1	Uniquely Satisfied: Exploring Cyclist Satisfaction		
2			
3			
4			
5	Devon Paige Willis		
6	Research Assistant		
7	School of Urban Planning		
8	McGill University		
9	Suite 400, 815 Sherbrooke St. W.		
10	Montréal, Québec, H3A 2K6		
11	Canada		
12	Tel.: 514-398-4058		
13	Fax: 514-398-8376		
14	E-mail: devon.willis@mail.mcgill.ca		
15			
16	Kevin Manaugh		
17	PhD Candidate		
18	School of Urban Planning		
19	McGill University		
20	Suite 400, 815 Sherbrooke St. W.		
21	Montréal, Québec, H3A 2K6		
22	Canada		
23	Tel.: 514-398-4058		
24	Fax: 514-398-8376		
25	E-mail: kevin.manaugh@mail.mcgill.ca		
26			
27	Ahmed El-Geneidy		
28	Associate Professor		
29	School of Urban Planning		
30	McGill University		
31	Suite 400, 815 Sherbrooke St. W.		
32	Montréal, Québec, H3A 2K6		
33	Canada		
34	Tel.: 514-398-4058		
35	Fax: 514-398-8376		
36	E-mail: ahmedelgeneidy@mcgill.ca		
37			
38	Word Count: 5,005 words + 4 Figures and 1 Table		
39			
40			
41	For Citation please use: Willis, D., Manaugh, K., & El-Geneidy, A. (2013). Uniquely satisfied: Exploring		

42 cyclists trip satisfaction. *Transportation Research Part F: Traffic Psychology and Behaviour,* 18, 136-147.

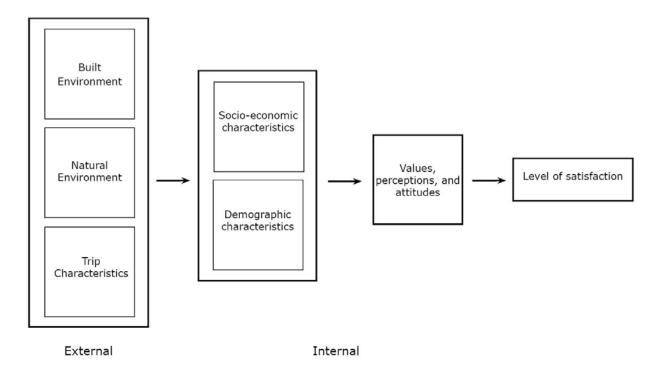
Uniquely Satisfied: Exploring Cyclist Trip Satisfaction

2 3

4 ABSTRACT:

Despite increasing interest and focus on cycling planning and infrastructure, many research 5 6 and policy frameworks overlook two important aspects of cycling: motivations and trip satisfaction. While many studies have found that cyclists are more satisfied with their 7 commute than other mode users, few have explored why. We hypothesize that different types 8 9 of cyclists-defined by their reasons for cycling and seasonal mode patterns-will derive different levels of satisfaction from cycling. Therefore, this study attempts to 1) examine the 10 effect of built environment characteristics (e.g. intersection density, land use), trip 11 characteristics (e.g. distance and slope) and season on cycling trip satisfaction, 2) group 12 13 respondents into 'cyclist types' based on a cluster analysis of motivations for cycling and their alternate (winter) mode, and 3) understand how these personal characteristics moderate the 14 relationship between built environment and trip characteristics and expressed trip 15 16 satisfaction. This is accomplished using a university-wide travel survey administered in winter 2011, in which commutes to McGill University were asked to report their last trip to 17 McGill. If the person uses a different mode during the fall he was asked to report it as well. 18 19 Individuals were also asked to report their level of satisfaction with these trips. Surprisingly, the expected relationship between distance, slope and objectively measured elements of the 20 21 built environment and trip satisfaction was not found. Similar to previous research, cyclists 22 are found to be more satisfied with their commute than other mode users. Year-round cyclists are less satisfied with their travel than those who only cycle in good weather; while "Cycling" 23 Enthusiasts" are significantly more satisfied than most cyclists motivated by convenience. 24 25 This work emphasizes the need to look beyond the built environment and trip characteristics to better understand cyclist trip satisfaction. 26

KEYWORDS: Cycling, bikeability, trip satisfaction, motivation, active transportation, built
 environment


29

1 1. INTRODUCTION

Many studies have found that cyclists are more satisfied with their commute than other mode 2 users (Turcotte 2005; London 2011). However, the reason for this high level of satisfaction is 3 rarely explored. Much of the literature on cycling concerns motivators and deterrents to cycling. 4 5 These studies have found that built-environment (e.g. land use, density, connectivity, street network) and personal (e.g. motivations, attitudes, perceptions) characteristics affect the 6 likelihood to cycle for transportation (Timperio, Ball et al. 2006; Titze, Stronegger et al. 2007; 7 8 Ogilvie, Mitchell et al. 2008; Robertson-Wilson, Leatherdale et al. 2008; Titze, Stronegger et al. 2008; Winters, Brauer et al. 2010). Fewer studies, however, have explored how these same 9 elements may impact cyclist satisfaction. Many studies, especially those based on one-day travel 10 surveys or cordon counts (without a corresponding questionnaire), may not be able to distinguish 11 long-term, seasonal behavior. This study stresses that people, especially cyclists in our study area 12 of Montreal, Canada use various modes throughout the year. 13

14 We hypothesize that the two most important factors in differentiating among cyclist types are a cyclist's "bad weather" or winter mode and their reasons for choosing to cycle (Jensen 15 1999). Further, we hypothesize that a person who cycles simply because public transit is not a 16 convenient or affordable option will experience her trip differently than a person who is actively 17 seeking exercise or trying to engage in environmentally-friendly behavior. An aspiring 18 environmentalist who is "forced" to drive in winter due to distance or lack of transit service may 19 20 view her fall cycling trip quite differently than a person who walks or uses public transit in the winter. In addition, we hypothesize that different types of cyclists will respond differently to 21 commonly-cited elements of the built environment such as bicycle lanes and land use mix. For 22 example, more experienced cyclists may be much less affected by the presence or type of bicycle 23 lanes. Many studies of active transportation assume-at least implicitly-that these elements 24 uniformly affect both mode choice and traveler satisfaction, however recent work (Waterman 25 2005; Manaugh and El-Geneidy 2011), has found significant variation in how elements of 26 27 neighbourhood walkability affect members of different types of household and how reasons that people walk moderate perception and satisfaction with walking trips. 28

29 This research framework expands on the work of Alfonzo (2005) who identified a 30 "hierarchy of walking needs". Alfonzo's social-ecological framework sheds much-needed light 31 on how personal, household, and cultural factors interact with objective physical elements of the natural and built environment to lead to travel choices. The general research framework is 32 33 presented in Figure 1 showing that physical characteristics of a cycling trip (which include distance, slope, land uses, density, and connectivity), do not lead directly to trip satisfaction but 34 are filtered through socio-economic factors (age, income, gender). Finally, and perhaps most 35 importantly, personal values, beliefs, and reasons to cycle will ultimately moderate the derived 36 37 satisfaction from a cycling trip.

