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ABSTRACT

In this thesis we apply the Interfacial Wave Theory of dendritic crystal growth
to the case in which the thermal diffusivity constant and the specific heat of
the liquid state aie different from those of the solid state. The problem is for-
mulated as a linear eigenvalue problem. A quantum condition for the eigenva-
lues is derived and a discrete set of possible solutions is found. The selection
problem is solved using the global neutral stable state analysis proposed by the

Interfacial Wave Theory.




l RESUME

Dans cette thdse. nous appliquons la théorie "Interfacial Wave" de 1'agrandisse-
ment des cristanx "dendretic" au cas ot la constante "thermal diffusivity" et la
chaleur spécifique de l'état liqude sont diffEérent de celles de I'état solide. On
formule le probléme comme nn probRme "linear eigenvalue". On deduit une
condition quantique, et on trouve un ensemble discret des solutions possibles,
On réout le probleme de la sflection, en employant l'analyse "global neutral

stable state". qui est proposée par la théorie "Interfacial Wave".
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Chapter I
HISTORICAL BACKGROUND AND THE
MULLINS-SEKERKA INSTABILITY

11 Historical Background

Dendritic crystal growth from an undercooled melt has been one of the funda-
mental topics in the area of solidification and condensed-matter science. This
phenomenon is characterized by the propagation of a steady tip and the persis-
tent emission of sidebranches. First, this phenomenon was understood as two
separate problems: the steady growth problem in the smooth tip region, and
the unsteady growth problem in the dendrite-stem region. The first problem
was the reason for studying the steady state of needle crystal growth. One
hoped that the growth’s characteristics in dendrite’s tip region could be
described through the steady solutions of needle crystal growth. The second
problem was the reason for studying the dynamics of side-branching pattern
formation.

In 1947, Ivansov studied the steady dendrite growth problem. He found
that, in the absence of surface tension, the system allows an infinite continuous
family of needle-like crystal solutions. These solutions exist for any given under-
cooling and have a paraboloidal interface shape. However, Ivansov’s solution
does not fully solve the problem of dendrire growth in the tip region. For
example, his solution is unable to determine the tip velocity of dendritic

growth.

x ot W N

e



L

Yy o

PPCETE BTN AT TS e T g N ARSI

P it a7 o D e UL A Sy P A ot O]

¢

¥

2

The experiments done by M.E. Glicksman and R.J. Schaefer in 1967 -
1968, show that the tip velocity and the radius of curvature are a reproducible
tunction of the melt-undercooling.! These experiments raised a gr:at interest in
the determination of the growth speed of the needle tip.

In 1974, Nash and Glicksman proposed the maximum velocity principle.?
They found that. for any given undercooling, with the inclusion of surface ten-
sion, the growth rate of the dendrite has a maximum value. Nash and Glicks-
man proposed that a realistic steady state of dendrite growth must select the
maximum value for its growth rate. Unfortunately some experiments done by
Glicksman and Schaefer later on showed that the expenimental data deviate
from the maximum veloaty by a factor of about 7.3

Another contribution made by Nash and Glicksman was a complete mathe-
matical formulation of the problem. A noniinear integro-differential equation for
the interface shape was introduced. In order to solve the problem, some
boundary conditions besides the local thermodynamic equilibrium and the heat
balance condition were added. The first boundary condition was the tip smooth-
ness condition. The second one was the far field condition They suggested that
the effects of surface tension are negligible in the far field, and required the
solution to approache Ivansov's steady solution in the far field. This far field

condition is called the Nash-Glicksman condition.?

M.E. Glicksman & R.J. Schaefer, J. Cryst. Growth 1:297 (1967), 2:239
(1968)

2 G.E. Nash & M.E. Glicksman, Acta Metall., 22, pp. 1283 (1974)
3 M.E. Glicksman, R J. Schaefer, & J.D. Ayers, Phil. Mag.. 32, p. 725 (1975)

' M.E. Ghcksman, R.J. Schaefer, & JD Avyers, Metall. Trans., AT, p. 1747
(1976)

J.J Xu, Studies in Apphed Math | 82 71-79 (1990)




The Nash-Glicksman condition was subsequently applied to some studies of
steady dendritic crystal growth. For example, it was applied to the Microscop-
ics Solvability Condition Theory. For isotropic surface tension, it was found
that if one applies the Nash-Glicksman condition for the far field, then no
smooth, steady-state solution exists.®

In 1978, Langer and Muller-Krumbhaar proposed the Marginal Stability
Hypothesis (MSH) ™ It is based on a rudimentary stability analysis. MSH says
that the natural operating point for dendrtic growth occurs when the tip is
marginally stable. MSH sets the radius of curvature at the tip equal to the
wave length o{ marginal stability for a planar inteiface.

Although the experimental uata obtained by Glicksman et al. fit with
MSH quite well, some weaknesses exist in this theory. First, in the stability
analysis, MSH treats the dendrte’s tip as a part of a planar interface. Second,
it is unclear why this hypothesis works.

Finally, in the 1980’s, Langer abandoned his MSH. With other authors, he
proposed a completely different theory, the Microscopic Solvability Condition
Theory. This theory applies the Nash-Glicksman far field condition and con-
cludes that:?

1. For isotropic surface tension there is no steady, smooth, needle-like

solution.

6 J.S. Langer, Lectures in the Theory of Pattern Formation, USMG NATO
AS., Elsevier Science Publisher (1986)

-1

J.S. Langer & Muller-Krumbhaar, Acta Metall., 26, pp. 1681;1689;1697
(1978)

o

J.S Langer. Lectutes in the Theoiy of Pattern Formation, USMG NATO
AS . Elsevier Science Publisher (1986)
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2. The inclusien of a small anisotropy of surface tension leads to a solv-
ability condition. This non-trivial solvability condition determines a dis-
crete set of possible steady-state needle-hke solutrons. Having found
these steady-state solutions. the unsteady solutions are obtamed by add-
g a small perturbation to the basic steady-state solutions.
3. Only the steady solution with maximum growth velocity 1s stable and
it is this which 15 selected

Based on numerical solutions, the above argument about stabiity was first
made by David A Kessler and Herbert Levine in 1936.% Their numerical meth-
od relies on the approximate numencal solution followed by the diagonalization
of the resulting numerical operator. They claim that their method 1s generaliza-
ble for any formal interfacial pattern-forming system.

A new theory in the field of dendmte growth was proposed by J.J.Xu
(1988). This new theory is based on a global instabiiity analysis of dendnitic
growth. The approach used in this theory is similar to that C.C Lin used in
the 1970°s in developing the density wave theory for the spiral structure of gal-
axies.!?

To study the global instability mechanism of dendntic crystal growth, this
theory starts with a linear instability theory and looks for a global mode solu-
tion for infimtesimal perturbations arouna the Ivansov solution. This theory is
known as the Interfacial Wave Theory of Soldification (IW'T).

The major results obtained in this theory are the following:

1. Dendritic growth s intrinsically a time-dependent phenomenon. The
selected solution in a realistic process, at the later stage of growth, 1s not

a steady-state solution, but a time-periodic solution near the Ivansov solu-

9 DA. Kessler & H Levine, Phys. Rev Lett., 57, 24 (1986)
0 C. Lim & YY Lau. SIMA. J Appl Math. | 29. pp. 352 (1975)
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tion.

2. There is a critical point, which is shown to be a simple, complex turn-
ing point in the system. This turning point plays a crucial role in den-
drite growth.

3. Two discrete sets of global mode solutions are found: GTW-mode solu-
tions and WEASR-mode solutions. From an analysis of the total energy of
the pertubated system, only the GTW-mode solutions are physically mean-
ingful.

4. At the later stage of growth, it is proposed that dendnte growth is in
a Global Neutral Stable State. This global neutral stable state condition
is mathematically expressed by saying that the real part of the eigenvalue
of the solution equals zero. Usmg this condition a unique solution is
selected.

4. From the selected global mode solution, J.J. Xu then derives the tip
growth velocity and the side-branching structure. Thus, according to this
theory. the problem of the tip velocity selection cannot be separated from
the problem of pattern formation.

A review of this theory can be found in the second part of this thesis.

1.2 The Mullins-Sekerka Instability

Before we start to study the dendritic crystal growth problem, which 1s closely
related to the stability of a curved interface in solidification, it is proper to
examine a simple case first: the interfacial instabihity of a planar interface in
unidirectional sohdification. Mullins & Sekerka (1964) wete the first to perform

a systematic analysis for this case. This stability analysis is now called The

Mullins-Sekerka Instabiity (MSI)

[ s a il S X vy Y




.

¢ 9

6

In what follows we attempt briefly to ieview the results of MSI, but the
approach used below is different from that originally used by Mullins &
Sekerka.!!

We tepresent this problem in tetms of two dimensional Cartesian coordi-
nates (z.x). Let us conmsider a flat solidiication front advancing into a puie

undercooled melt with the velocity u in the negative-z direction.

.

X
' T. )_,, < T.J
U
the solid state
0 T Z
Vi
%

the hiquid state
T

L

Figure 1.1 The Solidification Process

To simplify the problem, let the mass density, p, the themmal diffusivity
constant, K, and the specific heat per unit volume, ¢, be the same for both
liquid and solid. The effects of gravity are assunied to be negligible.

The governing equation 1s the heat conduction equation:

I Lectwie Note: JJ. Xu, "Popics m Applied Mathematis®  (189-76113),

MGl University, 1990




I\’TV2T=%Z:+MEVT, (1.1)

where T=T(z,t) is the temperature, t is time. For the liquid phase we
replace T by T, and for the solid phase we replace T by T..

For the boundary conditions, first, there is initially an undercooled liquid
with temperature (T ), < T,, , where T,, is the melting temperature on the
flat interface. We have

As 2z - -0 - (T )p< Ty (1.2)
On the interface, z = h(z,t), some thermodynamic boundary conditions need tec
be introduced. The thermodynamic equilibrium gives

T, =T, (1.3)
On the other hand, the latent heat release on the interface must be balanced
by the heat flow into the bulk of the solid state and the liquid state. This is
described by the following equation:}?

