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The solution to the finite element matrix-differential equations resulting from the discretization of the 
groundwater flow equation is normally carried out by a finite difference approximation to the time 
derivative. The total computational effort in solving a fluid flow problem is then directly related to the 
number of unknowns and the number of time steps required to obtain accurate and stable solutions. The 
Lanczos algorithm uses an orthogonal matrix transformation to reduce the finite element equations to a 
much smaller tridiagonal system of first-order differential equations. This new system can be solved by a 
standard tridiagonal solution algorithm with very little computational effort. A matrix-vector multipli- 
cation is then used to obtain the original solution at desired time steps. The algorithm is used to 
accurately simulate the drawdown of synthetic two-dimensional aquifers, including ones with substantial 
hydraulic conductix;ity contrasts. The method affords an efficient means of solving large problems, 
particularly when time durations are long. 

INTRODUCTION 

The use of numerical techniques, based on either finite ele- 
ments or finite difference methods, has become the standard 
procedure for solving steady state and transient problems in 
groundwater hydrology. For geometrically irregular domains 
the finite element technique is the favored method of solution. 
It is well-known that for complex systems in two or three 
dimensions the demand on computing resources can be high 
because of the need to store large matrices within a time 
marching algorithm [Frind and Pinder, 1982]. In addition, 
scientists are now pushing the limits of available computer 
resources (even on large vector computers) for problems such 
as transient flow in multiple three-dimensional networks of 
fractures. 

In this paper we develop a decomposition technique based 
on the Lanczos method to solve the transient groundwater 
flow equation. This method has the potential to render prob- 
lems with large meshes into equivalent systems of much 
smaller size. Consequently, large savings in computer time can 
be realized. Our focus in this paper is to demonstrate the 
usefulness of the algorithm for a series of hypothetical, but 
realistic examples. These examples consist of areal two- 
dimensional aquifers with large hydraulic conductivity con- 
trasts and anisotropic properties. 

BACKGROUND 

Groundwater flow is described by the following initial 
mixed boundary value problem defined for the domain f• with 
boundary F 
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V.(•c. Vu) + r = S • 
c•t 

u = u•(t) on 

-•c. (Vu. n) = q•(t) on F,• 

u(x, 0)= uø(x) in f• 

(1) 

where u is hydraulic head, •c is the hydraulic conductivity or 
transmissivity tensor, S is the specific storage or storativity, t 
is time, and r is the volume flow rate of a source or sink; qo is 
a specified flux term and n is the unit outward normal to the 
boundary of the domain. 

Solution of (1) by finite element or finite difference methods 
leads to the following system of first-order differential equa- 
tions (see, for example, Huyakorn and Pinder [1983, p. 130]) 

Mfi + Ku = f (2) 

where u is a vector (length n) of hydraulic heads at nodes of a 
finite element mesh, fi - c3u/t3t, K is the "conductivity" matrix, 
and M is the "capacity" matrix. The vector f includes the 
effects of the source term as well as the Neumann (flow• 
boundary conditions. Both K and M are symmetric and posi- 
tive definite matrices. 

The solution of (2) may be obtained by direct numerical' 
time integration algorithms such as the Crank-Nicolson 
method (see, for example, Huyakorn and Pinder [1983, p. 130]) 

( At ) ( AtK)uS+AtfS+•/2 (3) M+-•-K uS+'= M---•- 
where the superscript s denotes the quantity evaluated at time 
t = (s- 1)At. For implicit time integration methods, there are 
no restrictions on the time step At except those required to 
accurately track the solution given time variations in bound- 
ary conditions and/or sources. 

At each time step, the solution of (3) for u •+• involves the 
solution of a system of equations. The computational effort is 
therefore directly related to the number of unknowns and the 
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number of time steps. For large problems and long time inter- 
vals with relatively short time steps, the computational effort 
and required storage can become burdensome. 

One may reduce the size of the problem by means of 
Rayleigh-Ritz methods. These methods employ the fact that a 
groundwater system described by (2) can be accurately de- 
scribed by a few "modes" much like the dynamic behavior of a 
linear structural system [Bathe, 1982, chapter 10]. The charac- 
teristics of these methods depend on the choice of modes as 
described in the next section. The result of each of these meth- 

ods is twofold. 

