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Abstract—In this paper we consider signal detection in multiple-
input-multiple-output (MIMO) systems with an impulsive noise
channel. The existing, near optimal, sphere decoder (SD) achieves
good performance, however, the computational complexity is
directly related to the number of nodes visited during the tree
search and the signal-to-noise ratio (SNR). Using neural network
techniques, a Deep Learning Detector (DLD) is proposed. The
DLD method detects signals transmitted in an impulsive noise
channel, after an off-line training phase. The detection process of
DLD has lower complexity than the average SD complexity, while
exhibiting good performance. What is even more interesting is that
the computational complexity of DLD is constant across SNR, in
contrast to the SD detectors, which have an exponential complexity
across the SNR. This constant complexity could be very helpful
when implementing a detector in practice because it could allow
for better optimization of resources. To evaluate the performance
of our proposed method we have used a low level simulator that
generates a fairly accurate model of a MIMO system with an
impulsive noise channel. The complexity analysis and simulation
results validate the arguments presented in this paper.

Index Terms—Detector, Sphere decoder, MIMO, Deep learning,
emerging technologies, wireless communications

I. INTRODUCTION

In wireless communications, the variability of the transmis-
sion channel may significantly degrade data transmission. For
example the presence of high voltage near electrical power
stations creates fluctuations in the channel known as impulsive
noise that reduces the overall transmission rate between a
source and a destination [1]. In this paper we explore receiver
design for channels impaired by such impulsive noise.

One of the major challenges in MIMO communication sys-
tems is to improve the bit error rate (BER) without increasing
the complexity of the detector at the receiver [2]. The optimal
receiver can be found by using the maximum a posteriori prob-
ability (MAP) algorithm. However, its complexity increases
exponentially with respect to the modulation order, the number
of transmit antennas and the SNR. Hence, a sub-optimal low-
complexity detector is needed. In the high accuracy type of
detectors the sphere decoder (SD), based on a tree search
algorithm, was proposed. The SD offers a better computational
complexity than MAP [3].

Although SD has lower complexity than MAP it also depends
on the number of visited nodes in the tree search and the signal-
to-noise ratio (SNR) [4], not to mention that SD cannot be

parallelized due to its sequential nature, making it difficult for
hardware implementations. Thus, a new detection method is
needed.

One of the possible approaches to reduce complexity is to
explore the tools of machine learning (ML). Machine learning
(statistical learning, neural networks, etc.) is a set of techniques
that enables systems with the ability to learn from experience
without relying on an explicit algorithm. The learning process
begins by observing the input data i.e., examples or direct
experience; its objective is to find data patterns that will help
to make better decisions in the future [5].

ML has been proven to work successfully for many different
tasks and in different fields, such as data mining, computer
vision, natural language processing etc.

ML techniques are becoming attractive because they can
produce solutions that are easier to implement and can yield
reasonably good performance [6]. In particular, deep learning
fuelled by big data is able to capture complex correlations and
minimize domain specific expertise. In essence this means that
data pre-processing is reduced while still capturing abstract
correlations. The term "deep" in "deep learning" refers to the
number of layers the network has. In general most researchers
agree that deep learning involves depth greater than two.
Nevertheless networks with more than two layers are able to
better capture feature information than shallow models [7].

In this paper, we address the problem of symbol detection
on MIMO channels affected by impulsive noise via deep neural
networks. The main contributions of this paper can be described
as follows:

• We propose a new deep learning decoder (DLD) for
MIMO communications in the presence of impulsive noise
channels.

• We show that the proposed deep neural network can be
trained on an impulsive noise channel and still have good
performance on a Gaussian channel.

• Numerical results show that the proposed solution achieves
lower computational complexity with similar detection
performance to the sphere decoder.

The remainder of this paper is organized as follows. Section
II briefly describes the related work, Section III presents the
problem statement and the system model. Based on this model,
our proposed deep learning architecture is then described in



Section IV. In Section V we analyze the simulation results.
Finally, Section VI presents our conclusions.

