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Abstract.

Introduction: Linear registration to a standard space is one of the major steps in processing and

analyzing magnetic resonance images (MRIs) of the brain. Here we present an overview of linear

stereotaxic MRI registration and compare the performance of 5 publicly available and extensively

used linear registration techniques in medical image analysis. 

Methods: A set of 9693 T1-weighted MR images were obtained for testing from 4 datasets: ADNI,

PREVENT-AD, PPMI, and HCP, two of which have multi-center and multi-scanner data and three

of which have longitudinal data. Each individual native image was linearly registered to the MNI

ICBM152 average template using five versions of MRITOTAL from MINC tools, FLIRT from

FSL,  two versions  of  Elastix,  spm_affreg from SPM, and ANTs linear  registration techniques.

Quality control (QC) images were generated from the registered volumes and viewed by an expert

rater to assess the quality of the registrations. The QC image contained 60 sub-images (20 of each

of axial, sagittal, and coronal views at different levels throughout the brain) overlaid with contours

of the ICBM152 template, enabling the expert rater to label the registration as acceptable or unac-

ceptable. The performance of the registration techniques was then compared across different data-

sets. In addition, the effect of image noise, intensity non-uniformity, age, head size, and atrophy on

the performance of the techniques was investigated by comparing differences between age, scaling

factor, ventricle volume, brain volume, and white matter hyperintensity (WMH) volumes between

passed and failed cases for each method.

Results: The average registration failure rate among all datasets was 27.41%, 27.14%, 12.74%,

13.03%, 0.44% for the five versions of MRITOTAL techniques, 8.87% for ANTs, 11.11% for FSL,

12.35% for Elastix Affine, 24.40% for Elastix Similarity, and 30.66% for SPM. There were signi-

ficant effects of signal to noise ratio, image intensity non-uniformity estimates, as well as age, head

size, and atrophy related changes between passed and failed registrations.



Conclusion: Our experiments show that the Revised BestLinReg had the best performance among

the evaluated registration techniques while all techniques performed worse for images with higher

levels of noise and non-uniformity as well as atrophy related changes. 

Keywords: MRI, linear registration, quality control

1. Introduction

Linear MR image registration, i.e. geometrically aligning two 3D images (source and target)

from the same modality, different modalities, visits or subjects is a fundamental task in many as-

pects of medical image analysis.  Image registration is used in many different areas of medicine

such as multi-modality fusion, functional brain mapping, image guided surgery, and characteriza-

tion of normal versus abnormal shape and variations in population studies (Maintz and Viergever,

1998). Registration of brain images to a standard stereotaxic coordinate system enables the use of

anatomical priors for tissue classification and segmentation. This article reviews five publicly avail-

able linear registration techniques for MR brain images, and compares their performance in register-

ing native un-preprocessed images to an average stereotaxic template, using a large number of sub-

ject data from 4 different studies. 

A registration problem can generally be decomposed into 2 major independent components: the

registration paradigm, and the optimization procedure. The registration paradigm may include land-

mark-based  registration,  segmentation-based  registration,  and  voxel-property-based  registration

(Maintz and Viergever, 1998). Here we focus on voxel-wise registration methods which operate dir-

ectly on the image grey intensity values, without prior data reduction by the user (as in landmark re-

gistration) or by segmentation. The standard framework for voxel-wise intensity-based registration

involves optimizing a similarity metric or cost function that reflects the similarity between pairs of

voxel intensities in the two images. This similarity metric provides a quantifiable measure that re-

flects how well the two images are aligned as the transformation parameters are changed. In case of



3D linear registrations, the transformation parameters generally include 3 translations, 3 rotations,

and 3 scaling parameters in each direction. Under the assumption that the transformation parameters

that optimize the similarity function would lead to the optimal registration, the registration problem

is transformed into the problem of optimizing a similarity metric, which is often the cross correla-

tion or mutual information between the two images. Registration failures may occur either when the

initial assumption fails and the cost function is not ideal (i.e. returning minimum values for poor re-

gistrations) or more often when the optimization technique gets stuck in local minima and fails to

find the global optimum of the cost function. To address this issue, many techniques attempt iterat-

ive multi-resolution registrations, starting by estimating an initial transformation at a lower resolu-

tion (therefore reducing the number of local optima) and refining the registration at higher resolu-

tions (Elsen et al., 1993; Pluim et al., 2003). Another advantage of partially solving the problem at a

lower resolution is that the algorithms generally require fewer computations/iterations. As a result,

multi-resolution solutions also tend to reduce the computation time.

