) for a1l partial waves except j=O. As we sha11 

demonstrate in connection with the mode1 of chapter V, the j=O 

thresho1d behavior can be corrected by ad ding a satellite terme 

Notice that the resu1t (36) depends upon the boundary of the 

doubla spectral region through (32) and upon the behavior of 

Disc A(s,(l-E)f(s)e in ) as s+l. 
s 

We sha11 now examine the restrictions on the trajectory 

functions which 1ead to the behavior (34) in the DT mode1. 

With (1) and (8) we have 

~ 

Di A( (1 )f() in) = _2ijdZ{z-Re~(S,Z) sCs s, ,-E s e 

o 
in ' 

X(l_z)-~«l-E)e s/(s-l),l-z)sin(Im~(s)lnz)}. 

If Im~(s) vanishes faster than l/(ln(s-l» as s+l then we 

find that 

i [ 1)1-~(1) 
Disc

s
A(s,(l-E)f(s)e n) ~ -2i s~ Im~(s) 

-~(1) Àq(l-E)ein 
q e 

as s+l. Therefore (34) is satisfied provided that 

'!I (s) 
(s-l)~(l)+! 

- Ima(s) - - 1n(s-1) (s+l) . 

(38) 

(39) 

(40) 

It is interesting to notice that with this choice for '!I(s) no 

multiple po1es appear in the DT mode1. 
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vi) Asymptotic Behavior, t fixed. We sha11 now use the 

methods of chapter II to examine the behavior of A(s,t) as 

Isl + 00 with t fixed. 

Ths Suzuki mode1 can be treated in precise1y the same way 

as was the Veneziano mode1 (Suzuki 1969). A11 of the contour 

deformations are va1id so that we find 

A(s,t) ~ (-Às)a(t)-l r (l_a(t» (41) 

as 1 s 1 + 00, -Tfte:<arg (-s) <Tf-e:. There is, however, one maj or 

difficu1ty with this mode1. Despite the fact that a(s) is now 

comp1ex above thresho1d, we still cannot extend the Regge 

behavior to the rea1, positive s-axis. This prob1em stems from 

the fact that y(e-x) defined in (7) diverges exponentia11y as 

Ixl + 00, largxl ~ iTf. Thus the contour rotation of figure II.7 

can on1y be performed through angles ~Tf-~ with ~>o. 

There is nothing in the behavior of the DT mode1 at x=O and 

x=oo to prohibit the contour rotations of figures II.6 - II.8. 

App1ying the contour rotation of figure II.6 tu the integra1 

representation 

00 

A (s, t) (42) 

we find that the 1eading behavior of A(s,t) is Just (41) as 

Isi + 00 for larg(-s)1 < !Tf. With (8) we see that a(s,e-x) has 

a series of singu1arities at 

x = -ln (l-s -1) ± 2nTfi (n = 0,1,2, ... ) (43) 
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Although these singularities can lie in the right half x-plane, 

they do not interfere with the contour deformations. The 

-x function a(t,l-e ), however, does present a problem. It has 

singularities at 

x = 1nt ± 2n1Ti (n = 0,1,2, ... ) (44) 

For Itl < 1 these singularities lie in the left half x-plane. 

We can therefore perform aIl of the contour deformations of 

chapter II with the result that A(s,t) has the asymptotic 

behavior (41) for 1 arg (-s) 1 < 1T-E: and 1 t 1 <. 1. For 1 t 1 > 1 the 

singularities (44) lie in the right half x-plane and can destroy 

the Regge behavior. For example, the integral around Ct of 

figure III.4 gives a contribution with a factor taCs) as 

Isl + ~, t fixed. This term clearly dominates the Regge behavior 

(Atkinson 1972, Gaskell 1972). 

Even more problems arise with the CHKZ model. This model 

can be shown to have Regge behavior as Isl + 00 in the left half 

s-plane (Cohen-Tannoudji 1971). We fiOW make the change of 

variables y=-(l-z)lnz in (1), substituting the CHKZ definition 
" 1 

of a(s,z). We have 

00 

A(s,t) =·fd [ z )e';\SYz-cr(S(l-Z» 
y (l-z)-zlnz 

(45) 

where z = z(y) and where we have written a(s) = Às + cr(s). 

In order to determine the asymptotic behavior of A(s,t} in the 



40 

right half s-plane, we must perform the same rotations in the 

y-plane as we did in the x-plane for the Veneziano, Suzuki and 

DT models. The functions a(tz) and f(tz) yield singularities 

in the y-plane at 

-1 Y = (l-t )(lnt±2n~i) Cn = 0,1,2, ... ) (46) 

These singularities imply non-Regge contributions similar to 

those of the DT model (Atkinson 1972, Gaskell 1972). In addition, 

the term in brackets in the integrand of (45) yields a series 

of singularities in the approximate positions 

y = 1+ln«2n+l)TI/2)±(2n+l)iTI/2 (n = 0,1,2, ••• ). (47) 

The exact positions of the first few singularities are 

YI = 2.56±4.4i, Y3 = 3.42±10.8i, Ys = 3.86±17.l4i. As is seen 

in figure 111.5, the contour rotation can only be made through 

an angle of !TI-30.5° before the singularity at Y=Yl interferes. 

Thus, even if there is no interference from the singularities 

(46), the CHKZ model cannot have Regge behavior as Isl 7 00 for 

any t if larg si < 30.5 0 (Atkinson 1972). 

111.3 Summary and Discussion 

We have examined three models which have fini te width 

resonances and a Veneziano-like form. The amplitudes constructed 

from these models are ancestor-free and crossing symmetric. 

The leading singularities are resonances lying on the p_f o 



trajectory. Non-Ieading singularities can be simple poles, 

multiple poles or cuts depending on the model used. We have 

shown that if the boundary of the double spectral region is 

given by t - (5_1)-1 as s~l then, provided that (34) is 

satisfied, the partial wave projections of the amplitudes can 

have the correct threshold behavior. The Suzuki model does 

not have the proper type of double spectral boundary but the 

DT and CHKZ moclels do. The most important results arise from 

the study of asymptotic behavior. For some t the DT model is 

Regge behaved for aIl s on the physical sheet of the s-plane* 

as Isl ~ 00. For other values of t, however, this model has 
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non-Regge behavior for some arg(s). The CHKZ model is non-Regge 

for aIl values of t as Isi ~ 00 with larg si < 30.5 0
• In addition, 

for some values of t it lacks Regge behavior for an even larger 

portion of the s-plane. The Suzuki model is non-Regge as 

Isl ~ 00 for arg(s) = 0,2~. 

The prospects for extending the Regge behavior of the Suzuki 

and CHKZ models to the real, positive s-axis are not good. 

The most promising approach therefore appears to be a search for 

a new model in the spirit of the DT form. 

* The proof of Regge behavior along the real, positive s-axis 
is somewhat lengthy. It follows along the lines of a 
similar proof given in Chapter V. 
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IV. Restrictions on DT Models 

We shall now examine a generalized form of the DT model. 

The definition (111.1) for A(s,t) will be retained. We define 

a(s,z) and two useful related functions, f(s,z) and g(s,z), by 

a (s, z) 

00 

= Às + b + -7fSfdS' '!I(s') 
s'(s'-s) 

</l (z) 

- Às + b + g(s,z) = a(s) - f(s,z) 

where a(s) is defined by (111.3) with (111.4). The function 

</>(z) is a real, increasing function of z for O<z<l such that 

</>(0) = l, <P(l) = (Xl 

We therefore have 

a(s,O) = a(s), a(s,l) = Às + b 

(1) 

(2) 

(3) 

Since the integral defining a(s) is required to be convergent 

we demand that 

-1 
s '!I(s) + 0 as s + (Xl (4) 

We sha1l a1so require that '!I(s) be such that 

a(s,z) '" Às as Isl + (Xl • (5 ) 



The amplitudes constructed from this mode1 are c1ear1y crossing 

symmetric since (III.1) is in the forn (11.18). We sha11 now 

obtain sorne of the other properties of these mode1s in arder ta 

restrict the functions ~(z) and ~(s'). 

IV.1 Unitarity eut 

If ~(s') is a rea1 ana1ytic function of s' for s'>l and 

rea1 then A(s,t) is a rea1 ana1ytic function of sand t for 

s,t < 1 and rea1. If we increase s sa that s>l and slight1y 

above the rea1 axis then a(s,z) will have an imaginary part 

Ima(s,z) = -!iDisc a(s,z) = ~(s)e(s-~(z» s 

In arder for a(s) ta have a positive imaginary part for s>l 

and rea1, we must have 

~(s) > 0 (1 < s < 00, rea1) 

Substituting (6) into (III.1) we find 

~-l(s) 
ImA(s,t) = _fdZ{z-Rea(S,Z)C1_Z)-aCt,1-Z) 

o 

xsin[Im~(s)lnzJ} 

for s>l, rea1 and t<l, rea1. We"have used the fact that 

(6) 

(7) 

(8) 

~(s) = Ima(s) for s>l and rea1 and we have written the inverse 

function of ~(z) as ~-l(s), i.e. 

43 
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The function (8) must be an ana1ytic function of s. We 

-1 
therefore require that ~ (s) be an ana1ytic function of sand 

that the integra1 in (8) converge. The first requirement is 

satisfied provided that ~(z) is ~na1ytic in O<z<l and 

d 
ëi?P(z) ;t 0 (0 < z < 1) 

If Rea(s)<l then the integra1 (8) converges near the lower 
.. 

endpoint. Notice, however, that 

-1 
f(s,~ (s» 

s 

= ~7TJdS' ljI(s') 
s' (s'-s) 

1 

diverges logarithmica11y. The function f(s,z) is defined in 

(1). If we integrate f(s,z) by parts then we can write the 

first term in the integrand of (8) as 

-Rea(s,z) -Rea(s)--! ds'ln(s--s')-d ,(--r) 
[ 

s·{z) d ljI(s') 1 
z = z 7T 1 s s 

s -1 
x [s_~(z)JTIIjI(~(z»[~(z)J 1nz 

(10) 

(11) 

(12) 

In deriving (12) we have required that Ima(s) vanish at thresho1d 

1jI(1) = 0 (13) 

This 1s necessary if Rea(s) is to be weIl behaved at s=l. With 

(12) we find that there is no divergence of (8) at the upper 
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endpoint of integration provided that 

~~(~(Z»[~(Z)J-11nzl = ~(s) In(~-l(s»> -1 (14) 
TI TI 

z=~-I(s) 

for s>1 and rea1. 

IV.2 Double Spectral Region 

We can now increase t above thresho1d whi1e keeping s>l and 

rea1. The function a(t,l-z) is cut for z>I-~-I(t). Using the 

definition (111.17) and the arguments of section IV.l we find 

1 

p(s,t) = fdZ{z-Rea(S,Z) (l_z)-Rea(t,1-z)8(~-I(s)_z) 

o (15) 

x8(~-1(t)+z-1)sin[Ima(t)ln(l-z)Jsin[Ima(s)lnzJ} • 

The double spectral function is nonzero in the region 

-1 -1 
s > 1, t > 1, ~ (s) + ~ (t) ~ 1 (16) 

The boundary of this region is given by the equality in (16). 

One of the requirements we used in order to obtain the 

correct threshold behavior for the DT mode1 of the 1ast chapter 

was that the double spectral boundary have the asymptotic 

behavior (see 111.32) 

t(s-l) ~ constant (17) 
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as s+l from above. If (17) is to be satisfied then we have, 

with (16), 

[~(l-z)J[~(z)-lJ ~ constant (18) 

as z+O. 

IV.3 Asymptotic Behavior, t fixed 

As in the Veneziano, Suzuki and earlier DT models, we make 

the change of variables z=e-x to write (111.1) in the form 

(111.42): 

00 

A(s,t) 
-x -x -x(l-a(s e» -x -a(t l-e ) e '(l-e)' (19) 

where the trajectory functions are now defined by (1). As with 

the ear1y DT mode1, it is a simple matter to show that the 

asymptotic behavior of (19) is 

-i~s 

A(.,t) ~·IdX .-x(1-0(.,.-X»(l_.-x)-O(t,l-.-
x

) (20) 

o 

as Isl + 00 with -!~<~s=arg(l-a(s»<~~ and Rea(t)<l where V is 

a constant. With the methods of chapter II we can show that 

the asymptotic behavior of (20) is the usual Regge behavior 

(11.37) or (111.41). 

In order to continue (19) into the region Rea(t)<l, ~-~< 

arg(l-a(s»<~, we perform the contour rotations of chapter II. 

The rotation of figure II.7 accomp1ishes the continuation. 
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The additional deformation of figure II.8 enables us to 

derive the asymptotic relation (20) for 151 + 00, ~-TI<~s= 

arg(l-a(s»<~ and finally to show that A(s,t) is Regge behaved. 

The rotations are performed while a(s) is fixed in the initial 

region -TI<arg(l-a(s»<-!TI. We should emphasize at this point 

that ~s is the final value of arg(l-a(s», i.e. the direction 

in the (l-a(s»-plane in which we will eventually study the 

asymptotic behavior. 

While a(s) is in the initial region, we must verify three 

points in order to validate the rotations: 

i) We must show that singularities at x=O do not hinder 

the rotation. This condition is 

-i~s 

li:efdX e-x(l-a(s,e-
x
»(l_e-x)-a(t,l-e-

x
) = O. (21) 

r+O 
r 

ii) We must show that the arc at infinity may be neglected: 

Rei(!TI-~) 

lim fdX e-x(l-a(s,e-x»(l_e-x)-a(t,l-e-
x

) = O. (22) 
R+oo 

R 

iii) We must show that no singularities occur in the 

integrand of (19) which interfere with the rotation. 

We shall postpone an examination of conditions (21) and 

(22) and the derivation of (20) until a specific choice has been 

made for the function ~(z) (chapter V). Here we shall examine 

sorne very strong restrictions on the function (1) which can be 

obtained from condition iii) above. We begin the discussion by 

-x noticing that a(t,l-e ) has singularities when 
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coming from the lower endpoint of Integration in (1). Suppose 

we demand that when t is in sorne sector about the real, negative 

t-axis, larg(-t)l<n-B, the singularities in x implied by (23) do 

not occur in the right half x-plane. This demand can be written 

for Rex > 0 (24) 

Condition (24) is sufficient to guarantee that t-dependent non-

Regge behavior similar to that observed in the CHKZ and DT models 

of chapter III does not occur for A(s,t) as Isl + 00 with t fixed 

in the sector larg(-t)j<n-B. 

