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Author's statement

The original work contained in this thesis consists
of the following:

1) The construction of the early distorted trajectory
(DT) model discussed in chapter III and the determination of
its prope;ties:

2) The analysis of the right half plane asymptotic
behavior of the CHKZ model;

3) The derivation of restrictions on general DT models
(chapter 1v);

L) The construction of the revised DT model discussed
in chapter V and the determination of its properties;

5) Various physical applications of the revised DT

model which appear in chapter VI.



Abstract

Dual, crossing symmetric representations with resonances
having finite width are proposed and developed in detail.
In particular, the asymptotic behavior over the whole complex
energy plane is studied and it is shown that certain recently
proposed scattering amplitudes lead to non-Regge contributions
in most ( or all ) of the physically important regions of the
kimematical variables. Conditions for Regge behavior are
developed, a class of models satisfying these conditions ( along
with other physically important requirements ) is presented
and a simple model obeying them is studied in detail. A number
of physical applications are also presented, including an
explanation of the Dalitz plot distribution for pn + 3T, the
behavior of the most important mm phase shifts and a determi-

nation of the 7T S-wave scattering lengths.
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I. TIntroduction

Since the end of 1968 one of the most important developments
in the theory of strong interactions of elementary particles
has been the construction by Veneziano (1968)% of a simple
model combining crossing symmetry and Regge asymptotic behavior
together with the property of duality. The subsequent
successful explanation by Lovelace (1968) of the Dalitz plot
distribution for the process En+ﬂ—ﬂ-ﬂ+, the derivation of 77w
scattering lengths and of a number of other Current Algebra
results, the application of the representation to-bhenomenological
calculations at high energy and its relatively simple extension
to production reactions (N-point function) are several of the
reasons responsible for the great interest in this model
shown by particle theorists.

Soon after the Veneziano proposal, the problem of introducing
the property of unitarity into the original scheme started
attracting a considerable amount of effort. The attempts in this
direction fall roughly into five categories:

i) The K-Matrix approach. This was suggested by Lovelace
in order to study low energy mT,KT and KK phase shifts (Lovelace
1969). As we shall discuss in chapter VI, this method destroys
the crossing symmetry which was built into the Veneziano model.
Since crossing symmetry is difficult to reintroduce while
retaining unitarity, this approach is, in a sense, a step

backwards.

* References will be indicated by the surname of the first
author, the year of publication and, if the reference

is a text, the relevant chapter,



ii) The perturbative approach. This approach was first
suggested by Kikkawa, Sakita and Virasoro (Kikkawa 1969) and
by Fubini and Veneziano (Fubini 1969a). It consists of
treating the original Veneziano amplitude as a Born term and
using the multiparticle Veneziano formula (see Alessandrini
1971) to obtain higher order terms. Although this method is
made more systematic by the operator formalism of Fubini, Gordon
and Veneziano (Fubini 1969b), it has not yet come close to
providing a simple unitary amplitude.

iii) The Roskies approach. This procedure, which has been
examined by Roskies (1968) and used by Lovelace (1968), consists
of substituting trajectories which are complex above threshold
into the original Veneziano form. The result is that, at a
given mass, resonances of arbitrarily high spin ("ancestors")
are introduced.

iv) The Martin approach. Martin (1969) smeared out the
Veneziano amplitude by integrating it with an appropriate
weighting factor. With this method it is possible to introduce
Regge cuts but the resulting amplitudes have no Regge pole
behavior. More recent work along these lines has been
undertaken by Friedman, Nath and Srivastava (Friedman 1970).

v) Modified Beta function approach. These attempts, dating
from the work of Suzuki (1969), substitute a modified Beta
function for the one appearing in Venéziano's formula. The
modifications consist of changing slightly the integrand of the

usual integral form for the Beta function*. 1In a sense, these

* Properties of the Beta and Gamma functions and related
functions can be found in Carrier (1965,ch.5) and in
Gradshteyn (1965,ch.8).



models are like those of type iv) except that the smearing is
done inside the Beta function integrand rather than outside.

The models of types i) and ii) clearly suffer significant
drawbacks. The models of types iii) and iv) may prove worth
studying, but they lack the simplicity necessary for practical
application. We shall therefore concentrate on the models of
type v).

In chapter II we shall examine the ordinary Veneziano model
and, in particular, the properties most relevant to the
developments of the subsequent chapters. We shall use methods
which are directly applicable to the study of the basic problems
of this work.

In chapter III we shall examine three early models of type
v) and analyze some of their most important shortcomings.
Particular emphasis will be given to the difficult problem of
the asymptotic behavior of these models as |s| + » with t fixed
and s in the right half of the complex s-plane.

Chapter IV will be concerned with restrictions arising
from the requirements of Regge asymptotic behavior (]s[ * o
t fixed), Mandelstam analyticity, threshold behavior and
asymptotic behavior for large s with u or GS fixed.

In chapter V we present an amplitude which satisfies the
restrictions obtained in chapter IV. Again, particular care
is devoted to the study of its asymptotic behavior for ls] » =
with t fixed as well as to certain other properties.

Chapter VI presents a number of physical applications of
this model including the behavior of the Dalitz plot distribution

= - -+
for the reaction pn > ™ T 7 , the determination of the physical



features of the most important mm phase shifts and the
comparison of the 7T scattering lengths with both experimental
and Current Algebra results. The p-f° trajectory used is found
to be in reasonable agreement with the (almost linear) one
observed experimentally. The satisfaction of the elastic
unitarity condition for the most important partial waves is also
examined.

Finally, in chapter VII, we shall make suggestions for
future work in this area.

The body of this work is followed by a short Appendix which
examines in detail certain non-leading terms in the model of
chapter V.

Throughout this work we shall use the Mandelstam variables
s, t, and u. In figure I.l these are defined in terms of the
four-momenta of the particles being scattered. We shall also

work with units such that
2 -
4m1T =1 (mTT = pion mass) (1)

so that for the process 7mm+TT the Mandelstam variables are

constrained by
s +t+u-=1, (2)

Regge trajectories which are complex above threshold will

be written in terms of the once subtracted dispersion relation

a(s) = As + b + %st'gg%s;%gy . (3)
1



We use the function ¥(s') rather than the usual Imo(s') since

in part of the work we shall be interested in examining the

integrand for values of s' away from the real, positive s' axis.
Finally, we should mention some of the mathematical notation

which we shall use. The symbol "«" will be used for

proportionality. The symbol "*" stands for "asymptotic to"

F(s)

F(s) v G(s) (s»sy) implies 1lim 0)

S*s

= 1. (4)

The symbol "=" will be used for approximate equality while the

symbol "." stands for asymptotic proportionality:

F(s)
(s)

F(s) ~ G(s) (s*sy) implies lim
s*+s

= eonstant . (5)

(]



II. The Veneziano Model

In this chapter we shall review some of the properties of
the Veneziano model (Veneziano 1968)+*, The usual procedure for
discussing this model appeals to the well known properties of
the Gamma function. We shall not use this procedure in most
of this chapter. 1Instead, we shall use methods applicable to

the models which will be discussed in later chapters.

II.1 The Form of the Amplitudes

According to the Veneziano model, invariant amplitudes for

the process 1+42+3+4 can be written

I _ st I (p-ay(s))T(q-ay(t))
A" (s,t,u) -uszUVI(p’q’r) r(rgau(s)—uv(t))
Psq,T (1)

+ Permutations.

The first term in this equation corresponds to figure II.la
while the permutations refer to figures II.1b and II.lc. The
indices y and v refer to trajectories which can be exchanged in
the corresponding channels. The numbers Ps 9 and r are limited
to those which yield correct asymptotic behavior and poles in
the proper positions and with correct residues. The YESI(p,q,r)
are constants and I is included to indicate that there may be
several invariant amplitudes. Finally, the trajectories are

* An extensive bibliography of work on the Veneziano model and

on related models is found in a review article by Sivers and
Yellin (Sivers 1971)



given by
au(s) = As t+ by (2)

where X is a universal slope and bu is the intercept of the
trajectory of type u.

We shall now consider two examples of such amplitudes.
Both are dominated by the degenerate p-f° trajectory. The
first process is the reaction wm+mw. The invariant amplitude

is defined in terms of the T-matrix by (Veneziano 1968)

HV PO
€ivpo® 4,4,9,4(s,t,u) (3)

u

where e” is the polarization four-vector of the w and qy are

the four-momenta of the pions. The invariant amplitude is

given by
A(s,t,u) = B[A(s,t) + A(s,u) + A(t,u)] (4)

where B is a constant and

_ I'(1-a(s))T(1-0(t))
Als,t) = = S ts)—a(e) ' (5)

In terms of (1) we therefore have
st t
Yop(1s1:2) = ¥08(1,1,2) = Yp§(1,1,2) =B . (6)

Equation (1) still allows the addition of "satellite terms"



such as (p,q,r) = (1,1,3) but these are usually ignored for
simplicity.

The second process is wm=7r, This has three invariant
amplitudes corresponding to the three possible isospin states.

The invariant amplitudes for the s-channel isospin decomposition

are (Lovelace 1968)

4°G,t0) = JLC(s,t) + 0ls,w ] - Lo(e,u)
Al(s,t,u) = C(s,t) - C(s,u) (7)
A%(s,t,u) = C(t,u)
where
C(s,t) = —yL-0(s) T (d-a(t))

I'(l-a(s)-a(t))

(8)

+BI‘(l—oz(s))I‘(l—OL(t))
I'(2-0(s)-a(t)) :

As with the previous amplitude we can easily identify the
coefficients in equation (1). Notice that we now have a
"leading" contribution (p,q,r) = (1,1,1) and a "satellite"

contribution (p,q,r) = (1,1,2).

II.2 Properties of the Amplitudes

We notice first that the functions (5) and (8) can be written

A(s,t) = B(l-0(s),l-a(t)) D)



and
C(s,t) = y(As + At + c)A(s,t) (10)

where ¢ = 2b-1+B/Y and B is the Beta function. It is therefore
sufficient to examine the properties of the Beta function in
order to find the properties of A(s,t) and C(s,t). With the
integral representation for the Beta function we have

1
A(s,t) = Idz 270(8) (1_py-alt) (11)

for Rea(s)<1, Reo (t)<1,
We now examine the properties of the two amplitudes

introduced above.

i) Crossing Symmetry. This requirement demands that the

amplitudes for the processes

—
—+
wi
+
N
+
o

(12)

£

and 1+ + 3+ 2
be related by analytic continuation in the variables s, t and u.

Consider first the reactions w + m; > Ta + T3 and W + T, »

T1 + T3, In the first process the s-channel is physical while
in the second the t-channel is physical (see figure II.2),
The T-matrix elements for these reactions, including isospin

terms, are
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. UV po ~q-r
T (W y+T,m3) € voo® qlqzqaepqu?WzﬂaA(s,t,u) (13)

and

HvVvpo =p_gq-r
Euvpce qquq3 pqrwgﬂlﬂgA(t,s,u) (14)

T(WT2+Tm3)

->
where T, are the isospin vectors of the pions. If we make the

€ =
HVPpO pqr
Eupvceqpr then we see that (13) and (14) are the same function

changes v «+ p, P ** q and use the fact that ¢

provided that A(s,t,u) = A(t,s,u). The latter condition is

satisfied provided that
A(s,t) = A(t,s) . (15)

We can show that (15) is satisfied by making the substitution
§ ** t and the change of variables z <+ 1-z in (11). Thus the
Veneziano representation for TT>TW is crossing symmetric.

We next consider the reactions Ty + T2 > Ty + 7y and
T + %3 -+ ﬁg t Ty. These processes ére shown in figure II.3.
Using (7) and the isospin projection operators for TT+TNW, we

can construct the T-matrix for the first process. We find

T(mimeomamy) = dn¥ndadnirc(s, ) +c(s,u)-c(t,u) 7

éwgﬁgﬂgﬁﬂtc(s,t)+C(t,u)-C(s,u>J (16)

-+

dndakndndrc(s, wec(e,u)-c(s,t)7 |

-+

Comparing figures II.3a and II.3b we fin& that the T-matrix

_
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for the second process is

T(T)T3>Tamy) 3 ﬂgigﬂgﬁﬂfc(t,S)+C(t,u)-C(S’u)]

-+

én&’ngﬁ‘;ﬁf}[c(t,s)+c(s,u)-c(t,u)1 (17)

+

3 miekadndic (e, wy+c(s,u)-c(t,s) ] .

Again, we see that the two T-matrices are the same provided that
(15) is satisfied. The Veneziano representation for TT+TT is
therefore crossing symmetric.

It should not be surprising that the amplitudes described
above are crossing symmetric since they were constructed that
way. What we have seen here is that crossing symmetry follows
from the symmetry in s and t of A(s,t). If A(s,t) is

generalized to the form
1
A(s,t) = sz F(s,z)F(t,1-2) R (18)
0
then the amplitudes will retain their crossing symmetry.

1i) Singularity Structure. The representation (11) for
A(s,t) converges for Rea(s)<1l, Rea(t)<l. In order to examine
the properties gf (9) and (10) outside of this region, we shall
need to find anianalytic continuation of (11). In order to do

this for finite s and Rea(t)<l, we first write

A(s,t) = IOv(S’t) + Ivl(s’t) =
(19)

v 1
- sz 270(8) (qogymalt) sz 27 (8) (1_5)-a(t)
0 AY)
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The first integral converges for Rea(s)<l while the second

converges for Rea(t)<l. We can rewrite IOv by expanding the

(1-z) term in powers of z. We have
v
oL
0

The integration in (20) can be performed for Rea(s)<1 with the

result

0 kt+l-0(s)
- ¢ I(k+a(t))v
- z kiT(a(t)) (k+I-a(t)) ) (21)

IOv(S’t)

The representation (21) provides an analytic continuation of
IOv into the region Rea(s)»1. Wwith (21) it is easily seen that

A(s,t) has poles at

o(s) = k + 1 (k = 0,1,2,...) (22)

whose residues are polynomials of degree k in a(t). Since
o(t) is a linear function of t these residues are also
polynomials of degree k in t.

We shall now examine the consequences of the above exXpansion
for the process mT+mT. From (10) and (21) we see that C(s,t)
has poles at a(s) = j (G =1,2,...) whose residues are
polynomials of degree j in t. The extra power of t comes
from the factor Y(As+At+e) in (10). The variable t is related
to the angle of scattering in the s-channel center of mass

system (see figure II.4) by
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t = é(l-s)(l—coses) . (23)

Thus the pole of C(s,t) at a(s) = j has a residue which is a
polynomial of degree j in coses. In terms of the usual

partial wave decomposition of C(s,t)

C(s,t) = J(2j+1)C

(s)P
]
320

j(cosGS) (24)
it is clear that the pole at oa(s) = j will contribute to Cj(s),
Cj_l(s),...,CO(s). The pole at oa(s) = 1, for example, is just
the p resonance.

We can now examine the singularity structure of the
invariant amplitudes (7). ©Notice first that if the s-channel
is physical we have t<0 and u<0. Since b=3<1 for the p-£°
trajectory we have Rea(t)<l and Reo(u)<l. In this region the
representation (11) for A(t,u) converges and is amalytic.
Therefore C(t,u) has no singularities in the physical s-channel.
From the third equation in (7) we immediately see that the
process TU>TT has no I=2 resonances.

The procedures used in the discussion of C(s,t) can be used

for C(s,u) as well., The only difference is that
u = %(1-5)(1+coses) (25)
so that

C(s,u) = Z (2j+1)C,(s)P,(-cosb ) . (26)
520 J i S
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Since Pj(x) = (-l)ij(-x) we find that the I=0 resonances have
even j while the I=1 resonances have odd j.

A plot of the "resonances" occuring in (7) according to
their (mass)? and angular momentum is shown in figure II.S5.

The set of parameters B=0, A=.90 GeV-z, b=.48 is used while the
elastic partial widths are normalized to Pp=112 MeV. It is

easily seen that the resonances lie on a series of parallel, unit
spaced Regge trajectories.

As was the case with crossing symmetry, it should not be
surprising that the above results were obtained since the
invariant amplitudes (7) were constructed that way. Similar
methods can be used for the process Tm+Tw although the partial
wave decomposition is not so simple. The important result here
is the method by which the singularities of A(s,t) were
determined. Notice in particular that the s-channel singularities

arose from the divergence of the integrand of (11) near z=0.

1ii) Regge Asymptotics. We now wish to examine (11) as
|s| * ® for t fixed. For s in the left half plane the
representation (11) converges. For Rea(s)>1, however, we shall
need an analytic continuation.

