1	
2	Diagenetic mobilization of Ti and formation of brookite/anatase
3	in early Cambrian black shales, South China
4	
5	Ze-Rui Ray Liu ¹ , Mei-Fu Zhou ^{1*} , Anthony E. Williams-Jones ² , Wei Wang ³ , Jian-Feng
6	Gao ⁴
7	
8	1 Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong
9	Kong, China
10	2 Department of Earth and Planetary Sciences, McGill University, 3450 University
11	Street, Montreal, QC H3A 0E8, Canada
12	3 State Key Laboratory of Geological Processes and Mineral Resources, School of
13	Earth Sciences, China University of Geosciences, Wuhan 430074, China
14	4 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,
15	Chinese Academy of Sciences, Guiyang 550081, China
16	
17	
18	
19	*Corresponding author: Mei-Fu Zhou
20	E-mail: mfzhou@hku.hk
21	Phone: +852 2857 8251
22	

23 Abstract

24 Titanium (Ti) is typically hosted in detrital minerals in marine sediments and has 25 long been considered to be immobile during diagenesis. In this study, the authigenic 26 titania minerals, brookite and anatase, are observed in early Cambrian carbonaceous shales from the Meishucun and Zhajin sections of South China, respectively. Black 27 28 shales in the Meishucun section have total organic carbon (TOC) contents from 1.6 to 29 3.9 wt% and HI (hydrogen index) values from 3.8 to 20, whereas black shales in the Zhajin section have much higher TOC (7.1 - 15.6 wt%) but lower HI (<2.0) and contain 30 31 abundant bitumen (~3 vol%). Brookite in black shales from the Meishucun section 32 crystallized invariably along cleavages of detrital biotite. This intimate association 33 suggests that the Ti required to form titania minerals was derived from detrital biotite and that Ti was mobilized only on a nano- to micro-meter scale. In contrast, anatase 34 35 aggregates in black shales from the Zhajin section are intergrown with bitumen. It is proposed that Ti in these shales was mobilized in low pH organic-rich fluids and with 36 increasing pH later precipitated preferentially as anatase. The mobilization of Ti in 37 38 black shales is indicative of chemical variation of carbonaceous rocks during diagenetic or post-diagenetic processes. Our study demonstrates that proxies using geochemical 39 40 data for black shales can employed to estimate redox conditions in ancient oceans, but must be applied with caution. 41 Keywords: Brookite, Anatase, Ti mobility, Ti-mineralization, Black shales, South 42

43 China

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

2

44 **1 Introduction**

Authigenic titania minerals are rare in marine sediments due to the low 45 46 concentration (0.005 to 0.35nM) of Ti in seawater (Skrabal, 2006; Van Den Berg et al., 47 1994) and the inert behavior of detrital Ti- minerals (Cornu et al., 1999). Titanium is 48 thus considered to be immobile in marine sediments, and is thought to be a useful proxy for estimating the proportion of detrital components and sedimentary provenance (e.g., 49 50 Young and Nesbitt, 1998; Wen et al., 2011). The notion of Ti immobility, however, has 51 been challenged by recent observations that authigenic titania minerals are present in 52 organic-rich sediments (e.g., Fuchs et al., 2015; Schulz et al., 2016). Indeed, it has been proposed that large amounts of Ti can be dissolved in organic carbon-rich waters/fluids 53 (Parnell, 2004; Cabral et al., 2012), but the sources of Ti and specific mechanisms of 54 55 Ti-migration and precipitation remain unknown. 56 Authigenic titania minerals in organic-rich shales/siltstones consist dominantly of 57 fine-grained brookite and anatase (Schulz et al., 2016), which display different growth 58 habits from those formed by artificial synthesis. During syntheses of nano-crystalline 59 TiO₂ solids, anatase is the first phase to crystallize due to its low surface energy, but it 60 is typically replaced by a more stable phase, brookite, when the grain-size exceeds 11 nm (Zhang and Banfield, 2014). On heating to temperature > 600°C, both anatase and 61

brookite are converted to rutile (Byrne et al., 2013), the only stable form of TiO₂ solids at all physico-chemical conditions encountered in the Earth's crust (Zhang and Banfield, 2014). In organic-rich shales/siltstones, however, TiO₂ is commonly present