1. Equation (2) is transformed to a system of equations 
whose size is equal to the number of modes used. The number 
of modes (rn) is typically much smaller than the original size of 
the problem (n). 

2. The smaller system of equations can be decoupled to 
form a system of linear first-order differential equations which, 
if the boundary conditions and sources are time independent, 
is amenable to an analytical solution. 

The motivation for this investigation is to develop an ef- 
ficient tool for the solution of large groundwater flow prob- 
lems, involving large conductivity contrasts as well as general 
types of initial and boundary conditions. 

REDUCTION METHODS 

The most general type of reduction begins by writing 
u = Zw, where Z is a n x rn (rn < n) matrix whose columns are 
linearly independent. In linear algebraic terms, this constitutes 
a change of basis. Substituting this expression into (2) and 
multiplying by Zr, the transpose of Z, gives 

ZrMZ';v + ZrKZw = Zrf = g (4) 

Consider the nth-order generalized eigenproblem KZn"" 
MZnAn, where Z n is a n x n matrix whose columns are eigen- 
vectors of KZ n = MZnA n and A n is a diagonal matrix of corre- 
sponding eigenvalues. If Z in (4) is a n x rn matrix whose 
columns are eigenvectors of KZ n ---- MZnA n corresponding to 
the rn smallest eigenvalues of KZ n = MZnAn, then Z rMZ- I, 
where I is the rn x rn identity matrix (Z is M orthogonal) and 
Z rKZ- A, where A is a diagonal matrix of the rn smallest 
eigenvalues of KZ n -- MZnA ,. Equation (4) then reduces to an 
uncoupled system of order rn 

ß ;v + Aw = g 

for which an analytical solution is possible if g is time- 
independent 

- gi _ •,) wi(t ) = wioe z,t + • (l _ e l<i<rn (5) 
where w ø - Z rMu ø is a vector of the transformed initial con- 

ditions, u ø. If g is time-dependent, a time stepping algorithm 
must be applied to each equation of the system. Note that 
although one could choose any subset of the n eigenvalues of 
KZ, = MZ,A., the exponentials in (5) show that it is the 
smallest eigenvalues that essentially describe the solution. 

Solution methods of this type were first proposed for the 
corresponding heat transfer problem by Gallagher and Mallett 
[1971]. Shih and Skladany [1983] also presented a similar 
approach and Sahuquillo [1983] developed the method for 

smallest eigenvalues of KZ, = MZnA n are available [Smith et 
al., 1976; Bathe, 1982, chapter 12'] each is iterative in nature 
and may be slow to converge, especially if the matrices K and 
M are large. 

2. Eigenvalue routines are difficult to implement if the 
matrices are so large that out of core matrix operations are to 
be performed. 

3. The number of computer operations required for an 
eigenvalue solution is much greater than that required for the 
standard Crank-Nicolson scheme. 

An alternative reduction method is based on the Lanczos 

process. Rather than find a diagonal matrix of the rn smallest 
eigenvalues, the Lanczos method uses orthogonal transforma- 
tions to compute a tridiagonal matrix T of size rn << n by a 
recursive scheme, that is, each recursion results in one more 
row and column in T. The transformations are used to reduce 

(2) to a small tridiagonal system. 
A physically understandable derivation of the Lanczos pro- 

cess may be developed by noting from (5) that it is the small 
eigenvalues of KZ n = MZnA n which form the significant part 
of the solution. It can be shown that the sequence Yi = 
K-•Myi_ •, i-• • converges to a multiple of the eigenvector 
corresponding to the smallest eigenvalue of KZ n -' MZnA n 
(see, for example, Bathe [ 1982, pp. 610-616']). Consequently, a 
scheme which uses K -• as the governing matrix will yield 
information on the smaller eigenvalues of KZ n -- MZnA n. 

