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Abstract 

Automated fiber placement is a manufacturing technology that enables to build composite 

laminates with curvilinear fibers. To determine their optimum mechanical properties, finite 

element analysis is commonly used as a solver within an optimization framework. The analysis 

of laminates with curvilinear fibers coupled with the fiber path optimization requires a large 

number of function evaluations, each time-consuming. To reduce the time for analysis and thus 

for optimization, a metamodel is often proposed. This work examines a set of metamodeling 

techniques for the design optimization of composite laminates with variable stiffness. Three case 

studies are considered. The first two pertain to the fiber path design of a plate under uniform 

compression. The third concerns the optimization of a composite cylinder under pure bending. 

Four metamodeling methods, namely Polynomial Regression, Radial Basis Functions, Kriging 

and Support Vector Regression, are tested, and their performance is compared. Accuracy, 

robustness, and suitability for integration within an optimization framework are the appraisal 

criteria. The results show that the most accurate and robust models in exploring the design space 

are Kriging and Radial Basis Functions. The suitability of Kriging is the highest for a low 

number of design variables, whereas the best choice for a high number of variables is Radial 

Basis Functions.  
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1. Introduction 

Automated fiber placement (AFP) is a technology capable of placing fibers along a curvilinear 

path, thereby resulting in a variable stiffness laminate. The structural benefits of variable 

stiffness laminates are achieved by tailoring the material properties in directions that are more 

favourable to carry loads within the laminates. To fully exploit the advantages of a variable 

stiffness design, it is often appropriate to systematically formulate the design problem within an 

optimization framework. The objective functions to optimize might be one or more mechanical 

properties, such as buckling and in-plane stiffness. Since the fiber orientation continuously 

changes within the laminate of a variable stiffness design, the evaluation of the structural 

properties via finite element simulation is often very time-consuming [1, 2]. Furthermore, the 

optimization process might require thousands of function evaluations to locate a near optimal 

solution, a requirement that makes the process computationally expensive. To alleviate this 

problem, one may resort to an approximation concept, also called a metamodel [3, 4]. 

Significantly cheaper to evaluate, the metamodel is substituted and used in place of a high 

fidelity finite element simulation. As a result, the metamodel can significantly reduce the time 

required to run the optimization. 

In the literature, there are several successful applications of metamodeling techniques in the 

optimization of traditional composite laminates with straight fibers. For example, Radial Basis 

Functions [5], second order polynomials [6], and Neural Networks [7] were shown to be 

effective in reducing the time to find the maximum buckling load of a composite stiffened panel. 

Liu et al. [8] used a cubic response surface combined with a two-level optimization technique to 

maximize the buckling load of a composite wing. Lee and Lin [9, 10] used trigonometric 

functions as the base functions to build a metamodel for the stacking sequence optimization of a 

composite propeller. Integrated into a genetic algorithm (GA), the metamodel demonstrated 

benefits by reducing the number of GA iterations. Kalnins et al. [11] compared the performance 

of Radial Basis Functions, multivariate adaptive regression splines, and polynomials, to optimize 

the post-buckling of a damaged composite stiffened structure. They concluded that the methods 

under investigation have cross-validation error lower than 10%; thus, they can be efficiently 

integrated into an optimization framework. In another attempt, Lanzi and Giavotto [12] 

compared the performance of Radial Basis Functions, Neural Networks, and Kriging 



metamodels in a multi-objective optimization problem for maximum post-buckling load and 

minimum weight of a composite stiffened panel. The methods were found to yield similar results 

and none of them was identified as being significantly superior.  

While there is a considerable amount of existing research on the use of metamodels for constant 

stiffness composite design, only a few attempts look at their application in variable stiffness 

design. Among those worthy to mention are the following: the optimization of a variable 

stiffness laminate in vibration [13], the buckling load of a variable stiffness composite cylinder 

[14], and the simultaneous optimization of the buckling load and in-plane stiffness of a variable 

stiffness laminate [2, 15]. While these works demonstrate the potential of a given metamodel in 

reducing the computational burden of the optimization process, they are just a firs attempt. No 

recommendation about metamodel selection for variable stiffness composites exists. 