To begin the discussion we make the change of variables
(Suzuki 1969) z=e™* in (11) to obtain

[e ]

ACs,t) = de X (1-als)) (g -xy-alt) (27)

0

This integral is convergent in the region —%ﬂ<¢sEarg(l—a(s))<%ﬂ,

Rea(t)<l. As |s| + ® in this region we expect that the major
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contribution to the integral will come from the region of

integration near x=0. 1In order to show this explicitly we write

(27) as

A(s,t) = I1 + 12 + 13 =

ve s w (28)
= j + J + de e-x(l-a(S))(l_e—x)-a(t)

0 ve lfs

where V is a real constant. Notice that since the t term of the

integrand has a singularity at x=0 it is not immediately obvious

that the contour deformation (27) + (28) (see figure II.6) can

be performed. In order to validafe the rotation near x=0 we must
show that

re_i¢5

lim de e7x(1ma(e)) (g _mxy-ale) _

r+0

(29)
T
This condition is satisfied for Reo(t)<l.
We now examine the asymptotic behavior of the three integrals

in (28). An upper bound on |13| is given by

o]

II3I < de e—x(l-Rea(s))(l_e—x)-Rea(t)

v

< e\)Reu(s)Jdx e-x(1_e-x)—Rea(t) (30)
v

N e—vk|s|cos¢s l_vl-Reoc(t)

1-Reo (t)

as |s| » ». The final term in (30) vanishes faster than any
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inverse power of s provided that -3m<¢g<3m. Thus I, does not
contribute to the asymptotic expansion of A(s,t). The same
situation prevails for I2 since the integrand vanishes faster
than any power of s—l as |s| + « for |¢s| < 37. The asymptotic
expansion of (28) is therefore given by the asymptotic expansion

of I With the change of variables y=x(1-a(s)) and somne

1
algebra we have
v|1l-a(s) |

O‘(t)—ley e'yy-a(t)H(y,s,a(t)) (31)
0

I, = (1-a(s))

where

l1-exp{-y/(1-0(s))}

H(y,s,a(t)) = [ v/ (I-a(s)) . (32)

]—Ol(t)

The following conditions are satisfied for the integral in

(31): A) The integral exists; B) For an arbitrarily small €
independent of y we can choose an Sg such that |H(y,s,u(t))]<e
for all |S|>SG and for all y in some interval (0,|s|Yl) with
Y1>0; C) For an arbitrarily small € independent of y we can find
an s, such that [H(y,s,u(t))e-Yzy]<e for all |s|>s5 and for all
y in ({s|Yl,v|l—u(s)|) with y2<l. Under these conditions we can

take the limit |s| + ® of the integral in (31) with the result

A(s,t) » I, n (l-a(s))a(t)_lfdy ey o (E)

0 (33)

o(t)-1

vo(=As) I'(l-a(t))

< 3m. The non-leading terms can be found

as |s| + « for ‘¢s|
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by expanding the function H(y,s,oa(t)) in powers of y/(l-a(s)).
We now turn to the problem of finding an analytic
continuation of (27) into the right half s-plane. We begin by
taking s and t in the region Ima(s)>0, Rea(s)<l, Reo(t)<Ll.
We are free to rotate the path of integration of (27) counter-
clockwise through some angle 3T-¢ to obtain (see figure II.7)
wel(2T-0)
A(s,t) = de e x(1m0(s)) (g mxymalt) (34)
0
‘There are three points which must be checked here. First, that
the analogue of (29) is still valid. This is the case since
Rea(t)<l. Second, that the contour at infinity can be neglected:
el (27-9)
lin de e ¥(1a(8)) (g _mxy-alt) _ o (35)
R+
This is satisfied provided that Rea(s)<l, Ima(s)>0 and ¢20.
Finally, we must make sure that no singularities are encountered
during the deformation. There are, in fact, singularities at
x = #2n7i (n=0,1,2,...) coming from the t term in the integrand.
It is precisely this set of singularities which prevents our
taking ¢<0.
The representation (34) converges for ¢=m<pg<d. We can
therefore use it to determine the asymptotic behavior of A(s,t)

in that region. We change (34) to

A(s,t) = de e'x(l'“(s))(l-e"x)'“(t)z I, +I.+1 (36)

172 73
Cl+C2+C3

where the paths of integration Cl’ C2 and C3 are shown in

> b .
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figure II.8. 1In order to avoid the singularity at x=27mi we
must take V<27 where Vv is the radius of the arc Cz. The final
twvo integrals of (36) have integrands which vanish faster than
any power of s_1 as Isl + ® for —ﬂ+¢+e<¢s<¢—€ where € is small
and positive. The first integral of (36) is identical to Il
of (28). Therefore the asymptotic behaviors of A(s,t) in the
regions -mM+¢+e<¢y<d-¢ and |¢s|<éﬂ are identical.
Using the same method but rotating the contour of 27)

clockwise we find that the asymptotic expansion remains the same

in the region E~p<¢pg<T-¢~-£. Since $20 we therefore have the

result
AGs,t) v (as)* " 1r b ey (37)

for Rea(t)<1, ~THe<d <m-g. Substituting this result into the
Veneziano formulae for mm+7T and TT>Tw we find that the
asymptotic behavior is characteristic of processes dominated by
exchange of the degenerate o-f£0 trajectory.

As an example we consider the I=1 amplitude of (7) as
ltl * ©, Substituting the form (37) for A(t,s) and A(u,s) and

using the fact that s+t+u=zl we obtain

A (s,t,u) v YT (L-a(s)) { (-Ae)2(S)_ (3@ (s)y

- (38)
= =YT(1-a(s)) (A£)®(8) (gmimals)

Notice that a signature factor arises from the combination of

the two terms.
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There are several points to be mentioned before proceeding
further. First, the result (37) can be shown to hold even for
Rea(t)>1l. In order to do this we integrate (27) by parts
until the resulting integral converges in the desired region of
the t-plane. We then proceed with the same analysis as above.
Second, the Venezian6 model does not give Regge behavior for
|s| + o, arg(s)=0. The reason for this is that A(s,t) has an
infinite series of poles on the real, positive s-axis. If
the trajectory functions are given an imaginary part above
threshold then the poles can be shifted onto the second sheet
of the s-plane and Regge behavior can be obtained for arg(s)=0

(Roskies 1968).

iv) Duality. This property, while not firmly established,
has been built into the Veneziano model. In contrast to
interference models, in which the amplitudes are built from
direct channel resonances plus crossed channel Regge pole
contributions, dual models are built either from resomances or
from Regge poles. The simplest quantitative statement of duality
is found in terms of finite energy sum rules (FESR) (see Jackson
1970 for a review). If resonances are used to saturate the left
hand side of an FESR then the right hand side should show
characteristic Regge pole behavior.

As an example for the Veneziano model, we saturate the FESR

L rya () o) {8
0

with the zero width "resonances" of C(s,t). We define C(s,t)
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by choosing 8=0 in (8). The left hand side of (39) can be

integrated explicitly to give

myoa(t) I'(M+ta(t)+2)
AN T(a(t)+2)T (M+1) °

N
% st ImC(s,t) = (40)
0
M is the largest integer such that AN+b-1>M. The right hand
sides of (39) and (40) are compared in figure II.9 with b=.5,

¥=1.0 and A=1 GeV 2 for AN=2 and AN:z4.

v) Asymptotic Behavior, 6 =m. The fact that C(s,t) and
C(s,u) exhibit Regge behavior as Itl > © with s fixed is not
sufficient to guarantee that the I=0 amplitude of (7) is Regge
behaved. We must still make sure that the C(t,u) term does not
cause any difficulty.in this limit. To keep the discussion
consistent with our earlier examination of Regge behavior we
shall examine the function A(s,t) in the limit Is! + o, u fixed.

In terms of figure II.la this corresponds to [sI > o, SS > T,

We begin by making the change of variables e_x=z(l-z)nl
(Suzuki 1969) in (11) to obtain
<]
A(s,t) = de e-x(l-a(s))(l+e—x)2b—2—k(u—1) . (41)

00

This representation converges for 2b-1+A(1l-Reu)<Recn(s)<1.

If we take Imo(s)>0 then we can rotate the integration contour
of (41) in the manner shown in figure II.10. The rotation is
hindered only by the fact that the second term in (41) has
singularities at x = +(2n+l)7i (n = 0,1,...). There are no

singularities in the right half x-plane. The new representation
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converges for ¢-m<¢g<-3m, 2b-1+A(l-Reu)<Rea(s). It is easily
seen that for ¢-m<¢4<-3m-8 the integrand of (41) vanishes
faster than any power of s_l as wve move away from the point

x = 1(m-€) along either C1 or CZ' The leading behavior of
(41) is thus

AGs,t) v o(e” (78 [Tma(e) (42)

as |s| » «, u fixed, -m<¢-T<pg<-4m-8. This result can also be
shown for 3m+8<¢g<m-0p<m by rotating the contour in the opposite
direction.

Notice that the real s-axis is excluded as it was in the case
of Regge behavior. If we set I¢s[=ﬂ then we no longer obtain
the exponentially decreasing behavior (42). It is hoped that
when trajectories which are complex above threshold are
introduced the decreasing behavior will persist even on the real
s-axis. This problem has been studied in the contex£ of the
Veneziano model by Roskies (1968)

Einally,-we should point out that the region |s[ +> o,
u fixed, ¢<|¢S|<éﬂ can be studied by examining the behavior of
A(s,t) for ltl + o, u fixed, %ﬂ<[¢tl<ﬂ—¢. The same exponentially
damped behavior as in (42) will naturally persist.

Because of the exponentially decreasing behavior just off
the real axis, the C(t,u) terms in (7) are usually ignored

" asymptotically (|t| + =, s fixed).

vi) Asymptotic Behavior, fixed angle. For completeness, we

examine the behavior of A(s,t) as |s| + « with 6 fixed.
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In order to simplify the discussion we define the quantity

Xs = 3(l-cosfyg) (43)

so that (23) gives t=(l-s)xg for 7mm elastic Scattezing. With

the change of variables e ¥ = z(l—z)_XS (11) becomes

e~x(1-As)z—b(l_z)xs(1-A)+1-b
T-(1-%s)z (44)

o
A(s,t) = de

-
where z=z(x). Notice that for Xs=0(1) the change of variables
above reduces to that used for the fixed t(u) case. The
representation (44) converges for 1>Rea(s)>A+b+(b-1)/xg. If we
also take Ima(s)>0 then we can perform the path rotation of
figure II.11. It is easily seen that the first singularity
which interferes with the deformation is a pole coming from the

(1-z+z)(s)-1 term of (44) at

x = P = (I-Xg)ln(l-Xg) +Xsln(xs)+imys (45)

where Xg is real. The new representation converges for
¢p=-m<pg<-3m, Rea (s)>A+b+(b-1)/Xg. The major contribution to the
integrand will come from near the point P of figure II.11.

Since similar arguments can be used for %ﬂ<¢s<ﬂ—¢ we finally

obtain
A(s,t) n 0(exp (RePxReo(s) - NXSIIma(s)])) (46)

as fs] +> o %n<]¢él<ﬂ-¢<ﬂ, 05 fixed. Since 0<Xxs<l, the factor
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multiplying Reo(s) is negative. Thus (46) vanishes exponentially
with s as |s| + © in the above region. As usual, we must take

¢ non-negative. Notice, however, that if we set ¢=0, |¢S|=ﬂ we
will receive contributions from near all of the poles in

figure II.11. Because these poles are in the left half x-plane,

A(s,t) will still be exponentially decreasing.

vii) Zeros of the Amplitudes. The poles which were found
in part ii) of this section should be observed experimentally
as "bumps" in the scattering cross sections. These bumps
represent only half of the structure of the Veneziano model.

We should also expect to find "holes" where the amplitudes have
zeros. In order to find these zeros we use the representation
(5) for A(s,t). Using the weil known properties of the Ganmma

function we find that A(s,t) has zeros when
a(s) +o(t) =n +2 (n=20,1,2,...) (47)
unless a(s) or a(t) is a positive integer.
In addition to the zeros (47), the function C(s,t) has a
zero at

s + t=-c/k = (1-2b-B/Y)/x . (48)

If B=0 then (48) is a member of the set (47) with n=-1,



24

IT.3 Summary

We have seen that the Veneziano model has an infinite

number of poles lying on parallel, unit spaced Regge trajectories.
The most leading of these poles can be chosen to correspond to
observed resonances in both mass and angular momentum content.
. The behavior of the term C(s,t) is satisfactory as |s| » » for
t fixed, u fixed or for fixed angle provided that we stay away
from the real, positive s-axis. The properties of duality and
crossing symmetry are built into the model,

Many of the difficulties of the Veneziano model can be
traced to one fact: The trajectories have no imaginary part
above threshold. For example, the model cannot be unitary.

Near the p pole the j=1 partial wafe projection has an imaginary

part
M2
ImAj:l(s) < §(s Mp) . (49)
The elastic unitarity relation,

ImAj(s) « |Aj(s)|2 , (50)
therefore has a factor 6(s—M;) on the left and a factor

62(5-MS) on the right. This difficulty would be avoided if the
P reéonance had a nonzero width. Notice also that if the
trajectories had an imaginary part ﬁith the ﬁroper behavior at
infinity then the asymptotic behavior discussed above could be

extended to the real axis (Roskies 1968). Finally, we should
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mention that for many physical applications of the Veneziano
model it i1s necessary to use trajectories which are complex
above threshold in order to have a gsmooth behavior. Certain
applications of the Veneziano model will be discussed in
chapter VI.

The introduction of complex trajectories into the Veneziano
model is not simple. In the models of Lovelace (1968) and
Roskies (1968) there are resonances with the same masses as
those lying on the leading trajectory but with higher spin.

The remainder of this thesis will be concerned with models which
avoid these "ancestors" while introducing complex trajectories

into a Veneziano-like form.
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III. Early Models

In this chapter we shall examine three models which
introduce finite-width resonances into a Veneziano-like form
while avoiding the problem of ancestors. All of these models
have double spectral functions which are non-vanishing in
reasonable regions. Two of the models (Cohen-Tannoudji 1971,
Gaskell 1972) can be adjusted to provide the correct threshold
behavior for both the real and imaginary parts of all partial
waves. These properties are not shared by the Veneziano model.
However, each of the models has serious difficulties (Atkinson

1972, Gaskell 1972). These will be discussed below in detail.*

III.1 Models to be Examined

All of the models of this and succeeding chapters will
redefine A(s,t) by replacing the Beta function integral
representation (II.11) with the representation

1
A(s,t) = sz zua(s,z)(l_z)-a(t,l—z) . (1)
0
The three models which we now describe differ only in their

definitions of a(s,z) and a(t,l-z).

i) The Suzuki Model (Suzuki 1969). In this model the

trajectory function is defined by

* Other models which have been proposed along these lines are
those of (Bugrij 1971), (Ramachandran 1971), (Mestres 1971)
and (Schmidt 1971). All of these suffer from the difficulties
mentioned in this chapter.
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a(s,z)= a(s) - y(z)ha(s) (2)
where
a(s) = s + b + Ac(s) (3)
and
- 5 ' ¥(s')
Ao (s) = Ejds m . (4)

1

The function Y(z) is a Van der Corput neutralizer, defined such

that
Y(0) = y(1)-1 = 0 ()
and
m m
d Y(z) = 4 yQ-z) =0  (m=l,2,...). (6)
az" 2=0 dz™ z=0

The function chosen by Suzuki to satisfy these requirements is

z
y(z) = %de (—lnx)lnx(—ln(l-x))1n(1_x) (7a)
where 1 0
¢ = [dx (-1nx) %% (~1n (1-x)) 100D (7b)
0

ii) The Distorted Trajectory (DT) Model (Gaskell 1972).

In this model we define the trajectory function by

1/(1-2)
a(s,z) = a(s) - %jds' §$%§T%§7 (8)
1

where a(s) is given by (3) with (4). The use of ¥(s') rather

than Ima(s') in the dispersion relation now becomes important
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not necessarily on the line s' = (1,®),

iii) The CHKZ Model (Cohen-Tannoudji 1971). This model

uses the trajectory function

o(s,z)

= a(s(1l-2)) + f(s(1-z))/(lnz) . (9)

In the original work the functions

a(y)

and

£(y)

are used where B

III.2 Properties

Ay + b + n(l-y)% (10)
o

B(1-y) (11)

and n are constants.

of the Models

We shall now
the results with

model.

i) Narrow Resonance Limit. If we take ¥(s')

examine the above models in detail, comparing

those found in chapter II for the Veneziano

0 then both

the Suzuki and DT models reduce to the Veneziano form (II.11).

This property is

ii) Crossing

not shared by the CHKZ model.

Symmetry. Since (1) is in the form (II.18),

the amplitudes constructed from these models will be crossing

symmetric.
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iii) Singularity Structure. The integral (1) converges
only for Rea(s)<l, Rea(t)<l in all the models under consideration.
In order to examine the singularities in Re0(s)>1 we shall need
an analytic continuation. As with the Veneziano model, the
singularities of A(s,t) in the s-channel come from the z=0 region
of integration in (1). We therefore need only examine this
region.

In the region Rea(s)<l, Rea(t)<l the Suzuki form of (1) can

be written

1
A(s,t) = jdz z-a(s’z)(l—z)-a<t’l_z)
Vv

Y

. (12)
[dz{z-a(s)(l-z)—At-b[Y(z)lnzAa(s)]J

1
Tk
=0

& 0~ 8

"
3 x[(Y(1-2)-1)1n(1-2)Aa(t) 15} .

The first integral in (12) converges as long as Rea(t)<l. Since
Y(z) and Y(l-z)-1 vanish faster than any power of z as z+0, only
the j=k=0 term of the sum in (12) diverges as we move into the
region Rea(s)>1l. The j=k=0 integral can be performed. Writing

the convergent terms mentioned above as a remainder we have
A(s,t) =.Bv(1—u(s),1—At—b) + Rv(s’t) (13)

for Rea(t)<l. Bv is the incomplete Beta function. Thus A(s,t)
in the Suzuki model has a series of poles at a(s) = n + 1
(n=0,1,2,...) with residues which are polynomials of degree n
in t. This is precisely the same as the singularity structure

of the Veneziano model except that if ¥(s')>0 for 1<s'<® the
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poles are shifted onto the second sheet of the s-plane
becoming resonances with finite positive width. Notice that
0(s) has a branch point at s=1 so that A(s,t) has a cut starting
there. This branch point and the poles mentioned above are the
only s-channel singularities in Suzuki's model.

The leading singularities of the other two models can be
determined with the above method. In the DT model the trajectory

functions have the z+0 limits

a(s,z) + a(s)

(14)
a(t,1-z) > At + b
Thus the leading singularities of the DT model are given by
\Y
A(s,t) = sz z—a(s)(l--Z)—At_b
0 (15)

Bv(l-a(s),l-At-b) .

This is the first term in an expansion similar to (12). The
singularity structure of (15) is the same as that obtained from
the Suzuki model. Similarly, the expansion of the CHKZ model

has the first term

AV
A(s,t) = e_f(s)jd; 2% (8) (1_5y=0(0) -£(tz) (16)
0

Since f(y) is analytic near y=0 the final term in the integrand
of (16) can be expanded in powers of tz, We find that the

CHKZ model also has poles at a(s) = n + 1 (n=0,1,2,...) with
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polynomial residues of degree n in t.

Variations of the Suzuki model can be found which possess
additional singularities such as cuts. The CHKZ and DT models,
however, must have additional singularities coming from non-
leading terms in the expansions analogous to (12). In the CHKZ
model these additional singularities are multiple poles lying
on non-leading trajectories. The extra singularities in the
DT model may be non-leading simple poles, multiple poles or cuts
depending upon the precise form of ¥(s'). It is possible to
choose ¥(s') so that no multiple poles appear in the DT model.

Finally, notice that the functions A(s,t) in both the DT
and CHKZ models have branch points at s=1. These arise because
in both models a(s,z) has a singularity at z=l—s—1. As s1,
this singularity encounters the lower endpoint of the integration
(1) giving a singularity at s=1.

None of the models has singularities on the physical sheet
of the s-plane except for the cut along the real, positive

s-axis starting at s=1.

iv) Double Spectral Region. This region is defined as the

part of the real s - real t plane in which

Disc‘t{niscsA(s,t)} = -4p(s,t) 2 0 . (17)

The function p(s,t) is called the double spectral function.
The trajectory functions of the Suzuki representation are

cut in the following regions:
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Discsa(s,z) 0 in s>1,
(18)
Discta(t,l-z) # 0 in t>1 ,

Therefore, the double spectral function of the Suzuki model is
nonzero in s>1,t>1. This region is shown in figure III.1,

The trajectory functions of both the DT and CHKZ models are
cut as follows:

Discsa(s,z) 2 0 in z<l-s-l,

1 (19)

Discta(t,l—z) 2 0 in z>t~

With (1) we see that these models have the double spectral region

s>1,t>1, sty ey (20)

This region is shown in figure III.1 along with the exact region

for scattering of scalar bosons in a ¢%-interaction Lagrangian:
s >1, t >1, (s-1)(t-1) > 3 , (21)

We should mention in passing that both the DT and GCHKZ
models can be altered slightly so that they have the ©° double
spectral region (21). 1In the DT model this is done by using

(1-32z)/(1-z) as the upper endpoint of integration in (8).

v) Threshold Behavior. For amplitudes satisfying the
Mandelstam representation there exists a simple relationship

between the boundary of the double spectral region and the
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threshold behavior (see, for example Frautschi 1963, ch. 4).
Since we do not know whether the three models under discussion
can be expressed in the form of the Mandelstam representation
with a finite number of subtractions, we shall use a variation
of the method.