Therefore one may rewrite the rnth order eigenvalue prob- 
lem as 

K- •MZ=ZA- • =ZD 

where D is a diagonal matrix of reciprocal eigenvalues. The 
governing equation of the Lanczos algorithm is derived by 
replacing the diagonal matrix D with a tridiagonal matrix T 

K- •MQ - QT (6) 

where 

•2 
0•2 •3 

The vectors Q = (q•, q2, "', qm) are called Lanczos vectors. 
These vectors aide also linearly independent and M orthogonal 
(i.e., QrMQ- I). The eigenvalues of T give good approxi- 
mations to the smaller eigenvalues of KZ,- MZ,A, [see 
Bathe, 1982, pp. 597-598; Hughes, 1987, pp. 58?-598]. 

THE LANCZOS ALGORITHM 

The validity of (6) is demonstrated by developing an algo- 
rithm which constructs T and Q. Equating columns of both 
sides of (6), one obtains 

//j+•qj+• =r•=K-•Mq•--•iqi--//•qj_• l_<j_<n--1 (7) 

Multiplication of both sides of (7) by %rM and %+ •rM and 
using the M orthogonality requirement for the Lanczos vec- 
tors, results in equations for % and//• + • 

•j = qjrMK- XMqj 
application to groundwater flo TM Problems. The method has 
also been applied to the transport equation [Nickell et al., //J+ • --qJ+lrMrj- (rjrMrj)•/2 
1979; Hwang et al., 1984]. The main difficulties with this ap- Given a Lanczos vector qj and //j, ctj, a new Lanczos vector 
proach are as follows. %+ • and //j+ • is computed; i.e., the algorithm is recursive in 

1. Although efficient eigenvalue routines to compute the rn nature. The choice of a starting vector is largely arbitrary; 
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r(= ro) = K-Xfo 

qo=O 

= 

p = Mqt 

For • = 1,2,... 

r •-- K- Xp _ •Syq•._ x (= ry + c•yq•.) 

c• = q•l•lr = p rr 
r(= r•) *- r- 

p*-Mr 

•$+1 = (rrMr) x/s= (rrp) 

terminate loop if desired 

%'+1 = r//•$+t 

p *- p/•85+1 

End j 

Fig. 1. Lanczos algorithm. 

however, the process should contain basis states that are the 
primary components of interest. In this work, the starting 
vector qx is chosen by solving the steady state problem r 0 = 
K-if and normalizing so that ql = ro/(rorMro) 1/2- This ap- 
proach has the advantage that the Lanczos vectors include the 
steady state solution. 

In practice, the recursion would be terminated after rn << n 
steps. The relatively small tridiagonal matrix T results togeth- 

er with a n x rn matrix Q such that from (6) and the M or- 
thogonality property 

QrMK- 1MQ = T 

A reduced system of equations is derived by letting u = Qw in 
(2). Multiplication of the resulting equation by QrMK- 1 gives 

QTMK- 1MQ•, + QTMQ w = QTMK- if 
(8) 

T•, + w= g 

w is the solution vector of length rn in Lanczos "space." The 
system of equations could be solved by a time integration 
technique (e.g., Crank-Nicolson and the Thomas algorithm). 
The solution u is then found by the matrix-vector multipli- 
cation u = Qw at the desired time steps. The system could also 
be decoupled by means of a further eigenvalue-eigenvector 
decomposition of T. Depending on the relative sizes of n and 
rn, the latter option could involve more operations than the 
repetitive solution of the tridiagonal system of equations re- 
sulting from the time integration of (8). 

Applications of the above version of the Lanczos algorithm 
to structural analysis have been presented by Nour-Ornid and 
Clough [1984]. Nour-Ornid [1987] also presented a similar 
algorithm for heat transfer problems. Dunbar and Woodbury 
[1987] adapted the algorithm to problems involving thermal 
convection. 

One Lanczos step requires a resolution with the coefficient 
matrix K, one matrix-vector multiplication with the matrix M, 
and five inner or scalar-vector products. Note that both the 
matrices K and M need not be in core at the same time. The 

matrix operations can be set up in separate subroutines which 
take advantage of the sparsity and symmetry of the matrices 
and of any available out of core data storage system. The 
entire algorithm for the computation of T and the Lanczos 
vectors is shown in Figure 1. 

