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ABSTRACT 

 

The invention of sophisticated measurement tools, such as motion 

capture devices, handheld computers, Bluetooth devices, eye-trackers, and 

brain scanners, has facilitated the collection of functional data that can be 

considered to arise from an underlying smooth function varying over a 

continuum such as time and space. Functional data analysis (FDA) is an 

emerging branch of statistics, which develops and applies statistical methods 

for the analysis of such types of data. Various FDA methods have been 

proposed by extending traditional multivariate statistical methods to 

accommodate functional data. Nonetheless, there has been little attempt to 

develop functional extensions of structural equation modeling (SEM), in spite 

of the remarkable popularity of SEM in various disciplines due to its 

flexibility of modeling complex relationships among observed and latent 

variables. This thesis thus aims to propose a general framework for functional 

SEM, called functional generalized structured component analysis (functional 

GSCA), to examine a variety of hypothesized relationships among observed 

and latent variables, while permitting observed variables to be functional 

rather than multivariate. The thesis begins by describing GSCA and penalized 

least squares smoothing as the two basic building blocks of the proposed 

method. Subsequently, it provides the technical details of the proposed 

method. The model for functional GSCA is provided and a penalized least 
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squares criterion is developed for parameter estimation, which is minimized 

by an alternating penalized least squares algorithm. The thesis also 

demonstrates the usefulness of the proposed method by analyzing synthetic 

and real data sets. It concludes with discussions on limitations and possible 

extensions of the proposed method. 
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ABRÉGÉ 

 

L'invention d'outils de mesures sophistiqués tel que les appareils de 

capture de mouvements, les ordinateurs portables, les appareils Bluetooth, 

l'oculométrie et les scanners cérébraux ont facilité la compilation de données 

fonctionnelles qui peuvent être considérées comme provenant d'une fonction 

variant sur un continuum tel que l'espace et le temps. L'analyse de données 

fonctionnelles (ADF) est une discipline émergente des statistiques, qui 

développe et applique les méthodes statistiques pour l'analyse de ce type de 

données. Plusieurs méthodes d'ADFs ont été proposées en prolongeant les 

méthodes traditionnelles de statistiques multi variées pour s'adapter aux 

données multifonctionnelles. Toutefois, peu de tentatives ont été effectuées 

dans le développement des extensions fonctionnelles des modèles d'équations 

structurelles (MES), malgré la popularité significative des MESs en plusieurs 

disciplines grâce à sa souplesse de la modélisation des relations complexes 

entre les variables observées et latentes. Cette thèse a donc pour objectif de 

proposer un cadre général pour les MESs fonctionnels, appelé l'analyse en 

composantes structurée généralisée fonctionnelle (ASSG fonctionnelle), qui 

combine l'analyse en composantes structurée généralisée fonctionnelle avec 

les moindres carrés pénalisés lissés par la fonction spline dans un cadre 

unifié. La méthode proposée peut être utilisée pour analyser une variété de 

relations hypothétiques entre des variables observées et latentes, tout en 
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permettant aux variables observées d'être fonctionnelles plutôt que scalaires. 

La thèse commence en décrivant l'ACSG et les moindres carrés pénalisés 

lisser par la fonction spline tel que les deux parties constituantes de la 

méthode proposée. Le modèle pour l'ACSG fonctionnelle est apporté et le 

critère des moindres carrés pénalisés sont développés par une estimation 

paramétrique, qui est minimisé par un algorithme alternatif de moindres 

carrés pénalisés. La thèse démontre également l'utilité de la méthode 

proposée par l'analyse de base de données réelles et synthétiques. En 

conclusion, sont présentées les discussions, limites et possibles extensions de 

la méthode proposée.   
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CHAPTER 1  

Introduction 

 

The invention of sophisticated measurement tools, such as motion 

capture devices, handheld computers, Bluetooth devices, eye-trackers, and 

brain scanners, has facilitated the collection of so-called functional data. 

Functional data refer to data that are considered to arise from an underlying 

smooth function varying over a continuum (Ramsay & Silverman, 2005, 

Chapter 1). The continuum is often time, as will be assumed throughout this 

thesis, but it can also be spatial location, wavelength, probability, etc. 

Researchers in many disciplines have collected a variety of functional data 

including motion capture data (e.g., Ormoneit, Black, Hastie, & Kjellström, 

2005), motor control data (e.g., Mattar & Ostry, 2010), music perception data 

(e.g., Vines, Krumhansl, Wanderley, & Levitin, 2006), neuroimaging data 

(e.g., Viviani, Grӧn, & Spitzer, 2005), pupil diameter data (e.g., Jackson & 

Sirois, 2009), and speech data (e.g., Aston, Chiou, & Evans, 2010). 

Statistical methods for analyzing functional data have been developed 

under the general name of functional data analysis (FDA), coined by Ramsay 

and Dalzell (1991). The basic idea of FDA is to treat responses measured at 

multiple occasions as a single entity, or a smooth function, rather than a 

collection of unconnected scores. Being smooth means that the adjacent 
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values of a function are necessarily connected and unlikely to be too different 

from each other (Ramsay & Silverman, 2005, Chapter 3). Any smooth 

function can be approximated up to an arbitrary accuracy by a linear 

combination of a sufficient number of basis functions such as B-splines and 

Fourier series, which is called a basis function expansion. Basis function 

expansions enable to represent intrinsically infinite-dimensional functions 

onto a finite-dimensional vector space and to formulate analyses of functional 

data within the framework of matrix algebra. Therefore basis function 

expansions can be readily integrated with multivariate analysis methods 

established upon matrix algebra. 

A variety of FDA methods have been developed by combining 

traditional multivariate analysis methods with basis function expansions for 

the analysis of functional data. A few examples of such FDA methods 

include functional principal components analysis (e.g., Besse & Ramsay, 

1986; Cardot, 2000; Girard, 2000; Hall & Hosseini-Nasab, 2006; James, 

Hastie, & Sugar, 2000; Ocaña, Aguilera, & Valderrama, 1999; Ramsay & 

Dalzell, 1991; Silverman, 1995; Yao & Lee, 2006; Yao, Müller, & Wang, 

2005), functional canonical correlation analysis (e.g, He, Müller, & Wang, 

2003; Hwang, Jung, Takane, & Woodward, 2012; Leurgans, Moyeed, & 

Silverman, 1993), and functional linear models (e.g., Cardot, Ferraty, & 

Sarda, 2003; Fan & Zhang, 2000; Fan & Zhang, 1999; Gu, 2002; Hastie, 

Tibshirani, & Friedman., 2001; Tan, Shiyko, Li, Li, & Dierker, 2012; Wu, 
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Fan, & Müller, 2010; Yao et al., 2005). Refer to Ramsay and Silverman 

(2005) for a comprehensive discussion of a wide range of FDA methods. 

Nonetheless, there has been little attempt to develop functional 

extensions of structural equation modeling (SEM) despite that SEM is 

currently the most dominant multivariate statistical methodology in various 

disciplines including behavioral and social sciences (Hershberger, 2003). 

SEM has gained its popularity mainly due to its tremendous flexibility that 

allows researchers to frame and answer complicated research questions (e.g., 

Kaplan, 2009, Chapter 1). Since SEM is designed for a simultaneous analysis 

of multiple equations that relate observed and/or latent variables, it provides a 

general framework for modeling complex relationships among observed and 

latent variables.  

Until now, researchers have analyzed functional data within the 

framework of SEM by transforming functional data to be suitable for SEM, 

rather than developing functional extensions of SEM. In this approach, a 

functional response is often summarized as a few features, which are used for 

further analyses in place of the functional response. For example, in a pain 

study (Donaldson et al., 2003), several functional responses were measured 

such as event related evoked potential (ERP), pupil dilation, skin 

conductance, heart rate, and respiration, while unpleasant electrical stimuli 

were delivered to subjects’ fingertips. In this study, ERP signal was 

summarized as its amplitudes and latencies of principal negative and positive 
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evoked potentials, pupil dilation and skin conductance as their peak 

amplitudes, and respiration and heart rate as their variances, so as to be used 

in a series of SEM analyses that examined how the physiological responses 

varied depending on the intensity of the stimuli. In a research of 

posttraumatic stress disorder (Taft et al., 2007), the effect of PTSD symptoms 

on aggression was assumed to be mediated by physiological reactivity such 

as heart rate and skin conductance, which were functional responses 

measured throughout task periods. In several SEM analyses to examine such 

hypothesized relationship among the variables, the overall means of heart rate 

and skin conductance were used instead of their functional responses. 

Although this approach is easy to implement, the summary measures of a 

functional response, such as peak amplitude, latency, mean, and variance, 

may not necessarily capture the functional response itself as well as its 

relationship with other variables sufficiently well. Moreover, this way of 

summarizing functional responses totally ignores temporal variations in data.  

Recently, a functional extension of SEM, called linear functional 

structural equation model (lfSEM; Lindquist, in press), was proposed to 

assess a mediation effect when the mediating variable is a continuous 

function rather than a scalar. More specifically, lfSEM assumes that a 

relationship between two scalar variables is mediated by a functional 

variable. Unlike the previous approach that summarizes a functional response 

as a few features, this model allows researchers to take into account the entire 
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functional response when examining its mediation effect. However, lfSEM is 

limited in the following two aspects. First, lfSEM can analyze only three 

observed variables of certain types related in a specific way, i.e., a scalar 

predictor, a scalar outcome, and a functional mediator. Therefore, lfSEM may 

not be of use to analyze other types of data containing a larger number of 

variables that could be associated in a more complicated way. Second, lfSEM 

does not involve latent variables. A latent variable can be considered as a 

single summary measure of a functional response just like the features such 

as peak amplitude, latency, mean, or variance. However, a latent variable is 

distinct from such a feature that is arbitrarily chosen by researchers with a 

hope that this feature happens to capture important variation in a functional 

response. Latent variables are estimated to maximally explain the 

hypothesized relationships among themselves as well as the variation in the 

corresponding functional responses. By introducing such latent variables, we 

can fully exploit the flexibility of SEM without losing important variations in 

functional data.  

This thesis thus aims to propose a more general framework for 

functional SEM, called functional generalized structured component analysis 

(functional GSCA hereafter), that can examine a variety of directional 

relationships among multiple functional responses via latent variables. 

Functional GSCA integrates generalized structured component analysis 

(GSCA; Hwang, Desarbo, & Takane, 2007; Hwang & Takane, 2004) with 
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basis function expansions to deal with functional data. GSCA is a 

component-based approach to SEM that aims to examine various directional 

relationships among latent variables as well as the relationships between 

latent and observed variables, in which a latent variable is defined as a 

component, or a weighted composite, of a vector of observed variables. 

GSCA estimates three sets of parameters: weight vectors, loading vectors, 

and path coefficients. A weight vector is to define a latent variable, or a 

component; a loading vector indicates the effect of a latent variable on the 

corresponding response vector; path coefficients reflect directional 

relationships among latent variables. Functional GSCA estimates the same 

three sets of parameters. However, functional GSCA permits an observed 

variable to be functional rather than scalar. A functional response defined 

over a period of time can be regarded as an infinite-dimensional vector, in 

which each dimension corresponds to each time point. Therefore, functional 

GSCA estimates an infinite-dimensional weight vector, i.e., a weight 

function, to define a latent variable of a functional response. Similarly, a 

loading vector in GSCA is replaced by a loading function in functional 

GSCA when a response is functional. A weight function indicates which time 

point of a functional response is crucial for investigating hypothesized 

relationships with other latent variables as well as for capturing the between-

subject variation in the functional response. A loading function represents 



7 

 

how the effect of a latent variable varies over time to generate a functional 

response, which captures the temporal variation in the functional response.  

The remaining chapters of this thesis are organized as follows. 

Chapters 2 and 3 provide brief descriptions of the two building blocks of 

functional GSCA. Chapter 2 reviews the original GSCA, and Chapter 3 

introduces penalized least squares smoothing methods. Chapter 4 discusses 

the technical details of functional GSCA. In this chapter, the functional 

GSCA model is provided and a penalized least squares criterion is developed 

for parameter estimation, which is minimized by an alternating penalized 

least squares algorithm. In addition, the relationship between functional 

GSCA and the original GSCA is expounded, which is followed by some 

discussions on various computational issues. In Chapter 5, the results of a 

simulation study are given with focusing on the accuracy of parameter 

recovery of functional GSCA. Chapter 6 illustrates the empirical usefulness 

of functional GSCA by analyzing two real data sets. The final chapter 

summarizes this thesis and discusses some limitations as well as possible 

extensions of functional GSCA.  
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CHAPTER 2  

Generalized Structured Component Analysis 

 

As stated earlier, the original GSCA was proposed as a component-

based SEM approach that aims to examine a variety of directional 

relationships among latent variables as well as the relationships between 

latent and observed variables, in which latent variables are defined as 

weighted composites of observed variables. Functional GSCA builds upon 

and extends the original GSCA to deal with functional data. In this chapter, 

the original GSCA model and its algorithm for parameter estimation are 

briefly reviewed in order to facilitate the understanding of functional GSCA.  

 

2.1 The Model 

GSCA involves two submodels: measurement and structural models. 

The measurement model specifies hypothesized relationships between latent 

and observed variables. On the other hand, the structural model reflects 

hypothesized directional relationships among latent variables. Let 
kZ  denote 

an N by 
kP  matrix of observed responses of N subjects on 

kP  variables in the 

kth set (k = 1, , K). Each set of observed variables is assumed to be 

generated and well summarized by a latent variable. Then the measurement 

model can be written as:  
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 ,k k k k
 Z γ c ε

 
   (2.1) 

where 
kγ  is an N by 1 vector of the scores on the kth latent variable of N 

subjects, 
kc  is a 

kP  by 1 vector of loadings relating the kth latent variable to 

the corresponding observed variables, and 
kε  is an N by 1 vector of 

measurement errors or residuals for the kth set of observed variables. The 

structural model is defined by: 

  , Γ ΓB E        (2.2) 

where Γ  is an N by K matrix of the scores of the K latent variables, i.e.,    

Γ = [ 1γ , , Kγ ], B is a K by K matrix of path coefficients reflecting 

directional relationships among the latent variables, and E is an N by K 

matrix of structural errors or residuals.  

The GSCA model has three sets of parameters to estimate: latent 

variable scores (
kγ ), loadings (

kc ), and path coefficients ( B ). In order to 

estimate the scores of latent variables, GSCA assumes that latent variables 

are defined as components, or weighted composites of observed variables, 

which can be written as: 

                            
,k k kγ Z w
  

   (2.3) 

where kw  is a kP  by 1 vector of weights to define the kth latent variable. 

Therefore, estimating the scores of latent variable 
kγ  reduces to estimating 

the corresponding weight vector 
kw .  
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To illustrate the GSCA model including (2.1), (2.2) and (2.3), a 

hypothetical example is displayed in Figure 2-1, in which squares represent 

observed variables, circles indicate latent variables,  ’s are measurement 

errors, and e is a structural error. In Figure 2-1, there are three sets of 

observed variables (K = 3), where the first set involves two observed 

variables (
1Z  and 

2Z ), the second set three observed variables (
3Z , 

4Z , and 

5Z ) and the third set four observed variables (
6Z , 

7Z , 
8Z , and 

9Z ). In other 

words, 
1Z  is a matrix of order N by 2, 

2Z  is of N by 3, and 
3Z  is of N by 4. 