AHu, = [(KTchT)mM - (KTCPVT)Mmd]-ﬁ , (1.4)
where

AH is the latent heat per unit volume of solid,

u_ is the normal velocity of the interface.
This heat flux condition describes the conservation of heat at the interface.
Finally, considering the effect of surface tension on the interface, we have
Ty =T, - w{h(z)}, (1.5)
where

v is the surface tension constant,

k{h(z,t)} = ——=— is the curvature of the interface.
{ ( } (1+h2)3/2

I

12 ].S. Langer, Rev. Mod. Phys., 52, 1 (1980)




z Using the following scales

: K
L,= -;’l : (thermal diffusion length) the scale for length,

AH/c, : the scale for temperature,

K

—2T- : the scale for time,
u

and defining

M as the non-dimensional temperature, the non-dimensional
Al/c,
equation becomes:

VZT_-:.‘?I_;.QZ

0z ot (1.6)

The non-dimensional boundary conditions are:

L.

(T )D_TM
A — . T —-—i&——_—_
$ET TR T T e

¢ 3

2. On the interface, z = h(x,t), we have
(i) The thern.odynamic equilibrium:
T, =T, (1.8)
(ii) The heat balance condition:
L (1,19 - b ZT,-TY +h,~1=0 (1.9)
(iii) The Gibbs-Thompson condition:
T, = ~Ix{(z1)} (1.10)

where

r= -15-<<1 1s the surface tension parameler,
T

ve Ty
| = —E-= s the capdllary length.

© (an’
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The above system allows a steady solution with a flat interface. Without

loss of generality, we can assume that this interface has the equation z = hy

= 0. The exact steady state solution can be obtained by setting -32 =0 and
z

2 =0 in the above system of differential equation. For T _=-1 (unit super-

ot

cooling), one finds

_Je -1 ;2Z0 for the hqud
Tp= {6 0 ,2>0 for the sohd (1.11)

where T, is the basic state solution for the temperature.

The unsteady state solutions can be expressed in the forms:

T (2z,t) = T, g(2) + TL(z,r,t) , (1.12)
Ty(z2,0) = Tep(2) + Ts(z,z,t) , (1.13)
h(z,t) = hy + h(z,t) , (1.14)

where T,;,T,, ,h, are the basic steady solutions for the temperature of the

liquid, the temperature of the solid, and the interface shape respectively.

TL, Ts, and h are small perturbations.

The governing equation for the perturbation part is

V=t o (1.15)
The boundary conditions are:
1.
As z— -00 T, — 0 (1.16)
As z — +o0 Ts - 0 ) (1.17)

Since the deformation of the interface, I;(x,t), is very small, the boundary con-
ditions on the interface z = A(z,t) can, thus, be linearized by expanding them

in a Taylor series around z = 0.
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2. On the interface, z= 0, we have
(i) The Thermodynamic Equilibrium
T,0) = T,0) — (AG)k (1.18)
where

0T,

T,
AGI = (_62—)z=0 - (_5:,—):=o =1

(ii) The Heat Balance Condition

T -T . AE
—(—La:-i + (AG,)H% =0 (1.19)
where
& T T
AG, = (—EE) _ ~(—=B),_, =1
? 8 =0 o7 =0

(iii) The Gibbs-Thompson Condition

To=-Ii_, (1.20)

where we set \/T—i—ﬂi = 1.

To find the solutions for the above system, we introduce a set of new fast

variables:
T
I+=—e- y (1.21)
z+=-:-’- , (1.22)
=2, (1.23)
where
r=¢.
We expand T and A as follows:
P4+ el (1:24)




h=hy+eh+....
By substituting the above expansion into

boundary conditions (1.15) - (1.19), for the zero

8T, 8T
20 + 20 =0
3z+ 0z+

The boundary conditions are:

1.
As 2z, ——00 iTpy—0
As 2, —+00 1 Tgo—0

2. On z, = 0 we have:

(i) The Thermodynamic Equilibrium

Ty = Tgy—(AG))hy= Tg—hy

(i) The Heat Balance Condition

8 « oh
5 (To=Tso) + 5‘,‘0’ =0

+ +
(ii) The Gibbs-Thompson Condition

2.'
L

T. = .
3zi

S0

11

(1.25)

the general equation and the

order approximation, we have

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

The solution for the above system is as follows:

. k(sx, -z, +ot.)
+
T, =Ae © ° ,
Lo 0
- k(ax, 42, tot))
_ + TH TN
Tg = Bye '

. k(sz, +ot,)
hy=Dye * %,

(1.32)
(1.33)

(1.34)

where k is the wave number and o is the eigenvalue. If the real part of o ,

oq, is greater than zero, the solution will be amplified as the time increases.

On the other hand, if 0,<0, the solution will be suppressed. When o, =0, the
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solution will be neither amplified nor suppressed. This solution is called the

neutral stable state .

From the boundary conditions and the solution (1.32) - (1.34), a relation-

ship between ¢ and the wave number k is determined:
¢ = HAG,~2") = K1-2k) . (1.35)
This relation is called the Mullins-Sekerka dispersion relation. From this rela-

tion the value of o is determined by the values of the wave number k. For

k> %\/5, the solutions are decaying and stable. For 0 < k<—;—ﬁ, the solu-

tions are growing and unstable. Thus, surface tension suppresses the short wave

perturbations. The long wave perturbations, on the other hand, will grow with

time.
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Chapter 1I
A REVIEW OF THE INTERFACIAL WAVE
THEORY OF SOLIDIFICATION

Mullins & Sekerka’s analysis solved the linear stability problem of unidirectional
solidification. The dendritic solidification, however, is much more complicated.
The interface of the dendritic growth is curved. The linear stability of a
curved interface is the major concern of the Interfacial Wave Theory of Solidifi-
cation.

In this section we intend to give a brief review of the Interfacial Wave

Theory of Solidification.

2.1 The Mathematical Formulation of the Problem.

The problem of dendritic crystal growth from a pure undercooled melt is for-
mulated in a cylindrical coordinate system (r, z, 6).

Consider a single dendrite growing into a pure undercooled melt in the neg-
ative z-direction with a constant average velocity u. Suppose the coordinate
frame moves with the tip of dendrite. We suppose that the surface tension is
isotropic, so that the dendrite is axi-symmetrical. For simplicity, let the mass
density, p, the thermal diffusivity constant, K, and the specific heat, c,, for
the liquid state be the same as those for the solid state. Let the liquid be ini-

tially undercooled with a temperature (T ).

The scales used are the same as in the Chapter I.

13 -
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A transformation into the paraboloidal coordinate system® is defined by
p
K
J

Frqure 2 I The Paraboloidal Coordinate System

1= qfr))rf, , (21)

R Y I (2.2)

i = -'-,-(\ - )I]U. 2.2

where ° 1s an adjustable constant.”
[n the paraboloidal coordinate system the governing equation is the follow-
my;

ST 8T LaT 10T

o oyt % iy

2064 ATy 4ty 10T 2.3
'I(,(f(.)f n (h,)'f"h,(s +")m' (2.3)

[his transformation was fissthy used by R. Travedy (1970)

1) Nu. Stadies in Applied Math o 82:71-79 (1990)




The boundary conditions are as follows:

1.
As n— o ; TL—r Too
2.
As -0 ; T . Te=0(1)
or §

3. On the interface 7= 5(¢,t)
(i) The thermodynamic equilibrium:
T, =T,
(i) The Gibbs-Thompson condition:

Ty= —~—I—;x{h(z,t)} ,
o

where

I' 1s the surface lension parameter

and

[}

15

et X e % o gl gttt s AT el L g Ry A st A A

P A iy e

1.2 2
1 n 1 n, (n,+27) - §n,
12.3/2 21/2 2 2 2.1
Ve 10/ n 40D g )10

K=-

(iii) The heat balance condition:

%(TL—Ts) - r’”gf_(TL_ Ts) +
2 , . 4,2 2 0n
{my(&n,) + no(E +n )-5;} =0,

where the prime denotes the derivative with respect to ¢.
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2.2 The Basic State Solution

As a basic solution, the steady state solution with zero surface tension is used.

This basic solution can be obtained from the general equations by setting

_3% =0 and -é% =0. It turns out that this is the Ivansov similarity solution
for arbitrary undercooling. The results are as follows:
2% 22
Typ= Typln) = T, 4 22e” BT
Tep=TLp(1)
1p=1 (29)

i o .
0 2 0
Tm '5. El(_2—) 0,

where

T, is the temperature of the liquid in the basic state solution,
T,, is the temperature of the solid in the basic state solution,
np is the interface shape in the basic state solution,

E,(z) is the Exponential Integral (see [1]).

Having found the basic steady state solution, the general unsteady state
solutions are expressed in the forms:

T(&mt) = Typ + Tyt

TJ&nt) = Tgy + Tolmd) (2.10)
nd6t) =y + 264
My

TL, TL, and h are the perturbation parts of the temperature of the liquid, the

temperature of the solid, and the interface shape respectively.
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To solve the unsteady perturbation part, two more boundary conditions are

added. First, the interface near the tip region is taken to be smooth. This

boundary condition is called the tip smoothness condition and is described as

follows:

As § = 0  h(f)<oo and H(E) =0 (2.11)
The second boundary condition is called the radiation condition in the far field:

as £ — oo the interface shape solution represents an outgoing wave

¢
. t X
Be) = exp{ -5 + = [k(€)46,) (2.12)
C"o 0
r . .
where € = — I' is surface tension parameter.
o

The wave number function k;, and the eigenvalue o have to be determined by
the system.

Furthermore, to investigate the behaviour of these small perturbation parts,

a new set of fast variables £, 7., and ¢, is defined:

Transforming the governing equations and the boundary conditions by using the
fast variables, one can find the the governing equations and the boundary con-

ditions for the perturbation parts.