A major question concerning a computed registration transformation entails the accuracy. Since

a gold standard for inter-subject registration is lacking in practice, the answer is generally non-trivi-

al. One can identify homologous landmarks, but this is biased to the choice of landmarks and not

feasible when testing thousands of datasets.  One can estimate a measure of accuracy by using syn-

thetic data, but the results might not be generalizable to practical applications, which are usually

more challenging. These difficulties are generally caused by: 

1) Intensity range and distribution differences between source and target images caused by dif-

ferences in scanners as well as acquisition sequences, leading to various levels of noise and intens-

ity inhomogeneity. This can also give rise to slightly different tissue contrasts. 



2) Anatomical differences between source and target images, due to inter-subject variability,

differences in age, surgical procedures or different atrophy patterns caused by neurodegenerative

diseases. 

3) Presence of pathology, such as tumors, stroke lesions, white matter hyperintensities (WMHs),

infarcts, and microbleeds which can lead to drastic changes in the local intensities.  

There is a widespread need to quantify registration accuracy. However, due to the lack of an ab-

solute gold standard for inter-subject registration, such a task is impossible in practice (Maintz and

Viergever, 1998). Another issue that hinders giving any statistics on a certain registration method is

the incomparability of accuracy experiments done using data obtained from particular scanners and

sequences since the method's implementation may be specific to that data. Finally, the inconsistency

between the definition of accuracy terms between different studies also makes comparisons diffi -

cult.

Here we have compared the performance of five different publicly available and widely used

linear registration techniques to map data into stereotaxic space using multi-site and multi-scanner

T1-weighted (T1w) MRI data of 9693 scans obtained from 4 different large studies. The scans con-

tain  1.5T  and  3T  data  from  healthy  individuals,  subjects  with  mild  cognitive  impairment,

Alzheimer’s disease, and Parkinson’s disease, aged between 20 and 95 years. The registration ac-

curacy of the different linear registration techniques has been verified by manual quality control

across the entire sample set to enable meaningful and reliable comparison of the performance of dif-

ferent techniques. In addition, passed and failed registrations for each technique are compared in

terms of image signal to noise ratio, intensity non-uniformity, age, as well as the head size, ventricle

and brain volume, WMH volume.

2. Methods

2.1.  Data



This section describes the study and scanner information for each of the four datasets. Table 1

summarizes the acquisition parameters for each study. Table 2 shows the number of scans used

from each study.

1)  ADNI:  The Alzheimer’s  Disease  Neuroimaging Initiative  (ADNI),  is  a  multi-center  and

multi-scanner study with the aim of defining the progression of Alzheimer’s disease (AD). ADNI

was launched in 2003 as a public-private partnership, led by Michael W. Weiner, MD. The primary

goal of ADNI was to test whether MRI and other biomarkers and clinical assessments can be com-

bined to measure the disease progression (Mueller et al., 2005)(www.adni-info.org). ADNI data in-

cludes 1.5T and 3T scans of normal controls, individuals with mild cognitive impairment or AD pa-

tients aged 55 years or older. The data has been acquired with different models of GE Medical Sys-

tems, Philips Medical systems, and SIEMENS scanners over 59 acquisition sites.

2) PPMI: The Parkinson Progression Marker Initiative (PPMI) is a public–private partnership

funded  by  the  Michael  J  Fox  Foundation  for  Parkinson's  Research  and  funding  partners

(www.ppmi-info.org/fundingpartners).  PPMI is  an observational,  multi-center  and multi-scanner

longitudinal study designed to identify PD biomarkers  (Marek et al., 2011). PPMI data includes

1.5T and 3T scans of normal controls and de novo Parkinson’s patients aged 30 years or older. The

data has been acquired with different models of GE Medical Systems, Philips Medical systems, and

SIEMENS scanners over 33 sites in 11 countries.

3) HCP: The Human Connectome Project (HCP) is a project to construct a map of structural

and functional connectivity in vivo within and across individuals as an effort to characterize brain

connectivity  and  function  and  their  variability.  HCP  data  includes  young  healthy  adults  aged

between 25 and 30 years (Van Essen et al., 2012). All T1w HCP images have been scanned using a

32-channel head coil and a SIEMENS 3T scanner. 



4) PREVENT-AD: The PREVENT-AD (Pre-symptomatic Evaluation of Novel or Experiment-

al Treatments for Alzheimer’s Disease, http://www.prevent-alzheimer.ca) program follows healthy

individuals age 55 or older with a parental history of AD dementia (Tremblay-Mercier et al., 2014).

Data used in preparation of this article were obtained from the PREVENT-AD program data release

3.0. All the T1-weighted images have been scanned using a single 3T SIEMENS MAGNETOM

TrioTim syngo MR scanner (version B17). 

Table 1. MRI acquisition parameters for ADNI, PPMI, HCP, and PREVENT-AD datasets.