Furthermore, metamodel performance is problem dependent and the best metamodel is unknown 

at the outset [16].  

This work presents a comparative study on the application of the most widely used 

metamodeling methods -polynomial regression, Radial Basis Functions, Kriging, and Support 

Vector Regression, for the optimization of variable stiffness composite. The goal is to offer 

insight into the selection of the most appropriate metamodel for the optimization of laminated 

composites with varying fiber angles. We examine three case studies:  the buckling load and in-

plane stiffness of a variable stiffness composite plate under uniform compression for two layup 

designs, and a variable stiffness composite cylinder under pure bending. The advantages and 

disadvantages of the metamodels are then investigated using the following criteria: 

 Accuracy: the degree of closeness of a metamodel prediction to that quantity of the true 

function over the design range of interest. Multiple metrics, namely R-square, relative 

average absolute error, and relative maximum absolute error are used to assess the 

metamodels’ accuracy.  

 Robustness: the capability of a metamodel to persistently achieve high accuracy for 

dissimilar problems. In this work, the robustness of a metamodel method is measured by 

evaluating its average accuracy for the entire set of test problems. 

 Suitability: the degree of the effectiveness of integrating a metamodel into an 

evolutionary optimization algorithm.  To measure this criterion, the performance of 



metamodel-assisted optimization algorithms in the actual improvement of the solution is 

compared via a series of numerical experiments on the case studies. 

The remainder of this work is organized as follows: the data sampling method and the different 

size of the sample data to investigate its effect on the metamodel accuracy are explained in 

Section 2. Section 3 gives a background on metamodel construction techniques and their 

characteristics. The metrics to evaluate the local and global metamodel accuracy are discussed in 

Section 4. Test problems for variable stiffness composite that can be manufacturable via AFP are 

then described in Section 5. Finally, the metamodels under investigation are assessed and 

recommendations are presented in Section 6. 

 

2. Data sampling 

Data sampling, referred to as design of experiments (DoE), is the first step in the construction of 

a metamodel. The selection of the sample points and the size of the sample have a significant 

effect on the metamodel accuracy.  

Sacks et al. [17] stated that sample points for simulated experiments should be chosen to fill the 

design space rather than to concentrate on the boundaries of the design space. The reason is that 

computer experiments are deterministic and thus involve systematic errors, whereas physical 

experiments involve random errors. Following this observation, in this work a Latin Hypercube 

method is used to generate training data that are space filling. In addition, to average out the 

dependency of the metamodels accuracy on the sampling method, we use five DoEs to construct 

each metamodel. 

Besides the sampling method, the sample size also has an influence on metamodel accuracy. To 

investigate the metamodel accuracy with respect to the sample size, small and large sample sizes 

are examined as suggested by Jin et al [18]. Table 1 shows the sample sizes and the number of 

confirmation data points used to measure metamodel accuracy with respect to the sample size. 

 

3. Metamodeling techniques 

As mentioned in the introduction, there is a variety of techniques that can be used to construct a 

metamodel. This section gives a background on the most common methods: Polynomial 



Regression (PR); Radial Basis Functions (RBF); Kriging (KRG); and Support Vector Regression 

(SVR). 

3.1. Polynomial Regression (PR) 

A second-order polynomial can be expressed as  

  (1) 

Where 0β , iβ , iiβ  and ijβ  (i, j 1,   ,  n)   are the regression coefficients, ix (i 1,   ,  n)   are the 

design variables, and y  denotes the approximate value for the objective function. The 

coefficients of the metamodel are evaluated by fitting the model to the training data using the 

least squares method [19]. The second order PR has a smoothing capability, a feature that 

ensures fast convergence for noisy functions and thus is suitable for integration in an 

optimization framework. Yet, this characteristic can bring  inaccuracy if there is need to 

surrogate highly non-linear functions [18]. Obviously, a higher order polynomial can be used to 

construct a more accurate metamodel; nevertheless, instabilities may arise and also a large 

number of training data is required to fit such a high order polynomial [20]. 