!l e a8 p
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- 2.3 The Outer Solution

* To solve the problem, the Interfacial Wave Theory of Solidification first uses
the Multivarable Fzpansion Method (MVE). It turns out that MVE is no
longer valid in the region near the tip and in the region near a certain point.
This point is shown to be a turning point of the system. The region in which
MVE is valid is called the outer region. The solution in the outer region is
called the outer solution.

In the outer expansion, two sets of variables are used to describe the
unsteady perturbation parts. They are (£7,t) and (£,,.n,,,t,,)- The new set
of fast vanables (£,,,9,,,t,,) is defined as follows:

&, = K& e)dE,
ne, = MEe)dE,
-~ L=t/ '7(2)
< These two sets of variables are formally treated as independent variables.
We expand TL, TS and £ as follows:
T, = (Ty6mb, ) + DuEné,m ) + e (2.13)
Ty TEmé,on,,) +eTq6né m, )+ Je (2.14)
F= (hEne,,m,,) + h(Eng, n,) +-Je (2.15)
k= ko+ck1+e2k2+ . (2.16)

Solving the zero order expansion, one finds the normal mode solutions as
follows:

T, = Af&mesp(f,, —n,,), (2.17)

T, = By(€mezp(i,, +n,,), (2.18)

hy = Dyexp(i€,,) (2.19)
-~

¥
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i‘ The dispersion relation between the eigenvalue o and the wave number function
k, can be derived from the boundary couditions and the solutions above. The

result is as follows:

k K

k, =0 = 0 1- 2 - 2 220
(k8 52(0( EL "552(5; (2.20)

For any given o , one can find three roots of the wave number function k,

(1 1(2) (3).
namely, k', k~’, and k"

KD = M(f)cos{%cos“( N?g) ), (2.21)
K7(©) = MEeosleos ' (37) + 57} (2.22)
7(6) = M(E)eosl o5 (375) + 41 (2.23)

where

{ M) = 2 - o

Me) = -MEL 1 _
35°(¢)

S(E)=V 1+€" .
Only kgl) and kga) satisfy the first boundary condition. They are called the

short wave branch and long wave branch respectively. Furthermore the general
interface solution in the outer region for the zero order expansion can be writ-

ten as:

£
b= D emp{ ot + £ [(K7(6) + (ke ek )
0

[}
oo
-
~—

€
+ Dexp{ ot , + = [(670) + (e, de,) (2.
0
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- Solving the first order approximation, one finds the amplitude functions
v A(&n) and B(€n). k(£) is also determined:
i f[;;gw " )
0

where R(£) is a regular function of .

Investigating & (£), we find that the outer expansion breaks down near
some singular points of k(). Near these points, then, the MVE is no longer
valid because the order of €k, is equal to or greater than the order of k. The
four types of singular points are the following:

1. ¢=0: this is the tip point of the dendrite. The MVE starts break-
ing down when |£|=¢ or ek(§) ~ O(1). When { — 0,

. e ¢ O
) o ezp{az+++:{ £+
; B, exp { ot,, + ,](k @ e (2.26)
\/E ++ A 0 +

2. ¢=¢, , where £ is the root of -a—];— (€ k) =0. This singular
point £ is a function of the eigenvalue o . It is shown that £, is a
simple turning point of the system.

3. ¢ = +: . These two singular points have no significant influence on the
behaviour of the unsteady solutions. The presence of these points,
then, can be neglected.

Having found the singularities of k,(£), the whole region of the complex
plane-¢ is divided into three regions: the tip region, the turning point region,
and the outer region. To get a uniformly valid solution for the whole region,

» we need to find a solution for each region. Finally, in an intermediate region,

R
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we match the outer solution with the inner solution in the tip region as well as

with the inner solution in the turning point region.

2.4 The Inner Solution in the Tip Poini Region

In the tip region, the general solutions for the zero order expansion can be

expressed as follows:
by = d{H(E e - BO(EDgye ™ (2.27)
where
H? is the first kind of Hankel function of order zero,
k= k(0),

K = K)(0).

2.5 The Inner Solution in the Turning Point Region

The turning point ¢, is the root of the following equation:
3/2

Y {:!::li

27 S(6)

The solution in the turning point region is obtained as follows. First, we intro-

¢=t,

duce the following transformation:
¢
F= WE,) exe{* [k (€)d,) (2.28)
(S

where k (£,) has to be determined from the system. The result for &, is

kO =1 La-g. (2.29)

c
2/3
et

Introducing a new variable £,= and putting W as a function of &, ,

we expand W as:
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W(.ie) = go(€) Wy()) + g,(e) W (E) + ... (2.30)
with qo(e)=c'1/ . We find that the leading approximation W,(£.) is subject to

the Airy Fquation :

*w
—2+ A% W, =0, (2.31)

*

where
= -1 [’\’ ﬁ—l-]
65(€)

Using kga) in the radiation condition in the far field, the general solution for

£=¢,

W, in terms of the Hankel function is
UAG Dg,”H‘f/)3 AETY (2.32)

The solutions for / are obtained by substituting W,(¢,) into (2.20).

When Re(£,) — oo the general interface solution can be expressed as
ho={D,05()e W E,) exp(+ f ke (2:33)
As Re({,) = —o©

£
b=, gL W562) ~ €™ WP (ENexn(L [k (€)dk))) (2:34)
€

¢

where

W) = exp[ f k,d€]

€.
ey = L exols
we,) = el { kde] .

k= AE/?
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2.6 Matching
So far, we already obtained asymptotic solutions in th;: outer region, in the tip
region. and in the turning point region. To find the global mode solutions we
need to match the outer solutions with the inner turning point solutions as well

as with the nner tip solutions in the intermediate region.

I &

3

(5} (s)
ﬂ-\ E‘c A

L\ Re(€)
Stocked
lne
Figure 2.2: The £-complex Plane H

First of all. let &' be the intersection point of the Stocke’s line emanating
from ¢, with the real ¢{-axis Since in the sector (S,), & <Re{&) <. the
outer solutions (2.24) should match the inner turning pomt solutions (2.33), as

¢ — £. As aresult the outer solution becomes

: Dle-m/:} ! ¢ (3) iy
hU = —l—/—'-’——:—l-]i—[t‘.\p{—:fko‘ (I\c}]f (2-'3'))
AT(=¢,) ¢

<

Furthermore, by matchimg the outer solution in sector (5,) with the inner

turning point solution (2.31), one tinds




BPe s

= sx/3+2nx (‘) 36)
—'——'—" [ 4 AN
<14,/
lfl) A
or
A(3)
D (nd
25 X!
DO
where
€,
x_(zn-— fk(” g =0, £1, 22, ...
0

Finally, by matching the outer solution in sector (S,) with the tip inner

solution one can derive

%”=_%;_ (2.3%)
Y £2(0)
b$>==___15___. (2.39)

A1)
% _ (2.40)
e
Combining (2.36) and (2.40). one can derive a quantum condition for the eigen-
values, {o s}
(3)
o] KO (2.41)
(1)
ko '(0)
or
€.
1 (” _(3) —_ v — _l. 2.[12
Ef( K de = (0t 142/3)7 = Zha (2.42)
[}
w«
3 where
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1
O
0~ (3
K3(0)
n=0, 1, £2, ... .

Given € , the left hand side of the quantum condition is a function of £,
while the right hand side is a constant for any n. Thus ¢ is obtained. The dis-
crete  set of eigenvalues o can be determined by using the equation

§=¢,

2.7 An _Interpretation of the Global Mode Solution

The physical meaning of the global mode solution above can be understood

more easily if we transform A, to W, by using the transformation (2.28). In
terms of this transformation, the long wave l;o, with the wave number func-

tion kga), corresponds to an incoming wave Wg'), since the real part of k(£) is

always greater than the real part of kgs)(ﬁ) . On the other hand the short wave
number ﬁo, with the wave number function kgl), corresponds to an outgoing
wave Wf,”, since the real part of k(&) is always less than the real part of
Ke)

The outgoing wave Wf,” from the tip collides with the incoming Wf)') from
far field at €', where £ is the intersection of the Stoke's line emanating from
. and the positive real {-axis. The collision generates an incoming wave pro-

pagating toward the tip region. This incoming wave, then, is reflected by the
tip point and becomes an outgoing wave from the tip. The waves seem to be

trapped in the region between the tip and ¢'. The name of the Global




26

Trapped Wave (GTW) mode solution just obtained is inspired by this phe-

¢

nomenor.

® Imik .

5 0.0

?

¢

: 1 3) ¢ '
Igure 2.3: The Wave Number Functions: &, £” for Several o's.
k_ is the reference wave number function.

Specifying K in the radiation condition in the far field, and using the

same method as before, anothet set of global mode solutions can be obtained.
The solutions m this set are called  Wave Emission and the Sygnal Radiation
(WEASR) mode solutions.  Iiom an analysis of total perturbed encrgy, the

WEASR mode solutions are ruled out.
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2.8 Selection Problem

The question, now, is how to select a unique solution for the dendrite at the
later stage of growth. The Interfacial Wave Theory of Solidification introduces
the Global Neutral Stable State Condition (GNS). This condition states that
in the later stage of growth, the solution should be selected near the neutral
point of linear stability. The difference between the Marginal Stable Hypothesis
(MSH) and this criterion is that, in MSH, only the dendrite tip must be neu-
trally stable, whereas, in this criterion, the whole interface is neutrally stable.
The GNS condition can be mathematically expressed by saying that the real
part of the eigenvalue o(¢) equals zero for n = 0. It turns out that the value
of ¢ corresponding to Re(s) =0 is ¢, = 0.147, when n = 0 .