The corresponding three weight vectors are given as follows: 

6

3

71

1 2 4 3

82

5

9

, , ,

w
w

ww
w

ww
w

w

 
   

                  
 

w w w

 

  (2.4) 

and similarly, the loading vectors are given as follows: 

    

6

3

71

1 2 4 3

82

5

9

, , .

c
c

cc
c

cc
c

c

 
   

                  
 

c c c

   

(2.5) 

In Figure 2-1, the latent variable 
3γ  is predicted by the two other 

latent variables 
1γ  and 

2γ , which is reflected by the following matrix of path 

coefficients: 

        

1

2

1 0

0 1 ,

0 0 0

b

b

 
 


 
  

B

 

   (2.6) 
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where the exogenous latent variables, 
1γ  and 

2γ , have path coefficients of 

unity heading to themselves. Note that without such unity path coefficients, 

the error matrix E in (2.2) will contain structural errors as well as exogenous 

latent variable scores.   

 

Figure 2-1: A hypothetical example with three sets of observed variables. 

 

2.2 Parameter Estimation 

GSCA assumes that the data matrix kZ
 
is columnwise normalized to 

have zero mean and unit norm for each variable. The parameters, 
kw , 

kc , 

and B, are estimated by minimizing the following objective function subject 

to the constraint that the norm of each latent variable should equal to unity: 

  
1

( ) ( ),
K

k

k

SS SS


  ε E

   

(2.7) 

where ( ) ( )SS tr E E E  indicates the sum of squares of all elements in the 

matrix E. The first term of the objective function represents the sum of 
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squared errors in the measurement model and the second term the sum of 

squared errors in the structural model. In other words, GSCA estimates the 

parameters so as to minimize the sum of squared errors in both measurement 

and structural models.  

To estimate 
kw , 

kc , and B that minimize the objective function, an 

alternating least squares algorithm (de Leeuw, Young, & Takane, 1976; 

Hwang, Desarbo, et al., 2007; Hwang & Takane, 2004) was developed, in 

which the estimates are randomly initialized and the following three steps 

iterate until convergence. In each of the three steps, one set of parameters is 

updated to minimize the objective function with other sets of parameters 

being fixed.  

STEP 1. Update 
kw  for fixed 

kc  and B. Based on (2.1) and (2.3), the first 

term of the objective function can be rewritten as: 

             

 

 

    

1

1

1

1

vec ,

K

k

k

K

k k k k

k

K

k k k k

k

SS

SS

SS










 

  







ε

Z Z w c

Z c Z w

 

  (2.8) 

where vec( )kZ  is a super-vector obtained by stacking the columns of 
kZ  in 

order and  indicates the Kronecker product. Similarly, by using (2.3), the 

second term of the objective function can be rewritten as:  
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 

 

  

   
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2

( )
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K

k k k K

k K k k K

k K k k k K

k K K k k k
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










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 

  

   
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E
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Γ I B

Γ γ u I B

Γ I B γ u I B

Γ I B Z w u I B

Γ I B I B u Z w

  

(2.9) 

where ( )k k k
 Γ Γ γ u , ( )kΓ  indicate Γ  whose kth column is replaced by 0, 

ku  is the unit vector of order K whose kth element is unity but all the other 

elements are zeroes, and 
KI  is the identity matrix of order K. The updated 

kw  is obtained by taking partial derivative of   with respect to 
kw  and 

setting it to zero as given by: 

  

       

     

     

1 2

( )

2 vec 2

2 vec

2 .

k k k

k k k k k k k k

K k k k K

K k k K k k k

 



 
 

  

     


   


      

w w w

c Z Z c Z c Z w

I B u Z Γ I B

I B u Z I B u Z w 0

  (2.10) 

Solving (2.10) yields the updated 
kw  given by: 

    
   

1

( )

ˆ

,

k k k k k k K K k k k

k k k k k k k k





      

   

w c c Z Z u I B I B u Z Z

Z Z c Z Γ I B I B u

  (2.11) 

which is derived based on the following properties of the Kronecker product: 



14 

 

         ,k k k k
    c Z c Z

   
 (2.12) 

   
   .k k k k k k k k k k k k
         c Z c Z c c Z Z c c Z Z

  
(2.13) 

After ˆ
kw  is obtained, ˆ

kw  is normalized so that the norm of the latent variable 

is unity, i.e., 1k k k k k k
   γ γ w Z Z w . 

STEP 2. Update 
kc  for fixed 

kw  and B. Note that the loading vector 
kc  is 

involved in the first term of the objective function only. The first term of the 

objective function can be rewritten as: 

      

 

 

1

1

1

K

k

k

K

k k k

k

SS

SS








 





ε

Z γ c

   (2.14) 

Solving 1 / k  c 0   yields the updated kc  given by: 

       
1

ˆ .k k k k k


 c Z γ γ γ

  
  (2.15) 

STEP 3. Update B for fixed 
kw  and 

kc . When updating B, it should be 

considered that there are many fixed elements in B as illustrated in (2.6), 

which are not be to updated. Also note that the path coefficient matrix B is 

involved in the second term of the objective function only. The second term 

of the objective function can be rewritten as: 

 

 

      

  

2

vec vec

vec ,

K

SS

SS

SS

  

  

 

Γ ΓB

Γ I Γ B

Γ Φb
  

 (2.16) 
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where b is a vector containing only the free parameters of  vec B  and Φ  is 

a matrix containing the columns of 
K I Γ  corresponding to the free 

parameters of  vec B . Solving 
2 /  b 0  yields the updated b given by: 

              
1ˆ vec ,


 b ΦΦ Φ Γ
  

 (2.17) 

and the updated B can be obtained by putting the elements of b̂  in the 

appropriate locations in B. In fact, the parameters 
kc  and B can be updated 

simultaneously (see Hwang, Desarbo, et al., 2007, Appendix). However, for 

the purpose of clearly showing the relationship between the original GSCA 

with functional GSCA, the two steps updating 
kc  and B are presented 

separately.  

The overall fit of a hypothesized model can be measured by the FIT 

(Hwang & Takane, 2004). The FIT indicates the total variation of all 

endogenous variables explained by the specified model, which is given by: 

  
 

1 ,FIT
SS


 

Ψ
   

 (2.18) 

where   is the objective function value as in (2.7) indicating the sum of 

squared errors of the specified model and Ψ  is a matrix consisting of all 

endogenous observed and latent variables. The FIT ranges from 0 to 1. A 

larger FIT value indicates that more variation in the endogenous variables is 

explained by the specified model.  
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CHAPTER 3  

Penalized Least Squares Smoothing 

 

 

Functional GSCA is a functional extension of the original GSCA that 

can deal with functional data and estimate weight and loading functions. In 

order to work with functions, functional GSCA builds upon basis function 

expansions, in which functions are represented and estimated without any 

assumptions on their shapes except smoothness. This chapter introduces 

smoothing methods that are required to represent and estimate smooth 

functions, mainly focusing on the penalized least squares smoothing.  

 

3.1 Smoothing Methods 

In functional GSCA, data are assumed to be functional. By functional, 

it means that responses measured over multiple occasions are assumed to 

arise from an underlying smooth function (Ramsay & Silverman, 2005, 

Chapter 3). A smooth function has the property that a pair of adjacent values 

of the function tends to be similar and unlikely to be too different from each 

other. Technically speaking, a smooth function indicates a function that 

possesses one or more derivatives. Raw observed scores, however, often do 

not look smooth because they are perturbed by noise or measurement error. 
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Therefore observed scores, usually given as a pair ( jt , jz ), can be modeled 

by: 

   ( )j j jz t   ,    (3.1) 

where jz  indicates a score measured at the jth measurement occasion            

(j = 1, , J), ( )jt  is an underlying smooth function generating jz  evaluated 

at time jt , and j  is noise or measurement error at occasion j. The 

underlying smooth function ( )jt  will be called data function hereafter.   

In most real applications, data functions fluctuate in somewhat 

complicated ways so that it may not be satisfactory to assume a parametric 

shape of change for representing data functions, such as linear, quadratic, or 

cubic. In this situation, a more flexible method for turning raw discrete data 

into smooth functions needs to be considered, which is called smoothing. 

There are two different approaches for smoothing: kernel smoothing and 

basis function expansions.  

The key idea of the kernel smoothing is that the value of a data 

function at time t must be similar and linked to the observed scores measured 

at time points near t. Therefore the value of a data function at time t can be 

estimated by a weighted sum of observed scores measured at time points 

around t, which is given by: 

   
1

( ) ( )
J

j j

j

t s t z


 ,    (3.2) 



18 

 

where the weight ( )js t  becomes greater as t approaches to jt . There have 

been proposed a number of different ways to define appropriate weight 

values ( )js t  for kernel smoothing (see Hastie et al., 2001, Chapter 6, for 

various types of kernel smoothing). Although this approach makes intuitive 

sense and is easy to implement, this approach will not be used in functional 

GSCA. Instead, the basis function expansion will be adopted for functional 

GSCA because it is more useful for representing not only data functions but 

also unknown parameter functions that are of the main interest of functional 

GSCA.  

The basic idea of basis function expansions is that any function in a 

function space can be represented as a linear combination of basis functions 

that span the function space. This is just as any vector in a vector space can 

be represented as a linear combination of basis vectors that span the vector 

space. In other words, any data function can be approximated to some 

arbitrary degree of precision by taking a linear combination of a sufficiently 

large number L of basis functions, which can be written as: 

          
1

( ) ( ) ( )
L

l l

l

t x t t 


  x θ

  

 (3.3) 

where lx  indicates the weight, or coefficient, of the lth basis function, ( )l t is 

the value of the lth basis function evaluated at time t, x = 1[x , , ]Lx  ,  and 

1( ) [ ( ),t tθ , ( )]L t  . There have been proposed a number of different 

kinds of basis functions to approximate different types of functions. Among 
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them, Fourier and spline basis functions are the two most widely used basis 

functions (Ramsay & Silverman, 2005, Chapter 3). Fourier basis functions 

are useful for representing a stable periodic function that does not show 

strong local fluctuations. Spline basis functions are appropriate for 

representing a non-periodic function that might fluctuate locally. Functional 

GSCA uses spline basis function to represent data functions as well as 

unknown parameter functions due to its flexibility.  

Spline functions are piecewise polynomial functions (for a 

comprehensive discussion on spline functions, see de Boor, 2001; Gu, 2002; 

Wahba, 1990). To define a spline function, we need to divide the interval 

over which a function is approximated into the predetermined number M of 

subintervals. The values that separate these M subintervals are called 

breakpoints, or knots. Over each subinterval, a spline function is defined as a 

polynomial of order m. The order of a polynomial indicates the number of 

parameters required to define the polynomial. For example, the order is two 

for a linear function, three for a quadratic function, four for cubic function, 

etc. A spline function must join at each breakpoint and its derivatives up to 

order m – 2 must also match up at each breakpoint so as to be smooth. There 

are a number of different spline functions that satisfy these constraints such 

as P-spline, M-spline, and B-spline (for various kinds of spline functions, see 

de Boor, 2001; Ramsay & Silverman, 2005, Chapter 3; Schumaker, 2007). 

Functional GSCA adopts B-spline functions due to its flexibility, popularity, 
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and computational efficiency. How to determine the location of breakpoints 

and the order of polynomials will be discussed at the end of Section 3.2. In 

the meantime, they will be assumed to be already determined.  

 

3.2 Penalized Least Squares Estimation for Smoothing 

Once the type and number of basis functions have been determined, 

the remaining problem is to estimate the coefficients of the basis functions, or 

x in (3.3). The coefficients of the basis functions can be estimated by 

minimizing the sum of squared errors in approximation, which is given by: 

         

 

 

   

2

1

2

1

SSE ( )

( )

,

J

j j

j

J

j j

j

z t

z t






 

 

  



 x θ

z Θx z Θx
   

 (3.4) 

where z is a J by 1 vector of observed scores, i.e., z = 1[ ,z , ]Jz   and Θ  is a 

J by L matrix of basis function values, i.e., 1[ ( ),tΘ θ , ( )]Jt θ . Solving 

SSE/  x 0  yields the estimated vector of the coefficients as follows:   

  
1ˆ ( ) x ΘΘ Θ z .    (3.5) 

When the number of basis functions equals to the number of 

measurement occasions (L = J), the raw data are interpolated, i.e., the 

estimated coefficients of basis functions will yield ( )j jz t x θ  for all j. In 

this case, the observed scores are perfectly fitted by the estimated data 
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function, which is not always desirable because there is a risk of overfitting. 

When observed scores are overfitted by the estimated data function, noise or 

measurement error that we want to ignore is also fitted and hence the 

estimated data function becomes rough or highly fluctuating due to the error.  

One way to reduce the risk of overfitting is to control the degree of 

roughness of the estimated data function by introducing a penalty term to the 

objective function (3.4) as follows: 

     
22

2

1

PENSSE ( ) ( ) ,
J

j j
T

j

z t D t dt  


      (3.6) 

where 
2 ( )D t dt indicates the second derivative of the data function ( )t , 

 
2

2 ( )
T

D t dt is the squared second derivative of the data function integrated 

over the interval T over which the data function is defined, and   is a non-

negative penalty parameter called smoothing parameter. The integrated 

squared second derivative is used as a penalty term for the following reason. 

A straight line, which has no curvature or roughness, will have a zero second 

derivative. Therefore the squared second derivative of a function at time t 

indicates its curvature or roughness at time t. Consequently the squared 

second derivative of a function integrated over T indicates its overall 

curvature or roughness over T.  

The smoothing parameter   controls the importance of the penalty 

term in estimating the data function. When   = 0, we obtain the least squares 

estimate (3.5) that minimizes the sum of squared errors in approximation. As 
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  increases, the penalty term becomes more and more important and the 

resultant estimated data function will become smoother. As   approaches to 

infinity, the resultant estimated data function will become linear. In other 

words, the degree of roughness of a data function is determined by the size of 

 . An optimal value of   can be determined by using the generalized cross-

validation method (Craven & Wahba, 1979; Ramsay & Silverman, 2005, 

Chapter 5).  

The basis function coefficients that minimize (3.6) can be obtained as 

follows. The PENSSE can be rewritten as: 

   

   

     

     

   

22
2

1

2 2

2 2

PENSSE ( ) ( ) ,

( ) ( )

( ) ( )

,

J

j j
T

j

T

T

z t D t dt

D t D t dt

D t D t dt











   

    

    

    

 





x θ x θ

z Θx z Θx x θ θ x

z Θx z Θx x θ θ x

z Θx z Θx x Rx
 

 (3.7) 

where 2 2( ) ( )
T

D t D t dt R θ θ , which can be numerically obtained (Ramsay & 

Silverman, 2005, Chapter 5). Solving PENSSE/  x 0  yields the estimated 

vector of the coefficients given by: 

            
1

ˆ .


  x ΘΘ R Θ z     (3.8) 

After estimating the basis function coefficients, a data function can be 

obtained by using (3.3). This idea of penalized least squares smoothing will 

be used repeatedly in estimating parameter functions of functional GSCA 

later on. 
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Now that the penalized least squares smoothing has been introduced, 

we can discuss how to determine the location of the breakpoints of spline 

basis functions and the order of polynomials. When the objective function 

PENSSE is minimized over an entire set of functions without any 

assumptions, it has been proven that the curve ( )t  that minimizes the 

PENSSE is a cubic spline with breakpoints at every data point jt  (de Boor, 

2001; Ramsay & Silverman, 2005, Chapter 3; Wahba, 1990). According to 

this theorem, we can put breakpoints at every observed time point, jt , and 

use spline functions of order four, which is called cubic spline smoothing. 

