«%

A Speech Interface for Bedside Data Entry in
an Intensive Care Unit

Marco Petroni

B. Eng., (McGill University), 1989

Department of Electrical Engineering
~§ ’ McGill University
Montréal
July, 1991

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Engineering

(© Marco Petroni, 1991

oy

[

Abstract

This thesis presents the design and implementation of a speech interface for bedside
data entry in an intensive care unit. A speech interface is a system comprised of a
speech recognition system, for speech input, and a speech generation or speech
synthesis system, for speech output. These interfaces allow the operation of a
computer system using voice commands providing the user with feedback via
speech output. Such systems permit users to perform “hands-free” and “eyes-
free” data entry or system operation in circumstances where the use of traditional
manual input devices, such as a keyboard, cannot be used. This thesis begins
with a literature sampling of contemporary computerized medical information
systems and speech interface systems followed by a description of the hardware
and software architecture of the speech interface implemented. Test results are
then presented and discussed followed by an outline of future exiensions for the

system.

LxS

Sommaire

Cette dissertation présente la conception et la mise en application d’une interface
vocale pour l'entrée des aonnées prises au chevet du lit dans une unité de soins
intensifs. Une interface vocale est composée d’un systéme de reconnaissance de
la parole, pour répondre & des commandes vocales, et d’un synthétiseur de la
parole, qui agit comme périphérique de sortie de paroles qui ont été numérisées
ou générés de fa con synthétique. De telles interfaces permettent aux mains et aux
yeux des usagers de rester libres pendant I'interaction avec le systéme informatique
en utilisant des commandes vocales. Les interfaces vocales permettent au logiciels
réagir avecdes paroles. Cette thése débute avec un exposé littéraire sur les systémes
informatiques médicaux et sur les interfaces vocales. La configuration machine et
logicielle de I'interface vocale mise en application est décrite et les résultats des
séances d’essais sont présentés et analysés. Avant de conclure, les grandes lignes

des expansions futures sont discutées.

ii

Acknowledgements

At the conclusion of this long and exciting process, my first thoughts go out to my
parents, who provided me with the support and understanding I needed to get
through this experience in graduate studies. The financial support of NSERC is

also gratefully acknowledged.

Thanks must also be expressed to my supervisor, Alfred Malowany, for allowing
me to discover the interesting and rewarding field of medical informatics, and for
the inspiring discussions that assisted me to the very end. I would also like to
acknowledge the help and input of Franco Carnevale and Dr. Kon Gottesman of
the Montreal Children’s Hospital for sensitizing me, and the rest of the PDMS team,
to the issues and considerations specific to the intensive care unit er vironment; our

collaboration has been both enriching and exciting.

An acknowledgment is also extended to the countless undergraduate students
who have contributed in one way or another to the PDMS project. A special thanks
goes out to the NSERC summer students Chantal, Han, and Lifang, who were

responsible for implementing portions of the design.

Last but not least, a special thanks to all my fellow students in McRCIM, with
whom I shared many adventures, and also a very special thanks to the “veterans”
Nick, Christian, Mathieu, Jean, Kathleen, and Jean-Frangois. They deserve praise

for their help, patience, suggestions, and friendship.

iii

Chapter1 Introduction

Table of Contents

................................ 1
1.1 Computer-Based Medical Systems 2
1.1.1 Historical Background 2

1.12 Data AcquisitionSystems 4

113 UserInteraction 7

1.2 Other Fields With Sitnilar Issues 16
121 DataAcquisitiono oo 17

122 UserInteraction 17

1.3 ThesisOverview 20
Chapter2 The Patient Data Management System 21
21 PDMSOverview e 21
2.2 HardwareConfiguration 23
23 Software Configuration 25
23.1 Operating System Considerations 25

232 PDMSModules00 26

233 TheDataLinkController 28
Chapter3 Speech Interface Description 34
3.1 0S/2 and the Presentation Manager Environment 34
3.2 Speech Interface Sub-Systems : . 38
3.21 Verbex Conversational Voice I/OSystem 38

322 Covox Voice MasterKeyII 40

33 ASpeechlInterface o 42

iv

pofeq

33.1 Functional Description 42

3.3.2 Hardware Architecture e 46

3.3.3 Software Architecture e 48

334 DataLinkControl 55
Chapter4 Implementation, Results, and Future Extensions 58
4.1 Speech Interface Implementation 58
41.1 TheFluid BalanceModule 58

412 TheOS/2Serial PortHandler 60

413 TheDOS>XortProgram 63

4.1.4 The Grammar File and Playback Files 64

42 SampleSessionResults 0 o 65

43 Testand EvaluationProcess, 69
4.4 Discussion and FutureExtensions 77
Chapter5 Conclusion, 86
References o i i e e e e e e e 87
Appendix A Grammar Definition File for the Fluid Balance Module 9%

v

2.1
2.2
2.3

3.1
3.2
33

34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

4.1
42
43
44
45

List of Figures

PDMS Hardware Configuration24
PDMS Software Configuration 27
Fluid Balance Module Screen under OS/21.0 C 1

Dynamic Data Exchange Client Server Model (from [Southerton, 1989]) 35
Presentation Manager Window Components Ce 36

Fluid Balance Module Screen under the Presentation Manager

Environmentof OS/2 Ce e 43
Main Window of the Fluid Balance Module Screen 44
Ingesta Sheet Window of the Fluid Balance Module 45
Excreta Sheet Window of the Fluid Balance Module 46
Hardware Architecture of the Speech Interface . . . o 47
Software Architecture of the Speech Interface 48
Program Flow Diagram of the Speech Interface 50
Fluid Balance Module Menu Tree (Main Menu) 53
Fluid Balance Module Menu Tree (Ingesta Menu) 54
Fluid Balance Module Menu Tree (Excreta Menu) 54
Data Link Packet Structure, 55
Window of OS/2 Serial Port Handling Process 60
Dynamic Data Enchange Link Error Message 62
Message Flagging Successful Linkup of DOS and OS/2 Systems 66
Successful Dynamic Data Exchange Link Messages 67
Main Fluid Balance Module Window atStartUp 68
Sample Fluid Balance Module Data Entry Session (PartA) 82

4.6

vi

4.7 Sample Fluid Balance Module Data Entry Session (Part B)
4.8 Sample Fluid Balance Module Data Entry Session (Part C)
4.9 Sample Fluid Balance Module Data Entry Session (Part D)

Ay

L

..........
.........

vii

e I e il

4.1
4.2
4.3
44

List of Tables

Test Set 1: Expert Presentation Manager and Fluid Balance Module Users
Test Set 2: Results for Experienced Presentation Manager Users
Test Set 3: Test Results for Experienced Computer Users . .

Test Set 4: Results for Novice Computer Users

viii

73
74

75

Chapter 1 Introduction

With the proliferation of computers as prices fell and their functionality grew, came
their application in a myriad of diverse fields. Perhaps the most impressive and
beneficial application of computers is in the medical domain where computers
perform tasks ranging from accounting to 3-D imaging of parts of the human body,

allowing surgeons a more detailed view than was previously possible.

Computerization has also had a large impact on hospital intensive care units
(ICUs) allowing the continuous monitoring and cisplay of the physiological pa-
rameters of a critically ill patient. The advent of these computerized monitoring
systems 1n hospital ICUs, has removed the burdan, on the health care staff, of
having to continuously take patient readings allowing them to spend more time
on patient care, and less doing tasks which can easily be handled by machines.
In addition, many of these computerized monitoring systems perform some basic
parameter analysis, generating alarms when either pre-set thresholds have been
exceeded or when a combination of parameter changes may indicate an impending
problem. These systems provide a continuous, watchful “eye” on the patient while

the health care professionals are busy with other tasks at the patient bedside.

As in most other applications, computerization and automation in the ICU has
lead to an increase in the amount of data which is available to be viewed and
interpreted by the nurses and physicians. This creates the need for a means of
accumulating, presenting, and also assisting in the interpretation of this data in a
manner which is meaningful to the health care professionals. If a data management
system is not provided, the extra data generated by automation will not serve any
useful purpose. In turn, computerized systems which require extensive human

interaction, must be designed both with the human operator in mind, and with

1. Introduction

an in depth understanding of the application in which a given system will be
used. Otherwise, computerized data management systems wiil be doomed to be

abandoned and shelved in favour of the current manual charting methods.

According to an article by Kriewall and Long [Kriewall and Long, 19911,
computer-based medical systems can be categorized as beiny, either controllers
(artificial hearts, drug infusion systems), information managers (networks, inter-
faces, neural networks), or Diagnostic Tools (clinical lab equipment, blood pressure
monitors, ICU monitors, positron emission tomography, etc.). This first chapter
will mainly focus on the diagnostic tools and information manager components of

computer-based medical systems.

The first section will present some background information on computers in in-
tensive care units, focusing on the different applications and interaction modalities
that have been used. The following section will present some other applications
of computers in the medical field ranging from imaging to the use of computers
in teaching. Following that section will be a presentation of other non-medical
applications where computer automation has lead to an increase in the amount of
data available for interpretation and viewing by human users, and how computers

and interaction modalities have helped users cope with such a large influx of data.

1.1 Computer-Based Medical Systems

1.1.1 Historical Background

In the late 1970’s, as the cost of computers began to come down and their com-
putational power and functionality increased, it became possible for hospitals to
place computers in many departments [Abrami and Johnson, 1990]. Software spe-
cialized for different specialized departments, such as the laboratory, the radiology

department, and pharmacy began to appear. As the prices of computers continued

1. Introduction

to fall in the 1980’s, it was possible for more hospitals to computerize increasing

numbers of departments.

The computerization of medical instrumentation, in particular, presented health
care professionals with enormous amounts of data to process. The overwhelming
majority of this data was lost, however, as nurses would still continue to manually
take readings from the monitors at half-hour or hourly intervals for accumulation,
charting, and interpretation [Collet et al., 1989]. Computerization at this stage had
not yet eliminated either the transcription and entry errors inherent in the manual
charting process, or the fact that potentially important variations in the patient’s

condition, between interv~ls when readings were taken would not be recorded.

Inhospital intensive care units, where patients can have numerous physiological
parameters being monitored at a given time, tremendous pressure was placed on
hospital administrators to have the data acquisition and logging process automated
[Carnevale, 1986] [Nolan-Avila and Shabot, 1987]. Despite the high technical stan-
dard of the computerized monitors, the complaint of many users was that the units
lacked flexibility. In addition, the range of possible applications was often de-
termined by the manufacturer with little or no user influence [Alesch et al., 1991].
In order to cater to the increasing needs of the hospital ICU community, many
computerized monitor vendors provided a means of getting at the data generated
by their equipment, either by networking a group of monitors and providing an
interface to the network to acquire the data, or by providing a direct interface to the
monitor itself [Hewlett-Packard, 1987] [EMT, 1988). This allowed development of
automated computer systems which would acquire, process, display, and archive
data relevant to a particular ICU ward, and thus, patient data managementsystems

were born.

The use of computers in critical care gave rise to issues such as data storage and
integrity, security, and the usability of these systems by novice users — questions

which are still being addressed today.

¢ 3

e |

1. Introduction

1.1.2 Data Acquisition Systems

For the most part, Personal Computers, or PCs, are used for the collection, storage,
analysis, presentation of data acquired from monitoring equipment. This section
will present some of the PC-based systems as well as describing some of their

functionality.

Alesch [Alesch et al., 1991] describes a system based on a PC/ AT platform which
acquires, stores, and presents data which allows the determination of intercranial
compliance, a feature which was not available from their patient monitor and had
to be synthesized from data acquired from the monitor. Such data is essential in

present day neurosurgery.

In order to present relevant information to physicians appropriate for decision
making, a PC-based system for the collection and graphical display of patient data
for comatose and head injured patients is being developed at the University of
Louisville [Stickland Jr., 1991]. The information presented by the system consist of

graphical trends and of data presented in a spreadsheet format.

Important information gained from viewing physiological patient parameters
simultaneously is mentioned by Moser [Moser et al., 1990] which describes another
PC/AT-based system for computer-aided background patient monitoring in an
ICU. This system, which was developed in-house, uses Personal Computer local
area networks (LANSs) to allow the information to be viewed at the patient bedside.
This article also mentions that the archiving and “off-line” processing of this data

may give some insight into the effects of new drugs on a patient.

Dasta [Dasta, 1990] mentions the important role that computers play in ICU
environments, assimilating, processing, and displaying large amounts of data in
easy-to-understand formats for the users. This article mentions that, although
computers have been in the ICU for some years now, paper medical records are

still being used. Three prototype patient data management systems are presented,

»}w

1. Introduction

and the use of knowledge-based programs which provide help to the clinician
on such topics as acid-base management, hemodynamic monitoring, and shock

management, is discussed.

The use of computers in the emergency room and in the intensive care
unit to capture, and display biomedical signals is discussed by Aguglia
[Aguglia et al., 1990]. Computers are also used 10 provide support to the solution

of medical problems with diagnostic and medical decision making software.

Another system described by James et al presents a PC/AT system which
records, stores, and analyses graphically and statistically, neurophyiological and
cardiovascular recording during an experiment [James et al., 1990). The system
is composed of physiological amplifiers which connect to the PC/AT and whose

output data can also be written on a laser printer.

The evaluation and comparison of computerized systems versus the man-
ual data management systems is discussed by two articles by Tachakra et al
[Tachakra et al., 1990, and by Kari et al [Kari et al., 1990). In these articles, stud-
ies demonstrated that the computerized method of data acquisition and storage
yielded significant savings in time, staff workload, and in accuracy. Both studies
also showed that patient information was faster to access and to interpret by the

physicians using the computerized systems than by using the manual paper charts.

In two studies of computer-based patient monitoring and data management
systems done by Hommond et al [Hammond et al., 1991al [Hammond et al., 1991b),
results showed that the use these systems not cnly reduced non-nursing related
work, but also improved the quality, quantity, and recall of the clinical information
by the staff. This leads to a significant improvement in documentation flowsheets
both in terms of quantity and accuracy which can in turn have medicolegal and

quality assurance impacts, as well as enhancing patient care.

The use of computers to acquire and store anesthesia and ICU information is

crucial for legal issues, states Gibbs [Gibbs, 1989]. The failure of meaningful, sup-

5

1. Introduction

portive, or exculpatory documentation raises serious questions about the quality
of the care rendered. For this reason, Gibbs states that the use of computers for
automated data acquisition and record keeping in anesthesia and ICUs is as crucial
as the use of both the cockpit voice data recorders and flight data recorders in

aviation.

In an excellent article by Holtermann et al [Holtermann et al., 1990}, the authors
present their experience with computer-aided acquisition, processing and docu-
mentation of patient data in an intensive care unit. In their study, one PC was used
for the data acquisition and processing. The authors determined that one central
PC was impractical for this task, and advocate the use of many PCs networked to
the central PC, which would act as a server. The distributive nature of the system

would also allow the physicians to view patient information in their offices.

On-line data gathering and accumulation can also be used for “off-line”
data analysis and research. An article by Schwid et al discusses the uses of
data acquisition for the purposes of off-line data analysis and clinical research
[Schwid et al., 1990].

Another example of acquired data which is also processed “off-line” is a mi-
crocomputer communicating to a measuring interface via a serial R5-232C con-
nection for the monitoring of heat and fluid balance in severely burned patients
[Ferguson et al., 1989]. The computer is not only used to monitor patients, but the
data acquired is archived in a data base and used for future predictions of heat and

fluid losses, given burn area and severity.

While many of the systems presented above boast of the advantages that com-
puterized data acquisition provides, it is imperative for user acceptance that the
system provide an effective person-machine interface. The next section discusses

the different user interfaces used in computer-based medical systems.

PR

1. Introduction

1.1.3 User Interaction
Manual Input Techniques

While functionality and power are important in any application, what will in-
evitably and eventually determine the acceptance of a system by its end users is
the quality and effectiveness of its user interface. Once thought of as simply “a
string to tie the box with” for application programs, user interfaces have only re-
cently become a “box” in their own right, requiring as much thought and as much
consideration as the actual computational and functional aspects of an application
program. [Edmonds, 1990). In addition, person-machine interaction devices are
also an important consideration. The most common user interface on computers
is, no doubt, the keyboard. While remarkable improvements have been achieved
in computers and in their processing speed, only modest improvements have ap-
peared in input and output devices. In the interest of reducing the time required
and the errors made in entering or retrieving data many new devices and variants
have appeared on the market. The devices range from variations on the standard
“QWERTY” keyboard, to devices such as touch screens, and speech recognition

and generation.

The primary mode of data entry is still done by keyboards. While still an ef-
fective mode of entering data for users who have mastered it, people who aren’t
familiar with the layout and location of the keys often resort to the familiar two-
finger “hunt-and-peck” routine for typing. While this may be acceptable for people
who are interacting with a computer at an information booth, it is definitely unac-
ceptable for environments where computer data entry and retrieval must be done

as quickly and as efficiently as possible.

One variation on the keyboard specifically for medical data management sys-
tems is discussed by Solingen and Shabot [Soligen and Shabot, 1988]. This key-

board has 32 keys, which consists of both numeric key entry and multiple function

«f

1. Introduction

keys which allows single-key operation of a patient data management system.

System operation and effective entry of information can also be achieved by
touchscreen as is shown by King and Smith [King and Smith, 1990]. The addition
of a touchscreen to their system has caused a dramatic increase in the ability of
casual users input data into the system effectively. For normal operations, this
system could be made to function under touchscreen input only, removing the

necessity of a keyboard.

Since many of the patient data management systems must also handle signif-
icant volumes of data input manually, input modalities other than the keyboard
were sought. For electronic capture of data at the patient bedside, Hammond and
Stead [Hammond and Stead, 1988] state that the presence of a permanent bedside
terminal is not required. Medication usage of a given patient could be recorded by a
portable bar-code reader if the nurse had a pre-printed paper medication sheet with
the equivalent human-readable and bar-code-readable equivalents. They also state
that numerical data, such as blood pressure and pulse could be entered through a

portable keyboard device similar to those used in industrial inventory systems.

The use of portable computers to facilitate the calculation of hemodynamic
parameters and to interpret arterial blood gas samples is discussed by Large
[Large, 1990]. In this article, pocket computers are seen as a cheap and power-
ful means of allowing useful information to be presented at the patient bedside.

The problem with these systems is the lack of dedicated software for clinical tasks.

A couple of articles review the interaction technologies which are available
and which are in development and are useful for the medical field. Cohen
[Cohen, 1990al reviews the latest technologies which will enhance the medical pro-
fessional’s ability to interface with computer systems which include bar-coding,
graphics, and expert systems. Murchie and Kenny [Murchie and Kenny, 1988]
compare the input modalities of keyboard, light pen, and voice recognition for

speed, errors, and the number of correction required to enter patient admission

1. Imntroduction

data. In this study, keyboard was shown to be the fastest, most accurate, easiest,

and most preferred method of data entry.

Speech Recognition and Speech Generation

Perhaps the most discussed input and output modalities in the medical literature
is the use of speech recognition and speech generation. As the recognition technol-
ogy and its functionality improves and becomes more affordable, more users are
considering the use of speech in their applications. Speech is useful in situations

when at least one of the following conditions are met [Schneiderman, 19871:

o the speaker’s hands are busy,
¢ mobility is required,
o the speaker’s eyes are occupied,

e harsh or cramped conditions preclude the use of a keyboard.