Dataset ADNI PPMI HCP PREVENT-AD

Slice thickness (mm) 1.2 1-1.5 0.7 1
No. of slices 160-170 Min 160 210 176

Field of view (cm2) 256×256 256×Min160 224×224 256×256

Scan matrix (cm2) 256×256 256×Min160 224×224 256×256

Repetition time (ms) 2300-3000 5-11 2400 2300

Echo time (ms) 2.9-3.5 2-6 2.14 2.98

Pulse sequence MPRAGE, GR MPRAGE, SPGR MPRAGE MPRAGE

Table 1. Number of scans used from each of ADNI, PPMI, HCP, and PREVENT-AD datasets.

Dataset ADNI 1.5T ADNI 3T PPMI 1.5T PPMI 3T HCP PREVENT-AD

No. of scans 3489 3056 222 778 897 1251

2.2.  Registration Methods

The image registration problem can be defined as finding a transformation that maps the target

or subject image to the source or reference template image, where both images are 3D volumes with

potentially different voxel sizes and dimensions. For the purposes of this paper, the reference tem-

plate image is the symmetric MNI ICBM152 unbiased non-linear T1w average brain (Fonov et al.,

2009, 2011) (http://nist.mni.mcgill.ca/?p=904). Registration is defined by a similarity metric (cost

function) that determines the distance between the transformed target image and the source image.

Table 3 shows the mathematical functions of the commonly used similarity metrics in the literature

(Jenkinson et al., 2002).



Table 3. Definitions of the similarity metrics that are commonly used for linear registration  (Jenkinson et al., 2002).

X ,Y  denote source and target images represented as a set of intensities. H (X ,Y )=−∑
i , j

pij log ⁡( pij ) is the entropy

function, where pij represents the joint probability estimated using the joint intensity histogram. H (X ) , H (Y ) are the

marginal entropy functions. Y k  is the intensity of image Y at voxels where the intensity of X is in the k th intensity bin.

nk is the number of elements in Y k . N=∑
k

nk.

Cost Function Definition

Normalized Correlation ∑ X .Y

√∑ X2√∑Y 2

Least Squares ∑ (X−Y )2

Mutual Information H (X ,Y )−H (X )−H (Y )

Normalized Mutual Information H (X ,Y )
H ( X )+H (Y )

Correlation Ratio 1
Var (Y )∑k

nk
N
Var (Y k)

This section reviews the registration techniques used in this study.

1) MRITOTAL: MRITOTAL is a hierarchical multi-scale 3D registration technique developed

as part of the ANIMAL package  (Collins et al., 1994) for the purpose of aligning a given MRI

volume to an average MRI template aligned with the Talairach stereotaxic coordinate system  (Ta-

lairach and Tournoux, 1988). MRITOTAL uses voxel-wise image intensity and 3D gradient mag-

nitude as features and cross-correlation as similarity measure. The image is convolved with a 3D

isotropic Gaussian kernel. The standard deviation of the kernel is used as a measure of the spatial

scale and the full width at half-maximum (FWHM) of the Gaussian is used as a measure of the res-

olution (blurring). The registration starts at lower resolution (very blurry data) and is refined at each

stage by using less blurred images.  When smoothing to work at lower resolutions, values outside

the field of view were assumed to be zero.

The initial BestLinReg algorithm is a 5-stage hierarchical technique based on MRITOTAL that

was developed by Robbins et al. as part of the MINC tools for cortical surface analysis (Robbins,



2004; Robbins et al., 2004).  Similar to MRITOTAL, it starts the optimization with highly blurred

images (σ1=16 mm) in the first stage and a sampling step size (SampS1) of 8 mm and a simplex op-

timization algorithm with a simplex size (SimpS1) of 32 mm. The tolerance parameter (Tol) for the

cost function for the initial stage is set to 0.01. In the second and third stages, less blurred images

(σ2=8 mm, σ3=4 mm) are used as well as smaller step sizes and simplex size (SampS2-3=4 mm,

SimpS2=16, SimpS3=8) and higher tolerance (Tol=0.004). In the last two stages, it uses the gradient

magnitude of the blurred image with different levels of blurring (σ4=8 mm, σ5=4 mm) and the same

sampling  step  size  (SampS4-5=4  mm)  and  tolerance  (Tol=0.004)  and  smaller  simplex  sizes

(SimpS4=4 mm, SimpS5=2 mm).  The Revised BestLinReg is another version of BestLinReg with

different parameter configurations that has been developed as part of the Cortical Thickness and

Surface Analysis (CIVET 2.1) pipeline (Lepage et al., 2017). Revised BestLinReg only estimates an

initial translation by calculating the centers of mass in the images in the first stage (3 translations).