Once the location of breakpoints and the order of spline functions are 

determined, the number of spline basis functions L automatically follows, i.e., 

L = M + m – 1 (see Ramsay & Silverman, 2005, Chapter 3).  

From now on, it will be assumed that data functions are already 

obtained from raw data by using the cubic spline smoothing with B-spline 

basis functions and functional GSCA model will be developed upon these 

data functions.  
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Chapter 4  

Functional Generalized Structured Component Analysis 

 

In this chapter, functional GSCA is developed by combining the two 

building blocks, the original GSCA and the penalized least squares 

smoothing. First, the functional GSCA model is formulated, which is 

followed by the parameter estimation algorithm. The relationship between 

functional GSCA and the original GSCA is demonstrated. Various 

computational issues are also discussed.  

 

4.1 The Model 

Let’s assume that K data functions are obtained by measuring subjects 

on K variables continuously over time, upon which various relationships 

among latent variables are to be examined. As the original GSCA, functional 

GSCA consists of two submodels: measurement and structural models. The 

measurement model specifies hypothesized relationships between data 

functions and latent variables, which can be written as:  

        ( ) ( ) ( ),ik k ik k k ik kt t t         (3.9) 

where ( )ik kt  is a data function of subject i ( 1,i  , N ) on variable k 

( 1,k  , K ) evaluated at time kt  defined over an interval kT , ik  is a score 
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of the kth latent variable of subject i, ( )ik kt  is a loading function evaluated 

at time kt , and ( )ik kt  is a function of measurement error or residual. In this 

measurement model, the data function ( )ik kt  is assumed to be generated by 

an underlying latent variable ik , which reflects the amplitude of the kth data 

function of subject i . The effect, or loading, of the latent score ik  on the data 

function ( )ik kt is assumed to change over time, which is represented by the 

loading function ( )k kt . Note that ( )k kt  does not have subscript i, which 

indicates that the loading function is assumed to be common to all subjects. 

In other words, functional GSCA assumes that data functions on variable k 

share a common shape of change across all subjects, which is represented by 

( )k t , and the data functions vary across subjects only in terms of amplitude 

of change, represented by ik . Therefore, the kth loading function represents 

the temporal variation in the functional data measured on the kth variable and 

the latent variable ik  captures the between-subjects variability in terms of 

amplitude. The residual function, ( )ik kt , represents the portion of the data 

function that cannot be explained by the hypothesized measurement model.  

The structural model of functional GSCA specifies hypothesized 

directional relationships among latent variables, or amplitude scores. The 

structural model of functional GSCA is defined by: 

         , Γ ΓB E     (3.10) 
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which is identical to the structural model of the original GSCA in (2.2).  

Therefore functional GSCA has three sets of parameters to estimate: 

the scores of latent variables (Γ ), loading functions ( ( )k kt ), and path 

coefficients ( B ). In order to estimate the scores of latent variables, functional 

GSCA assumes that a latent variable is defined as a weighted integration of a 

data function, i.e.,  

         ( ) ( ) ,
k

ik ik k k k k
T

t t dt      
  (3.11) 

where ( )k kt  indicates a weight function to define the kth latent variable. 

This assumption is comparable to the assumption of the original GSCA that a 

latent variable is defined as a weighted sum of observed variables as in (2.3). 

A data function can be thought of as an infinite dimensional vector of 

observed variables, in which each dimension corresponds to each time point. 

Consequently, a weight vector to define a latent variable in the original 

GSCA becomes an infinite dimensional weight vector, i.e., a weight function 

in functional GSCA. The value of a weight function at time kt  indicates the 

effect of a data function on the corresponding latent variable at kt . In other 

words, by examining the value of a weight function over time, we can see 

which time point is crucial for defining a latent variable, which will be used 

for examining the relationships with other latent variables as well as for 

capturing the variability in the corresponding data function.  
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In order to estimate weight functions and loading functions, we need 

to represent these functions by using basis function expansions as introduced 

in Section 3.1: 

      ( ) ( ) ( ) ,k k k k k kt t t   y θ θ y
  

 (3.12) 

      ( ) ( ) ( ) ,k k k k k kt t t   a θ θ a    (3.13) 

where ky  is an kL  by 1 vector of basis function coefficients for the kth 

weight function, kL  is the number of basis functions for the kth data function 

determined by the cubic spline smoothing as introduced in Section 3.2, ka  is 

an kL  by 1 vector of basis function coefficients for the kth loading function, 

and ( )ktθ  is an kL  by 1 vector of basis function values evaluated at time kt . 

Note that both ky  and ka  are of the same order kL , which indicates that the 

number of basis functions for both weight and loading functions is assumed 

to be identical to that for data functions. 

By using (3.12) and (3.3), we can rewrite latent variable in (3.11) as 

follows: 

       

 

( ) ( )

( ) ( )

( ) ( )

,

k

k

k

ik ik k k k k
T

ik k k k k
T

ik k k k k
T

ik k k

t t dt

t t dt

t t dt

  

 

 









x θ θ y

x θ θ y

x Q y   

 (3.14) 
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where ikx  is an kL  by 1 vector of the coefficients of basis functions for the 

data function of subject i on variable k and ( ) ( )
k

k k k k
T

t t dt Q θ θ , which can 

be obtained numerically (see Ramsay & Silverman, 2005, Chapter 5). Putting 

the scores of the kth latent variable of N subjects into one vector yields the 

following compact representation: 

      k k k kγ X Q y ,     (3.15) 

where kγ  is an N by 1 vector of the scores of the kth latent variable, 

i.e., 1[ ,k kγ , ]Nk  , and kX  is an N by kL  matrix of basis function 

coefficients of the kth data functions, i.e., 1[ ,k kX x , ]Nk
x . Likewise, by 

using (3.3), (3.13), and (3.14), the measurement model (3.9) can be rewritten 

as: 

    ( ) ( ) ( ),ik k ik k k k k ik kt t t   x θ x Q y a θ    (3.16) 

and the measurement model for all N subjects can be compactly represented 

as the following:  

    ( ) ( ) ( ),k k k k k k k k kt t t X θ X Q y a θ ε    (3.17) 

where ( )k ktε  is an N by 1 vector of measurement errors on variable k at time 

kt , i.e., 1( ) [ ( ),k k k kt tε , ( )]Nk kt  .   

In sum, the two submodels, (3.17) and (3.10), define the functional 

GSCA model and the three sets of parameters, ky , ka , and B, are to be 

estimated. 
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4.2 Parameter Estimation 

Functional GSCA estimates the parameters, ky , ka , and B, by 

minimizing the following objective function: 

   
1 1 1

( ) ,
k

K K K

k k k k k k k k k k k
T

k k k

f SS t dt SS  
  

       ε E y R y a R a  (3.18) 

subject to the constraint that the norm of each latent variable should equal to 

the number of subjects. The first term of the objective function indicates the 

integrated squared errors in the measurement model (3.17)summed over all N 

subjects and all K variables. The second term of the objective function 

indicates the sum of squared errors in the structural model (3.10). The third 

and the last terms are the penalty terms that control the degree of roughness 

of weight and loading functions, respectively. As mentioned in Section 3.2, 

the overall curvature or roughness of a function can be measured by its 

integrated squared second derivative. Therefore the overall curvature of the 

kth weight function ( )k kt  can be measured by:  

   
2

2 ( ) ,
k

k k k
T

D t dt     (3.19) 

which can be rewritten by using (3.12) as the following: 

   

 

2
2 2 2

2 2

( ) ( ) ( )

( ) ( )

,

k k

k

k k k k k k k k
T T

k k k k k
T

k k k

D t dt D t D t dt

D t D t dt

  

 



 



y θ θ y

y θ θ y

y R y

  (3.20) 
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where 2 2( ) ( )
k

k k k k
T

D t D t dt R θ θ  as in (3.7). Similarly, the overall curvature 

of the kth loading function ( )k kt  can be measured by: 

         
2

2 ( )
k

k k k k k k
T

D t dt  a R a .   (3.21) 

The nonnegative smoothing parameters, k  and k , determine the 

importance of the corresponding penalty terms. When 0k k  
 
for all k, 

minimizing the objective function is equivalent to minimizing the errors in 

the measurement and structural models. As discussed in Section 3.2, 

minimizing the errors, in other words, maximizing the fit to given data, takes 

the risk of overfitting, which may yield highly fluctuating estimated 

functions. By using greater values of the smoothing parameters, the risk of 

overfitting can be reduced and smoother weight and loading functions can be 

obtained. The optimal values of the smoothing parameters can be determined 

by a cross-validation method, which will be further discussed in Section 

4.4.1. 

In order to estimate ky , ka , and B that minimize the objective 

function (3.18), an alternating penalized least squares algorithm is developed. 

This algorithm starts with random initial values of ky , ka , and B  and iterates 

the following three steps until convergence. In each of the three steps, only 

one set of parameters is updated to minimize the objective function while the 

other two sets of parameters are being fixed.  
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STEP 1. Update ky  for fixed ka  and B. By using (3.17), the first term of the 

objective function in (3.18) can be rewritten as follows:  
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 (3.22) 

Similarly, by using (3.15) and  ( )k k k
 Γ Γ γ u  as in (2.9), the second term 

of the objective function in (3.18) can be rewritten as follows: 
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 (3.23) 

The updated ky  is obtained by taking partial derivative of f with respect to 

ky  and setting it to zero as follows:  
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which yields 
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 (3.25) 
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After ˆ
ky  is obtained, ˆ

ky  is normalized so that the squared norm of the latent 

variable is equal to the number of subjects, i.e., ˆ ˆ
k k k k k k N  y Q X X Q y . Scaling 

of latent variables as well as raw data will be further discussed in Section 

4.4.3.  

STEP 2. Update ka  for fixed ky  and B. The updated ka  is obtained by 

taking partial derivative of f with respect to ka  and setting it to zero as 

follows: 
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(3.26) 

where 
1f  is as given in (3.22). Solving (3.26) yields the update 

ka  as the 

following: 

   
1

ˆ .k k k k k k k k k k k k k k k


   a y Q X X Q y Q R Q X X Q y   (3.27) 

STEP 3. Update B for fixed ky  and ka . As in the original GSCA, the second 

term of the objective function can be written as follows: 
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 (3.28) 

where b is a vector containing only free parameters of  vec B  and Φ  is a 

matrix containing the columns of 
K I Γ  corresponding to the free 
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parameters of  vec B  as already defined in (2.16). Solving 
2 /f  b 0  

yields the updated b given by: 

      
1ˆ vec ,


 b ΦΦ Φ Γ    (3.29) 

which is identical to the updated b in the original GSCA as in (2.17). The 

updated B can be obtained by putting the elements of b̂  in the appropriate 

locations in B. 

The objective function (3.18) is bounded above zero and each step of 

the algorithm decreases the value of the objective function. Therefore this 

algorithm will converge to a solution. However, this does not guarantee that 

the solution is the global minimum. In order to increase the change of 

convergence to the global minimum, the algorithm repeats a number of times, 

say 20, with different initial values each time and the solution associated with 

the smallest objective function value is determined as the final one.  

The goodness-of-fit of a hypothesized model can be measured by the 

FIT index as in the original GSCA, which is given by: 
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1 2

1
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K

k k E

k

f f

tr NK



 

  X QX

   (3.30) 

As in the original GSCA, the FIT represents the amount of variation in all 

endogenous variables that can be explained by the specified model. The first 

term in the denominator in (3.30) indicates the total variation in data 

functions, which can be shown by: 
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(3.31) 

When the total variation is calculated, the mean of ( )ik t  does not have to be 

subtracted because ( )ik t  is already centered to have zero mean at each time 

point kt , which will be further discussed in Section 4.4.3. The second term in 

the denominator represents the total variation in endogenous latent scores. 

Since each latent variable is centered to have zero mean and normalized to 

have its squared norm equal to N, the sum of the squared norms of all 

endogenous latent variables is
ENK , where 

EK  indicates the number of 

endogenous latent variables. In the numerator in (3.30), 1f  and 2f  indicate 

the amount of errors in the measurement and structural model, respectively. 

Therefore, the FIT ranges from 0 to 1 and a larger value indicates a better fit. 

One can use the FIT to compare different models and choose one associated 

with the highest FIT value as the best model.  

  

4.3 Constrained Models 

In real applications, we may encounter situations in which some 

observed variables are functional but others are not. For example, one might 

be interested in examining the relationship between subjects’ brain signals 



36 

 

and their cognitive ability. In this case, brain signals can be regarded as 

functional data. Cognitive ability, however, may be measured by a cognitive 

rating scale consisting of a certain number of items, which cannot be 

considered functional.  

Functional GSCA can easily accommodate this situation as follows. 

Functional GSCA defines latent variables as given by (3.15). If the kth set of 

observed variables is not functional but multivariate as in the original GSCA, 

the kth latent variable can be defined as in the original GSCA: 

       k k kγ Ζ w ,    (3.32) 

where kZ is an N by kP  matrix of kP  observed variables in the kth set, and 

kw  is a kP  by 1 vector of weights to define the kth latent variable. We can 

see that (3.15) reduces to (3.32) by constraining k kX Z , 
kk PQ I , and 

k ky w . Note that the corresponding penalty parameters, k  and k , should 

be set to zero. By setting, k kX Z
kk PQ I , k ky w , and 0k  , the updated 

ˆ
ka  given in (3.27) reduces to: 
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  (3.33) 

which is identical to ˆ
kc , the updated loading in the original GSCA as given in 

(2.15). Similarly, by setting  k kX Z , 
kk PQ I , 

k ka c , and 0k  , the 

updated ˆ
ky  in (3.25) reduces to  
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  (3.34) 

which is identical to the updated weight ˆ
kw in the original GSCA as given in 

(2.11). The matrix of path coefficients B will be updated as described in the 

step 3 in Section 4.2, which is again identical to the updated path coefficients 

in the original GSCA.  

In sum, functional GSCA can deal with both functional and 

multivariate data by constraining k kX Z , 
kk PQ I , and 0k k    for the 

kth set of observed variables when it is multivariate. Consequently, the 

original GSCA can be considered as the most constrained version of 

functional GSCA, in which k kX Z , 
kk PQ I , and 0k k    for all k.  