An operation count comparison between the standard 
Crank-Nicolson and Lanczos methods is shown in Table 1. 

TABLE 1. Operation Count Comparison 

Item 

For every time step 
matrix-vector multiplication 
scalar multiply and addition 
resolution 

For NT time steps 

For every Lanczos step (vector) 
resolution 

matrix-vector multiplication 
inner or scalar-vector products 

For m Lanczos steps (vectors) 
For every time step (tridiagonal system) 

matrix-vector multiplication 
scalar multiply and addition 
resolution 

Operation's Count 

Crank-Nicolson 

nnb 
2n 

2nn b 

n(3no + 2) 

Lanczos 

2nnb 
nnb 
5n 

n(3n o + 5) 

5m 

15m 

n(3n o + 2)NT 

mn(3n o + 5) 

For NT time steps 15mNT 

Total mn(3no + 5) + 15mNT 

Here n, size of matrices K and M; no, half bandwidth of matrices K and M; and m, number of 
Lanczos vectors. Both methods require the matrix K to be factored («nno 2 operations). 
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Note that both methods require the matrix K to be factored 
which would add another «nnb 2 operations to the total oper- 
ation count of each method. From this comparison it may be 
seen that since the number of Lanczos vectors rn is usually 
much smaller than the size of the finite element system n, the 
computational savings can be quite remarkable. This increase 
in efficiency would be even more pronounced as the size of the 
problem increases. 

A practical application of the eigenvalue method discussed 
previously would probably use a variant of' the Householder 
QR inverse iteration algorithm. The operation count for this 
algorithm is -•n 3 +-•-tn2 + mn 2 + 9mn, where n is the size of 
the eigenproblem KZ n = MZnA,and m is the number of ei- 
genvalues and eigenvectors computed [Bathe, 1982, p. 655]. 
This operations count is much greater than either the Crank- 
Nicolson or the Lanczos process. 

IMPLEMENTATION OF THE LANCZOS ALGORITHM 

Loss of Ortho,tonality 

The main difficulty with the Lanczos algorithm is that each 
Lanczos vector generated is subject to loss of M orthogonality 
with respect to earlier vectors due to roundoff error and can- 
cellation. This condition means that QrMQ % I during the 
Lanczos decomposition. The loss of orthogonality can be 
monitored at each step of the recursion by computing the 
quantity r/j+ •.i = qj+ •TMqi given by [Simon, 1984; Appendix 
A] 

•j+ lJ•j+ 1.i -- •i+ l•j,i+ 1 'Jr- (O•i -- O•j)•j,i -- •j•j-- 1,i 'Jr- •i•j,i-- 1 (9) 

j > 2 1 < i <j- 1 l?j,j = 1 l?j,j_ 1 -- t• 

where e is the unit roundoff error of the computer in use. 

When •/j+ •.i = x/•, loss of orthogonality has occurred and the 
newly generated Lanczos vector qj+• is orthogonalized 
against all preceding vectors using the Gram-Schmidt pro- 
cedure. Applications of this approach, which is known as par- 
tial reorthogonalization, appear in the works by Nour-Omid 
and Clou•Ih [1984] and Alvaro et al. [1987]. The imple- 
mentation of partial reorthogonalization used in this work are 
modified versions of subroutines ORTBND and PURGE 

which appear in the work by Hu•Ihes [1987, pp. 614-616]. 
There are other means by which orthogonality can be main- 
tained and it is a subject of much research [Golub et al., 1972; 
Pai•Ie, 1976; Parlett and Scott, 1979; Cullum and Willou•Ihby, 
1985]. 

Experience to date with applications to groundwater flow 
problems has shown that partial reorthogonalization is usu- 
ally required after two of every 10 Lanczos steps. The pro- 
cedure is relatively fast and adds little time to the Lanczos 
decomposition process. 