It then runs the second and third stages of the registration with 6 and 7 parameters (3 translations, 3

rotations plus 1 scaling parameter) and the last two stages with full 9-parameter registrations. The

optimization parameters are also modified to adapt to these changes (σ2-3=8 mm, σ4=4 mm, σ5=2

mm, SimpS2-3=16 mm, SimpS4=8 mm, SimpS5=4 mm, Tol2-4=0.0001,  Tol5=0.0005).  The source

code for all versions are available at https://github.com/bic-mni. Figure 1 summarizes the registra-

tion steps in each version. In this experiment, both normalized mutual information (MI) and cross

correlation (XCorr) cost functions were tested for BestLinReg. For revised BestLinReg, only nor-

malized mutual information was used.



2) FSL FLIRT: FMRIB's Linear Image Registration Tool (FLIRT) is a multi-start, multi-

resolution registration tool (Jenkinson et al., 2002, 2012). The registration starts with a large-scale

search at 8 mm resolution (e.g. applying a set of initial rotations), followed by a series of multi-start

local optimizations at 4 mm resolution, based on the best candidates of the previous stage. The re-

gistration is refined in the last stage using a sequence of local optimizations at 2 mm and 1mm res-

olutions. In addition to the multi-resolution approach, FLIRT uses modified cost functions, where

the voxels at the edge of the common overlapping field of view are down-weighted.  Fuzzy binning

techniques for histogram estimation are also used in an attempt to reduce the number of local min-

ima. The available cost functions include normalized cross correlation, mutual information, and cor-

relation ratio.  In this experiment, the default cost function (correlation ratio) was used.

3) Elastix: Elastix is a registration tool  (Klein et al., 2010) built on top of Insight Toolkit

(ITK)  (Johnson et al., 2015; Yoo et al., 2002). Elastix has a parametric and modular framework,

Fig. 1. - Registration steps for MRITOTAL, BestLinReg and Revised BestLinReg methods.



where the user can configure different components of the registration in a parameter text file. The

following linear transformation models are supported by Elastix: 3-parameter translation, 6-para-

meter rigid registration (3 translations and 3 rotations), 7-parameter similarity  (rigid plus isotopic

scaling), and 12-parameter affine (3 translations, 3 rotations, 3 scales, and 3 sheers).  The available

cost functions include mean squared difference, normalized correlation, (normalized) mutual in-

formation, multi-feature α-mutual information, κ-statistic, and bending energy penalty term. The

user can also linearly combine various cost functions. The available optimizers include gradient

descent, quasi-Newton, nonlinear conjugate gradient descent, Kiefer-Wolfowitz, Robbins-Monro,

adaptive stochastic gradient descent, and evolutionary strategy. For sampling, Elastix supports the

use of all voxels, a subset of voxels selected on a uniform grid, and random sampling of voxels on

and off the voxel grid (at non-voxel locations). For computing the cost function, Elastix supports

several interpolation techniques including nearest neighbour, linear and Nth-order B-Spline inter-

polation. In this experiment, Mattes mutual information, adaptive stochastic gradient descent optim-

izer and B-spline interpolation were used in the image pyramid schedule with 3 levels of resolution

(downsampling at 8, 4, and 2 voxels respectively). This configuration was selected since it has been

widely  used  and  works  well  for  both  mono-modality  and  multi-modality  registrations

(http://elastix.bigr.nl/wiki/index.php/Parameter_file_database).

4) SPM: spm_affreg is an affine registration tool from Statistical Parametric Mapping soft-

ware package (SPM12) (Ashburner et al., 1997; Ogden, 1997; Penny et al., 2011) which performs

affine registration using a least squares technique.  A maximum a posteriori Bayesian approach is

adopted, where the spatial transformation is estimated using prior knowledge of the normal variabil-

ity of brain size, orientation and position in the scanner. The a priori distribution of the parameters

have been previously determined from affine transformations estimated from T1w brain images of

51 normal adults  (Ashburner et al., 1997). The optimization is performed by iteratively solving a

linear approximation of the sum of squared differences between the two images using Taylor’s the-



orem. Images are resampled at the desired coordinates using trilinear interpolation of the voxel lat-

tice. In this experiment, the default settings were used which include inter-subject registration regu-

larisation, and 5 mm spacing between sample points. In addition, before running spm_affreg, the

images were smoothed by applying a three-dimensional Gaussian filter with FWHM of 12 mm as

common practice. Note that the SPM12 image processing pipeline uses a different affine alignment

strategy by default.

5) ANTs: ANTs linear registration also uses a multi-resolution hierarchical method, starting

by aligning the centers (3 translations), aligning the orientations (3 translations + 3 rotations), ac-

counting for the scaling factors (3 translations + 3 rotations + 1 scaling), and finally, a fully affine

transformation (Avants et al., 2011, 2014). The similarity metric can be defined separately for each

step. In this experiment, we have used Mattes mutual information metric for all steps since it has

been shown to produce the best results for affine registration  (Avants et al.,  2011). The default

stochastic gradient descent is used for optimizing the cost function. The optimization stops either

when the slope of change in the energy function is negative or very small or when the maximum

number of iterations is reached  (Avants et  al.,  2014).  Other parameters were selected based on

guidelines from ANTs documentation.