 

4.4 Other Computational Considerations 

4.4.1 Smoothing Parameters 

This section discusses how to determine the values of the smoothing 

parameters k  and k  that were assumed to be known in Sections 4.1 and 

4.2. In order to reduce a computational burden, it will be assumed that 

1  = K   and 1  = K  . Functional GSCA uses G-fold cross-

validation for estimating   and  . First, a manageable number of pairs of 

smoothing parameter values ( ,  ) are set to be tested. Original data are 
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divided into G subgroups of approximately equal size. Among the G 

subgroups, a single subgroup is retained as the validation or test set and the 

remaining G – 1 subgroups are used as the training set. The parameters are 

estimated based on the training set under a given pair of smoothing 

parameters and the estimated parameters are used to calculate a predictor 

error in the test set. This process repeats G times with each of the G 

subgroups being used as the test. At the end, the prediction errors from the G 

test sets are summed to produce the overall prediction error. The pair of 

smoothing parameter values ( ,  ) associated with the smallest overall 

prediction error is chosen as the final one.  

The overall prediction error produced by a given pair of smoothing 

parameter values can be calculated as follows: 
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 (3.35) 

where 
( ) ( )g

k ktξ  indicates an gN  by 1 vector of data function values of the gN  

subjects belonging to the gth test set on variable k at time kt ,  
( )g

kγ  in an gN  

by 1 vector of the scores of the kth latent variable of the same gN  subjects, 

( ) ( )

1[ ,g gΓ γ , ( ) ]g

Kγ , 
( ) ( )g

k kt 
 is the loading function of the kth variable 

obtained from the gth training set under ( ,  ), and 
( )gB  is the matrix of 

path coefficients obtained from the gth training set under ( ,  ). In (3.35), 
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the first term  ( ) ( ) ( )

1

( ) ( )
k

K
g g g

k k k k k k
T

k

SS t t dt 



 ξ γ  indicates the sum of 

squared prediction errors in the measurement model integrated over kt  and 

the second term  ( ) ( ) ( )g g gSS Γ Γ B  represents the sum of squared prediction 

errors in the structural model.  

Based on (3.3), the vector of data function values, 
( ) ( )g

k ktξ  can be 

rewritten as: 

    
( ) ( )( ) ( ),g g

k k k k kt tξ X θ
   

 (3.36) 

where 
( )g

kX  indicates an gN  by kL  matrix of basis function coefficients of the 

gN  subjects belonging to the test set g for variable k. Likewise, based on 

(3.13) the loading function 
( ) ( )g

k kt 
 can be rewritten as: 

   ( ) ( )( ) ( )g g

k k k k kt t    a θ ,   (3.37) 

where 
( )g

k


a  indicates the vector of basis function coefficients for the kth 

loading function obtained from the gth training set. Then the prediction error 

in the gth test set can be rewritten as follows: 



40 

 

 

 

 

 
 

   

 

( ) ( ) ( )

1

( ) ( ) ( )

( ) ( ) ( )

1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( )

PE ( , ) = ( ) ( )

( ) ( )

2

k

k

K
g g g

g k k k k k k
T

k

g g g

K
g g g

k k k k k k k k
T

k

g g g

K
g g g g g

k k k k k k k

k

g g g g

k k k k k

SS t t dt

SS

SS t t dt

SS

tr tr

tr

S

   















 



 

 

 

  

 









ξ γ

Γ Γ B

X θ γ a θ

Γ Γ B

X Q X X Q a γ

γ a Q a γ

 ( ) ( ) ( ) ,g g gS Γ Γ B

 (3.38) 

    

in which ( ) ( )

1[ ,g gΓ γ , ( ) ]g

Kγ  and 
( )g

kγ  is obtained by using (3.15) as  

follows:  

     
( ) ( ) ( ) ,g g g

k k k k

γ X Q y
   

 (3.39) 

where 
( )g

k


y  is the vector of basis function coefficients for the kth weight 

function obtained from the gth training set. Once 
( )g

k


y , 

( )g

k


a , and 

( )gB  are 

estimated, the prediction error in the gth test set can be easily calculated 

based on (3.38) and (3.39).  

 

4.4.2 Confidence Intervals of Estimates 

Researchers are often interested in not only the values of estimates 

themselves but also the stability of estimates. If an estimate is highly variable 

across different samples, the obtained value of the estimate from a given 

sample may not be meaningful for other samples. The confidence interval of 
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an estimate delivers such information about the variability of the estimate 

across different samples. To obtain the confidence intervals of the estimates 

of functional GSCA, we can use a bootstrap method (Efron, 1982; Hastie et 

al., 2001, Chapter 8), in which the sampling distribution of an estimate is 

approximated by the distribution of the estimate obtained from a number of 

resamples from the observed data. More specifically, if a data set consists of 

the scores obtained from N subjects, each resample is constructed by a 

random sampling with replacement of size N from the original N subjects and 

then an estimate is obtained from this resample. Repeating this resampling 

and estimating process a sufficient number of times will produce an empirical 

distribution of the estimate, from which the confidence interval of the 

estimate is obtained. For example, the 95% confidence interval of an estimate 

can be obtained by finding 97.5 and 2.5 percentile values from the empirical 

distribution. 

Functional GSCA obtains the confidence intervals of path coefficients 

in exactly the same way as explained above. Calculating the confidence 

intervals of weight and loading functions, however, needs special 

considerations. Although functional GSCA estimates the vectors of basis 

function coefficients, ky  and ka , for weight and loading functions, 

respectively, these vectors themselves may not be of the main interest of 

functional GSCA. It is the weight and loading functions obtained from these 

basis function coefficient vectors that are meaningful and interpretable. 
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Therefore calculating the confidence intervals of ky  and ka may not be of 

use. Instead, it is more informative to calculate the confidence intervals of 

weight and loading functions.  

Functional GSCA obtains the confidence interval of a function as 

follows. A weight function will be used as an example here but the same 

procedure will be used for a loading function as well. Once the basis function 

coefficient vector, ky , is obtained for each resample in the bootstrapping 

procedure, the weight function value evaluated at time kt  , or ( )k kt , can be 

obtained by using (3.12). After a sufficient number of resamples are obtained, 

in each of which the weight function is estimated, we can sort the values of 

the weight function at each time point kt  obtained over all resamples in an 

ascending order and find the 97.5 percentile and 2.5 percentiles values, which 

are the upper and lower limits of the 95% confidence interval at the time 

point kt .  

 

4.4.3 Scaling Raw Data and Latent Scores  

Functional GSCA can obtain estimates that are unique up to scale 

only. The scale of latent variables is necessarily arbitrary because latent 

variables are not directly observable and the scales of weight functions, 

loading functions, and path coefficients depend on the scale of latent scores. 

This indeterminacy problem is not unique to functional GSCA but true for the 
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original GSCA as well. In order to resolve this problem, in the original 

GSCA, observed raw data are centered to have zero mean, which leads the 

mean of each latent variable to be zero. In addition, both observed and latent 

variables are normalized to have unit norm so that they become comparable 

in size.  

In functional GSCA, observed raw data (or equivalently data 

functions) are centered to have zero mean at each time point, which leads the 

mean of each latent variable to be zero just as in the original GSCA. 

However, normalizing observed raw data to have unit norm at each time 

point as in the original GSCA will yield a disastrous result. Figure 4-1(a) 

shows a set of four synthetic data functions. Each function was generated by 

using the measurement model (3.9), in which the loading function was the 

gamma function with the shape parameter of 10 and the size parameter of 5 

and the scores of the latent variable were randomly generated from a uniform 

distribution over the interval (0, 1). Figure 4-1(b) shows the four data 

functions centered to have zero mean at each time point. Centering changes 

the scores of the latent variable but the shape of the loading function and the 

relative locations of the latent variable scores are preserved. Figure 4-1(c) 

shows the data functions centered to have zero mean plus normalized to have 

unit norm at each time point. We can see that this type of normalization fails 

to retain the temporal variation, or the shape of the loading function, and only 

preserves the relative locations of the latent variable scores. In other words, 
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normalizing raw data to have unit norm at each time point will result in 

throwing away the temporal variation in the data. Therefore functional GSCA 

does not normalize raw data in this way. Instead, functional GSCA 

normalizes raw data to satisfy the following: 

        * ,k kSS NJZ     (3.40) 

where *

kZ  indicates the N by kJ  matrix of raw data measured on the kth 

variable over kJ  occasions for N subjects and centered to have zero mean at 

each occasion. In other words, the data matrix is normalized matrixwise, not 

columnwise, so that the squared norm of the matrix equals to kNJ . As we can 

see in Figure 4-1(d), this type of normalization not only preserves the relative 

locations of the latent variable scores but also retains the temporal variation, 

or the information on the shape of the loading function. In addition, 

functional GSCA normalizes each latent variable to make its squared norm 

equal to the sample size N, which makes observed data and latent scores 

comparable in size.  
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Figure 4-1. The results of different scaling methods on four data functions, 

each of which is represented by a line with different style: (a) raw data 

functions, (b) centering only, (c) centering plus columnwise normalization, 

and (d) centering plus matrixwise normalization. 
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Chapter 5  

A Simulation Study 

 

In this chapter, a Monte Carlo simulation study is designed and 

conducted in order to investigate the performance of the estimates of 

functional GSCA under a variety of conditions. In Monte Carlo simulation 

studies, true models and true parameter values are initially specified, which 

depend on the conditions that are manipulated so as to affect the accuracy of 

the estimates. A sufficient number of data sets are generated under each 

condition. The estimates are obtained for each data set under each condition 

and then are systematically examined for their accuracy of parameter 

recovery as a function of the manipulated factors.  

 

5.1 Data Generation Procedure 

In the Monte Carlo study for functional GSCA, three latent variables, 

1γ , 2γ , and 3γ , were involved, each of which was generated as follows. 

First, the two latent variables, 1γ  and 2γ , were assumed to be exogenous 

variables and the remaining one, 3γ , was assumed to be an endogenous 

variable, as shown in Figure 5-1. The two exogenous latent variables, 1γ  and 

2γ , were generated from the bivariate normal distribution 
0 1 0

,
0 0 1

N
    
    
    

, 
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in which each latent variable was generated from the standard normal 

distribution and the two latent variables were assumed to be uncorrelated, i.e., 

1 2cov( , ) 0γ γ .  

The endogenous latent variable, 3γ , was generated from the structural 

model as shown in Figure 5, which can be written as: 

  
3 1 1 2 2 ,b b  γ γ γ e     (5.1) 

where the values of the path coefficients 1b  and 2b  were manipulated to vary 

at three different levels depending on the variance of the structural error e. 

 

 

Figure 5-1: The structural model used for generating data in the simulation 

study. 

 

 Assuming that the error e in the structural model is not correlated with 

the two exogenous latent variables 1γ  and 2γ , i.e., 

1 2cov( , ) cov( , ) 0 γ e γ e , the variance of the endogenous latent variable 3γ  

can be calculated as:  
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2 2

3 1 1 2 2

2 2 2

1 2

var( ) var( ) var( ) var( )

1,

b b

b b 

  

  



γ γ γ e

   (5.2)  

where 
2 var( )  e  and the variance of 3γ  is set to unity as for the two 

exogenous latent variables. The error variance 
2  in the structural model was 

varied at three different levels: 0.2, 0.6, and 0.9. For 
2 0.2  , 1 0.8b   and 

2 0.4b   were used to yield 
2 2

1 2 0.8b b   and hence 
2 2 2

1 2 1b b    . 

Likewise, for 
2 0.6  , 1 0.6b   and 2 0.2b   were used and for 

2 0.9  , 

1 0.3b   and 2 0.1b   were used. After 1γ  and 2γ  were generated and 1b , 2b , 

and 
2  were determined depending on the condition under which data were 

generated, 3γ  was generated by using (5.1), in which e was generated from a 

normal distribution with mean of zero and variance of 
2 . More precisely, 

 1 2, ,γ γ e  was generated from the following multivariate normal distribution:  

  
2

0 1 0 0

0 , 0 1 0 .

0 0 0

N



    
    
    
        

   (5.3) 

Once the latent variables were generated, the corresponding data 

functions were generated. It was assumed that the responses of all subjects on 

all variables were measured at the same time points jt  ( 1,j  , )J , in 

which 1 0t   and 1Jt  . The data functions were generated from the 

following measurement model:  
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     ( ) , 1,2,3.jk k k j jkt k  z γ ε    (5.4) 

where jkz  is an N by 1 vector of measured responses of N subject on kth 

variable at time jt , kγ  is an N by 1 vector of the latent variable scores 

generated as described above, and the loading functions ( )k t  were defined 

as: 

        1

1 1 1
( ) cos 2 ( ) ,

2 4 2
t t       (5.5) 

            2

1
( ) cos ( ),

2
t t  

   
 (5.6) 

                 3( ) cos ,
2

t t


 
   

 (5.7) 

over  0,1t , which are displayed in Figure 5-2.  

 

Figure 5-2: The three loading functions used for generating data in the 

simulation study: the solid line indicates 1( )t , the dashed line 2 ( )t , and the 

dash-dotted line 3( )t . 
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 The three loading functions were manipulated to have three different 

degrees of roughness, i.e., the frequency of 1, ½, and ¼, for 1( )t , 2 ( )t , and 

3( )t , respectively. The higher the frequency of a function is the rougher it 

is. Finally, an N by 1 vector of measurement errors or residuals, kε , was 

generated from a normal distribution with mean 0 and variance 2 . The error 

variance 
2  in the measurement model was assumed to be equal across all 

variables and all time points, and was varied at three different levels: 0.5, 1, 

and 2. The data functions were generated by multiplying the already 

generated latent variables kγ  by the corresponding loading functions ( )k t  

and then adding the measurement errors kε . 

Two other factors were manipulated for generating data: the number 

of subjects (N) and the number of time points (J). The number of subjects 

was varied at four levels: 25, 50, 100, and 200. The number of time points, 

which were assumed to be equally spaced, was varied at four levels: 10, 25, 

50, and 100. In sum, there were four factors manipulated in this simulation 

study: the amount of errors in the structural model (
2 = 0.2, 0.6, and 0.9), the 

amount of errors in the measurement model (
2 = 0.5, 1, and 2), the number 

of subjects (N = 25, 50, 100, and 200), and the number of time points (J = 10, 

25, 50, and 100), which yielded 3 3 4 4    = 144 conditions. For each 
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condition, 100 replications were generated, i.e., a total of 14400 data sets 

were analyzed.  

Each data set under each condition was analyzed by functional GSCA 

with assuming the structural model given in (5.1).  Before functional GSCA 

was applied, each data set was smoothed by the cubic spline smoothing with 

B-spline basis functions as described in Section 3.2. Under each condition, 

the optimal values of the smoothing parameters,   and  , were determined 

by five-fold cross-validation. Each smoothing parameter was varied at six 

levels, 
010 , 

110 , 
210 , 

310 , 
410 , and 

510 , which yielded 6 6  = 36 pairs of 

smoothing parameter values to be tested. This cross-validation was performed 

only for the first sample out of 100 replications in order to reduce 

computation time. 