2 FIGURE 1: Research Framework

With these issues in mind, this research aims to address three main questions: 1) Do established correlates of bicycle commuting (built environment, distance, slope) also influence cyclist trip satisfaction? 2) What types of cyclists can be identified based on motivations and seasonal mode use? And 3) How do cyclists' personal characteristics (winter mode, motivations) affect trip satisfaction? As mentioned above, we hypothesize that the reasons that one cycles may have a greater impact than elements of built environment and distance.

9 The next section will provide a brief review of relevant literature, followed by a 10 description of the survey instrument and methodology. This will be followed by our findings and 11 discussion, finally, directions for future research will be presented.

12

13 2. LITERATURE REVIEW

The literature on cyclist trip satisfaction is generally limited. It concentrates on surveys 14 describing cyclist satisfaction without analyzing this satisfaction (Turcotte 2005; London 2011). 15 The literature of types of cyclists is bigger, segmenting cyclists according to the frequency of 16 their bicycle trips, trip purpose, stereotypes about cyclists and cyclists' motivations and attitudes 17 (Jensen 1999; Bergstrom and Magnusson 2003; Anable 2005; Gatersleben and Haddad 2010; 18 Larsen and El-Geneidy 2011). This brief literature review covers four broad topics: satisfaction 19 in general; elements that have been found to influence satisfaction with cycling trips (as well as 20 other modes); the important non-utilitarian benefits of cycling and travel in general; and, finally, 21 types of cyclists. 22

1 2.1 Measuring Satisfaction

Perhaps the most important theory put forth to explain customer satisfaction has been the 2 expectancy disconfirmation model which defines satisfaction as a comparison of pleasant past-3 purchasing experience (Oliver, Balakrishnan et al. 1994; Oliver 2010). Along with Fornell's 4 satisfaction model, the expectancy disconfirmation model has been used in econometric analysis 5 of customer satisfaction. This is often done with structural equation models linking different 6 customer satisfaction measures (e.g. expectations, loyalty, complaints, etc.) with predefined 7 formulas (Johnson and Fornell 1991; Fornell 1995). Other types of satisfaction measurement 8 9 approaches include statistical and data analysis techniques, the quality approach method, and consumer behavioral analysis (Grigoroudis and Siskos 2009). 10

While traditional models of customer satisfaction often presume the customer's 11 12 psychology to be an essentially unknowable element acting on the satisfaction outcome, more involved behavioural models have attempted to go beyond this "black box" formulation. By 13 drawing on key concepts from work on consumer satisfaction in the fields of marketing and 14 psychology, travel behavior researchers have expanded the understanding of how expectation, 15 16 experience, and habit may influence satisfaction. Notable research, for example, has examined the distinction between positive and negative effect, or the satisfaction with a discrete transaction 17 with some transportation service, and cumulative satisfaction with transportation services over a 18 19 longer period of time (Friman and Gärling 2001).

20 2.2 Satisfaction with travel

21 In the realm of satisfaction with transit service, past research has explored the importance 22 of service reliability, frequency, comfort and short commutes-attributes which adhere to the assumptions of utility maximization of public transit users (Weinstein 2000; Tyrinopoulos and 23 Antoniou 2008; Cantwell, Caulfield et al. 2009). Variables such as cleanliness, privacy, safety, 24 25 convenience, stress, social interaction and scenery have also been found to contribute to transportation-specific satisfaction (Stradling, Anable et al. 2007). These "non-instrumental" 26 variables have been seen to affect both mode choice and satisfaction levels. While many studies 27 have used aesthetic elements of the cycling environment to predict mode choice, few have 28 attempted to measure cycling satisfaction with the same factors. 29

Several studies have found that cyclists are more satisfied than motorists and public transit 30 riders with their most recent trip. The Travel in London Report 4 (London 2011) found that 31 cyclists were 78% satisfied, slightly less than walkers (81%), but more than transit riders (76%) 32 and motorists (72%). Meanwhile, cyclists were the least satisfied with the transportation network 33 and road conditions: 67% were satisfied with the operation of the Transport for London Road 34 Network and 49% were satisfied with the streets and pavements. A study in Canada had similar 35 findings. Canada's General Social Survey (Turcotte 2005) found that cyclists were the most 36 numerous in liking or greatly liking their commute (57% as compared to 47% of walkers, 23% of 37 those who use transit and automobile, 28% of transit riders and 38% of drivers). Neither of these 38 studies suggests why cyclists may be more satisfied than other road users. Gatersleben and 39 40 Uzzell (2007) looked at perceptions of daily commutes for different mode users. Building on work by Russell (Russell 1980; Russell 2003) they divided modes according to whether they are 41 arousing (or not arousing) and pleasant (or unpleasant) and categorized cycling as both pleasant 42 and arousing. They found that cyclists perceive the most danger and the least delays, as well as 43 44 some inconvenience, largely due to other road users. They also found cyclists enjoy the scenery

along their commute, the enjoyment of the activity itself and respond in the same numbers as
 drivers that they value the flexibility of cycling. Further, cyclists had the shortest commute time

3 of all mode users.