The phase velocity of the wave along the interface 5 =1 can be calculated

by

2
), = _UA%L
Re{k;"(€)}

where w is the negative of the imaginary part of the eigenvalue o. As
£ — oo, it is found that the phase velocity corresponding to €= 0.147 is

v, = 1.02. This numerical result is in good agreement with experimental

observations in the laboratory.
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Chapter III
AN APPLICATION OF THE INTERFACIAL WAVE
THEORY OF SOLIDIFICATION

In this part we shall apply The Interfacial Wave Theory of Solidification to
the case in which the thermal diffusivity constant and the specific heat for the
liquid phase are different from those for the solid phase. Let (Kp),, (Ko
(c,),, and (c,)s be the thermal diffusivity constants for the liquid phase and
the solid phase, and the specific heat for liquid and solid, respectively. Thus,
in this case (K;), # (K;); and (c,), # (c)s

-~

he 3.1 Mathematical Formulation of the Problem

The problem will be formulated in a paraboloidal coordinate system (£, ). As
before, we consider a single dendrite solid growing into a pure undercooled melt
in the negative z-direction with a constant average velocity u. The coordinate
system is comoving with the tip of the dendrite. Let the mass density be the
same for both liquid and solid. We neglect the effects of gravity. Let the lig-

uid be initially undercooled with a temperature (T, ).

The scales used are the same as those defined in part II, but A, and c,
are now replaced by (K;), and (c,),.

In the moving paraboloidal coordinate system (2.1) & (2.2), the governing
equations are as follows.

1. For the liquid state:

m

o
v




aT oT oT
n§( €_¢9_££ - -50—[‘) + ng(f’ + nz)—gti
2. For the solid state:
62T5 4 82T5 1 BTQ +l6T _
o &y S0 non

. 0T aT aT
(e = 1)+ Angl€ + 1)

on
where \ = (IQ:T)L .
(Kp)s
The boundary conditions are the following:
1.
As n— o0 ; T,> T,
2.
ds =0 ; s g, T =0(1)
ar s

3. On the interface 7 =1 (1)
(i) The thermodynamic equilibrium:
T, =T,
(i) The Gibbs-Thompson condition:

Ty= —Ln{bat)}
no

where

2 2
.o n,’ 1 1, (n,+2¢") ~ &n,

1 s
- { — +
Ve ™S a4/ g&en’) 140"
is the curvature operator

(ii) The heat balance condition:

29
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“ %(TL_:BTs) - ns'-aa_E(TL—ﬂTS) +

{m(én)’ + n3(£’+n2)%}{1+d+a T =0, (3-7)

where

g= (CE) 5( KT)S

RONE

Ac
a=-—E

),

The prime denotes the derivative with respect to &

3.2 The Basic State Solution

)

¢

A time independent solution with zero surface tension will be used as a basic

state solution. By adjusting the constant 75, the system for the basic state is

the following:

The governing equations:

1. For the liquid state:

62TLB 1 0T, 2 0T,
4 1% _ 2 3.8
2 7] a 770: 6 ( )

2. For the solid state:

8Ty 10T 2 0Ty
o +-1; 8;3 =—Anor)—-5-n—- (3.9)

The boundary conditions:

1.

L
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As n—= o0 ; Ty~ T (3.10)
2.
dT
As =0 5 —Z =0 Tg=0(1) (3.11)

3. On the interface n =17, =1, we have
(i) The thermodynamic equilibrium:
T,p= Ty (3.12)
(i) The Gibbs-Thompson condition:

Tep=0 (3.13)

(iii) The heat balance condition:

?%(TLB‘ﬂTSB) N

where T, ., T, , and 7, is the basic state solution for the temperature of the

0

V5 (TumPT + n(l4d+aT) =0, (3.14)

liquid, the temperature of the solid, and the interface shape respectively.

The solution for the above system is the following:

2 4 2 2
"0 '10/2 7707’

Typ=Typ(m =T, + (14d) 5> ¢ E(—) (3.15)
Top=T,5(1) =0 (3.16)
2 . 2
M n/? 7
(1+d) 7" e El(—29- =|T |, (3.17)

o -t
where E (z) = f —et—-dt is an exponential integral ([1]). From (3.17), one can

calculate the constant 5, as a function of the undercooling T , and a.

ot e at¥ a Foo P A matrreh B e e S b e oy hm b SRS SR 2N sl

I S N

N S O



E 3.3 The Linear Perturbed System
For the case of nonzero surface tension, the unsteady solution of dendrite
growth can be found by adding a small perturbation around the above basic
state solution. As in part II, we express the unsteady solution in the forms:
T (Emd) = Ty g(n) + T, (Em1) (2.18)
Tyémt) = Tggn) + Ts(émd) , (3.19)
(&) =15 + -h-(%tl : (3.20)
o
In any finite region around the tip, the perturbed part is very small compared
with the basic state part as the surface tension parameter e<<1l. In order to
study the perturbed part, we also use the fast variables
£==, (3.21)
- n, = ﬂ:—‘ , and (3.22)
-
==, (3.23)

With these fast variables, the system for the perturbation part can be

rewritten as follows.

The governing equations:

1. For the liquid state:

8 & | x 4,,2 2, 0
(= + )T, =e{n (€ +n)5—+
o, X o1,
2, 0 5] 1 8 1 0,4
- - =) - =5 - —5—1T (3.24)
g, Tom, £0, nom t
2. For the solid state:
2 2
(Lot Tty = e + )+
o, + +

W




0
on,

Anz«% —n2 -
+

The boundary conditions are as follows:

1.

As n, = —© ; Ta— 0

33

(3.25)

(3.26)

(3.27)

3. On the interface 7=7(§,t), the boundary conditions can be linearized

by expanding them in a Taylor series around 7,=0 or 7n=0. The results

are as follows.
(i) The thermodynamic equilibrium:
T, =Ty + (1+d)k + O(e)
(i) The Gibbs-Thompson condition:

25 2 © 2
P LTk €(Q42) Ok e

i} + O
TR e % e

(ili) The heat balance condition:

O 7 _a7 22 0k | . Ok -
W_’_(TL—BT‘S) + {77052(9_1_'_ + f—az: (1+a) +

e(1+d)(2+n§)ﬁ + edh + enga T, =0,
where
s(€) =V (1+¢).

Two additional boundary conditions are imposed.

1. The tip smoothness condition

As€ = 0 , H0p<co | {-gg-}£=0=o

2. The radiation condition in the far field

(3.28)

(3.29)

(3.30)

(3.31)
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¢4

As £ — oo , the solution describes an outgoing wave

£
i) = e 2k + 2 [ke)d) o Relk(€)>0 (3.32)

5770 0
It will be shown that the wave number function, k,(£), is a function of

the eigenvalue 0. Due to the requirernent that the total perturbed sur-
face energy is finite, the outyoing wave in (3.32) must decay as

¢ —oo0.

3.4 The Outer Solution

To solve the problem, first we use the Multivariable Erpansion Method (MVE).

As in part II, we define a new set of fast variables as follows:

&,, = HEOL, |

A
> n++ = k(f,f)de+ )
2
e =/,
Two sets of variables are used in the outer expansion. They are (£ 7, t) and
(€,4 My t,,). These two sets of variables are formally treated as independent
variables.
We expand TL,TS, and h as follows:
- . - ot .
TL = {TLO(E)T’7£++’T’++) + CTL1(€77’)E++)7’++) + .}E " (3'33)
- - . ot +
To= {Toeme, n,,) + T @Ené, n) + e (3.34)
- ~ . ot
f= (RyEné, m,,) +ehEnt, on,)+ Je (3.35)
k= kbekte ky+ (3.36)
The system for the perturbation part is converted by replacing the deriva-
™~ tives with the following:
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ol W
oy =
% = (kgg: + eg&-f =K 6?; + 2ek6£g;++ +e g; 366 + 52;‘952-

The converted system for the perturbed part is as follows.

The governing equations:

1. For the liquid state:

2 2 3j~
k2 _.a___ 6 7"' = _t k 6 6 T
(562 + )T, = eng(€” +")at + encé( %, as)T
++ +4+
2 i} 0 4.5
- k—— + ¢==)T, — —(k—=— + ¢=2)T
eny o, 6,7) ( 6€ +€ 66) .
& & ok 9 .
— €(2k + 2k + —=—)T
o, * oo, T T,
€, 0 8.\sm 2,0 | & .: (3.37)
- Lk +e=—)T, — € (= + —)T 3.37
on,, Oon L o ot "
2. For the solid state:
2 2 aT
3 G A s=f*'?§(fz+’7)at 6 +eA——)T
a£++ 42

2 d 0\ € i) d.\s
—engnik—— + ¢—=)T, — —(k—— + ¢ )T
on, ot g o, 0T

& & Ok _d s
- €2k + 2k 4= T,
e, e, T,

- Lk 9 +ei

< T 3.38
n on,, T o’ 552)5 (3.38)

The boundary conditions:

T X S T e SR
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As -0 ; T,>»0 (3.39)

As

My = —© 3 T.— 0

3. On 7, =0or p=1, we have
(i) The thermodynamic equilibrium.
T, = Ty+ (1+d)k + O(e) (3.40)
(ii) The Gibbs-Thompson condition:

- 1 ,,,2 8 i ok 8 2, & 1
To= —=——{(K—=— + 2k +e— +e(— - ——
$75(6) s o, ‘ o, o€ %€ a,, ‘ o S0

2
€

oL+ )k + )+ 0 (3.41)

§ S %y S

(iii) The heat balance condition:

8 8\ _ 7 2 _Oh 9 B v
(b + BT + (S0 8+ g+ G4 +
c(l+d)(2+n§)ﬂ + eah + cnia’f‘s =0. (3.42)

For the zero-th order approximation, O(¢%), we have the following system.