The selected images from each dataset were registered to the MNI ICBM152 average template

using the abovementioned methods and settings with a 9-parameter registration for MRITOTAL

and FSL, a 7-parameter and a 12-parameter registration for Elastix since it does not support 9-para-

meter registrations, and a 12-parameter affine registration for SPM and ANTs since they do not sup-

port 9-parameter registrations. The scripts containing the details and parameters used for all experi-

ments are available at https://bitbucket.org/bicnist/bic-nist-registration.

2.3.  Quality Control



If a technique failed to produce an output, the outcome of the registration was considered as a

failure. For the rest of the registrations that produced an output, the obtained transformations were

used to transform the images from the native space to template space, resampling it in the template

voxel space. To create a QC image, 60 images were extracted from axial, sagittal, and coronal slices

(20 each) throughout the resampled volume and the contours of the ICBM152 template were over-

laid on each slice image. The slices were selected to cover the brain from bottom to top (axial), left

to right (sagittal), and back to front (coronal) for each brain. These 60 images were then concaten-

ated into a single large composite image that was viewed by the human expert to assess the registra-

tion and label the outcome as acceptable or failure. Figure 2 shows an example of a QC image for a

passed registration.

Fig.  1. - Sample image created for assessing the quality of the registrations. Axial, sagittal, and

coronal slices showing contours of the average template brain overlaid on the registered image of a

single subject in the template space.



The human expert started by assessing the alignment of the images on sagittal and then

coronal views. If these images were well aligned, axial slices were assessed to evaluate whether ro-

tation in the axial plane (generally where the highest variability was found) had been correctly es -

timated. The anatomical landmarks that were used to assess the alignment included the outline of

the brain, central sulcus, cingulate sulcus, and parieto-occipital fissure. Since the ventricles are lar-

ger in aging and AD brains, the outline of the ventricles was not used as a landmark in the QC. The

QC procedure took approximately 30 hours per method for the entire dataset. The human rater was

blind to both the registration technique and the dataset information.

The intra-rater Dice similarity and accuracy were 0.96 and 93%, respectively, assessed by

manually assessing 1000 randomly selected images a second time. Figure 3 shows examples of six

registrations that were labeled as unacceptable by the human rater due to incorrect estimates of

translation (Fig. 3.a), translation and scaling (Fig. 3.b), scaling in all directions (Fig. 3.c), scaling in

axial plane (Fig. 3.d, Fig. 3.e), and rotation (Fig. 3.f). Figure 4 shows one axial, sagittal, and coronal

slice from each image in Figure 3 in greater detail.



   a)    b)

   c)    d)

   e)    f)

  Figure 3: Examples of failed registrations. Incorrect estimates of a) translation, b) translation

  and scaling, c) scaling in all directions, d, e) scaling in axial plane, and f) rotation.



Figure 4: Examples of one axial, sagittal, and coronal slices of failed registrations in more detail. In-

correct estimates of a) translation, b) translation and scaling, c) scaling in all directions, d, e) scaling

in axial plane, and f) rotation.

2.4.  Effect of noise and image intensity non-uniformity on registration quality

The effects of signal to noise ratio (SNR) and image intensity non-uniformity on registration

quality were investigated using permutation tests (N=10,000) between the estimates for passed and

failed cases. An estimate of the SNR was obtained using a robust Rician noise estimation technique

(Coupé et al., 2010).  As a surrogate of the amount of intensity inhomogeneity, an estimate of the

standard deviation (STD) of intensity non-uniformity was obtained from the N3 non-uniformity

correction method (Sled et al., 1998). 

2.5.  Effect of age, head size, atrophy and WMH load on registration quality

The effects of age, head size, atrophy and WMH load on registration quality were also investig-

ated. While age is available directly from the different imaging databases, estimates of head size,

brain atrophy and WMH load are required. Surrogates of these values were obtained by processing

each  MRI  volume  through  our  standard  pipeline



(https://github.com/BIC-MNI/bic-pipelines/blob/master/bin/standard_pipeline.pl) (Aubert-Broche et

al., 2013). Image denoising  (Coupe et al., 2008), intensity non-uniformity correction  (Sled et al.,

1998), and image intensity normalization into range (0-100) were performed. After preprocessing,

all images were first linearly (using a 9-parameter rigid registration) and then nonlinearly registered

to an average template as part of the ANIMAL software (Collins and Evans, 1997; Collins et al.,

1994). The scaling parameter (here referred to as scale factor) used to scale individual scans to the

standard template was used as a surrogate of head size. The brain tissue as well as the ventricles

were segmented as part of the ANIMAL software. Normalized brain volume and ventricle volume

were used as surrogates of brain atrophy in the permutation tests below. 