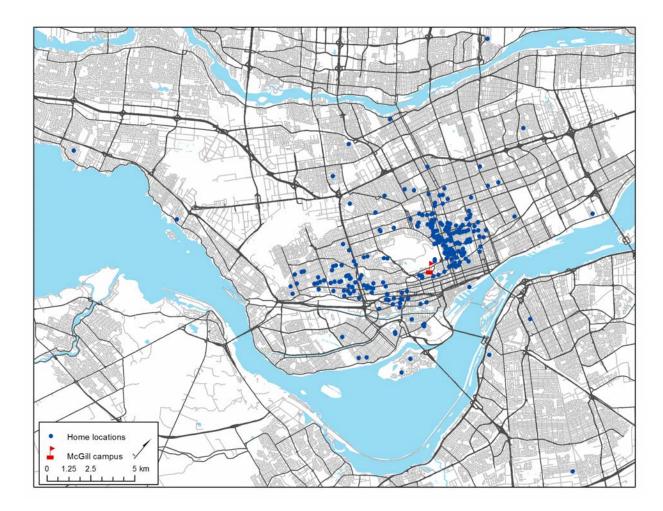
4 2.3 Non-utilitarian benefits of travel

In an important study, Ory and Mokhtarian explore the many needs met by daily travel 5 beyond mobility and access to desired locations. These include adventure and variety-seeking, 6 status, curiosity, exposure to scenery and fresh air, escape, and exercise (Ory and Mokhtarian 7 2005). In recent years, researchers have begun challenging traditional applications of utility-8 9 maximization modeling which tended to assume that distance, time, and slope (for active transportation) are always "disutilities" that rational travelers wish to minimize. Until recently 10 many research approaches based on random utility modeling treated personal values and beliefs 11 as essentially unknowable and deliberately left these aspects in the error term in mode choice and 12 other statistical models. Paez & Whalen (2010) find active users often desire longer commutes. 13 Other research explores the idea that "high effort-liked activities" bring more subjective 14 satisfaction than "low-effort-liked activities" (Waterman 2005). How these may relate 15 particularly to cyclists will be explored in the discussion section. 16

17 **2.4 Types of cyclists**

18 Several studies have tried to distinguish cyclists as mode users. Some studies have divided cyclists into different groups, including recreational cyclists and commuter cyclists, and 19 groups according to their frequency of cycling (occasionally, regularly, frequently) (Larsen and 20 21 El-Geneidy 2011). Recent papers have discussed types of cyclists based on stereotypes (Gatersleben and Haddad 2010). Larsen et al. (2011) found that different types of cyclists travel 22 23 longer distances than others and prefer different types of bicycle facilities. For instance, cyclists 24 who ride frequently in all conditions are 69% less likely to use a bicycle facility. Jensen (1999) distinguished three groups of cyclists, combining them with transit users: "The cyclists/public 25 transport users of heart", "The cyclists/public transport users of convenience" and "The 26 27 cyclists/public transport users of necessity". Cyclists of heart choose not to own a car and prefer the exercise, scenery and experience of cycling while cyclists of convenience cycle because it is 28 29 simply the most convenient option and cyclists of necessity cycle because they cannot afford to drive. Gatersleben and Haddad (2010) measured how cyclists and non-cyclists perceived a 30 typical cyclist and found four stereotypes of cyclists: the "responsible cyclist", the "commuter 31 cyclist", the "lifestyle cyclist" and the "hippy-go lucky cyclist". Anable (2005) grouped people 32 into different groups according to their transportation habits and attitudes. The two non-car 33 owning groups were "car-less crusaders" and "reluctant riders", although one group of car-34 owners, "aspiring environmentalists" had the most positive attitudes towards cyclists. Finally, 35 one study grouped cyclists according to their travel season; Bergstrom and Magnusson (2003) 36 proposed four categories of cyclists: winter cyclists, summer-only cyclists, infrequent cyclists 37 and never cyclists. 38

39 3 DATA AND METHODS


40 **3.1 Survey Design and Dissemination: The McGill Travel Survey**

The data is drawn from the McGill Travel Survey, conducted in March and April 2011 in 1 2 Montreal, Quebec, Canada. It targeted McGill students, faculty and staff. The survey collected travel information, including home location-via postal code or closest intersection-and 3 4 McGill campus destination (lower, middle, or upper campus). The survey asked individuals for their primary mode and their first and second reasons for choosing this mode. It further asked 5 participants to describe the details of their last commute to McGill. Since the survey was 6 conducted in the Winter seasonality was taken into consideration through asking the respondents 7 if they would do the same trip on a "nice fall day", and if not, to describe this trip as well. In 8 order to capture trip satisfaction respondents were asked the following question, "How would 9 you rate your satisfaction with this trip to McGill?" They were given the option of very 10 unsatisfied, unsatisfied, neutral, satisfied or very satisfied. The satisfaction question was asked 11 twice for individuals who reported a different mode during the Fall day compared to the winter 12 one so we can capture the commuters satisfaction with both trips. Therefore, the satisfaction 13 attached to each described commute is known¹. In addition, socio-economic and demographic 14 characteristics, such as age, gender, work or student status, car and bicycle ownership, were 15 collected. 16

17 The survey was sent to 19,662 members of the McGill community via e-mail, providing individuals with a link to the online survey. The survey was sent to all faculty and staff with a 18 McGill e-mail address (8,493), and those who did not have a McGill e-mail address were 19 20 solicited with a postcard sent to their campus work location. Due to concerns with overburdening students with survey requests, the survey could only be sent out to 11,000 21 students. This resulted in an oversampling of employees. The survey remained active for 35 22 days. A total of 5,016 responses were received, yielding a response rate of 25.5%. Following a 23 series of data cleaning operations, through which incomplete and nonsensical survey responses 24 were removed, 4,692 survey responses remained. Of the total sample, 268 (under 6%) were 25 26 cyclists; 58 were year-long cyclists and 210 were seasonal cyclists (meaning they only indicated 27 a fall cycling trip).

The location of the McGill University campus as well as the home location of all cyclists 28 is shown in Figure 2. The McGill campus is centrally-located near Montreal's Central Business 29 District and served by two separated cycling paths. In addition, the campus is well-served by bus 30 and subway service and is a short walk from a commuter train station. Perhaps the two most 31 32 important natural elements of the city in terms of overall "bikeability" are its notoriously long 33 and snowy winters and the mountain from which the city derives its name. Mont Royal can be 34 seen as the predominantly open area just north of campus. Trips to (and from) campus can be quite steep depending on home location. 35

¹ Two trips were collected: the respondents' last trip to campus and the trip they would make on a "nice fall day". This additional trip is intended to capture respondents' mode in warm (non-winter) weather. Only "Winter" and "Fall" trips were collected both to limit survey response time and to guarantee greatly consistency among students, faculty, and staff, many of whom would not commute in the summer. In addition, the semesters at McGill are called "Fall" and "Winter". Therefore, it makes more sense to respondents to consider these two seasons for commuting to campus. Further, due to the length of Montreal winters, it is appropriate to refer to the months of March and early April as "winter".