The governing equations:
1. For the liquid state:
P 2
kz(—T + —_@2—)TL0 =90 (343)
%4 Nes

2. For the solid state:

2 & R,
B(-Z— + ) Tg =0 (3.44)
6€++ a"++

The boundary conditions:

1.
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As n,, — o0 3 Ty =0 (3.45)
2.
As Npy = —0 Tso" 0

3. On n,, =0 or n=1, we have
(1) The thermodynamic equilibrium:
Typ = Tgp + (1+d)hy + O(e) (3.46)

(ii) The Gibbs-Thompson condition:

K o
Fo=—0- 9 j 3.47
0T8O o, (347)

(i) The heat balance condition:

. . ok
b, =2 (T,-BT + (oS (Oh +k == )}(14d) = 0 (3.48)
o,y %,

The general solution is the normal mode solution, as follows:

Ty = Ag(ém) exp(i,, - n,.) (3.49)
T = By(€m) eap(i,, +n,,) (3.50)
’;o =D, ezp(|€++) . (3'51)

Without loss of generality, D, can be set as a constant because the wave num-
ber k is considered as a function of £ and e.
Onn=1, let
A&1) = A(8)
B(&1) = By(¢) .

Using the boundary conditions on =1, one can derive

L (3.52
0(5) - S(s) 0 * )
A6 = (1+o;-i)1§0 (3.53)

5(€)
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The dispersion relation can be derived by using (3.52), (3.53), and the heat

balance condition (3.48). The result is

k g k
. _ _0 (148) % o
(k&) =0 = - - ~ . (3.54)
’ $(6) (1+4) s%(¢) $(€)

We define a new parameter

148
T 2(14a)

With this A, the dispersion relation can be rewritten as

k k
Ik 6) = 0 = —— — 24—— — s —= (3.55)
g SO Se

It is interesting to see that in the zero order approximation, the effects of the

variations of the thermodynamic constants, K, and c, can be described by a

single parameter A. As A =1, we regain the dispersion relation (2.20).

For any given o and A, one can find three roots of the wave number func-

tion k, namely A", K, and K:
£ = Ple)eos{eos (7)) (3.56)
K(E) = Pl@)cos(-eos” () + 3T (3.57)
ﬁ%hmmm%MR&y+%L (3.58)

where
1
=y Ze -’

Qe = -2 -
35(¢)

Considering the first boundary condition, only k,’s with a positive real part

satisfy this condition. Thus only kf)” and kga) can be used. The general interface

solution in the outer region for the zero order expansion can be written as fol-

lows.
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® (k) )
O'-n
(e
0o
v
-1.0
8}
ky (6
©
o
] & =00
Figure 3.1: The Wave  Number  Functions. A = 1.05,
7 = (0.1825.-0.1972)
- 1) 3 y i (1
= 0 el oty + = [ + (KD + . )de )
0
3 t' 3 3)
[ v
+ D enp{ o, + ij (068 + e(KE) + .. )de ) (3.59)
0
The system for the first order approximation is as follows.
The goveimng equations are:
L. For the liquid state:
s g = o e e (3.60)
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TR

X

¢

10

00 Re(k)
1
-1.0 1.0
k(e
©
o
! ﬁ = 00
Figure 3.2: The Wave Number Functions.
A =105, and A =095, ¢ = (0.1825,-0.1972)
2. For the solid state.
N R (3.61)
ot an
++ ++
where
aA,  OA, T Y Y
a, = Qk"(Ty;- - ‘Tf-) + A Lo (&40 + kg (+m) + 7 - z—E— - :—(;)—E—]
asB aB 9 o 9 " k k ok
b= _-zk”(-(# + ,—(,)?“-) + B (o€ +n") + kA (€=n)) — ’—;‘ - x-ER - '—0?0]

Lhe  boundary conditions are as follows:
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 Im(k)
o
W2
kL8
(3)
ky (€
0.0 Re(k)
1
-1.0 ) 1.0
(1)
ky (€)
(o)
o
)
Figure 2.3 The Wave Number Functions for Several o's.
A =095
I.
As n,, — o ; ’1.’“ -0 (3.62)
2,
As n,— - , T, -0
3.0n p,=0o0r p=1, we have
(i) The thermodynamic equilibrium:
I = 1"3l+(1+u)/il (3.63)

!

(ii) The Cibbs-Thompson condition:
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F 1{(k281+2kk825° 2% ok,
517 75(8) 0352 01a€+++ 0(% 6&

++
ok, O,k Ok ¢ ok
+ —= k + 3.64
o O, &0, S %, } (364
(iii) The heat balance condition:
(ko—a—a—)(TL ) + (oS (@b, + k5 o }(1+a)+
T+t oy
9 (t,,-pT, F
'b‘,"( Lo -8 ) 13,)++( Lo '3 )

oh 3/;
{(k 155 - )(1+°‘) + (1+0)(2+ﬂo)h + ahy + noaT =0. (3.65)

The terms proportional to e*** in (3.60) and (3.61) yield secular terms in

the particular solutions for both 7, and T . These terms are small for small
{,, but appreciably large as £, — oo . Thus, to ensure a uniformly valid

expansion, each coefficient ¢, and b, must be made to vanish. It follows that
9 0 _
('87 - 16—5) log(y(§,m)) = 0 (3.66)

9 . 9 _

(5)' + *52) log(¢(&m) =0, (3.67)
where

() = Aemk)/ e ' Fem)

s(6m) = By&mk e 1 6en)

REn) = emp{ 207 —€0) + vno(—"—+1 f ﬁ—de )

Gl = erp{~—~(n -€") + hom(- f Ak

Using the notations
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A&1) = A\9),
By(¢,1) = By(¢),
one obtains
wem) = A6 k26 PR 1) (3.68)
B(em) = ByE k26 2 6ie, 1) (3.69)
where
§,=6+1(n-1)
and
§,=€—1(n-1) .

The general solution for the first order expansion is as follows:

(€4p =)

= A(gm)e (3.70)
= Beme T (3.7)
ho= bt (3.72)

As before, Dl can be taken as a constant since the slow variable ¢ is absorbed
into the wave number function k.
On 7=1, let
A61) = A9,
B,(&1) = B(§) .

From the Gibbs-Thompson condition, (3.64), and (3.71), one can derive

B&) = k 2D + Dy -2 %, =) = 2k k] (3.73)
——+ .
BEGIAED) 5 ff o
From the thermodynamic equilibrium condition (3.63), the general solution
(3.70), and (3.73), it follows that

A& =B, + (1+a)D, . (3.74)
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Finally one can derive k, using the heat balance condition (3.66) and the fol-

LB

lowing equation:
2
. . X . on .
gy A8l = v ot 0B) (At APB) 3 S @4 0

dlog(k .. o,
+(A,+BB)( : £+ i ;‘(;({ o )—%(Ao—ﬁBo) - %’-(AO—AﬂBO). (3.75)

It follows that

2 k2
(1+2d+(1+d)r’2—°)+-§'—-[(1+07)—3(1+ﬁ)?0—¢€(1+07)]+Q(§)
k= 3 , (3.76)

k2
(1+6)-3(1+6) 5~ £(1+d)

where
i oS
Q) = 1+ﬂ)—-[3 ][1+ 1+M3) ][—-—+—£ N

. 9( k)

+—= [1+a—(1+ﬁ)——][ —24 —°:2 B(1+)) noa]

From the dispersion relation one can derive that

2

. 2r 0 . k i
(1+a)5’2[§;2(k0,5)] = 1+a—3(1+ﬁ)?°—1£(1+a) (3.77)
The equation (3.76) can be written as

0] :
k = + —, (378)
RIS (R

0

where R(£) is a regular function of .

Because ¢ is a small number, we may suppose that a+1 # 0. Then it
follows from (3.78) that the system has four singularities, as in Chapter II.
1. £ =41
2. E=0 As ¢ - 0




45

_ pW ] )
h exp { ot +af (k7 (6,),)) +
'/E ++ A 0 +/ ¢

.® ¢
:)/_ ezp {ot . + zf(ko(a) (€)4,)} (3.79)
3 o
3. §=¢€, ; £ is the root of 9 (€..k,) =0, where Z({c,ko) is

Ok,
defined by (3.55).

Since, near these singular points, the outer solution is no longer valid, we
divide the whole region of the complex plane-¢ into three regions. To get a
uniformly valid solution for the whole region, a solution for each of these three
regions must be obtained. By matching the inner solution in the tip region
with the outer solution as well as matching the inner solution in the turning

point region with the outer solution, the global solution is obtained.

3.5 The Inner Solution in the Tip Region

As mentioned in part 3.4, near (=0 or as £ — 0, the MVE is no longer valid.

This is because, in the governing equations (3.24) and (3.25), the orders of

T FT ¢ OT
magnitude of L and S are equal to the orders of magnitude of ——=
& 2, 2, 1 & £ o,

T
and %ZES’ when |€| = O(¢) . Thus, in the tip region, the system should be
+

rewritten as follows.

The governing equations:

1. For the liquid state:

L)

o 8
2
& o

1 9.5
=9\ =
te e




‘.»,-:*

3

¢

e{ng(€’ + 172) o, + (€= a{ a’h) - TaT}T
2. For the solid state:
(__2_. 2 RORY
o€’ o & %,
e{ (€ + 1 a? + /\no(E -1 6‘3+ - % a‘; } T
The boundary conditions arc the following:
L.
As ng,— o0 , T, =0
2.
As 9, — -0 Ts_’ 0
3. On the interface, 7, = 0 or n = 1, we have

(i) The thermodynamic equilibrium:
T, = Tg+ (14a)h + O(e)
(i) The Gibbs-Thompson condition:

s 1 Ok 1 0k e Oh & oo g0
s 5@){5 fRw e R

(iii) The heat balance condition:

‘aT‘T -pT )+{n0§(s) +f’a?'}(‘+")

e(1+a')(2+17:)ﬁ + eah + enzaf‘s =0

We introduce a set of tip fast variables (€,,,m,,,t,,):

w4 = KK,
N, = Kem,
t++ = k(c)t+ ,

and make the following asymptotic expansions in the tip region:

46

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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- - - ot

T, = (b Tyol€om,y) + 8T € m, ) + e (3.87)
- > - ot

Tg = {py(€) T, o, ) + 1 (T (€, om, ) + - Ye (3.88)
F = {n(Ohy(e, ,m,,) + B (OR €, 1) + e (3.89)
F=ktck+ . (3.90)

The above set {g,(€),p,(€), ... }, has to be determined by matching with the
outer solution.