The behavior of A(s,t) near s=1 can be examined by expanding

this function in powers of t:

vk(s)tk i (22)
0

A(s,t) =
k

ne~-18

If the vk(s) are known then the behavior of the partial waves
near s=1 can be found.

We shall examine the amplitude for the process ﬂ+ﬂ—*ﬂ+ﬂ-.
With (II.7) and (II.10) we find the amplitude for this process

to be
AT (s,t,u) = y(As+tAt+c)A(s,t) (23)

where A(s,t) is now given by (1). With (22) and (23) we have
A+—(s,t,u) = Y(As+c)v0(s) +
(24)
+y] [Qs+e)v, () v, (s)3e* .
k=1
With (II.23) we see that each power of t introduces a power of
cosfg. As long as the vk(s) increase slower than (s--l)_k as k

increases then the leading behaviors of (24) as s+1 are given by

-
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A7 (8) v Y(re)vg(s) (25a)
and ‘
+- (1) 2 (s=1)7
Aj (s) N Y[(A+c)vj(s)+kvj_l(s)] 23+ | (25b)

where j=0 in (25b).
The functions vj(s) appearing in (25) could be determined

from the relation

dj

|[_j' A(S’t))
T odt

II—'

vj(s) = . (26)

(37

t=0

Instead of using (26), we shall estimate the vj(s) by using

the relation
- 1 ] 1 [ A
vj(s) = 50T §dt A(s,t") t _ (27)
C

where the circular path C is chosen to be small enough to avoid
the nearest singularity in t'.

In all of the models under discussion, A(s,t) is a real
analytic function for s,t<l and real. Using the Schwartz
reflection principle, we therefore see that for s>1, real and

t<l, real, A(s,t) has the real and imaginary parts

ReA(s,t)

%SumsA(s,t) = 3[A(s+ie,t)+A(s-ig,t)] (28a)

ImA(s,t)

—%iDiscsA(s,t) . (28b)

In all three models, SumsA(s,t) has a singularity at t=1.

Using the path of integration of figure IIT.2 and equation
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(27) wve therefore have

2w
—eyd - .
Rev, (s) = ilg%l—— Jdn e ianumsA(s,(l-e)eln) (29)
0

]
where € is a small positive number. In all of the models
SumSA(s,(l—e)eln) -+ F(ein) independent of s as s*l., Therefore,

as s-1, Revj(s) -+ Révj(l) finite. Thus we find, with (25),

ReAj*'(s) ~ (s=1)3  as s-1. (30)
In the model of Suzuki, the function DiscsA(s,t) also has a
singularity at t=1. With a treatment similar to that above we

find
t- J
ImAj (s) ~ (s-1) as s-1. (31)

As we shall see shortly, this behavior is inconsistent with
elastic unitarity near threshold.
With (20) and the definition (17), we see that DiscsA(s,t)

in the DT and CHKZ models has a singularity at
t = £(s) = s/(s-1) . (32)

With the path of integration shown in figure III.3 and with

equation (27) we have

T

, . 2

) I (g=1)d - .

Imvj(s)=il2%%——[igl) Jdne injDiscSA(s,(l—s)f(s)eln) (33)
0
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where € is small and positive. The trajectory functions in

both models can be chosen so that#*
Disc_A(s, (1-e)£(s)el™) . (s-1)3/2p(el") (34)

as s*l. The function F(x) cannot be a polynomial of finite
degree in x. If this were the case then (36b) below would
follow only up to j=n+l with n the degree of F(x). With (33)

and (34), we have
Inv, (s) - (s-1)3%3/2 (35)
as s»1 and finally, with (25),
s (s) - (-1 (36a)
A () ~ (-0 (5eg) (36b)
The elastic unitarity relation for ﬂ+ﬂ~+ﬂ+ﬂ— can be written

3
+- s-1 +-
ImAj (s) = [—;—] IAJ (s)|? + Rj(s) . (37)

' intermediate

Rj(s) contains contributions from the ﬂ_ﬂ+ and 77
states and can be ignored without effecting the following

arguments. If we substitute (30) and (36) into (37), we find

* The function which accomplishes this in the CHKZ model is
very complicated. See footnote 2 of (Cohen-Tannoudji 1971).

-
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that the power dependence on (s-1) is the same on both sides
of (37) for all partial waves except j=0. As we shall
demonstrate in comnection with the model of chapter V, the j=0
threshold behavior can be corrected by adding a satellite term.
Notice that the result (36) depends upon the boundary of the
double spectral region through (32) and upon the behavior of
DiscsA(s,(l-e)f(s)ein) as s>l.
We shall now examine the restrictions om the trajectory

functions which lead to the behavior (34) in the DT model.
With (1) and (8) we have

s-1

DiscsA(s,(l—e)f(s)ein) = _Zdez{z—Rea(s,z)
° (38)

in '
) (1-g)~0((1-€de s/ (8-1),172) o4y (1na(s) 1n2) } .

If Imo(s) vanishes faster than 1/(1ln(s-1)) as s+1 then we

find that

_1)1—u(1)

DiscSA(s,(l-E)f(s)ein) N —Zi[gg— Imo(s)

(39)
s-1 f ~a(1) Aq(il-g)el”
Xln[—;—]qu q e

0

as s+1. Therefore (34) is satisfied provided that

(s_l)a(l)+%

Y(s) = Imo(s) ~ - —_TETE:IT—— (s=+1). (40)

It is interesting to notice that with this choice for ¥(s) no

multiple poles appear in the DT model.
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vi) Asymptotic Behavior, t fixed. We shall now use the
methods of chapter II to examine the behavior of A(s,t) as
|s| » ® with t fixed.

Ths Suzuki model can be treated in precisely the same way
as was the Veneziano model (Suzuki 1969). All of the contour
deformations are valid so that we find

Als,t) n (-rs)%(B)-1

I'(1-oa(t)) (41)
as ]sl + ®, -mte<arg(-s)<m-¢. There is, however, one major
difficulty with this model. Despite the fact that a(s) is now
complex above threshold, we still cannot extend the Regge
behavior to the real, positive s-axis. This problem stems from
the fact that Y(e-x) defined in (7) diverges exponentially as
x| + o, |argx|~+ 37, Thus thevcontour rotation of figure II.7
can only be performed through angles 3m-¢ with ¢>0.

There is nothing in the behavior of the DT model at x=0 and
x=® to prohibit the contour rotations of figures II.6 - II.S8.
Applying the contour rotation of figure II.6 to the integral

representation

ix e—x(l-a(s,e_x))(l_e-x)-u(t,l-e-x)

A(,S:t) = j (42)

0

we find that the leading behavior of A(s,t) is just (41) as
|s! + o for Iarg(—s)l < 471, With (8) we see that u(s,e_x) has

a series of singularities at

x = -In(l-s™1) + 2011 (n = 0,1,2,...) . (43)
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Although these singularities can lie in the right half x-plane,
they do not interfere with the contour deformations. The
function a(t,l-e_x), however, does present a problem. It has

singularities at
x = Int £ 2n7i (n =0,1,2,...) . (44)

For |t| < 1 these singularities lie in the left half x-plane.

We can therefore perform all of the contour deformations of
chapter II with the result that A(s,t) has the asymptotiec
behavior (41) for |arg(-s)| < m-€ and |t| < 1. For [t] > 1 the
singularities (44) lie in the right half x-plane and can destroy
the Regge behavior. For example, the integral around Ct of
figure III.4 gives a contribution with a factor ta(s) as

[sl + @, t fixed. This term clearly dominates the Regge behavior
(Atkinson 1972, Gaskell 1972).

Even more problems arise with the CHKZ model. This model
can be shown to have Regge behavior as |s| + ® in the left half
s-plane (Cohen-Tannoudji 1971). We now make the change of
varilables y==(l-z)lnz in (1), substituting the CHKZ definition

of a(s,z). We have

A(S:t) = 'de[(l_zi_zlnz)exsyz-o(S(l-Z))
0

(45)

x(1_z)"“(tz)e“f(5(1—2))e-f(tz)

where z = z(y) and where we have written 0(s) = As + 0(s).

In order to determine the asymptotic behavior of A(s,t) in the
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right half s-plane, we must perform the same rotations in the
y-plane as we did in the x-plane for the Veneziano, Suzuki and
DT models. The functions o(tz) and f(tz) yield singularities

in the y-plane at
y = (1-t™1) (ntt2ami) (n=0,1,2,...) . (46)

These singularities imply non-Regge contributions similar to
those of the DT model (Atkinson 1972, Gaskell 1972). 1In addition,
the term in brackets in the integrand of (45) yields a series

of singularities in the approximate positions
y = l+ln((2n+1)ﬂ/2)i(2n+1)iw/2 (n = 0,1,2,...). (47)

The exact positions of the first few singularities are

Yy 2.5614.41, Vg = 3.42%10.8i, Vg = 3.86%17.14i. As is seen
in figure I1I.5, the contour rotation can only be made through
an angle of 3w-30.5° before the singularity at y=y1 interferes,
Thus, even if there is no interference from the singularities
(46), the CHKZ model cannot have Regge behavior as lsl *> ® for

any t if |arg s| < 30.5° (Atkinson 1972).

IiI.3 Summary and Discussion

We have examined three models which have finite width
resonances and a Veneziano-like form. The amplitudes constructed
from these models are ancestor~-free and crossing symmetric.

The leading singularities are resonances lying on the p-£0
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trajectory. Non-leading singularities can be simple poles,
multiple poles or cuts depending on the model used. We have
shown that if the boundary of the double spectral region is
given by t -~ (s--l)-l as s>l then, provided that (34) is
satisfied, the partial wave projections of the amplitudes can
have the correct threshold behavior. The Suzuki model does
not have the proper type of double spectral boundary but the
DT and CHKZ models do. The most important results arise from
the study of asymptotic behavior. For some t the DT model is
Regge behaved for all s on the physical sheet of the s-plane*
as |s| + ®, For other values of t, however, this model has
non-Regge behavior for some arg(s). The CHKZ model is non-Regge
for all values of t as !s| + o yith larg s] < 30.5°, 1In addition,
for some values of t it lacks Regge behavior for an even larger
portion of the s-plane. The Suzuki model is non-Regge as
|s| + » for arg(s) = 0,2m, |

The prospects for extending the Regge behavior of the Suzuki
and CHKZ models to the real, positive s-axis are not good.
The most promising approach therefore appears to be a search for

a new model in the spirit of the DT form.

* The broof of Regge behavior along the real, positive s-axis
is somewhat lengthy. It follows along the lines of a
similar proof given in Chapter V.
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IV. Restrictions on DT Models

We shall now examine a generalized form of the DT model.
The definition (III.1) for A(s,t) will be retained. We define

@(s,z) and two useful related functions, f(s,z) and g(s,z), by

[os]

_ s v _Y(sY)
a(s,z) = As + b + nIds S (sT-5)
¢ (z) (1)

= As + b + g(s,z) 2 a(s) - £(s,z)
where 0(s) is defined by (III.3) with (I11.4). The function
¢ (z) is a real, increasing function of z for 0<z<l such that

$(0) =1, ¢(1) = = ., (2)
We therefore have

a(s,0) = a(s), a(s,1) = As + b . (3)

Since the integral defining a(s) is required to be convergent

we demand that
s_lT(s) + 0 as s > o (4)
We shall also require that ¥(s) be such that

a(s,z) v As as |s| +> o (5)
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The amplitudes constructed from this model are clearly crossing
symmetric since (III.1) is in the forn (I1.18). We shall now
obtain some of the other properties of these models in order to

restrict the functions ¢(z) and ¥(s').

IV.1 Unitarity Cut

If ¥(s') is a real analytic function of s' for s'>1 and
real then A(s,t) is a real analytic function of s and t for
s,t < 1 and real. If we increase s so that s>1 and slightly

above the real axis then 0(s,z) will have an imaginary part
Imo(s,z) = —éiDiscsa(s,z) = ¥(s)O0(s-¢(z)) . (6)

In order for a(s) to have a positive imaginary part for s>l

and real, we must have
¥Y(s) >0 (1L < s < ©, real) . (7N

Substituting (6) into (III.1l) we find
471 (s)
ImA(s,t) = -sz{z-Rea(s’z)(1_2)““(t»l—z)
" (8)

Xsin[Imq(s)lnz]}

for s>1, real and t<1l, real. We have used the fact that
Y(s) = Imo(s) for s>1 and real and we have written the inverse

function of ¢(z) as ¢_1(s), i.e.
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0007 (s)) =5 . (9)

The function (8) must be an analytic function of s. We
therefore require that ¢_1(s) be an analytic function of s and
that the integral in (8) converge. The first requirement is

satisfied provided that ¢(z) is analytic in 0<z<1 and
2 0 0<z<1y | (10)

If Red(s)<1l then the integral (8) converges near the lower

endpoint. Notice, however, that

8
£(s,071(s)) = %jds' o (11)
1

diverges logarithmically. The function f(s,z) is defined in
(1). 1If we integrate f(s,z) by parts then we can write the

first term in the integrand of (8) as
¢(z) ]
s d (¥(s'")
z—ReOL(S,Z) =[Z—REOL(S)-‘T'F{ ds'ln(s--s')d?(-—-—?,—)

(12)
X [S_¢(Z)J%W(¢(Z))[¢(Z)]—llnz

In deriving (12) we have required that Ima(s) vanish at threshold
Y1) =0 . (13)

This is necessary if Reoa(s) is to be well behaved at s=1. With

(12) we find that there is no divergence of (8) at the upper
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endpoint of integration provided that

THOENII) 1 Mz | = L 1ae7ligy)s (14)

z=¢

for s>1 and real.

IV.2 Double Spectral Region

We can now ihcrease t above threshold while keeping s>1 and
real. The function a(t,l1-z) is cut for z>l—¢—l(t). Using the
definition (III.17) and the arguments of section IV.l1 we find

1
o(s,t) = jdz{z-Rea(s,z)(1_2)—Rea(t,1-z)e(¢—l(s)_z)
0 | (15)

X®(¢-1(t)+z—l)sin[1ma(t)ln(l—z)]sin[Ima(s)lnz]} .
The double spectral function is nonzero in the region

s>1, t>1, " () + o7l(e) 21 . (16)
The boundary of this region is given by the equality in (16).

One of the requirements we used in order to obtain the
correct threshold behavior for the DT model of the last chapter
vas that the double spectral boundary have the asymptotic

behavior (see III.32)

t(s-1) Vv constant (17)
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as s*1 from above. If (17) is to be satisfied then we have,

with (16),

[6(1-2)1[¢(2)-1] ~ constant (18)

as z-+0,

IV.3 Asymptotic Behavior, t fixed

As in the Veneziano, Suzuki and earlier DT models, we make
the change of variables z=e"x to write (III.1) in the form

(I11.42):

o]

-X -X
A(s,t) = de e—x(l—a(s,e ))(l_e-x)-a(t,l-e ) (19)

0

where the trajectory functions are now defined by (1). As with
the early DT model, it is a simple matter to show that the
asymptotic behavior of (19) is
ve i¢s
As,t) ~ de ex(1mals,e™)) () mxy-u(t,1-e7¥) (20)
0
as |s| » @ with ~3m<¢g=arg(l-a(s))<ir and Rea(t)<1 where v is
a constant. With the methods of chapter II we can show that
the asymptotic behavior of (20) is the usual Regge behavior
(I1.37) or (III.41).
In order to continue (19) into the region Rea(t)<l, ¢-m<
arg(l-a(s))<¢, we perform the contour rotations of chapter II.

The rotation of figure II.7 accomplishes the continuation.
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The additional deformation of figure II.8 enables us to
derive the asymptotic relation (20) fer |s| > o, ¢p-T<pg=
arg(l-a(s))<¢ and finally to show that A(s,t) is Regge behaved.
The rotations are performed while a(s) is fixed in the initial
region -m<arg(l-a(s))<-3m. We should emphasize at this point
that ¢g is the final value of arg(l-o(s)), i.e. the direction
in the (l-a(s))-plane in which we will eventually study the
asymptotic behavior.

While a(s) is in the initial region, we must verify three
points in order to validate the rotations:

i) We must show that singularities at x=0 do not hinder

the rotation. This condition is

re‘i¢s
-x -x
lim de e—x(l-a(s,e ))(1_e—x)—a(t,1—e ) =0 . (21)
r=+0

ii) We must show that the arc at infinity may be neglected:

EICLEY

-x -X
lim de e—x(l-u(s,e ))(1_e—x)—a(t,1—e ) =0 . (22)

R+

iii) We must show that no singularities occur in the
integrand of (19) which interfere with the rotation.

We shall postpone an examination of conditions (21) and
(22) and the derivation of (20) until a specific choice has been
made for the function ¢(z) (chapter V). Here we shall examine
some very strong restrictions on the function (1) which can be
obtained from condition iii) above. We begin the discussion by

noticing that a(t,l-e_x) has singularities when
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t = ¢(1-e" %) (23)

coming from the lower endpoint of integration in (1). Suppose
we demand that when t is in some sector about the real, negative
t-axis, larg(—t)|<ﬂ-6, the singularities in x implied by (23) do

not occur in the right half x-plane. This demand can be written
larg(¢(1-e™™))| < 8  for Rex > 0 . (24)
Condition (24) 1is sufficient to guarantee that t-dependent non-
Regge behavior similar to that observed in the CHKZ and DT models
of chapter III does not occur for A(s,t) as lsl *> ® with t fixed

in the sector farg(-t)!<n-6.

If we now define the new function
B(y) = 1o (1~ 1/y)m/26 (25)
then condition (24) becomes
Ind(y) > 0 for Imy > 0 . (26)
We next notice that a(t,l-e-x) will have singularities wherever
¢(1-e_x) is singular. 1In order to prevent non-Regge behavior
coming from this source it is sufficient to require

0(1-e7%) analytic in Rex > 0 . (27)

In terms of the function (25), condition (27) becomes
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$(y) analytic in Imy > 0 . (28)

Finally, we notice that (2) implies

(=) =1, |3(0)] = o (29)

Properties (26) and (27) imply that F(y) is a Herglotz

function and therefore has the representation (Eden 1967, ch. 6)

B = aeny 4 o 0@ U (30)
The integrals
Imd (x) Imd (x)
de —1%2— and Idx I@(x”d(lﬂ{‘) (31)

must be convergent. With (29) we see that $®(y) is singular at

y=0. In order to examine this singularity we substitute
Ind(x) = wd(x) (x = 0) (32)

into (30). Any singularity stronger than this would cause the

first integral in (31) to diverge. We find

$(y) = -w/my (y = 0) (33)

which gives, with (25),

208/w (2

R

¢(l-z) = [~ %lnz] 0) . (34)
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We can reach the same conclusion by examining the Herglotz

function
3(5) = il¢(1-el¥)1™/28 | (35)

for large values of y.