Speech interfaces have two components, the speech recognition component,
and the speech generation component. The process of recognizing speech is a
more difficult task than of generating speech. Speech recognizers must be able to
deal with the numerous possible ways different people can say a given word as
well as handling the way that the same user can say the same word. Due to the
pseudo-random nature of the speech signal, basic pattern recognition techniques
are not very geod for speech recognition. The most successful speech recognition
algorithms employ a statistical technique, well suited to the nature of the speech
signal, known as hidden Markov models (HMMs) [Rabiner, 1989]. Siates in the
HMMs can be viewed as corresponding roughly to acoustic events in the speech
signal. While other methods such as dynamic time warping (DTW), vector quan-
tization (VQ), and expert systems have also been attempted for performing speech

recognition, HMMs are still the most successful method for performing speech

9

A

1. Introduction

recognition. Anexcellent treatment and comparison of the aforementioned speech
recognition techniques is presented by O’Shaughnessy [O’'Shaughnessy, 1987]. Re-
search is currently ongoing to apply artificial neural networks to speech recogni-
tion, but they have yet to be used in commercial systems. An example of a neural
net architecture for speech recognition is described in an article by Dalsgaard and
Baekgaard [Dalsgaard and Backgaard, 1990]. Another very interesting example
of neural networks which uses the anatomical and physiological findings on the

afferent pathway from the ear to the cortex is presented by Kurogi [Kurogi, 19911.

Three styles of speech, in order of increasing difficulty, can be distinguished:
isolated-word or discrete utterance speech, connected-word speech, and continuous
speech [Reddy, 1576]. Continuous speech recognition allows natural conversational
speech with little or no adaptation of speaking style imposed on system users. Most
commercially available systems are speaker-independent, demonstrating good per-
formance for those who trained the system. Since the training time and memory
required in such systems grow linearly with the number of speakers, less accurate

speaker-independent are useful if a large population is to be served.

Several articles present the issues involved with using speech as an input modal-
ity. Bergeron and Locke [Bergeron and Locke, 1990] present a good overview of
current speech technology and applications. Martin [Martin, 1989] discusses the
usefulness of speech in user interfaces versus the traditional keyboard and mouse
input modalities. The pros and cons of speech as an input modality are discussed
by various researchers, who have investigated its use in applications and present

their results [Brennan et al., 1991].

Speech generation can be either playback cf digitized speech, or the generation
of synthetic speech. Here, the arrival of special purpose digital signal processing
(DSP) chips has allowed this field to grow rapidly in recent years. Currently, the
tradeoffs in speech generation are among the conflicting demands of maximizing

sound quality and minimizing memory usage. The vocabulary size of the speech

10

1. Introduction

synthesis system directly determines the amount of memory required. Speech
synthesis involves the conversion of an input text into a speech waveforms using
algorithms and some form of previously coded speech data. Voice response systems
handle a input text of a limited vocabulary, while text-to-speech systems handle
all input text. O’Malley [O’Malley, 1990] discusses the issues involved in text-to-

speech conversion, and how it can be done.

A few applications which combine speech recognition and generation are doc-
umented in literature. The most common application of speech recognition is in
the generation of diagnostic reports and of physician observations, where speech

is seen as a viable alternative to the manual typing of reports.

Ikehira et al [Ikehira et al., 1990} describe the entry of 580 of bone scintigram
reports using a speech recognition system. Since speech recognition systems have a
limited vocabulary, it was found that the use of the system decreased the complexity
of the reports without excluding information, and the resulting reports entered by

voice were more concise and clearer than the hand written equivalent.

A study on the application of speech recognition to record dental examination
data is discussed by Feldman and Stevens [Feldman and Stevens, 1990]. The time
and errors differential between the traditional method of tape recording the ob-
servations and using speech recognition were measured. Examinations typically
required slightly more time to enter observations using speech recognition, while

no difference in the error rate was found between the two methods.

Another application of speech recognition to reporting systems is mentioned by
Matumoto et al [Matumoto et al., 1987]. Here, automatic radiologic reports were
generated with the aid of an automatic speech recognition system. Since the ob-
servations must first be dictated and then typed into a system, the use of speech
recognition allowed the observations to be entered directly into the computer sys-
tem. In this application, common observations were “coded” into one-word or

multi-word representations, in order to avoid having to dictate common and long

11

»

¢

1. Introduction

observations by voice. The system required more time to enter reports by voice

than by typing. The vocabulary size used in this application consisted of about 340

words.

A larger, 1000-word vocabulary was used in another radiological report gener-
ation system by Robbins et al [Robbins et al., 1987] which alsc used speech recogni-
tion. This group split their vocabulary up into five sections according to anatomical
or subspecialty application (gastrointestinal radiology, neuroradiology, etc.). Ac-
cording to their results, 70% of a radiology report could be generated with the aid
of this system. As with the other system described in the previous paragraph, this
system had code words which would generate either whole lines, sentences, or
even complete reports. Dictation time with voice entry was longer than typing in
the reports by 20%.

Although both systems described above did not present any time savings in
entering the reports, both teams stated that the systems were far from complete,
and still required improvements, but that the preliminary results were encouraging

them to continue to use speech as an input modality.

Other articles discuss other systems which uses speech recognition for medi-
cal reporting. An article by Cohen [Cohen, 1990b] describes a system which uses
speech recognition for the voice entry of PAP smears. Joseph [Joseph, 1989] de-
scribes applications of medical reporting systems which use speech recognition
for emergency medical doctors and pathologists. The systems described in these
two articles closely resemble the ones discussed above which generate radiological

reports.

An interesting application of speech recognition for “eyes-free” and “hands-
free” operation is to the control of a microscope in a surgical unit. Liang and
Narayanan [Liang and Narayanan, 1988] describe a system in which voice control
eliminates the need for cumbersome foot pedals or proximity switches. This system

also allows programmable controls to the remember certain points in the depth of

12

1. Introduction

focus, magnitude of zoom, or movement along the X-Y axis. These specified points

can be revisited when the correct words are spoken by the surgeon.

Applications of speech generation in medical applications are not as numerous
as the applications of speech recognition. An article by Mclntyre and Nelson
[MciIntyre and Nelson, 1989] presents a system which uses human voice messages
over non-verbal alarm signals to deliver warning messages in an ICU. Studies
performed at the University of Alberta hospital showed that the use of non-verbal
warnings were perceived to be threatening by some patients, and that there was also
significant opportunity for error in interpretation by fatigued or anxious personnel.
Human voice messages were shown to have significantly less interpretation errors
over the non-verbal signals which led to the conclusion that taped voice messages

merit more trials in ICUs.

Diethrich [Diethrich, 1988] describes a system in the cardiac ICU of the Arizona
Heart Institute in which both speech recognition and speech generation is used to
allow the nurse to enter data at using voice, freeing the nurse to attend to the patient
while documenting the treatment. The speech recognition system used is capable
only of recognizing isolated words. Voice synthesis is used to provide feedback of
entered data, when visual communication via the computer screen, located at the

patient bedside, is not ossible.

Natural Language Interaction

Since speech recognition systems often supply either discrete-word or connected-
word speech, which some have suggested may be unnatural. To address this issue,
some have suggested the use of natural language interaction for the input of infor-
mation or for equipment operation. The goal of natural language systems is to
respond properly to arbitrary natural language sentences or phrases. Natural lan-
guage interaction seldom provides enough context for issuing the next command,

unless so designed, and “clarification dialogs” between the system and the user

13

g S T

1. Introduction

are often required. When the scope of a task domain is limited, opportunities exist

for natural language systems.

An article by Rukos [Roukos, 1989] describes in depth, the issues involved in a
natural language system for speech understanding. In this system, speech recogni-
tion and natural language knowledge sources must be combined. Asin any natural
language system, the language knowledge sources consist of a unification formal-
ism for describing the syntax of English, with other higher-order logic language for

representing the meaning of an utterance, and a framework for interfacing syntax

and semantics.

Considerations of natural language interfaces and application experiences are
related in a paper by Brunner et al [Brunner et al., 1990]. This article also presents
arguments for and against the use of these systems for commercial applications

and the primary issues involved in the evaluation of these systems.

A proposed natural language application in the medical domain is described
by Guerrouad [Guerrouad, 1989]. In this article the use of natural language for the
control of operating room equipment is seen as a way of liberating the surgeon’s
concentration from the manipulation of equipment so that it can be focused on
other tasks. Natural language input would not constrain the surgeon to use a

constrained vocabulary as would a speech recognition system.

Another natural language system for dermatological diagnosis is described by
Landau et al [Landau et al., 1989]. The article first discusses why computer-aided
diagnosis has not gained wide-spread acceptance in the medical community, and
how this can be addressed through the use of natural language interfaces which

would allow the physician to “converse” with a diagnostic system.

14

1. Introduction

Graphics

All of the data acquisition systems discussed in section 1.1.2, and most of the
speech recognition and generation systems discussed previously, display their
information using graphical displays. The real innovative and impressive use of

graphical displays is in medical imaging systems.

The interactive visualization of three dimensional cardiac images is described
by Smith et al [Smith et al., 1990]. This system, implemented on a Sun 3/280, allows

the viewing, translation, rotation, and scaling of 3-D heart images in real time.

Zhang et al [Zhang et al., 1990] present an impressive system for the viewing of
3-D brain images for surgery in this article. Simultaneous display of brain images
from different imaging devices obtained in different orientations is possible. A
multi-image environment allows the simultaneous display of magnetic resonance,
computed tomography, digital subtraction angiography, and positron emission
tomography images in multiple windows adjusted for common coordinates with
reference to markers. Points and regions marked in one image can be dynamically
projected to other images yielding exceptional advantages over previous imaging

procedures.

Multimedia

Another user interaction technique which is gaining popularity in the medical
domain is multimedia. Multimedia combines graphics, video pictures, and audio
sound to display information. Issues in the design and application of multimedia
interfaces are discussed by Laurel et al [Laurel et al., 1990]. In medical applications,

radiology has once again been the pioneer in multimedia applications.

Hickey et al [Hickey et al., 1990] describe a multimedia radiological system

which contains digitized radiographic images, voice reports, and other patient

15

1. Introduction

data which is supplemented by a network which allows the simultaneous shar-
ing of this multimedia information among several users. Information can also be
shared through what is known as a shared visual workspace allowing physicians to
consult with each other accessing the same information even though they are in

different physical locations.

Another similar system which communicates information between a radiol-
ogy department and an emergency department is discussed by Goldberg et al
[Goldberg etal,1989]. All the data, images, and graphical information is sent
through the network from the radiology department to the attending physician

in the emergency room. Voice data is relayed using twisted pair connections to

telephone sets.

An ambitious integrated medical workstation, which also features speech in-
put using speech recognition, is described by Kuhn et al [Kuhn et al., 1990]. This
workstation includes multimedia for on-line documentation of images using text,
graphics, or digitized speech comments. This information is then made available
to other departments where additional comments could be added. The images
and comments gathiered over the years could eventually be used in a multimedia

teaching system.

1.2 Other Fields With Similar Issues

The issues of data acquisition and effective user interaction is definitely not partic-
ular to the field of medicine. In this section, some applications of data acquisition

and user interaction methods used in other fields will be presented.

16

1. Introduction

1.2.1 Data Acquisition

One area in which there is an urgent need to reduce overcrowding and operator
saturation 1s air traffic control (ATC). New systems being developed today for
ATC will see the implementation of expert systems which will assist in collision
avoidance and bad weather landings [Perry and Adam, 1991]. Also, new ATC
displays will help controller to deal with massive amounts of information as the
traffic in the skies overhead increases. These new ATC cystems, coupled with
digital flight management systems on board the current generation of aircraft, will

bring air traffic control in a new era of improved efficiency and safety.

ATC is just one example of where computers will play an ever increasing role in
managing large amounts of data in real-time, and presenting this data to many users
in a meaningful manner, with computers also playing a role in the interpretation

of the acquired data.

1.2.2 User Interaction
Speech Interfaces

For the training of prospective air traffic controllers, systems exist which pro-
vide a speech interface with the trainee [Matrouf et al., 1990] [Matrouf et al., 1988]
[Harrison et al., 1986]. Speech generation systems simulate pilot dialogue and a
speech recognition system translates a student air traffic controller’s spoken com-

mands into actions which are interpreted by the simulator.

The military have also taken interest in the use of speech interfaces for
the purposes of decreasing pilot saturation due to the large amounts of vi-
sual information that must be processed. A study done by Moore and Moore
[Moore and Moore, 1986] compare speech input and output versus other pilot in-

put and output channels in order to show which applications interactive voice is

17

5

63

1. Introduction
best suited for.

Laporte [Laporte, 1989] describes a system which uses speech recognition and
synthesis for the selection of radio frequencies in military aircraft. Results in
this article show that tracking a target while using voice interaction for frequency

selection is more precise than manual frequency selection method.

Miliatry systems which combine speech and graphics are the new airborne
warning and control system terminals (AWACS) which are described by Salisbury
et al [Salisbury et al., 1990). A previous study done by Salisbury and Chilcote of
Boeing [Salisbury and Chilcote, 1989] investigated the feasibility of using speech
in the AWACS systems with very encouraging results.

Other military studies have noted that speech interfaces are useful for many
applications which can help reduce operator overload and decrease stress and

fatigue from using the keyboard [Cupples and Beek, 19901.

Speech interfaces are especially useful for handicapped people for the operation
of workstations [Clark, 1989] as well as for enabling the blind to interact with
computers [Fellbaum, 19871.

To facilitate the operation of machinery in process control applications, speech
recognition was used as a substitute to pressing buttons and shifting gears in a

system described by Bitzer and Domer [Bitzer and Domer, 1989].

An application in which “hand-free” and “eyes-free” data entry was crucial was
for meat inspection [Shozo, 1990]. In this application, speech recognition allow the

meat inspector to record the inspection data while using both hands to treat the

internals of cattle.

Speech recognition has also been used in robot control applications, an example
of which is described by Foster and Bryson [Foster and Bryson, 1989]. This article
describes an IBM 7535 industrial manufacturing robot which is controlled by voice.

A PC/ AT serves as an interface between the robot and the speech unit. A program

18

1. Introduction

running on the PC/ AT serves to interpret words from the recognizer into a real-time

sequence of movements for the robot.

Other Interaction Techniques

A recent article by Kitano [Kitano, 1991] presents new and interesting develop-
ments in naturai language interfaces. This article describes a system which inter-
grates natural language processing, speech recognition, and speech generation in
a real-time Japanese to English translation system. The sentence parsing algorithm
used predicts the next possible word in an input utterance thus enabling translation

to begin before the end of a sentence.

New and innovative interaction techniques are always appearing. The one
which directly relate to manual data entry problems are pen-based systems which
use hand written character recognition. The issues involved in recognizing hand
written characters in “notepad” computers is described in an article by Pittman
[Pittman, 1991]. Another article by Helm et al [Helm et al., 1991] describes issues

involved in parsing “visual” language.

An ambitious project to define and present the architectural principles
of a user interface for the 2Ist century is currently underway in Japan
[Nonogaki and Ueda, 1991]. Fourteen companies are involved in this endeavor,
called the FRIEND21 project, which is designed to bring about a technical break-
through in human-computer interfaces to enable people to obtain, use, and send
various kind of information necessary for daily activities, using personal computers

or other computing machinery in the 21st century.

19

¢

¢

_

1. Introduction

1.3 Thesis Overview

This dissertation presents a speech interface which was implemented for the
“hands-free” and “eyes-free” entry of fluid balance data for an intensive care unit

patient data management system.

The following chapter describes the current version of the patient data man-
agement system first starting with an overview of the system, followed by a pre-
sentation of the the hardware configuration and by a discussion of the individual

software modules.

Chapter 3 gives a high-level description of the speech interface with a discussion
of the hardware sub-systems followed by the functional description of the interface.
Following this will be a description of the hardware and software architecture of
the interface and a description of the data link communication protocol used to
transmit messages between the patient data management system and the computer

containing the speech interface systems.

Chapter 4 concentrates on the implementation issues of the speech interface
focusing on the various software components which make up the speech interface.
Sample sessions and experimental results obtained from a test set of eight users with
different computer experience are included. A discussion on future extensions and

improvements for the speech interface is presented before concluding in chapter 5.

20

Chapter 2 The Patient Data Management System

This chapter describes the Patient Data Management System (PDMS), an ongoing
project developed at the McGill Research Centre for Intelligent Machines (McRCIM)
in conjunction with the Pediatric Intensive Care Unit of the Montreal Children’s
Hospital. The first section of this chapter will give an overview of the scope and
of the functionality of the current PDMS which is installed and running at the
Montreal Children’s Hospital. The subsequent section will outline the hardware
configuration of the PDMS, focusing on the network which furnishes the PDMS
with physiological patient data. Following the description of the hardware con-
figuration will be the software configuration section, which will present a more
comprehensive treatment of the individual software modules, and of the interac-

tion between these different modules.

2.1 PDMS Overview

The development of the PDMS was inspired by the need for increased automation
in the acquisition and management of patient physiological data, as the monitoring
systems at the patient bedside were themselves being automated. These bedside
monitoring systems generate a large volume of data electronically. While such
amounts of data are useful to the nurses in the Intensive Care Unit, the manual
charting of the electronically generated data would be unwieldy to say the least.
Much of this data is lost as the nurses take readings of the physiological and fluid
balance data, at the patient bedside, at half-hour or hourly intervals. These readings
are then accumulated and plotted for the interpretation of a patient’s state over the
past few hours or days. One of the limitations of the manual charting techniques

is that patient readings taken at these intervals may not accurately reflect the

21

¢ 9

2. The Patient Data Management System

state of the patient between the readings. Another problem with the manual data
acquisition techniques is the high probability of transcription, addition, and entry
errors. In addition, if a patient requires resuscitation, then all data acquisition is
usually suspended until the patient’s condition stabilizes. Moreover, the manual
charting process places an unnecessary burden on the nurses, who would prefer to
spend more time on patient care than on the manual accumulation and plotting, of

patient data.

As an attempt to tackle the problems inherent in the manual acquisition process,
the PDMS was conceived to handle patient data acquired automatically from the
bedside physiological monitors, as well as data which cannot be acquired automat-
ically and must be input manually. Data which cannot be acquired automatically
by the PDMS includes the intravenous fluid intake and fluid output of a given
patient in the intensive care unit, better know as fluid balance data. The function
of the PDMS is to automatically monitor and record the patient data, to facilitate
the review and interpretation of the data by presenting colour trends, plots, and
charts on a screen display, and to assist in the hardcopy documentation by pro-
ducing color printouts of the screens as well as producing the required end-of-shift
reports. Since the majority of the data acquired by the PDMS originates from
electronic monitoring equipment, the PDMS interfaces directly to the electronic
monitoring system; continuously acquiring, logging, and archiving the physiolog-
ical patient data. The main motivation of the system is to contribute to a higher
standard of patient care by presenting data to the health care professionals which
would otherwise be lost in the manual charting method between the charted in-
tervals, in addition to removing the nurses from performing clerical tasks vhich
can easily be done by computer, thus allowing them to spend more time on | :tient

care.

Certain factors must to be taken into account when developing an computer
application for a critical care environment such as an intensive care unit. The PDMS

must not only be computationally and functionally powerful, but it must also be

22

2. The Patient Data Management System

easy to use for people who are not computer literate. Most importantly, it must
meet the needs and expectations of the intended end users, otherwise, it will not

gain user acceptance or integration with existing hospital computing facilities.

The following objectives were laid out in the PDMS design and incorporated

into the current version of the PDMS system:

¢ automatically collecting physiological data from the bedside monitors,
o facilitating the review of patient data,
¢ meeting the user’s needs for a system which is both powerful and easy to use,

e provide for manual data input in formats which resemble the current paper

forms which are familiar to the hospital staff,
e integrate with the existing hospital computer network,

e provide a backup mechanism and hardware redundancy in case of computer

failure.