In terms of the new fast variables, the system becomes the following.

The governing equations:

1. For the liquid state:

& 0 1 a)

( + + T, =
3§1+ 3ni+ S Sy
€ (2,2, .2 0 22, 0 d E 0 &
£ + 9 )—— 4+ - -— T 3.91
a {m(¢ n)mH ngk(£a£++ nan++) nfm} . (3.91)
2. For the solid state:
2 2
A S U R 3
ok, om, Cor $oa
£ O + )2 4 ket — g2y £ 045 3.92
]}2{ n0(£ ﬂ)at++ nok(£a£++ ’ian++) 1 an+} L ( )
The boundary conditions:
1.
As n, = o | TL——> 0 (3.93)
2.
As 9, — -0 Ty— 0 (3.94)
3. On the interface, = 0, we have

Nyt

(i) The thermodynamic equilibrium:
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o T, = T, + (L+a)f + O(e) (3.95)
(ii) The Gibbs-Thompson condition:
- 1 2 8h | Kok
T.= —{k——+ +
©A8) o€, , oy %y
ek ok € 3 3
F© Far SO
(iii) The heat balance condition:
(1,81 + (SO o + keg-)146) +
++ + ++
(14+0)(2H1)f + edh + ena Ty + 0(") = 0 (3.97)
For the zero order approximation (O(u,(€))) we have the following system:
The governing equations:
1. For the liquid state:
- il & .1 0.z
- ( +——+ )T, =0 (3.98)

3€i+ o, S

2. For the solid state:

+ + )T, =0 (3.99)
3€i+ 3ﬂi+ ot Sa

1.
As q,, = o , T,y — 0 (3.100)
2,
As m. — -0 T — 0 (3.101)
3. On the interface, 7., = 0 we have
(i) The thermodynamic equilibrium:

T,o= T+ (1+d)k (3.102)

LY.




(ii) The Gibbs-Thompson condition:

. . Ok 1 ah
T = kz{ L4 g }
oo afzﬁ oy O,

(iif) The heat balance condition:

i 0 5 = ; .
ka” (T — BT4) + ohy(1+a) =0
++

The general solution of the above system is the following:

Tho = {agBNE, ) + b HOE, DY+

To = g€, ) + b HOE, D)

where

8100 by o g and by are arbitrary constants,
Hf)l) 1s the first kind of the Hankel Function,

Hff) 1s the second kind of the Hankel Function.

As £ ,, — oo, the inner tip solutions are

~ /g ¥ - -~ -

T, ={a Q/ 2l +++6L‘\/ 2_ i, e "++,
Lo Lo ﬂ.€++ 0 1r§++

. - i - 3 +

Tey = {ag/ 2 et b 1/ 2, e has
50 2V 7, VT,

Matching with the outer solutions (3.49) and (3.50) we have

bo=bg=0 . The inner tip solution becomes

5 1) e
TLO - aLOHf) (£++)e

s 1 ey
Tg = “so”f) (€, y)e

0

hy=dH e, ,) -

From (3.103) and (3.110) one can derive

2
gy = —kydy .
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(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

to set

(3.109)

(3.110)

(3.111)

(3.112)
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From (3.102) , (3.109) , and (3.112) one finds

ay, = (+-K)d, . (3.113)
Finally a reiation between the eigenvalue ¢ and l;:o can be derived from (3.104).

One finds that

k ) )
o= ‘l;g{1+°‘(1+ﬂ)"o} . (3.114)

The last expression can be considered as the limit of dispersion relation (3.54),
as £ —» 0. The roots of the equation (3.114), then, are the following:

((1)_ (1)

KNy,

((2)_1(2)

ko _ko (0))

#(3 3
9=y .

Only Iegl) and K9 satisfy the boundary condition (3.100). (Only ks with a
positive real part satisfy this boundary condition.)
The zero order general interface solution in the tip region can be written as

Fe (4O BUDe) + 4@ B(E D )ye (3.115)
or

W . O,

k={a Hf,(—‘:-s) +d® Hy(--)e ™. (3.116)
As £ — 0 one has

i(1) £(3)
- ot k k
iy — e A +4 P )raan(d M g (=) + 4,2 log (=) (317

Oh(¢,t
¢

et (@d V44 )7?5 (3.118)

To satisfy the tip smoothness condition, that is,

as &£ = 0 ; h(Et)<oo and g_’ﬁl — 0,
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one has to set do(l) + do(a) = 0. The zero order general interface solution
becomes

~ N - ot
Ry =4 (HDKDE,) - HP (B )Ye (3.119)
As {,, — oo the equation (3.119) becomes

] (00, 1 k&"‘)(ﬂ)f+} ot
e w—

—Ll S — &+ (3.120)
v £P(0)e, v €0,

hy = py(€)d

3.6 The Inner Solution in the Turning Point Region

As mentioned in part 3.4, there is a critical turning point for the system. This

turning point is the root of a?c Z(f,ko)zﬂ. From the dispersion relation, it
(8]
follows that ¢ satisfies:
_ 3(1+B)K, o
+d - ) - (l4a)f, =0 (3.121)
or
1+a)(1 - S
Q- [(1+a)(1 - £ )]S(E) ‘ (3.122)

3(1+6)
Substitute (3.122) into (3.55) with £=_, one can derive

) -, 3/2
o=+ S o) (3.123)

It is shown in part 3.4 that, in the region near the turning point ¢, the

outer solution breaks down. To derive the governing equation for the general
interface perturbation, we use the fast variables (£,,7,,¢,) . By considering the
boundary conditions (3.26) and (3.27), the governing equations (3.24) and (3.25)
can be rewritten as follows:

1. For the liquid state:
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o a 0 0 \1p 5
U T, = e(ige—t+=—) P(T)), 3.124
(‘a£+ 67] ) ( a€++an+) L( L) ( )
where
Iy = — ()= b 0, 10 10,44
P (T)=—{n§+n )6 +770(EaE n6n+) £% 7w 8n+}T
2. For the solid state:
. ._Q_ P o= eg2—— 0 y'p (] :
ﬁ(a i, )Ts ef(1 i, 377+) P(Tg), (3.125)
where
N T 9 8 a4, 1494 10,4
Ps(Ts) - {’\"0(5 +n )61 + ’\7’0(6 6E '76U+) E aE n 677+ }Ts
On the interface, n, = 0, we note:
1 1 From (3.124) and (3.125) one finds
’ 2 (F,-pT) = 2T, 48T + 0(c) (3.126)
- an, " 0,
s “» 2. From the boundary conditions (3.28) and (3.29) it follows that
: T 48T, = (14a)i + U—%l g ") + 0(e) (3.127)
i
E. 3. From (3.126) and the boundary condition (3.30), it can be derived that
] 12T +8T) + (n2S(e —+eﬂ b )(144) = 0(¢) (3.128)
: 3€+ o€,
3 Let
:
£1=E_Ec 1
. - . at+/ng
; h(€) = {hy(€) +€h (&) + .. }e (3.129)
: From (3.127) and (3.128) one can derive the governing equation for the inter-
: face perturbation:
" 2 O ok,
: 4B) 570 e{(1+8)(E+1)} =2 + (1+4) Sz(.f)ah =0 (3.130)
~ S(€) o 2%,

o !




We introduce a transformation

¢
by = WEJexp{ L [k (6)d6)
£
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(3.131)

where the reference wave number k (£) is to be determined from the system.!®

From the transformation above, one can derive:

ok
L ==+ 1— Wlexp{— fk (€)d€}

Chy  _fw . koaw K '
__.',_..+2._°_.__° — | k (&)dt
il A 6f AGLY

Chy  _Pw Ffw K oaw & : 5
=[_-+3——-3 Ze AW T pexpit [k (€)de
A A e"{cefc (€)de)

Substituting (3.131), (3.132), and (3.134) inio (3.130) one gets

0, 4V o W 0 W 4 e ok ) W =0,

3 d{? 2 dfl d{
where
248
(kcv£ ——{1—' }"' = s
2 5(6) 5
64K
8, = SOz Nk =16~ 5
64k,
= 22( A=
s = 32 )= -

15

(3.132)

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

From a numerical result, we know that, when the real part of sigma is

greater than or equal to zero, the long branch wave of h, corresponds to
the incoming wave of W, since the real part of k(£) is always greater

than the real part of k)(£). The short branch wave of HO corresponds to

the outgoing wave, since k (£)<k;(£).
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For any £, let b satisfy

] « .
“(E)DTE(k =0 (3.110)
It oliows that
k&) = -'-:'-(-E‘—)'{l—lf} (3.141)
® Im(k)
1
K26 o
b ()
0.0
-1.0
©
ol
]
Figure 3.4 The Wave Number functions. A = 1.05, k,_is the
reference wave number function.
Uang b above in the dispersion telation, one gets
. ) - - __'._!__‘,___l-—bf I 3.142
Z",'s)—z'(f)—\/ T (3.142)




© Im(k)

N0

0.0
-1.0
©
o.
]
Figure 30, The  Wave  Number Functions for  Several a's.

1 = 0.95, & ts the reterence wave number function.

[f & i~ chosen o that 1t satisties (3.140), then (3.135) becomes

0, D i Y (o- S R0 =0 (3.1
(Ifl dsl

For small e, in the vicinity of the turning point £, one may neglect the

fitst term of the equation (3.113) . One, thus, finds

W12, L’_!‘_ £ o= )W = (3.144)
S

Gnen anv o . from (3.123) and (3.142) , when £=£, one has




T WARRRTERT T TR R TS TTTRE TR IR TERCT IR TR A R A T T e T T

T e T TR T

3 PR T N TR T TR T R iy SRR

¢4

¢ 9

7= Y (€)=0.

This means that ¢, is a simple turning point for the system.