We shall now examine the implications of the behavior (34)
for the function a(s,e_x). This function has singularities when
s=¢(e-x). For large Is] these s-dependent singular points will
occur near singular points of the function ¢<e—x) itself since
only near these points does ¢(e—x) become unbounded. In order
to satisfy condition iii) we demand that ¢(e_x) be analytic in
the right half x-plane. With (34) we see that d(e”*) is singular
at x=0. Thus if any s-dependent singularity violates condition
iii) for large |s| it will occur near x=0 at a position defined

'

by the relation
s = 0™ = ¢(-x) = [- L2/, (36)

When examining the asymptotic behavior of A(s,t) for Ims>0, we
make all contour rotations into the upper half x-plane as in
figure II.8. 1If (2) is to be satisfied we must take  to be real
and positive. It is easily seen that for p>argx>0 and |x| small,
(36) has no solution for Ims>0. Therefore, no s-dependent
singularities occur which violate condition iii) for continuation
into the region Ims>0, |s| large. Similarly, the only s-
dependent singularities near x=0 for Ims<O0, |sl large on the

first sheet of the x-plane occur in T>argx>0. Since the contour
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deformations in this case are into -T<argx<0, condition iii)
is again satisfied.

Finally, we notice that if the function s-lW(s) has
singularities at a series of points s=s, then a(s,e-x) and

a(t,l-e-x) can have singularities in x at values of x such that
;= 0™ and s, = g(1-e7%) (37)

respectively. 1In order to satisfy condition iii) we require
that these values of x not be in the right half x-plane.
Condition iii), then, implies that ¢(e—x), ¢(1-e-x),
[0e™) 17 (s (™)) and [0(1-e™*) 371 (4(1-e™%)) must be analytic
functions of x in Iargx]<%ﬂ. Singularities at x=o are allowed
if (22) is satisfied. (24) is sufficient to guarantee that no
t-dependent singﬁlarities violate condition iii) for t in the

sector Iarg(-t)]<ﬂ-9. In orxder to satisfy (24) the relation

(b(l—z)(—lnz)“zelTr < constant (38)
must be satisfied as 2z+0. If the equality in (38) is satisfied
then the s-dependent singularities in x of a(s,e-x) do not

violate condition iii).

IV.4 Asymptotic Behavior, fixed angle

For 7T elastic scattering, t is related to the s-channel

center of mass scattering angle 65 by (II.23, II.43)
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t = 3(1-s)(l-cosbg) = (1-s)Xs . (39)

As we did in deriving (I1.44) for the Veneziano model, we make

the change of variables e_x=z(1—z)_xs. Then (III.1l) becomes

= E:iii:iil -b-g(s,z)

A(s,t) = de 1-(1-xs)z[z
-0 (40)
.(]__Z)Xs(]-")\)-’D‘*'l-g((l-s))(s,]_—z):l

where z=z(x) and the functions g are defined in (1). In order
to examine the behavior of A(s,t) as |sl + o in the right half
s-plane we must perform the rotation shown in figure 1I1.11.

1f g(s,z) or g((l—s)xs,l—z) has singularities in Iargx|<éﬂ then
A(s,t) will have an exponentially increasing behavior as g+,
Xs fixed. This behavior is unacceptable. In order to avoid
having these singularities we must require that d(z(x)),

¢ (1-z(x)), [¢(Z(x))]-lW(¢(Z(X))) and [¢(1-2(X))]—1W(¢(l-Z(X)))
be analytic in Rex>0 with the possible exception of x=%. Since

x is related to 2z by

x = -lnz + Xgln(l-2z) (41)
the functions ¢(z) and [¢(z)]_1W(¢(z)) must be analytic for
all z in the regions

—1n\zl+Xsln|1—z|>0, —1nll-zl+xsln\z|>0 . (42)

These regions are shown in figure IV.1 for several values of Xg-.

As Ys increases from 0 to 1 the region (42) expands to fill

)
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the entire z-plane except for the points

= 5+ iy and z = ®© (43)

-1

where y? > 3/4. The functions ¢(z) and [¢(z)] Y(¢(z)) are also

allowed to have singularities at the points

z =0 and z =1 (44)

provided that the analogue of (22) for the rotation of figure
I1.11 is satisfied. The positions (43) and (44) are the only
ones at which the above functions can have singularities in z if
A(s,t) is to have acceptable behavior as |s] > © with Xg fixed

and between 0 and 1 (65 physical).

IV.5 Threshold Behavior

In this section we shall examine the threshold behavior of
a model satisfying the constraints of this chapter and whose

double spectral boundary has the asymptotic form (17)
_ -1 - N -1
= ¢(1-¢ “(s)) = £(s) = c(s-1) (45)

for s=1. We have used (1l6) to express the dependence of f(s)
on the function ¢. In a manner analogous to the derivation
of (III.33) we find

T

.2

-3 h|

Imvj(s)-(14;i s 1 jdne nJDlsc A(s (1- s)f(s)e ) (46)
0

J
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where the vj(s) are defined in (III.22). With (38) we have
6 (1071 (s)) < dr-1n(o71(s))120/T (47)

for s=1 (¢—l(s)=0) and where d is a constant. With (45) and

(47) we have

T/26
) (48)

871 (s) < exp[-(;%%)

as s>l from above. Using (8) and the fact that (48) is very

small in this limit, we find

DiscsA(s,(l-E)f(s)ein) =

(49)

110 g rvs) 1 (071 (s)) ]
1 - a(l)

L -2il¢71(s)

as s»*1 from above. Since a(l)=} for the p-f° trajectory, (49)
vanishes faster than any power of (s-1) as s+1 from above.

Thus (III.34) cannot be satisfied.

IV.6 Summary

The original DT model of chapter III possessed a number of
desirable properties including a curved double spectral boundary,
the elastic unitarity cut, reasonable threshold behavior and
resonances with finite positive widths. For some values of
t and args, however, the amﬁlitudes constructed from the model

were not Regge behaved for large |s,. For large positive s,
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for example, the model was Regge behaved only for ]t|<l. Since
the asymptotic region for 7T elastic scattering is s large and
positive, (l-s)<t<0, the above result is unacceptable.

In this chapter we have devised a class of models which may
still possess the non-Regge behavior mentioned above, but not
in the physical region for 7w élastic scattering. In addition,
we have eliminated the possibility of exponentially increasing
fixed angle asymptotic behavior. The models still have the
elastic unitarity cut and a curved double spectral boundary.
However, we were not able to satisfy the requirements of chapter
ITI for threshold behavior. If the double spectral boundary is
chosen to have the correct asymptotic form (17), for example,
then the imaginary parts of the partial wave amplitudes will

vanish faster than any power of (s-1) near threshold.
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V. A Simple Example

It is not difficult to construct a ¢(z) for equation (IV.1)
such that A(s,t) will have the correct ®° double spectral
boundary. Once this is done, we can add background terms to
provide the correct threshold behavior. Functions satisfying
all of the restrictions set down in the preceding chapter,

however, are rather complicated. The simplest obtained so far is

6(z) - %[4lnz + 21n(l-z) - 3A (1)

21lnz -~ A

with A>1ln4 and real. 1In this chapter we shall examine a model
in which ¢(z) has a simpler form than (1) but which has neither
the correct double spectral boundary nor the proper threshold
behavior. We shall then introduce a background term which
simultaneously corrects both of these. For completeness, we
shall discuss a neutralizer method which also enables us to
obtain the correct threshold behavior.

The model we shall exaﬁine has the standard form of (III1.1)

1

A(s,t) = Idz z—a(s,z)(l_z)-a(t,l—z) (2)
0

while the trajectory function is defined by

a(s,z) = As + b + %st' Eg%%;%gy . (3)

1-nln(1l-2)

The functions f(s,z) and g(s,z) are defined, with (IV.1), by
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1-nln(1l-2z)
f(s,z) = %st' ———-—s.qéﬁ?_g) (4)
1
and
g(s,2) = -f;de' S—,‘yg:—z—g . (5)
l-n1ln(1l-2)

The parameter n appearing in (3) - (5) is adjustable,
¥(s) is restricted by the arguments of chapter IV to those

functions satisfying

s_IW(s) + 0 as s»o (6)
¥(s) + 0 as s+l (7
O<‘i‘(s)<—1T{ln(l--exp[(l—s)/n])}_1 (1<s<w) (8)

and with s_lW(s) having possible singularities at the points
s = {», 1t2n7in, l-nln(3+iy)+2nmin} 9)

where n=0,1,2,... and y®>3/4. We shall also suppose that ¥(s)

1s bounded for large |s| as follows:
eplsl@nlsD™P17h > [¥(s) | > e, ls]P2 (10)

for all s such that |s[ > W where W is a (large) constant.

The constants Py and py are real and positive. The upper bound
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is a sufficient condition for (IV.5) while the lower bound is
one of the sufficient conditions for the proof that Regge

behavior applies along the real, positive s-axis.

V.1 Properties of the Basic Model

We shall restrict our discussion to the process TTW>TT. The

invariant amplitudes for this process are given by (II.7) with
C(s,t) = Y(As + At + c)A(s,t) . (11)

An analysis similar to the one we shall use can also be applied

to the amplitude for 777w (I1.4).

i) Crossing Symmetry. Since (2) is in the form (I1.18), the

amplitudes constructed from this model are crossing symmetric.

ii) Unitarity Cut. As we discussed in chapter IV, the

function o (s,z) has an imaginary part given by
Ima(s,z) = ¥(s)O(s-1l+nln(l-z)) (12)

for s real and 0<z<l. We therefore find that A(s,t) is cut along
the real, positive s-axis starting at s=1. The discontinuity
across this cut is
| l1-exp{(1-s)/n}
Disc_A(s,t) = -2i daz{z"Re¥(8,2) ¢y y-a(t,1-2)

(13)
0 xsinl[Ima(s)1lnzl} .
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iii) Double Spectral Region. From section IV.2 we see that

A(s,t) has a double spectral function

1

p(s,t) = sz{z'Rea(S'z)(1_2)-Rea(t,1-z)

0

xsin[Imo(s)Inzlsinl[Imo(t)In(l-2)i0(s-1+nln(l-2)) (14)
x0(t-1+nlnz)} .

This function is nonzero ia the region

s >1, t>1, e(l-s)/n + e(l_t)/n <1 . (15)

The boundary of the region is shown in figure V.1l along with the
®3 boundary for the scattering of scalar bosons. We make the

choice n=(21n2)—1=.72 so that the boundaries coincide for s=t=1.5.

iv) Asymptotic Behavior, t fixed. We shall now prove in
detail that the asymptotic behavior of A(s,t) as |[s| = ® with
t fixed and Ret<l is given by the asymptotic behavior of (IV.20)
for |arg(-s)|sm, i.e. in all directions on the first sheet of
the s-plane including the real, positive s-axis. The derivation
of (IV.20) for |arg(l-a(s))|<3m and Ret<l is straightforward.
We shall therefore be concerned with the behavior of A(s,t) in
the right half s-plane.

We begin by making the usual change of variatles zze" * so

that the representation (2) becomes
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[+

-x -x
A(s,t) = |dx e-x(l-a(s,e ))(l_e-x)-a(t,l—e ) . (16)

0

In order to continue A(s,t) into the right half s-plane with
Ima(s)>0, we perform the contour rotation shown in figure V.2,

With (5) and (6) it is easily shown that

lim g(s,e ) = 0 (17)
x>0

while, with (4) and (7), we have

lim f(t,l-e %) = 0 . (18)
x+0

With these limits we can show that (IV.21) is satisfied provided

that Rea(t)<l1.

For the deformation of figure V.2, condition (IV.22) becomes

iR+e -x -x
lim de e"X(1-als,e 1) (1-e7%ym0lt,1-e7F) 0. (19)
R
The bounds (10), with (5), give the result
lim g(t,1-e *) = @ . (20)

Edhes

Thus for large R we replace the u(t,l—e_x) in (19) by At+b.
If we restrict t to be real for simplicity it is easily seen that
the second term in the integrand of (19) is bounded by

-x
I(l_e-x)-a(t,l—e )|< (lie—e)-kt—b (21)
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wvhere the t+(-) sign applies when Att+b <(>) 0.

We now notice that, for fixed x and |s|>>Il—nln(l—e_x)],

we can approximate £(s,e %) by
1-nln(l-e” ¥)
£(s,e™®) = - Has' o' 7les) +o(fs|ThH . (22)
1

Since s—lW(s) has singularities only at the positions (9),
the right hand side of (22) is bounded for x on the path of

integration of (19). Thus for

Is|>>|1—n1n(1—e_x)+iﬂ|>max|l-nln(l-e—x)l (23)

we can write

|f(s,e-x)| < c(g) . (24)

We have not, as yet, specified the value of €. Let us make €

s-dependent according to

-K

e = d|s| (k > 0) (25)

for large |s|. The right hand sides of (23) and (24) can be

shown to increase logarithmically with |s| for large |s
Since |l-a(s)| increases linearly with [s| for large |s|, we can
choose a constant s, large enough so that (23), (24) and the

inequality

|1-a(s) |cos (3m-8) > c(e) (26)
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are satisfied for |s|>s°. The constant 6 in (26) is small
and positive.
If we perform the deformation of figure V.2 while s is fixed
in the region d-im<arg(l-a(s))<-§, |s|>so, then with (24) we see
that the first term in the integrand of (19) is bounded by

Ie-x(l-a(s,enx))| <

(27)

< exp{—R[Il—u(s)Icos(arg(l—a(s))+¢)-c(€)]}

where 0<¢<3m.

With (26) it is clear that (27) vanishes faster than any
inverse power of R as R+, The.contribution (21) has no R
dependence. Finally, the path length of the integration (19)
increases linearly with R. Multiplying these contributions we
see that the limit (i9)lis satisfied.

Since S-IW(S) has singularities only at the positions (9),
the integrand of (16) has no s- or t-independent singularities
in the right half x-plane. The function a(t,l-e_x) is singular
at

x = (t-1)/n . (28)
If we fix t in the region Ret<l then the singularity (28) is in
the left half x-plane. Finally, the function a(s,e-x) is

singular at the points

x = ~1n(l-e 178Ny & 9oy (29)
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where n=0,1,2,... . For |s|>so and §-3m<arg(l-a(s))<-§, these
singularities are in the left half of the x-plane. Therefore,

provided that we take Vv sufficiently small:
v < min{]|(t-1)/n|, m/3} , (30)

the path of integration of (16) encounters no singularities
during its deformation.

As we have now demonstrated, conditions i) - iii) of section
IV.3 are satisfied. Therefore the representation

e-x(l—a(s,e-x))(l_e—x)—a(t,l-e-x)

A(S,t) = de (31)

Cl+02+C3
is a valid one for |s]>s°, 6—%W<arg(l—a(s))<—6,'Ret<1. The
paths Cl, 02 and C3 are those of figure V.2 while € is given
by (25).

The representation (31) provides the desired continuation of
A(s,t) into the right half s-plane. Conditidﬁ (23), which is
satisfied for |s|>s°, also guarantees that no s-dependent
singularity will encounter the path C3 during the continuation.
Furthermore, as we discussed in chapter IV, the n=0 member of

the set (29) will not encounter the path C, during the

1
continuation. Thus (31) is a valid representation in (at least)
the region \s|>so, Ret<l, -n€arg(l-a(s))<-6. The lower limit
on the last inequality is determined by the inequality Ima(s)>0.
For the purposes of our discussion we shall choose the lowcr

l1imit to correspond to Ims=0 so that for large |s| the region

of interest is

-
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-T + !%+§%l < arg(l-o(s)) < =6 . (32)

We shall now examine the contribution of the integral along

the path C, to (31) as |s| + © in the region (32). The function

2
a(t,l-e_x) is analytic along this path so that the second factor

in the integrand of (31) is bounded by a constant. The function
f(s,e *) is also bounded by a constant so that (24) is certainly

satisfied for x on C2 and |s| large. Thus the first factorin the

integrand of (31) is bounded by

| x(1-a(s,e 7)) | o mv[l-als) [cos (Bgrd)evele) (4

for large |s|, where we have written ¢gSarg(l-a(s)) and ¢Zargx.

With (10), (25), (32) and figure V.2 we see that, for large ls|,

ogvol < -1 + RS 4 4n - erv)

(34)
pa-1
< |3m o+ dls| cols] |
\Y
If we choose K so that
kK > 1-pp ’ (35)
then for large |s| we clearly have
pa-1
cos (pg+¢) > SZLE%———— . (36)

The inequality (33), then, becomes
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=X
le—x(l-a(s,e ))I < exp{-chlli%éfllls|p2+VC(€)}' (37)

Since (Alsl)_lll-a(s)l > 1 and c(e) < In|s| as |s| + ® and since
Py > 0, it is clear that (37) vanishes faster than and inverse
pover of s as |s| + », This is sufficient to eliminate the
contribution of C2 to (31) from the asymptotic expansion.

The function f(s,e_x) can be shown to satisfy (24) for
[s|>so and x on C,. Using arguments similar to those above we
can show that the firstfaetor in the integrand of (31) is
bounded by

Ie_x(l-a(s’e-x))l < e—lx[czlslpz+[x]c(€) (38)

for large Isl and for x on C3. We must be careful in handling

the function a(t,l-e-x) for x on C3. With (3) we see that this
function can have singularities on the imaginary x-axis at
x=+2nmi. These singularities arise from the singularities of

s—1W(s) at (see (9))

i
/2]

i+
.

s = 1 £ 2nmin = (39)
Suppose that the strongest of the singularities (39) is at
s = s and has the behavior (s—sm)—c. Then we can show that

a(t,l-e-x) has the bound
laCt,1-e7) | < a(t) + B(&)|s|F D) (40)

for large |s| and x on C We therefore find

3°
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|(1_e‘x)‘d(t:l‘e_x),<eKln|s|A(t)+K1n|s]B(t)|SIK(C—1) 1)

for large |s| and x on C3. With (38) and (41) it can be shown
that the contribution of C3 to (31) vanishes faster than any
inverse power of s as ls[ + © provided that p2 > k(Z-1). The

last condition gives, with (35),
r <1/ (l-pz) (42)

so that we have obtained an upper bound to the strength of the
singularities (39).
Since the contributions of C2 and C3 to (31) vanish faster

than any inverse power of s we are left with the Cl contribution

ve-i¢5
A(s,t) de e'x(l'“(s’e-x))(1-e'x)'“(t’1'e_x) (43)
0
as lsf * ® with t fixed and Ret < 1. By rotating the path of
integration of (16) clockwise as well,we can show that (43) is
a valid asymptotic representation for |arg(—s)|sw.