2.2 Hardware Configuration

The hardware configuration of the PDMS, shown in figure 2.1, is based on the
Hewlett-Packard CareNet system. The CareNet system provides a local area net-
work which links up HP78532A Physiological Monitor/Terminals located at the
patient bedside, to a HP78581A Network Systems Communications Controller in
a star network archi‘ecture. At one of the branches of the star sits the HP78580A
Careport. This unit provides a programmable interface between the network con-
troller and a host computer system. The function of Careport is to translate the
proprietary network messages and signal formats to standard RS-232C messages
which can be understood by the host computer. It also forwards requests for phys-

iological data and other information, supplied to the bedside monitors, from the

23

2. The Patient Data Management System

Hewlett Packard's CareNet System

LR R R R R R N R S e Y R)

HP78534A HP78534A HP78534A
Physiological Physiological PN Physiological
Bedside Monitor Bedside Monitor Bedside Monitor
Bed #1 Bed #2 Bed #14

|
| I]

HP78581A Network System
Communications Controller

HP78588A Careport
Network Interface

.

--

IBM PS/2 Model 50
Running 0S/2 1.0

40 MByte Hard Disk
. 8514A EPSON LQ-2550
High Resolution Colour Printer
Display Adapter

..

Host Computer System (PDMS)
Figure 2.1: PDMS Hardware Configuration

host computer to the network. In this configuration, the host computer system is
the PDMS.

Currently in the Pediatric Intensive Care Unit of the Montreal Children’s Hos-
pital, there are fourteen physiological bedside monitors. These monitors provide
stand-alone data management capabilities which include the real-time display of
measured parameters, automatic smoothing of the parameters, and the genera-
tion of alarms when either pre-set thresholds are exceeded or when certain critical

patient conditions are detected.

24

oy

2. The Patient Data Management System

The host computer system at the hospital presently consists of an IBM PS/2
Model 50 with 5 Megabytes of RAM memory, and a 40 Megabyte hard disk. The
display consists of a high resolutior: 8514/ A adapter which has a resolution of 1024
x 768 pixels. A colour printer, the EPSON LQ-2550, provides the colour printout
of the PDMS screens in addition to printiig out the required forms and reports for
the nurses. This configuration will soon be upgraded with the addition of an IBM
PS/2 Model 80 with 8 Megabytes of RAM memory, 300 Megabytes of hard disk
space, a magneto-optical drive for data archiving and storage, and a Token-Ring

network as a link between the two machines.

2.3 Software Configuration

This section describes the software architecture of the PDMS. After a brief outline
of some operating system considerations, it then proceeds {o describe the different

PDMS software modules.

2.3.1 Operating System Considerations

Although the design of the PDMS has been in progress for quite some time, the
previous design efforts were hampered by the lack of a real-time multi-tasking
operating system for IBM personal computers. The release of OS/2 1.0 changed
this. The benefits of a multi-tasking operating system enabled the PDMS to be
developed as a series of independent, interacting modules to perform the required
tasks. This was a clear improvement to designing the PDMS as a single-thread pro-
gram to perform all of the necessary tasks. Interaction between the modules, which
are run as separate processes, is defined in terms of operating system structures
such as pipes, semaphores, and shared memory segments. With such a modular

design, it then becomes straight forward to add more modules as the design and

25

]

€

¢ 3

¢ 9

T Iy |

2. The Patient Data Management System

functionality of the PDMS increases and evolves.

2.3.2 PDMS Modules

The modules which are presently implemented and are part of the current version
of the PDMS are:

¢ The Manager Module: which initiates all other modules, and acts as a main

menu allowing the user to select other modules for interaction,

e The Data Link Controller (DLC) Module: which gathers information from
the bedside monitor network through a RS-232C link to the Careport net-
work interface. This module has exclusive command over the data acquisi-
tion, data storage, and the transmission of commands from other modules to
the network. A typical command would be a request for parameters to be
transmitted by Careport every n seconds when a patient is admitted into the
ward, and added onto the PDMS. As this module does not require direct user

interaction, it is run the background.

¢ The Patient Registration Module: which handles the admission and dis-
charge of patients to and from the Pediatric Intensive Care Unit. This module
also handles administrative patient information, such as the patient’s name,

date of birth, and hospital id number.

o The Fluid Balance Module: manages the data concerning the fluid intake
and output of a given patient. The format of the fluid balance sheet is in a
spreadsheet format, effectively emulating the “look and feel” of the paper
forms used in the intensive care unit. All fluid balance data must be entered

into the PDMS manually.

e The Trend Display Module: displays the data acquired from the bedside

physiological monitors using graphical trends, facilitating the review of the

26

2. The Patient Data Management System

(Screen Dlsplay)

!
' Manager Mod\@

|

Patient Administrative |- Fluid
Registration Patient : Balance

Module Information Module

‘——=1 Command
Buffer

Physiological
Parameters
and Other
i | Network Data
RS-232C:

Careport
interface

Shared Memory Area
Figure 2.2: PDMS Software Configuration

-

Data Link
Controller
Module

Trends
Module

patient’s state by the health care professionals. The graphical trend scale can

be selected to be one-half hour intervals, minute intervals, or second intervals.

The following subsections describe the PDMS software modules in more depth.

The overall organization and interaction between the PDMS software modules
listed above is shown in figure 2.2. This organization was partly shaped by the
limitation of version 1.0 of the OS/2 operating system. This first version of the
operating system supported only text modes of operation, requiring the program-
mer to implement the graphics routines required in the application program. This
changed with the release of OS/2 1.1, which introduced a graphical user interface

environment in the form of the Presentation Manager.

0S/2 version 1.0 solved the problem of having multiple processes writing to

the screen by separating processes into screen groups. A process can be switched

27

-

¢ 3

¢ 9

i -

2. The Patient Data Management System

in and out of the foreground. When a process is in the foreground, it has exclusive
control over the keyboard, mouse, and the screen. The processes in the background
place their screen output into logical buffers whose contents are displayed on the

screen when the process is once again brought into the foreground.

The Manager Module

The Manager module is first PDMS module started, and it, in turn, starts up the
other modules as different “child” screen groups. This module then displays the
main menu of the PDMS, from which any one of the other modules, except the
Data Link Controller module, can be selected. When a module is selected by the
user, the Manager module proceeds to put the selected module in the foreground,
allowing user interaction. By selecting the proper option in the other modules, one
can return to the main menu screen. Having a modular Manager module allows
new modules to beadded simply by placing the new module in the list of processes

that Manager needs to start, and by adding a new entry in the menu list for it.

2.3.3 The Data Link Controller

The Data Link Controller (DLC) module is responsible for interfacing the PDMS
with the bedside monitor network through Careport. DLC stores the information
acquired automatically by Careport for easy access by the other modules, and
transmits commands received from the other PDMS modules into the proper format
to Careport. To do this, DLC exploits OS/2 operating system features such as shared

memory segments, pipes, and multiple threads.

The principal functions of DLC is to acquire the physiological parameter values
from the bedside monitors every two seconds and to place them into circular
queues. The seconds data is averaged every minute, and these values are placed in

minute queues. These minute values are in turn averaged every one-half hour and

28

Faaaty

2. The Patient Data Management System

placed in the one-half hour queues. All these queues are located in shared memory,
so that these values can later be accessed by the Trends module for graphic display.
Periodically, DLC archives data from the minute queues and half-hour queues to

the hard drive for future use.

Information about the bed states on the network must also be shared with the
Trends and Fluid Balance modules. This information is available to the aforemen-
tioned modules through shared memory segments. Access to these segments by

the respective processes is controlled by semaphores.

Most of the DLC’s activity deals with communicating with the Careport in-
terface. This involves three levels of activity: a subset of the ANSI x3.28-1976
communication protocol which must be respected for physical message transfer,
the encoding and decoding of niessages from the logical message format from
Careport, and the proper definition and manipulation of iogical sources in order
to obtain the desired network information. Admission, suspension, and discharge
of patients on the network is done through the use of logical source definitions.
These definitions are virtual connections between the different data sources which
are designed to increase the efficiency of the serial communications line, in addition
to determiring the manner in which the information is passed to DLC from the

network.

DLC automatically receives data sampled every two seconds from the Careport
interface. In addition, alarm messages may be transmitted by Careport to DLC
asynchronously, as they occur. The different parameter averaging functions as well
as the reception and transmission of data are implemented as different threads in

DLC. Communication of relevant information between threads is achieved through

pipes.

29

%

2. The Patient Data Management System

The Patient Registration Module

This module manages the administrative patient information as well as the admis-
sion, suspension, and discharge of patients from the PDMS'’s representation of the
intensive care unit ward. A general menu of commands is presented to the user
corresponding to the chosen function. With this menu, the user can enter, modify,
or review both patient and ward information. This module creates a shared mem-
ory structure for storing the administrative patient information, which is indexed
by bed number, and is accessible by both the Trends and the Fluid Balance modules
so that they can display the patient name with the respective patient data. This
module flags events such as the addition, suspension, or discharge of a patient to

DLC through the use of shared memory and semaphores.

The Trends and Fluid Balance Modules

The Trends and Fluid Balance modules constitute the most important parts of
the PDMS, implementing the main functions for which the PDMS was created.
The Trends module allows the review of the physiological parameter values of a

particular patient with different time scale resolutions of seconds, minutes, or half

hours.

The Fluid Balance module enables the entry, calculation, and correction of the
volumes of all the fluid intake and output of a given patient. The spreadsheet
format of the form, shown in figure 2.3, emulates as closely as possible the actual
paper forms used in the intensive care unit by the nurses. As previously men-
tioned, the fluid balance data is still input manually in this module, hence despite

computerization, the possibility of data entry errors still exists.

Keyboard bedside data entry for the Fluid Balance module data presents a
bottleneck, since there is currently only one PDMS console and fourteen beds in

the pediatric ICU. Ideally, the fluid balance data should be read by the nurses,

30

Py

2. The Patient Data Management System

Figure 2.3: Fluid Balance Module Screen under 05/2 1.0

and entered directly into the PDMS. Having one console in the middle of the
intensive care unit ward would require nurses to transcribe values read from the
infusion pumps onto paper for entry into the PDMS at a later time. This process
is unacceptable for two reasons. First, the possibility of transcription errors would
still exist, as nurses would still be required to write down data on paper, and
later type it into the PDMS. With this system, the nurses’ workload would actually
increase, and not decrease as desired. The ideal solution would be to have infusion
pumps linked electronically to the PDMS, much in the same manner as the bedside
monitors are linked through Careport. Presently, the ICU has a variety of infusion
pumps, each of which provides a different interface to the pump, making this

option unwieldy.

In order to effectively integrate the manual entry of data into the PDMS, while
attempting to minimize the occurrence of entry and transcription errors, and fa-
cilitating human-computer interaction, data entry using a speech interface was

proposed. The interface which would use both speech recognition, for data entry

31

Foey

2. The Patient Data Management System

and module operation, and speech generation, for feedback, verification of spo-
ken commands, and audio prompting, providing an “eyes-free” and “hands-free”
means of directly entering fluid balance data at the bedside and at a distance from
the PDMS console. Even if computers were introduced at the patient bedside, the
speech interface would still be an integral part of the bedside data entry interface,
since the intravenous solution infusion pumps can be situated at different locations
around a patient’s bed. A “hand-free” and “eyes-free” system would still permit

the nurse to have extra mobility.

Another consideration in the Fluid Balance module of the current PDMS ver-
sion is the quality of the user interface. As previously mentioned, the Fluid Bal-
ance module’s interface effectively emulates the spreadsheet format of the man-
ual Fluid Balance sheet. The current Fluid Balance module’s Ingesta sheet, for
recording fluid intake, and Excreta sheet, for recording fluid output, cannot be dis-
played completely on one 1024 x 768 pixel display. Consequently, cursor keys and
other specially assigned key combinations, such as “ALT-scroll keys” and “CTRL-
scroll keys” are used to navigate through the spreadsheet. The key assignments
for this module differ from those used in other PDMS modules, presenting a very

inconsistent user interface which could be quite confusing for a new user.”

In addition, the movement between the rows and columns on these sheets is
quite slow. It typically requires one second to scroll in a new row or a new column
into the screen display. Where fast, easy to operate data entry is required, the

current version of this module may not be adequate.

Thus is was decided to implement the next version of the Fluid Balance module
using the graphical interface of OS/2’s Presentation Manager. All the drawing
routines are handled by the operating system, and the graphical user interface
is consistent among all applications which use Presentation Manager. The speech
interface was then added to the module, adding another input and output modality.

The modularity and high-level device independence of the OS/2 system function

32

2. The Patient Data Management System

calls, allow alternate input modalities to added on in a relatively seamless manner.
The description of the speech interface, as well as a discussion about the new

Presentation Manager version of the Fluid Balance module are discussed in the

following chapter.

gty

33

Chapter 3 Speech Interface Description

This chapter focuses the implementation of the speech interface. The first two
sections of the chapter are devoted respectively to the description of the OS/2
Presentation Manager environment and the speech recognition and generation
sub-systems used in the speech interface, namely the Verbex Voice Conversational
I/O sub-system and the Covox Voice Master Key Il respectively. Following this, the
hardware and software architecture of the interface, as well as its implementation,

are presented in greater detail.

3.1 0OS/2 and the Presentation Manager Environment

Developed by Microsoft and IBM as a successor to MS-DOS, OS/2 is an operat-
ing system for small computers based on Intel’s 80286 and 80386 microprocessors.
OS/2 uses the protected mode of these microprocessors which allows a large ad-
dress space, virtual memory, and multitasking capabilities. In addition, OS/2
also offers operating system features such as dynamic linking, a device indepen-
dent program interface, and a graphics interface. Interprocess communication,
by means of pipes, semaphores, and dynamic data exchange (DDE), is one of the
important features of OS/2 which aliow for a greater level of program modularity.
Under OS/2, the computing environment can consist of multiple programs which
are loaded separately, but which can still work intimately together through inter-
process communication. Semaphores also allow synchronization of events either
between different, separate processes, or between different threads in the same

program.

One of the more interesting and structured means of interprocess communica-

34

3. Speech Interface Description

Step 1:
initiate
Server Client
Application Application
dacknowledge
Step 2:
data request
Server Clhent
Application =1 Application

data response
Figure 3.1: Dynamic Data Exchange Client Server Model (from [Southerton,
1989))

tion, which merits further discussion, is dynamic data exchange. Dynamic data
exchange (DDE) allows two or more applications to share data in an automatic
fashion [Southerton, 1989]. As far as the user is concerned, DDE happens invisibly
between the applications, administering its own needs with no user interaction.
From the programmer’s point of view, dynamic data exchange means becoming
familiar with a pre-defined protocol. Under DDE, protocol initiates, maintains, and
terminates conversations between applications. The client-server model, shown in
figure 3.1 is the basis for all dynamic data exchange transactions. In DDE, the client
application always begins a conversation, often referred to as an initiate. After
the server application acknowledges the initiate, the client application can make a
data request. In turn, the server application sends the data to the client. It should
be noted that an application can be both a client and a server, can have multiple
servers, or can serve to multiple clients. The client can request the server to transmit
data automatically as soon as it becomes available, and not have the client continu-
ously query the server for data, thus decreasing overhead. The format used for the
exchange of data can either be text, which is supported by Presentation Manager,

or can be a programmer-defined format.

OS/2also has arich application programming interface (API). These API func-
tions generally operate at a high level of performance, allowing the development
of application program which avoid dependence on specific hardware features of

a particular machine.

35

3. Speech Interface Description

— Menu Bar Maximize Box
[— System Menu Box — Title Bar ¥ Minimize Box—y
= Sample - (Untitled) O {}

File Edit Search Character Paragraph Document
Normal ﬁ

v/ Left
Centered
Right

- Justified ﬁ

O

| A e

-Horizontal Scroll Bar
L— Client Area °
Vertical Scroll Bar ——

Figure 3.2: Presentation Manager Window Components

Another important element of the OS/2 operating system environment, is the
graphical user interface (GUI) which displays individual applications in windows,
and offers a rich set of device-independent graphics functions to application pro-
grams [Quedens and Beacons, 1990]. Figure 3.2 shows the components of a typical
Presentation Manager window. A Presentation Manager window shows the list of
available menu items for a particular application program in the rienu bar. Some
of these items in the menu bar display a list of menu items that drop down fro.n
the menu bar item. These items are called pull-down menus. The client area of a
window is the part of the window in which the application has complete control
over what is displayed there. The application can write text messages, or display

graphics in this area.

Due to the modularity of the OS/2 operating system, such a graphical inter-
face can be added seamlessly. Logic within the Presentation Manager assists the
application in obtaining user input from various controls on the screen, such as

menus, push buttons, scroll bars and dialog boxes. Since the menu and dialog box

36

3. Speech Interface Description

interface is built into the Presentation Manager, rather than into each individual
application, the interface is consistent across all applications. This means that a
user with experience with one Presentation Manager program can easily learn a
new Presentation Manager program. With the other operating system functions,
the Graphics Programming Interface (GPI) of the Presentation Manager are de-
vice independent. An application need not identify the input or output devices
in order to use them effectively. It is this facet of the OS/2 Presentation Manager

environment that makes the addition of a speech interface possible.

Aside from the important role that the Presentation Manager and the API plays
in OS/2, they are also a part of IBM’s System Application Architecture (SAA). SAA
attempts to set user interface and API standards. If the goals of SAA come to
pass, then the Presentation Manager user interface will become a common sight
on the IBM microcomputer and mainframe terminals. More importantly for the
program developer, it may one day be possible to write a PM program in a high-
level language, and compile it to run on a variety of computers ranging from the
IBM AT, to the IBM 370.

Most traditional operating systems provide a set of functions that a program
can call for various system services. This is still the case with PM, but a PM
progzam also obtains information from the operating system in a very different
way: through messages. When either keys are pressed, the mouse is moved, or a
mouse button is pressed, a program will receive either keyboard or mouse mouse
messages that are sent to it by the Presentation Manager; a way that is similar to
object oriented programming (OOP). Messages are also sent to inform a program
when either a user has selected an item from a menu, when a program’s window
is resized, or when a program should repaint part of it's window. Therefore, PM
programs can be considered to be “message-driven”, as they remain dormant until
a message is received [Petzold, 1989). The messages sent or posted to a particular
application by the operating system or another application program are placed

in the application’s message queue. Every application program which uses the

37

ol

o

3. Speech Interface Description

graphical Presentation Manager user interface must create a message queue for the

storage of messages to be processed.

Finally, OS/2 also provides network support, database support, and commu-
nication support. These parts of the operating system allows access to remote
resources, such as databases or other programs, over a local area network (LAN).
This is achieved by using Remote Data Services, Advanced Program-to-Program
Communications (APPC) APIs, named pipes, semaphores, or DDE over the net-
work. These APIs allow PM to communicate a variety of other operating systems
over the network, such as 0OS400, VM, VMS, MUS, and AIX, which also subscribe
to the SAA platform.

3.2 Speech Interface Sub-Systems

This section presents an overview of the Verbex Voice I/O and Covox Voice Master
Key Il systems which are used in the speech interface to provide speech recognition

and generation, respectively.

3.2.1 Verbex Conversational Voice I/0 System

The Verbex Voice Conversational I/O System is a computer peripheral which trans-
lates words spoken into a headset microphone into data that the attached host
computer can understand and then sends this data to the computer. The host com-
puter can then respond by sending data to the recognizer which is to be converted
into speech by the recognizer’s built-in speech synthesizer, and generated either
through the recognizer’s headset earphones, or through the system’s audio output

jack.

In order to perform recognition of spoken words or phrases, the recognizer

38

."-r'-‘

,.‘u.ai“

3. Speech Interface Description

requires a set of valid words to listen for and the order and patterns in which
these words are spoken, also referred to as a grammar. Since the system recognizes
continuous speech, the grammar definition can contain either individual words, or
a collection of words concatenated together. Any statement which is not included
in the grammar rules is considered to be improper or invalid and is ignored by the
recognizer. As the system is speaker dependent, it also requires a given speaker’s
voice patterns to perform recognition for that particular user. With the a set of
voice patterns, the recognizer links the sound of a human voice speaking each
word in the grammar rules with the word itself. If a word is spoken as a part
of a continuous, multi-word, phrase, the recognizer must also know how a word

sounds in combination with other grammar-rule words.