To solve the equation (3.144), we introduce an inner variable

I

1
Et='_v .
€

In term of this inner variable the equation (3.144) becomes

4w + F(EE,)

d£2 C2-2u w=0,
where
2o = ), ()}
Flee) = %@{a -V @)= ———
2 = o 2(ko,e)]
——
o ) .
Expanding F({.£,) in a Taylor series near {,, one finds
8y (6
- % §=
F(§€) ~ — —,
Y (ky)
ok
(ky=k )(€=¢,)

oL EAr
REe) ~ ~ gty e-e)

Substituting (3.149) into (3.147) , it follows that

d2W+A2 61

2 2~2v
d€, €

__,/_1_2‘1
A== 6A{S(£c)}

W=0,

where
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(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)
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Let W(£,) have the following expansion

W(E) = g Wy(&) + g, ()W (&) + - -, (3.151)
where {g,, q,, ...} has to be determined by matching with the outer solution.

For the leading approximation, one has to set v = 2/3. From (3.150), we

derive

W
—>+ AW =0, (3.152)

.

which is the Airy FEquation . The general solution of (3.152) in terms of

Hankel Functions is

W) = G, (/3467 ) + DETHT, (2734677 ). (3.153)
We apply the radiation condition in the far field and use k0=kg3). When

the real part of the eigenvalue o is greater than or equal to zero, the long

branch wave f;o corresponds to the incoming wave W ({,), since the real part of
ek (e <.
By expanding the Hankel functions for Re(§,) — +o0o, we have to choose
C = 0. The general solution (3.153) becomes
Wo(t.) = D& B, (2734677 ) (3.154)
where D is an arbitrary constant.
We define the wave number function &, as
k=4¢,'? (3.155)
The branch cut line emanating from the turning point £, is chosen on the

lower half é-plane.'® Thus the neccessary condition for the pattern formation is

that the turning point ¢, be located in the lower half ¢-plane. This ensures

the continuity of the solution, since the branch cut line chosen above will not

16 J.J. Xu, Phys. Rev. A 40, 1609 (1989)



k!

& cross the real axis m the complex &plane.  From (3.123) one can prove that
the corresponding cigenvalue @ belongs to the region (2) in the complex

a-plane. as this pattern founation condition holds,

w
.3
-~
L d
Fryure 3.6: Complex o(€)-plane.  The eigenvalue cutves corre-
spond to the teal turning point §. These curves are for
various values ot A.
When Re(é,) — o, the general interface solution can be expressed as
: /A "t ot
By={Dygle)e P UTNE Jexp(+ [ 4 (6)dg)}e * (3.156)
E(
As Re(€,) = =2 we have
. ) YY) 1 y "y . -
ho={D g ()[W (€)= eI (:.)]exp(;fkc(c,)de,)}e : (3.157)
€
where
-




£
W e) = —mexpler [ k]
1= ot

e-
WHe) = 1 exp[e | k,d€]
0 . — - LW

3.7 Matching

——— sk D

So fat we have already determined the solutions in the outer region. in the tip

region. and in the turning point region.

To find the global mode solution we

need to match the outer solution with the inner turning point solution and the

outer solution with the inner tip solution.

Figure 3 7

Complex €-plane

e
| cocke's
A
Ay
1 /

4R ‘
l, Re(§)
Shocki '

Line
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First we shall match the outer solution in the region I with the inner turn-
ing point solution. Since, in the region I, ¢'<Re(f)<oo, the outer solution
should match with the inner turning point solution (3.156), as ¢ — &. The

matching condition can be written as

El 61
4 P e By @ 3 e O P
EanElc D, exp{ c-{(k‘ L3 - } + D ‘exp{ c{(k" ky ) dé - }
: £o
= q,(€)D 3 ——exp{-1 [ k,de}, (3.158)
o ]

where

£,=t—£,,
&€,

ét""' 62/3 .

As ¢ = £, we have k, — k and ¢ — Z (6)=[Z(k0’£)]ko=kc'

Thus it follows that

d (kc»f) 62 (kc’s)
0= [_Za_k_—](kc—k()) + 51!‘['—26;2—](’%""0)2

a3 (k,6)

My

]f-—-fc(E‘_E) . (3‘159)

Y (k)

Since ————=0, k —k, can be expressed as follows:

ok,
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EBZ(kc,ﬁ)
k—k, = 2 265 €=f"(§-asc)”2 (3.160)
Y (k.0
[———1
ok

From (3.148) and (3.155) one finds
b~k =+AE. (3.161)

From the matching condition (3.158), it follows that

=", (3.162)
~-1r/3
D
(1) LI 1
DO eXP{ ¢ ¢1} A1/2(__€c)1/4 ’ (3.163)
Dga)exp{-izﬁs} ~ TD'l'_l/';' . (3164)
¢ A€

From the matching of the outer solution in region II with the inner turning

point solution (3.157) one finds

& &
O Pk iV - By ®or [k g _ 8
Jim D ex c[“‘c ) - =1} + D exp f[("c K - —2)
1 6. E.
-1/6 /3
=¢ D [exp{~1 | k,d€} — & “exp{+1| k. d€}], (3.165)
Fou| !
where ¢, and ¢, are defined above. Thus one finds that
~(3) —l¢3/€
D
O_‘W_ = /3¥2nm (3.166)
f)gl)e 1
or
e
%1) =e¥, (3.167)
D
0
where
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Pt
it . &
X=(@n-)m+ - f KD yde; n=0,21,22, ...
0
Finally, from the outer solution and the tip inner solution one can derive
the following matching condition.
A(1) 3 A(3) €
D D
hm —2—exp{z [ KV + — 2 [ K3
e p{ J dé.} \/EGXP{ /%o .}
d 1) d W)
= Al exp fo + Held, exp ok (3.168)
! 3
VR, XA
This leads to
u(e) = e (3.169)
d
AL 0
DV = —2— (3.170)
0 1
v E90)
£3) dy
-~ 0 (3.171)
3
- K20

Thus it follows that

AN U (3.172)
-V g

Combining (3.166) and (3.172) one can derive a quantum condition for the pat-

tern formatinn:

K0
EY L (3.173)
ky *(0)
or
£
%f(kgl)—k?))df = (2n+142/3)7 - élnao , (3.174)
where
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LK)
0" (3),
K0
n=0 %1, %2, ...

3.8 An Interpretation of the Global Mode Solution

As in Chapter 1I, we can transform /;0 to W, by using the transformation
(3.134). In terms of this transformation, the long wave h;, with the wave
number function kga), corresponds to an incoming wave M'), while the short
wave number ﬁo, with the wave number function kg”, corresponds to an outgo-
ing wave Wé”.

The outgoing wave Wg‘” from the tip collides with the incoming u{;’ from
far field at €', where {' is the intersection of the Stoke’s line emanating from
€, and the positive real £-axis. The collision generates an incoming wave pro-
pagating toward the tip region. As this incoming wave reaches the leading
edge of the tip, it is reflected, and transformed to an outgoing wave Wf)” from

the tip. The interaction of three waves near the turning point and the tip

point is very important in understanding dendritic growth phenomena.

3.9 Selection Problem

In the quantum condition above, given any small parameter ¢, the left hand

side of this quantum condition is a function of ¢, while the right hand side is
a constant for any fixed n. Thus ¢, is obtained by finding the roots of this

equation for any n. Having found £, the eigenvalues o are determined by the

| — 3/2
equation o, = 4/ -2—3/7{ S(.f:)fc} . Thus a discrete set of eigenvalues and cor-
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™ responding global-mode solutions can be obtained. These are the GTW-mode

- solutions.

Since it is proved in the Interfacial Wave Theory that the WEASR-mode
solutions are ruled out from an analysis of total perturbated energy, we shall
not consider these WEASR-mode solutions in this thesis.

: To describe the dendrite behaviour at the later stage of growth, a unique
i solution has to be selected from the above set of GTW-mode solutions. As
f: mentioned before, the Global Neutral Stable State Condition is used to select
; this unique solution. This is expressed by saying that the real part of the
: eigenvalue o(e) equals zero for n = 0.
% The phase velocity along the interface 7 =1 is calculated from the follow-
E ing formula:
| y = i)
o P Re(KV(0)
é - where w is the negative of the imaginary part of the eigenvalue o.
E As £ -
3 w

T (3.175)
‘ where

aga) = Pocos(%+-‘;l) ,
’ 8, = cos  (Z-),

0
P, = \/—BZA et
1P
-

AN PTG
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3.10 _Some Numerical Results

It is mentioned in part 3.8, given any small parameter ¢, from the quantum
condition one can find a discrete set of eigenvalues o corresponding to the glob-
al mode solutions. The numerical results show that only a finite number of
eigenvalues have positive real parts. This means that there is only a finite
number of possible growing-unstable mode solutions. Tables 1, 2, and 3 give

some examples of GTW-mode solutions for various values of A.