If we now define the new function 

(25) 

then condition (24) becomes 

Im~(y) > 0 for Imy > 0 (26) 

We next notice that a(t,l-e-x ) will have singularities wherever 

-x 
~(l-e ) is singular. In order to prevent non-Regge behavior 

coming from this source it is sufficient to require 

~(l_e-x) analytic in Rex> a (27) 

In terms of the function (25), condition (27) becomes 



49 

~(y) ana1ytic in lmy > 0 (28) 

Fina11y, we notice that (2) imp1ies 

~(oo) = 1, 1~(0) 1 = 00 (29) 

Properties (26) and (27) imp1y that ~(y) is a Herg10tz 

function and therefore has the representation (Eden 1967, ch. 6) 

00 

~(y) = A + By + ~f dx Im~(x)(1+xZ) (1+x 2 )(x-y) (30) 

_00 

The integra1s 

00 00 

fdX 
lm~(x) 

1+x2 and fdX 
lm, (x) 

I~(x) 2(1tx 2 ) 
(31) 

_00 _00 

must be convergent. With (29) we see that ~(y) is singu1ar at 

y=O. In order to examine this singu1arity we substitute 

lm~(x) ~ wô(x) (x ~ 0) (32) 

into (30). Any singu1arity stronger th an this wou1d cause the 

first integra1 in (31) to diverge. We find 

~ (y) ~ -wITry (y ~ 0) (33) 

which gives, with (25), 

~(1-z) (z ~ 0) (34) 
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We can reach the same conclusion by examining the Herglotz 

function 

(35) 

for large values of y. 

We shall now examine the implications of the behavior (34) 

-x for the function a(s,e ). This function has singularities when 

s=~(e-x). For large Isl these s-dependent singular points will 

occur near singular points of the function ~(e-x) itself since 

only near these points does ~(e-x) become unbounded. In order 

to satisfy condition iii) we demand that ~(e-x) be analytic in 

the right half x-plane. -x With (34) we see that ~(e ) is singular 

at x=o. Thus if any s-dependent singularity violates condition 

iii) for large Isl it will occur near x=O at a position defined 

by the relation 

(36) 

When examining the asymptotic behavior of A(s,t) for Ims>O, we 

make aIl contour rotations into the upper half x-plane as in 

figure II.8. If (2) is to be satisfied we must take w to be real 

and positive. It is easily seen that for TI>argx>O and Ixl small, 

(36) has no solution for Ims>O. Therefore, no s-dependent 

singularities occur which violate condition iii) for continuation 

into the region Ims>O, Isl large. Similarly, the only s-

dependent singularities near x=O for Ims<O, Isl large on the 

first sheet of the x-plane occur in TI>argx>O. Since the contour 



deformations in this case are into -rr<argx<O, condition iii) 

is again satisfied. 

Finally, we notice that if the function s-l~(s) has 

singularities at a series of points s=s. then a(s,e- x ) and 
1 

a(t,l-e- x) can have singularities in x at values of x such that 
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and (37) 

respectively. In order to satisfy condition iii) we require 

that these values of x not be in the right half x-plane. 

-x -x Condition iii), then, implies that ~(e ), ~(l-e ), 

[~(e-x)J-l'(~(e-x» and [~(l_e-x)J-l~(~(l_e-x» must be analytic 

functions of x in largxl<~TI. Singularities at x=oo are allowed 

if (22) is satisfied. (24) is sufficient to guarantee that no 

t-dependent singularities violate condition iii) for t in the 

sector larg(-t) I<TI-e. In order to satisfy (24) the relation 

-2e/TI ~(l-z)(-lnz) ~ constant (38) 

must be satisfied as z+O. If the equality in (38) is satisfied 

-x then the s-dependent singularities in x of a(s,e ) do not 

violate condition iii). 

IV.4 Asymptotic Behavior, fixed angle 

For rrTI elastic scattering, t is related to the s-channel 

center of mass scattering angle es by (11.23, II.43) 



52 

t = ~(l-s)(l-coses) - (l-s)Xs (39) 

As we did in deriving (11.44) for the Veneziano model, we make 

-x -X 
the change of variables e =z(l-z) s. Then (111.1) becomes 

00 

-x(l-Às) b ( ) 
e [z- -g s,z 
l-(l-Xs)z A(s,t) 

-00 (40) 

where z=z(x) and the functions gare defined in (1). In order 

to examine the behavior of A(s,t) as Isl + 00 in the right ha If 

s-plane we must perform the rotation shawn in figure II.11. 

If g(s,z) or g«l-s)Xs,l-z) has singularities in largxl<!TI then 

ACs,t) will have an exponentially increasing behavior as s+oo, 

Xs fixed. This behavior is unacceptabie. In arder ta avoid 

having these singularities we must require that ~(z(x», 

~(l-zCx», [~(z(x»J-l~(~Cz(x») and [~(1-z(x»J-1~($(1-z(x») 

be ana1ytic in Rex>O with the possible exception of x=OO. Since 

x is related ta z by 

x = -lnz + Xs 1n(l-z) 
(41) 

the functions ~(z) and [~(z)J-I~(~(z» must be analytic for 

aIl z in the regions 

-lnlzl+Xslnll-zl>o, -lnll-zl+Xslnlzl>O (42) 

These regions are shawn in figure IV.I for several values of XS ' 

As Xs increases from 0 to 1 the region (42) expands ta fi11 
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the entire z-p1ane except for the points 

z = ~ + iy and z = IX) (43) 

where y2 > 3/4. The functions ~(z) and [~(z)J-1,(~(z» are a1so 

allowed to have singularities at the points 

z = 0 and z = 1 (44) 

provided that the analogue of (22) for the rotation of figure 

II.11 is satisfied. The positions (43) and (44) are the only 

ones at which the above functions can have singularities in z if 

A(s,t) is to have acceptable behavior as Isl + IX) with xs fixed 

and between 0 and 1 (es physical). 

IV.5 Threshold Behavior 

In this section we shall examine the thresho1d behavior of 

a mocle1 satisfying the constraints of this chapter and whose 

double spectral boundary has the asymptotic form (17) 

t = ~(l-~-l(s» _ f(s) ~ c(s-l)-l (45) 

for s~l. We have used (16) to express the dependence of f(s) 

on the function~. In a manner ana10gous to the derivation 

of (111.33) we find 

j .27f 
(l-E)- (S-l)Jf -inj in Imvj(s)= 4' - dne Dise A(s,(l-E)f(s)e ) 

7f~ c s 
(46) 

o 



where the vj(s) are defined in (111.22). With (38) we have 

-1 
for s~1 (~ (s)~O) and where d is a constant. With (45) and 

(47) we have 

as s+l from above. Using (8) and the fact that (48) is very 

srnall in this limit, we find 

Disc A(s, (l-E)f(s)e ill ) ~ 
s 

~ -2i[p-l(s)Jl-a(l)sin[~(s)ln(~-I(s)}J 
1 - a(l) 
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(47) 

(48) 

(49 ) 

as s+1 frorn above. Since a(I)~! for the p_f o trajectory, (49) 

vanishes faster than any power of (s-l) as s+l from above. 

Thus (111.34) cannot be satisfied. 

IV.6 Summary 

The original DT model of chapter III possessed a number of 

desirable properties including a curved double spectral boundary, 

the elastic unitarity cut, reasonable threshold behavior and 

resonances with finite positive widths. For sorne values of 

t and args, however, the amplitudes constructed frorn the model 

were not Regge behaved for large Isl. For large positive s, 



for example, the model was Regge behaved only for Itl<l. Since 

the asymptotic region for ~~ elastic scattering is s large and 

positive, (l-s)<t<O, the above result is unacceptable. 

In this chapter we have devised a class of models which may 

still possess the non-Regge behavior mentioned above, but not 
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in the physical region for ~TI elastic scattering. In addition, 

we have eliminated the possibility of exponentially increasing 

fixed angle asymptotic behavior. The models still have the 

elastic unitarity cut and a curved double spectral boundary. 

However, we were not able to satisfy the requirements of chapter 

III for threshold behavior. If the double spectral boundary is 

chosen to have the correct asymptotic form (17), for example, 

then the imaginary parts of the partial wave amplitudes will 

vanish faster than any power of (s-l) near threshold. 
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V. A Simple Examp1e 

It is not difficu1t to construct a ~(z) for equation (IV.1) 

such that A(s,t) will have the correct ~3 double spectral 

boundary. Once this is done, we can add background terms to 

provide the correct thresho1d behavior. Functions satisfying 

a11 of the restrictions set down in the preceding chapter, 

however, are rather comp1icated. The simp1est obtained so far is 

~(z) = ~[41nz + 21n(1-z) - 3A) 
21nz - A 

(1) 

with A>ln4 and rea1. In this chapter we sha11 examine a mode1 

in which ~(z) has a simp1er form than (1) but which has neither 

the correct double spectral boundary nor the proper thresho1d 

behavior. We sha11 th en introduce a background term which 

simu1taneous1y corrects both of these. For comp1eteness, we 

sha11 discuss a neutra1izer method which a1so enab1es us to 

obtain the correct thresho1d behavior. 

The mode1 we sha11 examine has the standard form of (111.1) 

1 
A(s,t) = fdZ z-a(s,z)(l_z)-a(t,l-z) (2) 

o 

whi1e the trajectory function is defined by 

00 

a(s,z) = Às + b + ~fdSf ~(Sf) TI Sf(Sf-S) (3) 

1-n 1n(1-z) 

The functions f(s,z) and g(s,z) are defined, with (IV.1), by 

1 -, 



1-n1n(l-z) 

f(s,z) = -7fSfdS' l1'(s') 
s'(s'-s) (4) 

1 

and 

00 

SJ l1'(s') g(s,z) = - ds' '( f ) 7f S s-s (5) 

l-"ln (l-z) 

The parameter n appearing in (3) - (5) is adjustab1e. 

~(s) is restricted by the arguments of chapter IV to those 

functions satisfying 

-1 s ~(s) ~ 0 as s~oo (6 ) 

l1'(s) ~ 0 as s~l (7) 

O<~(s)<-7f{ln(l-exp[(l-s)/nJ)}-l (l<s<oo) (8) 

and with s-ll1'(s) having possible singu1arities at the points 

s = {oo, 1±2n7fin, I-n1n(~+iy)±2n7fin} (9) 

where n=0,1,2, .•• and y2>3/4. We shall also suppose that W(s) 

is bounded for large Isl as follows: 
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(10) 

for aIl s such that Isl > W where W 1s a (large) constant. 

The constants Pl and P2 are real and positive. The upper bound 
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is a sufficient condition for (IV.5) whi1e the 10wer bound is 

one of the sufficient conditions for the proof that Regge 

behavior app1ies along the real, positive s-axis. 

V.l Properties of the Basic Model 

We shall restrict our discussion to the process ~TI+~TI. The 

invariant amplitudes for this process are given by (11.7) with 

C(s,t) = y(Às + Àt + c)A(s,t) (11) 

An analysis similar to the one we shall use can also be applied 

to the amplitude for TITI+TIW (11.4). 

i) Crossing Symmetry. Since (2) is in the form (11.18), the 

amplitudes constructed from this model are crossing symmetric. 

ii) Unitarity Cut. As we discussed in chapter IV, the 

function a(s,z) has an imaginary part given by 

Ima(s,z) = ~(s)e(s-l+nln(l-z» (12) 

for s real and O<z<l. We therefore find that A(s,t) is cut along 

the real, positive s-axis starting at s=l. The discontinuity 

across this cut is 

l-exp{(l-s)/n} 

DiscsA(s,t) = -2ifdZ {Z-Re.(S,Z) (l_z)-·(t,l-z) 

o xsin[Ima(s)lnz]} • 
(13) 
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iii) Double Spectral Region. From section IV.2 we see that 

A(s,t) has a double spectral function 

1 

p(s,t) = fdZ{z-Rea(S,z)(l_Z)-Rea(t,l-Z) 

o 

Xsin[Ima(s)lnz]sin[Ima(t)ln(1-z)J0(s-ltn1n(1-z» (14) 

x0(t-1tn1nz)} 

This function is nonzero in the region 

s > 1, t > 1, e(l-s)/n t e(l-t)/n ~ 1 (15) 

The boundary of the region is shawn in figure V.1 a10ng with the 

~3 boundary for the scattering of sca1~r bosons. We make the 

choice n=(21n2)-1~.72 so that the boundaries coincide for s=t=1.5. 

iv) Asymptotic Behavior, t fixed. We sha11 now prove in 

detai1 that the asymptotic behavior of A(s,t) as Isl + 00 with 

t fixed and Ret<l is given by the asymptotic behavior of (IV.20) 

for larg(-s) I~TI, i.e. in a11 directions on the first sheet of 

the s-p1ane inc1uding the real, positive s-axis. The derivation 

of (IV.20) for larg(l-a(s» I<~TI and Ret<l is straightforward. 

We sha11 therefore be c6ncerned with the behavior of A(s,t) in 

the right ha1f s-p1ane. 

We begin by making the usua1 change of variables 

that the representation (2) becomes 

-x z=e so 



60 

00 

A(s,t) 
-x -x -x(l-a(s e» -x -a(t l-e ) e ' (l-e)' . (16) 

In order to continue A(s,t) into the right half s-plane with 

Ima(s»O, we perform the contour rotation shown in figure V.2. 

With (5) and (6) it is easily shown that 

lim g (s, e -x) = 0 
x-+O 

while, with (4) and (7), we have 

lim f(t,l-e- x ) = 0 
x-+O 

(17) 

(18) 

With these limits we can show that (IV.21) is satisfied provided 

that Rea(t)<1. 

For the deformation of figure V.2, condition (IV.22) becomes 

iR+E 

lim fdX 
R-+oo 

R 

The bounds (10), with (5), give the result 

o . (19) 

lim g(t,l-e- x ) = 0 (20) Ixl-+eo 

Thus for large R we replace the a(t,l-e- x
) in (19) by At+b. 

If we restrict t to be real for simplicity it is easily seen that 

the second term in the integrand of (19) is bounded by 

(21) 
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where the +(-) sign applies when Àt+b «» O. 