Setting up an application for the Verbex recognizer is a five-step process
[Verbex, 1990]. First, a text file cortaining the grammar definition specified in
Verbex Standard Notation must be created. Appendix A contains the grammar file
used for the main menu commands and the ingesta sheet commands of ihe fluid
balance module in Verbex Standard Notation. A grammar file can also contain
word translations, which are the character strings to be sent to the host computer
when a valid statement, according to the grammar rules, is recognized. This file is
then compiled into a “machine-readable” file which can be used by the recognizer
for recognition and translation. The compiled recognizer file is then transferred
from the host computer system to the recognizer’s memcry. The words and phrases
defined in the grammar rules can then be trained by the user. After training, the
user’s voice templates for the grammar definition are then stored in a voice file.

The grammar should be trained by all the users that wish to operate the system.

The text grammar file, in Verbex Standard Notation, can also contain multiple
grammar definitions. The recognizer uses one grammar definition at a given time
time for recognition purposes, and thus will only recognize statements contained
in the grammar definition that it is currently using. When certain words or phrases

are recognized, the recognizer can switch to other grammar definitions included

39

i

s

3. Speech Interface Description

in the file. The recognizer will then recognize statements specified in the new
grammar definition only. The current grammar definition will continue to be
used until a word or phrase in the grammar definition will cause it to switch to
another grammar definition. This allows a large, complex vocabulary, which can
be logically divided according to context dependence, to be entered as a sequence
of grammar definitions. For example, a data entry process with many words in
its grammar can be divided into a collection of smaller grammar definitions; one
for each step in the data entry process. Such logical divisions can not only reduce
search time and decrease individual grammar definition complexity, but can also
increase recognition accuracy, by excluding words which are notrelevant ina given

context.

3.2.2 Covox Voice Master Key 11

The Covox Voice Master Key II is a speech and music input and output computer
1/0 peripheral which connects to a host computer’s parallel port [Covox, 1990al.
Speech can be sampled by the system at a maximum rate of 20 Khz with a rep-
resentation of 8 bits per sample and saved on the host computer’s memory. The
digitized speech can then be edited, saved on the host computer’s storage media,
or played back either on headset earphones plugged into the system, or on the
system'’s external speaker. For the digitized speech files, compression routines are
supplied in order to save storage space, at the expense of some degradation in
quality, using either the 2, 3, or 4 bit adaptive differential pulse code modulation
(ADPCM) speech coding scheme.

The Voice Master Key II system is also capable of performing some simple
speech recognition. Itis limited to a speaker dependent 64-word vocabulary which
does not support continuous speech. These are serious limitations for the speech
interface application, which is one of the reasons why the Verbex system was

chosen for the speech recognition component of the interface. The Voice Master

40

& g

3. Speech Interface Description

Key II also provides some routines which generate synthetic speech, according to

English phonetical rules, from an ASCII text file.

In addition to supplying various software utilities for speech capture, compres-
sion, and playback, viewing and editing of the captured digitized speech signal
is also possible. This feature is useful for deleting the leading or trailing silence
samples in digitized words. This allows the concatenation of words to sound more

natural without the extra intervals of silence between successive words.

Lastly, but more importantly for the speech interface application, a library of
“C” language functions is provided, enabling customized application development
through the use of these special routines. This permits the playback of digitized
words or phrases to be played back on the system when certain events occur in the
application program. The playback “vocabulary”, which is collection of words or
phrase files to be played back by an application program, can be defined in a word
list [Covox, 1990b).

A word list is a set of digitized speech files which are linked together in one
large file; created using a speech utility editing function. The utility will also
automatically create a sound file index for the word list. In the application program,
instead of loading the digitized speech files one at a time from disk, the word list
is loaded into memory at the beginning of the program. From then on, to “say”
an individual word or phrase, one only needs to refer to the proper index number
in the word list. One drawback of the word list is that the digitized speech files
defined in the word list are loaded directly in the host computer’s RAM memory
for fast playback. If the number of words or phrases in a given application is
considerable, then the use of a word list might prove to be impractical; requiring
too much host memory to store the files. Alternatively, the speech files can also be
called and played back on the system referenced according to their respective file

names.

41

T s

3. Speech Interface Description

3.3 A Speech Interface

The following sections present the global organization of the speech interface,
including as both the hardware and software architecture. This section first begins
with a functional description of the new version of the Fluid Balance module
which was implemented under the graphical environment of OS/2’s Presentation
Manager. Then the speech interface to this module will be described.The following
section will then present the hardware architecture of the speech interface, with
a description of the systems used in the interface outlining features specific to
the respective systems which are relevant to the implementation of the interface.
The last section will describe the software architecture of the speech interface
highlighting the various software components and the communication methods

used between the components.

3.3.1 Functional Description

Figure 3.3 shows a typical display of the Fluid Balance module implemented under
the Presentation Manager environment of OS/2. As previously mentioned, the
fluid balance module records all of a patient’s fluid intake and output in the ingesta
and excreta sheets, respectively. Readings of the various fluids, ranging from the
intake of intravenous solutions to the output of blood and urine, are taken at
either half hour or hourly intervals. These readings are accumulated over a given
period, typically a day, in order to determine the total fluid intake and output of
the individual solutions. The speech interface is meant to allow “hands-free” and
“eyes-free” data entry of the fluid balance level values, in addition to providing a

more natural and familiar means of entering data by the use of voice.

The fluid balance module operates in a fully graphical, keyboard and mouse-
driven environment which is now augmented by another input modality, namely,

the speech interface. The options available to the user are displayed at the top of a

42

& Wy

3. Speech Interface Description

- FLUID BALANCE SHEET* MAIN MENU via
Ingesta Excreta Novice Settings Ext | Fi=Help

= FLUID BALANCE SHEET EXCRETA via
Binod Urine Gastric Stool Other Time Correction Save Clear Exil [Fi=Help
DATE Tue 07029V (munwiddlyy) BED# 3 NAME. DOE, Jane 10 # 9509834 +
Total | TIME URINE GASTRIC
Excinta Quantity | Cum Sugar | Kelone $G Abd Girth sl
o1 0836 | 950 950
| Wﬁ]_ Vi R} ivi4 Vi Oral Gastric Time Comrection Save Clear Exit Fi=Help
|_JDATE. Tue 07/02/91 (mnvdddy) BED#:3 NAME. DOE, Jane 1D #.9509834 (2]
L IVEl Right Leg DSW W#2 Chest F
- TIME [Solution Comment|Lev. Sol [Actin |Des'd.In | Solution Comment|Lev. Sol | A
- 0 06 00 Obcclhr 720 00 00 tlccihr 109
. § 02 0700 660 60 60 98 1
| § 03 08 00 60.0 12.0 120 82
- 04 0900 540 180 180 69
|] 05 1000 48.0 24.0 24.0 55
| 1100 N 420 Je0 300 43
07 12.00 W 36.0 36.0 360 33
E 1300 320 400 420 21
- 09 14 00 260 460 480 09 1
10 15 00 200 %20 540 00 1
n
12
LK
§ Wz 14 y
005 {= :slﬁ

Figure 3.3: Fluid Balance Module Screen under the Presentation Manager
Environment of O5/2
given window in the menu bar. These commands can either, display sub-menus,
create other windows, or create dialog boxes for obtaining user input. Figure 3.4
shows the main window of the fluid balance module, which is firstdisplayed when

the module is first run. The menu bar of this window offers the following options:

o Ingesta: which creates an instance of the Ingesta sheet window for recording

the fluid intake of a patient.

o Excreta: which creates an instance of the Excreta sheet window for recording

the fluid output of a patient.

¢ Novice: which allows the user to indicate to the module whether or not s/he
is a novice user. If the user is a novice, the messages echoed back on the user’s

headset are more detailed and descriptive than for a non-novice user which

43

ol

B

3. Speech Interface Description

= FLUID BALANCE SHEET: MAIN MENU v. -
Ingesta Excreta Novice Settings Exit rFI=HeIp

Figure 3.4: Main Window of the Fluid Balance Module Screen
is more familiar with the system.

¢ Settings: which allows the user to select the patient’s name, hospital 1D

number, or bed number whose data is to be recalled or entered.
¢ Help: which displays a context sensitive help menu.
e Quit which terminates the fluid balance module destroying all windows

created by the module during its execution.

A typical ingesta sheet window is shown in figure 3.5. The options available to

the user for this window are:
e IV1 to IV5 items which allow the recording of five different intravenous
solution levels, and the times at which the readings were taken.

e Oral Gastric: which allows the recording of individual oral gastric fluids

according to their type.

e Time item allows the time in the “time” column of the ingesta sheet to be set

or corrected.

e Correction: which allows the user to correct any of the data which has been

input in the sheet according to the solution number and line number.
e Save: which saves the ingesta sheet data into a file.

e Clear: which clears the ingesta sheet of all input data. This option is presently
used for debugging purposes only and should be eliminated from versions

which will be installed at the hospital.

o Exit: which exits the ingesta sheet destroying the window.

3. Speech Interface Description

= FLUID BALANCE SHEET: INGESTA via
VIl VB2 IV#3 IV#4 IVES Oral Gastric Time Comrection Save Clear Exit [Fl=HeIp
DATE: Tue 07/02/91 (mmiddlyy) BED#: NAME: D¢ ¢
vl Va2

TIME |[Solution Comment|Lev. Sol |Act.in Des'd.In | Solution Comment| Lev. Sol [A

01
02
03
04
05
06
07
00
09
10
11
12
13
14

Figure 3.5: Ingesta Sheet Window of the Fluid Balance Module

o Help: which creates an interactive help screen.

The other window created by the Fluid Balance module is the excreta sheet

window, which is shown in figure 3.6. The menu bar options for this window are:

¢ Blood, Urine, Gastric, Stool, and Other: which allow the recording of output
for these items, and also indicate the times at which these readings were

entered.

¢ Time, Correction, Save, Clear, Exit, and Help options which perform tasks

identical to those in the ingesta sheet described above.

Currently, there is no speech recognition or speech generation hardware or
software which runs under the OS/2 operating system environment. All available
systems on the market today run under the DOS operating system. This constraint
influences to a large degree the hardware and software architecture of the speech

interface which are described in the two following sections.

45

gz

3. Speech Interface Description

= FLUID BALANCE SHEET: EXCRETA via
Blood Urine Gasltiic Stool Other Time Cormrection Save Clear Exit DhHelp
DATE: Tue 07/02191 (m.Vddlyy) BED ¥ NAME: iD¥ 1]
Total | TIME URINE GASTRIC
Excreta Quantity | Cum Sugar [Ketone S.G. Abd.Girth

01
e

03

04 -
&

06

07

08

09

10

"

12

13

14

¢

- <+

Figure 3.6: Excreta Sheet Window of the Fluid Balance Module

3.3.2 Hardware Architecture

Figure 3.7 shows the hardware architecture of the speech interface used in our
laboratory. Two personal computers are used: an IBM PS/2 Model 80, running
OS/2, which is the operating system platform required for the PDMS software,
and an Intel System 120, running DOS, which is the operating system platform
required by both the speech recognition and generation hardware peripherals and
software utilities. The two computers are linked by a serial RS-232C cable for the
transmission of data between the two systems. The PS/2 model 80 also has a high
resolution 1024 x 768 pixel 8514/ A adapter card for the display of the Presentation
Manager graphics.

On the Intel System 120, the speech recognition hardware, the Verbex Series
6000 Conversational Voice I/O system interfaces to the host by means of a 16-bit
expansion slot. The Verbex system can output the translation of the recognized

word or phrase either on its serial port or through the 16-bit slot at address 200 hex.

46

J iy

3. Speech Interface Description

Audio Input
(Microphone or Headset)

Input to
Too----- Verbex Board
I Verbex i

Seres 6000, | Serlal RS-232C Link 5"2":38/5
ode

Intel System 120 (9600 Baud) (Running OS/2)
(Running DOS)

Parallel
Port Output
Covox
Voice Master
Key Il
Audio Cutput
(Speaker or Headset)

Figure 3.7: Hardware Architecture of the Speech Interface

Verbex also provides a terminate-and-stay resident (TSR) program which redirects
the output of the board at 200 hex to the host computer’s keyboard buffer, allowing
the Verbex board to effectively replace the computer’s keyboard. In addition,
the Verbex board performs all of it’s recognition on the board, using none of the
host computer’s resources. For the recognition process, the board uses an Intel
80286 microprocessor with 2 megabytes of RAM and 256 Kilobytes of FPROM
as a control processor to coordinate information transfer between the host and
the board. The recognition engine of the Verbex consists of a Texas Instruments
TMS320C30 floating-point digital signal processing (DSP) chip with 512K of 32-bit
words of high-speed static RAM. The board uses a 15-pin VGA connector for the

audio input and output connection.

Also attached to the Intel System 120 is the Covox Voice Master Key II. This
system interfaces to the host computer system sending and receiving messages
through the parallel printer port. The Voice Master Key II has an audio input
jack for the capture and digitization of sound, and has both an audio jack and an

external speaker for audio output.

47

%

3 |

3. Speech Interface Description

Verbex
Series 6000
. :
Routing 5 5 S
Program (TSR) : :| PDMS [:
: Fluid Balance] :
Module |:
Host Computer : : 'y :
Keyboard Buffer : : 1 DDE :
¥ :
DOS Serial | : RS-232C:| OS/2 Serial |:
Port Process Serial Link POt Process|:
! 0S/2 Side
Covox :
Voice Master
Key Il
DOS Side

Figure 3.8: Software Architecture of the Speech Interface

3.3.3 Software Architecture

Due to the hardware architecture outlined in the previous sub-section, several in-
teracting modules are required to ensure proper and reliable transfer of messages
between the DOS and OS/2 systems. Figure 3.8 shows the general software archi-
tecture and the means of communication between the respective programs running
on the both systems. In order to allow reliable transmission of voice commands
from the DOS side to the OS/2 side, and of voice responses from the OS/2 side to
the DOS side, a modified version of the Intel Hex protocol was used. This packet
structure, as well as the data link control protocol will be treated in greater depth
in section 3.3.4. This requires programs on both systems to be able to package the
data to be transmitted to the remote system in this format, and to be able to receive,

decode, and route the information received to the appropriate process.

In the DOS operating system environment, the absence of multitasking capabil-
ities requires that the packaging and transmission of data, as well as the reception,

decoding, and routing functions all be performed by the same application program.

48

by

3. Speech Interface Description

However, on the OS/2 side different processes can handle separate tasks. In this
operating system environment, a dedicated process is run to handle the serial port,
and to communicate the decoded data to the appropriate process using dynamic
data exchange (DDE). In order to establish the DDE links between the appropriate
interacting modules, the programs must be executed in a specific order. Figure 3.9
shows the overall flow diagram between the various program modules on both

systems and between both systems.

First, before any of the programs can be executed on either system, the user
must have trained the grammar on the DOS side. Alternatively, the user can trans-
fer his voice templates with the compiled grammar file from the host computer to
the Verbex board. In order to emulate the keyboard pressed on the host computer,
a terminate-and-stay-resident (TSR) program is loaded which redirects the output
translations of recognized words or phrases from the recognizer to the host com-
puter’s keyboard buffer. The translation data can subsequently be read from the
buffer by the application program through the use of any one of the standard “C”

language function calls.

When the DOS communication program is first run, it installs an interrupt ser-
vice routine for the serial port, enabling it to operate at a baud rate of 9600 without
loss of characters. A high baud rate is desirable for fast data transmission between
the two systems. Since the serial port is not an interrupt-driven device under the
DOS operating system, a user-defined interrupt service routine was implemented.
This routine stores the received characters in a circular buffer asynchronously from
the normal flow of execution of the main program. Once the interrupt service rou-
tine is installed, the DOS communication program waits for a NULL initialization
packet from the remote OS/2 system. The DOS communication program proceeds
in its main processing loop once the packet has been received and acknowledged,
indicating the presence on the OS/2 side of a program to receive the transmitted

information.

49

‘I

b

3. Speech Interface Description

(DOS) Load Grammar
and Voice Templates

on Recognizer

!

(DOS) Run Recognizer

to Keyboard Buffer

Router (SOFTKEY)

N e L e b L R RS el]

Initialization

4

(DOS) Run Dos
Port Program
{DOSPORT)

!

(0S/2) Run OS/2
Port Process
(OS2PORT)

!

(OS/2) Run Fluid
Balance Module
(FBS)

@t for Voice Commandi

ackage Voice Command

in Dala Packet

i

Transmit Data Packe!

Across Serial Line

Receive and Decode
Data Packet from
Serial Line

!

Play Back Files
Corresponding
to Voice Response

R

DOS Pont
Program

Data Packet from
Serial Line

P

Transmit Data to
Module (FBS)

Via DDE

Receive DDE
Packet

Package Voice
Response Dala In
Data Packet [

Transmit Data
Packet Across
Serial Line

e T e e R

............

Receive DDE
Packet

Perfirom Action

Corresponding to
Voice Command

Prepare Voice
Response Message;

Transmit Voice

Response Data

to Port Process
via DDE

Module

Fluid Balance

Figure 3.9: Program Flow Diagram of the Speech Interface

The main processing loop on the DOS side performs the following sequentially:

obtains, from the host computer’s keyboard buffer, the translation of the

recognized spoken word or phrase from the recognizer,

package the data with the appropriate header and tailer information,

transmit the data across the serial RS-232C link to the remote OS/2 system,

wait for the voice response packet from the remote OS/2 system,

receive and decode the data packet from the remote OS/2 system,

acknowledge proper receipt of packet,

50

i

ey

3. Speech Interface Description

e play back the word, or sequence of words as indicated in the data packet and

as specified by the Fluid Balance module.

This process continues on the DOS side until the user terminates the program’s

operation.

On the OS/2 side, certain features of the operating system allow a more modular
program architecture for this component of the speech interface. Consequently, the
process of reading from and writing to the serial port is an entirely different and
separate program from the Fluid Balance module, the program which sends and

receives data from the serial port.

The advantages of separating the serial port handling process from the Fluid
Balance module are three-fold. First, the Fluid Balance module need not be bur-
dened with the additional task of processing the serial port directly. Secondly, if
there exists more than one process which expects data from the serial port, then
there is no way of ensuring that a given process will get the data that was sent to
it. With many processes reading the serial port, it is possible that a process mistak-
ingly reads the data intended for another process. Lastly, as more PDMS modules
have speech added as another input modality, a dedicated port process will be a

necessity; facilitating the routing of information to and from the serial port.

Consequently, in a multi-tasking environment, when potentially more than one
process expects data from a given serial port, a dedicated process should handle
the serial port input and output, and communicating to the other processes via

interprocess communication.

In the speech interface, the OS/2 serial port process begins by first initializing
the serial port with the proper baud rate, word size, parity, and stop bits. Next, it
send out a NULL initialization packet over the RS-232C serial line to the remote
DOS system and waits for an acknowledgement from the DOS serial port program.

If the OS/2 serial port process does not receive an acknowledgement from the

51

3. Speech Interface Description

remote system within 15 seconds of having transmitted the packet, the user is
notified of the condition, and can either re-try the connection between the two

programs, or quit the program and fix the problem.

After the initialization packet is acknowledged from the remote DOS port pro-
gram, the OS/2 serial port handling process enters its main processing loop, which

performs the following operations sequentially:

e wait for a packet containing voice commands from the remote DOS system,
e receive and decode the data packet,

o acknowledge receipt of packet,

e transmit the data decoded from the packet to the appropriate PDMS module,

e wait for voice response data from the PDMS module which received the voice

commands,
e package the voice response data with proper header and tailer information,

e transmit packet across the serial link to the remote DOS system.

This process continues until the user exits the OS/2 serial port handling process.