2 FIGURE 2 Location of campus and home locations of all cyclists.

3 3.2 Measuring "Bikeability"

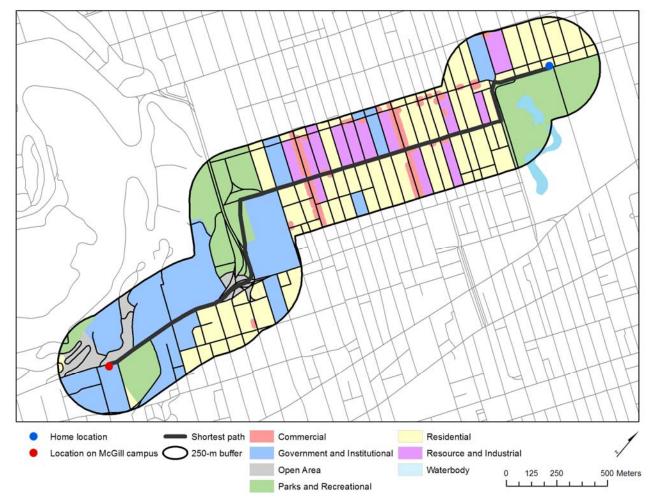
4 The literature on cycling for transportation has found that many elements of the built

5 environment, such as the proportion of local roads and bicycle paths; land uses, including

6 commercial, open area, residential, park and recreation and water; and both population and

7 intersection densities, impact an individual's likelihood to cycle (Cervero and Kockelman 1997;

8 Nelson and Allen 1997; Handy, Boarnet et al. 2002; Cervero and Duncan 2003; Dill and Carr


9 2003; Cervero, Sarmiento et al. 2009; Dill 2009; Berrigan, Pickle et al. 2010; Dill, Handy et al.

10 2010; Lee, Jennings et al. 2010; Winters, Brauer et al. 2010; Buehler and Pucher 2011; Forsyth

and Krizek 2011). This is sometimes referred to as "bikeability" (Winters and Cooper 2008;

- 12 McNeil 2011). Thus, the higher the proportion of local roads and bicycle routes, residential, park
- 13 and recreation and water land use and population and intersection density, the more bikeable a 14 route becomes. The authors hypothesized that if the built environment has an impact on the
- route becomes. The authors hypothesized that if the built environment has an impact on thedecision to cycle for transportation, it would also have an impact on trip satisfaction. Therefore,
- the bikeability of cyclists' routes was measured in order to determine the impact of the built
- 17 environment on satisfaction.
- 18

- 1 The measure of bikeability was focused around the route from home locations to campus.
- 2 Our data contained the postal code or nearest intersection to each respondent's residence but did
- 3 not contain the actual routes of cyclists. For this reason, the shortest route between cyclists'
- 4 origin and destination using Network Analyst was used. As cyclists tend to deviate from the
- 5 shortest path (Aultman-Hall, Hall et al. 1997; Shafizadeh and Niemeier 1997; M.A. and Bhat
- 6 2003; Krizek 2006; Tilahun, Levinson et al. 2007; Larsen and El-Geneidy 2011), a 250-meter
- buffer around each route was created. A similar methodology was adopted by Winters et al.
 (2010). The 250m was chosen in order to include at least one street on either side of the shortest
- path. Within each buffer, proportions of different land uses, intersection density, population
- 10 density and proportion of different types of roads and bicycle paths, were measured, as was the
- distance of the shortest line. This can be seen in Figure 3, showing the home and campus
- 12 destination of a respondent (Land use is shown for illustrative purposes).

14 FIGURE 3 Illustration of shortest path and 250m buffer.

- 15 The slope of each cyclist's route was measured using the RunningSlope Script, which divides
- 16 each route into 100-m segments and outputs the slope. The measure of slope was the proportion
- 17 of 100-m line segments with slope greater than 5%.

2 4 FINDINGS

1

3 4.1 Preliminary Analysis: Cyclists are uniquely satisfied

Cyclists in the McGill Travel Survey were significantly more satisfied (combination of
"satisfied" and "very satisfied" responses) than other mode users (88%), with a chi square pvalue of less than 0.01. While their satisfaction dropped in the winter months, it did not drop as
much as other modes (83%). Only walkers were more satisfied than cyclists in the fall (91%).
However, this difference is not statistically significant. Table 1 reports the overall satisfaction of
every mode as well as the seasonal satisfaction with trips. It is clear from this table that cyclists
form a uniquely satisfied group of commuters.

	Overall Satisfaction	Fall Satisfaction	Winter Satisfaction
Bicycled	88%	89%	83%
Walked	76%	91%	72%
Took transit	64%	81%	63%
Drove	60%	69%	59%

11 TABLE 1 Satisfaction rates by mode

12

13 4.2 The Effect of Personal and Environmental Characteristics on Satisfaction

14

As previously mentioned the literature on cycling for transportation has found that certain socio-15 economic, demographic and built environment characteristics affect the decision to cycle. To test 16 this, an independent samples t-test was performed to determine whether a significant difference 17 between the means of cyclists who were "very satisfied" and other cyclists who were less 18 satisfied. Built environment characteristics, such as proportion of local roads and bicycle paths, 19 20 proportion of open area, parks and recreation, water and residential land uses, and intersection 21 density were not significantly different between groups. However, slope and population density were significantly different between those who said they were very satisfied and those who were 22 23 not very satisfied. The full findings are reported in **Table 2.** These findings show how 24 remarkably similar the cycling environment is for cyclists regardless of their satisfaction levels. 25 When season was considered, those who cycled in the fall were significantly more 26 satisfied than those who cycled in the winter, with a chi square p-value of less than 0.01. While there is no strong relationship between satisfaction and the built environment, there is a strong 27 relationship between satisfaction and season. The next step was to consider how personal 28 29 characteristics of cyclists influence their levels of satisfaction. We found that age, gender, status at the university (e.g. Faculty, Student, Staff) and car ownership were not significant in 30 explaining the variance in satisfaction levels. However, cyclists who stated the environment as 31 their first reason for cycling were significantly less "very satisfied" (40% as compared to 64%, 32 chi-square p-value of less than 0.05). Cyclists who cycled only in the fall, and took transit in the 33 winter, were significantly more "very satisfied" (69.7% as compared to 52.9% chi-square p-34 value less than 0.05). 35

36

1 TABLE 2: Characteristics of the built environment on the commute of very satisfied and

2 not very satisfied cyclists

	"Very satisfied"	Not "very satisfied"
Distance (km)	4.2	4.3
% Local roads	62.7%	62.2%
% Bike paths	21.2%	21.2%
% Open Area	3.1%	3.3%
% Parks and recreation	12.4%	13.0%
% Water	0.4%	0.4%
% Residential	47.9%	48.2%
Slope (% 100-m line segments		
with slope greater than 5%)*	12.0%	10.3%
Population density*	446.6	377.6
Intersection density	95.3	94.3
Ν	167	101

3 *=t-test significance <0.01

4 **4.3 Who are the cyclists?**

- 5 The inconclusive findings in regards to built environment factors led us to more deeply explore
- 6 the differences among cyclists. The intention was to uncover relationships among reasons for
- 7 cycling and expressed satisfaction. To better understand cyclists, respondents were grouped
- 8 using a Two-Step Cluster analysis. Two variables, one that combines first and second reasons
- 9 for choosing cycling as a mode of transportation and one variable expressing a cyclist's alternate
- 10 (winter) mode, were inputted. The alternate mode was examined as most cyclists in the sample
- 11 (78%) cycled only in the fall and therefore used another mode in the winter months.
- There are two broad categories of cyclists: "fair-weather cyclists" who predominantly (or exclusively) cycle during warm months and "year-round cyclists" who cycle in the winter as well. Within these two broad categories, cyclists are split up according to their alternate mode
- (transit, driving or walking) and by their reasons for choosing cycling as a mode of transportation
- (transit, driving or walking) and by their reasons for choosing cycling as a mode of transportation(e.g. convenience, exercise).

