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ABSTRACT 

In this thesis we apply the Interfacial Wave Theory of dendritic crystal growth 

to the case in which the thermal diffusivity constant and the specifie heat of 

the liquid c;tate eUt dlfferent from those of the solid state. The problem is for

mulated as a linear eigenvalue problem. A quantum condition for the eigenva

lues is derived and a discrete set of possible solutions is found. The selection 

problem is solved using the global neutral stable state analysis proposed by the 

Interfacial Wave Theory. 
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RESUME 

Dans crtte th~se. nous appliquon~ la th~orie Il Interfacial Wave" de l'agrandisse-

ment dt'o; crJsta1\X IIdendretic" illl cas où la constante "thermal diffusivitj Il et la 

chaleur spécIfique de l'état liquldf' sont différent de celles de l'état solide, On 

formulf' le problème comme 1\n prohfème "linear eigenvalue", On deduit une 

condition q lIdntlque, pt on trouve un ensembl~ discret des :-Jolutions possibles. 

On ré~ol1t k problelllt' de la :·Jlection, en employant l'analyse "g1obal neutral 

.,table stclte". qui est proposée par la théorie Il Interfacial Wave", 
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Chapter 1 

HISTORICAL BACKGROUND AND THE 

MULLINS-SEKERKA INST ABILITY 

1.1 Historical Background 

Dendritic crystal growth from an undercooled melt has been one of the funda-

mental topies in the area of solidification and condensed-matter sCIence. This 

phenomenon is eharacterized by the propagation of a steady tlp and the persis-

tent emission of sidebranches. First, this phenomenon was understood as two 

separate problems: the steady growth problem III the smooth tip region, and 

the unsteady growth problem in the dendrite-stem region. The first problem 

was the reason fûr studying the steady state of needle crystal growth. One 

hoped that the growth 's eharacteristics in dendrite's tip reglon cou Id be 

described through the steady solutions of needle crystal growth. The second 

problem was the reason for studying the dynamics of side-branching pattern 

formation. 

In 1947, Ivansov studied the steady dendrite growth problem. He round 

that, in the absence of surface tension, the system allows an infimte continuous 

family of needle-like crystal solutions. These solutIons exist for any glven under-

cooling and have a paraboloidal Illterface shape. However, Ivansov's solution 

does not fully solve the problem of dendr;'e growth III the tlp region. For 

example, his solution is unable to determine the tip velocity of dendritic 

growth. 
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The experiments do ne by M. E. Glicksman and R.J. Schaefer in 1967 -

1968, show that the tip ve10city and the radius of curvature are a reproduclble 

tunction of the meit-undercoohng. 1 These expenrnents ralsed a gr'~at interest in 

the drtt'rmin,üion of the growth spef'd of the needle tlp. 

In !I)7·1. Nash and Glicksrnan proposed the rnaxiPlum velocity principle.2 

Tl1f'y found t hat. fOI ilny glVen IIndercoohng, wlth tht' mclusion of surface ten-

sIon. the growth rate of the dendrite has a maximum valu·;:,. Nash anJ Ghcks-

man proposed that a reahstll steady state of dendrite growt.h mu::,t splect. t.he 

maximum \ alue for its growth rate. Unfortunatcly sorne experiments donc by 

Ghcksrnan and Sch.wfer laler on showed t.hat the expellmental data deviate 

from the maxImum vclouty by a factor of about 7.34 

Another contributlOll made by Na::.h and Glicksman was a complett" mathe

matical formulatlOlI of the problem. A non:m~ar integro-dlfferential equalion for 

the interface shape was tntroduced. In order to solve the problem, sorne 

boundary condItions besldes the local thermodynamlc equIlibnum .tnd the heat 

balance condItion were added. The flrst boundary conditIOn was the tlp '3mooth-

ness conditIon. The :::.econd one was the far field condition They suggested that 

the effects of surface tensIon <ire negligible \fi the fal field, and requlred the 

solution to approê.che Ivansov's steady solution III the far field. This far field 

condition is called the Nash·Glicksman conultion.5 

2 

3 

M.E. Glicksrnan & R.J. Schaefer, J. Cryst. Growth 1:297 (1967), 2:239 
( 1968) 

G.E. Nash & ;v1.E. Glicksman. Acta Metal!., 22, pp. 1283 (19H) 

M.E. Glicksrnan, R.1. Schaefer, & J.D. Ayers, Phli. Mag .. 32, p. ï25 (1975) 

M.E. Ghcksrnan, R .. J. Schacfer. & .J D Ayeru, Metal!. Trans., A7, p. 1747 
( 1976) 

J.,J XII. Stlldws 111 :\pplwd ~lrlth. f\2ïl-Î<) (1990) 
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The Nash-Glicksrnan condition was subsequently applied to SOll1e studies of 

steady dendritic crystal growth. For example, it was applied to the Microscop-

ics Solvability Condition Theory. For isotropie surface tension, it was found 

that if one apphes the Na~h-Ghcksman condition for the far field, then no 

smooth, steady-state solution eXlsts.6 

In 19ï8. Langer and Mullcr-I\rumbhaar propos(>d the Marginal Stabdity 

Hypothesis (MSm - It is based on a ruchmentary stability analysis. ~lSH says 

that the natural operating point for dendntic growth occurs when the tlp is 

marginally stable. MSH sets the radius of curvature at the tip cqual to the 

wave length of marginal stability for a planar IOtel face. 

Although the experimental ùata ohtamed by Glicksman et al. fit with 

MSH quite weil, sorne weaknesses exist in thls theory. First, in the stability 

analysis, MSH treats the dendnte's tip as a part of a planar interface. Second, 

it is unclear why this hypothesis wOl'ks. 

Finally, m the 1980's, Langer abandoned his MSH. With other authors, he 

proposed a completely different theory, the Mzcroscopzc Soll'abzhty Condztzon 

Theory. This theory applies the Nash-Glicksman far field condition and con-

cludes that:8 

1. For isotropie surface tension there IS no steady, smooth, needle-like 

6 

7 

Il 

solution. 

J.S. Langer, Lectures III the Theory of Pattern Formation, USMG NATO 
AS., ElseVIer Science Publisher (1986) 

J.S. Langer & Muller-Krumbhaar, Acta Metal!., 26, pp. 1681;1689;169i 
(19ï8 ) 

.l.S Langer. Lectules lB the Them)' of Patter'l Formation, USMG NATO 
AS, Else\wr SCIPnce Publlsher (1986) 
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2. The inclusion of a small amsotropy of :'lurface tension ll'ads to a sol\'-

ability condition. This non-tnvial solvabillty condition determines a dls-

crete set of possible :-.teady-state nerdlr-hke solnt' )n8. I1aving found 

these st.eady-stat.e solutlOlIS. the 1\Il'itf'éldy :-'OllltiOIl~ (Hf' obtamed by add-

mg a small PPI turbatIoIl 10 thp hasIC ~tf'ady-stat(' sol1\tJOn~. 

3. Only the !'>teéldy ~Ollltioll \VIth llIaXlIllllll1 growth v('locity 15 stable and 

it is tlllS wlllch IS ~ekcted 

Based on numencal ~OIUt.IOIlS, the above argument about stablhty was first 

made by David A Kf'hslrr and H('rbert LcvilH' in 1~)86.'1 Thelr flumerical met.h-

od rehes on the <tpproxunate Ilull1crH'al solution f(,1I0Wf'd hy the dlagonalizatlOn 

of the rcsultlng nllmencal opf'rator. They daim that their m{'thod IS generaliza-

ble for any formai mterfaClal pattern-forming system. 

A new theory ln th{' field of dendnte growth was proposed by .J.J .Xu 

(1988). This new theory is ba.sed on a global mstabiiity analysis of dl'ndntlc 

growth. The approach used in this theory is slrl11lar to that C.C Lin used in 

the 1970's in developmg the oenslty wavc theory for th(' spiral strtlcture of gal-

axies. lo 

To study the global IIlstability mechani:;;m of dendntic crystal growth, this 

i-
theory starts with a linear instability theory and looks for a global mode solu-

f tion for infimtesimal perturbations arounci the Ivansov :'lolution. ThiS theory is 

t 

t 
( 

known as the ln t-:.rfaczal Wavc Thc07'Y of Solulzflcalwn (IWT). 

The major rf'sults obtalIlcd in thl!'> theory ar(' the followmg' 

) 

i 1. Dendritlc growth IS IlItnnsICally a tlITIe-dependent phenomenol1. Thr 
1 
~ • 
t 

selected ~olutlOn Hl a reahstic pro( ('~:;;, at the later stage of gl'Owth, IS Ilot 

~ 
> a steady-~tate solution. hut a time-periodlc solution n<'ar the Ivansov soll1-
i 
r 
! 

9 ,. 
.i' lU C.C' Lili ,t \{ Y Lall. SIMA . .J Appl Math. , ~9. pp. :l!)2 (197!») 

~~--~ --------------
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tion. 

2. There is a critlcal point, which is shown to be a simple, complex turn

ing point in the system. This turning point plays a crucial role in den

drite growth. 

:3. Two dlscrete sets of global mode solutIOns are found: GTW-m\lde solu

tions and WEASR-rnode solutions. From an analysis of the total encrgy of 

the pertubated system, only the GTW-mode solutions are physlcally mean

ingful. 

4. At the later stage of growth, it is proposed that dendrite growth is in 

a Global :"Jeutral Stable State. This global neutral stable state condition 

is mathematlCally expressp.d by saying that the real part of the el:senvalue 

of the solutIon equals zero. Usmg thls condition a unique solution is 

selected. 

4. From the selected global mode solution, J.J. Xu then denves the tip 

growth velocity and the side-branching structure. Thus, according to this 

theory. the problem of the tip velocity selection cannot be separated From 

the problem of pattern formation. 

A review of this theory can be found in the second part of this thesis. 

1.2 The Mullins-Sekerka Instability 

Before we start to study the dendritic crystal growth problem, which IS closely 

related to the stability of a curved interface in solidification, It is propel to 

ex am me a simple case first: 

unidire<.tional solIdIficatIOn. 

the interfacial instabihty of a planar mterface m 

Mullins & Sekerka (1964) wele the first to perform 

a systematic analysls for thls case. This stability analysis is now ,alled The 

Mullzns-Sekel'ka Instabzbty (MSr) 
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In what follows we atternpt briefly to leVlCW the rcsults of MS1, hut the 

approach used bclow is ùiffcrcllt from that originally uscd by Mullins .V

Sek<,rka. 11 

W(' lt'plf'Sent t.his prohlem in teITm of two dimf'nsIOnal CartcsiilIl coordi-

nates (z.x). Let us consider a Ilat solidillc,ülon front advancing int() ,t 1>111(' 

llnd('l'cool{'d melt \Vith the velocity t1 in the negativC'-z dm'rtioll. 