We now notice that, for fixed x and Isl»ll-nln(l-e-x ) l, 

-x we can approximate f(s,e ) by 

-x 

-x f(s,e ) 1 -1 
l-nlnJl-e ) 
= - if ds' s' 'l'Cs') (22) 

1 

-1 
Since s 'l'cs) has singularities only at the positions (9), 

the right hand side of (22) is bounded for x on the path of 

Integration of (19). Thus for 

(23) 

we can write 

We have not, as yet, specified the value of s. Let us make s 

s-dependent according to 

(K > 0) 

for large Isl. The right hand sides of (23) and (24) can be 

shown to increase logarithmically with Isl for large Isl. 

(25) 

Since Il-~(s) 1 increases linearly with Isl for large Isl, we can 

choose a constant s large enough 50 that (23), (24) and the 
o 

inequality 

Il-~(s) Icos(!TI-O) > c(s) (26) 

.J 



are satisfied for Isl>s. The constant 6 in (26) is small 
o 

and positive. 

62 

If we perform the deformation of figure V.2 while s is fixed 

in the region 6-~n<arg(1-a(s»<-6, Isl>s , then with (24) we see 
o 

that the first term in the integrand of (19) is bounded by 

-x 
le-x(l-a(s,e » 1 < 

< exp{-R[ Il-a(s) Icos(arg(l-a(s»+cj»-c(e:)]} 

where O<cj><!n. 

With (26) it is clear that (27) vanishes faster than any 

inverse power of R as R+oo. The contribution (21) has no R 

(27) 

dependence. Finally, the path length of the integration (19) 

increases linearly with R. Multiplying these contributions we 

see that the limit (19) 1s satisfied. 

-1 Since s ~(s) has singularities only at the positions (9), 

the integrand of (16) has no s- or t-independent singularities 

in the right half x-plane. The function a(t,l-e-x) is singular 

at 

x = (t-l)/n (28) 

If we fix t in the region Ret<l then the singularity (28) is in 

the left half x-plane. Finally, the function a(s,e- x) is 

singular at the points 

x = -'ln(l-e (l=s) ln,) ± 2n7fi (29) 



where n=0,1,2, .•.• For Isl>s and o-~n<arg(l-a(s»<-o, these o 

singularities are in the left half of the x-plane. Therefore, 

provided that we take V sufficiently small: 
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V < min{1 (t-l)/nl, n/3} , (30) 

the path of integration of (16) encounters no singularities 

during its deformation. 

As we have now demonstrated, conditions i) - iii) of section 

IV.3 are satisfied. Therefore the representation 

A(s,t) = fdX e-x(l-a(s,e-x»(l_e-x)-a(t,l-e-
X

) (31) 

Cl tC 2tC
3 

is a valid one for Isl>s , ô-~n<arg(l-a(s»<-ô, Ret<l. The o 

paths Cl' C2 and C3 are those of figure V.2 while E is given 

by (25). 

The representation (31) provides the desired continuation of 

A(s,t) into the right half s-plane. Condition (23), which is 

satisfied for Isl>8 , also guarantees that no s-dependent 
o 

singularity will encounter the path C3 during the continuation. 

Furthermore, as we discussed in chapter IV, the n=O member of 

the set (29) will not encounter the path Cl during the 

continuation. Thus (31) is a valid representation in (at least) 

the region Isl>s , Ret<l, -w'arg(l-a(s»<-o. The lower limit 
o 

on the last inequality is determined by the inequality Ima(s»O. 

For the purposes of our discussion we shall choose the lowùr 

limit to correspond to Ims=O so that for large Isl the region 

of interest is 
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-TI + ~~I:I) ~ arg(l-a(s» < -0 (32) 

We sha11 now examine the contribution of the integral along 

the path C
2 

to (31) as Isl + 00 in the region (32). The function 

-x a (t, 1-e ) is ana1ytic along this path so that the second factor 

in the integrand of (31) is bounded by a constant. The function 

-x f(s,e ) is a1so bounded by a constant so that (24) is certainly 

satisfied for x on C2 and 1 si large. Thus the first factor in the 

integrand of (31) is bounded by 

for large Isl, where we have written ~s=arg(l-a(s» and ~=argx. 

With (10), (25), (32) and figure V.2 we see that, for large Isl, 

l~st~1 < I-TI t ~~I:I) t ~IT - E/vl 

dlsl- K 

< I~TI t·v· 

If we choose K so that 

K > l-P2 

then for large Isl we c1ear1y have 

The inequa1ity (33), then, becomes 

(34) 

(35) 

(36) 
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/
-x(l-a(s,e-x»I< { !1-a(s)!II P2 ()} (37) e exp -vc2 Àlsl s+Vc E " 

Since (Àls/)-lll-a(s)1 + 1 and C(E) ~ lnlsl as Isl + 00 and since 

P2 > 0, it is clear that (37) vanishes faster than and inverse 

power of s as Is 1 + 00" This is sufficient ta eliminate the 

contribution of C2 to (31) from the asymptotic expansion" 

The function f(s,e- x) can be shown to satisfy (24) for 

/s/>so and x on C3" Using arguments similar to those above we 

can show that the first factor in the integrand of (31) is 

bounded by 

(38) 

for large Isl and for x on C3 " We must be careful in handling 

the function a(t,l-e-x) for x on C
3 " With (3) we see that this 

function can have singularities on the imaginary x-axis at 

x=±2n~i" These singularities arise from the singularities of 

s-l~(s) at (see (9» 

s = 1 ± 2n~in (39) 

Suppose that the strongest of the singularities (39) is at 

s = sand has the behavior (s-s )-~" Then we can show that m m 
a(t,l-e- x) has the bound 

la(t,l-e-x)1 < A(t) + B(t)lsIK(~-l) (40) 

for large Isl and x on C3" We therefore find 
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(41) 

for large Isl and x on C3 , With (38) and (41) it can be shown 

that the contribution of C3 to (31) vanishes faster than any 

inverse power of s as Isl + 00 provided that P2 > K(~-l), The 

last condition gives, with (35), 

(42) 

so that we have obtained an upper bound to the strength of the 

singularities (39). 

Since the contributions of C2 and C3 to (31) vanish faster 

than any inverse power of s we are left with the Cl contribution 

A(s,t) 

-i'" 
ve

f 
~s -x -x 

~ dx e-x (l-a(s,e »(l_e-x)-a(t,l-e ) (43) 
o 

as Isl + 00 with t fixed and Ret < 1. By rotating the path of 

integration of (16) clockwise as well,we can show that (43) is 

a valid asymptotic representation for larg(-s)I~TI, 

The leading asymptotic behavior of (43) can be found by 

making the change of variables y=(l-a(s»x=ll-a(s)lxei~S to 

ob tain 

vll-a(s) 1 

A(s,t) ~ (l-a(S»a(t)-lfdY e-yy-a(t)H(y,s,a(t» (44) 
o 

where, with x=y/(l-a(s», 

-x -x [ -xJ-a(t) H(y,s,a(t»)=e-xf(s,e )(I_e-X)f(t,l-e ) 1-~ , (45) 
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The integral (44) can be shown to satisfy the conditions 

A) - C) following equation (11.32). Thus the leading asymptoticv 
behavior 

of (43) is determined by taking the Isl + 00 limit of the 

integral in (44) 

00 

A(s,t) ~ (l_a(s»a(t)-l IdY e-y y-a(t) 

(46) 

This is the same as the leading behavior (11.37) for the 

Veneziano definition of A(s,t). Therefore, aIl amplitudes 

constructed from this model will have the same leading 

asymptotic behavior as those constructed from the Veneziano 

model. The 1=1 invariant .. amplitude for 7T7T scattering, for 

example, still has the leading asymptotic behavior (11.38) 

as 1 t 1 +00 W i th s fi x e d • 

There are three important differences between the 

asymptotic behavior of this model and that of the Veneziano 

model. First, the Veneziano model does not exhibit Regge 

behavior as Isl+oo on the real positive s-axis while this 

model does. Second, the asymptotic behavior of A(s,t) in the 

Veneziano model is given by (11.37) for aIl fixed t while 

(46}has only been proven for Ret<l. Finally, non-leading 

terms in the asymptotic expansion of the Veneziano model 

correspond to exchanges of non-leading Regge pole trajectories 

in the crossed channel. These non-leading Regge pole 

contributions occur for the model of this chapter as weIl. 

There are, however, additional non-leading contributions 
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which are not necessarily characteristic of Regge pole exchange. 

The non-leading terms in the asymptotic expansion of A(s,t) will 

be discussed in the Appendix. 

v) Direct Channel Singularities. With (3) - (7) it is clear 

that the trajectory functions of this model have the same z+O 

limit as those of the early DT model (111.14): 

a(s,z) + a(s); a(t,l-z) + Àttb (47) 

As we have seen in sections II.2.ii and II.2.iii, the s-channel 

singularities arise from the divergence of the integral (2) at 

the lower endpoint. With the limits (47) we therefore find, as 

in (111.15), that A(s,t) has a series of poles at 

a(s) = n t 1 (n = 0,1,2, ... ) (48) 

with residues which are polynomials of degree n in t. This 

structure is the same as that observed in the Veneziano, Suzuki 

and early DT models. Because of condition (IV.7), the poles 

(48) occur on the second sheet of the s-plane and therefore 

represent resonances with finite positive width. The model of 

this chapter has additional s-channel singularities as does the 

early DT model. These will be discussed in the Appendix. 

vi) Threshold Behavior. In order to examine the partial 

wave amplitudes for the process TITI+TITI near threshold, we use the 

methods of section II.2.v. We write 
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co 

A(s,t) = l Vk(S)t
k 

k=O 
(49) 

The real parts of the vk(s) remain fini te as s+l. We can 

determine them explicitly by expanding A(s,t) in a Taylor series 

about t=O. The Imvk(s) could a1so be found in this way but the 

best method for exhibiting their behavi~r as s+l from above is 

to use (111.27) with the integration path shown in figure V.3. 

\~e find 

(50) 

+ . i~ -ik~ 
D~sc A(s,g(s)e )e 

s 

where 

fes) = 1 - nln(l_e(l-s)/n) (51) 

and 

g (s) 1 
-. 1 + 4(s-1) (52) 

The function f(s) is tbe position of the branch point in t of 

the function Dise A(s,t) in this mode1 whi1e g(s) is the position 
s 

of this braneh point in a model with the correct ~3 double 

spectral boundary. 

We shall first examine the threshold behavior of the second 

term in (50). If we substitute g(s)ei~ for t in (10) and make 

the change of variable z=(s-l)x/n, we can take the limit of the 



resu1ting integra1 as s+l from above to obtain 

Dise A(s,g(s)e is ) ~ 
s 
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(53) 
1 

S -l s-l 1-a(l)I (1) ,is 
~ -2ilma(s) ln r--n--) (--n--) dx x-a exp(A~~ ) . 

o 

Substituting (53) into (50) we find 

Imvk(s) - (s-1)kt1-a(1)ln(s_1)Ima(s) (54) 

as s+l from above. If this were the only contribution to 

Imvk(s) th en the imaginary parts of the partial wave amplitudes 

for TITI elastic scattering could have the correct threshold 

behavior for j~l provided that ~(s) behaved like (111.40) near 

s=l. Notice, however, that the first term in (50) behaves 1ike 

1-k 2-a(1) Imvk(s) - [-ln(s-l)J (s-l) Ima(s)Ima(f(s» (55) 

as s+l from above. This behavior is inconsistent with (111.35). 

The possibility of obtaining the correct thresho1d behavior for 

aIl partial waves is therefore destroyed. 

vii) Asymptotic Behavior, fixed angle. The study of the 

behavior of A(s,t) as Isl + 00 with Xs = ~(l-coses) fixed 

follows the discussions of sections IV.4 and II.2.vi. As usua!, 

-x -X we make the change of variable e =z(l-z) s so that (2) is 

given by (IV.40). In order to examine A(s,t) in the region 

Isl + 00, -~TI>arg(-s»-TItE, we deform the path of integration 
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of (IV.40) as is shown in figure V.4. The leading behavior 

as Isl + 00 will come from the region of integration near the 

right-most singularity of the integ~and, the point P of figure 

V.4. Other singularities, such as pt, will not enter into the 

discussion. With (IV.40) we therefore have 

ÀsP A(s,t) ~ e R(s,X s ) (s+oo, Xs fixed) (56) 

The function R in (56) does not alter the dominant exponential 

behavior. 

We now recall that the integrand of (2) can have singularities 

at the points 

z = { 1- (l-s)/n (l-t)/n ~+i} 0, l, 00, e , e , 2- Y (57) 

where y2>3/4. The point z=O is mapped into x=~. We can show, 

however, that this singularity does not hinder the contour 

deformation of figure V.4. In fact, we can use the same arguments 

as in section V.l.iv to establish the rotation. The pointi 

z=l,oo map into x=-oo so that we may ignore those singularities. 

Finally, for large positive s (Res+oo ) the points z=l_e(l-s)/n 

and z=e[l-(I-s)XsJ/n occur far to the left in the x-plane and 

therefore need not concern us. The on1y remaining singularities 

are those at z=~±iy (y2>3/4) and a singu1arity of the integrand 

of (IV.40) at z=(l-Xs)-l. Both of these singularities have 

images lying in the left ha1f x-plane so that the dominant 

behavior of (56) is exponentia1ly decr~asing. The value of P 

coming from the singu1arity at z=!-iy (y>13/2) is 
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(58) 

while the singularities at z=(l-Xs)-l gives 

(59) 

The latter value of P is the one which occurs in connection with 

the Veneziano model (see figure II.11 and equation II.45). 