17 FAIR-WEATHER CYCLISTS

Fair-weather cyclists refer to all cyclists who responded that they do not cycle in the winter. These cyclists were more satisfied from their cycling trip than their alternate mode of transportation (transit, walking or driving) during the winter months. Among fair-weather cyclists, there are transit riders and non-transit riders. This section briefly describes each of the six clusters.

23 Transit riders

All cyclists in the "transit riders" category stated that they took transit in the winter. In general,

- they were less satisfied with their transit trip than with their fall bicycle trip. The first group
- identified are *Cycling enthusiasts* (n=41). A majority (80%) state that they chose to cycle
- because it is good exercise, nearly half state they cycle because it is good for the environment
- 28 (49%) and 41% say they cycle because it is a pleasant ride. They are the most satisfied overall

(95%) and the most very satisfied (76%). Curiously, they cycle on average the longest distances
(6.08km) and the largest percentage of their trip towards campus is uphill (61%).

All Active, convenience-motivated transit-riders (n=42) state that they cycle for exercise

and convenience/because it is "faster than other modes", and all cyclists in this group use transit
as their alternate form of transportation. Overall, 71% are very satisfied and 86% are satisfied

as their alternate form of transportation. Overall, 71% are very satisfied and 86% are satisfied
 overall. They cycle an average of 4.6km. All *Convenience-motivated transit-riders* (n=65) stated

overall. They cycle an average of 4.0km. An *Conventence-motivated transit-raters* (n=05) stated
 convenience or speed as their reason for choosing to cycle and everyone took transit on an

- alternate trip. 65% are very satisfied and 89% are satisfied overall. They cycle just below 4km on
- alternate trip. 05% are very satisfied and 69% are satisfied overall. They cycle just below 4km on
- 9 average.

10 Non-Transit Riders

11 All cyclists in the "non-transit riders" category state that they took other modes than transit

- 12 (driving, walking) when responding to the survey. In general, they are less satisfied with this
- alternate mode than with their bicycle trip on a "Nice Fall Day". 96% of *Convenience-motivated*

14 *walkers* (n=48) state that they cycle because it is convenient or "faster than other modes" and

15 when they are not cycling, 83% of them walk while 17% of them drive. On average, they

16 commute 2.78km. Around 52% were very satisfied from their cycling trip and 88% were

17 satisfied overall. All Active-environmentalists (n=25) stated that they cycled because it is a good

18 form of exercise and over half state that it is good for the environment (52%). When they are not

19 cycling, 24% drive, and 28% walk, although 48% of the group cycle year-round. They were least

satisfied with their cycling trip; only 38% were very satisfied and 80% were satisfied overall.

- They cycle on average 5.52km.
- 22

23 YEAR-ROUND CYCLISTS

94% of the *Year-round cyclists* (n=47) state they cycle because it is convenient or "faster
than other modes" and one third of the cluster state that cycling is a good form of exercise. 69%
are very satisfied and 87% satisfied or very satisfied. They cycle an average of 3.5km.

27 **4.4 DIFFERENCES BETWEEN CLUSTERS**

Cycling Enthusiasts travel significantly longer distances than *Convenience-motivated transit- riders, Year-round cyclists* and *Convenience-motivated walkers*. In general, cyclists motivated by
 convenience cycled shorter distances than those motivated by exercise or the environment.
 These findings are presented in Figure 4 and Table 3. Table 3 presents each cluster's
 average distance and trip satisfaction rates with significance tests. Only *Cycling enthusiasts* have

a significantly higher rate of satisfaction than the other groups. Interestingly, this group also

displays a significantly longer average cycling distance. *Convenience-motivated transit riders*,

35 *Convenience-motivated walkers*, and *Year-round cyclists* on the other hand, have significantly

- 36 shorter cycling distances.
- To better visualize the relationship among trip satisfaction, motivations to cycle, and distance, the radial graphs in Figure 4 were generated. The motivations that people cite for
- 39 cycling were plotted on five axes (as percentages). To make this more clear, the two responses
- 40 that deal with cycling as a response to constraints ('I do not have access to a car' and 'other
- forms of transportation are too expensive') were grouped under "constraints". Similarly for the
- 42 two responses that cite proximity and convenience, which were aggregated into "convenience".
- The remaining 3 axes plot the percentage of people who are "satisfied" with their cycling trip,

1 the percentage that cycle year-round, and the distance cycled. Distance was standardized as a

2 percentage of the longest cluster; therefore cycling enthusiasts have a value of "1" while all other

3 groups show the proportion of their average trip relative to this group.

4

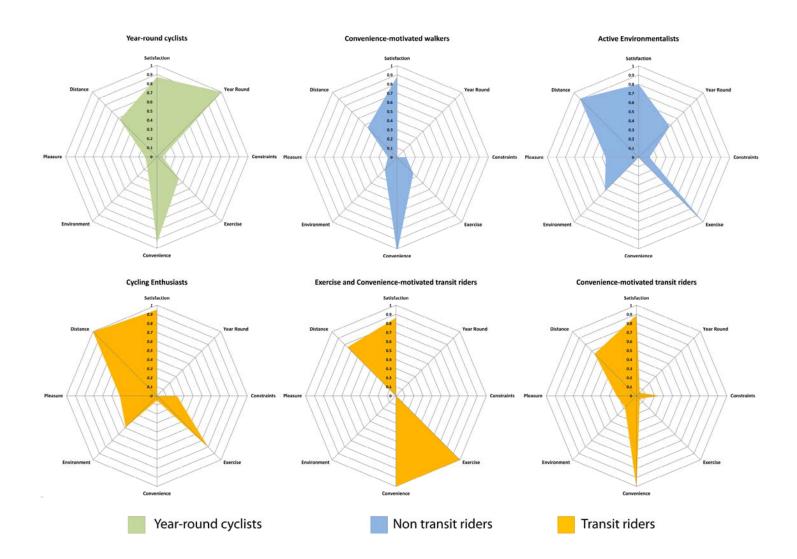
5 TABLE 3: Satisfaction and Distance by Cluster