Figure 1.1: 

x 

~ ., 
~ 
~ 

"'ct 
4----1'h 

0 ~ ., 
? 
V~ 

~ 
the /lqlllJ ~ttlte 

The Solidification Process 

the su/Id stafe 

Ts z 

To sirnplify the problcm, I('t the rnass density, P, t!te t.helmill diffllhlvit.y 

con~tant, [(T' and the specifie h(·(ü per unit volume, cI" \><, llH' ~aI1H' fol' bot h 

liquid and solid. The effects ot gravit y a \'l' clSSIII1i<'d lo he IH'gligihlc. 

Il 

Tite g,overning, eqllatioIl 15 lll(' I\(,ilt ('ondu( tioIl f'ql\;\t.lon: 

Leetme NOl{': .J.1. XII, IITopies III Applif'd 1\1,\I.!t('I11<\.llt..," (I~()-ïhl B), 
\IcCtll II nivrl ~Ity. lmlO 
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(1.1 ) 

where T T(z,x,t) is the temperature, t is time. For the liquid phase we 

replace T by TL and for the solid phase we replace T by Ts' 

For the boundary conditions, first, there is initially an undercooled liquid 

with temperature (To,,) D < TM , where TM is the melting temperature on the 

fiat interface. We have 

(1.2) 

On the interface, z = h(x,t), sorne thermodynamic boundary conditions need te 

be introduced. The thermodynamic equilibrium gives 

(1.3) 

On the other hand, the latent heat release on the interface must be balanced 

by the heat flow into the bulk of the solid state and the liquid state. This is 

described by the following equation:12 

where 

LlH is the latent heat per unit volume of solid, 

Un is the normal velocity of the interface. 

( 1.4) 

This heat flux condition describes the conservation of heat at the interface. 

Finally, considering the effect of surface tension on the interface, we have 

(1.5) 

where 

, is the surface tension constant, 

h 
K{h(x t)1 - :r:r is the curvat'lre of the interfa.ce. 

1 J - (1+h!)3/2 

12 J.S. Langer, Rev. Moc!. Phys., 52, 1 (1980) 
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1 
U sing the following scales 

K 
. LT = --I. : (thermal diffusion length) the scale for length, 

u 

LlH/ cp : the scale for temperature, 

KT 
: the scale for time, 

u2 

8 

T-TM and defining as the non-dimensional temperature, the non-dimensional 
LlH/ cp 

equation becomes: 

':;iT= ôr + ôT . 
ôz ôt 

(1.6) 

The non-dimensional boundary conditions are: 

1. 

As z -+ -00 ; TL -+ (1.7) 

2. On the interface, z = h(x,t), we have 

(i) The therIHodynamic equilibrium: 

(1.8) 

(ii) The heat balance condition: 

ô ô -(T -T) - h -(T -T) + h - 1 = 0 ôz L S ~ ôx L S t 
(1.9) 

(iii) The Gibbs-Thompson condition: 

(1.10) 

where 

1 
r = -S«1 IS the surface tension parameter, 

lT 

i C TM 
1 = ~ IS the capzllary length. 
c (Lllf)2 
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The above system allows a steady solution with a fiat interface. Without 

loss of generality, we can assume that this interface has the equation z = h
B 

a = O. The exact steady state solution can be obtained by setting - = 0 and 
8x 

~ = 0 in the above system of differential equation. For TCQ = -1 (unit super-

cooling), one finds 

TB={/Ü 1 ;z ~ 0 for the /zquld 
,z 2: 0 for the sO/ld 

where TB is the basic state solution for the temperature. 

The unsteady state solutions can be expressed in the forms: 

h(x,t) = hB + h(x,t) , 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

where TL8 , TSB ,ha are the basic steady solutions for the temperature of the 

liquid, the temperature of the solid, and the interface shape respectively. 

TL' t's, and h are small perturbations. 

The governing equation for the perturbation part is 

'V2 Ï' = âÏ' + âÏ' 
âz 81 

The boundary conditions are: 

1. 

As z -- +00 Ï's o 

(1.15) 

(1.16) 

( 1.17) 

Since the deformation of the interface, h( x,t), is very smaIl, the boundar j con

ditions on the interface z = h(.r,t) can, thus, be linearized by expanding them 

in a. Taylor series around z = O. 



2. On the interface, z = 0, we have 

(i) The Thermodynamic Equilibrium 

TL(O) = 1'5(0) - (L1G1)h 

where 

8T
LB 

8T5B LW = (-) - (-) - 1 
1 8z :=0 8z :=0 -

(ii) The Heat Balance Condition 

8(T-T) -
L 5 + (L1G )h+ 8h = 0 
8z 2 8t 

where 

2 2 
8 TLB 8 T~B 

LlG = (--) - (-~-) = 1 
2 8i :=0 ai z=o 

(iii) The Gibbs-Thompson Condition 

Ts=-rh , xx 

-2 .[1.-where we set l+hx = 1. 

10 

(1.18) 

(1.19) 

(1.20) 

To find the solutions for the above system, we introduce a set of new fast 

variables: 

where 

x 
X ;;::-, 
+ f 

z 
z =-, 
+ f 

t t =-, 
+ f 

We expand T and Ft as follows: 

T= To + (T1+ ... , 

(1.21 ) 

(1.22) 

( 1.23) 

(1.24 ) 
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(1.25) 

By substituting the above expanSIon into the general equation and the 

boundary conditions (1.15) - (1.19), for the zero order approximation, we have 

fit it __ 0+ __ 0=0 
2 2 

ôz+ ôz+ 

The boundary conditions are: 

1. 

2. On z+ = 0 we have: 

(i) The Thermodynamic Equilibrium 

t Lo = tsO-(LlG1)iio= 'Ï'so-iio 

(ii) The Heat Balance Condition 

ô * * ôho 
ôz+ (TLO-Tso) + ôt+ = 0 

(iii) The Gibbs-Thompson Condition 

The solution for the above system is as follows: 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

(1.34 ) 

where k is the wave number and a is the eigenvalue. If the real part of a , 

a R' is greater than zero, the solution will be amplified as the time increases. 

On the other hand, if a R<O, the solution will be suppressed. When a R = 0, the 



12 

solution will be neither amplified nor suppressed. This solution 1S called the 

neutral stable state . 

From the boundary conditions and the solution (1.32) - (1.34), a relation-

ship between a and the wave number k is determined: 

This relation is called the Mullins-Sekerka dispersion relation. From this rela

tion the value of a is determined by the values of the wave number k. For 

k > ..!..12, the solutions are decaying and stable. For 0 < k < .!..f2, the solu-
2 2 

tions are growing and unstable. Thus, surface tension suppresses the short wave 

perturbations. The long wave perturbations, on the other hand, will grow with 

time. 
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Chapter il 

A REVIEW OF THE INTERFACIAL WAVE 

THEORY OF SOLIDIFICATION 

Mullins & Sekerka's analysis solved the linear stability problem of unidireetional 

solidification. The dendritie solidification, however, is much more complicated. 

The interface of the dendritic growth is curved. The linear stability of a 

curved interface is the major concern of the Interfacial Wave Theory of Solidifi-

cation. 

In this section we intend to glve a brier review of the Interfacial 'Nave 

Theory of Solidification. 

2.1 The Mathematical Formulation of the Problem. 

The problem of dendritie crystal growth from a pure undercooled melt IS for

mulated in a cylindrical coordinate system (r, z, 0). 

Consider a single dendrite growing into a pure undercooled melt in the neg-

ative z-direction with a constant average veloeity u. Suppose the coordinate 

frame moves with the tip of dendrite. We suppose that the surface tension is 

isotropie, so that the dendrite is axi-syrnmetrical. For simplicity, let the rnass 

density, p, the thermal dIffusivity constant, KT' and the specifie heat, cp' for 

the liquid state be the sarne as those for the solid state. Let the liquid be ini

tially undercooled with a temperature (T ocJ D' 

The seales used are the sarne as in the Chapter 1. 

- 1.3 -



·\ t 1 illl.,formattOn into t 11t' IMI aholoidal rnoruinatt' systf'm6 IS uefined hy 

l' 

, , 
"-, , , " 
" ... 
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T)~mnsf 
--~ 

.... _-
... _-

..... 

... , 

.... 

" 

.... ...... 
..... ..... 

1J= 1 

z 

FIlII/ /'( .! 1: 'l'Ill' Paraholoidill Coordinate System 

. - I,~ ~! 
- - -(" -'1 )Ilu . 

'2 

\\ b('l'I' I/~ IS ,Ul adjll~t(\hl(' constant. 7 

h 
) 

Il 

(~.1 ) 

(~.:!) 

III t II(' parnboloidal coordinat<' system the governmg equation 15 the follow-

., ') 

(1' T àO T l iJT 1 WI' -+-+--+--= 
,1~2 ilr/l e De '1 n" 

1111'" t l ,m ... fOl 1II,111011 W,lS fil..,! h lIM·d hy R. Trc\vedy (lmO) 

'.1 \11. ~tlldit's in \pplit'd \LlI". s~:ïl-ï() (1 1)90) 
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The boundary conditions are as follows: 

1. 

2. 

As '1- 00 

As 
BTs 
--0 

Br 

3. On the interface Tl = Tl$(e,t) 

(i) The thermodynamic equilibrium: 

(ii) The Gibbs-Thompson condition: 

where 

and 

r IS the surface tensIon parameter 

1(= 
'1/('1: +2e

2
) - e'1$ } 

'1$(1+'1$,2)1/2 + e(e2 +'1!)(l+'1/2)1/2 

(iii) The heat balance condition: 

~ (TL-Ts) - '1,' ~ (TL-Ts) + 

where the prime denotes the derivative with respect to e. 

15 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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2.2 The Basic State Solution 

As a basic solution, the steady state solution with zero surface tension Îs used. 