Interprocess communication between the dedicated OS/2 serial port process
and the Fluid Balance module is achieved by using the OS/2 component called
dynamic data exchange (DDE). These DDE messages that are sent to the Fluid
Balance Module from the OS/2 serial port process, are posted in the message queue
of the Fluid Balance module by the serial port process. These messages are then
handled by the message handling procedure of the Fluid Balance module. Voice
response data messages are then sent from the Fluid Balance module to the OS/2
serial port process also using DDE. In DDE terminology, the OS/2 port process
is the server to the Fluid Balance module client for the voice command data, and

the Fluid Balance module is the server to the OS/2 port process client for the voice

52

» -4

3. Speech Interface Description

Main Options

Ingesta Excreta Novice Settings Exit Help

Yes No Yes No
Ingesta \

Sub-Tree
SE’:’T‘“’ Bed | [Name| |ID
ub-Tree / <
Enter Enter Enter
Bed Patient Patient
Number Name ID Number

Figure 3.16: Fluid Balance Module Menu Tree (Main Menu)

response data. Hence, both the Fluid Balance module and the OS/2 port process

behave as both client and server.

Once the Fluid Balance module processes the DDE data message, it proceeds
to call the appropriate sequence of Presentation Manager functions which emulate
either menu pull-downs, menu clearing, dialog box creating, entry field filling, or
push button pressing, depending on the context of the current transaction. As far
as the system is concerned, these events are identical to mouse clicks and to the
pressing a sequence of keys on the keyboard. Such high-level operating system
function allow non-mouse and non-keyboard actions to trigger events which are

identical to mouse clicks or keyboard presses.

In the Fluid Balance module, state variables are used by the speech interface to
keep track of where user is in the menu tree. Figures 3.10, 3.11, and 3.12 shows
the menu tree for the main window, the Ingesta window, and the Excreta window
respectively. As the user voices options in the menus, the menu tree is traversed.
State variables ensure that the user will traverse the tree in syntactically legal, pro-
cedural fashion, consistent with the menu hierarchy inherent in the menu structure
of the respective Fluid Balance module windows. In addition, the organization of

the grammar definitions in the Fluid Balance grammar loaded on the recognizer,

53

3. Speech Interface Description

Ingesta Options

Oral Gastric IV1-1V5 Time Corraction Save| {Clear] } Ext Help
Enter Yas No Yes No
Time
Type Leve'!!Amount Same Yeos| No
/ \ Sub-Tree
as for
Enter‘ Enter Em'er IV1-IVS,
Oral Gastric| | Fluid Fluid Oral-Gastric,
Type Level Amount Time.
‘Location Level Actual Intzke Desired Intake]] Comment Name
i Right| | Right|| Left || Left || Chest Enter Enter Enter
- Am || Leg || Arm || Leg Solution Solution || Solution
Level Comment Name

Figure 3.11: Fluid Balance Module Menu Tree (Ingesta Menu)

rGaslnc] [Sli)ol] Igt_ho;rl [Tlmel lCorrectm @ m

roo| [o] | [re [nel

Excreta Options
[urine
Enter Total Enter Total Enter

Blood L.oss Blood Intake Stool Enter
Amount Time

Quantity |{Sugar| Enter Enter

Gasinc Other

Girth Excrela
Info

Same
Sub-Tree
as for
Blood -
Time

Yes)

Figure 3.12: Fluid Balance Module Menu Tree (Excreta Menu)

o

3. Speech Interface Description

also reflect the menu hierarchy of the Fluid Balance menus. This logical organi-
zation of menu items also facilitates the program’s determination of the words or
phrases to be echoed back to the user. All that needs to be known is where the user
is in the menu tree, and the voice feedback messages can be generated accordingly.
Another advantage of this structured division in the grammar and in the menu tree
traversal is that illegal, invalid voice commands, as well as selections which are not

valid in the current context will be ignored by the speech interface.

For menu tree traversal via mouse or keyboard selections, the menu tree struc-
ture is inherent in the options available to the user at a given level in the tree, and
in the sequence of actions that the user must perform in order to achieve a certain
action. These menu structures are handled internally by the Presentation Manager
and require no tracking by the programmer. For voice operation, however, the
structure of the tree must be tracked in the Fluid Balance module’s code, in order
to ensure the same syntactic consistency that the Presentation Manager ensures for

mouse and keyboard selections.

3.3.4 Data Link Control

As mentioned in section 3.3.3, the data link packet is implemented in a modified
Intel Hex format as shownin figure 3.13. In the data packet, one byte of information
is coded as the ASCII representation of the two hex numbers. The information
contained in the packet is as follows:

Bytes : 0 1 -2 3 -6 7 -8 9 -(n-2) (n-1)-n

o Module Menu Data
® Number Number Length Data Checksum

Figure 3.13: Data Link Packet Structure

R
.

e “:” - denotes the start of the packet.

55

3. Speech Interface Description

¢ “module number” - two hex numbers representing the destination module
number. A total of 256 modules can be serviced by this design. In the current
implementation, since there is only only one module in the PDMS which

supports the speech interface, this number is always the same.

e “menu number” - four hex numbers representing the menu id number in
which the data, corresponding to either the voice command or voice response,
is taken from. These menu numbers correspond directly to the id numbers
of the menus in the Fluid Balance screens. This information is included to
ensure that the user is “speaking” to the proper menu in the menu tree, as

well as to ensure that the syntactic structure of the tree is being followed.

e “data length” - two hex numbers representing the length of the data of the

data in the data field in bytes, or in hex characters divided by 2.

e “2 x data length” - of data. This corresponds to either the voice command
information, or the voice response information. If the data field contains
voice commands, the data is either the id number of the menu item selected,
or the ASCII representation of text or non-menu selection commands. If the
data field contains voice response messages, the data contains a code or a
sequence of codes corresponding to the id number of the word or words to

be echoed back by the system.

¢ “checksum” - two hex numbers representing the calculated checksum for a
given packet. This is calculated by adding up modulo 256, all the character
values in the data packet, except the leading colon (“:”), and subtracting this

value from 256 to obtain the checksum.

The protocol used for packet transmission is the ACK-NACK (acknowledge-no
acknowledge) protocol. If the process receiving the packet receives it uncorrupted,
that is, there is no discrepancy between the checksum calculated by the receiving
process internally and the two numbers representing the checksum received at the

end of the packet, an ACK, or acknowledge, is sent, and both processes on both

56

a

3. Speech Interface Description

sides of the RS-232C serial link proceed normally. Otherwise, a NACK, or not
acknowledge, is sent to the sender, and that process retransmits the packet until an

ACK is finally received, indicating the reception of an uncorrupted packet.

The format used in the speech interface is an adaptation of the true Intel Hex
packet, where the header has been modified. What is retained, is the representation
of one byte of data as two hex characters, and the use of the checksum for detecting

packet corruption.

57

R B s Sl 20 o S

M e ey

o

P > ot o B dadahat il

WWWVQ‘?“"@““&W T P L Fast T TR WS ARETIES

Chapter 4 Implementation, Results, and Future Extensions

This chapter describes the implementation issues of the speech interface and re-
produces a sample session of a typical data entry process in the Fluid Balance
module, showing some sample screens. Results of the speech interface will then
be reviewed and discussed with particular attention being paid to the recognition
accuracy in the recognition portion of the interface. Latency times of the system
will also be discussed. Lastly, future extensions and improvements to the speech

interface will be presented and discussed.

4.1 Speech Interface Implementation

4.1.1 The Fluid Balance Module

The new version of the Fluid Balance module was implemented using the Microsoft
“C” compiler version 6.00 under the Presentation Manager environment of OS/2.
The migration to the Presentation Manager version from the original full-screen
mode version implemented under version 1.0 of 0S/2, began with the arrival of
version 1.1 of OS/2. This version of the Fluid Balance module was originally com-
piled using version 5.1 of the Microsoft “C” compiler and was later recompiled with
version 6.0 of the “C” compiler under the most recent version of OS/2 available
at this time, version 1.3. The source code for the Fluid Balance module is divided
among 10 program files totaling about 6400 lines of code. Out of this total, 2500
lines are dedicated to the speech interface. The size of the executable file is approx-
imately 170 Kilobytes. All function definitions comply with the ANSI C standard
[Kernighan and Ritchie, 1988]. The text and graphical drawing operations in the

58

N

4. Implementation, Results, and Future Extensions

client area of the respective Fluid Balance module windows, rely on the standard
API Presentation Manager functions available from the Presentation Manager Pro-
grammer’s Toolkit lioraries. The graphical user interface of the module is based
on the Presentation Manager’s graphical user interface of the OS/2 operating sys-
tem, and adheres to the Systems Ap plication Architecture (SAA) definition for user

interfaces.

As described in section 3.3.1, the Fluid Balance module consists of three win-
dows; the main window, the Ingesta sheet window, and the Excreta sheet window.
Although there are three separate windows, there is only one message queue for
the entire program. All the data structures which contain the administrative pa-
tient informatior., such as the name, hospiial id number, and bed number are shared
among all the windows the program. Also, variables which store window han-
dles, required for message posting between windows, are also available to all three
window handling procedures. Both the Ingesta and the Excreta sheets are the chil-
dren of the main window. The 10 program files which make up the Fluid Balance
module are divided according to the functions that the procedures they contain
perform, and the windows that these routines are used in. For example, there are
files which contain the procedures which handle the drawing functions in the client
areas of the Ingesta and Excreta windows, and procedures which handle the input
from the various dialog boxes created by both the Ingzsta and Excreta windows.
There is also a file which contains the procedures that handle the processing of
DDE messages, as well as a file which contains the procedures for responding to
voice command messages and sending the appropriate voice response messages

for playback on the DOS system.

The voice operation procedure has three state variables which track the user’s
progress through the menu tree of the main window, the Ingesta window, and
the Excreta window. As the user traverses the menu tree using voice commands,
the value of theses variables are changed to reflect the user’s selection, and conse-

quently, the new position in the menu tree.

59

=

4. Implementation, Results, and Future Extensions

= os2port2. EXE via
Exit

Figure 4.1: Window of OS/2 Serial Port Handling Process

The Fluid Balance module is implemented as a single-thread process; none of
the functions in the program are so computationally intensive as to warrant the

creation of another thread to handle the task.

4.1.2 The OS/2 Serial Port Handler

As was the case with the Fluid Balance module, the dedicated OS/2 serial port
handling process was also implemented and compiled using version 6.0 of the
Microsoft “C” compiler under the Presentation Manager environment of OS/2
version 1.3. A sample window of the serial port process is shown in figure 4 1. For
this process, no real user interaction is required, but the graphical user interface is
included in order to provide a simple means of terminating the program from the
menu bar. In addition, running the OS/2 serial port process in the Presentation
Manager environment enables the creation and use of a message queue, which is
crucial for the processing of DDE messages sent from the Fluid Balance module.
The source code for this program is contained in one file totalling about 950 lines

of code. The size of the executable code for this process 1s about 32 Kilobytes

Two threads make up this process: a dedicated child thread which handles

the serial port read and writes, and a main thread which processes the messages

60

L

4. Implementation, Results, and Future Extensions

posted to its message queue. The motivation behind the creation of a dedicated
thread to handle the serial port is to not to degrade the main thread’s message
processing tasks. Communication between the dedicated serial port thread and
the main thread is done via message posting. The main thread communicates to

the dedicated serial port thread via a semaphore.

As the dedicated serial port thread reads and decodes a data packet from the
OS/2 serial port buffer, it dynamically allocates memory to store the incoming
data based upon the data length field in the packet's header. This memory is
subsequently freed when it is no longer needed by either the main thread or the
dedicated serial port thread. When the serial port has received and decoded a valid
data packet from the remote DOS system, it posts a message in the main thread’s
message queue. This indicates to the main thread that a valid voice command
has arrived. The main thread then proceeds to send the the menu number, the
data length, as well as the data in the packet’s data field, to the module specified
by the module number field in the packet header. Currently, the only module
which supports a speech interface is the Fluid Balance module, but, as m.ationed

previously, this was included for future extensions.

If the Fluid Balance module has not established a DDE connection with the
serial port process, an error is flagged to the user as shown in figure 4.2. If the
DDE connection has been established, the main thread of the serial port procedure
places the received menu number, data length, and data is placed in the DDE-
DATA structure, whose elements consist of separate character arrays for storing

the aforementioned information.

Once the dedicated serial port thread has sent the message to the main thread,
it then sets a semaphore which will be cleared by the main thread when it received
a DDE data message containing the voice response data to be transmitted to the
remote DOS system. The structure for the DDE data transmission of voice response

messages from the Fluid Balance module to the serial port process is identical to

61

Wi

4. Implementation, Results, and Future Extensions

NOTEI
FBS has not yel authorized data EXC -
transmissions. hinl Rt
(s s
N : g {0 rorice
L. [" 88
DOS Cortich Paneb 052 Wiwndow Deskion Manage Giowp Man

Figure 4.2: Dynamic Data Enchange Link Error Message

that described in the previous paragraph. Once the voice response data has been
received by the main thread, the information stored in the DDE data structure is
placed in global storage, accessible by both threads in the process. The main thread
clears a semaphore, signalling to the port thread that there 1s data to be transmitted
to the remote system which is contained in the global variables Storage for the
data packet to be transmitted is also allocated dynamically, based on the length of
the data to transmit. Once the data has been transmitted, the port thread waits for

another data packet containing voice commands from the remote DOS system.

62

Fha

Ty

4. Implementation, Results, and Future Extensions

4.1.3 The DQOS Port Program

On the DOS side, the single-task nature of the operating system does not allow the
creation of threads to separate the serial port handling from the other tasks which
are handled by this program. As was previously, mentioned the serial link operates
at 9600 baud which necessitates an interrupt service routine for data reception. The
incoming characters are stored in a 16 Kilobyte circular queue. Two pointers are
used to mark the head and the tail of the queue. As characters arrive from the serial
port, the end pointer is incremented, and as characters are read from the array, the
front pointer is incremented. Since the serial port is not an interrupt-driven device
under DOS, the host computer’s programmable interrupt controller’s (PIC) serial
port interrupt flag must be set for the interrupt service routine to be called when a

character is received from the serial port.

As with the OS/2 serial port process, the program also dynamically allocates
memory for the transmission and receipt of data packets depending on the length of
the data to transmit, or depending on the length field in the packet header received
from the remote OS5/2 system. The dynamically allocated memory is freed when

it is no longer needed.

For voice response information, the data received corresponds to a sequence
of four hex number codes which represent the word or sequence of words to be
spoken back by the system. The translation from code numbers to file names is
done by doing a binary search through the tree of code numbers, using a function
supplied by “C” [Microsoft, 1990]. Since there are about 250 words in the playback
vocabulary, it is unfeasible to store the content of the voice play back files in the
host computer’s 640 Kilobytes of conventional memory accessible by DOS. This
implies that the word list feature for file play back on the Covox Voice Master Key
I, described in section 3.2.2 system could not be used. Since there are 9 Megabytes
of expanded memory on the host computer, 3 Megabytes have been allocated as a

RAM disk to store these speech files for fast retrieval and the Covox file playback

63

4. Implementation, Results, and Future Extensions

feature has been exploited instead of the word list feature. With the world list
feature, the playback functions ir the “C” code could have been called with the
code numbers received from the remote system directly. Inthe design implemented
in the speech interface, the codes are translated into files names before the files are

played back from the RAM disk directly.

The “C” binary tree search function was used for the code-to-speech-file-name
translation as searches can be done in O(log(n)) time, where n is the number of
elements in the tree. This is better than doing a linear search which requires O(n)

time, and needs to be coded explicitly in the program.

This program was also compiled using version 6.0 of the Microsoft “C” compiler.
The source code is contained in one source file of approximately 900 lines, and the

executable version of this file is about 25 Kilobytes in size.

4.1.4 The Grammar File and Playback Files

The grammar file for the Fluid Balance module contains approximately 200 words.
This large grammar is broken up into several context dependent grammars having
no more than 20 words per grammar definition. The Fluid Balance grammar is
made up of menu bar commands, menu item names, dialog box commands, some
intravenous solution names, as well as the digits from 0 to 9. Two and more digit
numbers are specified in the grammar by concatenating a sequence of two or more
digits. The compiled recognizer file requires about 25 Kilobvtes of disk space, and
a typical user file of voice templates trained on the grammar requires about 20
Kilobytes per speaker. Therefore, for a given user, a total of 45 Kilobytes of space
is required in the recognizer’s memory, which is fits quite comfortably into the

board’s 512 Kilobytes of RAM.

The training time required to train the Fluid Balance module grammar was

typically 23 minutes. The training process requires uttering each of the individual

64

4. Implementation, Results, and Future Extensions

words which make up the vocabulary, and then training scripts, which are the
concatenation of the words into phrases, as specified in the grammar file, for
continuous speech recognition. The number of scripts which required training
in the second part of the training process was 546 scripts. Note that all possible
scripts in the grammar are not trained. If one wanted to train the concatenation
of all possible four-digit numbers, one would have to train 10 000 scripts for this
case alone! The Verbex training process only requires a few scripts which give the
recognition algorithm enough information to extrapolate the remaining scripts in

the grammar.

There are also about 250 possible words and phrases to be echoed back to the
user. The speech for these words was digitized using a sampling rate of 14 Khz,
using and 8-bit representation per sample. No compression was used to reduce
the amount of space required to store these files on magnetic media. Consequently,
14 Kilobytes of disk space are required to store 1 second of digitized speech. The
average length of a word is about 0.7 seconds. Hence, the disk space required to

store the 250 words is about 2.5 Megabytes.

4.2 Sample Session Results

This section presents a sample session of the Fluid Balance module operation
performing a typical data input process on the ingesta screen. All the functions
performed in the data entry process were done using voice operation, and voice

echoing was also provided.

The speech interface to the Fluid Balance module uses three programs: the 05/2
serial port handling process, the DOS serial port handling process, and the Verbex-
supplied router of messages from the Verbex recognizer’s hardware address into

the keyboard buffer of the host computer.
A program cycle begins with the loading of the compiled grammar file and

65

. skl

4. Implementation, Results, and Future Extensions

0S2PORT
Link with Remote Successtully
Established.
[lK]
L
f\z % % m g @ EHE"
D0S Cortrol Panet 0572 Window Deskioo Managee Giowp Man

Figure 4.3: Message Flagging Successful Linkup of DOS and OS/2 Systems

the user’s voice templates for the grammar into the recognizer. Next, the Verbex
message router is run, which installs itself as a terminate-and-stay-resident pro-
gram, followed by the DOS port program, which waits for an initialization packet
from the remote system, signalling that the OS/2 port process is active. On the
OS/2 side, the serial port handling process is started first. It begins be sending
an initialization packet through the serial line to the DOS system. If the DOS port
program is active, then it will send an acknowledgement to the OS/2 serial port
process. The successful connection of the two programs on both sides of the serial

line is flagged to the user by the OS/2 port process as shown in figure 4 3.

Next, the Fluid Balance module is started. Itfirst begins by establishing the DDE

connections to and from the OS/2 port process. Messages flag the establishment of

66

4. Implementation, Results, and Future Extensions

e

- FLUID BALANCE SHEET, MAIN MENY vie

ingesta_Excreta Novice Seftings Exit 1 Fl=Help

Fluid Balance
DDE Speech Link Successfully
Established.
[_loK]
e ey i S
bos osdpeni2 EXE OSR Window Deosiop Manager Gop Man
{
- FLUID BALANCE SHEET: MAIN MENU v a
ingesta_bxcreta Novice Settings Ext | Fi-Help
0842 Port Process
Client-Server dnk to FBS successfully
established
i =
bOs o2 DE Doskiop Manager Giop Mam

Figure 4.4: Successful Dynamic Data Exchange Link Messages 67

4. Implementation, Results, and Future Extensions

BE 'LUIDBALANCE SHEE T MAINME NG vie
Ingesta_ Excreta Novice Seltings Lt Fi=lelp

Fatsd vorn
P

$ o Hik @88
00s 0512 Window 2pon2 EXE 0512 Window Deskiop Menage Growp Man

Figure 4.5: Main Fluid Balance Module Window at Start Up

the client-server links between the two processes as shown in figure 4.4. Following
the establishment of the DDE links, the main window of the Fluid Balance module

is created and displayed on the screen, as shown in figure 4.5.