The leading asymptotic behavior of (43) can be found by
making the change of variables y=(1-0t(s))xE|1-oc(s)Ixeid)S to
obtain

v|1l-a(s) |

A(s,t) (1—a<s>>“(t)‘1jdy ey O (g s,a(t))  (44)
0

where, with xZy/(1l-a(s)),

——

. _ -x _ _. "X _mxy=a(t)
H(y,s,a(t))=e *E(85e 7D (g =x)£(t,1-e )[1 - } . (45)
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The integral (44) can be shown to satisfy the conditions
A) - C) following equation (II.32). Thus the leading asymptoticy
behavior
of (43) is determined by taking the |s| =+ ® limit of the
integral in (44)
[+2]
ACs,t) v (1-a(s))*(8)1 de eV yo(e)
0 (46)

N (_As)a(t)—l

T(l-a(t)) .

This is the same as the leading behavior (II.37) for the
Veneziano definition of A(s,t). Therefore, all amplitudes
constructed from this model will have the same leading
asymptotic behavior as those constructed from the Veneziano
model. The I=1 invariant. amplitude for 7m scattering, for
example, still has the leading asymptotic behavior (II.38)
as |t:|->oo with s fixed.

There are three important differences between the
asymptotic behavior of this model and that of the Veneziano
model. First, the Veneziano model does not exhibit Regge
behavior as |s|+» on the real positive s-axis while this
model does. Second, the asymptotic behavior of A(s,t) in the
Veneziano model is given by (II.37) for all fixed t while
(46) ‘has only been proven for Ret<l., Finally, non-leading
terms in the asymptotic expansion of the Veneziano model
correspond to exchanges of non-leading Regge pole trajectories
in the crossed channel. These non-leading Regge pole
contributions occur for the model of this chapter as well.

There are, however, additional non-leading contributions
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which are not necessarily characteristic of Regge pole exchange.
The non-leading terms in the asymptotic expansion of A(s,t) will

be discussed in the Appendix.

v) Direct Channel Singularities. With (3) - (7) it is clear
that the trajectory functions of this model have the same z>0

l1imit as those of the early DT model (IIIL.14):
a(s,z) + a(s); a(t,l-z) + At+b . (47)

As we have seen in sections II.2.ii and II.2.iii, the s-channel
singularities arise from the divergence of the integral (2) at
the lower endpoint. With the limits (47) we therefore find, as

in (III.15), that A(s,t) has a series of poles at
o(s) = n + 1 (n=0,1,2,...) (48)

with residues which are polynomials of degree n in t. This
structure is the same as that observed in the Veneziano, Suzuki
and early DT models. Because of condition (Iv.7), the poles
(48) occur on the second sheet of the s-plane and therefore
represent resonances with finite positive width. The model of
this chaﬁter has additional s-channel singularities as does the

early DT model. These will be discussed in the Appendix.

vi) Threshold Behavior. In order to examine the partial
wave amplitudes for the process TT*TT near threshold, we use the

methods of section II.2.v. We write
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1"~ 8

A(s,t) = 7 vk(s)tk X (49)
L=0

The real parts of the vk(s) remain finite as s*1. We can

determine them explicitly by expanding A(s,t) in a Taylor series

about t=0.

The Imvk(s) could also be found in this way but the

best method for exhibiting their behavior as s>1 from above is

to use (III.27) with the integration path shown in figure V.3.

We find

where

and

Imvk(s) E Imvé(s) + Im;k(s) =

g(s)
= - %F dtt DiscSDisct.A(s,t') grk-L (50)
£(s) ‘
27
+ Z%I[g(s)]—k jdt ]):‘LscSA(s,g(s)eiZ;)e—1kc
0
£(s) = 1 - nln(l—e(l‘s)/”) (51)
_ 1
g(s) =1 + m . (52)

The function f£(s) is the pesition of the branch point in t of

the function DiscsA(s,t) in this model while g(s) is the position

of this branch point inm 2 model with the correct %% double

spectral boundary.

We shall first examine the threshold behavior of the second

term in (50). If we substitute g(s)elg for t in (10) and make

the change of variable z=(s-1)x/n, we can take the limit of the
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resulting integral as s*1 from above to obtain

DiscSA(s,g(s)eiC) N

(53)
1
Cee 1. 1-a(l) _ it
" -ZiIma(s)lnf-s—n—l-) [S_n.l) de R TCO . (%c_ﬁ_) .
0
Substituting (53) into (50) we find
Im\_lk(s) ~ (S-l)k+1-a(l)ln(s-1)Ima(s) (54)

as s+l from above. If this were the only contribution to
Imvk(s) then the imaginary parts of the partial wave amplitudes
for mm elastic scattering could have the correct threshold
behavior for j21 provided that ¥(s) behaved like (III.40) near

s=1. Notice, however, that the first term in (50) behaves like

1-k 2-0,(1)

Imvi(s) ~ [-1n(s-1)] (s-1) Imo (s)Ima(£(s)) (55)
as s*1 from above., This behavior is inconsistent with (I11.35).

The possibility of obtaining the correct threshold behavior for

all partial waves is therefore destroyed.

vii) Asymptotic Behavior, fixed angle. The study of the
behavior of A(s,t) as ls| + ® yith xg = %(l-coses) fixed
follows the discussions of sections IV.4 and II.2.vi. As usual,
we make the change of variable e_x=z(1-z)—XS so that (2) is
given by (IV.40). 1In order to examine A(s,t) in the region

|s| + =, -3m>arg(~s)>-m+e, we deform the path of integration
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of (IV.40) as is shown in figure V.4. The leading behavior

as |s| + @ will come from the region of integration near the
right-most singularity of the integrand, the point P 6f figure
V.4, Other singularities, such as P', will not enter into the
discussion. With (IV.40) we th;refore have

aGs,t) v " FR(s,xg)  (svm, xg fixed) . (56)

The function R in (56) does not alter the dominant exponential
behavior.
We now recall that the integrand of (2) can have singularities

at the points
z = {0’ 1’ m’ 1_e(1_s)/n’ e(l—t)/n’ éiiy} (57)

where y?>3/4. The point z=0 is mapped into x=%. We can show,
however, that this singularity does not hinder the contour
deformation of figure V.4, In fact, we can use the same arguments
as in section V.1.iv to establish the rotation. The points
z=1,® map into x=-® so that we may ignore those singularities.

C o —1_.(1=-8)/n
Finally, for large positive s (Res®®) the points z=l-e

and z=e[l_(l_s)xsj/n

occur far to the left in the x-plane and
therefore need not concern us. The only remaining singularities
are those at é=%iiy (y?>3/4) and a singularity of the integrand
of (IV.40) at z=(l-xs)-l. Both of these singularities have
images lying in the left half x-plane so that the dominant

behavior of (56) is exponentially decreasing. The value of P

coming from the singularity at z=3-iy (y>/3/2) is
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P = -3(1-xg) In(d+y?)-i(l+xg) tan T (2y) (58)
while the singularities at z=(l-)(s)_l glves
P = xglnxg + (1-Xg)1ln(1l-xg) + imxg . (59)

The latter value of P is the one which occurs in connection with
the Veneziano model (see figure II.11 and equation I1.45).

Since ReP<0, the above method can be used to show that A(s,t)
vanishes exponentially with s for Xs fixed and s on the real,
positive s-axis. An interesting situation arises if we allow
the possibility y?=3/4. 1In this case we have ReP=0 so that we
must keep non-leading terms in a(s) in order to discuss the
|s| » ® arg(-s)=w limit. The integral (IV.40) is again dominated

by the region of integration near the singularity so that we have

A(S,t) n ei(“IS)(u(S)_a([l-SJXS))R(S,t) . (60)

If s is on the real, positive s-axis, then the real parts of a(s)
and a([1-s]xg) will provide rapid oscillations. The magnitude

of A(s,t) is thus determined by the Imo(s) contribution:
|aGs,0) |~ e TR S R cq 1y (61)

as s»>® (args=0) with Yg fixed. Notice that if ¥(s) grows less

1

rapidly than s?

as s+» then the fixed angle asymptotic behavior
of the amﬁiitudes will obey the Martin lower bound (Eden 1967,

ch. 6)
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i
[A(s,t)]| > ce DS’ (62)

as s*® with yg fixed.

viii) Asymptotic Behavior, fixed u. We shall now examine
the behavior of A(s,t) as g+w with u=I-s-t fixed. For the
process TW>TT we have Z=4m;=l. As in section II.2.v, we make the

change of variables z=(1+e“x)-l which transforms (2) into

o L
As,t) = jdx[(ex+1)°‘(s’(ex+l) )21

(63)

.(e—erl)oc(l—s-u,(e_x-rl)_l

)1

for mm elastic scattering. In order to examine the behavior of
A(s,t) as IS\ *> © with u fixed and ~3m>arg(~s)>-T » we deform
the integration contour of (63) as shown in figure II1.10. 1If
y?>3/4, then the right-most singularities in the integrand of
(63) occur at x=t(2n+1)71i and at x=1n(1-e—(5+u)/n)t(2n+1)ﬂi
where n=0,1,2,... . For large positive Res, the points in the
latter set approach those in the former. We can therefore
determine the nature of the asymptotic behavior by examining the

integrand of (63) near the point x=7i+§. We have
[A(s,t) | m'exp{—nIma(s)-[Reu(s)+Rea(1-s-u)]ln(1/6)
(64)

+ ﬂImf(s,—l/s)+[Ref(s,-1/5)+Ref(l—s-u,l/6)+2]1n(1/6)}.

The functions f(s,-1/68) and £(l-s-u,1/8) behave like constants
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as 's| + © yhile the function -[Reda(s)+Red(l-s-u)] grows less
rapidly than linearly with s. Since Imo(s) grows linearly with
s in the region under consideration we have

AGs,t) v e Imo (s)

R(s,t) (65)
as 1s| + o with u fixed and -3m>arg(-s)>-m+e., A similar
procedure may be used to examine the region 3m<arg(-s)<m-¢ with
the same exponentially decreasing result.

The behavior of A(s,t) in the limit s»o, u fixed |arg(-s)|=m
is not easily determined. The above arguments no longer apply
because Imo(s) does not increase linearly with s in this limit.
We can gain some understanding of the situation if we recall
that the f functions in (64) do not increase with s. We therefore
do not expect them to enter crucially into the asymptotic
behavior in this limit. If we ignore these functions then A(s,t)

becomes simply

A(s,t) = B(l-o(s),l-a(t)) . (66)

The properties of this function in the limit s+», |arg(-s)]|=m,
u fixed have been studied by Roskies (1968). He has found that
if s* lIna(s)+0 for some >0, then (66) will grow faster than
any power of s in the above limit., If, however, Ima(s) behaves
like

¥(s) = Ima(s) n es(lns) PL71 (67)

as s*+® where p;>0, then (66) will vanish faster than any
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inverse power of s in the large s, fixed u limit.

V.2 Neutralizer Correction

Suppose that we write, instead of (3),

. 5(1- v (s7)
a(s,z) = As + b + ‘TT(l Y(Z))st s (s'-8)
1-n1n(1-z) (68)

= a(s) - £f'(s,z) 2 As + b + g'(s,z) .

The function y(z) is the neutralizer defined in (III.5)-(IIL.7).
In terms of the functions f(s,z) and g(s,z) defined in (4) and

(5), we have

(1-y(2))g(s,2) (69)

g'(s,z)
and

f(s,z) + Y(z)g(s,2) . (70)

f'(s,z)

The model constructed by using (2) with (68) has properties
similar to those of the basic model of section V.1, First, the
amplitudes constructed from the model of this section will again
be crossing symmetric. Second, the singularities discussed in
section V.1l.v will also be present in this model. Some of the
additional singularities of the basic model will not occur in
this model (see Appendix). Third, the leading asymptotic
behavior of A(s,t) for large |s| and with t, u or 64 fixed is
the same in this model as in the basic model. The major

disadvantage of the use of neutralizers is that we cannot obtain

)
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this asymptotic behavior in any of the above regions for
|arg(—s)|=ﬂ. Similar difficulties occur with the Suzuki model
discussed in'chapter III. There are some differences between
the non-leading Regge contributions of the basic model and the
neutralized form. These differences are mentioned in the
Appendix. Fourth, the model of this section again has a
unitarity cut (see section V.l.ii) starting at s=1. The
discontinuity across the cut is
Lo (1=8)/n

DiscSA(s,t) = _ZinZ{Z—Rea(s,z)(l_z)-a(t,l—z)

0 (71)

xsin[ (1-y(z))Ima(s)1lnzl}

Finally, the double spectral region is again given by (15). The

double spectral function, however, is now

p(s,t) = -kDiscsDisctA(s,t) =
1

= sz{z—Rea(s’z)(l-z)_Reu(t’1_z>@(s—l+n1n(1—z))
0

(72)
x0 (t-1+nlnz)sinl (1-y(z))Ima(s)1nz]

xsin[ (1-y(1l-2z))Ima(t)1n(l-z)1} .

The major difference between this model and the basic model
of section V.1l lies in the threshold behavior of the partial wave
projections. In terms of the expansion (49), we again find that

the Revk(s) approach finite constants as s>l. The Im§k(s)
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defined in (50) have the same threshold behavior, (54), as

those of the basic model. The Imvi(s), however, are now altered.
The double spectral function (72) has the upper endpoint of
integration zmax * (s=1)/n as s»1 from above. Since the integrand
of (72) contains a factor sin[ (1-y(1-2))Imo(t)in(l-z)] which
vanishes faster than any power of z as z-+0, p(s,t) and
DiscSDisctA(s,t) vanish faster than any power of (s-1) as s-1.
Therefore, with (50), we see that the Imvi(s) vanish faster than
any power of (s-1) as we approach threshold. Thus the threshold
behavior of the Imvk(s) is given by that of the Imﬁk(s). Suppose

that we take
Ima(s) = ¥(s) ~ (s-1)®D 397 6o1y771 (73)

as s*1. Then (54) gives

Imvk(s) n Im;k(s) - (s--l)k‘i-:;/2 . (74)

This is just the behavior which is needed to satisfy the
elastic unitarity relation (III.37) for all partial waves except

j=0 (see section III.2.v).

V.3 Subtractive Corrections i

In the last section we were able to obtain the correct
threshold behavior for the partial wave projections of the TT+uT
amplitude. The Imvﬂ(s) of (50),which ruined the threshold

behavior in the basic model, were shown to vanish faster than any
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power of (s-1) near threshold in the neutralized model.

There are two difficulties with the model of section V.2.
First, the boundary of the double spectral region remains
incorrect. Second, in order to obtain the proper threshold
behavior we have had to pay a price: we have destroyed the
fixed t, u and Oy asymptotic behavior of A(s,t) as s+ on the
real, positive s-axis.

In this section we shall discuss an alternate method for
adjusting the threshold behavior. The model of section V.l has
given us a specific double spectral function (14). We can
alter both the threshold behavior and the double spectral region
by subtracting certain integrals containing p(s,t) from the
basic function A(s,t) of section V.1l. The method of this section
does not alter the properties of A(s,t). Thus, in this case, we

can study the limit |s| + ® with s on the real, positive s-axis.

i) The Basic Subtraction. Suppose that we define the new

function

® (s")
E(s,t) = A(s,t) - %szS‘Tdt' BEATGLTS

1 f(s") (75)

A(s,t) - R(s,t) .

m

A(s,t) is defined by (2) wifh (3), p(s,t) is given by (l4) while
f(s) and g(s) are defined in (51) and (52). We have simply

subtracted the duoble spectral integral over the region between
the ¢° boundary (III.21) and the boundary (15). Thus the double

spectral boundary for A(s,t) is the &3 boundary (figure V.1).
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We now use (49) to write
ImA(s,t) = ImA(s,t) = ImR(s,t)

© (s) .
=7 tkImvk(s) - lT at! p(s,t')

k=0 U t'-t
f(s) (76)
© " (s)
=) t {Imv (S)+l— dt'Disc Disc ,A(s,t‘)t‘_k'l}
Z k 47 s t
k=0 £(s)

for t<l<s, s and t real. Notice that the final term in the
brackets of (76) is just —Imvi(s) defined in (50). We therefore

have
tk
0

InA(s,t) =

Imv, (s) . 77
Kk k

nes18

If we choose the behavior (73) for Ima(s) then the j21 wmwmw
partial wave amplitudes will have the correct power dependence
on (s~1) near threshold.

The function R(s,t) is symmetric under the interchange of
s and t. This follows from the symmetry in s' and t' of the
region of integration in (75). Thus the amplitudes constructed
from A(s,t) will be crossing symmetric. The amplitudes for =T
elastic scattering are defined by (II.7) with A replacing A
in (11).

With (14), (51), (52) and (75) we can show that

su(l)-B

Disc_R(s,t) 0[Ina(s) Imo (1+hs™1) 1ns] (78)

as s+®, Since Ima(s) grows less rapidly than s as s*® and

since Im0(1)=0, the integration in (75), which can be written
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(79)

«Q .

1]
o0 o g
1

certainly converges. Notice that as [sl * ®, the contribution

of R(s,t) to the function C(s,t) is

o (s")
Y (s +At+c)R (s, t ) g-éjds'j aer 2Lt (80)
: 1 f(s")

For t fixed this term is 0(l). The fixed angle and fixed u
subtractive corrections have 0(1/s) behavior for large s.
Instead of using (75), we could have worked directly with

the mm elastic scattering amplitude and written

C(s,t) = y(As + At + c)A(s,t) -

0 g(eh) (81)
stl dt! p(slat')(}\S"l‘}\t"i‘C)
1

A

(s'-s)(t"~¢t)
f(s')

With the alteration (81) we again obtain the correct double
spectral region and the correct (jzl) threshold behavior. The
fixed t asymptotic behavior of the correction is now 0(1/s)
while the fixed u and fixed angle behavior is 0(1/s?). Notice,
however, that (81) only describes 7T elastic scattering while
~the A(s,t) of (75) can be used to construct a variety of

amplitudes.

ii) Further Corrections. We can make additional adjustments
"in the basic model by subtracting integrals over all or part of

the new double spectral region. As an example, we shall consider
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a correction to the double spectral function near the boundary

of the double spectral region

(s=1)(t-1) = % . (82)
Notice that the double spectral function of K(s,t) vanishes
abruptly at the boundary. 1In order to smooth this behavior we

first notice, with (14), that

lo(s,t)| ¢ ¢ exp(A(s=1)(t=1)/n) (83)

for large s and/or t. Thus the integral

© ) B
v ooy =L(s'-1)(t'-1)-%]
] - 1 1 ] D(S )t )e
R (S,t) - FJdS J dt (S"‘S)(t‘-t) (84)
1 g(s')
is convergent for B>1. If we redefine A(s,t) to be
A(s,t) = A(s,t) - R(s,t) - R'(s,t) , (85)

then we can again construct crossing symmetric amplitudes with
suitable threshold behavior and the correct &3 double spectral
region. The double spectral function is given by
1y fe_1y.21B
Bs,t) = p(s,e){1 - e L(s71I(E-1)-417, (86)

which vanishes like [(s-l)(t-l)-i‘:]B near the boundary (82) of

of the double spectral region.
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iii) Corrections for Pseudoscalar Bosons. In all of the
discussions to this point, we have been satisfied with
constructing models having doubie spectral boundaries close to
the ¢3 boundary. Pions do not interact via a ¢3%interaction
Lagrangian but according to " theory (a 37 vertex is forbidden
by angular momentum and parity conservation). The_@“ double
spectral function can be nonzero in the regions R(s,t) and

R(t,s) where the boundary of R(x,y) is
(x=1) (y-4) = & . (87)

These regions are shown in figure V.5 along with the boundary
(15) for the model of section V.1.