The WMH load of subjects in the ADNI, PPMI, and PREVENT-AD datasets was estimated by

segmenting the WMH lesions using a previously validated fully automated technique (Dadar et al.,

2017a, 2017b). The WMH segmentation tool is based on a Random Forests classifier that is trained

to detect WMHs in multi-center and multi-scanner datasets, using either T1-weighted and FLAIR or

T1-weighterd and T2-weighted/PD images. Since HCP subjects were young healthy individuals and

visual assessment showed that they did not have significant amounts of WMHs, they were excluded

from the WMH comparisons. 

The quality of all segmentations was verified by visual assessment and failed segmentation

cases were discarded (N=48). The effect of age, structure volumes and WMH loads on registration

quality was evaluated using  permutation tests (N=10,000)  between the estimates for passed and

failed registrations. 

3. Results 

Overall performance.

Table 4 compares the performance of different techniques in terms of percentage of registration

failures across different datasets. Performance ranged from 53.83% success in ADNI 1.5T with



MRITOTAL to 100% success with PPMI 1.5T and Revised BestLinReg. The Revised BestLinReg

method had the best overall performance across all datasets (failure rate= 0.44%), followed by FSL

(failure rate= 11.11%), BestLinReg MI (failure rate= 12.74%), BestLinReg XCorr (failure rate=

13.03%), ANTs (failure rate= 8.87%), Elastix Similarity (failure rate= 24.40%), Elastix Affine (fail-

ure rate= 12.35%), MRITOTAL (failure rate= 27.14%), MRITOTAL ICBM (failure rate= 27.41%),

and SPM (failure rate= 30.66%). ANTs failed to converge within the two-hour limit and did not

produce any outputs for 98.55% of the scans from the HCP dataset.

Table 4. Registration error rates. Comparison between the performance of different linear regis -
tration techniques. Data are the percentage of registration failures assessed by a human expert
(i.e., a smaller number shows better performance), across the different datasets.

Dataset ADNI 1.5T ADNI  3T PPMI 1.5T PPMI 3T HCP 3T PREVENT-AD 3T
MRITOTAL 46.17 35.01 22.97 27.51 7.92 24.86
MRITOTAL ICBM 45.03 37.40 18.02 26.99 13.27 22.14

BestLinReg MI 15.36 16.30 7.66 15.68 8.92 12.55

BestLinReg XCorr 9.03 8.48 14.41 16.20 18.17 11.91

Revised BestLinReg 0.46 0.69 0.00 0.90 0.11 0.48

FSL 13.01 12.24 14.41 18.38 4.24 4.40

Elastix Similarity 33.99 28.93 13.96 18.25 28.09 23.18

Elastix Affine 18.40 11.75 11.26 11.31 6.35 2.08

SPM 28.00 25.22 36.94 43.32 49.94 21.74

ANTs 5.33 6.41 35.59 22.37 9.36 11.19

Table 5 shows the percentage of failures that were common between each two methods.



Table 5. Registration failures common between different methods. Data are the Dice Kappa per -
centages of cases that failed for each two registration methods. 
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MRITOTAL - 60.20 21.70 16.97 1.07 19.39 36.35 22.32 45.97 12.23
MRITOTAL ICBM - - 21.34 16.58 0.94 19.84 34.89 20.85 45.50 14.78
BestLinReg MI - - - 25.02 3.15 24.66 21.17 21.56 24.67 13.10
BestLinReg XCorr - - - - 1.28 20.37 16.35 15.53 17.66 19.68
Revised BestLinReg - - - - - 4.88 1.41 5.13 1.42 2.57
FSL - - - - - - 18.40 35.41 23.85 15.61
Elastix Similarity - - - - - - - 24.76 41.43 20.25
Elastix Affine - - - - - - - - 30.37 17.51
SPM - - - - - - - - - 26.69
ANTs - - - - - - - - - -

Factors affecting performance.

MRITOTAL, MRITOTAL ICBM, and Elastix performed significantly better on 3T scans in

the ADNI dataset (p<0.001, unpaired t-test). The differences for 1.5T vs 3T for other methods and

for the PPMI dataset were not significant. 

Table 6 shows the p values of the  permutation tests  comparing SNR and the average and

standard deviation of image intensity non-uniformity estimates between the passed and failed regis-

trations. The amount of image non-uniformity was associated with registration success for all meth-

ods except  Elastix Similarity. The SNR level was associated with success for half the methods

tested: MRITOTAL, MRITOTAL ICBM, BestLinReg MI, Elastix Similarity and SPM. 