3.2. Radial Basis Functions (RBF) 

The RBF method uses a combination of basis functions expressed in terms of the Euclidean 

distance between sample data points to construct a metamodel [21]. The RBF model can be 

written as  

  (2) 

where ix  (i 1,   ,  n)   are the design variables,  is the basis function and iw  (i 1,   ,  n)   are 

the basis function weights evaluated by fitting the model to the training data,  denotes the 

Euclidean distance between two sample data points, and y  is the approximate value of the 

objective function [4]. The basis function weights, iw , can be calculated by enforcing the 

interpolation condition in Eq. (2). This results in a linear system of equations 
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  (3) 

where y is the vector of function values at training data, w is the vector of basis function weights, 

and  is a matrix, also known as Gramian matrix of design variable values defined by 

  (4) 

In this study a multiquadratic function, 2 2( )r r s   , where and s is the RBF 

width parameter, are considered as the basis function. When the design variables are scaled to 

the range [0, 1], the RBF parameter can be selected independently from the values of the design 

variable.  

3.3. Kriging (KRG) 

The Kriging method uses a combination of a trend function P(x), which is usually a polynomial 

(e.g. linear or quadratic), and a departure from the trend function, Z(x), to construct a 

metamodel.  
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The Z(x) is assumed to be “a realization of a stochastic process with a mean of zero and a 

correlation function given by” [17]  
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where 2  is the process variation and ( , )i jR x x is the correlation, which usually takes the form of 

a Gaussian radial basis function as [17] 
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It should be noted that in Eq. (7) the correlation parameters of the basis functions, i.e. and , 

were identical for all dimensions in the RBF model, whereas they could be different for each 

dimension in a Kriging model. Although these additional parameters make KRG more flexible 

than RBF, they should be obtained by maximizing a likelihood function [4]. The major 

disadvantage of Kriging is the need to solve the maximization problem, which makes the KRG 

computationally expensive if the number of design variables is high.  

3.4. Support Vector Regression (SVR) 

SVR is a special version of the Support Vector Machine (SVM) developed for regression 

analysis. SVR uses a subset of data samples, support vectors, to construct a metamodel that has a 

maximum deviation of  from the function value of each training data [22]. For a linear 

regression, the SVR model can be written as 

  (8) 

where  ̃ is the approximate value of the objective function at x, w represents a vector of weights, 

b is the bias term, and  denotes the inner product. Instead of minimizing the empirical risk on 

the training data during the fitting process, SVR minimizes an upper bound on the expected risk 

using an ε-insensitive loss function, as proposed by [22] 

  (9) 

SVR performs a linear regression ε-insensitive loss function, at the same time, tries to reduce the 

model complexity by minimizing the norm of the weighting vector, .  

  (10) 

It should be noted that there might not be a function that satisfies the condition in equation (10). 

Thus, slack variables are incorporated into the optimization problem as 
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  (11) 

The regularization parameter, C, determines the trade-off between the model complexity and the 

degree for which deviation larger than ε is tolerated in Eq. (10). A nonlinear regression can be 

achieved by replacing the  in Eq. (8) with a kernel function, K, [22] as 

  (12) 

In the case studies examined in this paper, a Gaussian kernel function is used and ε and C 

parameters are chosen based on the recommendation proposed by Cherkassky and Ma [23]. For 

more details on SVR, the interested reader may refer to [22-24]. 

 

4. Accuracy Metrics 

There is a variety of metrics to measure the accuracy of a metamodel. Cross-validation error is a 

popular choice. It relies on training data and does not require additional sample data to calculate 

the error. Yet, cross-validation error was found to potentially lead to a biased estimate of the 

error [25, 26]. In addition, Lin [27] stated that “cross validation is an insufficient measurement 

for metamodel accuracy”. Hence, in this study, we opt for other accuracy metrics which require 

additional sample data (Table 1). These include R-square, relative average absolute error 

(RAAE), and relative maximum absolute error (RMAE) [18, 27].  
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ˆ
iy  denotes the value predicted by the metamodel, iy represents the true value, and iy  is the mean 

of the true values at confirmation points. A larger R-square denotes higher accuracy of the 

metamodel. 