This basic solution can be obtained from the general equations by setting 

a â - = 0 and - = O. It turns out that this is the Ivansov similarity solution ae ât 

for arbitrary undercooling. The results are as follows: 

(2.9) 

(TI B is set by adjusting the constant Tlo) 

2 
2 '10 2 

T +~eTE(~)=O 
00 2 1 2 ' 

where 

T
LB 

is the temperature of the liquid in the basic state solution, 

T
SB 

is the temperature of the solid in the basic state solution, 

TI B is the interface shape in the basic state solution, 

El(X) is the Exponential Integral (see [1]). 

Having found the basic steady state solution, the general unsteady state 

solutions are expressed in the forms: 

TL(ç,'1,t) = TLB + TL(e,'1,I) 

Ts(e,'1,t) = TSB + Ts(e,'1,1} 

'1iç,t) = '18 + lÏ(e~t) 
'1~ 

(2.10) 

TL' TL' and I~ are the perturbation parts of the temperature of the liquid, the 

temperature of the solid, and the interface shape respectively. 



c 

c 

1ï 

To solve the unsteady perturbation part, two more boundary conditiom. are 

added. First, the interface near the tip region is taken to be smooth. This 

boundary condition is called the tip smoothness condition and is described as 

follows: 

As e --+ 0 hW < 00 and h' (e) :: 0 (2.11) 

The second boundary condition is called the radiation condition in the far field: 

as ç --l> 00 the interface shape solution represents an outgoing wave 

II' 
where f. = -- r is surface tension parame ter. 

2 
1]0 

(2.12) 

The wave number function ko and the eigenvalue a have to be determined by 

the system. 

Furthermore, to investigate the behaviour of these small perturbation parts, 

a new set of fast variables ç+, 1]+, and t+ is defined: 

l::.!L 1] = , + t: 

t t =-. + { 

Transforming the governing equations and the boundary conditions by usmg the 

fast variables, one can find the the governing equations and the boundary con-

ditions for the perturbation parts. 
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2.3 The Outer Solution 

To solve the problem, the Interfacial Wave Theory of Solidification first uses 

the MultlVanable Expanswn Method (MYE). It turns out that MVE IS no 

longer valid in the region near the tip and in the region near a certain point. 

This point is shown to be a turning point of the system. The region in which 

MYE is valid is called the outer region. The solution in the onter region is 

called the outer solution. 

In the outer expansion, two sets of variables are tlsed to describe the 

unsteaùy perturbation parts. They are (~,7J,t) and (~++,7J++,t++). The new set 

of fast vaflables (~++,7J++,t++) is defined as follows: 

These two sets of variables are formally treated as independent variables. 

We expand TL1 1's and iL as follows: 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Solving the zero order expansion, one finds the normal mode solutions as 

follows: 

Tso = Bo(~!7])exp(te++ + 1)++) , 

ho = Doexp( zf ++) 

(2.1 ï) 

(2.18) 

(2.19) 
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The dispersion relation between the eigenvalue (7 and the wave number function 

k, can be derived from the boundary couditions and the solutions above. The 

result is as follows: 

(2.20) 

For any g)\'en (7 , one can find three roots of the wave number function ko' 

namely k(l) k(2) and k(3). 
, 0' a' a . 

where 

(2) 1 ·1 (j 211' 
ka (e) -- M(e)co.s{-CO$ (-» + -} , 

3 N(e 3 

(3) 1 -1 (j 411' 
ka (e) = M(Ocos{ '3cos (N(e) + 3"} , 

M(e) = J 2S~t,) (1 _ ~) t , 

N(e) = - ~e) (1 - ~) , 
3~ (e) 

S(e)=V l+e
2 

• 

(2.21 ) 

(2.22) 

(2.23) 

Only k~l) and k~3) satisfy the first boundary condition. They are called the 

short wave branch and long wav~ branch respectively. Furthermore the general 

interface solution in the outer region for the zero order expansion can be writ-

ten as: 

(2.24) 
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Solving the first order approximation, one finds the amplitude functions 

Ao{Ç,71) and Bo(Ç,71). k1(ç) is also determined: 

k = R(ç) 1 
t a + 2e 

S['8k I:(ko,ç)] 

° 

(2.25) 

where R(e) is a regular function of ç. 

Investigating kt(Ç), we find that the outer expanSIon breaks down near 

sorne singular points of kt (E,). Near these points, then, the MYE is no longer 

valid because the or der of Ek
1 

is equ;tl to or greater than the order of ko' The 

four types of singular points are thE fùllowing: 

1. ç = 0: this is the tip point of the dendrite. The MYE starts break-

ing down when 1E,I=t or Ekt(Ç) ~ 0(1). WhE::n ç 4 0, 

(2.26) 

2. 
ô 

, where ( is the root of ôk ~ (çc,ko) = O. This singular 
o 

point Çc is a function of the eigenvalue (J. It is shown that Çc is a 

simple turning point of the system. 

3. ç = ±z . These two singular points have no significant influence on the 

behaviour of the unsteady solutions. The presence of these points, 

then, can be neglected. 

Having found the smgularities of kt (ç), the whole reglOn of the complex 

plane-ç is divlded mto three regions: the tip region, the turning point reglon, 

and the outer region. To get a uniformly valid solution for the whole region, 

we need to find a solution for each region. Finally, in an intermecltate region, 
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we match the outer solution with the inner solution in the tip region as weB as 

with the inner solution in the turning point region. 

2.4 The Inner Solution in the Tip Point Region 

In the tip region, the general solutions for the zero order expanSIon can be 

expressed as follows: 

where 

1101) is the first kind of Hankel function of order zero, 

k~l) = k~l)(O), 

k~3) = k~3)(O). 

2.5 The Inner Solution in the Turning Point Region 

The turning point ~c is the root of the following equation: 

f2 { 1-1{ }3/2 
q- = V 27 S(e) {={ 

c 

(2.27) 

The solution in the turning point region is obtained as foBows. First, we intro-

duce the following transformation: 

{ 

ii = W(e1) exp{'; f kC(e1)~1} 1 (2.28) 
ec 

where kc(Çl) has to be determined from the system. The result for kc is 

(2.29) 

Introducing a new variable ~.= ~~/:c and putting W as a function of ~. , 
f • 

we expand W as: 
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(2.30) 

with %(€)=f-1
/
6

• We find that the leading approximation Wo(~.) is subject to 

the Airy Equation: 

2 
d Wo 2 
-- + A e. Wo = 0 , 

de: 
(2.31 ) 

where 

A ~ +/ :;~>LE 
c 

U sing k~3) in the radiation condition in the far field, the general solution for 

Wo in terms of the Hankel function is 

W (C ) - Dc1
/

2 If. 2) (!Ac3
/
2

) 
0"· - ... 1/3 3"· . (2.32) 

The solutions for il are obtained by substituting Wo(~.) into (2.20). 

When Re(ç.) --+ 00 the general interface solution can be expressed as 

(2.33) 

As Re(ç.) --+ -00 

(2.34) 

where 

.... 
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Matching 

So far, we already obtained asymptotic solutions ln the outer regloll, III the tip 

region. and in the turning point region. To find the global mode solutions wc 

need to match the outer solutions with the inncr turning point solutiollS as \\'('11 

as with the mner tip solutlOIls in the intermediate reglon. 

!1ll1 ~ , 

Re(~) 

Figure 2.2: The ç-complex Plane 

First of ail. let çç' be the intersection point of the Stocke's li ne emanatill~ 

from ~~ with the real ~-axis Since in the sector (SI)' C' < Re(ç) < cc, the 

outer solutIOns (2.2-1) should match the inner turning pOIII t solutions (2.:3:3), il!) 

e - c. As a result the outer solution becomes 

( ') .) -) 
~ .. ).) 

Fllrll!C'll1\Ot'(\ by l11,üc!llng th(' outrr solutioll 111 :'CclOi UiJ \VIth tlll' 111111'1' 

tllrllill~ poillt solutlOll (2.:l·I), one tinds 
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(2.36) 

or 

(2.3i) 

where 

e. 
X = (2n-%)7r + ~ J (k~1)_k~3))~; n=O, ±!, ±2, .... 

o 

Finally, by mat ching the outer solution in sector (S2) with the tip mner 

solution one can derive 

(2.38) 

'(3) do 
D = - --;:::=== 

o V k~3)(O) 
(2.39) 

It follows that 

(2.40) 

Combining (2.36) ana (2.40), one can derive a quantum condition for the elgen

values, {O' 's}: 

or 

\\' here 

1'( 
e =-

(e 

k~3\O) 

k~l)(O) 

; J(k~11_k~3))~=(2n+l+2/3);j - f/lll.'l'O' 
o 

(2.41) 

( ? /')) _.lw 
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JI. = 0, ±1, ±2, .... 

Given € , the left hand side of the quantum condition is a function of (, 

while the right hand side is a constant for any n. Thus Çc is obtained. The dis-

crete set of eigenvalues (j can be determined by using the equation 

(J = n 
lb {l-iÇ y/2 

27 S(ç) {={e 

An Interpretation of the Global Mode Solution 

The physical meaning of the global mode solution above can be understood 

more easily if we transform ho to Wo by using the transformation (2.28). In 

terms of this transformation, the long wave ho, with the wave number func-

tion k~3), corresponds to an incoming wave "1-), since the real part of kc(ç) is 

always greater than the real part of k~3)(ç) . On the other hand the short wave 

number ho, with the wave number function k~l), corresponds to an outgoing 

wave »1+>' sinee the real part of kc(e) 1S always less than the real part of 

The outgoing wa.ve ~+) from the tip coUides with the incoming ~-) from 

far field at ~/, where ~c' is the intersection of the Stoke's li ne emanating from 

t and the positive real (axis. The collision generates an incommg wave pro-

pagating toward the tip region. This incoming wave, then, is reflected by the 

tip point and becomes an outgoing wave from the tip. The waves seem to be 

trapped in the region between the tip and C. The name of the Global 



:W 

Trapped Wave (GTW) mode solution just obt.ained IS inspire'(l by this pl1l'-

nomenon. 

cc lml k) . 
o 

0.0 

CD . 
o 
1 

", 
", k/el , , , 

Re(k) 

1.0 

e = 00 

The Wavc Numbcl' Functiolls: k~ll, k~3) fol' Scv('ral a 's. 

k is the n'fcn.'IKc wave numbcr fUllction. 
c 

Specifying ~.~l) in the radiat.ion condition \Il tlH' far field, and tl~lIlg t.lu· 

saille rnethod as before, anotl\l'l ~et of global mode solutions (ail 1)(' obtained. 