Initial and Boundary Conditions 

Typically, initial conditions are a significant part of the 
solution and several Lanczos vectors may be required to cap- 
ture their frequency content. They can be eliminated from the 
solution by writing u in (2) as the sum of the initial conditions 
u ø, plus a transient v(t) with zero initial condition 

M• + Kv = f -- Ku ø (10) 

The right-hand side vector f is time-dependent if boundary 
conditions are time-dependent and/or wells have a non- 
constant pumping history. Equation (8) suggests that in such a 
case the vector g = QrMK-xf would have to be evaluated at 
each time step during the solution of the small tridiagonal 
system. This calculation would completely negate any benefits 
in efficiency afforded by the small system. However, it may be 
avoided by the following,procedure. 

In finite element analysis, it is common practice to eliminate 
equations corresponding to known boundary conditions. This 
is accomplished by partitioning (10) as follows: 

where the subscript b denotes boundary nodes of the finite 
element mesh, the subscript r denotes the remaining nodes, 
and the subscript rb denotes the interaction between boundary 
and the remaining nodes. Rewriting the first equation for the 
unknown values of v,, one obtains 

Equation (11) is the equation solved in an actual problem. It is 
of order n. Each of the components of the right-hand side is 
potentially time-dependent which, as stated previously, pre- 
sents a problem for solution by the Lanczos algorithm. How- 
ever, this problem can be circumvented by writing each com- 
ponent as the product of a scalar function of time and a 
constant vector. This method is detailed below. 

The vector f• contains the effects of wells and flow boundary 
conditions. If the scalar function pj(t) denotes the pumping 
history of the jth well, 1 < j < N W, and the scalar function 
q•(t) denotes the time history of the flux boundary condition, 
then f• can be written as 

NW 

f• = • fjpj(t) + q•(t)b 
j=l 

where fj is a vector of length n composed of zeros with ones at 
the equations corresponding to the nodes defining each well, 
and b is a vector of length n composed of zeros with nonzero 
coefficients at equations corresponding to nodes on the 
boundary. Values of these coefficients depend on the type of 
finite elements used [see Huyakorn and Pinder, 1983, chapter 
4]. Similarly, the vectors K,bu• and M• can be written as 

K,•lub(t) 

M,•16•(t) 

where 1 is a vector of length equal to the number of nodes on 
the boundary and is composed of ones. The scalar function 
v•(t) = u•(t)- u ø, where ub(t) and u ø are defined in (1). The 
vector g in (8) is therefore given by 

NW 

g = • pj(t)sj- q•(t)h• - u•(t)h 2 - t3•(t)h 3 - he (12) 
j=I 

u(t) = u ø + v(t) -- wher e the S• and h i are constant vector s give by v(0) 0 n 

Substituting the above into (2) and noting that Mfi ø = 0, since sj = QrM,K,-xfj 
u ø is not a function of time, one obtains a differential equation 
for the transient v h x = QTM,.,.K,.,. - • b 
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h2 = QrMrrKrr - t Kr bl 

h a = QrM,K,- tMrbl 

h 4 = 

Thus in general, a time-dependent right-hand side requires 
only a few extra vectors of length m to be stored. This formu- 
lation allows a problem with a given geometry but different 
boundary and initial conditions and/or sources to be solved 
without having to repeat the Lanczos decomposition. 

Stopping Criterion 

It is desirable to have some means of terminating the recur- 
sion when a su•cient number of Lanczos vectors has been 

computed. Such a criterion may be derived by using the con- 
cept of "participation factors." The participation factor p• of 
the jth Lanczos vector is the component of the right-hand side 
vector f which contributes to q•: 

p• = q•rf 

In linear algebraic terms, if f is orthogonal to q•, p• = 0. If f is 
time-dependent, then p• will be time-dependent. However, in 
the previous subsection, it was shown that f could be written 
as the product of a scalar function of time and a constant 
vector, say, f = &(t)a. Since the Lanczos decomposition applies 
only to the spatial part of the problem, it is reasonable to 
redefine the participation factor as 

p• = q•ra 

which is time-independent. A recursive relationship may be 
derived (see Appendix B) for p•+ •. It is 

p•=q•ra p:=q:ra j•2 
(13) 

The quantity IP•+ a/Pa I (or possibly another ratio between par- 
ticipation factors) is computed at each Lanczos step so that 
when it falls below a given tolerance, the Lanczos recursion is 
terminated. 