The user can then create a blank Ingesta sheet by either clicking on the Ingesta
item in the menu bar of the main window, by pressing the ALT-I key combination
on the keyboard, or by saying “ingesta” into the microphone. Once the ingesta
sheet is displayed, the user can proceed to select any of the ingesta menu bar items
or switch back to the main menu window to enter the patient's administrative

information.

Figures 4.6, 4.7, 4.8, and 4.8, included at the end of the chapter, reproduce the
display of the Ingesta sheet of the Fluid Balance module at different stages during

68

.(’@)a

4. Implementation, Results, and Future Extensions

some sample data-input phases of operation. Note that a running total is kept
of the Fluid Balance intravenous (IV) solution levels. Therefore, in the data entry
process, the user only needs to enter the current IV solution levels in the appropri-
ate columns; calculations of the total solution intake are done automatically, and
displayed in the Act. In (actual intake) column. Finally, if for any reason, the DDE
link should fail, error messages are displayed on the screen, informing the user of

the problem.

4.3 Test and Evaluation Process

For the testing process of the speech interface, it was desired to have a mix of both
novice and knowledgeable computer users. This would gave a better idea of how
users with different backgrounds would find data entry using a non-traditional

means of computer input and output.

Eight users were tested in the development laboratory at McGill. For the test
process, users were asked to perform some typical fluid balance data entry tasks.
Prior to testing, those users not already familiar with the PDMS or the Presentation
Manager environment of OS/2 were given a tutorial outlining the functionality
and the motivation behind the use of the PDMS in general and of the Fluid Balance
module in particular. The users were then given a paper copy of a sample Fluid
Balance sheet obtained from the Montreal Children’s Hospital. After a review of
how the nurses proceed to enter the fluid balance data on the form and training the
Fluid Balance module vocabulary, the users were asked to enter the data into the
Fluid Balance module first using the speech interface only, and then performing

the same tasks using the conventional mouse and keyboard input modalities.

Of the eight users tested, two were experienced computer programmers with
good experience with the Presentation Manager environment of OS/2 and the

Fluid Balance module, two were experienced Presentation Manager users, but

69

4. Implementation, Results, and Future Extensions

had no prior experience with the Fluid Balance module, two were experienced
computer users but had no previous Presentation Manager experience, and the last
two users tested had little computer experien-e and no experience using either the
Presentation Manager environment or the Fluid Balance module. The following
tables show some information obtained during the test process, for each of the four

groups of two users with similar computer backgrounds.

The tables display the following information of interest for data entry using the

speech interface only, and the keyboard and mouse only:

o Average task completion time: indicates the average time required to com-

plete the entry of one fluid balance value into the Fluid Balance module.

e Number of errors in performing task: indicates the total number of errors

the users did when performing the sample entry of data in the Fluid Balance

module.

e Number of tasks performed in 10 minutes: indicates the total number of fluid

levels entered into the Fluid Balance module during a 10 minute interval.

Such information useful for obtaining some insight into which input modality
is more effective for which category of user, as well as giving an indication as to

whether a speech interface is an effective input modality for this application.

In addition, the tables also present information on the performance of the speech

recognition portion of the speech interface by displaying the following information:

e Training Time: the time required by the user to train the Fluid Balance

module vocabulary.

o False acceptance rate: the rate at which the speech recognition system re-

sponds to extraneous noises such a coughs.

o Falserejection rate: the rate at which valid utterances are ignored or rejected

by the system (no response).

70

4. Implementation, Results, and Future Extensions

e Substitution rate: the rate at which a word uttered by the speaker is incor-

rectly recognized to be another word in the vocabulary.

e Recognitionrate: is the rate at which the system responds correctly to user ut-

terances (1—(false acceptance rate+ falserejection rate + substitutionrate)).

The breakdown of the recognition rate into its various components generally gives
a better indication of system performance than quoting the recognition rate alone

[O'Shaughnessy, 19871.

The typical response time for the speech interface was 1.5 seconds, which is
made up of an approximate 0.56 seconds for the recognition time, 0.07 seconds
between the time the word is recognized and the time in which the command is
executed on the Fluid Balance module, 0.07 seconds for the response string to be

passed on to the system, and a typical 0.8 seconds for speech file playback.

From the test results the following observations can be made. For experienced
Fluid Balance module and Presentation Manager users, whose test results are
shown in table 4.1., there was no significant advantage to using voice over mouse
and keyboard for input. This can be attributed to the fact that experienced users
of a given application program can easily manoeuvre the mouse and keyboard to
perform the required operations. As shown above the speech interface operation
from utterance to audio feedback completion typically requires 1.5 seconds. Even if
no audio feedback were supplied by the interface, the interface would still require

an average of 0.63 seconds to execute a user command [Petroni et al., 1991].

Once users have mastered the graphical user interface of the system, the speech
interface offers no speed advantage, when compared to the quasi-instantaneous
time that the system requires to respond to a mouse click or a keyboard press.
Hence expert users of a system seem to be bound by the the speed of the input

modality and the relative task complexity in the system.
During the testing process, both expert users found the voice feedback annoy-

71

4. Implementation, Results, and Future Extensions

User A
Speech Keyboard /Mouse
Average Task Completion Time 12 seconds 10 seconds
Number of Errors in Performing Task 0 0
Number of Tasks Completed in 10 minutes 33 35 |
| Training Time | 20 minutes 15 seconds |
Occurrences Utterances Rate (%)
False Acceptance 0 600 0%
False Rejection 13 600 2.17%
Substitutions 0 600 0%
Recognition Rate 97.8%
User B
Speech | Keyboard/Mouse
Average Task Completion Time 20 seconds 15 seconds
Number of Errors in Performing Task 0 0 h
Number of Tasks Completed in 10 minutes 27 32
| Training Time | 22 minutes 38 seconds]
Occurrences Utterances Rate (%)
False Acceptance 0 600 0%
False Rejection 26 600 4.33%
Substitutions 2 600 0.33%
Recognition Rate 95.3%

Table 4.1: Test Set 1: Expert Presentation Manager and Fluid Balance
Module Users

ing, since they already knew from memory what options were available to them at
a given level in the menu tree. It was also mentioned that for “eyes-free” operation,
some speech generation is essential. Overall, both users felt that a speech interface
would be quite useful in the intensive care unit, where users are not expected to
be seasoned computer users, and the mobility for “hands-free” and “eyes-free”

operation is desired.

The next set of users tested were had previous Presentation Manager experience
but had no prior experience with the Fluid Balance module. The results of their
sessions are shown in table 4.2. Comparing table 4.2 and table 4.1, one can notice
that the task completion times are generally higher for both voice and keyboard

and mouse input modalities. Also, the task completion times for the two input

72

PRl

4. Implementation, Results, and Future Extensions

User C

Speech | Keyboard /Mouse
Average Task Completion Time 25 seconds 25 seconds
Number of Errors in Performing Task 0 1
Number of Tasks Completed in 10 minutes 24 24

| Training Time |

20 minutes 57 seconds

Occurrences Utterances Rate (%)
False Acceptance 0 600 0%

[False Rejection 20 600 333%
Substitutions 0 600 0%
Recognition Rate 96.7%

User D
Speech | Keyboard/Mouse
Average Task Completion Time 22 seconds 23 seconds
Number of Errors in Performing Task 0 2
Nui: ber of Tasks Completed in 10 minutes 27 26
| Training Time | 21 minutes 20 seconds]
Occurrences Utterances Rate (%)
False Acceptance 0 600 0%
False Rejection 21 600 3.50%
Substitutions 3 600 0.50%
Recognition Rate 96.0%

Table 4.2: Test Set 2 Results for Experienced Presentation Manager Users

modalities are almost identical for a given user. In the case where users are familiar
with the graphical user interface of a system, but not the menus and menu items
of a particular application, voice operation is equivalent to keyboard and mouse.
At first, the more detailed audio feedback messages were used by both users. As
the input process progressed, and the users became more familiar with the system,
the detailed messages were substituted by the shorter, less descriptive ones, even

when “eyes-free” data entry was performed.

Table 4.3 shows the session results for the experience computer users with no
Presentation Manager experience. As expected, the task completion time for both
voice and keyboard/mouse input is greater than the previous two sets of users.

This increase is primarily due to the unfamiliarity of the users to the Presentation

73

[o—

4. Implementation, Results, and Future Extensions

User E
Speech | Keyboard/Mouse
Average Task Completion Time 30 seconds 45 seconds
Number of Errors in Performing Task 2 5
Number of Tasks Completed in 10 minutes 20 13 o
| Training Time | 23 minutes 15 seconds]
Occurrences Utterances Rate (%) |
False Acceptance 0 600 0% j
False Rejection 28 600 4 67% ’
Substitutions 1 600 0.17%
Recognition Rate 95.2% -
User F o
Speech | Keyboard/Mouse |
Average Task Completion Time 32 seconds 40 scconds
Number of Errors in Performing Task 4 5
Number of Tasks Completed in 10 minutes 19 15]
[Training Time | 21 minutes 47 seconds]
Occurrences Utterances “Rate (%) ‘
False Acceptance 0 600 | 0%
False Rejection 19 600 | 317%
Substitutions 0 600 0%
Recognition Rate "~ 96.8% -

Table 4.3: Test Set 3. Test Results for Experienced Computer Users

Manager environment. In this test case, the use of the speech interface lead to a
shorter task completion time than performing the same tasks using the keyboard
and mouse. The users here felt that the use of voice feedback was especially helpful
in the data entry process. Also, they felt that the use of voice feedback coupled
with the visual feedb «ck on the screen accelerated the command learning process,
decreased task completion time, and helped with command retention. These users
were especially appreciative of the detailed voice messages which told them of
the available options at every step in the entry process They also mentioned
that operating a module in an unfamiliar operating system environment was less
inbmidating when the speech interface was used than when keyboard and mouse

was used.

74

4. Implementation, Results, and Future Extensions

User G

Speech | Keyboard/Mouse
Average Task Completion Time 35 seconds 45 seconds
Number of Errors in Performing Task 6 12
Number of Tasks Completed in 10 minutes 17 13

| Training Time

I

20 minutes 45 seconds

Occurrences Utterances Rate (%)
“False Acceptance 0 600 0%
False Rejection 15 600 3.00%
Substitutions 0 600 0%
Recognition Rate 97.0%
User H
Speech Keyboard/Mouse
Average Task Completion Time 32 seconds 48 seconds
Number of Errors in Performing Task 0 0
Number of Tasks Completed in 10 minutes 5 10
| Training Time | 24 minutes 05 seconds]
Occurrences Utterances Rate (%)
False Acceptance 0 600 0%
False Rejection 22 600 3.67%
" Substitutions 0 600 0%
Recognition Rate 96.3%

Table 4.4: Test Set 4: I'esults for Novice Computer Users

Table 4.4 shows the results of the test session with the two users with little
or no computer experience, and, consequently, no Presentation Manager or Fluid
Balance module exposure. As expected the average time required to perform a
typical data entry task in the Fluid Balance module was the longest of the four
lest sets. As with the previous case, this can be attributed to the unfamiliarity
of the uscrs to the both the graphical user interface of the Presentation Manager
environment, and to the Fluid Balance module’s commands. In addition, this case
also showed that operation of the Fluid Balance module and data entry with the
speech interface yield a shorter average task completion time than performing the
equivalent tasks by keyboard or mouse. These users echoed the sentiments of the
previous set of users by saying that the use of voice feedback coupled with the

visual feedback from the screen was especially helpful in getting familiar with the

75

-—

4. Implementation, Results, and Future Extensions

» system and its commands. They also felt less intimidated and more secure with
the speech interface than with the keyboard and mouse modalities, adding that a
new environment with an unfamiliar program was very overwhelming for users

which are not computer literate.

Some observations which were noted on all the users was that in the initial
stages of the training process, training would go slow, as users were not sure what
would happen next. As the users got more comfortable with the system and the
training process, the grammar trairing would then proceed at a more rapid pace.
Also, the novice users felt more comfortable entering data by voice than by either
keyboard or mouse. Overall, the speech interface was not rejected by any of the
users tested, but it was better received by the novice users who found that it was
a less intimidating, easier to use, and more familiar means of communication,

especially when learning a new system.

- The results obtained for the speech recognition portion of the speech interface
during the tests also gives some useful informatioi:. Looking at the values for the
rejection rate for all the users, one can observe that this part of the recognizer errors
is what contributes the most to the lowering of the overall recognition accuracy.
Most of the users were not bothered by this, but two users mentioned that if the
system didn’t recognize a valid word after two repetitions, they would get annoyed
and frustrated with the system. They also added that having to repeat a word more
than twice could be very frustrating, especially for a novice user. From the values
obtained from the tables, the speech recognition had an overall recognition rate of

96.4%. There were no false acceptances recorded. Substitution errors amounted to

2.89% of the total errors recorded, and false rejection errors amounted to 97.1% of

the total errors.

One of the users got into what is known as a “degradation spiral” in the recog-
nition process. When a command was not recognized, the user would repeat the

name with slow or exaggerated pronunciation as a familiar way of “being clearer”.

.

76

4. Implementation, Results, and Future Extensions

These habits hurt recognition. When original templates were spoken in a normal
voice, exaggerated inputs were recognized less frequently than normal utterances.
While this occurred with only one of the users in the test set, it is suspected that
such attempts at “being clearer” when dealing with speech recognition systems,
are hard habits to break for users when a system does not recognize a valid word

[Brennan et al., 1991].

Overall, it can be said that the speech interface is especially effective and useful
for the novice user specifically, and for all users generally when “eyes-free” and
“hands-free” operation is required. The recognizer accuracy of the speech recog-
nition system should be as high and as robust as possible in order to minimize the
potential user frustration when trying to input voice commands. For novice users,
the more detailed voice response messages were especially well received, giving
them a sense of being “walked through” the module’s operation step-by-step. For
the more experienced users, some form of voice feedback is required to ensure that

the system correctly “understood” what was said by the user.

It must be kept in mind that while speech recognition is a useful technology,
it is still not a mature one. Much work in the research and development of more
sophisticated systems still needs to be done. While most systems on the market
today offer speaker dependent, discrete word recognition with relatively small
allowable vocabularies, some systems today do allow either continuous speech or
speaker independence with larger vocabulary sizes. Systems of tomorrow will be

capable of understanding natural language statements in the form of sentences.

4.4 Discussion and Future Extensions

One disadvantage of having a separate system housing the speech interface hard-
ware sub-systems is that two computer systems are required: one for the speech

interface sub-systems which run under DOS, and the other for the PDMS software

77

s

4. Implementation, Results, and Future Extensions

which runs under OS/2. It would be more desirable to have both the PDMS and
the speech interface hardware operating in one self-contained system. This would
also eliminate the need for the communication programs, and would allow for a
more seamless interface to the Fluid Balance module. The advantage of the “dis-
tributive” nature of the system is that the interface can be added onto any system
that has a serial port and a serial port handling process, with the same functionality
as the OS/2 serial port process, to handle the protocol used in the speech interface
to communicate between separate systems over the serial line. This would allow

the speech interface system to operate a UNIX system, for example.

To avoid having to train the system, a speaker independent system would be
desirable. This would alleviate users from having to spend one-half hour training
the system in order to use it. The advantage of a speaker dependent system
is that it can be trained in the language that the user 1s most comfortable with
Also, recognition accuracy is usually better for speaker dependent systems than
for speaker independent systems. A speaker dzpendent system will also allow a
certain degree of security in the data entry process. In an unauthorized person
decided to tamper with the system, the recognition system will not respond to
voice commands, since it will not recognize a person whose voice features differ

from the person who trained the system.

The Covox Voice Master Key Il speech output system provides reasonable
speech quality for the digitized speech. When sampled at 14 Khz, the digitized
speech is of broadcast quality with no noise in the played back waveform. The
use of digitized speech output allows the messages to be played back either in
English or in French. The “Speech Thing” synthesis system was also investigated
for this application, but it was found that the initial intelligibility and quality of
the speech were not acceptable without a visual prompting of what was being
uttered. Perhaps with sufficient training, a user could eventually be satisfied with

the speech synthesis output quality.

78

g

4. Implementation, Results, and Future Extensions

As the speech interface described here currently stands, it would be straight
forward to extend it to other PDMS modules. All that would need to be tailored for
a particular module would be the grammar, code the proper procedures to respond
to the menu bar items, menu items, and dialog box items specific to the application,

as well as tailoring the voice response messages for a specific module.

While the speech interface provides a “hand-free” and “eyes-free” means of
manually entering data, another interesting technology is emerging to specifically
deal with the handling of data which can only be entered manually. This technology
is based on hand-written character recognition. While still in the prototype stages,
systems are being announced which will present emulated forms to the user on a
portable flat “screen”, the size of a clipboard, which will allow the user to write
information in the fields of the simulated form. The printed characters are then
converted to their ASCII equivalents and stored in the system’s local storage. The
only interface to this pen-based system is through a stylus. A nurse could thus visit
the various infusion pumps and write the data down directly on the simulated from.
Since all of the intensive care unit staff are familiar with form fill-in, no complex
familiarity with the system is required. The pen-based system also contains an
R5-232C port where it can download data to a host computer. A training process
is required in order for the system to recognize a particular user’s handwriting.
While these pen-based systems are not yet available, it will be interesting to see
how this technology will challenge the speech interface for the manual data entry

process.

Lastly, some consideration should be given to the design, implementation, and
generation process of the graphical user interface. With the adoption of IBM's
unified user interface specification, better known as the Systems Application Ar-
chitecture (SAA), the graphical user interface on IBM platforms will have the same
consistent interface. Consistency of the user interface across applications is im-
portant for the user when dealing with potentially many different programs. For

a novice user, this is especially important, since dealing with different interfaces,

79

4. Implementation, Results, and Future Extensions

each with its own unique mode of operation, may be overwhelming. Differing
from the version of the PDMS implemented in the full-screen mode of O5/2 1.0,
the next generation of the PDMS modules will have interfaces which will be similar
to the new Fluid Balance module to which the speech interface was added. This

will free the user of having to learn different interfaces for the different PDMS

modules.

In applications where the user interface is the main consideration of a software’s
acceptability to the end users, as is the case with the PDMS, it is imperaltive the
system developers get feedback from the end users as the software goes through
various stages in its development and evolution. In a programming environment
such as OS/2’s Presentation Manager, the implementation of the graphical user in-
terface in high-level language code, requires a good knowledge of the various OS/2
Presentation Manager function calls and their uses. In addition, the implementa-
tion of the graphical user interface often requires many lines of code, which would
be discarded if the interface proved to be inadequate in the eyes of the end users.
Such a situation would waste many hours of programming in the implementation
of an interface which needs to be improved in the future. Small, scemingly minor
changes could require many hours and lines of code. A means of quickly generat-
ing a graphic interface prototype would be desirable. This would allow prototype
systems to be developed in a very short time, without the nced of an in depth
knowledge of the operating system functions from the developers. Moreover, any
changes required in the “look and feel” of the interface could be implemented in a
relatively short time, effectively shortening the development life cycle of the soft-
ware. In the end, it would hoped that this would produce an interface which also

better meets the expectations and specifications of the end users.

Computer Aided Software Engineering (CASE) tools attempt to address this
problem by allowing fast prototyping of user interfaces by allowing the user to cut,
copy, and paste graphical objects onto the screen. These tools also produce source

code for the prototype interfaces, allowing the programmer to add the code ior the

80

™

4. Implementation, Results, and Future Extensions

computational “meat” to the code for the interface “skeleton”. Many CASE tools
also produce source code for from flow diagrams of the program. While these new
fourth generation programming “languages” are far from perfect, their emergence
has served to help to reduce the software development life cycle. As these tools
mature, and their use becomes more widespread, it is expected that interface and

program generation will be quite rapid, and the quality of the resulting software

will be better.