 

5.2 Results 

For the investigation of the accuracy of parameter recovery of the 

loading functions and latent variables, the congruence coefficients (Tucker, 

1951) between true parameters and their estimates were examined. The 

congruence coefficient of a vector of true parameters η  and a vector of their 

estimates η̂  is calculated by: 

          
ˆ

ˆCC( , ) ,
ˆ ˆ




 

η η
η η

η η η η
   

 (5.8) 



52 

 

which is equivalent to the cosine of the angle between the two vectors η  and 

η̂ . As the angle between the two vectors approaches 0 degree, i.e., the two 

vectors collapse each other, the cosine of the angle approaches 1. As the 

angle between the two vector approaches 90 degree, i.e., the two vectors are 

orthogonal, the cosine of the angle approaches 0. As the angle between the 

two vectors approaches 180 degree, i.e., the two vectors lie in the opposite 

direction, the cosine of the angle approaches -1. Therefore the congruence 

coefficient ranges between -1 and 1 and measures the agreement or similarity 

in terms of the direction of two vectors regardless of their size. A larger value 

of the congruence coefficient indicates a better agreement of the two vectors. 

Conventionally a value greater than 0.9 of the congruence coefficient is 

regarded as an acceptable degree of similarity or agreement (Mulaik, 1971). 

In order to calculate the congruence coefficient between two functions, i.e., a 

true loading function and its estimated loading function, each function is 

evaluated at 100 equally spaced time points and the vector of 100 evaluated 

values was used instead of the function itself. 

In order to examine the accuracy of parameter recovery of the path 

coefficients, the mean squared errors of the estimates were calculated as 

given by: 

  2ˆ ˆMSE( ) ( ) ,E    
 

   (5.9) 
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where   is a true path coefficient and ̂  is an estimate of the true path 

coefficient and the expectation  E   is taken over 100 replications. The mean 

squared error of an estimate indicates the average squared distance between 

the estimate and its true parameter. A smaller value of the mean squared error 

indicates a smaller distance between an estimate and its true parameter, i.e., a 

better estimate. 

Tables 5-1, 5-2, and 5-3 present the average congruence coefficients 

of the estimates of the three loading functions over 100 replications at 
2 = 

0.2, 0.6, and 0.9, respectively. It seems that the amount of errors in the 

structural model 
2  had no systematic effect on the accuracy of parameter 

recovery of the loading functions, which is the reason why the results are 

presented separately at different levels of 
2 . It can be observed that the 

average congruence coefficients were greater than 0.9 for all conditions 

except for a few cases where the number of subjects was relatively small (N = 

25 or 50), the number of time points was very small (J = 10), the amount of 

errors in the measurement model was relatively high (
2 = 1 or 2), and the 

loading function was relatively rough ( 1( )t or 2 ( )t ). Overall, the average 

congruence coefficients tended to increase as the amount of errors in 

measurement model decreased, the roughness of loading functions decreased, 

the number of time points increased, and the number of subjects increased. 

However, it can be observed that increasing the number of subjects did not 
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necessarily yield better estimates when the loading functions were relatively 

rough and the number of time points was relatively small.  

The average congruence coefficients of the estimates of the three 

latent variables over 100 replications at 
2 = 0.2, 0.6, and 0.9 are shown in 

Tables 5-4, 5-5, and 5-6, respectively. Again, the amount of errors in the 

structural model had no systematic effect on the accuracy of parameter 

recovery of the latent variables as for the case of the loading functions. The 

average congruence coefficients were greater than 0.9 for all conditions 

except for the cases where the number of time points was relatively small (J = 

10 or 25) and the amount of errors in measurement model was relatively high 

(
2 = 1 or 2). Overall, the average congruence coefficients tended to increase 

as the amount of errors in the measurement model decreased, the number of 

time points increased, and the number of subjects increased. Also there was a 

tendency that the average congruence coefficients were higher for the latent 

variables whose loading functions were smoother.  

Tables 5-7 and 5-8 display the mean squared errors of the estimates of 

the path coefficients, 1b  and
 2b , respectively. Although there is no clear-cut 

standard for the mean squared errors to be acceptable, the mean squared 

errors of the estimated path coefficients were smaller than 0.1 except for a 

few cases where the number of time points was very small (J = 10), the 

number of subjects was very small (N = 25), and the amount of errors in the 

measurement model was very large ( 2 2  ). In most cases, the mean 
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squared errors were smaller than 0.05, which indicates that functional GSCA 

yielded reasonably good estimates of the path coefficients. In ideal conditions 

where the amount of errors in the measurement model was small ( 2  = 0.5), 

the number of subjects was large (N = 100, or 200), and the number of time 

points was relatively large (T = 25, 50, or 100), the mean squared errors were 

very small, i.e., less than 0.01, which indicates that functional GSCA worked 

fairly well in such conditions.  

Overall, the mean squared errors tended to decrease as the number of 

subjects increased. In addition, when the amount of errors in the 

measurement model was small (
2  = 0.5), the mean squared errors tended to 

increase as the amount of errors in the structural model increased. However, 

as the amount of errors in the measurement model became larger and the 

number of time points got smaller, this tendency became less salient. 

Moreover, when the amount of errors in the measurement model was large 

(
2  = 2), less number of time points tended to yield more elevated mean 

squared errors. However, as the amount of errors in the measurement model 

got smaller, this tendency became less strong.  

 

5.3 Summary and Discussion 

In order to examine the accuracy of parameter recovery of functional 

GSCA, a simulation study was performed in which four factors were 

manipulated: the amount of errors in the measurement model, the amount of 
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errors in the structural model, the number of subjects, and the number of time 

points.  

The simulation study showed that functional GSCA yielded 

reasonably good estimates of the path coefficients in most conditions (the 

mean squared errors were smaller than 0.05). In addition, functional GSCA 

produced fairly good estimates of the loading functions and latent variables 

(congruence coefficients  0.9) even for a very small number of subjects (N = 

25) when the amount of errors in the measurement model was small (
2 = 

0.5) or the number of time points was relatively large (J  50).  In addition, 

functional GSCA produced reasonably good estimates of the loading 

functions and latent variables for a very small number of time points (J = 10) 

when the sample size was relatively large (N  100), the amount of errors in 

the measurement model was relatively small (
2 1  ), and the loading 

function was fairly smooth ( 3( )t ).  

From the results of the simulation study, we can make the following 

conclusions. It is beneficial to increase the number of subjects and the 

number of time points for obtaining better estimates of loading functions and 

latent variables. The quality of the estimates of loading functions and latent 

variables also depends on the amount of measurement errors, but not much 

on the amount of structural errors. As for path coefficients, increasing the 

number of subjects yields better estimates. Increasing the number of time 

points, however, is beneficial only when the amount of measurement errors is 
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high. In other words, in situations where the amount of measurement errors is 

small, we can still obtain reasonably good estimates based on a small number 

of time points. However, if the amount of measurement errors is high, a 

larger number of time points are required to obtain good estimates. The 

accuracy of the estimates of path coefficients also depends on the amount of 

structural errors. When the amount of structural errors is small, i.e., the 

relationships among latent variables are strong, the estimates of path 

coefficients tend to be more accurate. However, if the amount of 

measurement errors is high and the number of time points is relatively small, 

the accuracy of the estimates of path coefficients tends to deteriorate 

regardless of the amount of structural errors.  

Although the simulation study showed that functional GSCA worked 

as the way it was supposed to, there are some possible limitations. In the 

simulation study, all the generated data sets were analyzed under the true 

structural model. However, in most real applications, researchers may not 

know the true structural model and hence use incorrect or misspecified one. 

A systematic investigation of the effect of misspecification in the structural 

model is in order. Another limitation of the simulation study is that the 

measurement errors were assumed to be normally and identically distributed 

across all variables and all time points. This assumption may not be the case 

in real applications and a further investigation of the effect of various 

structures of measurement errors may be of use. In addition, this simulation 



58 

 

study concerned only three variables. It would be informative to investigate 

the performance of functional GSCA in situations where a larger number of 

variables are involved. 
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Table 5-1: The congruence coefficients of the loading functions at 
2 0.2   

averaged over 100 replications (standard deviations in parentheses). 

  α1(t) α2(t) α3(t) 

N J σ2 = 0.5 1 2 0.5 1 2 0.5 1 2 

25 

10 
0.9234 0.9198 0.8727 0.9691 0.9571 0.8944 0.9944 0.9910 0.9829 

(.0168) (.0146) (.2432) (.0150) (.0260) (.0293) (.0033) (.0087) (.0287) 

25 
0.9732 0.9448 0.9349 0.9927 0.9721 0.9605 0.9975 0.9965 0.9942 

(.0160) (.0190) (.0164) (.0124) (.0189) (.0168) (.0019) (.0032) (.0083) 

50 
0.9872 0.9874 0.9752 0.9984 0.9975 0.9940 0.9989 0.9979 0.9956 

(.0038) (.0052) (.0091) (.0013) (.0021) (.0053) (.0010) (.0021) (.0041) 

100 
0.9970 0.9972 0.9941 0.9992 0.9982 0.9971 0.9993 0.9981 0.9967 

(.0016) (.0022) (.0035) (.0006) (.0013) (.0023) (.0006) (.0017) (.0033) 

50 

10 
0.9273 0.9179 0.9085 0.9800 0.9647 0.9157 0.9957 0.9941 0.9917 

(.0174) (.0118) (.0196) (.0061) (.0257) (.0202) (.0016) (.0031) (.0062) 

25 
0.9794 0.9543 0.9345 0.9968 0.9750 0.9606 0.9982 0.9975 0.9960 

(.0082) (.0209) (.0055) (.0063) (.0166) (.0113) (.0007) (.0015) (.0041) 

50 
0.9899 0.9876 0.9816 0.9990 0.9984 0.9971 0.9995 0.9990 0.9979 

(.0025) (.0034) (.0052) (.0009) (.0013) (.0024) (.0005) (.0008) (.0016) 

100 
0.9992 0.9982 0.9971 0.9995 0.9992 0.9986 0.9995 0.9992 0.9984 

(.0005) (.0011) (.0019) (.0004) (.0006) (.0010) (.0003) (.0006) (.0013) 

100 

10 
0.9249 0.9191 0.9166 0.9886 0.9533 0.9309 0.9960 0.9952 0.9936 

(.0125) (.0081) (.0112) (.0033) (.0102) (.0305) (.0010) (.0013) (.0039) 

25 
0.9815 0.9498 0.9382 0.9983 0.9763 0.9626 0.9985 0.9980 0.9978 

(.0048) (.0184) (.0057) (.0009) (.0163) (.0044) (.0005) (.0009) (.0013) 

50 
0.9900 0.9886 0.9853 0.9992 0.9989 0.9981 0.9997 0.9995 0.9990 

(.0016) (.0023) (.0039) (.0005) (.0008) (.0015) (.0002) (.0004) (.0008) 

100 
0.9996 0.9990 0.9983 0.9998 0.9996 0.9992 0.9997 0.9996 0.9992 

(.0002) (.0005) (.0010) (.0001) (.0003) (.0005) (.0002) (.0003) (.0006) 

200 

10 
0.9232 0.9202 0.9176 0.9886 0.9842 0.9326 0.9963 0.9959 0.9946 

(.0087) (.0060) (.0087) (.0022) (.0033) (.0291) (.0006) (.0008) (.0021) 

25 
0.9803 0.9436 0.9386 0.9984 0.9749 0.9637 0.9985 0.9982 0.9980 

(.0017) (.0136) (.0024) (.0006) (.0168) (.0035) (.0003) (.0006) (.0008) 

50 
0.9901 0.9891 0.9880 0.9994 0.9992 0.9989 0.9998 0.9997 0.9995 

(.0011) (.0016) (.0019) (.0003) (.0004) (.0009) (.0001) (.0002) (.0004) 

100 
0.9996 0.9995 0.9992 0.9999 0.9998 0.9995 0.9999 0.9998 0.9996 

(.0002) (.0003) (.0006) (.0001) (.0002) (.0003) (.0001) (.0001) (.0003) 
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Table 5-2: The congruence coefficients of the loading functions at 
2 0.6   

averaged over 100 replications (standard deviations in parentheses). 

  α1(t) α2(t) α3(t) 

N J σ2 = 0.5 1 2 0.5 1 2 0.5 1 2 

25 

10 
0.9307 0.8962 0.8102 0.9826 0.9515 0.9043 0.9936 0.9906 0.9844 

(.0280) (.1754) (.3993) (.0121) (.0299) (.1808) (.0042) (.0101) (.0171) 

25 
0.9765 0.9440 0.9183 0.9933 0.9715 0.9607 0.9976 0.9962 0.9936 

(.0142) (.0179) (.1786) (.0120) (.0195) (.0142) (.0016) (.0035) (.0058) 

50 
0.9889 0.9852 0.9758 0.9984 0.9972 0.9938 0.9990 0.9978 0.9962 

(.0034) (.0059) (.0090) (.0013) (.0021) (.0061) (.0008) (.0020) (.0036) 

100 
0.9986 0.9959 0.9937 0.9990 0.9984 0.9972 0.9991 0.9987 0.9973 

(.0009) (.0027) (.0044) (.0007) (.0014) (.0024) (.0007) (.0011) (.0022) 

50 

10 
0.9285 0.9200 0.8772 0.9856 0.9788 0.9343 0.9958 0.9939 0.9918 

(.0213) (.0148) (.2351) (.0107) (.0186) (.0362) (.0016) (.0033) (.0075) 

25 
0.9716 0.9535 0.9354 0.9970 0.9770 0.9604 0.9980 0.9977 0.9959 

(.0100) (.0210) (.0105) (.0052) (.0172) (.0104) (.0008) (.0016) (.0034) 

50 
0.9891 0.9882 0.9852 0.9990 0.9983 0.9973 0.9994 0.9990 0.9979 

(.0023) (.0033) (.0058) (.0007) (.0016) (.0022) (.0004) (.0009) (.0021) 

100 
0.9986 0.9981 0.9971 0.9996 0.9992 0.9985 0.9997 0.9992 0.9984 

(.0007) (.0011) (.0018) (.0003) (.0006) (.0010) (.0002) (.0007) (.0010) 

100 

10 
0.9235 0.9209 0.9118 0.9874 0.9830 0.9369 0.9960 0.9953 0.9934 

(.0096) (.0070) (.0173) (.0030) (.0100) (.0324) (.0011) (.0016) (.0041) 

25 
0.9781 0.9487 0.9375 0.9977 0.9746 0.9613 0.9983 0.9981 0.9972 

(.0023) (.0178) (.0026) (.0037) (.0160) (.0053) (.0005) (.0009) (.0018) 

50 
0.9897 0.9887 0.9843 0.9992 0.9989 0.9982 0.9998 0.9995 0.9990 

(.0015) (.0022) (.0040) (.0004) (.0007) (.0014) (.0002) (.0004) (.0008) 

100 
0.9996 0.9990 0.9985 0.9998 0.9996 0.9992 0.9997 0.9996 0.9992 

(.0002) (.0005) (.0008) (.0002) (.0003) (.0006) (.0001) (.0003) (.0005) 

200 

10 
0.9233 0.9197 0.9172 0.9866 0.9824 0.9350 0.9963 0.9957 0.9948 

(.0076) (.0063) (.0095) (.0023) (.0099) (.0299) (.0006) (.0010) (.0022) 

25 
0.9804 0.9475 0.9380 0.9984 0.9761 0.9625 0.9985 0.9984 0.9980 

(.0017) (.0165) (.0021) (.0008) (.0159) (.0036) (.0004) (.0005) (.0010) 

50 
0.9899 0.9896 0.9866 0.9994 0.9992 0.9988 0.9998 0.9997 0.9995 

(.0011) (.0014) (.0024) (.0003) (.0004) (.0007) (.0001) (.0002) (.0003) 

100 
0.9996 0.9994 0.9991 0.9999 0.9998 0.9996 0.9999 0.9998 0.9996 

(.0002) (.0003) (.0005) (.0001) (.0001) (.0002) (.0001) (.0001) (.0003) 
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Table 5-3: The congruence coefficients of the loading functions at 
2 0.9   

averaged over 100 replications (standard deviations in parentheses). 