 

(b) Relative average absolute error (RAAE) 
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where STD stands for standard deviation. This metric is a good indicator of the global accuracy 

of a metamodel. The closer to zero RAAE is, the more accurate the metamodel. 

 

(c) Relative maximum absolute error (RMAE) 
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In this case, accuracy increases with decreasing values of RMAE.  

 

R
2
 and RAAE indicate the overall accuracy of a metamodel over the entire design space. A high 

RMAE value indicates large error in a region of the design space. 

 

5. Test problems of laminate composite  

This section examines three problems, each involving the design of variable stiffness composite 

parts, which can be manufactured by AFP. The first two deal with the design and optimization of 

a composite plate, with prescribed layup configurations; the third is about the optimum design of 

a composite cylinder.  

5.1. Composite plates with curvilinear fibers 

A variable stiffness composite plate can be designed by a curvilinear fiber path that varies 

linearly along the x-axis of the plate (Figure 1) and can be formulated as 



  (16) 

where  represents the fiber orientation, a denotes the plate width, and  are the fiber angles 

at the plate center ( ) and the plate edges ( ), respectively [28]. A single layer with 

this fiber path definition can be specified with two design variables, i.e., and , where  

represents a straight fiber case [29].  

Case 1. A 0.254×0.406 m (10×16 in) rectangular plate with a 16-ply balanced symmetric 

laminate subjected to a uniform end shortening along the y-direction is designed by using the 

fiber path definition given in (13). Concerning the boundary conditions, the transverse edges are 

considered free (Figure 1b) for in-plane displacement and all edges are simply supported against 

out-of-plane movement. The in-plane stiffness and the buckling load of a plate with a  

layup are considered as the objective functions. This test problem has two design variables, i.e. 

and  , that allow for visual comparison of the metamodel accuracy.  

Case 2. The second case study is a similar plate with a layup, 

with 8 design variables, i.e. T0i (i=1,…, 4) and T1i (i=1,…, 4) . This problem is considered to 

investigate the effect of the size of the problem on metamodels performance. Similar to the first 

test problem, the buckling load and equivalent in-plane stiffness of the variable stiffness plates 

are considered as the objective functions. The plates are designed with the following material 

properties: 181MxE Pa , 10.27MyE Pa , 7.17MxyG Pa , and 0.28xy  . 

5.2. A cylinder with a curvilinear fiber path 

Case 3 is a composite cylinder with a diameter of 0.6096 m (24 in) and a length of 0.8122 m (32 

in) [14] considered to investigate the performance of metamodels for a problem with 3-D 

geometry (Figure 2).  

 

A variable stiffness cylinder is designed by specifying multiple segments for the linear fiber 

angle variation. The fiber angle is varied as a function of the circumferential coordinate over 

multiple segments of the cylinder [14].
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  (17) 

In Eq. (17),  represents fiber orientation, which depends only on the circumferential angle ( ) 

and is independent from the longitudinal and radial direction.  is the fiber orientation in each 

segment as it is indicated in Figure 2. The layup is a 16-ply symmetric and balanced laminate 

with 8 design variables, Ti (i=1,…, 8), and material properties as the ones given in 

Section 5.1. The cylinder is assumed to be under pure bending with tension at the top and 

compression at the bottom surfaces. The buckling load and overall stiffness of the cylinder are 

considered as the objective functions. 

 

6. Assessment of metamodels 

This section presents a comparative study of metamodels in predicting the buckling load and in-

plane stiffness of the test problems described in section 5. As mentioned, the performance of the 

metamodels depends on the number of training data. Thus for each case, we generated 5 sets of 

DoEs with small and large size; the metamodels were entirely refitted to each of them. In other 

words, we built a total of 120 metamodels by using the metamodeling techniques described in 

section 3, and different sample data. The metrics, Eqs (13-15), were then used to calculate the 

accuracy of each metamodel.  