81

¢ 3

t——-—

4. Implementation, Results, and Future Extensions

= . .
V8l IVE2 VB3 (V84 IV#5 Oral Gastiic Twe Corection Save Clear Exit F1-Holp |
DATE: Sa07113A1 (mnvddyy) BLD#3 NAME: DOL, Jane 10 #9500 1]
V&l Right Leg DSW Va2 Chest 1
TIME | Solution Cormvment]Lev Sol JAct in [Des'd In | Solution Comment] L ev Sol |A
i 000 |Ohcclhr 720 00 Jo0 [1tecermw 109
02 |o700 666 (b0 |60 | 98
03 | 08.00 600 120 120 82
04 [0900 540 100 100 69
05 1000 Y [T 240 240 CF)
06
(Y] I R R
- .
(]
0
n
i}
(K] T oo T
7] o o
|3
. *
é"éé’
Group Man
" - s
00s orZport2EXE| 0572 Windew Devktap Manager FLAMD BALANLE SHEET FLUID BALANCE SHEET
AL TA AN MENY
L J - ;-
V2 (V83 ve4 (Ve85 Oral Gastric Time Correction Save Clear Exit Fl=Help
(mmddlyy) BLD #3 NAML- DOE, Jane D #9509004 |1}
Comment Wl Right Leg D5W Va2 Chest i
Member * [Sowiion Comment|Lev Sol [Aci i [Dewd in | Solulion Comment|Lev Sol [A
mw*e B6ccihr 720 |00 06 [Tiearne T li0n T
Desked ntake 860 |60 50 98)
03 ; 600 2.0 20 82
04 |[0900 540 160 (L] 69
05 1000 400 240 240 5%
06
07 I A
o8 o
09
0
]
12
13
i ———t- T
_)0
- +
R
Group M
(23RN Tddats vy
BOsS oaZpon2 EXE1 0S72 Wirndow Deshiop Manage: FUND BALANCE SHEET FLLID WALANCE YHERT
EXCRETA MAN MENU

Figure 4.6: Sample Fluid Balance Module Data Entry Session (Part A)

82

4. Implementation, Results, and Future Extensions

- __ FLUID BALANCE SHEET INGESTA - -
181 IVIZ_IV83_IV#4_ VA3 Qral Gastric Time Correction Save Clear Ext [Fi=help
“ DATE S#O0MINT (mmiddlyy) BEDF 3 NAML DOL Jane 1D #950%434 D
W Right Leg DSW IV#2Z Chest F
77T TIME T Soktion Comment[Lev Sol [Actin | Des'd in | Solution Comment|Lev Sol
ot 06080 |O06ccihr 720 00 00 Ticcitr 109
0z Teioe | 660 (&0 50 98 |
03 [e8.00 800 120 120 82
04 |0908 540 180 180 69
05 1000 440 740 240 5%
06
(Y 2 A R
w - 1 - =t
09
10
n
12
(K]
14
&
* »:
Level of IV Sokstion
[Reg
fenp an [1]
L]
. o FLUID BALANCE SHEET INGESTA vie
V8] IVE? V83 IVe4 IV#3 OQral Gastiic Time Cormection Save Clear Exit [Fi=Help
DATEL" Sat07/138) (mmiddyy) BED#3J NAME: DOE Jane 1D ¥ 9509634 *
V8] RightLeg DSW V82 Chest F
TIME | Solution Comment|Lev Sol [Actin Des'd In | Solution Comment|Lev Sol | A
T01 [o608 [O&ccihr 720 00 00 Ticclhr 109
02 07.00 660 6.0 60 99 [
03 08 00 600 120 120 82
04 09 00 540 100 180 69
05 1000 40 240 240 5%
06
o e
o8 | o
09
10
n
12
13
14
R .
* +
Level of IV Solution
8RR

Ganp Mo [16 J

.
TN

SN | | B8 g
v Qer
ous onZpan2 EXEH 05 : W Skt
1,

Figure 4.7: Sample Fluid Balance Module Data Entry Session (Part B)

83

4. Implementation, Results, and Future Extensions

- v -
I VRl IVE2 V83 (Va4 IVeS OralGastiic Time Comection Save Clear Exit FI'Hcl.[T
DATE: Sat07/1a81 (mméddyy) BED#3 NAML' DOL. Jane 1079505034 3
V81 Righileg DSW W82 Chest]
TIME | Solution Comment[Lev Sol [Actin _ |Des'd ﬂ Solution Comment[L ev Sol | Al
[]] 0600 |O6cc/hr 20 00 00 Ticetw 109
02 0700 660 |60 |60 o 98
03 08.00 600 120 120 82
04 0Y 00 %40 190 180 69
05 1000 480 740 240 CE)
06 1100 %0 360
07 177
- - -
09
10
1
12
13 R
14 T
*
- d
8as
Group Man
s o BN
~ . WAL
oos os2pon2 EXE) 0572 Window Deviiap Manager FLUND GALANCE SHEET FLUID BALANLE SHEE |
EXCRETA MAIN MENU
|
«
- L l‘ 1 A o
IVE2 V8] Iv#d IVE§ Oral Gastric Time Comection Save Clear Exit F1=Holp
Level (mmiddlyy) BED®# 3 NAML: DOE. Jane D # 950984 v
Comment Wil Right Leg DSW W82 Chest f
Member * [Sohution Comment]Lev Sol [Actin _[Das'd W | Soltion Comment[tev Sol | A
'—_‘M"‘::' wiske |08 CCTPT 720 {00 90 iveerbe ~ "lio9
o6 0 60 60 99 !
. Y 600 120 120 62
04 0900 540 180 160 69
05 10 00 4060 240 240 55
06 1100 360 30
07 B
13 oa T N
{ 09
i 10
5 il
R 12 o L
(K]
4 T
&
- . ‘N +
Growp Men
v Caaiad 'w
S ‘ S PR
00s c12pon2 EXE) VSR Window Deshtag Mansge

SUND BALANCE SHEET FLUKD BALANCE SHEET
OTRETA MAIN MENU

Figure 4.8: Sample Fluid Balance Module Data Entry Session (Part C)

4

evess
ol
Guup Mas

oos

AR

Ginugr Waet

.
S

tas

4. Implementation, Results, and Future Extensions

== FLUID BALANCE SHEET INGESTA v -
(va] ive2 1v8) IVE4 IVES Oral Gastiic Time Comection Save Clear Exit [Fi=Help
DATL Sa 0711391 (mmiddlyy) BLD# 3 NAME' DOE, Jane 1D #9509034 +
Va8l Rightleg DSW V§2 Chest F
o “A TIME | Sokition Camment[lev Sal [Actin [Des'd in | Soiution Comment[Lev Sol TA
01 " 10600 |06cclihr 720 00 00 Ticcitr 109
0z o708 660 6.0 60 98 [
03 [ea00 600 120 120 LK
04 | 0900 540 180 180 69
05 10 00 469 240 240 59
06 1100 360 360
07

Desired Intake of IV sokution

fao |
[_95& [Correction]

o122 EXEI osr

W’l VI tve) ived IVe§ Oral Gasic Time Cormrection Save Clear Exit
DATE' Sat07/t391 (mmiddyy) BED &3 NAME' DOE, Jane 1D #'9509834
tvel Right Leg DSw V82 Chest F
TIME | Solution Comment|Lev Sol |Act.in Des'd In | Solution Conunent{Lev Soi {A

01 06 00 O6cclhr 2e (1] o0 Tleclw 109

02 0700 660 60 60 98 [

03 06 00 600 120 120 a2

04 04 00 540 190 180 69

05 10 60 M0 240 240 59

06 | 1100 360 360 360

07
) e .

[2]

10

1

12

13

14

he
- +d
s, ,ﬁ& R
B Y
s DOZEXE US2 Window DestopManager FLUIO QALANCE SHEET FLUID RALANCE SHEET
EXCRETA MAN MENU

Figure 4.9: Sample Fluid Balance Module Data Entry Session (Part D)

85

Chapter 5 Conclusion

In this thesis manuscript, the development of a speech interface for bedside data
entry inan intensive care unit was described. A literature survey of medical systems
and speech systems was presented. Following an overview of the patient data
management system (PDMS), for which the speech interface was implemented,
its implementation was elaborated. Test results were presented to evaluate the
interface and some suggested improvements were also discussed. An evaluation
of the implementation described here by nursing and medical personnel in the
pediatric intensive care unit of the Montreal Children’s Hospital will be undertaken
as soon as the system can be installed at the hospital. These tests will reveal the

robustness of the system in the presence of noise such as alarms and crying,.

86

References

[Abrami and Johnson, 1990] P. F. Abrami and |. E. Johnson, eds., Bringing Com-
puters to the Hospital Bedside: an Emerging Technology. New York, NY: Springer
Publishing Company, 1990.

[Aguglia et al., 1990] F. Aguglia, G. Bertazzoni, and A. Scillone, “Computers in
emergency medicine,” Medicina (Firenze), vol. 10, no. 1, pp. 53-8, 1990.

[Alesch et al., 1991] E. Alesch, E. Donauer, and G. Heiren, “The use of personal
computers for the collection, storage and analysis of data from neurosurgical
intensive care monitoring,” Anaesthesist, vol. 40, no. 1, pp. 52-6, 1991.

[Bergeron and Locke, 1990] B. Bergeron and S. Locke, “Speech recognition as a
user interface.,” MD Comput, vol. 7, no. 5, pp. 329-34, 1990.

[Bitzer and Domer, 19891 B.Bitzer and R. Domer, “Speech-interface for automation
and power control systems,” in Proceedings of the 24th University Power Engineers
Conference, (Belfast, UK), pp. 373-376, September 1989.

[Brennan et al., 1991] P. Brennan, G. Deffner, D. Lawrence, M. Marics, E. Schwab,
and M. Franzke, “Should we or shouldn’t we use spoken commands in voice
interfaces?,” in Proceedings of Human Factors in Computing Systems (CHI'91), (New
Orleans, LA), pp. 369-372, ACM, April-May 1991.

[Brunner et al., 1990] H. Brunner, K. Wittenburg, M. Williams, Y. Sekine,
S. Dahlgren, and P. Washco, “A snapshot of natural language interfaces (panel),”
in Proceedings of Human Factors in Computing Systems (CHI’90), (Seattle, WA),
pp- 53-55, ACM, April 1990.

[Carnevale, 1986] E A. Carnevale, “Computer applications in nursing,” Axon,
vol. 8, no. 1, pp. 269-275, 1986.

[Clark, 1989] M. Clark, “A voice-controlled vocational robotic workstation for peo-
ple with physical disabilites,” Speech Technology, vol. 5, pp. 78-80, October-
November 1989.

[Cohen, 1990al B. Cohen, “Emerging technologies in the field of healthcare: en-
hancing the interface to the medical professional.,” Ann Acad Med Singapore,
vol. 19, no. 5, pp. 627-39, 1990.

[Cohen, 1990b] P. Cohen, “Voice entry in the lab [cytology],” Comput. Healthc.,
vol. 11, pp. 33-36, March 1990.

87

5. Conclusion

[Collet et al., 1989] C. Collet, N. Fumai, M. Petroni, S. Malowany, J. Panisset,
A. Malowany, F. Carnevale, R. Gottesman, and A. Rousseau, “A patient data
management system for an intensive care unit,” in Proceedings of the IEEE Pacific
Rim Conference on Communications, Computers, and Signal Processing, (Victoria,
B.C., Canada), pp. 594-597, june 1989.

[Covox, 1990al Covox Inc., Eugene, OR, Covox Voice Master Key I1, 2.0/ 2., April
1990.

[Covox, 1990b] Covox Inc., Eugene, OR, Speech File Building Utility, 1.1b ed., May
1990.

[Cupples and Beek, 1990] E.].Cupples and B. Beek, “Application of audio/speech
recognition for military applications,” in Speech Analysis and Synthesis and
Man-Machine Speech Communications for Air Operations, (frondheim, Norway),
pp. 8/1-8/10, AGARD, May 1990.

[Dalsgaard and Backgaard, 1990] P. Dalsgaard and A. Backgaard, “Recognition of
continuous speech using neural nets and expertsystems,” Speech Communication,
vol. 9, pp. 509-520, December 1990.

[Dasta, 1990] J. Dasta, “Computers in critical care: opportunities and challenges.,”
DICP, vol. 24, no. 11, pp. 1084-92, 1990.

[Diethrich, 1988] E. B. Diethrich, “Voice recognition and voice synthesis in the
cardiac intensive care unit,” Speech Technology, vol. 4, pp. 46-50, September-
October 1988.

[Edmonds, 1990} E. Edmonds, “Human-computer interface evaluation: not user-
friendliness but design for operation.,” Med Inf (Lond), vol. 15, no. 3, pp. 253-60,
1990.

[EMT, 19881 EMTEX, Tempe, Arizona, The EMTEX System 2000: Cost Savings and
Benefit Realization, 1988.

[Feldman and Stevens, 19901 C. Feldman and D. Stevens, “Pilot study on the feasi-
bility of a computerized speech recognition charting system.,” Community Dent
Oral Epidemiol, vol. 18, no. 4, pp. 213-5, 1990.

[Fellbaum, 1987] K. Fellbaum, “A blind communication system based on speech
recognition and speech synthesis,” in Proceedings of the Internaiisnal Conference on
Digital Signal Processing, (Florence, Italy), pp. 679-686, North-Holland, Septem-
ber 1987.

[Ferguson et al., 1989] J. C. Ferguson, C. J. Martin, C. Rayner, and J. R. Mallard, “A
computer based system for monitoring heat and fluid balance in severely bt..:x\ed
patients,” in Proceedings of the Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, (Seattle, WA), pp. 1982-1983, November
1989.

88

5. Conclusion

[Foster and Bryson, 1989] J. Foster and S. Bryson, “Voice recognition for the IBM
7535 robot,” in Proceedings of Energy and Information Technologies in the Southeast
(SOUTHEASTCON), (Columbia, SC), pp. 759-764, IEEE, April 1989.

[Gibbs, 1989] R. Gibbs, “The present and future medicolegal importance of record
keeping in anesthesia and intensive care: the case for automation [see com-
ments],”] Clin Monit, vol. 5, no. 4, pp. 251-5, 1989.

[Goldberg et al., 1989] M. Goldberg, J. Robertson, G. Belanger, N. Georganas,
J. Mastronardi, Cohn-Sfetcu$S, R. Dillon, and J. Tombaugh, “A multimedia med-
ical communication link between a radiology department and an emergency
department.,” | Digit Imaging, vol. 2, no. 2, pp. 92-8, 1989.

[Guerrouad, 1989] A. Guerrouad, “Voice control in the surgery room,” in Proceed-
ings of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, (Seattle, WA), pp. 904-905 November 1989.

[Hammond and Stead, 1988] W. E. Hammond and W. W. Stead, “Bedside termi-
nals: Anoverview,” M.D. Computing, vol. 5, no. 1, pp. 5-6, 1988.

[Hammond et al., 1991al] J. Hammond, H. Johnson, R. Varas, and C. Ward, “A qual-
itative comparison of paper flowsheets vs a computer-based clinical information
system.,” Chest, vol. 99, no. 1, pp. 155-7, 1991.

[Harnmond et al., 1991b] J. Hammond, H. Johnson, C. Ward, R. Varas, R. Dembicki,
and E. Marcial, “Clinical evaluation of a computer-based patient monitoring and
data management system.,” Heart Lung, vol. 20, no. 2, pp. 119-24, 1991

[Harrison et al., 1986]]. A. Harrison, G. R. Hobbs, J. R. Howes, and G. R. Wright,
“Machine supported dialogue, used in training air traffic controllers,” in Pro-
ceedings of the International Conference on Speech Input/Output: Techmques and
Applications, (London, England), pp. 110-113, IEE, 1986.

[Helm et al., 1991] R. Helm, K. Marriott, and M. Odersky, “Building visual lan-
guage parsers,” in Proceedings of Human Factors in Computing Systems (CHI’91),
(New Orleans, LA), pp. 105-112, ACM, April-May 1991.

[Hewlett-Packard, 1987] Hewlett-Packard, “When seconds count ..physicians
count on data management for critical care decisions,” Advances in Medicine,
vol. 8, no. 4, 1987.

[Hickey et al., 1990] N. Hickey, J. Robertson, and M. Coristine, “Integrated radio-
logic information system: a radiology multimedia communication system.,” |
Thorac Imaging, vol. 5, no. 1, pp. 77-84, 1990.

[Holtermann et al., 1990] W. Holtermann, M. Knoch, H. Pfeiffer, E. Muller, and
H. Lennartz, “Marburger concept for computer-aided acquisition, processing
and documentation of patient data in the intensive care unit.,” Int | Clin Monit
Comput, vol. 7, no. 1, pp. 7-13, 1990.

89

Py

5. Conclusion

[Ikehira et al., 1990] H.Ikehira, T. Matsumoto, T. linuma, T. Yamasaki, K. Fukuhisa,
H. Tsunemoto, F. Shishido, Y. Kubo, K. Inamura, and Y. Tateno, “Analysis of bone
scintigram data using speech recognition reporting system-data analysis with
speech recognition system.,” Radiat Med, vol. 8, no. 1, pp. 8-12, 1990.

[James et al., 1990] d. James, JC, N. Gantenberg, and G. Hageman, “A sample com-
puter system for physiological data acquisition and analysis.,” Comput Biol Med,
vol. 20, no. 6, pp. 407-13, 1990.

[Joseph, 1989] R. Joseph, “Large vocabulary voice-to-text systems for medical re-
porting,” Speech Technology, vol. 4, pp. 49-51, April-May 1989.

[Kari et al., 19901 A. Kari, E. Ruokonen, and J. Takala, “Comparison of acceptance
and performance of automated and manual data management systems in inten-
sive care.,” Int | Clin Monit Comput, vol. 7, no. 3, pp. 157-62, 1990.

[Kernighan and Ritchie, 1988] B. W. Kernighan and D. M. Ritchie, The C Program-
ming Language. Englewood Cliffs, NJ: Prentice Hall, 1988.

[King and Smith, 1990] P. King and B. Smith, “An IBM AT based monitoring sys-
tem with touchscreen input.,” Int | Clin Monit Comput, vol. 7, no. 2, pp. 107-11,
1990.

[Kitano, 1991; H. Kitano, “¢dm-dialog: An experimentia! speech-to-speech dialog
translation system,” IEEE Computer, vol. 24, pp. 36-50, June 1991.

[Kriewall and Long, 1991] T.]. Kriewall and J. M. Long, “Computer-based medical
syst 1s,” IEEE Computer Magazine, vol. 24, pp. 9-12, March 1991.

[Kuhn et al., 1990] K. Kuhn, W. Doster, D. Roesner, P. Kottmann, W. Swobodnik,
and H. Ditschuneit, “An integrated medical workstation with a multimodal
user interface, knowledge-based user support, and multimedia documents,”
in Proceedings of the Thrid Annual IEEE Symposium on Computer-Based Medical
Systems, (Chapel Hill, NC), pp. 469476, June 1990.

[Kurogi, 19911 S. Kurogi, “Speech recognition by an artificial neural network using
findings on the afferent auditory system.,” Biol Cybern, vol. 64, no. 3, pp. 243-9,
1991.

[Landau et al., 1989] J. A. Landau, K. H. Norwich, and S. J. Evans, “Automatic
speech recognition - can it improve the man-machine interface in medical expert
systems?,” Int. |. Bio-Med. Comput., vol. 24, pp. 111-117, July 1989.