Since ReP<O, the above method can be used to show that A(s,t) 

vanishes exponentially with s for Xs fixed and s on the real, 

positive s-axis. An interesting situation arises if we allow 

the possibility y2=3/4. In this case we have ReP=O so that we 

must keep non-leading terms in a(s) in order to discuss the 

/s/ + 00 arg(-s)=" limit. The integral (IV.40) is again dominated 

by the region of integration near the singularity so that we have 

A(s,t) ~ e i ("/3)(a(s)-a([1-sJXS»R(s,t) (60) 

If s is on the real, positive s-axis, then the real parts of a(s) 

and a([l-s]Xs) will provide rapid oscillations. The magnitude 

of A(s,t) is th~s determined by the Ima(s) contribution: 

(61) 

as s+oo (args=O) with Xs fixed. Notice that if ~(s) grows less 
1 

rapidly than S2 as s+oo then the fixed angle asymptotic behavior 

of the amplitudes will obey the Martin lower bound (Eden 1967, 

ch. 6) 



l 
-Ds 2 

IA(s,t)1 > Ce 

as s~oo with Xs fixed. 
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(62) 

viii) Asymptotic Behavior, fixed u. We sha11 now examine 

the behavior of A(s,t) as s~oo with u=r-s-t fixed. For the 

process rrrr~rrrr we have r=4m 2 =1. As in section II.2.v, we make the rr 
-x -1 change of variables z=(lte ) which transforms (2) into 

-x -1 '(e-Xt1)O:(1-s-u,(e t1) )-l J 

(63) 

for rrrr e1astic scattering. In order to examine the behavior of 

A(s,t) as Isi ~ 00 with u fixed and -~rr>arg(-s»-rr ,we deform 

the integration contour of (63) as shown in figure II.10. If 

y~>3/4, then the right-most singu1arities in the integrand of 
(63) occur at x=±(2nt1)rri and at x=ln(1-e-(stu)/n)±(2ntl)rri 

where n=O,1,2, .•.. For large positive Res, the points in the 

latter set approach those in the former. We can therefore 

determine the nature of the asymptotic behavior by examining the 

integrand of (63) near the point x=rritô. We have 

IA(s,t) l 'ù exp{-rrlmo:(s)-[Reo:(s)tReo:(l-s-u)Jln(1/ô) 

(64 ) 

t rrlmf(s,-1/Ô)t[Ref(s,-1/ô)tRef(1-s-u,1/ô)t2Jln(1/Ô)}. 

The functions f(s,-l/ô) and f(l-s-u,l/ô) behave like constants 
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as Isl + 00 whi1e the function -[Rea(s)+Rea(l-s-u)] grows 1ess 

rapid1y than 1inear1y with s. Since Ima(s) grows 1inear1y with 

s in the region under consideration we have 

A ( s , t) '" e - l ma ( s ) R (s , t ) ( 6 5 ) 

as Isl + 00 with u fixed and -!w>arg(-s»-W+E. A simi1ar 

procedure may be used to examine the region !w<arg(-s)<W-E with 

the same exponentia11y decreasing resu1t. 

The behavior of A(s,t) in the 1imit s+oo, u fixed larg(-s) I=w 

is not easi1y determined. The ab ove arguments no longer app1y 

because Ima(s) does not increase linear1y with s in this limit. 

We can gain sorne understanding of the situation if we recall 

that the f functions in (64) do not increase with s. He therefore 

do not expect them to enter crucially into the asymptotic 

behavior in this limit. If we ignore these functions then A(s,t) 

becomes simply 

A(s,t) ~ B(l-a(s),l-a(t» (66) 

The properties of this function in the limit s+oo, larg(-s) I=w, 

u fixed have been studied by Roskies (1968). He has found that 

if s~-lIma(s)+o for sorne ~>O, then (66) will grow faster than 

any power of s in the above limit. If, however, Ima(s) behaves 

like 

(67) 

as s++oo where Pl>O, then (66) will vanish faster than any 
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inverse power of s in the large s, fixed u limit. 

V.2 Neutralizer Correction 

Suppose that we write, instead of (3), 

()() 

s J 'li (s' ) 
a(s,z) = Às + b + iT(l-y(z» ds' s'(s'-s) 

l-n ln (l-z) (68) 

- a(s) - f' (s,z) - Às + b + g' (s,z) 

The function y(z) is the neutralizer defined in (111.5)-(111.7). 

In terms of the functions f(s,z) and g(s,z) defined in (4) and 

(5), we have 

g'(s,z) = (l-y(z»g(s,z) (69) 

and 

f'(s,z) = f(s,z) + y(z)g(s,z) (70) 

The model constructed by using (2) with (68) has properties 

similar to those of the basic model of section V.l. First, the 

amplitudes constructed from the model of this section will again 

be crossing symmetric. Second, the singularities discussed in 

section V.l.v will also be present in this model. Some of the 

additional singularities of the basic model will not occur in 

this model (see Appendix). Third, the leading asymptotic 

behavior of A{s,t) for large Isl and with t, u or es fixed is 

the same in this model as in the basic model. The major 

disadvantage of the use of neutralizers is that we cannot obtain 
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this asymptotic behavior in any of the above regions for 

larg(-s) I=n. Similar difficu1ties occur with the Suzuki mode1 

discussed in chapter III. There are sorne differences between 

the non-1eading Regge contributions of the basic model and the 

neutralized form. These differences are mentioned in the 

Appendix. Fourth, the mode1 of this section again has a 

unitarity cut (see section V.l.ii) starting at s=l. The 

discontinuity across the cut is 

l_e(l-s)/n 

DiscsA(s,t) = _2i f dZ {z-Rea(S,z)(l_Z)-a(t,1-Z) 

o 

xsin[(l-y(z»Ima(~)lnz]} . 

(71) 

Fina1ly, the double spectral region is again given by (15). The 

double spectral function, however, is now 

1 
= fdZ{Z-Rea(S,Z) (l_z)-Rea(t,1-z)0(s_l t n1n(1_z» 

o 
(72) 

x0(t-1+nlnz)sin[(1-y(z»Ima(s)lnz] 

xsin[(l-y(l-z»Ima(t)ln(l-z)]} 

The major difference between this mode1 and the basic mode1 

of section V.1 lies in the thresho1d behavior of the partial wave 

projections. In terms of the expansion (49), we again find that 

the Revk(s) approach finite constants as s+l. The Imvk(s) 

J 
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defined in (50) have the same thresho1d behavior, (54), as 

those of the basic mode1. The Imvk(s), however, are now a1tered. 

The double spectral function (72) has the upper endpoint of 

integration z ~ (s-l)/n as s+l from above. Since the integrand max 

of (72) con tains a factor sin[(l-y(l-z»Ima(t)ln(l-z)] which 

vanishes faster than any power of z as z+O, p(s,t) and 

DiscsDisctA(s,t) vanish faster than any power of (s-l) as s+l. 

Therefore, with (50), we see that the Imvk(s) vanish faster than 

any power of (s-l) as we approach threshold. Thus the threshold 

behavior of the Imvk(s) is given by that of the Im~k(s). Suppose 

that we take 

Ima(s) _ ~(s) ~ (s_l)a(l)t![ln(s_l)]-l (73) 

as s+1. Then (54) gives 

(74) 

This is just the behavior which is needed to satisfy the 

e1astic unitarity relation (111.37) for aIl partial waves except 

j=O (see section III.2.v). 

V.3 Subtractive Corrections 

In the last section we were able to obtain the correct 

threshold behavior for the partial wave projections of the TITI+TITI 

amplitude. The Imvk(s) of (50),which ruined the thresho1d 

behavior in the basic model, were shown to vanish faster than any 
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power of (s-l) near threshold in the neutralized model. 

There are two difficulties with the model of section V.2. 

First, the boundary of the double spectral region remains 

incorrect. Second, in order to obtain the proper threshold 

behavior we have had to paya price: we have destroyed the 

fixed t, u and es asymptotic behavior of A(s,t) as s+oo on the 

real, positive s-axis. 

In this section we shall discuss an alternate method for 

adjusting the threshold behavior. The model of section V.l has 

given us a specific double spectral function (14). We can 

alter both the threshold behavior and the double spectral region 

by subtracting certain integrals containing p(s,t) from the 

basic function A(s,t) of section V.l. The method of this section 

does not alter the properties of A(s,t). Thus, in this case, we 

can study the limit Isl + 00 with s on the real, positive s-axis. 

i) The Basic Subtraction. Suppose that we define the new 

function 

A (s, t) = A(s,t) - 1 , , p(s',t') 00 r') 
:;rz-fdS dt (s'-s)(t'-t) 

1 f (s' ) (75) 

- A(s,t) - R (s, t) 

A(s,t) is defined by (2) with (3), p(s,t) is given by (14) while 

f(s) and g(s) are defined in (51) and (52). We have simply 

subtracted the duoble spectral integral over the region between 

the ~3 boundary (111.21) and the boundary (15). Thus the double 

spectral boundary for A(s,t) is the ~3 boundary {figure V.1). 
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We now use (49) to write 

ImA(s,t) - ImA(s,t) - ImR(s,t) 

00 r(s) 

= ~ tklmvk(s) - ~J dt' P~~~~') 
k-O f(s) 

00 I(S) 
\' k 1 -k-l = ~ t {Imvk (s)+4i dt'DiscsDisct,A(s,t')t! } 

k-O f(s) 

(76 ) 

for t<l<s, sand t rea1. Notice that the final term in the 

brackets of_(76) is just -Imvk(s) defined in (50). We therefore 

have 
00 

- \' k -ImA(s,t) = [. t Imvk(s) 
k=O 

(77) 

If we choose the behavior (73) for Ima(s) then the j~l ~TI~TI~ 

partial wave amplitudes will have the correct power dependence 

on (s-l) near threshold. 

The function R(s,t) is symmetric under the interchange of 

sand t. This follows from the symmetry in s'and t'of the 

region of integration in (75). Thus the amplitudes constructed 

from A(s,t) will be crossing symmetric. The amplitudes for ~TI 

elastic scattering are defined by (11.7) with A replacing A 

in (11). 

With (14), (51), (52) and (75) we can show that 

1. -1 a(1)-3 Disc R(s,t) ~ O[Ima(s)Ima(l+~s)s 1ns] 
s 

(78) 

as s+oo. Since Ima(s) grows 1ess rapid1y than s as s+oo and 

since Ima(l)=O, the Integration in (75), which can be written 
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co 

R(s,t) l Jd ' Discs,R(s',t) = 2~i s s'-s (79) 
1 

certain1y converges. No tice that as 1 si -+ co, the con tribution 

of R(s,t) to the function C(s,t) is 

ex) 7(s') 
-y(ÀStÀttc)R(s,t)'V- ~JdS'J dt' 

1 f(s') 

pest t') __ -1..!:.-!.. 

t' -t 

For t fixed this term is 0(1). The fixed angle and fixed u 

subtractive corrections have O(l/s) behavior for large s. 

(80) 

Instead of using (75), we cou1d have worked direct1y with 

the TITI elastic scattering amplitude and written 

C(s,t) = y(Às t Àt t c)A(s,t) -

co r (s ' ) 

~fdS'J dt' 
1 f (s ' ) 

p(s',t')(Às'tÀt'tc) 
(s'-s) (t'-t) 

With the alteration (81) we again obtain the correct double 

(81) 

spectral region and the correct (j~l) threshold behavior. The 

fixed t asymptotic behavior of the correction is now O(l/s) 

while the fixed u and fixed angle behavior is 0(1/s2). Notice, 

however, that (81) only describes TITI elastic scattering while 

the A(s,t) of (75) can be used ta construct a variety of 

amplitudes. 

ii) Further Corrections. We can make additional adjustments 

in the basic model by subtracting integrals over aIl or part of 

the new double spectral region. As an example, we shall consider 
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a correction to the double spectral function near the boundary 

of the double spectral region 

(s-l) (t-l) = ~ (82) 

Notice that the double spectral function of A(s,t) vanishes 

abrupt1y at the boundary. In order to smooth this behavior we 

first notice, with (14), that 

Ip(s,t) 1 ~ c exp(À(s-l)(t-l)/n) (83) 

for large sand/or t. Thus the integral 

R'(s,t) 
= ~7Tl OOJdS'OOJ dt' P(s',t')e-[(S'-l)(t'-l)-~JS 

_L (s'-s) (t'-t) (84) 
1 g(s') 

is convergent for S>l. If we redefine A(s,t) to be 

A(s,t) = A(s,t) - R(s,t) - R'(s,t) , (85) 

then we can again construct crossing symmetric amplitudes with 

suitab1e threshold beha~ior and the correct ~3 double spectral 

region. The double spectral function is given by 

S 
~(s,t) _ p(s,t){l _ e-[(s-l){t-l)-!J } (86) 

which vanishes like [(s-l)(t-l)-!J S near the boundary (82) of 

of the double spectral region. 



iii) Corrections for Pseudoscalar Bosons. In aIl of the 

discussions to this point, we have been satisfied with 

constructing models having double spectral boundaries close to 

the ~3 boundary. Pions do not interact via a ~3interaction 
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Lagrangian but according to ~~ theory (a 3w vertex is forbidden 

by angular momentum and parity conservation). The ~~ double 

spectral function can be nonzero in the regions R(s,t) and 

R(t,s) where the boundary of R(x,y) is 

(x-l) (y-4) = 4 (87) 

These regions are shown in figure V.5 along with the boundary 

(15) for the model of section V.l. 

In order to obtain the correct threshold behavior for the 

ww partial wave projections (j~l) and the correct ~~ double 

spectral boundary, we subtract the function 

R (s, t) 1 
Jf 

p(s',t') 
=:;;:-T ds'dt' -" (s'-s)(t'-t) 

(88) 

R(s' ,t') 

from A(s,t). R(s,t) is the region between the ~~ boundary and 

the boundary (15). The double spectral functionfor 

A(s,t)-R(s,t) can be written 

p" (s , t) = p' (s, t) + p' (t, s) (89) 

where 

p'(x,y)=p(x,y)e[(x-l){y-4)~4J{1-~e[(x-4)(y-l)-4J} (90) 

is nonzero in the region R(x,y). The double spectral function 

(~. ~-

-",--
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above has discontinuous behavior due to the Theta functions. 

Suppose that we define 

A(s,t) = A(s,t) - R(s,t) - R(s,t) - R(t,s) (91) 

R (x, y) = ~JJdX'dY' p(x',y') (e-Kl(X',y')_ n (x'-x)(y'-y) 
l? (x' , y' ) (92) 

The functions KI and K2 are chosen to grow more rapidly than 

À(x'-l)(y'-l)/n for large x' and/or y' so that the integration 

(92) converges. The double spectral function for (91) is 

p(s,t) = p' (s,t) + p' (t,s) (93) 

where 

p'(x,y) ~P(x,y)0[(x-l)(y-4)-4J{(1-e-Kl(X,y»)-

(94) 

is nonzero in ~(x,y). If Kl(x,y) vanishes for (x-l) (y-4)=4 and 

if K2 (x,y) vanishes for (x-l)(y-4)=4 and for (x-4)(y-l)=4, then 

the double spectral function (94) will be smooth. 