The ,>Ollltiolls III tlw, set are ('alled Wauc EnUS"lOll and the SI,I}IIa1 Nadill/lOtI 

(WE,\SH) l11od(l '-\01\11 ions. Flom ail Clllôlysis of total perturhed pl\('rgy, tl((' 
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Selection Problem 

The question, now, is how to select a umque solution for the dendrite at the 

later stage of growth. The Interfacial Wave Theory of Solidification introduces 

the Global Neutral Stable State Condition (GNS). This condition states that 

in the later stage of growth, the solution should be selected near the neutral 

point of linear stability. The difference between the Marginal Stable Hypothesis 

(MSH) and this criterion is that, in MSH, only the dendrite tip must be neu-

trally stable, whereas, in this criterion, the whole interface is neutrally stable. 

The GNS condition can be mathematically expressed by saying that the real 

part of the eigenvalue a(€) equals zero for n = O. It turns out that the value 

of € corresponding to Re(a) = 0 is €. = 0.147, when n = 0 . 

The phase velocity of the wave along the interface Tf = 1 can be calculated 

by 

v = 
w(1+~2) 

p 
Re{ k~3)(~)} 

, 

where w is the negative of the imaginary part of the eigenvalue (J. As 

ç --+ 00, it is found that the phase velocity corresponding to t: = 0.147 is 

vp = 1.02. This numerical result IS in good agreement with experimental 

observations in the labo rat ory . 
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Chapter ID 

AN APPLICATION OF THE INTERFACIAL WAVE 

THEORY OF SOLIDIFICATION 

In this part we shaH apply The Inte1faczal Wave Theory of Solidification to 

the case in which the thermal diffusivity constant and the specifie heat for the 

liquid phase are different from those for the solid phase. Let (/\ T) L' (J( T) s' 

(cp) L' and (cp) s be the thermal diffusivity constants for the liquid phase and 

the solid phase, and the specifie heat for liquid and solid, respectively. Thus, 

3.1 Mathematical Formulation of the Problem 

The problem will be formulated in a paraboloidal coordinate system (ç, "1). As 

before, we eonsider a single dendrite solid growing into a pure undercooled melt 

in the negative z-direction with a constant average velocity u. The coordinate 

system is comoving with the tip of the dendrite. Let the mass density be the 

same for both liquid and solid. We neglect the effects of gravity. Let the liq

uid be initially undercooltd wlth a temperature (T ",J D' 

The scales used are the same as those defined in part II, but l\ T and cp 

are now replaced by ([( T) Land (cp) L' 

In the moving paraboloidal coordinate system (2.1) & (2.2), the governmg 

equations are as follows. 

1. For the liquid stat.e: 

- 28 -
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2 aTL aTL 4 2 2 aTL 
710{ ear -718,]) + 17o(e + 71 )Tt 

2. For the solid state: 

The boundary conditions are the following: 

1. 

As 71- 00 

2. 

As 71- 0 ; 

3. On the interface 1] = 1],(e,t) 

(i) The thermodynamic equilibrium: 

(ii) The Gibbs-Thompson condition: 

r Ts = -4~{h(x,t)} , 
710 

where 

is the curvature operator 

(iii) The heat balance condition: 

29 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 



.. 
t , 

--

where 

.Ê.-(T -f3T) - n IJL(T -f3T) + 
ÔfJ L S 'IS ô~ L S 

.1c 
a--L 

- (cp) L 1 

_ (Cp)L™ 
a = .1H Q 1 

.1 cp = (cp) L - (cp) S' 

The prime denotes the derivative with respect to e. 

3.2 The Basic State Solution 

30 

(3.7) 

A time independent solution with zero surface tension will be used as a basic 

state solution. By adjusting the constant 110' the system for the basic state is 

the following: 

The governing equations: 

1. For the liquid state: 

2 
Ô TLB 1 ÔTLB 2 ôTLB - + --- = -'1 11-

Ôf] 2 '1 a" 0 Ôf] 
(3.8) 

2. For the solid state: 

(3.9) 

The boundary conditions: 

1. 
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As 1] - 00 (3.10) 

2. 

As (3.11 ) 

3. On the interface 17 = llSB = l, we have 

(i) The thermodynamic equilibrium: 

(3.12) 

(ii) The Gibbs-Thompson condition: 

(3.13) 

(iii) The heat balance condition: 

~ (TLB-{3TsB) - fi; ~ (Tc {3Ts) + 1]~(1+à+QTs) = 0 1 (3.14) 

where TLB, TSB' , and 11 B is the basic state solution for the temperature of the 

( liquid, the temperature of the solid, and the interface shape respectively. 

The solution for the above system is the following: 

(3.15) 

(3.16) 

(3.17) 

00 -1 

where EI(x) = f 7 dt is an exponential integral ([lJ). From (3.17), one can 
:t: 

calculate the constant 170 as a functioll of the undercooling T 00' and ci. 

( 
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3.3 The Linear Perturbed System 

F(lr the case of nonzero surface tension, the unsteady solution of dendrite 

growth can be found by adding a small perturbation around the above basic 

state solution. As in part II, we express the unsteady solution in the forms: 

TL(ç,'f/,t) = TLB('f/) + TL(ç,fJ,t) , 

Ts(ç,'f/,t) = TSB(TJ) + Ts(€,fJ,t) , 

TJ,(ç,t) = TJB + lÏ(e~t) . 

"10 

(2.18) 

(3.19) 

(3.20) 

In any finite region around the tip, the perturbed part is very small compared 

with the basic state part as the surface tension parameter !< < 1. In order to 

study the perturbed part, we also use the fast variables 

.; 
€ = -, + ( 

n-1 
'fJ+=~ ,and 

( 

t 
t -+- (. 

(3.21 ) 

(3.22) 

(3.23) 

With these fa.st variables, the system for the perturbation part can be 

rewritten as follows. 

The governing equations: 

1. For the liquid state: 

2 2 88- 4228 (- + -)T = ({'f/ (e + 71 )- + 8,2 ~2 L 0 8t 
'+ V'I+ + 

712(Ç-Ê- - 'f/..L) - .!.-Ê- - .!.~}T 
o 8e+ 871+ e 8ç+ ,., ÔTJ+ L 

(3.24) 

2. For the solid state: 

2 '2 88· 4228 
(-? + -)T~ = CpTJ (ç + TJ )- + 
ô'- ::l..'2 ~ 0 81 
'+ V'I+ + 
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2 Ô 81818-
'\'1 (~- - 7]-) - -- - --}T 

o 8e+ Ô7J+ e 8e+ 7] Ô1J+ s 
(3.25) 

The boundary conditions are as follows: 

1. 

(3.26) 

2. 

(3.27) 

3. On the interface TJ==TJ$(ç,t) , the ûoundary conditions can be linearized 

by expanding them in a Taylor series around 1]t =-=0 or 1]=0. The results 

are as follows. 

(i) The thermodynamic equilibrium: 

TL = Ts + (l+o)h + O(f) (3.28) 

(ii) The Gibbs-Thompson condition: 

(3.29) 

(iii) The heat balance condition: 

8 - - 2~ ôh 8h -
Ô1J+ (TL-(3Ts) + {7]o':; at

t 
+ e 8e+ }(l+a) + 

(3.30) 

where 

Two additional boundary conditions are imposed. 

1. The tip smoothness condition 

8h 
As ç -. 0 , h(O,t)<oo , {8e }{=D = 0 (3.31 ) 

2. The radiation condition in the far field 



As ~ ~ 00 , the solution describe3 an outgoing wave 

e 
- ut 1 J h(ç) = exp{-2 + -; kO(Çl)~l} , Re(ko(ç))>O 

010 a 
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(3.32) 

It will be shown that the wave number function, ko(~)' is a function of 

the eigenvalue (J. Due to the requireI11ent that the total perturbed SUl'-

face energy is finite, the outooing wave in (3.32) must decay as 

f, ~oo. 

3.4 The Outer Solution 

To solve the problem, first we use the Multivariable Expanswn Method (MVE). 

As in part II, we define a new set of fast variables as follows: 

dÇ++ = k(Ç,f)dÇ+ ' 

7)++ = k(Ç,f)de+ ' 

Two sets of variables are used in the outer expanSIOn. They are (f" 1], t) and 

( è '11 t ) These two sets of variables are formally treated as independent 
"'++' "++' ++ . 

variables. 

We expand TL' Ts' and fi as follows: 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

The system for the perturbation part IS converted by replacing the deriva-

tives with the following: 
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.iL = k_ô_ + (l.. 
8(+ ôe++ ôf, 

.iL = k-Ê- + (.2.... 
Ô71 + Ô17 ++ Ô71 

The converted system for the perturbed part is as follows. 

The governing equations: 

1. For the liquid state: 

2 ô2 ô2 
- 2 2 2 ôrL 2 ô ô-

k (-2- + -2-) TL = (1Jo(f, + 71 )a,- + (71of,(k~ + ( ôe )TL 
ôeH Ô71H ++ ++ 

2. For the solid state: 

2 Ô ô- (D ô-
- (711J(k-- + f-)T - -(k-- + (-)T 

o Ô1J H Ô71 S { ô{ ++ ôf, s 

The boundary conditions: 

35 
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1 1. 

As '7++ -+ 00 
(3.39) 

2. 

3. On 'Tl++ = 0 or 'Tl = 1, we have 

(i) The thermodynamic equilibrium. 

TL = Ts + (1+6)h + O«() (3.40) 

(ii) The Gibbs-Thompson condition: 

- 1 2 ô2 ô2 ôk Ô 2 i 1 T = -{(k -- + 2(k + (--- + ( (- - --) 
s S(e) ôe:+ ôe++ôe ô€, âf,++ ô€,2 tw 

2 
1 e ô ( - 3 (- + -.,-)(k- + -)}h + 0«( ) 
e .s-(e) 8e++ tee) 

(3.41) 

(iii) The heat balance condition: 

ô ô - - 2 ôh ô ô-
(k-

ô
- + ( ,q.. )(TL-f3Ts) + {S(e) a + ç(k-

ô
- + ( ât )h}(1+6) + 

~+ v~ ~+ ~+ ~ 

(3.42) 

For the zero-th order approximation, O( fO), we have the following system. 