[Laporte, 1989] C. Y. Laporte, “A voice-interactive evaluation system for command
functions in military aircraft,” Microcompuier Applications, vol. 8, no. 1, pp. 20-26,
1989.

[Large, 1990] W. Large, “Calculating haemodynamic parameters and interpreting
arterial blood gas samples using a pocket computer.,” Intensive Care Nurse, vol. 6,
no. 4, pp. 196-9, 1990.

90

5 Conclusion

[Laurel et al., 1990] B. Laurel, T. Qren, and A. Don, “Issues in multimedia interface
design: Media integration and interface agents,” in Proceedings of Human Factors
in Computing Systems (CHI'90), (Seattle, WA), pp. 133-139, ACM, April 1990.

[Liang and Narayanan, 1988] M. D. Liang and K Narayanan, “Voice-controlled
microscope facilitates intricate microsurgical procedures,” Speech Technology,
vol. 4, pp. 52-54, September-October 1988.

[Martin, 1989] G. L. Martin, “The utility of speech input in user-computer inter-
faces,” International Journal of Man-Machine Studies, vol. 30, pp. 355-375, 1989.

[Matrouf et al., 1988] K. Matrouf, F. Neel, and J. Mariani, “Task-oriented dialogue
system: an application to aeronautics,” J. Acoust., vol. 2, pp. 85-93, March 1988.

[Matrouf et al., 1990] K. Matrouf, J. L. Gauvain, F. Neel, and J. Mariani, “An oral
task-oriented dialogue for air-traffic controller training,” in Proceedings of SPIL,

(Orlando, FL), pp. 826~837, International Society of Optical Engineers, April
1990.

[Matumoto et al., 1987] T. Matumoto, T. A. linuma, Y. Tateno, H. Ikehira, T. Ya-
masaki, K. Fukuhisa, H. Tsunemoto, F. Shishido, Y. Kubo, and K. Inamura, “Au-
tomatic radiologic reporting system using speech recognition,” Medical Progress
Through Technology, vol. 12, pp. 243257, 1987.

[McIntyre and Nelson, 1989] J. W. R. McIntyre and T. M. Nelson, “Application of
automated human voice delivery to warning devices in an intensive care unit:
a laboratory study,” International Journal of Clinical Monitoring and Computing,
vol. 6, pp. 255-262, December 1989.

[Microsoft, 1990] Microsoft Corporation, Redmond, WA, Microsoft C Reference,
6.0 ed., 1990.

[Moore and Moore, 1986] C. A. Moore and R. D. Moore, “Pilot-aircraft interface:
the voice channel,” in Proceedings of the International SPEECH TECH '87: Voice

Input/Output Applications Show and Conference, (London, England), pp. 174-178,
May 1986.

[Moser et al., 1990] L. Moser, W. Schramm, and G. Pauser, “PC-based computer

monitoring in an intensive care unit,” Anaesthesist, vol. 39, no. 10, pp. 5614,
1990.

[Murchie and Kenny, 1988] C. J. Murchie and G. N. C. Kenny, “A comparison of
keyboard, light pen and voice recognition as methods of data input,” International
Journal of Clinical Monitoring and Computing, vol. 5, no. 4, pp. 243246, 1988.

[Nolan-Avila and Shabot, 1987] L. Nolan-Avila and M. Shabot, “Life without com-
puters in the ICU,” Critical Care Nurse, vol. 7, no. 3, pp. 80-83, 1987.

91

5. Conclusion

[Nonogaki and Ueda, 1991] H. Nonogaki and H. Ueda, “Friend21 project: A con-
truction of 21st century human interface,” in Proceedings of Human Factors in
Computing Systems (CHI'91), (New Orleans, LA), pp. 407-414, ACM, April-May
1991.

[O'Malley, 19901 M J. O'Malley, “Text-to-speech conversion technology,” IEEE
Computer, vol. 23, pp. 17-23, April 1990.

[O’Shaughnessy, 1987] D. O’Shaughnessy, Speech Communicaticwn: Human and Ma-
chine. Reading, Massachusetts: Addison-Wesley Publishing Company, 1987.

[Perry and Adam, 1991] T. S. Perry and J. A. Adam, “Improving the world’s most
advanced system,” IEEE Spectrum, vol. 28, pp. 22-36, February 1991.

[Petroni et al., 1991] M. Petroni, C. Collet, N. Fumai, K. Roger, F. Gtoleau, C. Yien,
A.Malowany, F. Carnevale, and R. Gottesman, “An automatic spec¢.ch recognition
system for bedside data entry in an intensive care unit,” in Procvedings of t!.
Fourth Annual IEEE Symposium on Computer-Based Medical Systems, (Baltimore,
MD), pp. 358-365, May 1991.

[Petzold, 1989] C. Petzold, Programming the OS/2 Presentation Manager. Redmond,
WA: Microsoft Press, 1989.

[Pittman, 1991] J. A. Pittman, “Recognizing handwritten text,” in Proceedings of
Human Factors in Computing Systems (CHI'91), (New Orleans, LA), pp. 271-275,
ACM, April-May 1991.

[Quedens and Beacons, 1990] G. Quedens and P. S. Beacons, Developing Presenta-
tion Manager Applications: an Introduction. Glenview, Illinois: Scott, Foresman,
and Company, 1990.

[Rabiner, 1989] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications,” Proceedings of the IEEE, vol. 77, pp. 257-286, February 1989.

[Reddy, 1976] D. R. Reddy, “Speech recognition by machine: a review,” Proceedings
of the IEEE, vol. 56, pp. 501531, 1976.

[Robbins et al., 19871 A. H. Robbins, D. M. Horowitz, M. K. Srinivasan, M. E. Vin-
cent, K. Shaffer, and N. L. Sadowsky, “Speech-controlled generation of radiology
reports,” Radiology, vol. 164, pp. 569-573, August 1987.

[Roukos, 1989] S. Roukos, “Integrating speech and natural language,” in Proceed-
ings of a Workshop on Speech and Natural Language, (Philadelphia, Pa), pp. 21-23,
Morgan Kaufmann, February 1989.

[Salisbury and Chilcote, 1989] M. Salisbury and J. Chilcote, “Investigating voice
i/o for the airborne warning and control system (awacs),” Speech Technology,
vol. 5, pp. 50-55, October-November 1989.

92

5. Conclusion

[Salisbury et al., 1990] M. W. Salisbury, J. H. Hendrikson, T. L. Lammers, C. Fu, and

S. A. Moody, “Talk and draw: Bundling speech and graphics,” IEEE Computer,
vol. 23, pp. 59-65, August 1990.

[Schneiderman, 1987] B. Schneiderman, Designing the User Interface: Strategues for
Effective Human-Computer Interaction. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1987.

[Schwid et al.,, 1990] H. Schwid, C. Olson, P. Wright, and P Freund,
“Microcomputer-based data acquisition system for chnical research.,” | Clin
Monit, vol. 6, no. 2, pp. 141-6, 1990.

[Shozo, 1990) A.Shozo, “Speech input for meatinspection and pathological coding,
used thereby,” Joho Kari, vol. 33, pp. 619-626, October 1990.

[Smith et al., 1990} M. F. Smith, R.]. Jaszczak, C. E. Floyd Jr, K. L. Greer, and R L.
Coleman, “Interactive visualization of three-dimensional spect cardiac images,”
in Proceedings of the Thrid Annual IEEE Symposium on Computer-Based Medical
Systems, (Chapel Hill, NC), pp. 213-219, June 1990.

[Soligen and Shabot, 1988} S. Soligen and M. M. Shabot, “A 32 key keyboard for
the hp pdms,” Int | Clin Monit Comput, vol. 5, no. 1, 1988.

[Southerton, 1989] A. Southerton, Advanced OS/2 Presentation Manager Program-
ming: The Graphics Programming Interface. Reading, Massachusetts: Addison-
Wesley Publishing Company, 1989.

[Stickland Jr., 1991] T. J. Stickland Jr.,, “Development of an information system to
assist management of critically ill patients,” in Proceedings of the Fourth Annual

IEEE Symposium on Computer-Based Medical Systems, (Baltimore, MD), pp. 70-77,
May 1991.

[Tachakra et al., 19901 S. Tachakra, D. Potts, and A. Idowu, “Evaluation of a com-
puterized system for medical records in an accident and emergency depart-
ment.,” Int | Clin Monit Comput, vol. 7, no. 3, pp. 187-91, 1990

[Verbex, 1990] VERBEX Voice Systems, Edison, NJ, VERBEX Conversational Voice
Input/Output Systert Grammar Development Manual, 2.00 ed., May 1990.

[Zhang et al., 1990]]. Zhang, M. Levesque, C. Wilson, R. Harper, J. Engel, |,
R. Lufkin, and E. Behnke, “Multimodality imaging of brain structures for stereo-
tactic surgery.,” Radiology, vol. 175, no. 2, pp 43541, 1990.

93

Appendix A Grammar Definition File for the Fluid Balance
Module

This appendix contains the grammar file for the Fluid Balance module’s Main and
Ingesta windows in Verbex Standard Notation (VSN) [Verbex, 1990]. The gram-
mar file contains many grammar definitions, or sub-vocabularies, denoted by
the 'grammar-definition-name=. A grammar definition begins with a #REC
(RECognition) section which consists of two subsections, a #G (Grammar) and a
TR (TRanslation) section. The #Grammar section contain the words or phrases
that the recognizer should listen for. These are the words and phrases that will be
trained by the user. The grammar section can also contain a structure, which begins
with a period “.”, which is a way of representing a list of words with a name in

order to keep the grammar compact.

The #TR (translation) section contains the information that will be sent to the
host computer for each word recognized. If a word appearing in the grammar
definition does not appear in the translation section, the recognizer will send the

words to the host computer, exactly as they appear in the #G (grammar) section.

The last section in the grammar definition is the #N (next) section. If more
than one grammar definition is to be used in a given application, the #N (next)
section allows the recognizer to switch to other grammar definitions when certain
words or phrases are recognized. Multiple grammar definitions are useful when
the grammar can be logically devided and when common words require multiple
output translations. For the Fluid Balance module grammar, both are true. Since the
module has a “menu tree”, as previously mnetioned, it is advantageous to divide
the grammar definitions to follow the syntactic structure of the menu tree. When
certain words are recognized, the recognizer switches to other grammar definitions.

This can be considered as being the “recognizer equivalent” of displaying sub-

94

A. Grammar Definition File for the Fluid Balance Module
menus.

Since some Fluid Balance module menus have common items in their sub-
menus but which must have unique identifiers, using multiple grammars allows
the same words to have different output translations depending from which sub-

menu in the tree it was called from.

Note that the grammar file only includes the grammar for the Main window

and for the Ingesta window.

95

Jul 18 1991 10 16 39

Jul 18 1991 10:16 39

fbgram2.grm

Page 2

4
exit «.3C~
g.iz ~.9C"
Tain "399-
"™
ivi > jvmen.l
7 WONE iva2 > tvmenl2
iv3i > ivnen.3
$vocab=FBS_GRM i_v 4 > ivmenué
‘malinmer .= i vs > ivmen.d
$REC oral_gastric > ogmenu
1G correction > cormenu
ingesta save > savemenu
excreta clear > clearmeru
ecne time > t imemena
settings main > mainmera
help
;Grammar Definition for the IV menus...
$TR
ingesta 1= 'ivmenul=
excreta 2" $REC
echo 4~ #G
settings -7 level
help g™ corment
location
name
N actual_intake
ingesta > {ngestamenu desired_intake
excreta > mainmenu escape
echo > echomenu
settings > settmenu 4TR
level 111"
sGrammar definition for the Ingesta Sheet (ingestamenuj: comment "l12*
'ingestamenu= location "113-
§REC name “114*
G actual_intake "115"
i_v .DIGIV desired intake “116"
oral gastric escape “esc”
time
correction N
save level > levelmenu
clear comment. > commentmenu
help location > locationmenul
exit name > namemenu
quit actual_intake > levelmenu
main desired_intake > levelmenu
escape > ingestamenu
.DIGIV =
1 "{vmenu2=
2 $REC
3 G
4 level
) comment
location
$TR name
i v H actual_intake
oral_gastric "160* desired_intake
time ~180" escape
correction 170"
save “220" #TR
clear 210" level =121*
1 110" comment 122~
2 =120" location =123~

96

Jul 18 1991 10:16.39

fbgram2.grm

Page 3

Jul 18 1991 10.16 39

fbgram2.grm

Page 4

na~e 124" ~a-e > ra~e~er.
actual i~take “125+ act. Lrtaxe > .eve.men.
ges.red .ntaxe “126" ces.re. ."lake > .eve."e" .
escape "esc" escane > .~gestamer.

EA ‘ivrerad=
tevel > levelmeny #5528
corment > comrentrent 15
iocation > locatior=er.2 .eve.
nare > rameren. comrent
act.al intaxe > leveimeru .ocatl.or
desired_intaxe > levelment na~e
escape > ingestarer. actua. ."laxe

agesirec ."take
*ivmenul= eacaye
#REC

1] TR
ljevel leve. =i51"
comment co~rert "182"
location .ccat.cr "o
name ~are "154"
actual irtake act.a. lrtaxe 155~
desired_intake ges.red .rtaxe “l156"
escape escape “esc”

$TR "

.evel 131~ .eve. > levelmen.
comrenrt "132~ comrent > comrentrery
.ocation “i33~ .ccaticr > iocatlonver.S
rare “134~ ~a—e > raveTenw.
actua. irtaxe “135" actua. _.-taxe > levelmenu
desired i{ntaxe 136" ces:red .-take > levelmery
escape ~esc* escape > inrgestare~.

”"
level > levelime~. ;Grammar Defi-li.o= for Leve. Cila.og Boxes {.eve.vern.)
comrent > comrentmer .
ccazlor > .ocatior~~er.? .eve.me" =
nave > rarerer. #::zC
act.a. ivtaxke > levelTer. [29
desi:eE~.":axe > .eve.rer. .eve. .s CZIGIT 3,5 e-ter
escape > i~rgestarer. escarge

se.ete
{vrenlé- o«
$REC zorrect

[Is
.eve. [Ity
comrent
.ocaticn .e.e. .s
Tave e-ter
act.a. irtaxe escape resc*®
ces.tel l-~taxe ze.evs “ze.”
escare

[

[escaLe ’ .Tjestave" .
.eve, TLeL" =13 . .T3eslaver .
comrent -_42n
.ocatlom I4
~a~e 44 L.zttt _mrest a2 3 3
act.a._.vtace 43~
ces.red_.~taxe LA
escap “esc”

"

.eve. > .e.e._"e- T
somrent ~ comrenTTen L
Lorat.oT > _crat.iomme- L4 te

/6

Jul 18 1991 10 16 39

fbgram2.grm

Page 5

Jul 18 1991 10 16 39

fbgram2.grm

Page 6

o rres
correct .ot es-ace
eszape
$T5
7= --33‘-
5.2 "< ~1333~
zfp e ~.332~
ce.ete "z =334~
escape “e *l333~
“esc”
"
c« > .TmgestaTer. N
escape > .~gesta~e~_ > .~gesta~e-~.
;Gra~rar Defi~itlor for Locaiic~ S.pmer.s i~ IV1 - IVE (locatic-~en.) ‘.ocation—enu4-
$REC
t.ocatio~~enul= X<t
$REC rigrtar~
4G .efrar=
rightarm right.eg
lefrarm .efr.eg
rigntlieg chest
iefrleg escagpe
chest
escape #TR
rightarm 1431~
§TR lefrarm “1433~
rightarm 1131~ righttleg “1432~
lefrtarm =1133" leftleg =1434"
rightleg 1132~ chest ~1435"
leftleg *1134* escape “esc”
chest 1135
escape “esc” [
> ingestamenu
(A 'locationmenub=
> ingestamenu #REC
4G
'locationmenu2= rigrrarrm
#REC leftarm
G rightleg
rightarm leftleg
leftarm chest
rightleg escape
leftleg
chest #$TR
escape rightarm *1531"
lefrar~ 1533~
#TR rightleg 1532~
rightarm "1231* iefrleg 1534~
leftarm "1233" chest “1535"
rightleg 1232~ escape “esc*”
leftleg *1234"
chest "1235" [AS
escape “esc” > ingestamenu
N
> ingestamenu ;Gramrar Deflnitio~ for IV Name Dialog Box (nameme-~u)
'locationmenul= ramemenu=
$REC #$REC
4G §G
rightarm Actiprochen
leftarm ASA
rightleg ART
leftleg LA

86

Jul 18 1991 10:16:39 fbgram2.grm

Page 7

Jul 18 1991 10.16 39

fbgram2.grm

Page 8

DSW
ok
delete
escape
#TR
Actipropher "ACT"
delete ‘del”
escape “esc"
N
ok > ingestamenu
escape > ingestamenu

;Grammar Definition for Ogal Gastric on Ingesta Menu Bar {(ogmenu)

'ogmenu=
#REC

type
level
amount
escape

$TR
type "161*
level 162"
amount 163"
escape “esc”

(4]

Typemeru
levelmenu
levelmreny
irgestamena

type
level
amount
escape

VvVvvy

;Grammar Defir~ition for Type Sub-Ite~ cf Oral Gastric (typerenu}

'typemreru=
#$REC
[26

F.as-a
PRGC
TFP
PRBG
ok
escarge
ge.ete

c.asma c.as"
escare
ce_eze “ce_"

[AN
."jesTa—e"_
irgestare~.

:Craw—ar Tet.~tt. o~ for Torrect.om Ve-. Ite~ of Imgesta Ve-, 3ar

TiTe
. v ,DIGIV
escape

$TR
i v [N}
tIre 180"
1 110"
2 120"
3 "130*
4 “140%
S 150"
escape “esc"”

N
i vl > {vmenul
1v 2 > {vmenu2
1Tv 3 > ivmenu3
1v o4 > ivmenud
i"v 5 > ivmenu’
time > timemenu
escape > ingestamenu

sGrammar aefinitien

'savemenu=
$REC
1G
yes
rc
[
>

;Grammar cefir.ticr

‘clearrena=
$§REC
3G
yes
ne
"
>
c.earsaverer.=
$REC
i
cr
ca~c
L2
>

for Save DPialog Box (savemenu)

.ngestamenu

for Ciear Dialeg Box (clearmenu)

Cc.earsaverer.

e.

.~gesta~e~.

T

£y

Jul 18 1991 10:16:39

fbgram2.grm

Jul 18 1991 10:16:39

Page 10

WM I WA O s

ret
time_is
hours
minutes
enter
escape
delete

N

escape
ok

;Grammar Definition for

'echomeau=
$REC

1G
on
off
escape

TR
on
of f
escape

N

>
iGrammar Definition for

!settmenu=
#REC
iG
bed
id
name
escape

$TR
bed
id
name
escape

N
escape
bed
name

“esc”
del®
> ingestamenu
> ingestamenu

Echo Sub-Menu (echomenu)

ngQn
w41
"esc™

mainmenu

Settings Menu (settings)

Ly S
Ly P
Ly kT

“esc™

> mainmenu
> bedmenu
> pnamemenu

ceameru=
$REC
$c

-
)
&

N

!idmenu=
$REC
4G

$TR

N

! pnamemenu=
$#REC
#G

#TR

N

o

48

rumber
oK

escape
gelete

BN
ramber
enter
escape
delete

ok
escape

fbgram2.grm

> lare-

.DIGITRI,2 e-ter

i
[

“esc®
“del™
> malnmenu
> mainmenu

id .DIGITE1,3 enter
ok

escape
delete

1l

id
enter
delete
escape

ok
escape

jones
smith
doe

ok
escape
delete

jones
smith
doe
escape
delete

ok
escape

1

tl

“del®

“esc"

> mainmenu
> mainmenu
“JONES, Barbara"

"SMITH, Jchn®
“DOE, Jane"

“"esc"
lldelﬂ
> mainmenu
> malnmenu

00t