V.4 The TITI~TITI Amplitude 

In the previous section we defined a function X(s,t) which 

has a reasonable, although not poly,omially bounded, double 

spectral function. It is easy to check that if X(s,t) is 

substituted into .(11.4) and if the function ~(s) is suitably 

chosen, then the invariant amplitude for the pro cess TITI~TIW will 

have the following properties: 

a) Crossing symmetry; 
b) Elastic unitarity cut; 
c) Correct ~4 double spectral region; 
d) Correct power dependence on (s-l) near the 

s-channel 2n threshold for aIl partial waves; 
e) Resonances with finite positive total widths; 
f) Regge asymptotic behavior in the physical 

region for the scatt~ring process; 
g) Reasonable asymptotic behavior at fixed angle. 

The last two properties are valid ev en for real values of the 

asymptotic variable. 
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The amplitudes for the process TITI~TITI,obtained by substituting 

X(s,t) into (11) and the resulting C(s,t) into (11.7), have aIl 

of the above properties except that d) is satisfied only for 

j~l. In this section we shall introduce a satellite function 

which enables us to satisfy d) for j=O. We shall also review 
• 1 • 

the restrictions on ~(s) which are necessary for a)-g) to be 

obtained. 

i) The Satellite Term. An amplitude which satisfies 

a}-g) may be written 
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C(s,t) = Y(ÀstÀttc)A(s,t) t YdA
1 

(s,t) (95) 

The function A1 (s,t) is determined from the basic function 

1 
Al (s,t) = fdZ z-a 1 (s,z)-1(1_z)-a 1 (t,l-z)-l (96) 

a 

with 

00 

al (s,z) = À s + bIt ~f d s ' If l (s ' ) 
TI s'(s'-s) (97) 

1-n1n(1-z) 

We sha11 take the trajectory ales) to be approximate1y one unit 

of angu1ar momentum be10w the 1eading (p-fo) trajectory so that 

bl~b-1. The ftinction A1(s,t) is defined by 

where R1 and R1 are given by (88) and (92) with 

(99) 

rep1acing p(s,t) in these relations. 

If we now perform expansions simi1ar to (111.22) for A(s,t) 

00 

\' k,
A(s,t) = 1.. t vk(s) 

k=O 
(100) 

(101) 
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then we find, as in chapter III, that the leading behavior of 

+ - +-the j-th partial wave projection of the TI TI +TI TI amplitude 

near threshold is 

2 . 
+- - - - (jl) (s-l)J 

Aj (s) f\) Y{(À+c)vj(s)+d\-lj(s)+ÀVj_l(s)} (2j+l)! (102) 

where V_ l (s)=O. Imvk(s) has the threshold behavior (54) while, 

near s=1, 

- k-al(l) lmwk(s) ~ (s-l) ln(s-l)Imal(s) (103) 

If ~(s) has the behavior (73) for s~l and if ~l(S) has the 

threshold behavior 

(104) 

then ImA:-(s) will have the correct power dependence, (s_1)2j+~ 
J 

(III.36b), near threshold for aIl j including j=O. 

ii) Review of Restrictions. In this section we shall list 

the restrictions on the functions ~(s) and ~l(S) which we have 

found in this chapter. First, there are restrictions on the 

positions at which the functions s-l~(s) and S-l~l(S) can have 

singu1arities. The positions of possible singularities are 

s = {oo, 1±2nTIin, 1-nln(!~iy)±2nTIin} (9) 

where n=0,1,2, .•. and y2>3/4. Second, there are several bounds 
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on the functions ~ and ~l: 

(8) 

-1 
s ~(s) -+ 0 as s -+ QO (6) 

~ (s) -+ 0 as s -+ 1 (7) 

(Isl>w) (10) 

where Pl' P2 > 0 and W is a (large) constant. Third, there is 

a restriction on the strength of the singularities in the second 

set of (9) which states that these singularities are weaker than 

[s - 1 ± 2nTIinJ l /(P2- l ) (105) 

where P2 is the constant appearing in (10). Fourth, there are 

two limits which must be satisfied by ~(s) and ~l(S): 

as s -+ 00 (67) 

with Pl > 0 and 

- a(l)+~ -1 'i'(s) - -(s-l) [1n(8-1)J as s -+ 1 (106) 

The functions W,a represent either 'i',a or ~l,al so that (106) 

represents (73) and (104). With (67) and (10) we see that P2 

can be chosen to be close to 1. Thus (105) does not provide a 



significant restriction. Notice that A1 (s,t) has a pole when 

ales) = O. If this pole is to occur for s > 1 and therefore 

represent a resonance and if (7) and (104) are to be satisfied, 

then we must require 
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-! < ad1) < 0 (107) 

This restriction is one of the motivations for our choosing 

bl ~ b-1. Fina11y, as we sha11 see in the Appendix, if ~(s) 

behaves (to within logarithmic factors) 1ike sj as s+OO and 

1ike (s-l)k as s+l where j and k are integers, then the 

trajectories coming from A(s,t) will have unit spacing. The 

first condition must a1ready be satisfied (67) whi1e the second 

is satisfied, with (73), if 

a (1) = ! 

The above relation is very near1y satisfied by the P_f o 

trajectory. 

(108) 



VI. Physical Applications 

The Veneziano model and the generalizations of it which 

we have discussed are constructed primarily to describe two 

particle scattering in the asymptotic (Regge) region and in 

the resonance region. These two regions are connected by 

duality and FESR. The Veneziano model, however, has been 

applied successfully to other regions as weIl, both physical 

and unphysical. In this chapter we shall discuss sorne of these 

applications for both the Veneziano model and the DT model of 

chapter V. In addition, we shall discuss methods which can 

be used to perform calculations in the DT model. 

VI.l Experimental Situation 

We start with the experimental facts which we shall try 

to understand in terms of the Veneziano and DT models. The 

processes considered are 

and 

which are shown in figure VI.l a and b respectively. They 

(1) 

are clearly related by crossing symmetry. Neither of these 

processes has been studied directly. The second, in fact, can 

never be directly measured. AlI experiments performed for 

this process involve allowing one of the pions, say TIl, ta be 

89 
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off mass shell, Le. H2 (TIl) ;C ~ = m~ The results are then 

either extrapolated to the mass shell or the models which are 

to be compared with the results are extrapolated off stell. 

i) The Pro cess pn 
- - t -+ TI TI TI The initial state in the 

reaction pn-+3TI can be in the ISO, 3 PO ,1,2 and higher orbital 

angular momentum states. Near threshold, we expect the S-wave to 

give the dominant contribution. This is the case experimentally 

(Anninos 1968). The quantum numbers of the initial state near 
G P --threshold are therefore l (J ) = 1 (0). Since these are the 

quantum numbers of the pion, we follow Lovelace (1968) and treat 

the pn system as a heavy pion. Comparing figures VI.lb and c, 
- --t --t we can see that the process pn-+TI TI TIis thesame as TI -+TI TI 7T 

where the initial pion has a (mass)2 of 3.52 GeV 2 • The Dalitz 
- - - t plot for pn-+7T TI TI is shown in figure VI.2 (Anninos 1968). 

2 t -The axes of the plot, s and t, sre the (mass) of the two TI 7T 

subsystems. The density of points in the Dalitz plot is related 

to the lamplitudel 2 for the processes (1) and (2) where TIl is a 

heavy pion. We should stress again that, since the amplitude 

determined in this way is off shell, we shall need to extraoplate 

the Veneziano and DT models off shell before comparing them with 

figure VI.2. We shall discuss this procedure in section VI.3. 

ii) The Process TIN -+ TITIN'. Most of the information about 

TITI elastic scattering is obtained from the inelastic ~N reaction 

(3) 
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In the one pion exchange (OPE) mode1, the process (3) is related 

to (1) as is indicated in figure VI.1d. The (mass)2 of TIl in 

the process (1) is given by M2(TII) = -q2(NN ' ) where q(NN') is 

the momentum transfer between N and N'. The amplitude for TITI 

e1astic scattering on the mass she11 is obtained by extrapolating 

the off she11 amplitude to the point M2(TII) = ! = This 

(Chew-Low) extrapofation is discussed in numerous texts (for 

examp1e, Ka11én 1964, ch. 7). 

Most of the data on the 1=0 S-wave phase shifts for TITI 

e1astic scattering comes from the reaction 

t -
TI P -+ TI TI n (4) 

The most recent solutions for o~ are shown in figure VI.3. Be1.ow 

700 MeV there is a unique solution (Baton 1970). Above 700 MeV, 

however, there are two solutions, the "down-down" and "down-up" 

solutions. There are a1so slight differences depending upon 

whether o~ is taken to be e1astic or is a110wed to be ine1astic. 

The "down-up" solution of Baton (1970) imp1ies an S-wave TITI 

resonance (E) near the mass of the p: 

ME = 736 MeV, f E = 181 MeV (5) 

The "down-down" solution is mi1d1y prefened, however. As is seen 

in figure VI.3, this solution is in qualitative agreement with 

the higher energy solutions ( Beaupre 1971, Oh 1970). The 1=1 

P-wave phase shift solution is unique. The resu1t for e1astic 

ai (Baton 1970) will be shown in figure VI.9 in comparison 
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with the DT model results. 

The S-wave scattering lengths for the process TITI+TITI are 

somewhat more difficult to study. Notice that the phase shift 

solutions of figure VI.3 extend down to s=.25GeV 2 . The threshold 

for TITI scattering, however, is at s=.075GeV 2 In order to 

determine scattering lengths we must therefore perform two 

extrapolations. First, we must perform a Chew-Low extrapolation 

to the mass shell. Second, we must extrapo1ate to the e1astic 

threshold for TITI scattering. Two resu1ts for the 1=0 S-wave 

scattering length obtained from studies of the process TI-p+TITIN are 

(.16 -1 
ao = ± .04)mTI (Morgan 1970) 

(.28 -1 
ao = ± • 21) mTI (Maung 1970) . 

In addition, the 1=2 S-wave scattering 1ength is found to be 

(Morgan 1970) 

a2 = -(.05 ± • 01)m- 1 
TI 

(6) 

(7) 

iii) PCAC Results. The Adler consistency condition, which 

1s derived from the divergence-field identity of PCAC 

a TI (x) (8) 

implies (Adler 1965) that the amplitude for the process (1) must 

vanish when the four-momentum of one of the pions vanishes. 

Again, we have an off shel1 result since one of the pions, say 

TIl, has M2(TIl)=O. The point at which this result is valid is 
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pf=O, s=t=u=p~=p~=p~= m~=~. This is known as the Adler point. 

Notice that the Adler point is not far from the elastic 

threshold for the process (1). We should therefore be able to 

obtain information about TITI elastic scattering near threshold 

by extrapolating PCAC results from the Adler point to the 

threshold point. This extrapolation is model dependent but the 

results are consistent. Two such results for the 1=0 and 1=2 

S-wave scattering lengths are 

.20 -1 ao = m
TI 

-.06 -1 a2 = m 
TI 

(Weinberg 1966) 

(9) 
(.15 -1 ao = ± .02)m

TI 

- (.04 -1 a2 = ± .004)m
TI 

(Cronin 1967) 

Two other quantities which are often used in discussing 

scattering lengths are the combinations L = (2ao-5a2)/6 and 

R = ao/a2' The ao and a2 in (6), (7) and (9) yield the following 

results 

1 L(m- ) R Reference TI 

.10±.01 -3.2±1.0 (Morgan 1970) 

.1O±.01 -3.5 (Weinberg 1966) 

.09±.01 -3.7±O.8 (Cronin 1967) 

Table VI.l 
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VI.2 The DT Model 

The DT model of chapter V has a number of desirable 

properties, including the fact that it reduces to the Veneziano 

model in the zero width ('(s)~O) limit. This limit is useful 

because, if the resonances are narrow, the real parts of the DT 

model amplitudes should be close to the real parts of the 

Veneziano amplitudes provided that we stay away from the resonance 

region. For exact calculations, however, the DT model is 

somewhat more difficult to work with than the Veneziano model. 

There are at least two reasons for this. First, the Veneziano 

model is described by a relatively small number of parameters, 

including coupling constants and slopes and intercepts of the 

relevant (linear) trajectories. The model of chapter V, and any 

other model incorporating trajectories which are complex above 

threshold, has additional parameters characterizing the imaginary 

parts of those trajectories. Experimental information about 

these imaginary parts is rather scanty. The second difficulty 

lies in the mathematical complexity of the model. The Veneziano 

model is constructed from the well known Beta and Gamma functions. 

Calculations are easily performed since these functions are 

tabulated. The model of chapter V cannot be handled with such 

ease. If we hope to ob tain an amplitude with reasonable behavior 

in the resonance region, th en we must be prepared to work with 

models which are more complicated than the Veneziano model. 

The difficulties described above are not serious. In 

previous chapters we have already obtained sorne restrictions on 

the imaginary parts of the trajectories. The second part of 
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this section will he concerned with the fixing of parameters 

for a specifie form of the DT model. In the first part, we sha11 

examine methods which can be used to calculate the function 

A(s,t) of chapter V. 

i) Ana1ytic Continuations. The function A(s,t) defined in 

equation (V.2) can he written 

A(s,t) = D(s,t) + D(t,s) (10) 

where 

! 
D(s,t) = JdZ z-a(s,z)(l_z)-a(t,l-z) (11) 

o 

and where a(s,z) is defined in (V.3). If Rea(s)<l, then D(s,t) 

can be calculated from (11) with simple numerical integration. 

If the integrations defining a(s,z) and a(t,l-z) can he performed 

analytica11y,then the calculation is simple. If, however, the 

trajectory functions themse1ves must be determined by numerica1 

integration, then the procedure is still straightforward but 

somewhat more costly. Care must be taken if the points 

z=e(l-t)/n and/or z=l-e(l-s)/n lie on the path of integration of 

(11) since the trajectory functions are singular at those points. 

No significant difficulties arise, however, hecause the 

singularities are logarithmic. 

Suppose we now add and subtract the function z-a(s) from the 

integrand of (11) and use the function f(s,z) defined in (IV.1) 

and (V.4). Then we find 



D(s,t) = 
2a (s)-1 

l-a(s) 
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This expression can be integrated numerically to give D(s,t) in 

the region Rea(s)<2. 