	Satisfaction	Distance cycled (km)
Cycling Enthusiasts	95% *	6.08^{-1}
Exercise and Convenience-motivated transit riders	86%	4.61
Convenience-motivated transit riders	89%	3.99 ²
Convenience-motivated walkers	88%	2.78^{-2}
Active Environmentalists	80%	5.52
Year-round cyclists	87%	3.51 ²

* Statistically significant (p<0.01) chi square test

¹ Statistically significant (above average) independent sample t-test

² Statistically significant (below average) independent sample t-test


6

Cycling enthusiasts, who take transit in winter months and are motivated by a desire to 7 8 exercise and engage in environmentally-friendly behavior, both cycle much longer than average 9 and are more satisfied. Convenience-motivated transit riders, on the other hand, who cite convenience and neither exercise nor environmentalism, cycle on average much shorter than the 10 enthusiasts but are much less satisfied. The relationship between satisfaction and the desire to 11 exercise and concern for the environment does not hold for Active environmentalists, who are 12 significantly less satisfied. This may be attributable to the fact that 48% of this group cycled 13 during the winter months. Interestingly, though not necessarily a surprise, we see clearly that 14 year-round cyclists cycle shorter distances and cite convenience as their main motivation for 15 cycling much more than other groups. 16 *Cycling enthusiasts* are significantly more satisfied than other groups although they cycle 17 on average further than other groups. This lends tentative support of the underlying hypothesis 18

19 that personal values (as captured by the reason to cycle) are more important than objectively

20 measured physical trip characteristics in predicting satisfaction levels.

1 FIGURE 4: Relationship among satisfaction, distance, and reasons for cycling.

1 5 DISCUSSION

2 Our original hypothesis that cyclist trip satisfaction is affected by the built environment, the natural environment and trip characteristics was inconclusive. The only elements of the 3 physical environment that seem to affect satisfaction in our study were slope and population 4 density, with no effect from land use, connectivity or street types. The slope finding was 5 surprising, as more satisfied cyclists experienced greater slope. Season was the most significant 6 indicator of satisfaction, with cyclists taking fall trips more satisfied than cyclists taking winter 7 8 trips. It is interesting that while the built environment (land use, connectivity, and street 9 network), safety, distance and slope may influence the likelihood to cycle; they do not predict levels of satisfaction in our sample. Further, while certain groups are more likely to cycle (young 10 11 men, for instance) they are not necessarily more satisfied. Overall, cyclists are very satisfied with their commute to work or school. It is interesting to explore why cyclists may be much more 12 satisfied with their commute than other mode users even in cases where they are least satisfied 13 with the road network (London 2011). While the evidence is only slight, the higher (and 14 15 statistically significant) satisfaction rates of Cycling enthusiasts do lend support to the theoretical framework presented in Figure 1. The following section will explore some ideas of how and 16 why cyclists may be more satisfied than other mode users and how observed and unobserved 17 personal traits may moderate the relationship between physical factors, internal factors and trip 18 satisfaction. 19

20 **5.1 Independence**

21 In many ways, cycling offers the independence of driving without the inconveniences; a cyclist can leave when they choose, without the stress of being caught in traffic. One survey 22 respondent stated that their primary motivation for cycling was independence and empowerment: 23 24 "I think that bicycling is generally the most empowering way to travel. I can fix my bicycle myself, I do not have to rely on [transit] schedules". In fact, in research conducted by 25 Gatersleben and Uzzel (2007) cyclists stated in the same numbers as motorists (14%) that the 26 most pleasant part of their commute was the flexibility. Cycling was considered arousing, like 27 driving, whereas transit and walking were considered not arousing. Sometimes driving is too 28 arousing however, resulting in stress (Gatersleben and Uzzell 2007). 29

30 5.2 Economical

Cyclists may be satisfied because they save money by not purchasing and maintaining a personal vehicle or buying a transit pass. A transit pass in Montreal can cost over \$100 per month, and the Canadian Automobile Association estimates that owning a car costs \$6,239 per year (for a compact car), or approximately \$17 per day and this cost does not include gas or parking (Canadian Automobile Association).

36 **5.3 Pleasure**

Cyclists may enjoy the activity of traveling itself more than other mode users. Gatersleben and Uzzel (2007) found that for 21% of cyclists the most pleasant aspect of their daily commute was enjoyment of the activity itself, and 37% stated the scenery. In our study, nearly half (47.7%) of cyclists stated exercise as their first or second reason for cycling, and another 20% stated the pleasant ride. Therefore, the ride itself is enjoyable. Further, if cyclists are choosing this mode for exercise they may be less affected by increased distance or slope, or actually positively affected. In another sense, commuting by bicycle is like multi-tasking; just as transit riders can read, listen to music and make phone calls while commuting, cyclists are able to both exercise and commute at the same time.

5

6 **5.4 Identity**

7 Cyclists may self-identify as "cyclists" more frequently than other mode users self-8 identity as "drivers" or "transit riders". Satisfaction levels may simply be a reflection of 9 engaging in activity that one identifies with as either socially desirable or fitting with one's 10 values. Abou-Zeid and colleagues (Abou-Zeid and Ben-Akiva 2011; Abou-Zeid and Ben-Akiva 11 2012; Abou-Zeid, Witter et al. 2012) have explored the power of "social comparisons". This is 12 especially relevant in Montreal which has a strong "cycling culture".

13 5.5 Distance

On the other hand, cyclists may be more satisfied simply because they have a shorter commute than other mode users (Gatersleben and Uzzell 2007). In this study, cyclists commute on average shorter distances than drivers and transit riders, but slightly longer distances, on average, than walkers. However, in terms of time, they have the fastest commute; the average time a cyclist commuted was 16 minutes, compared to 20 minutes for walkers, 38 minutes for transit users and 36 minutes for drivers.