The governing equations: 

1. For the liquid state: 

(3.43) 

2. For the solid state: 

2 ô2 ô2
_ 

kO(-2- + -2-)Tso = 0 
âe++ àrJ++ 

(3.44) 

The boundary conditions: 

1. 

" 

f . 
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As '1++ - 00 

2. 

3. On 7]++ = 0 or 7]=1, we have 

(i) The thermodynamic equilibrium: 

1'LO = 1'so + (H-6)ho + O(!) 

(ii) The Gibbs-Thompson condition: 

k2 2 
- 0 D -T =---h 
sa S(~) ae2 a 

++ 

(iii) The heat balance condition: 

ô - - ~ - ôho 
ka -ô-(TL -{3Ts) + {O'.:J (e)ho+ko~-ôt }(1+6) = 0 

'1++ ~++ 

The general solution is the normal mode solution, as follows: 

1'10 = Ao(~''1) exp(z{++ - 1'1++) 

1'so = Bo(~''1) exp(z{++ + 1'1++) 

ho = Do exp( ae++) . 

37 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51 ) 

Without loss of generality, Do can be set as a constant because the wave num-

ber k is considered as a function of e and f. 

On 1] = 1 , let 

Ao({,l) = Âo(~) 

Bo({,l) = ÎJo(~) . 

Using the boundary conditions on 1]=1, one can derive 

(3.52) 

(3.53) 
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The dispersion relation can be derived by using (3.52), (3.53), and the heat 

balance condition (3.48). The result is 

k ~ k 
E(k ,e) = 0' = _0 __ (1+13) _0_ - 1{_O- . 

o S(e) (l+à) t(e) S(e) 

We define a new parameter 

Ji = 1+/3 
2(I+à) 

With this A, the dispersion relation can be rewritten as 

(3.54) 

(3.55 ) 

It is interesting to see that in the zero order a,pproximation, the effeds of the 

variations of the thermodynt\.mic constants, KT and cp' can be described by a 

single parameter A. As A = 1, we rt'e;ain the dispersion relation (2.20). 

For any given J and A, one can find three roots of the wave number func-

t · k 1 dl) k(2) d k(3) Ion 0' name y 1\;0 , a' an a: 

where 

(2) 1 ·1 0' 211' } 
ka (e) = p(e)cos{ -cos (-( )) + -

3 Q e 3 

Q(e) = _-.illL [1 - ze] 
3S(e) 

(3.56) 

(3.57) 

(3.58) 

Considering the first boundary condition, only ka 's with a positive real part 

satisfy this condition. Thus only k~l) and k~3) can be used. The general interface 

solution in the outer l'egion for the zero order expansion can be written as fol-

lows. 
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The Wav(' Nllmber 
rT = (O.182.5.-0.1!lï2) 

Functions. 

The ~ystem for the first 01<1(>\ approximat.ion IS as follows. 

1. For the liquH[ '5tate: 

:m 

Re(l) 

1.0 

/1 = 1.05, 

(:J.6U) 
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1.0 

CIO 
• o 

1 

FIf/llrt J . .1: Tht> Wavr Number Functions . 
.'\ = 1.0.), flllri . \ = 0.95, (j = (0.1825,-0.1972) 

'l Fol' the solid stat.e. 

(3.61 ) 

whel'(' 

BAo BAo .,.,.,., 2 1.0 1.0 ôko 
,1 = 21. (- - 1-) + A [m'-(~-+In + k 1((&e+'1 ) + - - 1- - 1-] 

1 Il a'l û~ (' () Il 0 n '1 { (Î~ 
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F'!jl//'( "1 .. 1: The \Vave Numb<>r Functions for SevNal 
. \ = 0.9.1 

1. 

.4" ,,++ ..... -oc· , 'f ... 1 ..... 0 

:J. On 'lu = 0 or '1 = l, w(' have 

(i) The t hermodynall11c pquilihrium: 

(ii l TII(' Cihbs-Thollll>.,oll condition: 

1.0 

, 
as . 

(:1.62) 

(3.6:1) 
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ako aho ko aho t aho 
---+---+~k-+} 
ae ae++ e ae++ S'(e) 0 ae++ 

(3.64) 

(iii) The heat balance condition: 

a ~ ~ ...2 ~ ahl • 
(ko-a-)(TLl-j3Tsl) + {O"~ (e)h l + koe-

a 
-}(l+o) + 

71++ t++ 

The terms proportional to e a{++ in (3.60) and (3.61) yield secular terms in 

the particular solutions for both TL!' and 1'51' These terms are small for small 

~++, but appreciably large as ç++ -+ 00. Thus, to ensure a uniformly valid 

expansion, each coefficient ao and bo must be made to vanish. It follows that 

where 

ô a 
(a71 - 1 ae) log(t{I(Ç,71» = 0 

ô a 
(Ô71 + 1 ae) log( tfJ(ç,f'J» = 0 , 

t/J(e,71) = Ao(e,71)k~/2el/2711/2 F(e,f'J) 

tfJ(e,71) = Bo(e,71)k~/2el/271l/2 G(e,T/) 

U sing the notations 

(3.66) 

(3.67) 
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Ao(~,l) = Âo(e) , 

Bo<e,l) = ÊJo(e) , 

one obtains 

where 

and 

t/J(e,'1) = Âo(el)k~/2el/2"71/2 F(Çl,l) 

tfJ(e,'7) = BO(Ç2)k~/2{1/2"71/2G(Ç2,l) , 

The general solution for the first order expansion is as follows: 

T - A ({ ) (I{H - '1++) 
LI - 1 ,"7 t 

T - B ({ ) (I{++ + '1++) 
51 - l ,"7 t 

- • 1(++ 
h

1
=D

1
e . 
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(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

As before, Dl can be taken as a constant sin ce the slow variable ~ is absorbed 

into the wave number function k. 

On '17=1, let 

A1(e,1) = Â1({) , 

B1({,1) = ÊJ1<{) . 

From the Gibbs-Thompson condition, (3.64), and (3.71), one can derive 

(3.73) 

From the thermodynamic equilibrium condition (3.63), the general solution 

(3.70), and (3.73), it follows that 

ÂI(ç) = BI + (1+à)DI . (3.74) 
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Finally one can derive k
l 

using the heat balance condition (3.66) and the fol-

lowing equation: 

2 
• • 1 Idlog(ko) l' . 110' • 

+(A +(3B )(-+ )--(A -(3B) - -(A ->.(3B ) . 
o 0 2~ 2tJe 2 0 0 2 0 0 

It follows that 

where 

2 ~ 
(1 +2(H(1+0)~ )+2..[( 1 +0)-3( 1 +(3)....Q..-~( l+o)J + Q(~) 

k= 2 2~ S 
1 ~ 

(1+0)-3(1+(3)~-~(1+0) 
;, 

2 2 2r2 
KO diog( ka) ko ul1o:' 1 2 

Q(~) = -1(1+(3)-[3--]-[1+â-(I+À(3)-][--+-~I1 ] 
S dl, S 2ko 2 0 

From the dispersion relation one can derive that 

The equation (3.76) can be written as 

where R(ç) is a regular function of ç. 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

Because ci is a small number, we may suppose that ci+l t= O. Then it 

follows from (3.78) that the system has four singularities, as in Chapter II. 

1. ç = ±l 

2. As ç ~ 0 



( 

(' 

~ 

exp {ut ++ + If (kO{3) (e+)de+)} . 
o 
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(3.79) 

3. Çc is the root of a~ ~(çc,ko) = 0, where ~(ec,ko) 15 
o 

defined by (3.55). 

Since, near these singular points, the outer solution is no longer valid, we 

divide the whole region of the complex plane-ç into three regions. To get a 

uniformly valid solution for the whole region, a solution for each of these three 

regions must be obtained. By mat ching the inner solution in the tip region 

with the outer solution as weIl as matching the inner solution ln the turning 

point region with the outer solution, the global solution is obtained. 

3.5 The Inner Solution in the Tip Region 

As mentioned in part 3.4, near ç=-O or as ç ~ 0, the MVE is no longer valid. 

This is because, in the governing equations (3.24) and (3.25), the orders of 

&~ &~ €8~ 
magnitude of 8ç+ and aç+ are equal to the orders of magnitude of ë 8ç+ 

€ aTs 
and ë aç+ ' when lçl = O(€) . Thus, 10 the tip region, the system should be 

rewritten as follows. 

The governing equations: 

1. For the liquid state: 

~ 
',j 

'1 " 

'j 
'1 

.1 

1 , 
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(3.80) 

2. For the solid state: 

i i 1 â ~ 
(-2 + -2 + ~ ô~ )Ts = 
ô~+ ôry+ + + 

4 2 2) Ô 2 Ô a 1 a ~ () d'\TJo(e + TJ - + '\TJo(e- - ry-) - --}Ts 3.81 
ôt+ ôe+ ÔTJ+ 1] Ô71+ 

The boundary conditions arc the following: 

1. 

2. 

3. On the interface, .,,+ = 0 or ." = l, we have 

(i) The thermodynamic equilibrium: 

TL = Ts + (l+à)h + O(f) 

(ii) The Gibbs-Thompson condition: 

(iii) The heat balance condition: 

ô - - 2 ~ ah ah -
Ô11 (TL-f3Ts) + {ryo'" (e)8i + ~ ae }(1+o) + 

+ + + 

2 - - 2-
f(1+à)(2+ryo)h + f(ih + fTJooTs = 0 

We introduce a set of tip fast variables (~++, .,,++, t++): 

e++ = k(f)e+ ' 

ry++ = k(l)'1+ ' 

t++ = k(l)t+ ' 

and make the following asymptotic expansions in the tip region: 

(3.82) 

(3.83) 

(3.84) 

(3.86) 
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(3.87) 

(3.88) 

(3.89) 

(3.90) 

The above set {J.Lo(E),J.L1(E), ..• }, has to be determined by matching with the 

outer solution. 

In terms of the new fast variables, the system becomes the following. 