In order to obtain the correct threshold behavior for the
TT partial wave projections (j21)‘and the correct ¢* double

spectral boundary, we subtract the function

- 1 ] 1 p(S',t')

R(s,t) = Frjjds dt ('-s) (t7=D) (88)
R(s',t")

from A(s,t). R(s,t) is the region between the 6" boundary and

the boundary (15). The double spectral function for

A(s,t)-R(s,t) can be written
P"(s,t) = p'(s,t) + p'(t,s) (89)
where

P (x,¥)Ep(x,y)00 (x-1) (y-4)-41{1-30[ (x-4) (y-1)-41} (90)

is nonzero in the region R(x,y). The double spectral function
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above has discontinuous behavior due to the Theta functions.

Suppose that we define

K(s,t) = A(s,t) - R(s,t) =~ R(s,t) - R(t,s) (91)

where

(x,y) %?jfdx'dy' 2 Ol vl) _( Kp(x'uy') _

x'-x) (y"-y)
R(x",y") (92)

~300 (x'-4) (y'~1)-4Je X2 (x"sy")y

The functions K1 and K9 are chosen to grow more rapidly than
Ax'-1)(y'~-1)/n for large x' and/or y' so that the integration

92) converges. The double spectral function for (91) is
P(s,t) = p'(s,t) + p'(t,s) (93)
where

P! Gray) =0 (x,7)0L (x-1) (y-4)-41{ (1-e K1 (3D _
(94)
-ée[(x-4)(y-l)-aj(l-e'Kz<x,y)]}

is nonzero in B(x,y). 1f K1(x,y) vanishes for (x-1) (y-4)=4 and
if Ky(x,y) vanishes for (x-1)(y=4)=4 and for (x-4) (y-1)=4, then

the double spectral function (94) will be smooth.
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V.4 The ww+7m Amplitude

In the previous section we defined a function A(s,t) which
has a reasonable, although not polymomially bounded, double
spectral function. It is easy to check that if A(s,t) is
substituted into (II.4) and if the function ¥(s) is suitably
chosen, then the invariant amplitude for the process Tm+Tw will

have the following properties:

a) Crossing symmetry;

b) Elastic unitarity cut;

c) Correct &" double spectral region;

d) Correct power dependence on (s-1) near the
s-channel 27 threshold for all partial waves;

e) Resonances with finite positive total widths;

f) Regge asymptotic behavior in the physical
region for the scattering process;

g) Reasonable asymptotic behavior at fixed angle,

The last two properties are valid even for real values of the
asymptotic variable.

The amplitudes for the process wm>mm,obtained by substituting
A(s,t) into (11) and the resulting C(s,t) into (II.7), have all
of the above properties except that d) is satisfied only for
j21. In this section we shall introduce a satellite function
which enables us to satisfy d) for jz0. We shall also review
the restrictions on ¥(s) which are necessary for a)-g) to be

obtained.

i) The Satellite Term. An amplitude which satisfies

a)-g) may be written
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C(s,t) = Y(As+At+c)A(s,t) + ydKl(s,t) . (95)

The function Kl(s,t) is determined from the basic function

1
Al(s)t) = sz Z—al (S’z)—-l(l_z)—al(tsl"Z)"l (96)
4]
with
e e
1-nln(l-2z)

We shall take the trajectory a;(s) to be approximately one unit
of angular momentum below the leading (p-£?) trajectory so that
bi*b-1. The function Kl(s,t) is defined by

Ki(s,t) = A (s,t) - Ri(s,t) - By(s,t) - Ry(t,8)  (98)
where R, and ﬁl are given by (88) and (92) with

p1(s,t) = —z‘.DiscSDisctAl(s,t) (99)
replacing p(s,t) in these relations.

If we now perform expansions similar to (III.22) for A(s,t)

and Kl(s,t),

E(s,t) = ] €55, (o) | (100)

BGs,e) = [ e, (101)
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then we find, as in chapter III, that the leading behavior of
the j-th partial wave projection of the ninen e amplitude

near threshold is

- - c1y2 00143
(s)+dwj(s)+xvj_l(s)}—(l—i—(i—l)- (102)

+_. -
Aj (s) v y{(Ate)v CEERE

]
where ;_l(s)EO. ImGk(s) has the threshold behavior (54) while,
near s=1,

Im&k(s) ~ (s-l)k—al(l)

In(s-1)Ima;) (s) . (103)
If ¥(s) has the behavior (73) for s=l and if ¥, (s) has the
threshold behavior

¥i(s) 2 Imo;(s) ~ (s-l)ml(':I')-t'%[ln(s-l)]-l . (104)

then ImA;—(s) will have the correct power dependence, (s—1)23+%

(ILI.36b), near threshold for all j including j=0.

ii) Review of Restrictions. In this section we shall list
the restrictions on the functions ¥(s) and ¥:(s) which we have
found in this chapter. First, there are restrictions on the
bositions at which the functions s_IW(s) and s-l?l(s) can have

singularities. The positions of possible singularities are
s = {», 1l+2nmin, 1-nln(i+iy)+2nmin} (9)

where n=0,1,2,... and y*>3/4. Second, there are several bounds
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on the functions ¥ and ¥,:

0 < ¥(s) < -mlin(l-e1™8)/ M7 1 gcay (8)
~1

s ¥(s) 0 as s + ® (6)

¥(s) - 0 as s + 1 (7)

eplslCmls 7P (o) | > eylsl®2 (lsbw 10y

vhere Pis Py >0 and W is a (large) constant, Third, there is
a restriction on the strength of the singularities in the second

set of (9) which states that these singularities are weaker than

-

[s - 1 % ZnninJI/(OZ‘l) (105)

where 0y is the constant appearing in (10). Fourth, there are

two limits which must be satisfied by ¥(s) and ¥;(s):

Y(s) ~ s(lns)-pl-1 as s > @ (67)
with Py > 0 and

T(s) - -~ D01t s s a1 . (106)

The functions ¥,q represent eilther Y,a or ¥;,a; so that (106)
re?resents (73) and (104). With (67) and (10) we see that Py

can be chosen‘to be close to 1. Thus (105) does not provide a
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significant restriction. Notice that Kl(s,t) has a pole when
o1(s) = 0. If this pole is to occur for s > 1 and therefore
represent a resonance and if (7) and (104) are to be satisfied,

then we must require
-3 <o1(1) <0 . (107)

This restriction is one of the motivations for our choosing

by = b-1. Finally, as we shall see in the Appendix, if Y¥(s)

J as s?*® and

behaves (to within logarithmic factors) like s
like (s-l)k as s*1 where j and k are integers, then the
trajectories coming from A(s,t) will have unit spacing. The

first condition must already be satisfied (67) while the second

is satisfied, with (73), if
a(l) = % . (108)

The above relation is very nearly satisfied by the p-£°

trajectory.
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VI. Physical Applications

The Veneziano model and the generalizations of it which
we have discussed are constructed primarily to describe two
particle scattering in the asymptotic (Regge) region and in
the resonance region. These two regions are connected by
duality and FESR. The Veneziano model, however, has been
applied successfully to other regions as well, both physical
and unphysical. 1In this chapter we shall discuss some of these
applications for both the Veneziano model and the DT model of
chapter V. In addition, we shall discuss methods which can

be used to perform calculations in the DT model.

VI.1l Experimental Situation

We start with the experimental facts which we shall try
to understand in terms of the Veneziano and DT models. The

processes considered are

My + Ty > T3 + Ty (1)
and

Ty + Ta + T3 + Ty 2)

which are shown in figure VI.1l a and b res?ectively. They
are clearly related by crossing symmetry. Neither of these
processes has been studied directly. The second, in fact, can
never be directly measured. All experiments performed for

this process involve allowing one of the pions, say m, to be
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off mass shell, i.e, Mz(ﬂl) 2 3 = p?

_— The results are then

either extrapolated to the mass shell or the models which are

to be compared with the results are extrapolated off skell.

i) The Process En -+ ﬂ—ﬂ_ﬂ+ . The initial state in the
reaction §n+3ﬂ can be in the 1So, 3Po,1,2 and higher orbital
angular momentum states. Near threshold, we expect the S-wave to
give the dominant contribution. This is the case experimentally
(Anninos 1968). The quantum numbers of the initial state near
threshold are therefore IG(JP) = l-(O-). Since these are the
quantum numbers of the pion, we follow Lovelace (1968) and treat
the En System as a heavy pion. Comparing figures VI.1b and c,
we can see that the process 5n+ﬂ_ﬂ-ﬂ+'is the same as ﬂ—*ﬂ_ﬂ_ﬂ+
where the initial pion has a (mass)2 of 3.52 GeVZ. The Dalitz
plot for En*ﬂ—n_ﬂ+ is shown in figure VI.2 (Anninos 1968).

The axes of the plot, s and t, are the (mass)2 of the two ﬂ+ﬂ_
subsystems. The density of points in the Dalitz plot is related
to the Iamplitudel2 for the processes (1) and (2) where T, 1s a
heavy pion. We should stress again that, since the amplitude
determined in this way is off shell, we shall need to extraoplate
the Veneziano and DT models off shell before comparing them with

figure VI.2. We shall discuss this procedure in section VI.3.

ii) The Process TN =+ 7TN'. Most of the information about

TT elastic scattering is obtained from the inelastic 7N reaction

TaN » mamyN' _ . (3)
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In the one pion exchange (OPE) model, the process (3) is related
to (1) as is indicated in figure VI.1ld. The (mass)2 of m1 in

the procesg (1) is given by M2(m;) = -q*(NN') where q(NN') is

the momentum transfer between N and N'. The amplitude for 7w
elastic scattering on the mass shell is obtained by extrapolating
the off shell amplitude to the point M?(m) = % = m;. This
(Cheﬁ—Low) extrapolation is discussed in numerous texts (for
example, Kallén 1964, ch. 7).

Most of the data on the I=0 S-wave phase shifts for 77

elastic scattering comes from the reaction
- + -
Tp>TTn . (4)

The most recent solutions for 8) are shown in figure VI.3. Below
700 MeV there is a unique solution (Baton 1970). Above 700 MeV,
however, there are two solutions, the "down-down" and "down-up"
solutions, There are also slight differences depending upon
whether 8 is taken to be elastic or is allowed to be inelastic.
The "down-up" solution of Baton (1970) implies an S-wave 77

resonance (€£) near the mass of the p:

Me = 736 MeV, FE = 181 MeV . (5)
The "down-down" solution is mildly preferred, however. As is seen
in figure VI.3, this solution is in qualitative agreement with
the higher energy solutions ( Beaupre 1971, Oh 1970 ). The I=1
P-wave phase shift solution is unique. The result for elastic

8§} (Batom 1970) will be shown in figure VI.9 in comparison
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with the DT model results.
The S-wave scattering lengths for the process TT>TT are
somewhat more difficult to study. Notice that the phase shift

solutions of figure VI.3 extend down to s=.25GeV2. The threshold

for nm scattering, however, is at s=.075GeV2. In order to
determine scattering lengths we must therefore perform two
extrapolations. First, we must perform a Chew-Low extrapolation
to the mass shell. Second, we must extrapolate to the elastic

threshold for mm scattering. Two results for the I=0 S-wave

scattering length obtained from studies of the process ﬂ—p+ﬂﬂN are

(.16

n
I+

ap .O4)m1_T1 (Morgan 1970) (
6)

(.28 + .21)n7" (Maung 1970) .

ap

In addition, the I=2 S-wave scattering length is found to be

(Morgan 1970)
ay =1
a, = -(.05 * .Ol)m“ . (7)

iii) PCAC Results. The Adler consistency condition, which

is derived from the divergence-field identity of PCAC
B L0 _ .o
OB M C (8)

implies (Adler 1965) that the amplitude for the process (1) must
vanish when the four-momentum of one of the pions vanishes.
Again, we have an off shell result since one of the pions, say

T1, has M2(71)=0. The point at which this result is valid is
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pi=0, s=t=u=p;=p§=pz= m;=&. This is known as the Adler point,

Notice that the Adler point is not far from the elastic
threshold for the process (1). VWe should therefore be able to
obtain information about 7T elastic scattering near threshold
by extrapolating PCAC results from the Adler point to the
threshold point. This extrapolation is model dependent but the
results are consistent. Two such results for the I=0 and I=2
S-wave scattering lengths are

-1
ag = .20 mﬂ

-1 (Weinberg 1966)
a = =-,06 mﬂ

(9)
a0 = (.15 ¢ .02)n "
-1 (Cronin 1967)
az = =(.04 ¢ .004)mn

Two other quantities which are ofteﬁ used in discussing
scattering lengths are the combinations I = (2a¢9-5a5)/6 and

R = ag/az. The ag and a, in (6), (7) and (9) yield the following
results

-1

L(mTT ) R Reference

.10£.01 | -3.2:1.0 | (Morgan 1970)
.10+.01 -3.5 (Weinberg 1966)

.09+.01 -3.7£0.8 (Cronin 1967)

Table VI.1:
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Vi.2 The DT Model

The DT model of chapter V has a number of desirable
properties, including the fact that it reduces to the Veneziano
model in the zero width (¥(s)=0) limit. This limit is useful
because, if the resonances are narrow, the real parts of the DT
model amplitudes should be close to the real parts of the
Veneziano amplitudes provided that we stay away from the resonance
region. For exact calculations, however, the DT model is
somewhat more difficult to work with than the Veneziano model.
There are at least two reasons for this. First, the Veneziano
model is described by a relatively small number of parameters,
including coupling constants and slopes and intercepts of the
relevant (linear) trajectories. The model of chapter V, and any
other model incorporating trajectories which are complex above
threshold, has additional parameters characterizing the imaginary
parts of those trajectories. Experimental information about
" these imaginary parts is rather scanty. The second difficulty
lies in the mathematical complexity of the model. The Veneziano
model is constructed from the well known Beta and Gamma functions.
Calculations are easily performed since these functions are
tabulated. The model of chapter V cannot be handled with such
ease. If we hope to obtain an amplitude with reasomnable behavior
in the resonance region, then we must be prepared to work with
models which are more complicated than the Veneziano model.

The difficulties described above are not serious. 1In
previous chapters we have already obtained some restrictions on

the imaginary parts of the trajectories. The second part of
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this section will be concerned with the fixing of parameters
for a specific form of the DT model. In the first part, we shall
examine methods which can be used to calculate the function

A(s,t) of chapter V.

i) Analytic Continuations. The function A(s,t) defined in

equation (V.2) can be written

A(s,t) = D(s,t) + D(t,s) (10)
where
% S
D(s,t) = sz 20 (8,2) (q_,y-alt,1-2) (11)
0

and where 0(s,z) is defined in (V.3). 1If Reo(s)<l, then D(s,t)
can be calculated from (11) with simple numerical integration.

If the integrations defining o(s,z) and a(t,1-z) can be performed
analytically,then the calculation is simple. If, however, the
trajectqry functions themselves must be determined by numerical
integration, then the procedure is still straightforward but

|

somewhat more costly. Care must be taken if the points
z=e(1'_t)/n and/or z=1—e(1—s)/nlie on the path of integration of
(11) since the trajectory functions are singular at those points.

No significant difficulties arise, however, because the

singularities are logarithmic.

a(s)

Suppose we now add and subtract the function z from the
integrand of (11) and use the function f(s,z) defined in (IV.1)

and (V.4). Then we find
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2(x(s)—l

D(s,t) = 12a(s)

1
2

+ jdz z-a(s){zf(s’z)(l-z)_u(t’l—z)-l}. (12)
0

This expression can be integrated numerically to give D(s,t) in

the region Rea(s)<2.

In the region Rea(s)>2, Ima(s)>0 we can calculate D(s,t)

from the integral representation

~-x ~-x
D(s,t) = jdx e-x(l—a(s,e ))(l_e-x)—a(t,l—e ) (13)

c

where the contour C is shown in figure VI.4, The vertical part

of the path is chosen to lie to the right of the points x=(t-1)/n
- e (1=8)/n . : :

and x=-1n(l-e ) at which the trajectory functions are

singular. With sone algebra, we can recast (13) in a form which

is slightly better suited to numerical integration:

f -x(1-0(s,e *)) -xy -0 (t,l-e"%)
D(s,t) = de e ¥liTals,e (1-e7%) alt,l-e

In2
1
R zﬂiep(a(s)-1)°§ezwik(a(s)-1>jdq{ezniq(oc(s)-l) y
k=0

0 (14)

~p=2TilgeW) _ -p-2Tiq
Xe-(p+2ﬂiq)f(s,e hﬁe-p ZWiq)—a(t,l—e )

- =p=2Tilgeks s . .
Xe 21ikf (s, e %ﬂ-e P Zﬂlq)Gk(t,p+2W1q)}

where p>max{Re[(t-1)/n], Re[—ln(l—e(l_s)/n)], 1n2} and

2mikn

_t Y(r+liny)
8, (t,y) = 7Jdr

(r+1+ny)(r+1+ny—t)

. (15)
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In order to study the region Rew(s)>2, Ima(s)<0 we need only

to make the replacement i+-i in (14) and (15). Notice that the
first factor in the sum appearing in (14) vanishes exponentially
with k for Ima(s)>0. We can therefore truncate the summation
after a reasonable number of terms.

With the representations (11), (12) and (14) we can
determine D(s,t) and , with (10), A(s,t) for all finite values
of s and t on the first sheets of the s- and t-plames. The
function p(s,t), which is used in obtaining the subtractive
corrections of section V.3, can be found by direct numerical

integration of equation (V.14).

ii) A Specific Model. We shall now discuss the reactions
(1) and (2), for which the s-channel isospin amplitudes are

given by (II.7). We define the function C(s,t) by
C(s,t) = y(As+At+e)A(s,t) + YdAl(s,t) (16)

where A is given by (V.2) with (V.3) and A1 by (V.96) with

(V.97). We choose the parameter N to be

n = (21n2)"1 = .79 (17)

so that the double spectral boundary is the dotted line in
figure V.1.