  α1(t) α2(t) α3(t) 

N J σ2 = 0.5 1 2 0.5 1 2 0.5 1 2 

25 

10 
0.9336 0.9161 0.8444 0.9847 0.9590 0.8933 0.9943 0.9914 0.9833 

(.0300) (.0163) (.3076) (.0136) (.0272) (.0314) (.0034) (.0073) (.0363) 

25 
0.9735 0.9459 0.9337 0.9950 0.9755 0.9593 0.9976 0.9961 0.9935 

(.0165) (.0189) (.0172) (.0087) (.0191) (.0150) (.0016) (.0032) (.0062) 

50 
0.9878 0.9788 0.9823 0.9986 0.9964 0.9950 0.9990 0.9982 0.9956 

(.0035) (.0067) (.0088) (.0012) (.0029) (.0043) (.0009) (.0020) (.0047) 

100 
0.9986 0.9962 0.9935 0.9991 0.9984 0.9971 0.9991 0.9984 0.9976 

(.0009) (.0025) (.0045) (.0006) (.0012) (.0026) (.0006) (.0017) (.0019) 

50 

10 
0.9264 0.9172 0.9122 0.9791 0.9714 0.9393 0.9956 0.9938 0.9901 

(.0180) (.0134) (.0218) (.0054) (.0202) (.0360) (.0013) (.0043) (.0091) 

25 
0.9768 0.9522 0.9365 0.9971 0.9763 0.9608 0.9982 0.9974 0.9966 

(.0124) (.0204) (.0049) (.0060) (.0170) (.0088) (.0009) (.0014) (.0026) 

50 
0.9893 0.9876 0.9810 0.9991 0.9984 0.9969 0.9994 0.9988 0.9981 

(.0022) (.0034) (.0056) (.0008) (.0014) (.0025) (.0005) (.0012) (.0016) 

100 
0.9993 0.9981 0.9969 0.9996 0.9992 0.9984 0.9995 0.9993 0.9982 

(.0005) (.0011) (.0021) (.0003) (.0007) (.0012) (.0003) (.0005) (.0016) 

100 

10 
0.9243 0.9192 0.9154 0.9874 0.9493 0.9439 0.9961 0.9950 0.9940 

(.0158) (.0072) (.0163) (.0028) (.0147) (.0347) (.0010) (.0017) (.0035) 

25 
0.9814 0.9502 0.9381 0.9983 0.9790 0.9620 0.9984 0.9981 0.9975 

(.0052) (.0184) (.0025) (.0011) (.0168) (.0071) (.0005) (.0008) (.0015) 

50 
0.9897 0.9866 0.9851 0.9993 0.9990 0.9983 0.9997 0.9995 0.9991 

(.0016) (.0024) (.0038) (.0005) (.0006) (.0013) (.0002) (.0004) (.0008) 

100 
0.9993 0.9990 0.9985 0.9998 0.9996 0.9992 0.9998 0.9996 0.9992 

(.0004) (.0006) (.0009) (.0002) (.0002) (.0005) (.0001) (.0002) (.0006) 

200 

10 
0.9215 0.9205 0.9151 0.9721 0.9676 0.9252 0.9962 0.9957 0.9942 

(.0050) (.0057) (.0102) (.0025) (.0102) (.0258) (.0006) (.0010) (.0028) 

25 
0.9824 0.9450 0.9385 0.9986 0.9728 0.9630 0.9985 0.9983 0.9981 

(.0016) (.0139) (.0024) (.0006) (.0167) (.0035) (.0004) (.0005) (.0009) 

50 
0.9901 0.9894 0.9870 0.9994 0.9992 0.9990 0.9998 0.9998 0.9995 

(.0012) (.0015) (.0023) (.0003) (.0005) (.0007) (.0002) (.0002) (.0004) 

100 
0.9996 0.9995 0.9992 0.9999 0.9998 0.9996 0.9999 0.9998 0.9996 

(.0002) (.0003) (.0005) (.0001) (.0001) (.0003) (.0001) (.0001) (.0004) 
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Table 5-4: The congruence coefficients of the latent variables at 
2 0.2   

averaged over 100 replications (standard deviations in parentheses). 

  γ1 γ2 γ3 

N J σ2 = 0.5 1 2 0.5 1 2 0.5 1 2 

25 

10 
0.9087 0.8540 0.7472 0.9222 0.8715 0.7608 0.9352 0.8954 0.8146 

(.0458) (.0526) (.0938) (.0385) (.0536) (.1084) (.0340) (.0423) (.0781) 

25 
0.9445 0.9194 0.8658 0.9499 0.9394 0.8965 0.9513 0.9452 0.9070 

(.0382) (.0423) (.0552) (.0348) (.0322) (.0497) (.0387) (.0281) (.0388) 

50 
0.9699 0.9509 0.9281 0.9675 0.9529 0.9334 0.9713 0.9609 0.9413 

(.0238) (.0297) (.0394) (.0267) (.0378) (.0439) (.0259) (.0262) (.0359) 

100 
0.9717 0.9641 0.9549 0.9702 0.9675 0.9633 0.9731 0.9661 0.9576 

(.0344) (.0356) (.0286) (.0324) (.0319) (.0320) (.0283) (.0380) (.0327) 

50 

10 
0.9199 0.8584 0.7621 0.9367 0.8758 0.7983 0.9397 0.9078 0.8295 

(.0234) (.0364) (.0529) (.0205) (.0378) (.0609) (.0182) (.0258) (.0443) 

25 
0.9638 0.9356 0.8810 0.9685 0.9442 0.9034 0.9704 0.9566 0.9191 

(.0159) (.0181) (.0324) (.0151) (.0185) (.0305) (.0157) (.0168) (.0230) 

50 
0.9770 0.9593 0.9359 0.9791 0.9703 0.9507 0.9805 0.9696 0.9523 

(.0137) (.0191) (.0222) (.0154) (.0142) (.0201) (.0121) (.0171) (.0167) 

100 
0.9858 0.9781 0.9638 0.9858 0.9797 0.9686 0.9882 0.9820 0.9706 

(.0112) (.0128) (.0172) (.0137) (.0113) (.0181) (.0103) (.0118) (.0147) 

100 

10 
0.9175 0.8548 0.7704 0.9405 0.8843 0.7859 0.9471 0.9037 0.8376 

(.0187) (.0292) (.0410) (.0125) (.0229) (.0440) (.0122) (.0198) (.0300) 

25 
0.9660 0.9381 0.8901 0.9739 0.9512 0.9110 0.9749 0.9571 0.9241 

(.0089) (.0147) (.0212) (.0099) (.0121) (.0167) (.0077) (.0105) (.0156) 

50 
0.9827 0.9674 0.9428 0.9855 0.9756 0.9568 0.9861 0.9751 0.9581 

(.0062) (.0093) (.0114) (.0068) (.0077) (.0113) (.0063) (.0076) (.0103) 

100 
0.9873 0.9818 0.9698 0.9906 0.9856 0.9744 0.9901 0.9848 0.9759 

(.0089) (.0068) (.0078) (.0057) (.0075) (.0088) (.0093) (.0069) (.0072) 

200 

10 
0.9230 0.8589 0.7659 0.9428 0.8959 0.7982 0.9507 0.9086 0.8403 

(.0115) (.0189) (.0293) (.0081) (.0145) (.0334) (.0087) (.0131) (.0211) 

25 
0.9698 0.9418 0.8909 0.9767 0.9550 0.9140 0.9783 0.9588 0.9251 

(.0043) (.0095) (.0153) (.0058) (.0079) (.0108) (.0045) (.0073) (.0117) 

50 
0.9840 0.9710 0.9450 0.9874 0.9781 0.9586 0.9880 0.9784 0.9600 

(.0040) (.0049) (.0080) (.0039) (.0041) (.0062) (.0039) (.0036) (.0065) 

100 
0.9911 0.9841 0.9726 0.9925 0.9875 0.9779 0.9928 0.9876 0.9783 

(.0032) (.0043) (.0044) (.0033) (.0047) (.0044) (.0030) (.0040) (.0042) 
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Table 5-5: The congruence coefficients of the latent variables at 
2 0.6   

averaged over 100 replications (standard deviations in parentheses). 

  γ1 γ2 γ3 

N J σ2 = 0.5 1 2 0.5 1 2 0.5 1 2 

25 

10 
0.9015 0.8341 0.7474 0.9234 0.8634 0.7706 0.9303 0.8883 0.8199 

(.0420) (.0660) (.0891) (.0423) (.0697) (.0851) (.0399) (.0453) (.0722) 

25 
0.9452 0.9165 0.8676 0.9632 0.9302 0.8845 0.9613 0.9302 0.9059 

(.0339) (.0420) (.0539) (.0234) (.0361) (.0522) (.0265) (.0434) (.0389) 

50 
0.9675 0.9486 0.9273 0.9734 0.9620 0.9327 0.9755 0.9623 0.9397 

(.0241) (.0346) (.0394) (.0201) (.0252) (.0406) (.0191) (.0274) (.0356) 

100 
0.9730 0.9649 0.9520 0.9725 0.9699 0.9566 0.9731 0.9699 0.9654 

(.0237) (.0271) (.0301) (.0305) (.0350) (.0325) (.0270) (.0253) (.0227) 

50 

10 
0.9186 0.8490 0.7594 0.9361 0.8866 0.7945 0.9423 0.9029 0.8349 

(.0221) (.0451) (.0679) (.0197) (.0280) (.0553) (.0186) (.0278) (.0449) 

25 
0.9614 0.9321 0.8795 0.9661 0.9441 0.9059 0.9684 0.9535 0.9197 

(.0149) (.0215) (.0313) (.0186) (.0228) (.0239) (.0155) (.0184) (.0269) 

50 
0.9735 0.9626 0.9357 0.9774 0.9675 0.9517 0.9808 0.9711 0.9506 

(.0160) (.0158) (.0184) (.0184) (.0181) (.0219) (.0144) (.0126) (.0201) 

100 
0.9839 0.9775 0.9651 0.9861 0.9774 0.9719 0.9862 0.9805 0.9719 

(.0160) (.0138) (.0137) (.0098) (.0148) (.0143) (.0118) (.0121) (.0138) 

100 

10 
0.9188 0.8604 0.7632 0.9408 0.8925 0.7997 0.9435 0.9061 0.8402 

(.0169) (.0241) (.0436) (.0123) (.0225) (.0395) (.0129) (.0182) (.0300) 

25 
0.9663 0.9381 0.8908 0.9752 0.9508 0.9094 0.9749 0.9575 0.9209 

(.0097) (.0140) (.0199) (.0086) (.0117) (.0187) (.0069) (.0100) (.0184) 

50 
0.9803 0.9680 0.9405 0.9856 0.9743 0.9559 0.9851 0.9744 0.9584 

(.0087) (.0093) (.0146) (.0065) (.0072) (.0099) (.0062) (.0080) (.0092) 

100 
0.9887 0.9806 0.9703 0.9901 0.9828 0.9760 0.9896 0.9844 0.9766 

(.0059) (.0086) (.0094) (.0075) (.0092) (.0068) (.0068) (.0097) (.0070) 

200 

10 
0.9212 0.8606 0.7665 0.9426 0.8963 0.7970 0.9505 0.9075 0.8444 

(.0105) (.0196) (.0308) (.0077) (.0150) (.0311) (.0076) (.0139) (.0212) 

25 
0.9691 0.9403 0.8914 0.9770 0.9548 0.9120 0.9775 0.9599 0.9253 

(.0046) (.0083) (.0155) (.0052) (.0088) (.0122) (.0044) (.0062) (.0100) 

50 
0.9833 0.9702 0.9454 0.9867 0.9778 0.9589 0.9884 0.9781 0.9598 

(.0045) (.0052) (.0078) (.0046) (.0042) (.0062) (.0027) (.0048) (.0061) 

100 
0.9912 0.9840 0.9719 0.9930 0.9874 0.9776 0.9926 0.9870 0.9784 

(.0026) (.0049) (.0049) (.0028) (.0039) (.0041) (.0030) (.0044) (.0050) 
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Table 5-6: The congruence coefficients of the latent variables at 
2 0.9   

averaged over 100 replications (standard deviations in parentheses). 

  γ1 γ2 γ3 

N J σ2 = 0.5 1 2 0.5 1 2 0.5 1 2 

25 

10 
0.8994 0.8385 0.7417 0.9189 0.8684 0.7767 0.9283 0.8832 0.8125 

(.0472) (.0605) (.0913) (.0382) (.0462) (.0788) (.0321) (.0534) (.0746) 

25 
0.9535 0.9234 0.8716 0.9576 0.9371 0.9017 0.9588 0.9423 0.9112 

(.0321) (.0413) (.0452) (.0285) (.0380) (.0424) (.0323) (.0363) (.0419) 

50 
0.9582 0.9545 0.9258 0.9676 0.9628 0.9335 0.9719 0.9658 0.9374 

(.0367) (.0256) (.0451) (.0288) (.0250) (.0366) (.0323) (.0203) (.0318) 

100 
0.9756 0.9639 0.9496 0.9735 0.9698 0.9549 0.9744 0.9679 0.9578 

(.0240) (.0341) (.0301) (.0267) (.0275) (.0360) (.0284) (.0274) (.0296) 

50 

10 
0.9132 0.8463 0.7594 0.9321 0.8799 0.7984 0.9444 0.9021 0.8238 

(.0289) (.0404) (.0676) (.0227) (.0344) (.0599) (.0211) (.0303) (.0434) 

25 
0.9603 0.9326 0.8817 0.9696 0.9444 0.9074 0.9764 0.9516 0.9203 

(.0168) (.0220) (.0326) (.0177) (.0191) (.0322) (.0090) (.0170) (.0248) 

50 
0.9730 0.9625 0.9397 0.9779 0.9680 0.9532 0.9772 0.9707 0.9558 

(.0163) (.0155) (.0175) (.0184) (.0191) (.0146) (.0167) (.0131) (.0148) 

100 
0.9816 0.9789 0.9655 0.9845 0.9791 0.9668 0.9862 0.9783 0.9679 

(.0148) (.0128) (.0168) (.0179) (.0165) (.0169) (.0118) (.0157) (.0163) 

100 

10 
0.9182 0.8587 0.7676 0.9399 0.8784 0.8025 0.9479 0.9053 0.8418 

(.0171) (.0247) (.0439) (.0133) (.0233) (.0446) (.0122) (.0184) (.0261) 

25 
0.9677 0.9369 0.8911 0.9761 0.9529 0.9076 0.9756 0.9574 0.9236 

(.0094) (.0139) (.0226) (.0069) (.0130) (.0181) (.0071) (.0104) (.0149) 

50 
0.9814 0.9644 0.9429 0.9849 0.9749 0.9554 0.9845 0.9761 0.9573 

(.0067) (.0115) (.0119) (.0068) (.0082) (.0104) (.0093) (.0071) (.0117) 

100 
0.9860 0.9822 0.9688 0.9910 0.9857 0.9750 0.9897 0.9841 0.9749 

(.0081) (.0078) (.0089) (.0063) (.0070) (.0090) (.0076) (.0077) (.0093) 

200 

10 
0.9216 0.8602 0.7613 0.9408 0.8920 0.7963 0.9499 0.9082 0.8362 

(.0121) (.0197) (.0318) (.0085) (.0144) (.0315) (.0077) (.0127) (.0202) 

25 
0.9687 0.9405 0.8915 0.9769 0.9541 0.9116 0.9784 0.9591 0.9258 

(.0057) (.0080) (.0124) (.0050) (.0074) (.0130) (.0039) (.0060) (.0103) 

50 
0.9842 0.9703 0.9443 0.9871 0.9769 0.9595 0.9878 0.9780 0.9586 

(.0036) (.0045) (.0075) (.0040) (.0042) (.0071) (.0037) (.0050) (.0066) 

100 
0.9901 0.9841 0.9720 0.9922 0.9875 0.9773 0.9929 0.9873 0.9785 

(.0062) (.0042) (.0043) (.0036) (.0051) (.0048) (.0033) (.0042) (.0049) 
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Table 5-7: The mean squared errors of the path coefficient 1b  (standard 

deviations in parentheses). 