The governing equations: 

l. For the liquid state: 

ô2 82 1 ô-(-+-+--)T = 
2 2 ~ ~ L 

ôe++ ÔT/H ++ ++ 

({ 22 2 Ô 2' 8 8 ka }-
'":2 '1o<e + '1 )- + '1ok(e-- - '1--) - -- TL 
k ôt++ 8e++ ÔT/++ T/ ÔTl+ 

(3.91) 

2. For the solid statc: 

ô2 82 1 ô-
(-+-+--)T = 

2 2 ~ ~ s 
ôe++ Ô7JH ++ ++ 

( 2 2 2 a 2' ô 8 k 8 - (3.92) '":2{..\"o(~ + 7J )- + ~'1ok(e-- - '1--) - --} TL 
k 8tH 8e++ Ô7J++ 11 8'1+ 

The boundary conditions: 

l. 

As '1++ -+ 00 TL -+ 0 (3.93) 

2. 

As "++ -+ -00 , 'Ï's-+ 0 (3.94) 

3. On the interface, "1++ = 0, we have 

(i) The thermodynamic equilibrium: 
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(3.95) 

(ii) The Gibbs-Thompson condition: 

(3.96) 

(iii) The heat balance condition: 

k-8-(T
L
-f3Ts) t {S(ç) ah t fç-1L}(ltci) + 

81]++ ât ++ 8e++ 

{(ltci)(2tT1~)h t (cih t nl~(XTs + O({2) = 0 (3.97) 

For the zero or der approximation (O(llo( f))) we have the following system: 

The governing equations: 

1. For the liquid state: 

2 2 

(_8_ t _8_ t _1_...L) T = 0 
2 2 ~ ~ LO 

8ç++ 81]++ ++ ++ 
(3.98) 

2. For the solid state: 

82 82 18-
(-2- + -2- t -~ --~ -)Tso = 0 
8~++ 81]++ ++ ++ 

(3.99) 

The boundary conditions: 

1. 

As '1++ -+ 00 , TLO -~ 0 (3.100) 

2. 

As '1++ -+ -00 ; Tso -+ 0 (3.101 ) 

3. On the interface, 1'f++ = 0 we have 

(i) The thermodynamic equilibrium: 

TLO = Tso t (ltô)ho (3.102) 

- - -" - -~~-~------
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( (ii) The Gibbs-Thompson condition: 

(3.103) 

(iii) The heat balance condition: 

(3.104) 

The general solution of the above system is the following: 

(3.105 ) 

(3.106) 

whel'e 

aLO' bLO' aso' and bso are arbltrary constants, 

1101
) .s the flrst kmd of the Hankel Function, 

( 
1102

) IS the second kmd of the Hankel Funchon. 

(3.107) 

(3.108) 

Matching with the outer solutions (3.49) and (3.50) we have to set 

bLO=bso=O. The inner tip solution becomes 

(3.109) 

(3.110) 

• ..(1) 
ho = doJ1à (eH)' (3.111) 

From (3.103) and (3.110) one can derive 

(3.112) 
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From (3.102) , (3.109) , and (3.112) one finds 

(3.113) 

Finally a reiation hetween the eigenvalue (J and ko can be derived from (3.104). 

One finds that 

(3.114) 

The last expression can be considered as the limit of dispersion relation (3.54), 

as ç ~ O. The roots of the equation (3.114), then, are the following: 

k~I)=k~I)(O) , 

k(2L k(2)(O) 
o - 0 ' 

k~3)=k~3)(O) . 

Only k~l) and k~3) satisfy the boundary condition (3.100). (Only ka s with a 

positive real part satisfy this boundary condition.) 

The zero order general interface solution in the tip region can he written as 

or 

As e ~ 0 one has 

'(1) '(3) 

h(e,t) -. tH {(d (1) +d (3) )+127!'(d (1) :og (~e) + d (3) log (~e))) 
a 0 0 l a l 

ôh({,t) -. t++ 1 (d (1) +d (3) )1-
ôe 0 0 7!'e 

To satisfy the tip smoothness condition, that 18, 

h(ç,t)<oo and ôh ~ 0, 
ôE. 

(3.115 ) 

(3.116) 

(3.117) 

(3.118) 
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one has to set dt) + do (3) = O. The zero order general interface solution 

becomes 

fi = d (1) {Jf.I)(k(l)t ) _ II:1)(iP)t )}e
ot++ 

o 0 0 0"+ 0 0 "+ . (3.119) 

As e++ -+ 00 the equation (3.119) becomes 

(3.120) 

3.6 The 100er Solution iD the Turning Point Region 

As mentioned in part 3.4, there is a critical turning point for the system. This 

turning point is the root of â~ L:(ç,ko)=O. From the dispersion relation, it 
o 

follows that ec satisfies: 

or 

,,2 _ [(1+6)(1 - .ec)]S({c) 
o - 3(1+/3) . 

Substitute (3.122) into (3.55) with e=çc' one can derive 

f2 l-I{c 3/2 

(j = V 2t1{ S(e) } 

(3.121) 

(3.122) 

(3.123) 

It is shown in part 3.4 that, in the reglon near the turning point ec' the 

outer solution breaks down. To derive the governing equation for the general 

interface perturbation, we use the fast variables (ç+,1J+,t+). By considering the 

boundary conditions (3.26) and (3.27), the governing equations (3.24) and (3.25) 

can be rewritten as follows: 

1. For the liquid state: 
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(3.124) 

where 

• 4220 2 a a 1 a 1 a . 
P (T ) = -{IJ (e +7] )- + 7] (e--7]-) - -- - --} T 
LLO ôt 0 ôe :l... e ôe 7] aTJ L + + v"+ + + 

2. For the solid state: 

(3.125) 

where 

• 422â 2 â â la 18-
P (T ) = -{ÀTJ (e +7] )- + ).1/ (e--TJ-) - -- - --} T 
ss 0 ât 0ôe âTJ eôe TJÔIJ S + + + + + 

On the interface, Tf+ = 0, we note: 

1 From (3.124) and (3.125) one finds 

,~ 

Ô· - a· -
R.. (TL-{3Ts) = 'a(TL+{JTs) + O(t:) 
V"+ e+ 

(3.126) 

'JI> 2. From the boundary conditions (3.28) and (3.29) it follows that 

~ 
~ 

t l, 

2 • 

'Î'L+f3'Ï'S = (1to).~ + (~tg) ( 8 ~) + O(t:) 
8e+ 

(3.127) 

l 

" ~ 
1 

3. From (3.126) and the boundary condition (3.30), it can be derived that 

(3.128 ) 

1 
Let 

~ 

! (3.129) 

(3.130) 

r-

i 
r.: 
t '"' 

From (3.127) and (3.128) one can derive the governing equation for the inter-

face perturbation: 

~ 
\ 

~ 
" 
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We introduce a transformation 

é 

ho = W(~l)exp{; J kc(~)~} , (3.131) 
ec 

where the reference wave number kc(ç) is to be determined from the system.15 

From the transformation above, one can derive: 

(3.132) 

(3.133) 

3- 2 3 e 
â ho ; W k cf W k d W;' 1 J - = [-- + 31--S- - 3_c 

__ I_
c aJexp{ - k (~)d{} . 

!l,,3 ,/c3 f. ,u2 2 ~ 3 f. C 
V"1 .... 1 .... 1 f. 1 f. ec 

(3.134) 

Substituting (3.131), (3.132), and (3.134) imo (3.130) one gets 

3 /w 2 cfw dW,.:z ~ 
({}3-3- + If. {}2-2 - d}l~ + 1:) (~){O'- L..J(kc'~)} w= 0, 

~l d{l 1 

(3.135) 

where 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

15 From a numerical result, we know that, when the real part of sigma is 
greater than or equal to zero, the long branch wave of ho corresponds to 
the incoming wave of Wo' since the real part of kJç) is always greater 

3 -than the reid part of ko(ç). The short branch wave of ho corresponds to 

the outgoing wave, since ~'c(O< k~(ç). 
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F or an~ e. I~,t ~'. sat isfy 

1 t f. Illu'h t bat 

/.. 1 ~ J =- J ,'( é) { 1 - I~} 
f, \ 

i 
-1. 0 

CD hn(k) 
• o 

0,0 

CD 
• o 

1 

(:U 10) 
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Re( k) 

1.0 
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1 ~lll)!, ~. ,lho\(' ill t Ill' di~p(,l~iol1 lc!cüion, ont> get.s 
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-1. 0 

CD Im( k) . 
o 

0.0 

• o 
1 

Re(k) 

1. a 

'l'Ill' \ \'.1 \ (' N IIlnber Functions for Sevf'ril 1 fT 's. 
t = O.!).), kr I~ the retel'ence wave number fundlon. 

rr k 1'- (1IIJ:-'l>lI ,",0 1 h,lt Il !oIilthlll'" (:J.1ol0), then (3.135) becomes 

For small f, in the \'icillity of the turning point (, one may l1ep,lf>ct thr 

fil -;t tt'l'Ill of t h(' eq nation (:U 1.1). One, thus, finds 

(:~. H·I) 

(;1\('11 <111\ li . l'rom (:U1:l) and (3.142) , when ~=~c one has 
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,,~ .. q - E (ec) = o . (3.145) 

c 

This means that ~c is a simple turning point for the system. 

To solve the equation (3.144), we introduce an inner variable 

el (3.146) e.= - . 
Il 

(. 

In term of this inner variable the equation (3.144) becomes 

iw + F(e,e) w= 0 , (3.147) 
df,2 2-2\1 . (. 

where 

2{q - ~ (en 
F({,Ç,) = ~{) {u - L: (f)} = [ , '1 

2 c Ô ~)ko,e) 

ôk2 
0 

ko=kc 

..,. 
Expanding F(ç,t) in a Taylor series near Çc1 one finds .-

t -2[ Ô~({l , 
J F({,() ~ 2 (-ec , (3.148) 
~ 
~ [a L:<V) 1 
R ôk2 

~ o (l:o=l:c)«(=ec> 

t 
1 { +. 

t: 
F({,{c) ~ - 6A { S({c) }(e-ec) . (3.149) 

~ 

~ 
~ 

Substituting (3.149) into (3.147) , it follows that 

Il' 

iw +A2iw=o, ~ (3.150) 
df,2 2-211 . (. 

~-

t where 

J 1 e +. A = -, 6A { S({) } -

---- ------------
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Let w(~.) have the following expansion 

(3.151) 

where {%, Ql' .•• } has to be determined by mat ching with the outer solution. 