Notice that we have neglected the subtractive corrections
discuséed in sections V.3 and 4, Although this is done for

simplicity, there are two justifications for the approximation.
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First, in the narrow resonance approximation mentioned at
the beginning of this section, the subtractive corrections enter
only in the second order. Thus, if the resonances are narrow,
with widths characterized by a parameter €, then the subtractive
corrections are 0(82). Second, one of the main motivations for
introducing these corrections was to adjust the behavior of the
partial wave projections near the elastic threshold. For the
amplitudes constructed from (16), such corrections are necessary
only for j22. The only quantitative Study near threshold in
this chapter will involve just the J=0 and 1 partial waves.
Notice also that we have not included a Pomeron contribution in
the model. Since we shall be working at low eénergies in this
chapter, we do not expect diffractive effects to be important.
In order to parameterize the p-f? trajectory, we choose the

imaginary part to be of the form

Ima(s) = ¥{(s) = r?g%f?;%%yT (18)

where w is a constant and where

trajectory satisfying a(1)=%, 1In addition, the function s—1W(s)
has no inadmissible Ssingularities. Finally, (18) has a constant
behavior as s-w, Although this behavior is not strictly

admissible, we can always add a small but asymptotically growing
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part without altering significantly the results below. The
advantage of a form like (18) for Y¥(s) is that the integrals
defining a(s) and 0(s,z) can be performed analytically. This
enables us to perform the numerical integrations of the first
part of this section somewhat more easily.

Using (18) we find
¥Y(s)

2
TrGeaty! (=D In(ggigyz) + Lmde (20)

Rea(s) = As + b + —

If we demand that the p-£° trajectory pass through the p and £
and that the p have the correct width (mpr=.095GeV2), then we

can use (20) to obtain the parameters A, b and w. We have

X = .0783 ( 1.04 Gev %)
b o= .37 (21)
w = .114 .

The real and imaginary parts of the resulting trajectory'are
shown in figures VI.5 and 6. Notice that,even near threshold,
the p-f® trajectory, Rea(s), deviates only slightly from
linearity. In addition, notice that once a specific form is
chosen for Y(s) we can fix all of the trgjectory parameters.
The p—f° trajectory which we have constr;cted is acceptable

for fhenomenological purposes. The small value of -s at which
a(s)=0 (s=—.34GeV2) arises from our particular parameterization
and is not a requirement of the model (see chapter VII).

We shall choose the function Y;(s) appearing in (V.97) to

have the form
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2
Ima; (s) = ¥:(s) = ﬁz’;‘m . (22)

This function, like (18), has a constant behavior as s»»., 1In
addition, it has a nonvanishing behavior at s=1, which is not
satisfactory. Except at s=1, however, we expect that (22) will
give results close to those arising from a ¥,(s) with a (s—l)e
dependence (e<<1l) near s=1. Notice that the threshold behavior
of (22) is consistenf (to within logarithmic factors) with the
requirement (V.104) for o (1)=-3%. Like (18), (22) has the
advantage that the integrals for ai1(s) and a;(s,z) can be done

analytically. We find

¥Yi(s); L? . ﬂ(L2+l—s)}
2Ts

Reo1(s) = As + by + len((s_l)z) I . (23)

We shall choose the intercept of Reaj;(s) to be
by =b--1=-,63 . (24)

With this choice, the trajectory 0; becomes degenerate with the
first daughter of the p-f® trajectory in the zero width resonance
limit.

From the discussion of section V.l.v, we know that C(s,t)

has the approximate form

Y(AstAtte) _ _ yd

Clsst) = =707 O

(25)

for a(s) = 1+01(s) = 1. In this region there are resonances in

the S- and P- waves. A reasonable choice for the parameters
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of (16) and (22) is as follows:

wy; = .503 Yy = .503; ¢ = -.334 (26)
and

d = -.51 - ¢ .295 (27)

(remember that m;=& in our units). With these choices, the
amplitudes have the following features:

a) There is an I=J=1 resonance with mass 765 MeV and
width 125 MeV (p meson). Furthermore, in the approximation
(25), the contribution of this resonance to the I=J=1 77 partial
wave projection near 0(s)=1l is elastic.

b) There is an I=J=0 resonance with mass 765 MeV and
width 125 MeV (¢ meson). The partial width of this resomnance is
adjusted to be small.

¢c) There is a second pole in the I=J=0 partial wave
corresponding to /s~750 MeV. The width, however, is exceedingly
large (=1000 MeV) so that this pole could hardly manifest itself
as a conventional resonance but should rather be considered as
a phenomenological account of a strong TW interaction., Such an
effect could well be a manifestation of the opening of the
KR threshold near 1 GeV (see figure VI.3). Ve shall, however,
refer to this pole as the "e1" for convenience. As we shall see
below (section VI.3.ii), the presence of this pole is very
important in providing an S-wave phase shift in fair agreement
with the "down-down" solution (Baton 1970).

d) Finally, the choice (27) enables us to approximately

satisfy the Adler condition in the zero width resonance limit.

-
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Notice that in this limit (16) becomes

C(s,t) = Y(As+At+c+d)A(s,t) . (28)

As discussed by Lovelace (1968), the trajectories cannot change
when we take one of the external pions off its mass shell.

Thus only y, ¢ and d (and possibly n ) can be changed., If we
assume that these parameters do not vary significantly as we
move to the Adler point, then we see that the Adler condition

is satisfied for (28) provided that (27) is satisfied.

VI.3 Applications of the Veneziano and DT Models

We shall now examine the extent to which the DT model of
the last section and the Veneziano model discussed in chapter II

ctan account for the eéxperimental information of section VI.]1.

1) Dalitz Plot of pn + ¢ gt The Veneziano model has been
used by Lovelace (1968) to determine the density of points in
the Dalitgz plot for §n+w—w—w+. As we showed in section VI.1,

this process is related to the (off shell) process n_ﬁ++ﬂ—ﬂ+:

pn > 7 g gt (29a)
v (Pn = heavy 7°)

T o+ g gt (29b)

¥ (crossing symmetry)

T s gt . (29¢)
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We can therefore use the isospin decomposition (IL.7) to show
that the Dalitz plot density for (29a) is proportional to
|C(s,t)|2XPhase Space, where s and t are the (mass)? of the two
ﬂ+ﬂ- subsystems in the right hand side of (29a).

As we mentioned in the last section, the parameters Y and
¢ of (IX.10) and Yy, ¢ and d of (16) can change as we take one
of the pions off its mass shell. Since the pn system in (29a)
represents a pion with a (mass)? of 3.52 GeV2, we cannot expect
these parameters to remain the same as those for the scattering
of on shell pions. Lovelace uses the fact that no p is observed
in the 37 Dalitz plot (Anninos 1968) to set y=0 in (I1.8), i.e.
Y small and c large in (II.10). The Dalitz plot density for
(292) is therefore proportional to |A(s,t) |?xPhase Space, where
A(s,t) is defined 1in (11.5),

Instead of using the linear form (I1.2) for his trajectories,

Lovelace uses the form
a(s) = .483 + ,885s + .281(5—4m12r)é (30)

where s is in GeVZ. With this choice he is able to obtain a
good fit to the Dalitz plot shown in figure VI.2 (see Lovelace
1968). The Veneziano model provides an explanation of the three
major features of the Dalitz plot: the enhancement near

s=t=ms; the depletion of events near s=zt=1.1 GeV2 (Reo(s) =
Rea(t) =~ 1.5) and the enhancement at the upper right edge of the
plot. This is the only type of model which has been able to

obtain this structure. Unfortunately, the rather arbitratry use

of nonlinear trajectories leads to the ancestors discussed at

-
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the end of chapter II.

The DT model of the last section can also be used to obtain
a qualitative description of the Dalitz plot of figure VI.2.
Since the trajectories are already nonlinear, we avoid the
arbitrariness of the Lovelace approach and, more important, we
do not introduce ancestors. As in the Lovelace model, we
eliminate the p contribution by taking y small and ¢ large in
(16). For simplicity, we also set yd=0. The Dalitz plot
distribution is thus proportional to |A(s,t)[2XPhase Space,
where A(s,t) is given by (V.2). Using the p trajectory of the
last section and the continuation (12), we can find A(s,t) for
Rea(s), Rea(t) < 2 by numerical integration. A contour plot of
|A(s,t) |is shown in figure VI.7. Notice that, even though we
have not covered the entire region of figure VI.2, the majority
of the structure is visible. We find an enhancement at s=t=mz,
a depletion near Rea(s)=Rea(t)=1.5 and the beginnings of the
enhancement occurring near the upper right edge of the Dalitz

plot.

ii) 77 Phase Shifts. An alternative approach for the
introduction of finite width resonances into the Veneziano model
is the K-matrix method. Once the Veneziano amplitudes have been
projected into partial waves, say R;(s), a new amplitude is
defined in such a way that it has partial wave projections

I

45G) = R;(S)/[l - ip(s)R;F(s)J . (31)

Near a resonance, RI(S) has the form

3
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I, . . =Ml
Rj(S) * Ton? . (32)

Substituting (32) into (31) we have

T, . —MT
Aj(s) T s=M%+ip (s)MT (33)

which is the form of a resonance with a positive width (if p(s)T
is positive). In addition, since R; is real in the Veneziano

model, it is easily shown that the elastic unitarity condition
Inal(s) = p(s)4j(e)|? (34)
is satisfied, where
p(s) = [(s-l)/s]é . (35)

Since the amplitude (31) has well defined real and imaginary
parts, the mm phase shifts are well defined. A slightly more
complicated K-matrix method has been used by Lovelace (1969) to
fit the "down-up" solution for the phase shift 8%,

The K-matrix approach to the unitarization of the Veneziano
model suffers from a serious drawback: once the partial wave
amplitudes have been redefined, it is difficult (if not
impossible) to recombine them into a crossing symmetric amplitude.

Such an artificial method as the K-matrix approach is not
necessary for the DT model defined in section VI.2.ii. Using
the methods of section VI.2.i, we calculate the s-channel

isospin amplitudes for a(l)<Rea(s)<2 with SS fixed. From these
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fixed angle isospin amplitudes, it is a simple matter to
calculate the lowest partial wave projections Ai(s). The
Argand diagrams for the 4} and a1 partial waves are displayed
in figures VI.8 and 9 along with the phase shifts 8} and §t.
The phase shifts are compared with the elastic phase shifts of
Baton (1970).

The partial wave 4} exceeds the unitarity limit but the
deviation is not large below s=7.5 (=.56 GeVz). The agreement
with unitarity below the inelastic threshold, in fact, is to
within 87 (see figure VI.10). Tﬂe resulting phase shift 6] is
not too far from the "down-down" solution of Baton (1970).

By examining the S-wave phase shift of (25) (dotted line in
figure VI.8), we can see that most of the structure is due to
pole contributions.. The rapid rise of 8] above threshold is due
to the fact that the €,, in addition to having a very large
total width, has a very large partial width.l The dip in the
phase shift is due to interference between the € and €1. Notice
that the behavior is?similar to that found by Baton (1970) near
the KK threshold.

The 4} partial wave is characteristic of the p resonance.
The elasticity is somewhat low and thep mass is shifted slightly
upward from the input. The agreement with unitarity below the
inelastic threshold is again rather good (see figure VI.11).
There 1s some deviation from unitarity as we approach the

elastic threshold, reaching 30% at s=1.5.

iii) mm Scattering lengths. Because of the constant behavior

of ¥1(s) near threshold, we cannot directly determine the
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partial wave amplitudes at s=1. We can, however, arrive at an
estimate by making a quadratic fit through three points close
to threshold (s=1.5, 2 and 3 in this case) and then extrapolating

to s=1. With this method and the relation

a. = lim 8i/k = Ar(1)m-t (36)
T
k=0
for the S-wave scattering lengths, we find the I=0 and I=2

a = .201111 = - 045 . (3;)
0 T 1 az . m,”.

We also find

R = ~4.476. L = .1045m;1

(38)
where R and L are defined in section VI.1.iii. The results

are in satisfactory agreement with those of section VI.1.

A complete table, showing Veneziano model results due to Lovelace

as well, is presented below. L, ap and a, are in units of m%l.

Table VI.2
~ay a, L R ' Reference
.16+.04 -.05+.01 |.10+.01 -3.241.0 (Morgan 1970)
.28+.21 (Maung 1970)
.20 -.06 .10+.01 -3.5 (Weinberg 1966)
«15%£.02 | -,04£.004/.09+.01 | -3,7.0.8 (Cronin 1967)
-3.8 (Lovelace 1968)
<29 -.06 .15 -4.5 (Lovelace 1969)
.20 -.045 .10 -4.5 (This work)
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Notice that, except for the Adler condition, all of the

parameters of our model were fixed by constraints in the

resonance region. Thus, the low energy approximation to
unitarity occurs solely as an output of the mo&el. The
scattering length results are also consistent with experimental
and theoretical results, but this may be a consequence of the
Adler condition. The results in.the resonance region are not
unitary but not unreasonable. It therefore appears likely
that, with subtractive corrections, more sophisticated forms
for ¥(s) and ¥1(s), adjustment of parameters and the addition
of a Pomeron contribution, a model can be constructed which

describes 7T scattering-in all experimentally observable regions.
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VII. Conclusions, Prospects for Future Development

In the last three chapters, we have developed a gemeralized
Veneziano nodel which can be used to examine low and intermediate
energy scattering processes as well as scattering im the
asymptotic region. The model is based on the distorted
trajectory model discussed in chapter III. By demanding that
the amplitudes be well behaved asymptotically, have physically
reasonable singularities and a curved dougle spectral boundary,
we have been able to significantly restrict the number of
functions under consideration. The resulﬁs of chapter VI suggest
that the model is physically reasonable in the low emergy region.
In addition, with the continuations of section VI.2.i, we can
perform calculations with the model in a straightforward way.

The bulk of the work presented here has been comcermed with the
mathematical structure of the model. There have beem no serious
attempts to apply the model to the fitting of experimental data,
only to the determination of qualitative results. Imdeed, it
would have been pointless to attempt such fits without first
having shown that the model does not lead to violatioms of
asymptotic bounds.

The amount of work remaining to be dﬁne with the model is
significant. All of the phenomenological work which has been
done in connection with the Veneziano model in the limit s-o, g
t<0 and fixed can be done with this model as well. Im addition,
we can make numerous low energy calculations. Fimally, there
are several theoretical probleme which should be studied.

In this chapter, we shall discuss some of the investigations
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which should be undertaken in the near future. These include
studies of the two body reaction model from both the mathematical
and phenomenological points of view and an examination of a

model with finite width resonances for multiparticle processes,

VII.1 Applications to Two Body Reactions

We shall now examine several interesting calculations which

can be performed with the DT model,

i) 77w Elastic Scattering. In the last chapter, we performed
a crude but encouraging calculation for the process wWT*TW, This
calculation is inexact for three reasons. First, the amplitude
does not have the correct double spectral boundary for the
scattering of either scalar or pseudoscalar bosons. 1In addition,
it cannot satisfy the elastic unitarity relation (VI.34) near
threshold for j22. These difficulties are due to the fact that
we have neglected the subtractive corrections of section V.3,
Second, we have not included a Pomeron contribution., Such a
term is expected to dominate the asymptotic behavior of any
process which can exchange the vacuum quantum numbers in the
crossed channel. We also notice that the I=2 invariant amplitude
defined in equation (I1.7) cannot be correct because C(t,u) does
not have an imaginary part for s>1 and t,u<0. 1In several models
(see,for example, Moffat 1971 and Curry 1971), it is the Pomeron
contribution which prqvides this imaginary part. 1In addition,
TT scattering has been observed to be highly diffractive for a

diﬁion mass greater than 1.6 GeV (Oh 1970). Third, the Regge
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trajectories which we have used for the calculation do not
satisfy all of the conditions which have been discussed. The
imaginary parts must grow asymptotically, probably as in equation
(V.67). The threshold behavior of a(s) and a,(s) is constrained

by (V.106). A further constraint on the p trajectory is that
a(-8) = @ . _ (1)

This requirement, which in more conventional units implies
a(t)=0 for t~-.6 GeVz, provides the well known explanation of
the dip at this value of t in the differential cross sections
for 7 p»m’n and ﬂ+p*n°A++. Relation (1) is not satisfied for
the p trajectory of chapter VI /see figure VI.5).

Taking the above considerations into account, we can
certainly perform a study of 7T elastic scattering similar to
those of Lovelace (1969) and Curry (1971). Such a study should
probably proceed in the following way. “First, choose a set of
trajectories satisfying the constraints mentioned above.
Second, use the zero width resonance approximation with the
Adler condition to estimate ¢ (or d) of (VI.16) in terms of
Ay b, b1 and d (or c¢). Third, use the requirement of unitarity
at the p resonance to determine Y. Fourth, use the fact that
(VI.25) should give a reasonable approximation for the I=J=0
partial wave in the region 3<s<l15 to further restrict the
parameter d (or ¢) and the trajectory parameters. Finally,
include subtractive corrections and a Pomeron and perform the
calculations of chaﬁter VI. The results of these calculations

should be sufficiently reasonable to enable us to improve them
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by making minor changes in the parameters. In addition, the
Adler condition should be tested. Once reasonable fits have
been obtained for the lower partial waves, elastic unitarity

can be tested for higher partial waves.

ii) 7N + 7N and YN -+ 7N. Throughout this work, we have
concentrated on the process wm+Tm. The advantage of this,
at least Iin the Veneziano model, is that only one type of Regge
trajectory is exchanged in all channels. The invariant
amplitudes are therefore in a relatively simple form. Two
problems with 7w elastic scattering are that the widths of the
resonances lying on the p-f° trajectory are not well known and
that the process has been studied only up to a center of mass
energy of approximately 1.5 GeV., The first problem makes it
difficult to restrict the function ¥(s) while the second means
that we have no high energy data with which to compare the
asymptotic form of our model.

Since the processes TN+TN and YN+TN can be studied directly,
there is experimental data at high energies in both forward and
backward directions. Furthermore,'since a large number of 7N
resonances have been observed, it should be easier to
parameterize the baryon trajectories. The first process has
been studied in the context of the Veneziano model by Berger
(1969) while the second has been examined by Argyres (1971).
The basic procedure in both cases is to write down a simple
Veneziano representation for each invariant amplitude and then
to fix the parameters in the resonance‘region. Unobserved

resonances are decoupled while observed resonances are required
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to have the correct partial widths. These models give definite
predictions about the high energy behavior of the above
reactions in both forward and backward directions (see figure
VII.1). The forward cross sections, which are characteristic

of meson exchanges, are satisfactory. The cross sections in the
backward direction, which involve baryon trajectories, are
incorrect for both processes. If satellite Veneziano terms are
used, introducing additional parameters, then the backward
results can be correctly accounted for (Argyres 1971).