Table 1. GTW-mode solutions
A =1, € =0.1000 (This is the case in Chapter II.)

n- €, o

0 0.1146E+01 -.4944E+00 0.4246E-01 -.1959E+00
1 0.2053E+01 -.5835E+00 -.3292E-01 ~.2296E+00
2 0.2823E+01 -.6196E+00  -.7145E-01 -.2357E+00
3 0.3516E+01 -.6385E+00 -.9450E-01 -.2356E+00

Table 22 GTW-mode solutions
A=109, ¢=0.1000

n €, o

0 0.1097E+01 -.4812E+00 0.5103E-01 -.2034E+00
1 0.1969E+01 -.5737E+00  -.2895E-01 -.2408E+00
2 0.2711E+01 -.6119E+00 -.7044E-01 -.2483E+00
3 G.3379E+01 -.6321E+00  -.9548E-01 -.2487E+00

From Tables 4, 5, and 6 one can see that as ¢ increases, the real part of
the eigenvalue o decreases and eventually becomes negative. This means that

the growing mode solutions will be eventually suppressed when € increases.
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<>
J‘,
Table & (. I'W-mode solutions
= L1, ¢=0.1000
n 3 c
0 0.1193E+01 - 5064E+00 0.3535E-01 -.1893E+00
1 0.2131E+01 -.5923E+00 -.3601E-01 -.2198E+00
2 0.2928E+01 -.6265E+00 -.7200E-01 -.2248E+00
3 0.3644E+01 - 6441E+00 ~-.9338E-01 - 2243E+00
[he non-dimensional phase velocity along the interface n =1, as § = oc, is
I
calculated trom the formula pE—— s about unity.
R“{W)}
lable -
En
« vs Eigenvalue of GTW-mode solution
= 1=1.n=0.¢=0.1000 (Il 15 the case in Chapter II.)
€ fc Fed vp’ ‘"f"‘oo
0.100 0.1147E+01 - 4944E+00 0.4246E-01 -.1959E+00 0.1057E+01
0.105 0.1194E+01 - SO067E+00 0.3694E-01 ~-,1986E+00 0.1053E+01
0.110 0.1241E+01 -.5184FE+00 0,3168E-01 -,2011E+00 0.1049E+01
0 115 0.126dE+01 —.5296E+00 0.2666E-01 ~.2034E+00 0.1046E+01
0.120 0.1335E+01 -.5403E+00 0.2187E-01 -.2055E+00 0.1042E+01
0 125 0 1381E+01 -.5506E+00 0 1728E-01 -.2074E+00 0,1038E+01
0 130 0.1426E+01 - S604E+00 0.1289E-01 -.2092E+00 0.1034E+01
0.135 0 1472E+01 -.5699E+00 0 8679E-02 -.2109E+00 0.1031E+01
0.140 0 1517E+01 - S790E+00 0.4644E-02 —,2124E+00 0.1027E+01}
0.145 0.1561E+01 - S5878E+00 0.7708E-03 -.2139E+00 0.1023E+01
0.150 0.1605E+01 -.5962E+00 -.2949E-02 -.2152E+00 0.1020E+01
0 155 0 1649E+01 - 6043E+00 - 6525E-02 -.2164E+00 0.1016E+01
0.160 0 1693E+01 - 6122E+00 -.9965E-02 -.2176E+00 0.1013E+01
0 165 0.1736E+01 - 6197F+00 - 1328E-01 -.2186E+00 0.1009E+01
0.170 0.1779E+01 -.6271E+00 - 1647E-01 -.2196E+00 0.1006E+01
0 175 0.1822E+01 - 63425100 - 1954E-01 -.220SE+00 0.1002E+01}
Let o, be the patameter ¢ cottesponding to Re(o) = 0. This critical number,
o~

.. deternimes a global neutially stable <olution Table 7 shows some numerical
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[able 5

¢ vs Eigenvalue of GTW-mode solution
n=1{.¢=01000

Upp as§—o0

0 100 0 1097E+01 4812E+00 0 S102E-01 2034E+00 0.1012E+01
0 105 0 1143E+01 4934E+00 0 4522E-01 -.2063E+00 0.1009E+01
0 110 0 1188E+01 S051E+00 0.3967E-01 -.2090E+00 0.1006E+01
0.115 0.1233g+01 5163E+00 0 3438E-01 2115E+00 0.1002E+01
0.120 0.12.77E+01 5270E+00 0.2931E~01 -.2138E+00 0.9:95E+00
0.125 0 1321E+01 5373E+00 0.2446E-01 -.2160E+00 0.9949E+00
0.130 0 1365E+01 5472E+00 0 1981E~-01 2180E+0Q0 0.9914E+00
6.135 0 1409E+01 5567E+00 0 1534E-01 -.2198E+00 0.9878E+00
0 140 0 1452E101 5658E+00 0.1106E-01 2215E+00 0.9842E+00
0 145 0 1495E+01 - 5746E+00 0 6949E-02 - 2231E+00 0.9807E+00
0 150 0 153/E+01 S831E+00 0.2994E-02 -.2246E+00 0.9772E+00
0 155 0 1579E+01 5912E+00 - 8115E-03 -.2260E+00 0.9737E+00
0 160 0 1621Et01 5991E+00 4474E-02 2273E+00 0 9703E+00
0 165 0 1663E+01 606/E+00 8005E-02 2285E+00 0.9669E+00
0 170 0 1Ju4E+01L 6141E+00 1141E-01 -.2296E+00 0.9635E+00
0.175 0 1745Et01 -.6213E+00 1469E-01 ~.2307E+00 0.9602E+00
Table 6:
¢ vs Eigenvalue of GTW-mode solution
I, n=10, ¢ =0.1000
¢ £, Upy as§—oo
0.100 0.1193E+01 -.5064E+00 0.3535E-01 -.1893E+00 0.1099E+01
0 105 0 1242E+01 5187E+00 0.3009E-01 -.1918E+00 0.1095E+01
0.110 0.1292E+01 -.5304E+00 0.2508E~01 ~.1940E+00 0.1091E+01
0.115 0.1340E+01 5416E+00 0.2030E-01 -.1961E+00 0.1087E+01
0.120 0.1383E+01 5523E+00 O 1574E-01 -.1981E+00 0.1083E+01
0.125 0,1436E+01 —-.5626E+00 0.1139E-01 -.1998E+00 0.1080E+01
0.130 O 1484E+01 3724E+00 0.7224E-02 ~.2015E+00 0.1076E+01
0.135 0.1531E+01 5818E+00 0.3237E-02 -.2030E+00 0.1072E+01
0 140 0 1577E+01 5909E+00 —.5818E-03 -,2044E+00 0,1068E+01
0.145 0.1624E+01 5996E+00 ~.4245E-02 -.2057E+00 0.1064E+01
0 150 0.1670E+01 6080E+00 7760E-02 - 2069E+00 0.1061E+01
0.155 0 1715E+01 6161E+00 -.1114E-01 -.2080E+00 0,1057E+01
0 160 0 1760E+01 -.6239E+00 1438E-0]1 -.2090E+00 0.1054E+01
0 165 0 1805E+01 6314E+00 1750E~-0] -.2099E+00 0.1050E+01
0 170 0.1850E+01 6387E+00 2051E-01 -.2108E+00 0.1047E+01
0 175 0 1894E+01 -.6458E+00 -.2340E-01 -,2116E+00 0.1043E+01
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I results of ¢, and w for vatious values of 1, where w is the negative of the

)

imaginary part of the eigenvalue o

4
3 Lable 7 The Neutral Points of GTW-mode solutions
3
: n="H
E ! €, w
1 0.875 0O 1561E400 0.2289E+00
0.300 0.1539E+00 0 2257E+00
0.925% 0.1518E+00 0.2227E+00
0.950 0.1498E+00 0.2197E+00
: 0 975 0O 1479E+00 0.2169E+00
1.000 0 1460E+00 0.2142E+00
1.025 0 1442E+00 0.2115E+00
1 050 O 1425E+00 0.2090E+400
: 1 075 0.1408E+00 0.2065E+00
; 1.100 0.1392E+00 0.2042E+00
{ 1.125 0.1377E+00 0 2019E+00
3
3
X -y
>
q
¢ €
4 T0.16

% 0.875 (10,0 13) R

Froguwe 18 €, vo |
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Figure 3.9 wovs A

Figures (338) and (39) show that the critical point ¢,, and w decrease as .1

increases,

3.11 Summary

In this thesis we apply the [Interfecral Wave Theory of Solidification (IWT) to
study the mechanism of dendritic growth from a pure melt. We consider
(K7), # (K} and (c), # (c,);. We define

_ 143
2Al4a) '

w here

Ac . (e )l

= =3 ,oand de = -
Al (e), (C;»)L( KT)L and e, (c‘,),' (cp)_q
We tind that the effects of the change of the thermodynamic constants K and

¢ . due 1o the phase transition, can be described by a single parameter .1.

i
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The problem is formulated as a linear eigevalue problem. First, we use
the Multivariable Ezpansion Method . It is found that the global instability
mechanism (GTW) discoverd by IWT is still valid in the present system. The
present system also has a turning pownt, £ ={_. Near the turning point (=¢&,
and the tip point, £ = 0, MVE is no longer valid. Thus, to get a global mode
solution, we, first, need to find a solution for each region. The global mode
solution, then, is obtained by matching the solutions in each region. As a
result, a discrete set of GTW-mode solutions is found.

A Global Neutral Stable State Condition is used to select the unique solu-
tion from the set of GTW-mode solutions for the later stage of growth. This
is expressed by saying that the real part of the eigenvalue o(¢) equals cero for
n = 0.

The results found in this thesis are qualitatively similar to the results in
Chapter II. The system allows a finite number of unstable-growing mode sol
tions for any given small parameter €. As ¢ increases, the growing mode solu-
tion will be eventually suppressed. The non-dimensional phase velocity along
the interface n = 1, for the above selected neutrally stable mode, as £ — oo, is
about unity. Some values of the non-dimensional phase velocity corresponding
to the critical points €, are listed in Table 8.

It is found that the critical point ¢, is a function of the parameter A. As
A increases, ¢, decreases. It can be concluded that the increase of A, which
corresponds to the increase of the heat diffusivity constant or the specific heat
in the solid phase, reduces the frequency of oscillation, w, of the interface.
The position of £, which is the intersection point of the Stocke’s line emanat-

ing from ¢, with the real £-axis, measures the size of the 'smooth’ zone of the

dendrite. It is noted that, although ¢, vaiies with A, the position of the corre-




fable % lhe Phase Velocity

{ e ,r’ 0y Emaixay
0.90 0.1539E+00 0 9744E+00
0.95 0.1498E+00 0.9987E+00
1.00 0 1460E+00 0 1023E+01
1.05 0.1425E+00 0.1046E+01
1.10 0.1377E+00 0.1068E+01

sponding tirning point & is not very sensitive to the variations of A. It can be

presumed that the <ize of the "smooth’™ zone will not be sensitive to the varia-

tious of |
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