Table 6. Effect of SNR and NU on registration QC. p values of permutation tests comparing SNR
and intensity non-uniformity measures. SNR= Signal to Noise Ratio. NU= Intensity Non-unifor -
mity.

Method SNR NU STD
MRITOTAL <0.001 <0.001
MRITOTAL ICBM <0.001 <0.001

BestLinReg MI 0.015 <0.001

BestLinReg XCorr 0.121 <0.001

Revised BestLinReg 0.420 0.014

FSL 0.198 <0.001

Elastix Similarity <0.001 0.158

Elastix Affine 0.040 <0.001

SPM <0.001 <0.001

ANTs 0.159 <0.001

Table 7 shows the p values of the permutation tests comparing age and different measures of

atrophy related changes between passed and failed registrations.  Interestingly, Age affects registra-

tion success for all techniques except Revised BestLinReg (albeit the p value is marginally signifi-

cant before correction for multiple comparisons).  Larger ventricle size is associated with registra-

tion failures for all methods except Elastix Similarity and SPM.  Brain size adversely affects regis -

tration success for all methods except Elastix.  Head size is not associated with registration failures

only for Elastix Similarity and SPM.  Finally, the WMH load is associated with registration failure

or all methods except BestLinReg MI, BestLinReg XCorr and Revised BestLinReg.

Table 7. Effect of Age, atrophy, brain size and WMH load on registration quality. p values of per-
mutation tests comparing age and measures of atrophy related changes between passed and failed
registrations. WMH= White Matter Hyperintensity.

Method Age Ventricle
Volume

Brain
Volume

Scale
Factor

WMH
VolumeMRITOTAL <0.001 <0.001 <0.001 <0.001 <0.001

MRITOTAL ICBM <0.001 <0.001 <0.001 <0.001 <0.001

BestLinReg MI <0.001 <0.001 <0.001 <0.001 0.240

BestLinReg XCorr 0.006 0.003 <0.001 0.004 0.162

Revised BestLinReg 0.026 <0.001 0.004 <0.001 0.321

FSL <0.001 <0.001 <0.001 <0.001 0.001

Elastix Similarity <0.001 0.308 0.936 0.303 <0.001

Elastix Affine <0.001 <0.001 0.472 <0.001 <0.001

SPM <0.001 0.502 <0.001 0.501 <0.001

ANTs <0.001 <0.001 <0.001 <0.001 <0.001



4. Discussion

In brain imaging, linear stereotaxic registration aims to align the subject’s brain into a standard-

ized space to allow for more comprehensive comparisons of the anatomy and pathologies at the

population level. Such a mapping generally corrects for location, orientation, and overall size of the

brain (3 translation, 3 rotation, and 3 scaling parameters in 3D transformations). Choosing a regis -

tration technique among the various tools that are publicly available and widely used is difficult,

since there is no single technique that can handle every brain registration task (registering different

image modalities,  acquisition sequences, inter/intra subject registration).  Moreover,  comparisons

between different techniques should be driven by evaluations on the same datasets, which is gener-

ally not the case. The experiments in this paper were designed to compare five commonly used pub-

licly available registration tools based on their performance in registering un-preprocessed native

T1-weighted MRIs of brains aged between 25-95 years to an average template of young healthy

brain (the MNI ICBM 152 unbiased non-linear average). 

In evaluating registration performance, many comparison studies use synthetically generated

data that is created by applying a set of transformations to the original images to assess the quality

of linear registration techniques (Jenkinson et al., 2002). This greatly simplifies the problem since it

ensures that there would be a perfect match between the source and target images, which is gener -

ally not the case. Here instead, we register native images to an average template, a task necessary in

any population study, and also needed for many preprocessing and segmentation techniques. The

experiments here enable meaningful comparisons between different registration techniques, since

they have been applied to 1.5T and 3T data from various datasets, two of which contain multi-site,

multi-scanner data. Furthermore, including subjects with a wide age range (25-95 years) and pa-

tients with neurodegenerative diseases from the ADNI and PPMI cohorts enables evaluation of the

techniques in the presence of brain changes such as AD- and PD-related atrophy and vascular dis-



ease  indicated  by  white  matter  abnormalities.  Indeed,  our  experiments  showed  that  the  brain

changes caused by aging, atrophy, and WMHs significantly reduce the accuracy of the registrations.

Our  experiments  showed  that  the  revised  BestLinReg  technique  had  the  best  performance

among all registration techniques and datasets, with only 51 registration failures out of 9693 regis-

trations. The MRITOTAL and the standard BestLinReg techniques tend to slightly underestimate

the scaling parameters when using the cross-correlation similarity metric. BestLinReg with mutual

information tended to overestimate them. Elastix single scale registrations tended to align the tem-

plate in the coronal plane, but were not able to correct for the front-to-back or top-to-bottom differ-

ences in the brains. 