As previously mentioned in section 5.1, the first case study is a variable stiffness plate with 

layup. This test problem has only two design variables, i.e. and  that allow to 

qualitatively compare the metamodel accuracy via a contour plot. Figure 3 shows the buckling 

load of the variable stiffness plate of Case 1. Figure 3a is the plot of the true model, Figures 3b-e 

illustrate the iso-buckling regions obtained with the metamodels. As can be seen, KRG and RBF 

provide a good accuracy, as opposed to SVR and PR, which cannot capture the real behavior.  

Multiple bar charts can be used to quantitatively compare the effect of the sample size on 

metamodel accuracy. Figure 4 shows bars representing the average of a given metric (R2, 

RAAE, and RMAE) for the metamodels under investigation. We gather that the accuracy of all 

the metamodels generally improves with a large set of training data. For both small and large sets 
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of sample data, accuracies of KRG and RBF are very similar and better than both PR and SVR. 

Figure 4c shows that the size of the sample data has a higher impact on the RMAE of PR 

compared to the other methods. We can observe that PR produces the least accurate model even 

for a large set of training data. 

Another metric to assess a metamodel performance is robustness. Robustness refers to the 

capability of a metamodel to be accurate in a range of problems. Figure 5 shows box plots of 

accuracy metrics for all metamodels. A box plot is defined by a lower quartile (25%), median 

(50%), and upper quartile (75%) values. The extended lines represent the minimum and 

maximum of values. The height of a box (the space between lower and upper quartile) represents 

the robustness of the method. The smaller the box size, the higher the robustness. By comparing 

the box sizes, we found that KRG is more robust than RBF, whereas their median is very close. 

PR and SVR are the least robust methods. Therefore from these plots we gather that KRG and 

RBF are preferable methods to construct metamodels for variable stiffness composites. 

6.1. Metamodel-assisted optimization 

The results from the previous section help us to gain insight into the accuracy of the metamodels. 

A large number of sample data is generally required to produce an accurate metamodel of 

variables stiffness laminates that can span the entire design space. It should be noted that a 

metamodel with good global accuracy is not necessarily able to capture the optimum values of 

the true function. It is thus important to select a metamodel that is accurate in regions where 

optimum solutions most likely can be found. The performance of a metamodel in other regions 

of the design space are thus of minor concern for metamodel-assisted optimization  [30].  

In this section, the suitability of metamodels (the degree of the effectiveness of integrating a 

metamodel into an evolutionary optimization algorithm) is illustrated using a series of numerical 

experiments. In these experiments, a metamodel is integrated into a genetic algorithm, where the 

metamodel is updated at each generation of the optimization process as suggested in [30]. The 

suitability of each metamodel is then illustrated by comparing the best obtained solution at each 

generation. 

The first case study requires the optimization of a variable stiffness laminate with a 

layup (2 variables only). The buckling load is a unimodal function (Figure 3) and the exact 
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location of the optimum is known. Figure 6 shows the distance between the optimum of the 

metamodel and the optimum of the true function during the optimization process, averaged over 

five trials for each case. It can be seen that KRG predicts the true optimum after the first 

generation of the GA, whereas RBF reaches that optimum after the second generation. PR and 

SVR reach a point very close to the true optimum but even after several updates they cannot 

predict the exact optimum. The results show that all metamodels improve the performance of the 

GA by approaching the neighbourhood of the optimum at an early stage of the GA generations. 

However, only KRG and RBF can locate the exact optimum within an early number of 

generations. Moreover, it can be seen in Figure 6 that after 6 generations, there is no benefit of 

adding more points to the training data and updating the metamodels. It is worth noting that in 

terms of metrics, as it was shown in Figure 4, PR is less accurate than SVR; however, it has a 

better performance when integrated into the GA. Therefore, a poor metamodel in terms of 

accuracy metrics does not necessarily have a poor performance when integrated into an 

optimization algorithm. 