II. RELATED WORK

Deep learning is gaining attention in applications like
MIMO. In [8]–[11] a comprehensive survey on the different
aspects related to MIMO communications is presented, i.e.,
channel estimation, detection, end-to-end system design, re-
source management, power control, etc.. In [12] the authors
proposed an auto-encoder. By taking into account the signal
characteristics they used an auto-encoder as a feature extractor,
then they describe an Extreme Learning Machine method to
classify the input signals of an OFDM MIMO system. Their
proposed solution achieves high detection accuracy with similar
complexity as baseline solutions.

Similarly the authors in [13], [14] proposed the design of an
end-to-end communication system and the use of auto-encoders
to jointly learn transmitter/receiver implementations and sig-
nal encoding/decoding processes. Simulation results over an
additive white Gaussian noise channel shows comparable per-
formance than previous works. Nevertheless the scalability of
their solution remains a challenge. Practical implementations
of auto-encoders are also described in [15], [16].

Another interesting solution was proposed in [17]. There,
a deep learning structure for symbol detection in molecu-
lar/optical networks was analysed. One important claim in [17]
is that neural network detectors perform well even without
knowledge of the channel model. Their simulation results using
a Poisson channel model demonstrate better performance than
the Viterbi detector.

In [18], the authors proposed deep learning to jointly estimate
channel state information (CSI) and detect/recover the trans-
mitted symbols by using the estimated CSI. Their simulation
results show that their approach can detect the transmitted
symbols with similar performance as the minimum mean-
square error estimator but with reduced complexity.

In [19] the authors explored simple methodologies of deep
learning to conventional MIMO systems. It is also exposed
the practical challenges of applying deep learning, e.g., proper
design of the network structure. Their simulations deal with
simple network structures for signal detection of one-tap MIMO
channels. and the use of convolutional neural networks and
recurrent neural networks for multipath fading channels. It
is also shown in their simulations that for low SNR the
performance is close to the maximum likelihood detection
method.

A deep neural network for detection of modulation symbols
in a quasi-static channel was proposed in [20]. The proposed
solution defines a multi-plateau sigmoid function in combina-
tion with a twin-network neural structure. Simulation results
show that close to Maximum-Likelihood performance can be
achieved with a network structure with relatively low number
of parameters.

In [21] the authors suggest the use of deep neural networks
for MIMO detection. Inspired by the projected gradient descent
algorithm they design a low complexity method that works

particularly well with high number of transmit and receive
antennas in a white Gaussian channel. A previous work of the
same authors [22] suggest than deep learning works well even
without prior knowledge of the SNR.

III. PROBLEM STATEMENT

We consider a MIMO system with n transmit antennas and
m receive antennas that is mapped into complex symbols using
quadrature amplitude modulation (QAM). The basic block
diagram of a MIMO system is depicted in Fig. 1.
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Fig. 1. Basic block diagram of a MIMO system.

Let H be the channel matrix, x the transmitted vector and y
the received vector. The standard MIMO equation is:

y = Hx+ ⌘, (1)

where ⌘ is the noise vector. Without loss of generality we
assume that any complex vectors and matrices can be triv-
ially transformed into their real representation and that the
receiver has perfect knowledge of channel H . Then we have
H 2 <2m⇥2n, x 2 <2n, y 2 <2m and ⌘ 2 <2n. The aim is
to recover the transmitted vector x from the received vector y
with the smallest probability of error P

e

.

P
e

= P{x 6= f(y)}, (2)

where f(y) is the decoder estimate of x. The optimal decoder,
also know as the Bayes decoder in the machine learning
literature, can be found by using maximum a posteriori (MAP).

f(y)MAP

= argmax

x

P (x|y), (3)

assuming that the prior probability P (x) is uniform we can
find the maximum likelihood decoder f(y)ML as:

f(y)ML

= argmin

x

ky �Hxk2, (4)

which in a sense means to find the x which minimizes the
Euclidean distance. Solving equation (4) is NP-hard because
a full search is needed (exponential complexity). To reduce
complexity the SD decoder limits the search to those points
inside a sphere of radius r centered around y. Introducing
the radius constrain in the ML decoder we can define the SD
decoder as:

f(y)SD

= argmin

x

{ky �Hxk2 < r2}, (5)

We should notice that the complexity of the SD decoder is
much lower than the ML decoder but it is still exponential.