The SNR does not appear to have a significant adverse effect on the performance of BestLinReg

XCorr, Revised BestLinReg, FSL or ANTS techniques. This is likely due to the internal blurring

used in these methods, which generally reduces the effects of noise. Additionally, intensity nonuni-

formity seems to adversely affect Revised BestLinReg and Elastix methods less (albeit this effect is

no longer significant when corrected for multiple comparisons). 

Older Age adversely affects registration success for all techniques (except for Revised Best-

LinReg, but this no longer holds when correcting for multiple comparisons). This is likely due to

the morphological changes that are associated with aging, i.e. larger ventricles, grey matter and

white matter atrophy, and white matter hyperintensities. This is further validated by the fact that

ventricle and brain size (both reflecting atrophy) as well as higher white matter hyperintensity load

also seem to adversely affect registration success. Specifically, in MRITOTAL techniques, the last

steps are driven by gradient magnitude, and larger ventricles will have more energy in the objective

function, possibly biasing the transform. Since the target image (MNI ICBM 152 template) is gener-

ated based on healthy young individuals, registration of older brains with different intensity distri-

butions proves more challenging. This supports the fact that older subjects need to be registered to



an age-specific or population-specific (e.g. Alzheimer’s disease, Parkinson’s disease) template for

analyzing datasets to reduce the registration failure caused by these effects. Various groups have at-

tempted to create age-specific or population specific (e.g.  Alzheimer’s disease population) tem-

plates (Dickie et al., 2016; Fillmore et al., 2015), including our group (Fonov et al., 2009, 2011).

All  templates  are  publicly  available  at  (http://nist.mni.mcgill.ca/?page_id=714,

https://datashare.is.ed.ac.uk/handle/10283/1957).

The head size (estimated by scaling factor) is not associated with registration failures only for

BestLinReg XCorr, Elastix, and SPM. MRITOTAL, MRITOTAL ICBM, BestLinReg MI, Revised

BestLinReg,  and FSL techniques seem to have more registration failures for  larger head sizes,

whereas ANTs seems to have more registration failures for smaller head sizes.

The larger number of available configurations provides the users with the opportunity to optimize

the registrations based on the specific data set and task of interest. As an example, when dealing

with source and target images that have very different tissue contrasts, using similarity metrics such

as mutual information generally works better than least squares or correlation metrics. Similarly, if

available, one can choose different optimizers based on time and computational power constraints.

Another important registration parameter that is not always supported is the type of linear transfor-

mation. For example, Elastix, SPM, and ANTs do not support a 9-parameter registration. Therefore,

one has to either opt for a suboptimal 7-parameter transformation which assumes the same amount

of scaling in all directions, or a 12-parameter transformation with shearing which warps the shape

of geometric figures.

Our study is not without limitations. Not all the available options were tested for different regis-

tration techniques. For FSL FLIRT, and SPM the default options were used. For Elastix, and ANTs

the widely used mutual information and stochastic gradient descent optimizer options were selected.

This might lead to suboptimal results. However, since one rarely attempts all the available configur-

ations (especially for Elastix, which provides 10s of different possible combinations), we tested



only the most commonly used options. Furthermore, HCP dataset had been defaced prior to the re-

gistrations  in  order  to  ensure  anonymity,  while  the  other  datasets  had  not  (ADNI,  PPMI,  and

PREVENTAD). This face removal step might affect the performance of some registration tech-

niques more than the others. SPM and BestLinReg XCorr had a poorer performance on HCP dataset

compared with other datasets (Table 4). However, since HCP also had a higher level of intensity

nonuniformity, it’s not possible to speculate whether this lower performance was caused by the de-

facing.

Preprocessing the images can have a significant effect in improving the performance of most re-

gistration techniques. As was shown in our experiments, the signal to noise ratio and image intens-

ity non-uniformity significantly affected the quality of the registrations for all techniques. To make

the comparisons fair, no preprocessing was performed on the native images here before the registra-

tions. This decision was also made based on the fact that many preprocessing techniques need an

initial registration, and a registration method that would be dependent on preprocessing cannot be

used in pipelines that use such preprocessing techniques.

Linear brain MRI registration to an average template is an ill-posed problem because the shape

and cortical topology of the brain varies strongly from one individual to another, especially in exist -

ence of brain atrophy. Therefore, intensity-based registration algorithms are expected to fail at least

on some pathological cases. Variabilities in data from different scanner models and image acquisi-

tion sequences further adds to the complexity of this problem. So far, no general technique is able to

accurately register any two images all of the time. This comparison provides some insight into the

performance of several publicly available registration tools and facilitates the choice of a registra-

tion technique for a specific application. 
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