For the leading approximation, one has to set v = 2/3. From (3.150), we 

derive 

Iwo 2 
-+A{.Wo=O, (3.152) 
~~ 

which is the Airy Equation . The general solution of (3.152) ln terms of 

Hankel Functions is 

Wo({.) = C~!/2 ~~~ (2j3Ae.2/3 ) + D{!/21~~; (2/3A~. 2/3 ) . (3.153) 

We apply the radiation condition in the far field and use ko=k~3). When 

the real part of the eigenvalue (J is greater than or equal to zero, the long 

bran ch wave ho corresponds to the incoming wave Wo(e.), since the real part of 

By expanding the Hankel functions for Re(e.) --+ +00, we have to choose 

c == O. The general solution (3.153) hecomes 

w (t ) - Dtl / 2 If.. 2) (2j3At: 2/3 ) 0"· -... 1/3 .... , 

where D is an arbitrary constant. 

We define the wave numher function k. as 

k.=Ae. l
/

2 

(3.154) 

(3.155) 

The branch eut line emanating from the turning point Çc is chosen on the 

lower half ç-plane.16 Thus the neccessary condition for the pattern formation Îs 

that the turning point Çc he located in the lower half ç-plane. This ensures 

the eontinuity of the solution, sinee the braneh eut hne ehosen above will not 

16 J.J. Xu, Phys. Rey. A 40, 1609 (1989) 
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cross tlll' n'al aXl~ 111 th(' ('(lmpl,':': ~-plant'. From (3.12:1) one can prove thût 

tilt' rorr{,,,pollllin~ ('It;f'I\\"t!ll(' fT 11I'1()1I1!:~ II) thr reglOll (!:) in the complex 

fT-plallt'. "" this p.ltt(·11I fOllllatinll \ Illltlitioll hoH·;, 

V/ylL/,{ .1. fi: ('ol1\pl('x 11( ~)-plil.ne. The eigenvaluc CUI VE'S cOlTe-

:--pl>nd to tltr 1('al turning point ~c. These curves are for 
\ .11'10115 valu('s ot A. 

\\ ht'Il He(~.) -+ X" the ~('l\I'l al mtcrfan> solution can be expressed as 

(:1.156 ) 

.\ ... Ht'(~.) -+ -:xi Wl' hav(' 

(:3.1!l;) 
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a~-)(~.) = ~ eXPC-J! k.dç] , 
v k. 0 

3.7 :\'1atching 

So tell \\C have cdrcady dctcrrnincd the solutions in the outer reglOIl. III t.lte tlp 

rcglOll. and in the turning point region. To find the global mode 'iolution wC' 

nced to match the outer solutIon \Vith the inner turning point solutioll and thl! 

outer !:>olution with the inner tip solution. 

IIII\~) 

\ 
S+ocJt,' c; 

~i1(. 

Il 
Il 1 

F/ll/ll't S '1: Complex é-pl<lllc 

( 
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First we shaH match the outer solution in the region 1 with the inner turn

ing point solution. Since, in the region l, ~c' <Re(e)<oo, the outer solution 

should match with the inner turning point solution (3.156), as e ---. ec• The 

matching condition can be written as 

where 

{I el 
. (1) l r (1) z4>1 (3) J J (3) 14>3 hm D exp{ -- (k -k )~ - -} + D exp{-- (k -k )~ - -} 

{_{ a ! " c a ( a (c a ( 
c a a 

{-{ 
{.= 2/3

c 
• 

( 

As ~ ---. (, we have ka -+ kc and (J ---. ~ (e)=[~(ka,e)]ko=i:c· 
c 

Thus it follows that 

ô"(k ,{) ô2
"(k ,e) 

0=[ LJ C J(k -k) 1..[ LJ c J(k -k )2 
ôk c a + 2! ôk2 c 0 

c c 

0, kc-ka can be expressed as follows: 

(3.158) 

(3.159) 
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( 

(3.160) 

From (3.148) and (3.155) one finds 

(3.161) 

From the mat ching condition (3.158), it follows that 

-1/6 
qo;:;: f , (3.162) 

(3.163) 

(3.164) 

( 
From the mat ching of the outer solution in region II with the inner turning 

point solution (3.157) one finds 

(3.165) 

where </>1 and rPa are defined above. Thus one finde; that 

(3.166) 

or 

(3.167) 

where 



s 

--

..". 

ee 
x = (2n-"Î)1I' + ! J (k~1) __ k~3»~; n=O,±1,±2, .... 

o 
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Finally, from the outer solution and the tip inner solution one can derive 

the following matching condition. 

dl) e d 3 ) e 
a {Jk(1) } 0 { J (3) } hm r; exp 1 '0 ~+ + r; exp 1 ka ~+ 

e-o V ~ a V ~ a 

(3.168) 

This leads to 

-1/2 
J.l«(;) = (; , (3.169) 

(3.170) 

(3.171 ) 

Thus it follows that 

(3.172) 

Combining (3.166) and (3.172) one can derive a quantum condition for the pat-

tern formation: 

or 

where 

e
lX =-

{c 

k~3)(O) 

k~l)(O) 

! J (k~1)_k~3»~ = (2n+l+2/3)1r - t1nao ' 
o 

(3.173) 

(3.174) 

--~----------------------------
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n = 0, ±1, ±2, .... 

3.8 An Interpretation of the Global Mode Solution 

As in Chapter II, we can transform ho to Wo by usmg the transformation 

(3.134). In terms of this transformation, the long wave ho, with the wave 

numher function k~3), corresponds to an incoming wave ~.), while the short 

wave number ho, with the wave number function k~l), corresponds to an outgo-

ing wave ~+). 

The outgoing wave ~+) from the tip collides with the incoming Wo') from 

far field at ec', where r. c' is the intersection of the Stoke's line emanating from 

r. c and the positive real f.-axis. The collision generates an incoming wave pro-

pagating toward the tip region. As this incoming wave reaches the leading 

edge of the tip, it is reflected, and transformed to an outgoing wave l11+) from 

the tip. The interaction of three waves near the turning point and the tip 

point is very important in unden·tanding dendritic growth phenomena. 

3.9 Selection Problem 

In the quantum condition above, given any small parameter f, the left hand 

side of this quantum c'Jndition is a function of ec' while the right hand si de is 

a constant fol' any fixed n. Thus Çc is obtained by finding the roots of this 

equation for any n. Having found Çc' the eigenvalues a are determined by the 

Thu~ a discrete set of eigenvalues and cor-
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responding global-mode solutions can be obtained. These are the GTW -mode 

solutions. 

Since it is proved 10 the Interfacial Wave Theory that the WEASR-mode 

solutions are ruled out from an analysis of total perturbated ellergy, we shaH 

not consider these WEASR-mode solutions in this thesis. 

To describe the dendrite behaviour at the later stage of growth, a UnIque 

solution has to be selected from the above set of GTW-mode solutions. As 

mentioned before, the Global Neutral Stable State Condition IS used to select 

this unique solution. This is expressed by saying that the real part of the 

eigenvalue 0'( E) equals zero for n = O. 

The phase velocity along the interface Tl = 1 IS calculated from the follow-

ing formula: 

v = p 

where w is the negative of the imaginary part of the eigenvalue 0'. 

As < -+ 00 

v = __ w~_ 
p Re{ a~3)} , 

where 

-l( U 
(l = cos -) o Qo 1 

(3.175 ) 
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3.10 Sorne Numerical Results 

It is mentioned in part 3.8, given any small parameter f, from the quantum 

condition one can find a discrete set of eigenvalues (J corresponding to the glob

al mode solutions. The numencal results show that only a finite number of 

eigenvalues have positive real parts. This means that there is only a finite 

nurnber of possible growing-unstable mode solutions. Tables l, 2, and :3 give 

sorne examples of GTW-mode solutions for various values of A. 

Table 1: GTW-mode solutions 

11 = 1, € = 0.1000 (This IS the case III Chapter II.) 

n ~c fT 

0 0.1146E+Ol -.4944E+OO O.4246E-Ol -.1959E+00 
1 0.2053E+Ol -.5835E+OO -.3292E-Ol -.2296E+00 
2 0.2823E+Ol -.6196E+OO -.7145E-Ol -.2357E+00 
3 0.3516E+Ol -.6385E+OO -.9450E-Ol -.2356E+00 

Table 2: GTW-mode solutions 

11 = 0.9, € = 0.1000 

n ~c 
o 0.1097E+Ol -.4812E+OO 
1 0.1969E+Ol -.5737E+OO 
2 0.2711E+Ol -.6119E+00 
3 O.3379E+Ol -.6321E+00 

O.5103E-Ol -.2034E+00 
-.2895E-Ol -.2408E+00 
-.7044E-Ol -.2483E+00 
-.9548E-Ol -.2487E+00 

From Tables 4, 5, and 6 one can see that. as € increases, the real part of 

the eigtnvalue (J decreases and eventually becomes negative. This means that 

the growing mode solutions WIll be eventually suppressed when € Illcreases. 
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l'ablf .1' (; rw -mode solutions 

\ = l.1. t = o. tOno 

n ~ (J' 

0 O.1193E+Ol - 5064E+OO O.3535E-Ol - . 1893E+OO 
1 O.2131E+Ol -.5923E+OO -.3601E-Ql -.2l98E+OO 
2 O.2928E+Ol -.6265E+OO -.7200E-Ql -.2248E+OO 
3 O.3644E+Ol - 6441E+OO -.9338E-Ql - 2243E+OO 

Ilw lloll-dlllH'll"iiollal p!tô"'> \ (·I(ll il \ ,d()II,!.!, t!te mterface '1 = l, as ~ -+ 'X, IS 

(élit Id.tll'cl trom tllf' tOIIllIlI,t 
1/' 

Il IS about Ufuty. 

fublf .;. 