In the region Rea(s»2, Ima(s»O we can calculate D(s,t) 

from the integral representation 

D (s , t) 
( 13) 

where the contour C is shown in figure VI.4. The vertical part 

of the path i8 chosen to lie to the right of the points x=(t-l)/n 
and x=_ln(l_e(l-s)/n) at which the trajectory functions are 

singular. With some algebra, we can recast (13) in a form which 

is slightly better suited to numerical integration: 

PJ -x -x D(s,t) = dx e-x (1-a(s,e »(l_e-x)-a(t,l-e ) 

1n2 
1 

2 . p(a(s)-l)~ 2nik(a(S)-I)fd { 2niq(a(s)-1) x + n~e Le q e 
k=O 0 

(14) 
- (p+2niq) f (s, e -p-.2ni(q+,,>~ -p -2niq) -a (t, l-e -p -2niq) x xe v--e 

-p-2ni(q ... kl\ • ~ • • ) -2nikf(s,e ~ -p-2n~q)uk~t,p+2n~q} Xe ~-e 

where p>max{Re[(t-l)/nJ, Re[-ln(l-e(l-s)/n)J, 1n2} and 

2nikn 
tf ~(r+l+nY) 0k(t,y) = ~ dr (r+1+ny)(r+1+ny-t) (15) 
o 
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In order to study the region Rea(s»2, Ima(s)<O we need only 

to make the replacement i+-i in (14) and (15). Notice that the 

first factor in the sum appearing in (14) vanishes exponentially 

with k for Ima(s»O. We can therefore truncate the summation 

after a reasonable number of terms. 

With the representations (11), (12) and (14) we can 

determine D(s,t) and, with (10), A(s,t) for aIl fini te values 

of sand t on the first sheets of the s- and t-plaües. The 

function p(s,t), which is used in obtaining the subtractive 

corrections of section V.3, can be found by direct numerical 

integration of equation (V.14). 

ii) A Specific Model. We shall now discuss the reactions 

(1) and (2), for which the s-channel isospin amplitudes are 

given by (11.7). We define the function C(s,t) by 

C(s,t) = y(Às+Àttc)A(s,t) t ydAl(s,t) (16) 

where A is given by (V.2) with (V.3) and Al by (V.96) with 

(V.97). We choose the parameter n to be 

-1 n = (2ln2) ~ .72 

so that the double spectral boundary is the dotted line in 

figure V.l. 

(17) 

Notice that we have neglected the subtractive corrections 

discussed in sections V.3 and 4. Although this is done for 

simplicity, there are two justifications for the approximation. 

J 
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First, in the narrow resonance approximation mentioned at 
the beginning of this section, the subtractive corrections enter 
only in the second order. Thus, if the resonances are narrow, 
with widths characterized by a parameter E, then the subtractive 
corrections are 0(E 2

). Second, one of the main motivations for 
introducing these corrections was to adjust the behavior of the 
partial wave projections near the elastic threshold. For the 
amplitudes construc~ed from (16), such corrections are necessary 
only for j~2. The only quantitative study near threshold in 
this chapter will involve just the J=O and 1 partial waves. 
Notice also that we have not included a Pomeron contribution in 
the model. Since we sha11 be working at low energies in this 
chapter, we do not expect diffractive effects to be important. 

In order to parameterize the p_f o trajectory, we choose the 
imaginary part to be of the form 

Ima(s) - ~(s) 
(18) 

where w is a constant and where 

L = 2~n = 4.53 
(19) 

The function (18) has a threshold behavior consistent (to within 
logarithmic factors) with the requirement (V.73) for a p_f o 

trajectory satisfying a(l)=~. In addition, the function s-l~(s) 
has no inadmissible singularities. Finally, (18) has a constant 
behavior as s+oo. Although this behavior is not strictly 
admissible, we can a1ways add a small but asymptotically growing 



part without altering significantly the results below. The 

advantage of a form like (18) for ~(s) is that the integrals 

defining a(s) and a(s,z) can be performed analytically. This 

enables us to perform the numerical integrations of the first 

part of this section somewhat more easily. 

Using (18) we find 

~ (s) ( L 2 ) 
Rea(s) = Às + b + 2n(s_1){(s-1)ln (s-1)2 + Ln}. (20) 

If we demand that the p_f o trajectory pass through the p and f 

2 and that the p have the correct width (mpr p=.095GeV ), then we 

can use (20) to obtain the parameters À, band w. We have 

À = .0783 

b = .37 

w = .114 

-2 ( 1.04 GeV ) 

The real and imaginary parts of the resulting trajectory are 

(21) 

shown in figures VI.5 and 6. Notice that,even near threshold, 

the p_f o trajectory, Rea(s), deviates only slightly from 

linearity. In addition, notice that once a specific form is 

chosen for ~(s) we can fix aIl of the tr~jectory parameters. 

The p-f Q trajectory which we have constructed is acceptable 

for phenomenological purposes. The small value of -s at which 

a(s)=O (s=-.34GeV 2) arises from our particular parameterization 

and is not a requirement of the model (see chapter VII). 

We shal1 choose the function ~l(S) appearing in (V.97) to 

have the form 

99 
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l ma 1 (s) - '1' 1 (s) (22) 

This function, like (18), has a constant behavior as s+oo. In 

addition, it has a nonvanishing behavior at s=l, which is not 

satisfactory. Except at s=l, however, we expect that (22) will 

give results close to those arising from a 'l'l(S) with a (s_l)E 

dependence (E«l) near s=l. Notice that the threshold behavior 

of (22) is consistent (to within logarithmic factors) with the 

requirement (V.104) for al(l)=-~. Like (18), (22) has the 

advantage that the integrals for ales) and al(s,z) can be done 

analytically. We find 

(23) 

We shall choose the intercept of Real(s) to be 

bl = b- 1 = -.63 (24) 

With this choice, the trajectory al becomes degenerate with the 

first daughter of the p_f o trajectory in the zero width resonance 

1 imit • 

From the discussion of section V.l.v, we know that C(s,t) 

has the approximate form 

C (s, t) ~ yo..s+Àt+c) 
l-a (s) 

yd 
al (s) 

(25) 

for a(s} ~ l+al(s) ~ 1. In this region there are resonances in 

the S- and P- waves. A reasonable choice for the parameters 
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of (16) and (22) is as follows: 

Wl = .50; Y = .50; c = -.334 (26) 

and 

d = -.5À - c = .295 

(remember that m~=~ in our units). With these choices, the 

amplitudes have the fo1lowing features: 

a) There is an I=J=l resonance with mass 765 MeV and 

width 125 MeV (p meson). Furthermore, in the approximation 

(27) 

(25), the contribution of this resonance to the I=J=l TITI partial 

wave projection near a(s)=l is elastic. 

b} There is an I=J=O resonance with mass 765 MeV and 

width 125 MeV (E meson). The partial width of this resonance is 

adjusted to be sma11. 

c) There is a second pole in the I=J=O partial wave 

corresponding to Is~750 MeV. The width, however, is exceedingly 

large (~1000 MeV) so that this pole could hardly manifest itself 

as a conventional resonance but should rather be considered as 

a phenomeno1ogica1 account of a strong TITI interaction. Such an 

effect could weIl be a manifestation of the opening of the 

KK threshold near 1 GeV (see figure VI.3). We sha1l, however, 

refer to this pole as the "Elu for convenience. As we shall see 

below (section VI.3.ii), the presence of this pole is very 

important in providing an S-wave phase shift in fair agreement 

with the "down-down u solution (Baton 1970). 

d) Finally, the choice (27) enables us to approximately 

satisfy the Adler condition in the zero width resonance limit. 
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Notice that in this 1imit (16) becomes 

C(s,t} = Y(ÀstÀttctd)A(s,t) (28) 

As discussed by Lovelace (1968), the trajectories cannot change 
when we take one of the externa1 pions off its mass she1l. 
Thus only y, c and d (and possibly n ) can be changed. If we 
assume that these parameters do not vary significantly as we 
move to the Adler point, then we see that the Adler condition 
is satisfied for (28) provided that (27) is satisfied. 

VI.3 Applications of the Veneziano and DT Models 

We shal1 now examine the extent to which the DT model of 
the 1ast section and the Veneziano model discussed in chapter II 
can account for the experimenta1 information of section VI.l. 

- - + i) Da1itz Plot of pn + r. n n. The Veneziano model has been 
used by Lovelace (1968) to determine the density of points in 

- - - t the Dalitz plot for pn+n n n. As we showed in section VI.l, 
- t - + 

this process 1s related to the (off shell) process n h +n n : 

- - t pn + n n n 

- - t n + n n n 

+ (crossing symmetry) 
- + - + n '1T + n n 

(29a) 

(29b) 

(29c) 
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We can therefore use the isospin decomposition (11.7) to show 

that the Dalitz plot density for (29a) is proportional to 

IC(s,t) 1 2xPhase Space, where sand t are the (mass)2 of the two 
+ -

TI TI subsystems in the right hand side of (29a). 

As we mentioned in the last section, the parameters y and 

c of (11.10) and y, c and d of (16) can change as we take one 

of the pions off its mass shell. Since the pn system in (29a) 

represents a pion with a (mass)2 of 3.52 GeV 2 , we cannot expect 

these parameters to remain the same as those for the scattering 

of on shell pions. L~velace uses the fact that no p is observed 

in the 3TI Dalitz plot (Anninos 1968) to set y=O in (11.8), i.e. 

y small and c large in (11.10). The Dalitz plot density for 

(29a) is therefore proportional to IA(s,t) 1 2x Phase Space, where 

A(s,t) is defined in (11.5). 

Instead of using the linear form (11.2) for his trajectories, 

Lovelace uses the form 

a(s) = .483 + .885s + .28i(s-4m~)! (30) 

where s is in GeV 2• With this choice he is able to obtain a 

good fit to the Dalitz plot shown in figure VI.2 (see Lovelace 

1968). The Veneziano model provides an explanation of the three 

major features of the Dalitz plot: the enhancement near 

s=t=m~; the depletion of events near s=t=l.l GeV 2 (Rea(s) = 

Rea(t) ~ 1.5) and the enhancement at the upper right edge of the 

plot. This is the only type of model which has been able to 

obtain this structure. Unfortunately, the rather arbitrary use 

of nonlinear trajectories leads to the ancestors discussed at 
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the end of chapter II. 

The DT model of the last section can also be used to obtain 

a qualitative description of the Dalitz plot of figure VI.2. 

Since the trajectories are already nonlinear, we avoid the 

arbitrariness of the Lovelace approach and, more important, we 

do not introduce ancestors. As in the Lovelace model, we 

eliminate the p contribution by taking y small and c large in 

(16). For simplicity, we also set yd=O. The Dalitz plot 

distribution is thus proportional to IA(s,t)1 2 xPhase Space, 

where A(s,t) is given by (V.2). Using the p trajectory of the 

last section and the continuation (12), we can find A(s,t) for 

Rea(s), Rea(t) < 2 by numerical integration. A contour plot of 

IA(s,t)lis shown in figure VI.7. Notice that, even though we 

have not covered the entire region of figure VI.2, the majority 

of the structure is visible. We find an enhancement at s=t=m~, 

a depletion near Rea(s)~Rea(t)~1.5 and the beginnings of the 

enhancement occurring near the upper right edge of the Dalitz 

plot. 

ii) TITI Phase Shifts. An alternative approach for the 

introduction of finite width resonances into the Veneziano model 

is the K-matrix method. Once the Veneziano amplitudes have been 

l projected into partial waves, say Rj(S), a new amplitude is 

defined in such a way that it has partial wave projections 

= R7(s)/[1 - ip(s)R~(s)J 
J J 

(31) 

Near a resonance, R~(S) has the form 

i 
--' 
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l 
R. (s) 

J 
(32) 

Substituting (32) into (31) we have 

(33) 

which is the form of a resonance with a positive width (if p(s)r 

1s positive). In addition, sin~e R~ is real in the Veneziano 
J 

model, it is easily shown that the elastic unitarity condition 

ImA~(S) = P(S)IA~(s)12 (34) 

is satisfied, where 

p(s) = [(s-l)/sJ~ (35) 

Since the amplitude (31) has weIl defined real and imaginary 

parts, the TITI phase shifts are weIl defined. A slightly more 

complicated K-matrix method has been used by Lovelace (1969) te 

fit the I1down- up l1 solution for the phase shift o~. 

The K-matrix approach to the unitarization of the Veneziano 

model suffers from a serious drawback: once the partial wave 

amplitudes have been redefined, it is difficult (if not 

impossible) to recombine them into a crossing symmetric amplitude. 

Such an artificial method as the K-matrix approach is not 

necessary for the DT model defined in section VI.2.ii. Using 

the methods of section VI.2.i, we calculate the s-channel 

isospin amplitudes for a(1)<Rea(s)<2 with e fixed. From these 
s 



fixed angle isospin amplitudes, it is a simple matter to 

calculate the lowest partial wave projections A:(s). The 
J 

Argand diagrams for the Ag and AI partial waves are displayed 

in figures VI.8 and 9 along with the phase shifts 6g and 61. 

The phase shifts are compared with the elastic phase shifts of 

Baton (1970). 

The partial wave Ag exceeds the unitarity limit but the 

2 deviation is not large below s~7.5 (~.56 GeV). The agreement 

with unitarity below the inelastic threshold, in fact, is to 

within 8% (see figure VI.lO). The resulting phase shift 68 is 

not too far from the "down-down" solution of Baton (1970). 

By examining the S-wave phase shift of (25) (dotted line in 

figure VI.8), we can see that most of the structure is due to 
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pole contributions. The rapid rise of 68 above threshold is due 

to the fact that the El, in addition to having a very large 

total width, has a very large partial width. The dip in the 

phase shift is due to interference between the E and El. Notice 

that the behavior is'similar to that found by Baton (1970) near 

the KK threshold. 

The AI partial wave is characteristic of the p resonance. 

The elasticity is somewhat low and thep mass is shifted s11ghtly 

upward from the input. The agreement with unitarity below the 

inelastic threshold is again rather good (see figure VI.l1). 