20

21 6 CONCLUSION

22 We initially hypothesized that trip characteristics and the natural environment and built 23 environment affect trip satisfaction and that this effect is mediated by personal characteristics such as socio-economic and demographic characteristics and motivations (Figure 1). While this 24 25 initial hypothesis was somewhat inconclusive, this study has several noteworthy findings. First, we found there are several kinds of cyclists on the roads in Montreal. The most satisfied were 26 Cycling Enthusiasts, who cycle the longest distances on the least objectively measured bikeable 27 roads and with the greatest uphill commute, using transit during the winter months. Cyclists who 28 29 use this mode year-round are most often motivated by convenience (Year-round cyclists). The least satisfied cyclists were those who both cycled year-round and were motivated by exercise or 30 31 the environment (Active-environmentalists). Second, slope and population density along the route are significantly different between "very satisfied" cyclists and all other cyclists. Lastly, 32 season has an important effect on cyclist satisfaction. Just 22% of cyclists in our survey cycled 33 during winter. These winter cyclists also reported lower satisfaction rates than fall cyclists. This 34 means that a large portion of cyclists are using a different mode in the winter months (walk, 35 transit or drive), suggesting that winter cycling in Montreal is difficult. This is probably 36 37 attributable to the harsh weather and challenging cycling network conditions during this period.

Other studies have similarly found cyclists to be the most satisfied commuters, even when they are dissatisfied with the transportation network (London 2011). This may be attributable to the relative short commute that cyclists have (just 16 minutes in this study), the cost savings, the exercise benefits or the relative independence afforded by having a bicycle. Cyclists are able to use the road network like a car, go longer distances than walkers and with more flexibility transit users, carry small to medium-sized loads and park next to their
destination. Research should seek to further explain these high levels of satisfaction and
understand what makes cyclists such enthusiastic commuters overall.

4

5 6.1 Limitations and Future Research

6 While the survey is representative of the McGill community, the authors make no claim that 7 this sample is representative of the city of Montreal. Future research could explore cyclist 8 satisfaction more widely by surveying cyclists outside of a university setting. Future research 9 should examine the multi-faceted nature of satisfaction, such as satisfaction with individual 10 elements of the commute (e.g. distance, slope, safety) and could seek to attribute satisfaction to 11 particular characteristics of the commute. Examining these individual components will allow a 12 more nuanced look at satisfaction.

In the present study, we see that many factors that may lead to—or dissuade from—the 13 decision to cycle for transportation do not have the expected effect on derived satisfaction. 14 Ettema et al. (2010) and Middleton (2009) argue that "experienced utility" is a much more 15 appropriate measure in understanding how individuals experience and perceive their travel 16 choices than "decision-utility" (Kahneman and Sugden 2005). This distinction could be a 17 welcome and much-needed addition to travel behavior research. Echoing recommendations made 18 by Ory and Mokhtarian (2005), further refinement of both attitudinal questions and measurement 19 of satisfaction with travel is necessary to address many of the concerns mentioned herein. 20

21 7 ACKNOWLEDGEMENTS

22 We would like to thank the McGill Office of Sustainability and McGill Campus and Space Planning for their feedback and guidance at various stages of this project. We would also like to 23 thank Daniel Schwartz, from IT Customer Services, for his assistance in developing the online 24 survey and managing the distribution of the survey to the McGill Community. Thanks to 25 Marianne Hatzopoulou, Naveen Eluru, Jacob Mason and Cynthia Jacques for their help 26 throughout the survey design process. Thanks to the two anonymous reviewers for their feedback 27 28 on the earlier version of the manuscript. Finally, we express our gratitude to the McGill Sustainability Projects Fund and the Natural Sciences and Engineering Research Council of 29 Canada (NSERC) for providing funding for this project. 30

- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41

2

3 8 **REFERENCES**

Abou-Zeid, M. and M. Ben-Akiva (2011). "The effect of social comparisons on commute well-being." 4 5 Transportation Research Part A 45: 345-361. 6 Abou-Zeid, M. and M. Ben-Akiva (2012). "Well-being and activity-based models." Transporation **DOI** 7 10.1007/s11116-012-9387-8. 8 Abou-Zeid, M., R. Witter, et al. (2012). "Happiness and travel mode switching: Findings from a Swiss 9 public transportation experiment." <u>Transport Policy</u> **19**: 93-104. 10 Alfonzo, M. A. (2005). "To Walk or Not to Walk? The Hierarchy of Walking Needs." Environment and 11 Behavior **37**: 808-836. 12 Anable, J. (2005). "'Complacent Car Addicts' or 'Aspiring Environmentalists'? Identifying travel behaviour 13 segments using attitude theory." Transport Policy 12: 65-78. 14 Aultman-Hall, L., F. L. Hall, et al. (1997). "Analysis of bicycle commuter routes using geographic information systems." Transportation Research: 102-110. 15 Bergstrom, A. and R. Magnusson (2003). "Potential of transferring car trips to bicycle during winter." 16 17 Transportation Research Part A 37: 649-666. 18 Berrigan, D., L. Pickle, et al. (2010). "Associations between street connectivity and active 19 transportation." International Journal of Health Geographics 9(20): 1-18. 20 Buehler, R. and J. Pucher (2011). "Cycling to work in 90 large American cities: new evidence on the role 21 of bike paths and lanes." Transportation. 22 Cantwell, M., M. Caulfield, et al. (2009). "Examining the Factors that Impact Public Transport Commuting 23 Satisfaction." Journal of Public Transportation 12(2): 1-21. 24 Cervero, R. and M. Duncan (2003). "Walking, Bicycling, and Urban Landscapes: Evidence From the San 25 Francisco Bay Area." American Journal of Public Health 93(9): 1478-1483. 26 Cervero, R. and K. Kockelman (1997). "Travel Demand and the 3Ds: Density, Diversity, and Design." 27 Transportation Research D 2(3): 199-219. 28 Cervero, R., O. Sarmiento, et al. (2009). "Influences of Built Environments on Walking and Cycling: 29 Lessons from Bogotá." International Journal of Sustainable Transportation **3**: 203-226. 30 Dill, J. (2009). "Bicycling for Transportation and Health: The Role of Infrastructure." Journal of Public 31 Health Policy **30**: S95-S110. 32 Dill, J. and T. Carr (2003). Bicycle Commuting and Facilities in Major U.S. Cities: If You Build Them, 33 Commuters Will Use Them – Another Look. Annual Meeting 34 Dill, J., S. Handy, et al. (2010). "Infrastructure, programs, and policies to increase bicycling: An 35 international review." Preventative Medicine 50: S106-S125. 36 Fornell, C. (1995). "The quality of economic output: Empirical generalizations about its distribution and 37 relationship to market share." Marketing Science 14(3): 203–211. 38 Forsyth, A. and K. Krizek (2011). "Urban Design: Is There a Distinctive View from the Bicycle?" Journal of 39 Urban Design 16(4): 531-549. 40 Friman, M. and T. Gärling (2001). "Frequency of negative critical incidents and satisfaction with public 41 transport services." Journal of Retailing and Consumer Services 8: 95-104. 42 Gatersleben, B. and H. Haddad (2010). "Who is the typical bicyclist?" Transportation Research Part F 13: 43 41-48. 44 Gatersleben, B. and D. Uzzell (2007). "Affective Appraisals of the Daily Commute: Comparing Perceptions of Drivers, Cyclists, Walkers, and Users of Public Transport." Environment and 45 46 Behavior **39**: 416-431.