If more than one source is present and/or the boundary 
conditions are time dependent, f becomes a sum of terms like 
&(t)a (see equation (12)). In this case, the definition of the 
participation factor becomes complicated and another termi- 
nation criterion would have to be employed. An example of 
one such criterion is given by Nour-Omid et al. •1983J and 
Nour-Omid •1987]. In the examples to be shown the partici- 
pation factor given by (13) is used, since only one scalar time 
function is present in each example. 

TABLE 2. Homogeneous Theis Model Parameters 

Parameter Value 

Number of nodes 441 
Number of elements 400 
Number of materials 1 

Transmissivity T 300 m2/day 
Storativity S 0.002 
Initial condition u(x, 0) 10 m 
Time step At 0.1 day 
Number of time steps 250 
Well pumping rate -2000 m3/day 

1 2 KM 

Fig. 2. Homogeneous Theis model, finite element mesh. Only one 
quarter of the total flow field is shown. 

Computer Implementation 

The algorithm is set up in two stages. The first stage com- 
putes the matrices K and M and the right-hand side vector f. 
The matrix K is factored by the Cholesky decomposition 
method and the constant vectors in (12) are computed. The 
Lanczos decomposition is performed. The Lanczos vectors Q, 
g vectors, and the tridiagonal matrix T are then stored on a 
disk. This data is all that is necessary to solve a problem. 

The second stage solves the small tridiagonal system of first- 
order differential equations and computes the solution to the 
original problem. Separate function subroutines define the 
pumping histories of wells and the boundary and initial con- 
ditions. In this way, quite generalized problems can be solved. 

EXAMPLES 

TO investigate the robustness of the proposed approach the 
Lanczos technique is applied to three areal confined aquifer 
problems in which the computed hydraulic head field is com- 
pared to the results computed from the Crank-Nicolson 
scheme. Spatial discretization in each example is done by 
means of bilinear isoparametric finite elements [Bathe, 1982, 
chapter 5]. Note that triangular elements are four noded ele- 
ments with one node repeated. 

The first example is a homogeneous and isotropic aquifer 
with a well at the center (the Theis problem). The problem is 
geometrically symmetric, so only one quarter of the flow field 
is presented. The model parameters are given in Table 2. 
Figure 2 shows the grid used. Note that the grid spacing near 
the well is not optimal in terms of solution accuracy. However, 
since the Crank-Nicolson scheme also suffers from the same 

restrictions, the comparison is meaningful. 
For comparison purposes we define a percentage error 

term: 

(u,• - 
e=max x 100 l_<i_<n 

i UCN 

where uc• is the hydraulic head computed from the Crank- 
Nicolson model, ur is the hydraulic head computed from the 
Lanczos method, and n is the number of nodes in the system, 
excluding Dirichlet nodes (i.e., the number of equations in 
equation (11)). 
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4.00 - 

3.00 

2.00 

1.00 

0.00 I I I [ [ [ I I [' T T 'l' 1' f T 

0.0 5.b 10'.0 '15.0 •0'.0 
LANCZOS VECTORS 

Fig. 3. Plot of log IP•+ x/Px I versus number of Lanczos vectors for 
example problems. Triangles represent the homogeneous Theis prob- 
lem' asterisks, the inhomogeneous problem' crosses, the synthetic 
aquifer problem. 

The results of the comparison are very encouraging. For a 
maximum percentage error of 2.78 x 10 -3 at t- 2.5 days, 
only 10 Lanczos vectors are required. The maximum error 
occurs at the well. The plot of participation factors versus the 
number of Lanczos vectors is shown in Figure 3 (triangles). 
The ratio log IP•+ •/P• I does not appear to give a unique point 
at which to terminate the Lanczos recursion. No attempt was 
made to relate this ratio to a particular accuracy. 