A. Impulsive noise model

Although the noise ⌘ is typically modelled as a Gaussian
noise for classical wireless communication channels, in this
paper, we use the noise model developed in [1] which is valid
when there is a cohabitation of wireless networks and high
power electricity networks (electric power equipment gener-
ates impulsive noise in bands covering the carrier frequencies
of classic wireless communications). A representation of the
Impulsive noise is depicted in Fig. 2.
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Fig. 2. Impulsive noise sample.

Impulsive noise is very different from Gaussian noise, as
the impulsive noise is correlated and the samples follow a
Gaussian mixture distribution. Specifically we have adopted the
6-state Partitioned Markov Chain model (PMC-6) that allow
us to include the time-correlation of the noise observed in
high voltage environments. PMC-6 offers sufficient degree of
realism with lower implementation complexity.

IV. DEEP LEARNING DECODER (DLD)

In this section, we describe our proposed deep learning
decoder which is inspired by [21]. The estimating process
is performed using a Deep Learning neural network through
supervised learning. In essence we can think that the neural
network will find the mapping of the function f : y ! x
which approximates the mapping of the system:

f(y; ✓) = argmax

x

ˆP (x|y; ✓), (6)

where ✓ denote the network parameters and ˆP (x|y; ✓) is the
estimated conditional probability density function. If the neural
network is expressive enough it is possible to find a good
estimator.

The deep learning process has two main stages, training and
detection. In the first stage an off-line training, needed to find
the network parameters, is performed. In the second stage, the
neural network is deployed and used for detection.

A. Training

Based on the ML detector presented in equation (4), we
can implement a projected gradient descent like solution, as

described in [21]:

x̂
k+1 = �

h
x̂
k

� �
k

@ky �Hxk2
@x

i

= �[x̂
k

� �
k

HT y + �
k

HTHx̂
k

)]

= �[(I + �
k

HTH)x̂
k

� �
k

HT y]

= �[q
k

],

(7)

where I is the identity matrix, �[•] is a projection operator, x̂
k

is the estimate of x at layer k = 1, .., L, and �
k

is a step size.
It is important to mention that our iterative solution differs

from [21] by using a simplified version of the same paradigm.
Notice that in (7) assuming that I + �

k

HTH is invertible we
can conveniently rewrite q

k

as:

q
k

= W1kx̂k

�W2kH
T y, (8)

which yields a more compact solution represented in Fig. 3.
Notice that W1k reduces complexity by avoiding the need of
some matrix operations (multiplication and addition)
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Fig. 3. Basic DLD diagram representing layer k

In Fig. 3 we have included v
k

as an auxiliary input used to
lift the inputs to a higher dimension; then the standard non-
linearities of neural networks are applied. A detailed block
diagram of our implementation is shown in Fig. 4.
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Fig. 4. Detailed DLD diagram representing layer k

Where F (x̂
h,k

) = x̂
k

is the function used to transform the
one-hot mapping x̂

h,k

, typically used by neural networks, to the
real valued x̂

k

. One-hot representation implies that the allowed
combinations of values are only those with a single (1) and
all the others (0), e.g., in our simulations each real value is
represented by a 4-bit one-hot vector. In summary the trainable
parameters used in our implementation are:

✓ = {W1k,W2k,W3k,W4k,W5k, b3k, b4k, b5k}, (9)



where W3k, b3k are the weight and bias terms used at the core
of each layer in combination with a Relu activation function,
and W4k,W5k, b4k, b5k are the weights and bias terms used to
shape the output of layer k. Now we define the loss function.
it is important to mention that during training deep neural
networks suffer from the vanishing gradients problem (back-
propagation algorithm), in which the gradient becomes very
small, thus preventing the weights from changing their value.
To mitigate this problem GoogLeNet [23] proposed a loss
function that is a combination of the intermediate loss and the
final loss. We then define the loss function as:

l(x̂
h,k

(✓)) =

LX

k=1

log(k)kx
h

� x̂
h,k

k2, (10)

where x
h

is the one-hot mapping representing the true x and
x̂
h,k

is the estimation of the one-hot mapping of x at layer k.
If we fix the network structure and the network size then the
parameters ✓ can be estimated as:

✓⇤ = argmin

✓

l(x̂
h,k

(✓)). (11)

Another well known technique, typically used and included
in our implementation, to deal with the vanishing gradients
problem is to use the residual feature from ResNet [24] in
which the output of each layer is weighted with the output of
the previous layer.

x̂
k+1 = ↵x̂

k

+ (1� ↵)x̂
k+1

v
k+1 = ↵v

k

+ (1� ↵)v
k+1,

(12)

where the ResNet parameter ↵ is a parameter typically close
to one (0 < ↵ < 1). Fig. 5 shows a block diagram of the full
feed forward network implementation used by DLD.
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Fig. 5. Feed forward neural network used for DLD

B. Complexity analysis

There are different ways to analyze the complexity of a
decoder. For the sphere decoder some authors focus on the
number of points visited during the tree search given a chosen
radius over particular values of SNR. Others prefer to use the
run time needed to perform the detection. In this paper we
analyse the number of multiplications and additions needed to
perform the detection because it offers a fair perspective for
comparison between the sphere decoder and our proposed deep

learning detector. From our design we find that the total number
of multiplications performed by DLD is:

[4n2
(2 + 2!⌫ + !q + !)]L, (13)

and the total number of additions is:

[4n2
(2 + 2!⌫ + !q + !)� 2n(! + ⌫ + q � 1)]L, (14)

where ! is the neural network width (maximal number of nodes
of the ReLu block), ⌫ is the size of vector v

k

(! ⇡ ⌫) and
q is the modulation order. The complexity of the proposed
detector DLD is in the order of O(n2!2L), i.e. the algorithm
has linear complexity in the number of layers L and a quadratic
complexity in the number of antennas n and the neural network
width !. n is a given parameter, L and ! are network
parameters to be tuned when designing the neural network;
in practice we have found that the network is sensitive to big
changes of L but not so sensitive to big changes of !.

Due to space constraint we do not include the training
complexity analysis, nevertheless to give an idea, using a
desktop PC Intel Core i7 with 8MB of RAM it takes around
60 hours to train the network.

V. NUMERICAL RESULTS

In this section we evaluate the performance of DLD based
on the Impulsive noise model and the Gaussian noise model.

A. Simulation settings

In our case, the dataset is composed of samples generated
using the link level Vienna simulator [25]. We consider an LTE
wireless communication network, using a 4⇥4 MIMO system.
The input bits are modulated using a 16QAM modulation
scheme.

1) Data collection: We assume that we know channel H for
each transmitted symbol as well as the received signal y. We
compare our results with the soft sphere decoder [26]. Table I
summarizes the simulation parameters used for data collection.

TABLE I
WIRELESS NETWORK PARAMETERS

Parameter value
Communication system LTE

Carrier frequency 2.1 GHz
Modulation scheme 16 QAM

Transmission type MIMO
Antenna configuration 4 transmit, 4 receive (4 x 4)

Channel model 3GPP TU
Decoder (used for comparison) Soft Sphere decoder

Impulsive noise model PMC-6

2) Training: We design and evaluate the performance of our
deep learning algorithm using Tensorflow in Python. During
training one of the questions that arises besides the classical
question of how to tune the hyper-parameters is what is the
SNR level at which we can train the network so that we get
the best performance. From our experience, we have observed
that when one sample out of hundred is misclassified the



neural network manages to explore the whole symbol space
and captures the relationships needed to have good estimations,
i.e., training at the SNR when the probability of error P

e

is
at around 10

�2. In our case this happens at 26dB. Table II
summarizes the neural network parameters used for training.