  
σ2 = 0.5 1 2 

N J τ2 = 0.2 0.6 0.9 0.2 0.6 0.9 0.2 0.6 0.9 

25 

10 
0.0182 0.0281 0.0491 0.0407 0.0632 0.0515 0.1263 0.1278 0.0667 

(.0358) (.0456) (.0607) (.0504) (.1329) (.0839) (.2096) (.2818) (.1005) 

25 
0.0089 0.0214 0.0427 0.0181 0.0362 0.0373 0.0379 0.0536 0.0493 

(.0121) (.0410) (.0662) (.0282) (.0595) (.0561) (.0464) (.1227) (.0697) 

50 
0.0100 0.0183 0.0299 0.0107 0.0261 0.0321 0.0122 0.0213 0.0394 

(.0141) (.0238) (.0394) (.0165) (.0453) (.0367) (.0191) (.0306) (.0522) 

100 
0.0083 0.0276 0.0396 0.0099 0.0163 0.0425 0.0098 0.0179 0.0430 

(.0141) (.0433) (.0511) (.0148) (.0290) (.0679) (.0161) (.0277) (.0614) 

50 

10 
0.0141 0.0164 0.0210 0.0319 0.0216 0.0259 0.0846 0.0707 0.0332 

(.0206) (.0252) (.0306) (.0313) (.0298) (.0333) (.0516) (.1327) (.0473) 

25 
0.0049 0.0112 0.0167 0.0074 0.0123 0.0205 0.0233 0.0229 0.0183 

(.0063) (.0153) (.0212) (.0108) (.0212) (.0245) (.0229) (.0344) (.0197) 

50 
0.0039 0.0091 0.0186 0.0052 0.0157 0.0145 0.0100 0.0112 0.0181 

(.0066) (.0164) (.0226) (.0079) (.0313) (.0216) (.0114) (.0161) (.0286) 

100 
0.0035 0.0084 0.0139 0.0045 0.0088 0.0183 0.0053 0.0077 0.0166 

(.0048) (.0122) (.0241) (.0059) (.0117) (.0250) (.0067) (.0099) (.0227) 

100 

10 
0.0126 0.0107 0.0113 0.0339 0.0238 0.0137 0.0798 0.0545 0.0158 

(.0114) (.0140) (.0168) (.0225) (.0262) (.0220) (.0384) (.0465) (.0190) 

25 
0.0036 0.0061 0.0096 0.0078 0.0088 0.0099 0.0194 0.0139 0.0143 

(.0051) (.0102) (.0149) (.0081) (.0134) (.0125) (.0134) (.0167) (.0187) 

50 
0.0019 0.0040 0.0085 0.0047 0.0050 0.0075 0.0070 0.0098 0.0077 

(.0026) (.0056) (.0128) (.0068) (.0062) (.0114) (.0076) (.0138) (.0106) 

100 
0.0023 0.0037 0.0083 0.0028 0.0071 0.0120 0.0029 0.0040 0.0096 

(.0039) (.0052) (.0111) (.0038) (.0096) (.0133) (.0040) (.0057) (.0121) 

200 

10 
0.0096 0.0085 0.0051 0.0311 0.0215 0.0072 0.0868 0.0465 0.0155 

(.0067) (.0093) (.0074) (.0150) (.0155) (.0099) (.0317) (.0235) (.0163) 

25 
0.0022 0.0040 0.0041 0.0071 0.0053 0.0047 0.0205 0.0125 0.0069 

(.0027) (.0060) (.0054) (.0060) (.0069) (.0106) (.0107) (.0098) (.0081) 

50 
0.0014 0.0022 0.0046 0.0025 0.0038 0.0036 0.0055 0.0041 0.0054 

(.0019) (.0034) (.0069) (.0033) (.0050) (.0054) (.0054) (.0054) (.0071) 

100 
0.0011 0.0018 0.0038 0.0012 0.0024 0.0039 0.0019 0.0034 0.0043 

(.0016) (.0025) (.0053) (.0016) (.0039) (.0059) (.0020) (.0052) (.0071) 
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Table 5-8: The mean squared errors of the path coefficient 2b  (standard 

deviations in parentheses). 

  
σ2 = 0.5 1 2 

N J τ2 = 0.2 0.6 0.9 0.2 0.6 0.9 0.2 0.6 0.9 

25 

10 
0.0195 0.0327 0.0407 0.0221 0.0336 0.0439 0.0597 0.0499 0.0570 

(.0255) (.0394) (.0570) (.0304) (.0427) (.0604) (.0901) (.0747) (.0781) 

25 
0.0172 0.0218 0.0434 0.0217 0.0337 0.0315 0.0257 0.0365 0.0542 

(.0227) (.0312) (.0546) (.0293) (.0484) (.0391) (.0413) (.0646) (.0911) 

50 
0.0140 0.0291 0.0294 0.0184 0.0274 0.0531 0.0190 0.0308 0.0366 

(.0186) (.0445) (.0317) (.0365) (.0373) (.0686) (.0231) (.0422) (.0466) 

100 
0.0177 0.0252 0.0372 0.0123 0.0241 0.0397 0.0142 0.0264 0.0482 

(.0288) (.0347) (.0501) (.0155) (.0330) (.0555) (.0176) (.0349) (.0685) 

50 

10 
0.0110 0.0174 0.0203 0.0167 0.0131 0.0213 0.0299 0.0218 0.0236 

(.0145) (.0237) (.0283) (.0201) (.0188) (.0300) (.0389) (.0400) (.0290) 

25 
0.0056 0.0131 0.0199 0.0090 0.0121 0.0208 0.0118 0.0144 0.0223 

(.0073) (.0214) (.0357) (.0107) (.0194) (.0287) (.0155) (.0181) (.0250) 

50 
0.0067 0.0126 0.0211 0.0070 0.0122 0.0232 0.0063 0.0146 0.0183 

(.0107) (.0168) (.0277) (.0101) (.0169) (.0351) (.0083) (.0212) (.0211) 

100 
0.0066 0.0116 0.0230 0.0060 0.0123 0.0157 0.0080 0.0141 0.0140 

(.0085) (.0165) (.0305) (.0073) (.0164) (.0211) (.0150) (.0169) (.0170) 

100 

10 
0.0050 0.0067 0.0094 0.0120 0.0087 0.0095 0.0227 0.0175 0.0124 

(.0075) (.0092) (.0120) (.0144) (.0149) (.0132) (.0247) (.0247) (.0193) 

25 
0.0039 0.0068 0.0100 0.0052 0.0066 0.0087 0.0076 0.0101 0.0104 

(.0064) (.0091) (.0141) (.0068) (.0093) (.0115) (.0086) (.0122) (.0137) 

50 
0.0019 0.0062 0.0087 0.0031 0.0054 0.0080 0.0046 0.0083 0.0080 

(.0028) (.0081) (.0098) (.0049) (.0067) (.0120) (.0060) (.0121) (.0113) 

100 
0.0031 0.0057 0.0107 0.0037 0.0059 0.0092 0.0026 0.0065 0.0084 

(.0045) (.0082) (.0140) (.0052) (.0078) (.0116) (.0035) (.0092) (.0117) 

200 

10 
0.0035 0.0045 0.0048 0.0076 0.0055 0.0059 0.0173 0.0077 0.0060 

(.0036) (.0063) (.0068) (.0075) (.0075) (.0085) (.0152) (.0088) (.0082) 

25 
0.0017 0.0030 0.0049 0.0028 0.0034 0.0054 0.0057 0.0048 0.0054 

(.0024) (.0041) (.0078) (.0046) (.0048) (.0071) (.0068) (.0069) (.0080) 

50 
0.0015 0.0027 0.0044 0.0019 0.0039 0.0043 0.0028 0.0029 0.0045 

(.0022) (.0032) (.0065) (.0025) (.0050) (.0075) (.0029) (.0038) (.0057) 

100 
0.0019 0.0029 0.0055 0.0017 0.0036 0.0038 0.0017 0.0029 0.0040 

(.0027) (.0040) (.0080) (.0026) (.0043) (.0044) (.0024) (.0042) (.0057) 
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Chapter 6  

Empirical Examples 

 

In this chapter, the usefulness of functional GSCA is demonstrated by 

applying functional GSCA to two real data sets. In the first example, the 

relationships among three functional responses are examined. In the second 

example, the relationships among a functional response and two multivariate 

responses are investigated.  

 

6.1 The Movie Data 

This example pertains to a movie data set that was obtained by 

combining two sets of data: the movie box office revenue data and the movie 

advertising spending data. The movie box office revenue data were collected 

from a publicly available movie box office database (www.the-numbers.com) 

and the movie advertising spending data were provided by a commercial 

advertising consulting company. In this data set, 152 movies released in the 

US from 2006 to 2007 were measured on their weekly box office revenue for 

10 consecutive weeks from the release and weekly advertising spending on 

three different media, network televisions, newspapers, and national spot 

radios, for 15 consecutive weeks, more specifically, 5 weeks before the 

http://www.the-numbers.com/
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release and 10 weeks from the release. Figure 6-1 displays the values of the 

four functional responses of the 152 movies varying over the weeks. 
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Figure 6-1: Weekly advertising spending on (a) network televisions, (b) 

newspapers, and (c) national spot radios over 15 weeks and (d) box office 

revenue over 10 weeks of the 152 movies. Each line represents each movie. 

Week 0 indicates the week when each movie was released.   

 

The aim of collecting this data set was to examine how the advertising 

spending on different media affected the movie box office revenue. Therefore 

the structural model shown in Figure 6-2 was hypothesized for the analysis of 

the data set. The optimal values of the smoothing parameters  and  were 

determined by five-fold cross-validation, in which 13 different values for 
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each smoothing parameter, 10 9[10 ,10 ,  1 2,10 ,10 ]  were tested. The resultant 

prediction errors across all possible combinations of the values of   and   

reached their minimum at 10   and 810  . These optimal smoothing 

parameter values were used in the subsequent analysis as well as in 

bootstrapping.  

  

 

Figure 6-2: The structural model used for analyzing the movie data.  

 

The FIT of this hypothesized model was 0.7523, which indicates that 

this model captured 75.23% of the variation in data functions and endogenous 

latent variables. Figure 6-3 displays the estimated loading functions, which 

show overall patterns of change of the four functional responses over time. It 

can be observed that the advertising spending on network televisions started 

earlier than five weeks before the release of the movies, increased at the 

beginning until it peaked at around two weeks before the release, and tended 

to drain away later on until it touched zero at around three weeks after the 

release to maintain. On the other hand, the advertising spending on 
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newspapers started later at around three weeks before the release, increased 

until one week after the release, and then decreased gradually. The 95% 

point-wise confidence interval of this loading function shows that there was a 

substantial variation on the peak time of the advertising spending on 

newspapers, which spread from the release week to two weeks after the 

release. 

 

 

Figure 6-3: The estimated loading functions of the movie data for the 

advertising spending on the four media (thick solid lines) and their 95% 

point-wise confidence intervals (thin solid lines) obtained under 10   and 
810  .   
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The advertising spending on national spot radios showed a similar 

pattern of change over time as on newspapers. However, the advertising 

spending on national spot radios manifested a much larger variation as 

indicated by its wider 95% point-wise confidence interval. The box office 

revenue reached its maximum at the week of release and then decreased 

exponentially.    

Table 6-1 presents the estimated path coefficients and their 95% 

confidence intervals. The estimated path coefficient of the movie box office 

revenue on the advertising spending on network televisions was 0.33. In other 

words, as the amount of the advertising spending on network televisions, 

which changed over time in the fashion as shown in Figure 6-3(a), increased 

by 1, the movie box office revenue tended to increase by 0.33. Its 95% 

confidence interval indicates that this effect was statistically significant. 

Similarly, the advertising spending on newspapers had a significant positive 

effect on the movie box office revenue with the estimated path coefficient of 

0.37. The effect of the advertising spending on national spot radios was also 

significant and positive as indicated by its path coefficient value of 0.14.  

Figure 6-4 displays the estimated weight functions to obtain the latent 

variable scores. Weight functions indicate which time periods are crucial for 

defining latent variable in such a way that the latent variables can capture the 

relationships among themselves and explain the data functions 
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simultaneously as much as possible. It can be observed that the weight 

functions looked similar to the loading functions.  

 

Table 6-1: The estimates of the path coefficients and their 95% bootstrap 

confidence intervals of the movie data obtained from functional GSCA. 

Path 

Estimate 

95% Confidence 

Interval 

From To 
Lower 

Limit 

Upper 

Limit 

Network 

Televisions 

Box Office 

Revenue 
0.3282 0.1087 0.5208 

Newspapers 
Box Office 

Revenue 
0.3717 0.2042 0.5328 

National Spot 

Radios 

Box Office 

Revenue 
0.1442 0.0071 0.2945 

  

In Figure 6-4, we can see that the movies that had more advertising 

spending on network televisions for the first eight weeks (from five weeks 

before the release until three weeks after the release) tended to have higher 

scores of the corresponding latent variable. On newspapers, the advertising 

spending from three weeks before the release to seven weeks after the release 

was crucial to explain the data functions and to examine the effect of this 

variable on the movie box office revenue. On national spot radios, as the 

advertising spending from four weeks before the release to four weeks after 

the release increased, the corresponding latent variable scores tended to be 

higher. For the box office revenue, the weeks closer to the release time were 

more important to explain the data functions as well as the relationships with 

other variables.  
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Figure 6-4: The estimated weight functions of the movie data for the 

advertising spending on the four media (thick solid lines) and their 95% 

point-wise confidence intervals (thin solid lines) obtained under 10  and 
810  .  