- f vs Elgenvalue of GTW-mode solution ..... \ = l. 1/ = O. t = Il.lOOn ( l'III., r:-, lhf> Cé\!->C Chapter lI. ) ln 

( (J' v",4sf-·oo 

0.100 0.1147E+01 - 4944EtOO 0.4246E-01 -.1959E+00 o .1057E+01 
0.105 0.1194E+01 - 5067E+00 0.3694E-01 -.1986E+00 0.1053E+01 
0.110 o .1241E+01 -. 518H~tOO O.3168E-01 -.2011E+00 o .1049E+01 
o 115 0.12bdr;+01 -.5296EtOO 0.2666E-01 -.2034E+00 o .1046E+01 
0.120 0.13 35E+01 -.540H.:+00 0.2187E-01 -.2055E+OO o .1042Et01 
o 125 o 1381E+01 -.5506E+00 o 1728E-01 -.2074E+00 0.1038Et01 
o 130 0.14 26EtOl - 5604EtOO 0.1289E-01 -.2092E+00 o .1034E+01 
0.135 o 14 72E+01 -.5699E+00 o 8679E-02 -.2109E+00 o .1031E+01 
0.140 o 1517E+Ol - 5790E+00 0.4644[-02 -.2124E+00 o .1027E+01 
0.145 0.1561E+Ol - 5878EtOO 0.7708E-03 -.2139E+00 0.1023Et01 
0.150 0.1605E+Ol -.5962E+00 -.2949E-02 -.2152E+00 0.1020E+01 
o 155 o 1649E+01 - 6043E+OO - 6525E-02 -.2164E+00 0.1016E+01 
0.160 o 1693E+01 - 612.2E+00 -.9965E-02 -.2176E+00 o .1013E+01 
o 165 0.1736Et01 - 6197F.+00 - 1328E-01 -.2186E+00 o .1009E+01 
0.170 o . 1779E+01 -.6271E+00 - 1647E-01 -.2196E+00 o .1006E+01 
o 175 0.1822E+01 - 634 2~:t 00 - 1954E-Ol -.2205E+00 0.1002[+01 

I.t'\ t. !w Ilu' IMI,lIIWlt't' f COII('spollding to Re(l1) = O. This critical nurnhf'f. 

t o' "1'11'11111111'" ,1 ~loh,\1 IU'1\llal" .,1,,1,1(· 'ollltion Tahlt' ï ... hows somt~ nllInf>rical 
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l'able 5: 

f vs Elgenvalue of GTW-rnode solutlon 
\ = Il q Il = Il. 1 = Il 1000 

(1 

o 100 0 1097E+OI - 4812E+OO 0 s102E-OI - 2034EtOO 0.1012EtOl 
o 105 0 l143E+Ol - 4934E+00 0 4522E-Ol -.2063EtOO 0.1009E+Ol 
o 110 0 1188EtOI - 50S1EtOO 0.3967E-Ol -.2090E+OO O.1006E+Ol 
0.115 O.1233E+Ol - S163E+OO 0 3438E-Ol - 2l15E+OO O.l002E+Ol 
0.120 O.1~77~tOl - 5270E+OO 0.2931E-Ol -.21l8E+OO O.9~q5E+OO 
0.125 0 IJ2lE+Ol - 5373E+00 0.2446E-01 -.2160E+00 0.9949E+OO 
0.130 0 IJ65E+01 - 5472EtOO 0 1981E-Ol - 2180E+OO O.9914E+OO 
0.135 0 l409EtOl - 5567EtOO 0 lS34E-Ol -.2198E+OO O.9878E+OO 
o 140 0 l452E10l - 5658E+OO 0.1106E-Ol - 2215E+00 0.9842E+OO 
o 145 0 l495E+01 - 5746E+00 0 6949E-02 - 223lE+OO O.9807E+OO 
o 1~0 0 l51/EtOl - 5831EtOO O.2994E-02 -.2246E+OO O.9772E+OO 
o 155 0 1579EtOl - 5912EtOO - 8l15E-Ol -.2260EtOO O.9737E+OO 
Ù 160 0 1621EtOI - 5991E+OO - 4474E-02 - 2273E+OO a 9703E+OO 
o 165 0 l663E~Ul - 606/E~00 - 8005E-02 - 2285E+00 O.9669EtOO 
o 170 0 1/04E101 - 6141EtOO - 1141E-Ol -.2296E+OO 0.9635EtOO 
0.175 0 1745EtOl -.6213E+00 - 1469E-01 -.2l07EtOO 0.9602E+OO 

Table fi: 

( vs Elgenvalue of GTW-mode solutIon 
t = 1 1. II = 0, t = 0.1000 

(f 

0.100 O.1193E+Ol -.5064E+OO O.3535E-Ol -.1893EtOO 0.1099EtOl 
o 105 0 1242E+Ol - SI87E+OO 0.3009E-Ol -.1918EtOO O.1095EtOl 
0.110 0.1292E+Ol -.5304E+00 O.2508E-Ol -.1940EtOO O.109lEtOl 
0.115 O.1140E+01 - 5416E+00 O.2030E-Ol -.196lE+OO O.1087E+Ol 
0.120 O.1399E+01 - 5523E+OO 0 1574E-01 -.1981EtOO O.1083E+01 
0.125 O.14)6E+Ol -.5626EtOO 0.1139E-01 -.1998EtOO 0.1080EtOl 
0.130 0 1484E+Ol - 5724E+00 0.7224E-02 -.2015E+OO O.1076E+01 
0.135 O.1531E+01 - 5818E+00 O.l237E-02 -.2030E+OO O.1072EtOl 
o 140 0 1577E+Ol - 5909E+00 -.58l8E-0) -.2044E+OO O.1068EtOl 
0.145 O.1624E+01 - 5996E~00 -.4245E-02 -.2057E+OO 0.1064E+Ol 
o 150 O.1670E+Ol - 6080E+00 - 7760E-02 - 2069E+OO 0.106lE+Ol 
0.155 0 171SEiOl - 6l61E+OO -.1114E-01 -.2080EtOO 0.1057EtOl 
o 160 0 1760E+Ol -.6239E+00 - 1438E-Ol -.2090E+00 O.1054E+01 
o 165 0 IB05E+Ol - 6314E+00 - l750E-Ol -.2099EtOO O.1050E+01 
o 170 0.1850E+01 - b387EtOO - 2051E-OI -.2l08E+00 O.1047E+01 
o 175 0 1894E+Ol -.6458E+OO -.2340E-Ol -.~116E+OO O.1043E+01 

6ï 
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l rp'i"lt"i of t. and Il' for Vé\lIOIl" \'ilIIIP<; of .1. whcre W IS the n~ga.tiv~ of the' 

Illlrt~\Ili\r~ pi\rt of tl\(' f'lgell\ allll' (T. 

I,(hl, Î' '11\1' \;1'IIII,d Poin!<; of <JTW-modc solutions 

" = Il 
1 t. !II 

0.875 o 1561E+OO 0.2289E+00 
0.900 O.1539E+OO o 2257E+00 
0.925 O.1518E+OO O.2227E+OO 
0.950 O.1498E+OO O.2197E+00 
o 975 o 1479E+00 O.2169E+OO 
1.000 o 1460E+OO O.2142E+OO 
1.025 o 1442E+OO O.2115E+OO 
1 050 o 1425E+00 O.2090E+00 
1 075 o . 1408E+OO O.2065E+00 
1.100 o . 1392E+OO O.2042E+OO 
1.125 o . 1377E+OO o 2019E+OO 

0.16 

0.875 (10,013) 1.125 
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. \ 
1 

0.875 

Fly/II" .1..'): 1/' \.... .1 

Wl 

III 

0.23 

(1 0,0 ~) 1. 125 

figul'(':- (.l ~) and (,3 9) show t Itat the crit.ical point t •• and w drcrease as ,\ 

3.11 Summary 

ln titis th('~i<; W{' c\ppl;.· the Inte/jltl'utl Wewe Theory of Solidificalwll (IWT) II' 

... t udy tht' rllt'( hanism of dendritic growth from a purp melt. We con~id('[' 

(A'T)L *- (I\'T)' and (c,,)I, -=F- (c,,)s' Wf> definf' 

1 = I+J 
:!( l+ü) , 

11= 

\\ t' Illld t h,lt tht~ t'ffer'" of tllf' dlange of the thermodynalllic constants I\r and 

( .' dlll' 111 1 lit' pha:-.p tril1l5itioll. (,11\ be drscribed by a ,il\~l(> pararneter .1. 
1 

l 

1 
1 
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The problern is forrnulated as a linear eigevalue problem. First, we use 

the Multivariable Expansion Method. It is found that the global instability 

rnechanisrn (GTW) discoverd by IWT is still valid in the present system. The 

present system also has a turnmg pomt, e = ec• Near the turning point e = (, 

and the tip point, e = 0, MVE is no longer valid. Thus, to get a global mode 

solution, we, first, need to find a solution for each region. The global mode 

solution, then, is obtained by mat ching the solutions in each region. As a 

result, a discrete set of GTW -mode solutions is founc!. 

A Global Neutral Stable State Condition is used to select the umque solu

tion from the set of GTW-mode solutions for the later stage of growth. This 

is expressed by saying that the real part of the eigenvalue a( t) equab ..:ero for 

n = o. 
The results found in this thesis are qualitatively similar to the results in 

Chapter II. The system allows a finite number of unstable-growing mode sol 

tions for any given smaU parameter L As t increases, the growing mode solu-

tion will be eventually suppressed. The non-dimensional phase velocity along 

the interface Tl = 1, for the above selected neutrally stable mode, as ~ ~ 00, is 

about unity. Sorne values of the non-dimension al phase velocity corresponding 

to the critical points f. are listed in Table 8. 

It is round that the critical point t. is a function of the parameter A. As 

A increases, f. decreases. It can be concluded that the increase of A, whlch 

corresponds to the increase of the heat diffusivity constant or the !lpecific heat 

in the solid phase, reduces the frequency of oscillation, w, of the interface. 

The position of ~c', which is the intersection point of the Stockf"s line emanat-

mg from e
c 

with the real e-axls, measures the size of the 'smooth· zone of the 

dendrite. It is noted that, although (. Val ies with /1, the position of the con c-
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/1 = il 

0.90 
0.95 
1. 00 
1.05 
1. 10 

O.1539E+OO 
O.1498E+OO 
o 1460E+OO 
o .1425E+OO 
o . 1377E+OO 

l he Plla:.(' Vl'locity 

o 9744E+OO 
O.9987E+OO 
o l023E+Ol 
O.1046E+Ol 
o .1068E+Ol 

------_._---_ ... ~, 

il 

"ponclillg t 'l1'llillg P()lIlt ( j.., Ilot \ l'l'Y :.('nsiti\(~ to the variations of It. It can be 

prt.':'llf1H'd that th!' "iz(> of the '''lIlooth' zone will not be sensitive to the varia-

t ion" (JI' \ 
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