TABLE II
NEURAL NETWORK PARAMETERS

Parameter value
Number of samples used for training 40 Million

Number of layers 50
x size 8
v size 16⇥ x size

Relu layer width 18⇥ x size
xh size 4⇥ x size

Batch size 5000
SNR for training 26dB

Gradient descent method Adam optimizer
Learning rate 0.01
Decay factor 0.97

Decay step 300
Resnet parameter ↵ 0.93

x̂0, v0 0
weights, bias terms start at random

B. Simulation results

In order to quantify the performance of our deep learning
decoder we analyse the BER and the symbol error rate (SER)
response with respect to variations of the SNR.

1) Gaussian noise: First we analyse DLD with the Gaussian
noise model. Fig. 6 and Fig. 7 show the BER vs. SNR and SER
vs. SNR respectively. There we see that the DLD performance
is very close to the soft sphere decoder, when the BER and
SER are low (< 10

�1) the performance is pretty much the
same as the SSD decoder, and when the BER and SER are
high (> 10

�1) the SNR difference is smaller than 0.5dB.
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Fig. 6. BER performance of a 4⇥4 MIMO system, 16 QAM, Gaussian noise

2) Impulsive noise: For the DLD with the Impulsive noise
model. Fig. 8 shows the BER vs. SNR curve. In this case the
DLD performance is very close to the SSD decoder for all the
SNR values (difference < 0.1 dB). Notice that it is harder to
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Fig. 7. SER performance of a 4⇥4 MIMO system, 16 QAM, Gaussian noise.

detect the received signal in the case of impulsive noise. Similar
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Fig. 8. BER performance of a 4⇥4 MIMO system, 16 QAM, Impulsive noise

results can be observed in Fig. 9 for the case of SER vs. SNR.
Since the performance in terms of BER is very similar to the
soft sphere decoder in the presence of Gaussian and impulsive
noise, we focus our attention on another important performance
metric which is the computational complexity.

C. Complexity cost

We should first note that the complexity of the sphere
decoder depends on the SNR, so we use the expected number of
operations in order to compare it with DLD. According to [3]
the total number of multiplications and additions of the sphere
decoder is 5.5 ⇥ 10

6. Considering the network parameters
used in our implementation and summarized in Table II the
total number of operations of DLD is 24% lower than the
sphere decoder (see Table III). It is worth noticing than further
gains can be obtained due to the fact that DLD has constant
complexity for all SNR, allowing the possibility to have more
efficient implementations.
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Fig. 9. SER performance of a 4⇥4 MIMO system, 16 QAM, Impulsive noise.

TABLE III
COMPLEXITY BREAKDOWN

Block Multiplications Summations
HT y 64 56
x̂k 64 56

ReLu 19584 19584
x̂k+1 4608 4320
v̂k+1 18432 17280

Operations per layer 42752 41296
Total 2137600 2064800

VI. CONCLUSION

In this paper we have investigated symbol detectors in MIMO
systems with impulsive noise channels. Using deep learning a
new detector (DLD) is proposed. DLD detects signals after
an off-line training phase. DLD exhibits good performance,
and lower computational complexity than the sphere decoder.
One of the important results is that the DLD computational
complexity is constant across the SNR; in contrast to the SD
detectors which have exponential complexity. We argue that this
constant complexity could be very helpful in practical imple-
mentations because better resource optimizations are possible.
To evaluate the performance of DLD, we have used a low
level simulator that generates a very accurate model of the
wireless communication network. The simulation results show
that we can design very accurate detectors that demonstrate
< 0.1dB difference with respect to the SD decoder; moreover
the complexity analysis reveals that our proposed DLD detec-
tor requires 24% less arithmetic operations than the average
number of arithmetic operations of the SD decoder.
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