For the remaining case studies, the optimum design is not known. Thus to compare the 

performance of the metamodel-assisted optimization algorithms, we use the following relative 

improvement  

 I IBS MAO

IBS

y y

y


  (18) 

where yIBS is the initial best solution and yMAO is the optimum solution found at each generation 

by the metamodel-assisted optimization algorithm, and I is the actual improvement over the 

initial best solution. The actual improvement shows how well a metamodel-assisted optimization 

performs. When there is no improvement in the solution I=0,; on the other hand, I>0 represents 

an improvement in the solution. A larger I means a higher improvement in the solution [31]. The 

results of the optimization averaged over five trials for each case are shown in Figure 7.  

Similar to the previous case, all metamodels have the effect of enhancing the performance of the 

optimization process by improving the accuracy of the solution at low number of generations. 

For example, the final best solution found by GA is obtained by all metamodel-assisted GA after 

3 generations only. In other words, for the case studies shown here, the use of the metamodels 



decreases of one third the number of generations required by the genetic algorithm. The 

difference between metamodel-assisted algorithms is significant at early generations and 

decreases during the optimization process. This might be explained by examining the evolution 

of the accuracy during the generations; all models can locate the neighbourhood of the optimum 

solution after 5-6 generations. Hence, further iteration cannot significantly increase their 

accuracy. In general, RBF followed by KRG outperforms other methods. In contrast to the 

previous case, early in the optimization process SVR performs better than PR, yet its superiority 

over PR diminishes as the optimization proceeds.  

 

7. Conclusions 

This work has compared the performance of alternative metamodeling methods using multiple 

criteria for the design optimization of variable stiffness composite laminates. The metamodels 

performance has been assessed in three case studies. Their accuracy and robustness in 

constructing an approximation of the buckling load and in-plane stiffness have been measured. 

The suitability of each metamodel for integration into an optimization framework has also been 

studied. KRG and RBF had the highest accuracy. In terms of robustness, both KRG and RBF 

provided the best results, where KRG has been slightly better than RBF. In terms of suitability, 

KRG has shown the best performance for problems with low number of design variables, 

whereas RBF has been the most appropriate method for a high number of variables. It is found 

that the use of an appropriate metamodel in a metamodel-assisted genetic algorithm decreases 

the number of iterations to one-third compared to a genetic algorithm. 

In this study, the size of the sample data has been considered fixed. Further investigation is 

needed to determine the minimum number of sample data required to reach a certain level of 

accuracy for a given metamodel. In addition, further work is needed to investigate the role of 

kernel and basis functions respectively for KRG and RBF metamodels.  
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Table 1: Experimental design for test problems (adapted from [18]). 

Sample size Number of training data points 

Small set 10n  (9 if n=2) 

Large set 
3( 1)( 2)

2

n n 
 

Confirmation data points 300 for test problem 1, 1000 for test problems 2 and 3 

 

  



    

                 (a)      (b) 

Figure 1: (a) A curvilinear fiber path that varies linearly along the x-axis; (b) Test case load and boundary 

conditions. 
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(a)       (b) 

Figure 2. (a) Fiber angle definition for a variable stiffness cylinder. (b) Design variables per ply (reproduced from 

[14]). 
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Figure 3. Contour plots for the buckling load of a variable stiffness composite plate with 2 design variables. (a) True 

model; (b) KRG; (c) RBF; (d) PR; (e) SVR. 
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Figure 4. The effect of sample size on accuracy metrics for PR, KRG, RBF, and SVR metamodels: (a) R-square; (b) 

RAAE; (c) RMAE. 
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Figure 5. Performance metrics of each metamodel constructed for the variable stiffness composite test problems 

examined in section 5. (a) R-square; (b) RAAE; (c) RMAE. 

  



 

Figure 6. Metamodel performance as a function of the number of iterations. Maximization of the buckling load for a 

 composite laminate. 
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Figure 7. Performance of the metamodels- for the optimization of variable stiffness laminates. 

 