1 Grigoroudis, E. and Y. Siskos (2009). Customer Satisfaction Evaluation: Methods for Measuring and 2 Implementing Service Quality. New York, Springer. 3 Handy, S., M. Boarnet, et al. (2002). "How the Built Environment Affects Physical Activity" American 4 Journal of Preventative Medicine 23: 64-73. 5 Jensen, M. (1999). "Passion and heart in transport — a sociological analysis on transport behaviour." 6 Transport Policy 6: 19-33. 7 Johnson, M. D. and C. Fornell (1991). "A framework for comparing customer satisfaction across 8 individuals and product categories." Journal of Economic Psychology 12: 267-286. 9 Kahneman, D. and R. Sugden (2005). "Experienced utility as a standard of policy evaluation." 10 Environmental & Resource Economics 32: 161-181. 11 Krizek, K. (2006). "Two Approaches to Valuing Some of Bicycle Facilities' Presumed Benefits." Journal of 12 American Planning Association 72(3): 309-320. 13 Larsen, J. and A. El-Geneidy (2011). "A travel behavior analysis of urban cycling facilities in Montréal 14 Canada." Transportation Research Part D: Transport and Environment 16(2): 172-177. 15 Lee, B. H. Y., L. Jennings, et al. (2010). How does land use influence cyclist route choice? Montreal, 16 McGill University. 17 London, M. o. (2011). Transport for London. T. f. London. London. 18 M.A., S. and C. R. Bhat (2003). "An analysis of commuter bicyclist route choice using a stated preference 19 survey." Transportation Research Record: 107-115. 20 Manaugh, K. and A. El-Geneidy (2011). "Validating walkability indices: How do different households 21 respond to the walkability of their neighbourhood?." Transportation Research Part D 16(4): 22 309-315. 23 McNeil, N. (2011). "Bikeability and the 20-min Neighborhood: How Infrastructure and Destinations 24 Influence Bicycle Accessibility." Transportation Research Record: Journal of the Transportation 25 Research Board **2247**: 53-63. Middleton, J. (2009). "'Stepping in time': walking, time, and sapce in the city " Environment and Planning 26 27 A 41(8): 1943-1961. 28 Nelson, A. and D. Allen (1997). "If You Build Them, Commuters Will Use Them: Association Between 29 Bicycle Facilities and Bicycle Commuting." <u>Transportation Research Record</u>: 79-83. 30 Ogilvie, D., R. Mitchell, et al. (2008). "Personal and environmental correlates of active travel and physical 31 activity in a deprived urban population "International Journal of Behavioral Nutrition and 32 Physical Activity 5(43): 1-12. 33 Oliver, R. L. (2010). Satisfaction. A Behavioral Perspective on the Consumer. New York, McGraw-Hill. Oliver, R. L., P. V. Balakrishnan, et al. (1994). "Outcome satisfaction in negotiation: a test of expectancy 34 35 disconfirmation." Organization Behavior and Human Decision Processes 60(252-275). 36 Ory, D. and P. Mokhtarian (2005). "When id getting there half the fun? Modeling the liking for travel." 37 Transportation Research Part A 39(2): 97-123. 38 Paez, A. and K. Whalen (2010). "Enjoyment of commute: A comparison of different transportation 39 modes." Transportation Research Part A 44: 537-549. 40 Robertson-Wilson, J. E., S. T. Leatherdale, et al. (2008). "Socio-Ecological Correlates of Active Commuting 41 to School Among High School Students." Journal of Adolescent Health 42: 486-495. 42 Russell, J. (1980). "A circumplex model of affect." Journal of Personality and Social Psychology 39(6): 43 1161-1178. 44 Russell, J. (2003). "Core affect and psychological construction of emotion." Pyschological Review **110**(1): 45 145-172. 46 Shafizadeh, K. and D. Niemeier (1997). "Bicycle journey-to-work: travel behavior characteristics and spatial analysis." <u>Transportation Research Record: 84-90.</u> 47

- Stradling, S. G., J. Anable, et al. (2007). "Performance, importance and user disgruntlement: a six-step
 method for measuring satisfaction with with travel modes." <u>Transportation Research Part A</u>
 41(1): 98-106.
- Tilahun, N. Y., D. M. Levinson, et al. (2007). "Trails, lanes, or traffic: Valuing bicycle facilities with an
 adaptive stated preference survey." <u>Transportation Research Part A</u> **41**: 287-301.
- Timperio, A., K. Ball, et al. (2006). "Personal, Family, Social, and Environmental Correlates of Active
 Commuting to School." <u>American Journal of Preventative Medicine</u> **30**(1): 45-51.
- Titze, S., W. J. Stronegger, et al. (2007). "Environmental, Social, and Personal Correlates of Cycling for
 Transportation in a Student Population." Journal of Physical Activity and Health 4: 66-79.
- Titze, S., W. J. Stronegger, et al. (2008). "Association of built-environment, socio-environment and
 personal factors with bicycling as a mode of transportation among Austrian city dwellers."
 Preventative Medicine 47: 252-259.
- Turcotte, M. (2005). Like Commuting? Workers' perceptions of their daily commute. S. Canada.
 Canadian Social Trends: 33-39.
- Tyrinopoulos, Y. and C. Antoniou (2008). "Public transit user satisfaction: Variability and policy
 implications." <u>Transport Policy</u> 15: 260–272.
- Waterman, A. (2005). "When effort is enjoyed: Two studies of instrinsic motivation for personally salient
 activities." <u>Motivation and Emotion</u> 29(3): 165-188.
- Weinstein, A. (2000). "Customer Satisfaction Among Transit Riders How Customers Rank the Relative
 Importance of Various Service Attributes." <u>Transportation Research Record</u> **1735**: 123-132.
- Winters, M., M. Brauer, et al. (2010). "Built Environment Influences on Healthy Transportation Choices:
 Bicycling versus Driving." Journal of Urban Health: Bulletin of the New York Academy of
 Medicine 87(6): 969-993.
- 24 Winters, M. and A. Cooper (2008). <u>What Makes Neighbourhoods Bikeable?</u>. PhD, UBC.
- 25