An execution time comparison that does not include input 
and output operations is presented in Table 3. As shown, the 
Lanczos algorithm is approximately 8 times faster than the 
Crank-Nicolson scheme for this case. For a larger problem 
with many time steps the solution time comparison between 
the two methods is a more important statistic. According to 
Table 1 for the homogeneous Theis model with n = 400 
(boundary conditions are eliminated from the system), nt, - 22 
and m--- 10 Lanczos vectors used, the operation count ratio 
for the solution step is 

n(3nt, + 2) 400(3 x 22 + 2) 27,200 
15m 15 x 10 150 

181 

TABLE 3. Time Comparison 

Item 

Crank-Nicolson 

Formation of matrices (n = 400) 
Matrix factorization 

Solution (At=0.1 days, 250 steps) 
Total 

Lanczos 

Formation of matrices (n = 400) 
Matrix factorization 

Lanczos decomposition (m = 10) 31.39 
Solution (At = 0.1 days, 250 steps) 2.91 
Total 52.97 

Homogeneous Theis model, COMPAQ 386/387 (16 MHz), Lahey 
FORTRAN compiler. 

TABLE 4. Inhomogeneous Theis Model Parameters 

Parameter Values 

Number of nodes 441 
Number of elements 400 
Number of materials 2 

Transmissivity T1 300 m2/day 
Storativity S1 0.002 
Transmissivity T 2 3 m2/day 
Storativitiy S2 0.002 
Initial condition u(x, 0) 10 m 
Time step At 0.1 day 
Number of time steps 250 
Well pumping rate -2000 m3/day 

From Table 3 the time required for solution by the Crank- 
Nicolson method is 403.3 s, and the time required for solution 
by the Lanczos method is 2.9 s, giving a ratio of approxi- 
mately 138, in good agreement with the ratio given by the 
operation count. The discrepancy is likely due to overheads 
caused by subroutine calls and vector copying. 

Another series of computations are carried out on a hetero- 
geneous problem. The model parameters are given in Table 4 
and the grid used is shown in Figure 4. T 2 is the transmissivity 
adjacent to the well. Note the 100fold ratio in hydraulic con- 
ductivity contrast. The resulting drawdown field is smooth, 
except for steep gradients near the well. Ten Lanczos vectors 
are required to model these gradients giving a maximum per- 
centage error at t - 2.5 days of 4.38 x 10 -3 (at the well), an 
error comparable to that of the homogeneous model. 

The plot of participation factors versus the number of 
Lanczos vectors is shown in Figure 3 (asterisks). The interest- 
ing aspect about this plot is that it exhibits a more rapid 
decline than the corresponding plot for the homogeneous 
model. This indicates that the steep gradients near the well 
can be described by relatively few Lanczos vectors. 

A final example is shown on Figure 5 and is similar to a 
synthetic aquifer example given in Townley and Wilson 
[1980]. This example is chosen to include several of the more 
commonly occurring complexities in groundwater analysis. 
The example includes Dirichlet boundary conditions and a 
time-dependent source. The aquifer is heterogeneous and an- 

///// ..... 

Time(s) 

11.97 - 

6.70 

403.31 

421.98 
11.97 
6.70 

Fig. 4. Inhomogeneous Theis model, finite element mesh. Only one 
quarter of the total flow field is shown. 
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Fig. 5. Synthetic aquifer example rafter Townley and Wilson, 1980]. 
Boundary conditions and hydraulic parameters shown. 

isotropic with respect to hydraulic conductivity. The model 
parameters are given in Table 5. Figure 6 shows the finite 
element grid used. 

For a maximum percentage error of 1.34 x 10-3 at t = 140 
days, only 10 Lanczos vectors are required. Figure 3 (crosses) 
shows the plot of participation factors versus the number of 
Lanczos vectors. This simulation shows that the proposed nu- 
merical scheme is efficient and accurate and could be applied 
to virtually any groundwater flow model. 

CONCLUSIONS 

The Lanczos algorithm reduces the finite element matrix 
differential equations of size n to a much smaller tridiagonal 
system of size rn by means of orthogonal matrix transforma- 
tions. The algorithm is recursive in nature, each step of the 
recursion giving an additional Lanczos vector and an ad- 
ditional row and column of the tridiagonal matrix. The re- 
sulting small system can be solved by a standard tridiagonal 
solution algorithm. A matrix-vector multiplication then gives 
the desired solution. 