There is some deviation from unitarity as we approach the 

elastic threshold, reaching 30% at s=1.5. 

iii} nn Scattering lengths. Because of the constant behavior 

of ~l(S) near threshold, we cannot directly determine the 
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partial wave amplitudes at s=l. We can, however, arrive at an 

estimate by making a quadratic fit through three points close 

to threshold (s=1.5, 2 and 3 in this case) and then extrapolating 

to s=l. With this method and the relation 

al = lim o~/k 
k=O 

for the S-wave scattering lengths, we find the 1=0 and 1=2 

values to be 

-1 
ao = .20lm

1T 
' 

We also fin'd 

R = -4.476. 

-1 
a2 = -.045m

1T 

-1 L = .1045m
1T 

(36) 

(37) 

( 38) 

where Rand Lare defined in section VI.l.iii. The results 

are in satisfactory agreement with those of section VI.l. 

A complete table, showing Veneziano mode! results due to Lovelace 

as weIl, is presented below. -1 L, ao and a2 are in units of m
1T 

Table VI.2 

an a, L R Reference - -

.16±.04 -.05±.01 .1O±.01 -3.2±1.0 (Morgan 1970) 

.28±.2l (Maung 1970) 

.20 -.06 .10±.01 -3.5 (Weinb erg 1966) 

.15±.O2 -.O4±.004 .09±.01 -3.7±0.8 (Cronin 1967) 

-3.8 (Lovelace 1968) 

.29 -.06 .15 -4.5 (Lovelace 1969) 

.20 -.045 .10 -4.5 (This work) 
: 



Notice that, except for the Adler condition, a11 of the 

parameters of our mode1 were fixed by constraints in the 

resonance region. Thus, the 10w energy approximation to 
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unitarity occurs sole1y as an output of the mode1. The 

scattering 1ength results are a1so consistent with experimenta1 

and theoretica1 resu1ts, but this may be a consequence of the 

Adler condition. The resu1ts in the resonance region are not 

unitary but not unreasonab1e. lt therefore appears 1ike1y 

that, with subtractive corrections, more sophisticated forms 

for ~(s) and ~l(S), adjustment of parameters and the addition 

of a Pomeron contribution, a model can be constructed which 

describes ~~ scatteringin aIl experimenta11y observable regions. 
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VII. Conclusions, Prospects for Future Development 

In the last three chapters, we have developed a generalized 

Veneziano ~odel which can be used to examine low and intermediate 

energy scatte~ing pro cesses as weIl as scattering in the 

asymptotic region. The model is based on the distorted 

trajectory model discussed in chapter III. By demanding that 

the amplitudes be weIl behaved asymptotically, have physically 

reasonable singularities and a curved double spectral boundary, 

we have been able to significantly restrict the number of 

functions under consideration. The results of chapter VI suggest 

that the model is physically reasonable in the low energy region. 

In addition, with the continuations of section VI.2.i, we can 

perform calculations with the model in a straightforward way. 

The bulk of the work presented here has been concerned with the 

mathematical structure of the model. There have been no serious 

attempts to apply the model to the fitting of experimental data, 

only to the determination of qualitative results. Indeed, it 

would have been pointless to attempt such fits without first 

having shown that the model does not lead to violations of 

asymptotic bounds. 

The amount of work remaining to be done with the model is 

significant. AlI of the phenomenological work whicb bas been 

done in connection with the Veneziano model in the limit s+oo, 

t<O and fixed can be done with this model as weIl. In addition, 

we can make numerous low energy calculations. Finally, there 

are several theoretical problems which should be studied. 

In this chapter, we shall discuss sorne of the investigations 
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which should be undertaken in the near future. These include 

studies of the two body reaction model from both the mathematical 

and phenomenological points of view and an examination of a 

model with fini te width resonances for multiparticle processes. 

VII.l Applications to Two Body Reactions 

We shall now examine several interesting calculations which 

can be performed with the DT model. 

i) ~~ Elastic Scattering. In the last chapter, we performed 

a crude but encouraging calculation for the process ~~7~~. This 

calculation is inexact for three reasons. First, the amplitude 

does not have the correct double spectral boundary for the 

scattering of either scalar or pseudoscalar bosons. In addition, 

it cannot satisfy the elastic unitarity relation (VI.34) near 

threshold for j~2. These difficulties are due to the fact that 

we have nèglected the subtractive corrections of section V.3. 

Second, we have not included a Pomeron contribution. Such a 

term is expected to dominate the asymptotic behavior of any 

pro cess which can exchange the vacuum quantum numbers in the 

crossed channel. Ne also notice that the 1=2 invariant amplitude 

defined in equation (11.7) cannot be correct because C(t,u) does 

not have an imaginary part for s>l and t,u<O. In several models 

(see,for example, Moffat 1971 and Curry 1971), it ls the Pomeron 

contribution which provides this imaginary part. In addition, 

~~ scattering has been observed to be highly diffractive for a 

dipion mass greater than 1.6 GeV (Oh 1970). Third, the Regge 
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trajectories which we have used for the calculation do not 

satisfy aIl of the conditions which have been discussed. The 

imaginary parts must grow asymptotically, probably as in equation 

CV.67). The threshold behavior of a(s) and ales) is constrained 

by CV.106). A further constraint on the p trajectory is that 

a(-8) ~ 0 (1) 

This requirement, which in more conventional units implies 
2 a(t)=O for t~-.6 GeV , provides the weIl known explanation of 

the dip at this value of t in the differential cross sections 

for ~-p~~on and ~+p~~o~++. Relation (1) is not satisfied for 

the p trajectory of chapter VI (see figure VI.5). 

Taking the above considerations into account, we can 

certainly perform a study of ~~ elastic scattering similar to 

those of Lovelace (1969) and Curry (1971). Such a study should 

probably proceed in the following way.First, choose a set of 

trajectories satisfying the constraints mentioned above. 

Second, use the zero width resonance approximation with the 

Adler condition to estimate c (or d) of (VI.16) in terms of 

A, b, bl and d (or c). Third, use the requirement of unitarity 

at the p resonance to determine y. Fourth, use the fact that 

(VI.25) should give a reasonable approximation for the I=J=O 

partial wave in the region 3~s~15 to further restrict the 

parameter d (or c) and the trajectory parameters. Finally, 

include subtractive corrections and a Pomeron and perform the 

calculati'ons of cltapter VI. The results of these calculations 

should be sufficiently reasonable to enable us to improve them 



by making minor changes in the parameters. In addition, the 

Adler condition should be tested. Once reasonable fits have 

been obtained for the lower partial waves, elastic unitarity 

can be tested for higher partial waves. 

ii) rrN + rrN and yN + wN. Throughout this work, we have 

concentrated on the process rrrr+wrr. The advantage of this, 
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at least in the Veneziano model, is that only one type of Regge 

trajectory is exchanged in aIl channels. The invariant 

amplitudes are therefore in a relatively simple form. Two 

problems with rrrr elastic scattering are that the widths of the 

resonances lying on the p_f o trajectory are not weIl known and 

that the process has been studied on1y up to a center of mass 

energy of approximately 1.5 GeV. The first prob1em makes it 

difficult to restrict the function ~(s) while the second means 

that we have no high energy data with which to compare the 

asymptotic form of our model. 

Since the processes rrN+rrN and yN+rrN can be studied directly, 

there is experimental data at high energies in both forward and 

backward directions. Furthermore, since a large number of rrN 

resonances have been observed, it should be easier to 

parameterize the baryon trajectories. The first process has 

been studied in the context of the Veneziano model by Berger 

(1969) while the second has been examined by Argyres (1971). 

The basic procedure. in both cases is to write down a simple 

Veneziano representation for each invariant amplitude and then 

to fix the parameters in the resonance region. Unobserved 

resonances are decoupled while observed resonances are required 
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to have the correct partial widths. These models give definite 

predictions about the high energy behavior of the above 

reactions in both forward and backward directions (see figure 

VII.l). The forward cross sections, which are characteristic 

of meson exchanges, are satisfactory. The cross sections in the 

backward direction, which involve baryon trajectories, are 

incorrect for both processes. If satellite Veneziano terms are 

used, introducing additional parameters, then the backward 

results can be correctly accounted for (Argyres 1971). 

It is a straightforward exercise to apply the DT model -to 

these processes in place of the Veneziano representation. As 

was the case for TITI elastic scattering, subtractive corrections 

should be ignored until all parameters have been fixed. In any 

case, these terms should not contribute significantly to the 

asymptotic behavior in either the forward or backward direction. 

We will, however, need a Pomeron in order to discuss TIN elastic 

scattering at high energies (see figure VII.l). 

There are several factors which may change the Veneziano 

model results as we give widths to the resonances according to 

the DT prescription. First, if the imaginary parts of the 

trajectory functions behave like (V.67) for large s, then the 

most prominent non-leading terms in the asymptotic expansions 

for large Isl will differ from the leading terms only in powers 

of lnlsl. These non-leading terms may therefore modify the 

asymptotic behavior which results from the simple Veneziano 

approach. Second, the fact that the threshold behavior of the 

amplitudes can now be described may reduce the arbitrariness 

involved in the addition of satellite terms. This was the case 
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in ~TI e1astic scattering, where the satellite term Al (s,t) was 

required by thresho1d conditions. It will be interesting to see 

what changes, if any, occur in the description of ~N e1astic 

scattering and pion photoproduction as a resu1t of this new 

representation. 

iii) Tests for Dua1ity. A1though the Veneziano mode1 is 

dual, in the sense that the sum of its resonances is equa1 to 

the sum of its crossed channel Regge exchanges, the amplitude 

which we have constructed is not. There are non-resonance 

contributions in the direct channel and contributions in the 

crossed channel which do not correspond to Regge pole exchange 

(see Appendix). Since the DT amplitudes reduce to those of the 

Veneziano mode1 in the zero width resonance 1imit, we expect it 

to have broken dua1ity. We can test the extent to which dua1ity 

is still satisfied by substituting the resonance contributions 

of the mode1 into an FESR whose right hand side comes sole1y 

from the Regge pole part of the asymptotic behavior. An easier 

test is to compare the imaginary part of the resonance 

contribution with the extrapolation to the resonance region of 

the imaginary part of the 1eading Regge pole contributions. 

The Regge contributions shou1d average the resonance contribution. 

VII.2 Theoretica1 Prob1ems in Two Body Reactions 

A1though we have examined a number of the basic properties 

of the DT mode1, there are severa1 interesting areas which 

remain to be investigated. 



i) Subtractive Corrections. As yet, we have not studied 
the behavior of the subtractive corrections of chapter V in 
mueh detail. These terms are expected to play a significant 
role in the unitarization of the mode1, especially for higher 
partial waves. 
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ii) J-Plane Structure. Some information about the J-plane 
singularities of the A~(S) for nn scattering can be obtained 
from the treatment in the Appendix. However, we have yet to 
examine this problem in detail. In particular, we have studied 
neither the J-plane structure of the subtractive corrections nor 
the possibility of fixed pales at nonsense wrong signature 
points in the 1=0 and 1=2 amplitudes. 

iii) Non-Leading Terms. In the Appendix we will develop a 
technique which enables us to obtain aIl of the terms in the 
asymptotic expansion and the singularity expansion of the DT 
model. In arder ta study these non-1eading terms, we must adopt 
a specifie form for the function ~(s). Of particular interest 
are the braneh points which occur for a(s)=2 and for higher 
values of a(s) and which have projections into aIl partial waves. 
Since these are weak singularities and, in addition, occur on 
the second sheet of the s-plane, they would certainly be 
impossible ta deteet experimentally. lt i8 interesting to 
speeulate on the possible physical significance of such terms. 

iv) Alternative Trajectory Functions. The form of the 
trajeetory function which we introduced in equation (VI.I) is 
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certainly not the most general. One change which could be 

introduced would be to write the function ~(s',z) in place of 

~(s') in the definition (IV.l), where 

~ (s , 0) = l ma (s ) (1<s<oo) (2) 

AlI of the studies of chapters IV and V could he carried out 

with such a function. A second possibility ls the introduction 

of inelastic thresholds into the mode1s. A fore like 

00 co 

a(s,z) = Às + b + ~JdS' ~ (s ' ) + .!JdS 1 lf\; (s') 
" s'(s'-s) TI s'(s'-s) 
<I>(z) si<l>i (z) 

where <I>(O)=<I>i(O)=l and <I>(l)=<I>i (1)=00, wou1d introduce another 

threshold at s=s. into the trajectory a(s). 
~ 

VII.3 Extensions, Applications in Production Processes 

One of the most exciting facets of the Veneziano mode1 

(3) 

is its simple genera1ization to multiparticle processes. The 

amplitudes for N particle processes (N = incoming + outgoing) 

are described by the function (Chan 

1 N-2 
BN = 

J 
(TT dxi ) (1/ JI) TT up Yp 

0 
~=2 P 

(4) 

where 

N-2 N-l j -1-1 
JI = TT TT (u ij) 

1.=2 j=i+l 
(5) 
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Yp = y ij = -Cl.
ij - 1 (6) 

Cl. ij = bij 
t ÀS ij 

(7) 

and 

[Pi 
2 

Sij = t Pit1 t ... t P j ] (8) 

The P in (4) and (6) refers to permutations in which i<j, whi1e 

the À in (7) is a univers al slope. The u .. are defined by 
~J 

= (l-xiXitl,:,Xj_l)(l-xi_lxi",Xj) 

(l-XiXitl",Xj)(l-xi_lxi",Xj_l) 

while the Xi needed in (9) but not included in the set of 

integration variables are 

_ a 

We can introduce finite width resonances into the model 

above by replacing (7) with 

00 

= ÀS
ij 

t b~j t !iJfdq ~jj(q) 
.L 'Tf q (q -s .. ) 

L
ij 

({x}) ~J 

The lower limit of integration is given by 

(9 ) 

(la) 

(11) 

(12) 

where ~ij are constants and Sij = mij i5 the elastic threshold 

for the ij channel. Notice that this is a simple extension of 

the DT model of section V.l. There are clearly a number of 



other possibilities. 

Some of the earliest applications of the S-point function, 

- t-
BS' were to the processes K p+n n A (Petersson 1969) and 

Ktp+Kontp (Chan 1970b) and to reactions related to these by 

crossing symmetry. Good fits were obtained to many of these 

reactions with a sma1l number of parameters. In aIl cases, 
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however, it was necessary to use trajectories which were complex 

above thresho1d, 1eading to the ancestors which we discussed 

earlier. We are now in a position to perform the same work but 

with a model whose trajectories have imaginary parts arising 

in a natural way. 