It is a straightforward exercise to apply the DT model-to’~
these processes in place of the Veneziano representation. As
was the case for TT elastic scattering, subt;active corrections
should be ignored until all parameters have been fixed. In any
case, these terms should not contribute significantly to the
asymﬁtotic behavior in either the forward or backward direction.
We will, however, need a Pomeron in order to discuss 7N elastic
scattering at high energies (see figure Vii.l).

There are several factors which may change the Veneziano
model results as we give widths to the resonances according to
the DT prescription. First, if the imaginary parts of the
trajectory functions behave like (V.67) for large s, then the
most prominent non-leading terms in the asymptotic expansions

for large lsl will differ from the leading terms only in powers

of 1n|s . These non-leading terms may therefore modify the
asymptotic behavior which results from the simple Veneziano
approaéh. Second, the fact that the threshold behavior of the

amplitudes can now be described may reduce the arbitrariness

involved in the addition of satellite terms. This was the case
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in 77 elastic scattering, where the satellite term Al(s,t) was
required by threshold conditions. It will be interesting to see
what changes, if any, occur in the description of TN elastic
scattering and pion photoproduction as a result of this new

representation.

1ii) Tests for Duality. Although the Veneziano model is
dual, in the sense that the sum of its resonances is equal to
the sum of its crossed channel Regge exchanges, the amplitude
which we have constructed i1s not. There are non-resonance
contributions in the direct channel and contributions in the
crossed channel which do not correspond to Regge pole exchange
(see Appendix). Since the DT amplitudes reduce to those of the
Veneziano model‘in the zero width resonance limit, we expect it
to have broken duality. We can test the extent to which duality
is still satisfied by substituting the resonance contributions
of the model into an FESR whose right hand side comes solely
from the Regge pole part of the asymptotic behavior. An easier
test is to compare the imaginary part of the resonance
contribution with the extrapolation to the resonance region of
the imaginary part of the leading Regge pole contributions.

The Regge contributions should average the resonance contribution.

VII.2 Theoretical Problems in Two Body Reactions

Although we have examined a number of the basic properties
of the DT model, there are several interesting areas which

remain to be investigated.
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i) Subtractive Corrections. As yet, we have not studied
the behavior of the subtractive corrections of chapter V in
much detail. These terms are expected tq Play a significant
role in the unitarization of the model, especially for higher

partial waves.

ii) J-Plane Structure. Some information about the J-plane
singularities of the Ai(s) for mw Scattering can be obtained
from the treatment in the Appendix, However, we have yet to
examine this problen in detail, 1Ip Particular, we have studied

neither the J-plane Structure of the subtractive corrections nor
Points in the I=gQ and I=2 amplitudes,

iii) Non-Leading Ternms. In the Appendix we will develop a

technique which enables us to obtain all of the terms in the

model. 1In order to study these non-leading terms, we nust adopt
8 specific form for the function ¥ (s). Of particular interest
are the branch points which occur for a(s)=2 ang for higher
values of a(s) and which have Projections into all partial waves.
Since these are weak singularities and, in addition, occur on

the second sheet of the S-plane, they would certainly be
impossible to detect experimentally. It ig interesting to

Speculate on the possible physical significance of such terms.

iv) Alternative Trajectory Functions. The form of the

trajectory function which we introduced in equation (VI.1) is



116

certainly not the most general. One change which could be
introduced would be to write the function ¥(s®',z) in place of

¥(s') in the definition (Iv.1l), where
¥(s,0) = Ima(s) (1<s<®) ., (2)

All of the studies of chapters IV and V could be carried out
with such a function. ‘A second possibility is the introduction

of inelastic thresholds into the models. A form like

[+2] ©

_ s ¥(s') s{,.r _¥i(s")
a(s,z) = As + b + ans' ECIETY) + WJdS TG os) ° (3)

$(2) s;0,(2)

where ¢(0)=¢i(0)=1 and ¢(l)=¢i(l)=m, would introduce another

threshold at s=s into the trajectory a(s).

VII.3 Extensions, Applications in Production Processes

One of the most exciting facets of the Vemeziame model
is its simple generalization to multiparticle processes. The
amplitudes for N particle processes (N = incoming + outgoing)

are described by the function (Chan 19702}

L oN-2

By = J (__ dxi)(llJl)TTuPyP (4)

i=2 P
0
where

N-2 N-1 g1

3= T T Guy ) , (5)
i=2 j=itl
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yP yij = -aij -1 ’ (6)
oy F bij + Asij s (7
and
s = [p T p + + p ]2 (8)
ij i i+l 7 j :

The P in (4) and (6) refers to permutations in which i<j, while
the A in (7) is a universal slope. The uij are defined by

u - (1-x, FEIPREY .xj_l)(l Xy _qX5eee x ) , (9)

i
3 (1- XX i+1"'xj)(l-xi-lxl"'xj—l)

while the X needed in (2) but not included in the set of

integration variables are

Xp T Xg T Xy =0 . (10)
We can introduce finite width resonances into the model
above by replacing (7) with
8ijf
. = A + + dq Yige) .
4y ey (ad) = Asy K J KICn) ()
({
The lower limit of integration is given by
Lij ({xh = ™,y (1-nij1n(l-uij)) (12)

where nij are constants and Sij’z mij is the elastic threshold
for the ij channel. Notice that this is a simple extension of

the DT model of section V.1l. There are clearly a number of
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other possibilities.

Some of the earliest applications of the 5-point function,
BS’ were to the processes K_p+ﬂ+n_A (Petersson 1969) and
k*p+k°nTp (Chan 1970b) and to reactions related to these by
crossing symmetry. Good fits were obtained to many of these
reactions with a smzll number of parameters. In all cases,
however, it was necessary to use trajectories which were complex
above threshold, leading to the ancestors which we discussed
earlier. We are now in a position to perform the same work but
with a model whose trajectories have imaginary parts arising
in a natural way.

Another area in which it will be of interest to apply the
multiparticle DT model is in the study of inclusive reactions.

According to Mueller's theorem (Mueller 1970), the amplitude

for the production of the particle c in the reaction

a+ b > ¢ + anything (13)

is related to the direct channel discontinuity for the process

a+b+c>a+bt+ec (14)

where there is to be no momentum transfer in this last reaction.
The reaction (14), however, can be described by the function

B We can therefore apply our generalization to the study of

6
(14) and therefore to (13). This application should follew the
methods of Olesen (1971) or Virasoro (1971). The work of

Olesen, in fact, was performed with two generalizations which



119

incorporated finite width resonances. Neither of his
generalizations, however, was based on a four point model with
Regge behavior as s++» for all physically attainable values of
the crossed channel variaﬁle. We have now overcome this

difficulty.
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Appendix. Non-Leading Terms

As we mentioned in chapter VI, one of the most useful
properties of the DT models and of the Suzuki model of
chapter III is that they reduce to the Veneziano model in the

zero width resonance limit, i.e. as

¥(s) + 0 (for all s) . (1)

We have already used this property to obtain approximations

to the DT model in various regions. Another use of the property
lies in the fact that a parameter characterizing the size of

the resonance widths is a natural one in which to expand the
amplitudes.

The singularities mentioned in section V.l.v remain
essentially udchanged in the limit (1). The only difference is
that they are shifted to the real, positive s-axis. The function
A(s,t) has additional singularities which we have not discussed
and which vanish in the limit (1). 1In this Appendix, we shall
introduce methods which enable us to study, at least in a
qualitative manner, these non-leading singularities. 1In
addition, we shall use similar techniques to examine in detail
the asymptotic expansion of A(s,t) in the large |s| , fixed t

limit.

i) The Singularity Expansion. The s-channel singularities
of A(s,t) arise from the divergence of (V.2) at the lower

endpoint of integration. We therefore make a separation similar



to (I1I.19):
v 1
A(S’t) = J'i‘JdZ Z—a(s)(l-z)—}\t-bzf(ssz)(l_z)"g(t, 1-z)
0w

m

IOv(S’t) + Ivl(s’t) .

In order to examine the s-channel singularities of A(s,t), we
need only to study IOv(s’t)'

In chapter II we obtained the singularity expansion by
integrating IOv explicitly in the region Red(s)<l., The result
of the integration provided us with an analytic continuation
into the region Ret(s)>1. The function IOv(S’t) defined in
equation (2) is not so easily integrated because the integrand
is a complicated function of z. We can, however, simplify the
z dependence of the integrand by making use of the Laplace
transform and its inverse transform (Carrier 1965, ch. 7).

We write f(s,z) in the form

f(s,z) = zIdp zPF(s,p) (3)
0
where
B+iw
F(s,p) = i%Ide ex(p+l)f(s,e—x) (4)
B-io

and where the path Rex=B lies to the right of all singularities
in the integrand of (4). The representation (3) converges for

lz|<min{1,|l-e(l-s)/n|} so that by taking Vv sufficiently small

in (2) we can use (3) for f(s,z). With some algebra, we obtain

(2)

121
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the expansion

00

(s,
2£(5:2) . Jdp F(s,p3d/dp)2P (s)
0
where
F(s,p;d/dp) = &(p) +
® (6)
Tl
+nzl;TJdpl..dpnF(s,pl)..F(s,pn)G(p1+..+pn+n—p)(d/dp)n .
0
Similarly, we write g(t,1l-z) in the form
g(t,1-z) = qu 236 (t,q) (7N
0
where
B+iw
_ 1 qx __-X
G(t,q) = —-—ZHinx e'"g(t,1-e 7) (8)
B-ie
and where the representation (7) converges for |z|<min{l,
Ie(l_t)/nl}. Again, with v sufficiently small, we can use
equation (7) for g(t,l1-z) in (2). We have
(l_z)-g(t,l-z) = qu G(t:,q;d/dw)zq(l—z)-W 9)
0 w=0
where
G(t,q;d/dw) = 8(q) +
© (10)

m=
0
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We now substitute (5) and (9) into (2) and perform the
z integration to obtain,for IOV’
0
Ioy(sst) = Jdpdq{F(s,p;d/dp)G(t,q;d/dW) X
’ , (11)
X Bv(l+p+q-a(s),1—kt—b—w)} .
w=0
The incomplete Beta function, Bv, has poles at a(s)=ptqtlt]
(3=0,1,2,...) whose residues are polynomials of degree j in

(At+w). The function IOv(S’t)’ then, will have singularities at
a(s) = p' +q' + 1+ (j=0,1,2,...) (12)

where p' is either zero or a singular point of F while q' is
either zero or a singular point of G.

If ¢ is a parameter characterizing the size of the resonance
widths (i.e. the size of ¥(s)), then the j-th terms in the
expansions (6) and (10) are O(ej). Thus the contribution to
(11) coming from the j—th term in (6) and the k-th term in (10)
is of order j+k in the narrow resonance expansion. The leading
term in this expansion, found by using the first terms of (6)
and (10) in (11), simply gives the singularities discussed in
section V.Ll.v.

Let us now keep all of the terms imn (6) but only the first
term in(10) and , further, let us suppose that the function
5_1?(5) has the expansion,for s=1,

© o

s lusy = § e (-1 -In(s-1ITT . (A3)
n=0 n=0 "
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It is then an easy matter to show that Iov has singularities at

a(s) = j(po+l) + k + 1 (k=0,1,2,...) (14)

which have a polynomial t dependence of degree k., The nature

of these singularities is as follows:

a) Simple poles for i=0,1,2,.., ;
b) Branch points for i=1,2,...

¢) Multiple poles of maximum multiplicity j+1 for i=l,2,... .

The singularities ¢) occur only if Cho * 0 in (13). Thus, if
Cho 2 0 in (13) then A(s,t) will have no multiple poles. Such
a threshold behavior for s-IW(s) is consistent with (v.73).
Except for the threshold branch point discussed in chapter V,
the singularities a) and b) [and c) if cm0¢0] are the only ones
occurring in the neutralized model of section V.2,

Finally, if higher order terms in the expansion (10) are

used, we can show that A(s,t) has singularities at

a(s) = j(po+l) + k + 2 (3,k=0,1,2,...) (15)

whose t dependence is not polynomial. These singularities will
therefore appear in all partial wave projections, unlike those
of (14). 1If the ¢ vanish for all m then the singularities

at the points (15) are branch points. The nature of these
branch points depends upon the behavior of the function s—lw(s)

for large [s[.
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ii) The Asymptotic Expansion. With the change of variables
z = (l-e x), equation (V.43) becomes
3(8g)

A(s,t) ~ Jdé z—u(t)(1_2)—As-bzf(t,z)(l_z)—g(s,l—z) (16)
0

where, for small v,
V(9.) = [l-expéve i®s) « yeoi0g (17)

The representation (5) can be used for zf(t’z) in (16).
Similarly, we use the representation (9) for (l_z)g(s,l-z)‘
We must be careful in working with the latter term since (7)
converges only for lzl b e-ReS/n when Res > 0. This problem can
be overcome, without effecting the asymptotic expansion, by
defining G(s,q) as
Bt+ice

G(s,q) = E%Ij dx %% g(s,1-e7 %) . (18)
B-ie

The function g is the asymptotic expansion of g:

-x s ¢ _k_i+nx ¥(s") (s'-1k
g(s,1-e %) = g(s,0) + T X(s—l) st' o . (19)
k=0

With the above substitutions we find

A(s,t) ~ jdpdq{F(t,p;d/dp)G(s,q;d/dw) X
0 (20)

X BG(¢S)(1+p+q—u(t),1fxs-b—w)}

1 " w=0
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as |s| » @ with —n5arg(l—a(s))5¢55ﬂ for t fixed and such that
Ret<1.

The leading asymptotic behavior of (20) is just (V.46). Thus
the amplitudes constructed from A(s,t) will have asymptotic
behavior characteristic of the exchange of the p-£f% trajectory.
The positions and natures of the non-leading trajectories will
depend upon the behavior of ¥(s) near s=1 and s=®. Suppose that
Y(s) has the behavior (13) near threshold and behaves, to withinm
logarithmic factors, like sl—g for large s. We can then show,
with (20), that the amplitudes constructed from A(s,t) have
terms in their asymptotic expansions which are characteristic of
the exchange of trajectories lying j(po+l)+kE+n units of angular
momentum below the p-f’ trajectory (j,k,n=0,1,2,...). Notice
that if ¥(s) has the behavior (V.67) for large s then £=0.

If, furthermore, po is an integer then j(po+l) is also an integer.
All trajectories will then lie an integral distance below the
p-£% trajectory.

If only the first term in the expansion (10) for G is used
in (20), then only the_k=0 trajectories appear. It can easily
be shown that these are the trajectories on which lie the
resonances and branch points of (14) and the following discussion.
These are the only terms appearing in the asymptotic expansion
of the neutralized model of section V.2. The trajectories
resulting from higher terms in the expansion of G evidently do
not "surface" at physical J. We therefore have the situatiom

shown in figure A.1l.
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Figure Captions

Chapter I

1. Definition of the Mandelstam variables s, t and u.

Chapter II

1. Reaction channels for the process 1+2>3+4.
9. The reactions a) W+T1+T2+T3 and b) WHTWo>Ty+T3.
3. The reactions a) Ti+Ta*TM3+Ty and b) Ty+M3=>To+Ty.

4. Definition of the s-channel center of mass scattering
angle for the process 1+2+3+4,

5. Trajectories and particles in the Veneziano model for
T scattering. Numbers are elastic partial widths in
MeV normalized to Pp=112 MeV. From (Jackson 1970).

6. Paths of integration for (II.28).

7. Paths of integration for (II.34).

8. Paths of integration for (II.36) showing singularities
at x = 2nmi.

9.&MSaturation of the FESR (II.39) with zero width resonances.
. Solid liunes are values from (II.39). Dashed lines are
values from (II.40). Cutoffs: AN=2,4.

d

10. Path of integration for examining A(s,t) as ls] » =,
u fixed, ¢—ﬂ<arg(1-a(s))<-%ﬂ. Singularities at x=t(2n+l)Ti
are shown.

11. Paths of integration for examining A(s,t) as lsl > o,

Xs fixed, ¢-m<arg(l-o(s))<-im. Singularities at
x=(1-%g)1n(l-Xg) *XglnXg*(2n+1l)Xgmi are shown.

Chapter III

1. Double spectral boundaries for the Suzuki, DT and CHKZ
models. Dashed line is the 93 boundary.

-7
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2. Contour of integration for (III.27) used to find Rev, (s)

in all models and Imvj(s) in Suzuki model.

3

3. Contour of integration for (III.27) used to find Imv, (s)
in CHKZ and DT models. i

4. Contour deformation of (III.42) providing analytic
continuation into right half s-plane. Singularities (III.43)
and (II1.44) are indicated.

5. Contour deformation of (III.45) providing analytic

continuation into right half s-plane. Singularities at
y=y, are indicated.

Chepter IV

1. Regions of analyticity required in the z-plane for ¢(z)
and ¥(¢(z))/¢(z) for several Xg*

Chapter V

1. Double spectral region (V.15) with n=.72 and ¢° double
spectral region.

2. Integration contour for (V.31).
3. Contour used in deriving (V.50).

4. Contour C' used in determining fixed angle asymptotic
behavior.

5. Double spectral region (V.15) with n=.72 and "% double
spectral region,.

Chapter VI

1. Diagrams of pion reactions studied.

2. Dalitz plot for the reaction pn + 7 7 1 near threshold.
(Anninos 1968)

)



132

3. I=0 S-wave phase shifts for T7W scattering.
a) Beaupre (1971)
b) Oh (1970)
c) Elastic "down-down"(c-cq) and "down-up"(c-c,)
solutions of Baton (1970)
d) Inelastic "down-down"(d-dg) and "down-up" (d-dy)
solutions of Baton (1970).

4., Path of integration for (VI.13). Points marked (o)
indicate singularities in oa(s,e™¥) or a(t,l-e~X),

5. Real parts of the trajectories a(s) and ai(s).
6. Imaginary parts of the trajectories a(s) and a1(s).

7. a) lA(s,t)] in the region 1<s,t<20. b) Cross section of
figure VI.7a along diagonal s=t. Small numbers on vertical
axis of b) correspond to numbers in a).

8. a) Phase shifts and b) Argand diagram for I=J=0 77T partial
wave. Dashed phase shift: elastic solution of Baton (1970).
Solid phase shift: this model. Dotted phase shift:
contribution from € and "g;" (VI.25).

9. a) Phase shifts and b) Argand diagram for I=J=1 7T partial
wave. Dashed phase shift: elastic solution of Baton (1970).
Solid phase shift: this model.

10. Satisfaction of elastic unitarity for I=J=0 77 partial wave.

11. Satisfaction of elastic unitarity for I=J=1 77 partial wave.

Chapter VII

1. Regge trajectories dominating asymptotic behavior of mN
elastic scattering in a) forward direction and b) backward
direction.

Appendix

1. Typical Regge trajectories resulting from using the first
term of expansion (A.10) in (A.20) (solid lines) and from
using remaining terms (dashed line). Physical J
singularities lying on trajectories marked (o).
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