TABLE 5. Synthetic Aquifer Model Parameters 

Parameter Value 

Number of nodes 
Number of elements 
Number of materials 

Conductivity Kxxl 
Conductivity Kyy 1 
Conductivity •xx2 
Conductivity •vy2 
Conductivity •xx3 
Conductivity Kyy 3 
Aquifer thickness 
Storativity of all materials 
Initial condition u(x, 0) 
Time step At 
Number of time steps 
Well pumping rate, p(t) 

p(t)[m3/day] = - 20,000 
p( t)[m3/da y] = -5,000 
p(t)[m3/day] = 0 

0--< t-<50days 
50 -< t -< 100 days 

t > 100 days 

93 
81 

3 

300 m/day 
300 m/day 
150 m/day 
150 m/day 

2000 m/day 
500 m/day 

20 m 

0.005 
60 m 

1 day 
140 

Constant head conditions of 60 m are shown in Figure 5. 

3000- 

F NITE ELEMENT GRD 
SYNTHETIC AQUIFER 

•-•2000 

)-- 1 ooo 

/ 

/ %% 
[ 

0 i I i 
0 0 1000.0 200•).0 

X (meters) 
Fig. 6. Synthetic aquifer example, finite element mesh. 

The main advantage of the method stems from the fact that 
whereas resolution time for the Crank-Nicolson method is 

proportional to n x %, where nb is the half bandwidth of the 
matrices K and M, resolution of the tridiagonal system is only 
proportional to m. Consequently, the decrease in solution 
effort is pronounced, particularly on large problems. 

The algorithm was used to accurately simulate the draw- 
down of synthetic two-dimensional aquifers, including ones 
with substantial hydraulic conductivity contrasts. It was found 
that only a small number of Lanczos vectors was required to 
accurately match the drawdown computed by a typical 
Crank-Nicolson scheme applied to the original system of 
equations. Thus the method affords an efficient means of solv- 
ing large problems, particularly when time durations are long. 

The concept of participation factors can be used to deter- 
mine when to terminate the Lanczos recursion, although it 
may be difficult to detect the termination point automatically. 
In addition, in the case of multiple wells or time-dependent 
boundary conditions, the participation factor becomes difficult 
to define. Further tests are required to evaluate participation 
factors or other criteria for determining when to terminate the 
recursion. 

Although other complexities such as multiple wells and 
time-dependent flux boundary conditions were not included in 
the examples, these should not pose a problem using the for- 
mulation described herein. It appears that the method could 
be applied to any realistic groundwater flow model. Future 
work is intended to verify this. 

APPENDIX A' DERIVATION OF EQUATION (9) 

For the Lanczos steps i and j, (7) is 

fij+ xqj+ x = K- XMqj -- o•jqj -- fijqj_ ! (A1) 

fii +xqi +x = K-•Mq• -- •iq• -- fiiq•- • (A2) 

Multiplying (A1) by q•rM and (A2) by qjrM, subtracting and 
letting rh,,t = q•,rMqt gives (9)' 

fij+ •rlj+ •,•=fii+ xrlj, i+ • +(o•i--%)rlj,i--fijrlj_ •,•+ fi•rlj,•_ • (A3) 

j > 2 l_< i_< j--1 rl i,]= 1 rl i,i_ x =s 
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where e is the unit roundoff error of the computer in use. Note 
that rh,,t = rh,•, and r/i,o = 0. 

APPENDIX B: DERIVATION OF EQUATION (13) 

Multiplication of (7) by the constant vector a gives 

arr• = ark - •Mq•- •arq•- fi•arq•_ • (B1) 

Since r o = K-•a = •q•, a = •Kq• so that 

a•rK - •Mq• = fi•q•rKK- •Mq• = 0 j > 1 

From (8), r• = fi•+ •q•+ 1- Therefore (B1) becomes 

laq+ 1 = -%a•% - 1 

or in terms of participation factors p• = 

•+ •+ • = -%• - •_ 

from which (13) is obtained. 
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