Another area in which it will be of interest to apply the 

multipartic1e DT mode1 is in the study of inclusive reactions. 

According to Muel1er's theorem (Mueller 1970), the amplitude 

for the production of the partic1e c in the reaction 

a t b + C t anything (13) 

is re1ated to the direct channel discontinuity for the process 

a t b t C + a t b t c (14) 

where there i5 to be no momentum transfer in this 1ast reaction. 

The reaction (14), however, can be described by the function 

B6' We can therefore app1y our genera1ization to the study of 

(14) and therefore to (13). This application shou1d fo11cw the 

methods of Olesen (1971) or Virasoro (1971). The work of 

Olesen, in fact, was performed with two genera1izations which 



incorporated finite width resonances. Neither of his 

generalizations, however, was based on a four point model with 

Regge behavior as s++oo for aIl physically attainable values of 

the crossed channel variable. We have now overcome this 

difficulty. 
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Appendix. Non-Leading Terms 

As we mentioned in chapter VI, one of the most usefu1 

properties of the DT mode1s and of the Suzuki mode1 of 

chapter III is that they reduce to the Veneziano mode1 in the 

zero width resonance 1imit, i.e. as 
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~(s) + 0 (for a11 s) (1) 

We have a1ready used this property to obtain approximations 

to the DT mode1 in various regions. Another use of the property 

lies in the fact that a parameter characterizing the size of 

the resonance widths is a natura1 one in which to exp and the 

amplitudes. 

The singu1arities mentioned in section V.1.v remain 

essentia11y unchanged in the 1imit (1). The on1y difference is 

that they are shifted to the rea1, positive s-axis. The function 

A(s,t) has additiona1 singu1arities which we have not discussed 

and which vanish in the 1imit (1). In this Appendix, we sha11 

introduce methods which enab1e us to study, at 1east in a 

qualitative manner, these non-1eading singu1arities. In 

addition, we sha11 use simi1ar techniques to examine in detai1 

the asymptotic expansion of A(s,t) in the large Isl , fixed t 

1imit. 

i) The Singu1arity Expansion. The s-channe1 singu1arities 

of A(s,t) arise from the divergence of (V.2) at the 10wer 

endpoint of integration. We therefore make a separation simi1ar 



to (11.19): 

v 1 
A(s,t) = f+fdZ z-a(s)(l_z)-Àt-b zf(s,z)(l_z)-g(t, 1-z) 

o v (2) 

In order ta examine the s-channel singu1arities of A(s,t), we 

need on1y to study Iov(s,t). 

In chapter II we obtained the singu1arity expansion by 

integrating Iov explicitly in the region Rea(s)<l. The resu1t 

of the integration provided us with an analytic continuation 

into the region Rea(s»l. The function Iov(s,t) defined in 

equation (2) is not sa easi1y integrated because the integrand 

is a complicated function of z. We can, however, simp1ify the 

z dependence of the integrand by making use of the Laplace 

transform and its inverse transform (Carrier 1965, ch. 7). 

We write f(s,z) in the form 

00 

f(s,z) = ZfdP zPF(s,p) (3) 

where 

S+ioo 

F(s,p) = 2;if
dX x(p+l)f( -x) e s,e (4) 

S-ioo 

and where the path Rex=S lies to the right of all singu1arities 

in the integrand of (4). The representation (3) converges for 

Izl<min{l, Il_e(l~s)/nl} sa that by taking V sufficiently smal1 

in (2) we can use (3) for f(s,z). With some algebra, we obtain 
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the expansion 

00 

zf(s,z) = fdP F(s,p;d/dp)zP (5 ) 

where 

F(s,p;d/dp) = o(p) + 

00 
(6 ) 

+ I l,fdP 1·· dP F(S,P1)··F(s,p )o(P 1+ .. +P +n-p)(d/dp)n • 
n= ln. n n n 

o 

Simi1ar1y, we write g(t,l-z) in the form 

00 

(7) 

where 

S+i oo 

1 f qx -x G(t,q) = 2~i dx e g(t,l-e ) (8) 

S-ioo 

and where the representation (7) converges for Izl<min{l, 

le (l-t)/nl}. h 1 11 Again, wit V sufficient y sma , we can use 

equation (7) for g(t,l-z) in (2). We have 

00 

(l_z)-g(t,l~z) = fd q G(t,q;d/dw)zq(l-z)-W\ (9) 

w=O 

where 

G(t,q;d/dw) = o(q) + 

00 
(10) 

+ l l,fdql·· dq G(t,q1)··G(t,q )o(q1+ •. +q -q)(d/dw)m . 
l m. m m m 

m= 
o 
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We now substitute (5) and (9) into (2) and perform the 

z integration to obtain,for IOv' 

00 

Iov(s,t) = fdPdq{F(S,P;d/dP)G(t,q;d/dW) x 

(11) 

x Bv (ltp+q-a(s),l-Àt-b-w)}1 

w=O 

The incomp1ete Beta function, Bv' has po1es at a(s)=ptqt1+j 

(j=0,1,2, ... ) whose residues are po1ynomia1s of degree j in 

(Àttw). The function Iov(s,t), then, will have singu1arities at 

a (s) = pIt q 1 t 1 + j (j=0,1,2, ..• ) (12) 

where pl is either zero or a singu1ar point of F whi1e ql is 

either zero or a singu1ar point of G. 

If E is a parameter characterizing the size of the resonance 

widths (i.e. the size of ~(s», then the j-th terms in the 

expansions (6) and (10) are O(E
j ). Thus the contribution to 

(11) coming from the j-th term in (6) and the k-th term in (10) 

is of order jtk in the narrow resonance expansion. The 1eading 

term in this expansion, found by using the first terms of (6) 

and (10) in (11), simp1y gives the singu1arities discussed in 

section V.1.v. 

Let us now keep aIl of the terms in (6) but on1y the first 

term in(10) and, further, let us suppose that the function 

s-l~(s) has the expansion,for s~l, 

00 00 

Ile (s_l) po tm[_ln(s_l)J-n 

m=O n=O mn 
(13) 
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It is then an easy matter ta show that Iov has singularities at 

etes) = j(Po+l) + k + 1 (k=0,1,2, ... ) (14) 

which have a polynomial t dependence of degree k. The nature 

of these singularities is as follows: 

a) Simple poles for j=0,1,2, ... 

b) Branch points for j=1,2, ... 

c) Multiple poles of maximum multiplicity j+l for j=I,2, .•.. 

The singularities c) occur only if c
mO ~ 0 in (13). Thus, if 

c
mO 

~ 0 in (13) then A(s,t) will have no multiple poles. Such 

a threshold behavior for s-l~(s) is consistent with (V.73). 

Except for the threshold branch point discussed in chapter V, 

the singularities a) and b) [and c) if cmO~OJ are the only ones 

occurring in the neutralized model of section V.2. 

Finally, if higher order terms in the expansion (10) are 

used, we can show that A(s,t) has singularities at 

etes) = j{po+l) + k + 2 (j,k=0,1,2, ... ) (15) 

whose t dependence is not polynomial. These singularities will 

therefore appear in aIl partial wave projections, unlike those 

of (14). If the c
mO 

vanish for aIl m then the singularities 

at the points (15) are branch points. The nature of these 

-1 branch points depends upon the behavior of the function s ~(s) 

for large Isl. 
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ii) The Asymptotic Expansion. With the change of variables 
-x z = (l-e ), equation (V.43) becomes 

v~~s) 
A{s,t) ~ JdZ z-a(t)(l_z)-Às-b zf(t,z)(l_z)-g(s,l-z) (16) 

° 
where, for small v, 

(17) 

The representation (5) can be used for zf(t,z) in (16). 

Simi1arly, we use the representation (9) for (l_z)g(s,l-z). 

We must be carefu1 in working with the latter term since (7) 

converges only for Izl $ e-Res/n when Res> O. This prob1em can 

be overcome, without effecting the asymptotic expansion, by 

defining G(s,q) as 

S+ioo 

1 J qx - -x G(s,q) = 2~i dx e g(s,l-e ) (18) 
S-i oo 

The function g is the asymptotic expansion of g: 

00 l+nx 
k If ~(s')(s'-l)k i(s,l-e-X

) = R(S,O) + ~ I(s-l)- - ds' 
~k=O s' 

1 

(19) 

With the above substitutions we find 

00 

A(s,t) ~ )dPdq{P(t,P;d/dP)G(S,q;d/dW) x 

(20) 

x B~(~ )(l+p+q-a(t),l~Às-b-w)}\ 
s " w=O 

j 



as Isl + 00 with -TI5arg(1-a(s»~~sSTI for t fixed and such that 

Ret<l. 
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The leading asymptotic behavior of (20) is Just (V.46). Thus 

the amplitudes constructed from A(s,t) will have asymptotic 

behavior characteristic of the exchange of the p_f o trajectory. 

The positions and natures of the non-leading trajectories will 

depend upon the behavior of ~(s) near s=l and s=oo. Suppose that 

~(s) has the behavior (13) near threshold and behaves, to within 

logarithmic factors, like sl-~ for large s. We can then show, 

with (20), that the amplitudes constructed from A(s,t) have 

terms in their asymptotic expansions which are characteristic of 

the exchange of trajectories lying j(potl)tk~tn units of angular 

momentum below the p_f o trajectory (j,k,n=0,1,2, ••• ). Notice 

that if ~(s) has the behavior (V.67) for large s then ~=O. 

If, furthermore, Po is an integer then j(potl) is also an integer. 

AlI trajectories will then lie an integral distance below tbe 

p_f o trajectory. 

If only the first term in the expansion (10) for G is used 

in (20), then only the k=O trajectories appear. It can easily 

be shown that these are the trajectories on which lie the 

resonances and branch points of (14) and the following discussion. 

These are the only terms appearing in the asymptotic expansion 

of the neutralized model of section V.2. The trajectories 

resulting from higher terms in the expansion of G evidently do 

not "surface" at physical J. We therefore have the situation 

shown in figure A.l. 
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Figure Captions 

Chapter l 

1. Definition of the Mandelstam variables s, t and u. 

Chapter II 

1. Reaction channels for the process 1+2+3+4. 

2. The reactions a) W+TIl+TI2+TI3 and b) W+TI2+TIl+TI3' 

4. Definition of the s-channel center of mass scattering 
angle for the process 1+2+3+4. 

5. Trajectories and particles in the Veneziano model for 
TITI scattering. Numbers are elastic partial widths in 
MeV normalized to fp=112 MeV. From (Jackson 1970). 

6. Paths of integration for (11.28). 

7. Paths of integration for (11.34). 

8. Paths of integration for (11.36) showing singularities 
at x = ±2nTIi. 

9.~~~aturation of the FESR (11.39) with zero width resonances. 
vi Solid lines are values from (11.39). Dashed lines are 

values from (11.40). Cutoffs: ~N=2,4. 

10. Path of integration for examining A(s,t) as Isl + 00, 
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u fixed, ~-TI<arg(l-~(s»<-~TI. Singularities at x=±(2n+l)TIi 
are shown. 

Il. Paths of integration for examining A(s,t) as 151 + 00, 

Xs fixed, ~-TI<arg(l-~(s»<-!TI. Singularities at 
x=(1-Xs)ln(1-Xs)tXs lnXs±(2n+l)Xs TIi are shown. 

Chapter III 

1. Double spectral boundaries for the Suzuki, DT and CHKZ 
models. Dashed line is the ~3 boundary. 



2. Contour of integration for (111.27) used to find Revj(s) 
in aIl models and Imv.(s) in Suzuki model. 

J 

3. Contour of integration for (111.27) used to find Imv.(s) 
in CHKZ and DT models. J 
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4. Contour deformation of (111.42) providing analytic 
continuation into right half s-plane. Singularities (111.43) 
and (111.44) are indicated. 

5. Contour deformation of (111.45) providing analytic 
continuation into right half s-plane. Singularities at 
y=y are indicated. 

n 

Chapter IV 

1. Regions of analyticity required in the z-plane for ~(z) 
and ~(~(z»/~(z) for several X • s 

Chapter V 

1. Double spectral region (V.IS) with n~.72 and ~3 double 
spectral region. 

2. Integration contour for (V.31). 

3. Contour used in deriving (V.SO). 

4. Contour Cl used in determining fixed angle asymptotic 
behavior. 

5. Double spectral region (V.IS) with n~.72 and ~~ double 
spectral région. 

Chapter VI 

1. Diagrams of pion reactions studied. 

2. - - - + 
Dalitz plot for the reaction pn + n n n near threshold. 
(Anninos 1968) 



3. 1=0 S-wave phase shifts for TITI scattering. 
a) Beaupre (1971) 
b) Oh (1970) 
c) Elastic "down-dmm"(c-cd) and "down-up"(c-cu) 

solutions of Baton (1970) 
d) Inelastic "down-down"(d-dd) and "down-up"(d-d u) 

solutions of Baton (1970). 

4. Path of integration for (VI.13). Points marked (0) 
indicate singularities in a(s,e-X) or a(t,l-e-X). 

5. Real parts of the trajectories a(s) and aleS). 

6. Imaginary parts of the trajectories a(s) and ales). 
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7. a) IA(s,t) 1 in the region 1<s,t<20. b) Cross section of 
figure VI.7a along diagonal s=t. Small numbers on vertical 
axis of b) correspond to numbers in a). 

8~ a) Phase shifts and b) Argand diagram for I=J=O TITI partial 
wave. Dashed phase shift: elastic solution of Baton (1970). 
Solid phase shift: this model. Dotted phase shift: 
contribution from e: and "e:l" (VIo25). 

9. a) Phase shifts and b) Argand diagram for I=J=l TITI partial 
wave. Dashed phase shift: elastic solution of Baton (1970). 
Solid phase shift: this mode!. 

10. Satisfaction of elastic unitarity for I=J=O TITI partial wave. 

Il. Satisfaction of elastic uni tarit y for I=J=l TITI partial wave. 

Chapter VII 

1. Regge trajectories dominating asymptotic behavior of TIN 
elastic scattering in a) forward direction and b) backward 
direction. 

Appendix 

1. Typical Regge trajectories resulting from using the first 
term of expansion (A.lO) in (A.20) (solid lines) and from 
using remaining terms (dashed line). Physical J 
singularities lying on trajectories marked (0). 
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