 

 

6.2 The Gait Data 

The second example concerns the gait data set (Yogev et al., 2005), 

which is available on the PhysioNet website 

(http://www.physionet.org/physiobank/ database/gaitpdb/). In this example, a 

subset of the data set was analyzed, in which 23 patients diagnosed as having 

idiopathic Parkinson’s disease were measured on the total force under the left 

foot (in Newtons) for eight seconds while they walked at their usual pace. 

http://www.physionet.org/physiobank/%20database/gaitpdb/
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The total force under each foot was measured at 10 Hz per second, which 

yielded 80 time points. Figure 6-5 displays the total force under the left foot 

changing over eight seconds for 23 patients. Since patients started to measure 

their total force under each foot at different phase of walking, the data 

functions were aligned to be in the same phase by using the continuous 

registration method (Ramsay, Hooker, & Graves, 2009, Chapter 8; Ramsay & 

Silverman, 2005, Chapter 7). Besides the total force under the left foot, the 

physical size of body was measured by two observed variables, height (in 

centimeters) and weight (in kilograms). In addition, the severity of 

Parkinson’s disease was measured by two scales – the Hoehn and Yahr 

staging scale (HY; Hoehn & Yahr, 1967) and unified Parkinson’s disease 

rating scale (UPDRS; Fahn, Elton, & members of the UPDRS Development 

Committee, 1987). Higher values of these scales indicate more severe 

cognitive impairment.  

This data set is an example of typical functional data in which 

variables are measured at a large number of time points for a small number of 

subjects. In this example, the total force under the left foot was measured 

over 80 time points, the number of which was much greater than the number 

of subjects, 23. In addition, this data set contains a functional variable, the 

total force under the foot, as well as two multivariate variables, the physical 

size of body and the severity of Parkinson’s disease.  
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Figure 6-5: The total force under the left foot measured for 8 seconds from 23 

Parkinson’s disease patients.  

 

In order to examine the effect of the severity of Parkinson’s disease 

on the total force under the left foot with controlling for the effect of the 

physical size of body that presumably has an influence on the total force 

under the left foot, the structural model shown in Figure 6-6 was specified, in 

which both exogenous latent variables have multivariate indicators and the 

endogenous latent variable has a functional indicator. The optimal values of 

the smoothing parameters   and   were determined by five-fold cross-

validation, in which each of the smoothing parameters was varied at 10 

different values, 0 1[10 ,10 ,
8 9,10 ,10 ] . The resultant optimal smoothing 

parameter values associated with the minimum prediction error were 
510   

and 210  , which were used in the further analysis and bootstrapping.  
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Figure 6-6: The structural model used for analyzing the gait data. 

 

The FIT value of this hypothesizes model was 0.7441, i.e., this model 

explained 74.41% of the variation in the observed variables/functions and 

endogenous latent variables. Table 6-2 presents the estimated loadings and 

weights of the two exogenous latent variables on their indicator variables. It 

can be observed that the loadings and weights on height, weight, and UPDRS 

were positive and significant. However, the loading and weight on HY were 

not significant. The Hoehn and Yahr staging scale has the values 1, 1.5, 2, 

2.5, 3, 4, and 5 that indicate different stages of progress in the symptoms of 

Parkinson’s disease. In this data set, the 23 patients were belonging to the 

stages 2, 2.5, or 3 only. Therefore the variation in this indicator variable, HY, 

was relatively small and hence, HY had no significant contribution to 

explaining the effect of the severity of Parkinson’s disease on the total force 

under the left foot. 

The estimated loading and weight functions of the total force under 

the left foot under 
510   and 210   are depicted in Figure 6-7. By 
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examining the estimated loading function, it can be observed that the 

patients’ total force under the left foot increased sharply for the first two 

seconds, decreased slowly for the next two and a half seconds, increased a bit 

for the next two seconds, and then vanished out. The estimated weight 

function manifested a similar shape of change over time, i.e., the time points 

associated with higher loading function values were more crucial for defining 

the latent variable in such a way that it can explain its data function as well as 

its relationship with other latent variables as much as possible. 

 

Table 6-2: The estimated loadings and weights of the physical size of body 

and the severity of Parkinson’s disease on their indicator variables. 

Latent 

Variable 

Indicator 

Variable 
Loading 

95% Confidence 

Interval 
Weight 

95% Confidence 

Interval 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Physical 

Size of 

Body 

Height 0.8991 0.8188 0.9586 0.4545 0.3217 0.5838 

Weight 0.9478 0.8827 0.9833 0.6239 0.5040 0.7309 

Severity of 

Parkinson’s 

Disease 

HY 0.7870 -0.0392 0.9333 0.5731 -0.0045 0.6424 

UPDRS 0.8397 0.7878 0.9796 0.6565 0.5034 0.9800 

 

The estimated path coefficients and their 95% confidence intervals are 

given in Table 6-3. As expected, the physical size of body had a positive and 

significant effect on the total force under the left foot. The bigger a patient 

was in his physical size, the more force was exerted under the left foot. On 

the other hand, the severity of Parkinson’s disease had a negative and 

significant effect on the total force under the left foot. This indicates that as a 
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patient progressed into a more severe stage of Parkinson’s disease, the total 

force exerted under the left foot became weaker when controlling for the 

physical size of body.  

 

 

Figure 6-7: The estimated (a) loading function and (b) weight function of the 

total force under the left foot (thick solid lines) and their 95% point-wise 

confidence intervals (thin solid lines) obtained under 510   and 210  .  

 

 

 

Table 6-3: The estimates of the path coefficients and their 95% bootstrap 

confidence intervals of the gait data obtained from functional GSCA. 

Path 
Estimate 

95% Confidence Interval 

From To Lower Limit Upper Limit 

Physical Size 

of Body 

Total 

Force 

Under The 

Left Foot 

0.6264 0.3733 0.8369 

Severity of 

Parkinson’s 

Disease 

Total 

Force 

Under The 

Left Foot 

-0.4475 -0.6783 -0.1449 
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In this chapter, the applicability and usefulness of functional GSCA 

was demonstrated by two empirical examples. The first example was chosen 

to illustrate that functional GSCA can analyze the relationships among 

multiple functional responses. For the movie box office revenue and 

advertising spending data, functional GSCA revealed the advertising 

spending on the three media had positive effects on the movie box office 

revenue while uncovering the temporal variations, or the shapes of change of 

the advertising spending on the three different media, as well as the movie 

box office revenue over weeks.  

The second example was included to demonstrate that functional 

GSCA is of use for the analysis of data that involve both functional and 

multivariate responses. For the gait data, the total force under the foot was a 

functional response whereas other variables were multivariate. Functional 

GSCA revealed that the total force under the left foot of a patient tended to 

decrease, as his Parkinson’s disease progressed into a more severe stage, 

when controlling for the effect of his physical size of body. At the same time, 

functional GSCA uncovered the M-shaped temporal variation of the total 

force under the left foot.  



80 

 

 

Chapter 7 

Summary and Discussion 

 

In this thesis, functional GSCA was proposed for the analysis of 

functional data by integrating the original GSCA with penalized least squares 

spline smoothing into a unified framework. Unlike the previous approaches 

for analyzing functional data in the framework of SEM, which ignores the 

temporal variation in functional data, or allows only specific relationships 

among observed variables to be examined, functional GSCA enables to 

analyze a variety of directional relationships among multiple functional 

responses via latent variables without losing the temporal variation in data.  

The usefulness of functional GSCA was demonstrated by using both 

synthetic and real data sets. The Monte Carlo study discussed in Chapter 6 

demonstrated that functional GSCA worked reasonably well under various 

conditions. The two empirical examples given in Chapter 7 illustrated that 

functional GSCA could examine directional relationships among multiple 

latent variables while revealing the overall shape of change of each functional 

response. The two examples also showed that functional GSCA could 

accommodate the situations where all responses were functional as well as 

the cases where functional and multivariate responses were mixed.  
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Functional GSCA can be regarded as a functional analogue to latent 

trajectory models, also known as latent growth curve models and hierarchical 

linear models (e.g., Bollen & Curran, 2006; Browne & Du Toit, 1991; 

Duncan, Duncan, & Strycker, 2006; McArdle, 1986; Meredith & Tisak, 

1990; Rao, 1958; Raudenbush, 2001; Raudenbush & Bryk, 2002), for the 

analysis of longitudinal data. Latent trajectory models assume that individual 

trajectories on a variable have a common shape of change, such as linear and 

quadratic, but different values of the parameters, usually intercepts and 

slopes. Likewise, functional GSCA assumes that individual functions on a 

variable have a common shape (a loading function) but different values of 

amplitude (latent variable scores). In latent trajectory models, directional 

relationships among parameters (usually intercepts and slopes) are to be 

examined. Similarly, functional GSCA investigates various directional 

relationships among latent variables. However, functional GSCA is 

distinguished from latent trajectory models in the following respects. Unlike 

latent trajectory models that assume a parametric shape of change on a 

variable, such as linear and quadratic, functional GSCA does not make any 

assumptions on the shape of the functional responses except that they are 

smooth. In addition, latent trajectory models estimate the distributions 

(usually means and covariances) of latent variables such as intercepts and 

slopes whereas functional GSCA estimates the scores of latent variables 

themselves. Moreover, unlike latent trajectory models that mainly concern 
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longitudinal data repeatedly measured over time, functional GSCA can deal 

with functional data measured over any continuum not to mention time.  

Although functional GSCA is of use for the analysis of functional 

data, it may produce absurd results unless the characteristics of data are 

carefully considered. Even if functional responses of multiple subjects on a 

variable share a common shape of change, they can still exhibit two types of 

variation: amplitude variation and phase variation (Ramsay et al., 2009, 

Chapter 8; Ramsay & Silverman, 2005, Chapter 7). Figure 7-1 displays these 

two types of variation in a set of synthetic curves. When researchers collect 

functional data, they usually look like Figure 7-1(a), in which functions vary 

in both amplitude and phase. If the curves are aligned to have zero value at 

time = 0, i.e., the variation in phase is eliminated, the curves vary only in 

their amplitude as shown in Figure 7-1(b). On the other hand, if the curves 

are scaled to have the same amplitude, i.e., the variation in amplitude is 

eliminated, the curves vary only in their phase as shown in Figure 7-1(c). 

Functional GSCA focuses on the amplitude variation ignoring the phase 

variation. In other words, functional GSCA assumes that data functions are 

already aligned or registered to be in the same phase as in Figure 7-1(b). 

Therefore data functions should be preprocessed with a proper registration 

method especially when they manifest a considerable amount of variation in 

phase. Refer to Ramsay and Silverman (2005, Chapter 7) for a 

comprehensive discussion of curve registration.  
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In addition, functional GSCA may not work when data functions 

exhibit different shapes of change across subjects. This happens when a 

sample consists of heterogeneous groups of subjects involving different 

shapes of trajectories. For example, Wiesner and Windle (2004) studied 

adolescent delinquency trajectories and revealed six different trajectory 

groups: rare offenders, moderate late peakers, high late peakers, decreasers, 

moderate-level chronics, and high-level chronics. These six trajectories 

cannot be modeled by a single representative curve, or a loading function, as 

in functional GSCA. One might think that registering data could resolve this 

problem to some extent. However, in some cases, researchers are reluctant to 

register data because the phase variation in data reflects an important 

characteristic of data that should not be ignored. A promising way of 

extending functional GSCA to uncover such cluster-level heterogeneity is to 

combine functional GSCA with a clustering method. Hwang, Desarbo, et al. 

(2007)  already showed that the original GSCA can be nicely combined with 

fuzzy clustering to deal with heterogeneous groups of subjects. Functional 

GSCA can be readily extended to fuzzy clusterwise functional GSCA in a 

similar way. Another promising approach is a multilevel extension of 

functional GSCA, which can be used when one is interested in examining 

differences in trajectories as well as in path coefficients across already 

existing groups, such as gender, geographical regions, treatment conditions, 

etc. The original GSCA has been extended to multilevel GSCA (Hwang, 
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Takane, & Malhotra, 2007), in which loadings and path coefficients are 

allowed to vary across different groups. Similarly, functional GSCA can be 

generalized to incorporate such multilevel structures.  

 

 

Figure 7-1: Five synthetic curves that vary in (a) both amplitude and phase, 

(b) amplitude only, and (c) phase only. 

 

A more fundamental limitation of functional GSCA is that it equalizes 

the amount of variation in each latent variable. As mentioned in Sections 4.2 
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and 4.4.3, functional GSCA normalizes each latent variable in such a way 

that the squared norm of each latent variable equals to the number of subjects. 

Considering that each latent variable is centered to have zero mean, this way 

of normalization amounts to constraining the variance of each latent variable 

to unity. As a result, the difference in the amount of variation across different 

latent variables is ignored, which can be of the main interest of a study. For 

example, researchers may want to examine whether physical development in 

adolescents manifests greater variability than cognitive development. 

Functional GSCA is not equipped to address such research questions. In order 

to investigate the difference in the amount of variation across different latent 

variables, it is necessary to scale latent variables in a different way so that 

they do not lose such information. Devising such a scaling method for 

functional GSCA is not as trivial as it may seem to be.  

Another research question that functional GSCA cannot address is 

how the relationships among variables evolve over time. Sometimes 

researchers are interested in examining change in associations among 

variables rather than the shape of change on a variable. For example, Li, 

Root, and Shiffman (2006) revealed that the effect of negative mood on urge 

to smoke changed over various stages of the smoking-cessation process. 

Functional GSCA is not appropriate at all for examining such time-varying 

relationships since it assumes that the relationships among latent variables, or 

path coefficients, are not time-varying. In order to investigate time-varying 
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path coefficients, one may need to devise a different model. Consider the 

situation in which each latent variable is measured by several indicator 

variables over multiple occasions and the relationship among the latent 

variables is assumed to vary over time. In such situations, one might consider 

extending the original GSCA in the following way. First, a latent variable is 

defined as a weighted composite of multiple observed indicator variables as 

in the original GSCA. Second, the loadings and weights are not allowed to 

vary across subjects and occasions to ensure that the same constructs are 

measured for all subjects and all occasions. This assumption is comparable to 

that in simultaneous component analysis (Kiers & ten Berge, 1994; 

Timmerman & Kiers, 2003) that decomposes multivariate longitudinal data 

from each subject into sets of time-varying component scores and a constant 

loading matrix, in which the loading matrix is assumed to be common to all 

subjects and occasions. Third, the path coefficients are allowed to vary over 

time. As in time-varying effect models developed in the context of linear 

regression (e.g., Hastie & Tibshirani, 1993; Ramsay & Silverman, 2005; Tan 

et al., 2012), time-varying path coefficients in GSCA can be modeled by 

representing path coefficient functions with basis function expansions. 

Although this approach seems feasible, a more rigorous research is necessary 

to make it work.   
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