65	as anatase, which generally crystallizes within bitumen (Fuchs et al., 2015), or is found
66	at oil-water contacts (Schulz et al., 2016); whereas the occurrence of brookite is
67	restricted in sediments of lower thermal maturity (Schulz et al., 2016). Moreover, both
68	brookite and anatase can grow to micron-sizes without being transformed to rutile
69	(Parnell, 2004; Fuchs et al., 2015).

70 Early Cambrian black shales are widely distributed on the southeastern margin of 71 the Yangtze platform, South China (Guo et al., 2007; Chen et al., 2015; Wen et al., 2015; 72 Fig. 1). They formed under a variety of physicochemical conditions due to variable 73 contributions of continental and biotic components with increasing water and burial 74 depth, and they have been shown to contain relatively high V concentrations (e.g., Bao 75 et al., 2012; Jiang et al., 2006; Wen et al., 2015). In this paper, we report on authigenic Ti-bearing minerals from two early Cambrian black shale successions in South China. 76 77 They deposited on a continental shelf and in a slope-basin environment, respectively, and show contrasting morphologies and compositions. Results of this study provide 78 79 new insights into the behavior of Ti in organic-rich sediments and a possible mechanism 80 by which Ti can be mobilized and concentrated. We also discuss a possible re-81 distribution of redox sensitive elements in the black shales during their interaction with hydrocarbon liquids, and provide geochemical proxies for estimating redox conditions. 82

83 2 Geological setting

Late-Neoproterozoic to early Cambrian sedimentary successions are well
 preserved in the Yangtze Block and were deposited in the paleo-environmental settings

86	of a platform, a protected basin and the transitional belt between them (Fig.1). The
87	earliest Cambrian rocks deposited in the basin, in order of increasing depth, were
88	phosphorite/dolomite and black shale/chert. After a prolonged transgression, they were
89	overlain by a thick succession of black shales. Black shales in the Meishucun section
90	(N 24° 43' 18.9" E 102° 33' 23.8"), Yunnan province, and in the Zhajin section (N 28°
91	57' 05.2" E 114° 12' 48.7"), Jiangxi province were selected for this study (Figs. 1, 2a
92	and 3a). Paleo-geographically, these two sections were located on a carbonate platform
93	(Liu and Zhou, 2017; Wen et al., 2015) and in a transitional environment between the
94	shelf and basin of the Yangtze platform, respectively (Fig. 1). Detailed descriptions of
95	the regional geology are provided in Supplementary Note 1. Sixteen unaltered samples
96	were collected from the Shiyantou Member in the Meishucun section and fourteen from
97	the lower Wangyinpu Formation in the Zhajin section (see Supplementary Fig. S3).
98	These two carbonaceous sedimentary sequences are stratigraphically correlative, and
99	they both were deposited during Cambrian Stage1-2 (536 Ma-521 Ma) (see details in
100	supplementary Note; Zhang et al., 2017, Wen et al., 2015; Gao et al., 2018).

101

102 **3 Analytical methods**

103

104 **3.1 Scanning electron microscopy**

Scanning electron microscope (SEM) examination was carried out at the Henan
Province Rock and Mineral Testing Center, China, using a ZEISS MERLIN Compact

107	SEM equipped with an energy dispersive X-ray spectrometer (EDS), and back-scattered
108	electron (BSE) detector. The Advanced Mineral Identification and Characterization
109	System (AMICS) software package was used for the automated identification and
110	quantification of minerals and synthetic phases. The acceleration voltage was 20 kV in
111	BSE mode, which generated secondary electrons (SE ₂) during imaging and EDS
112	analyses. Based on petrographic observation under the SEM, the volume percent of
113	major minerals, such as illite, quartz and biotite and titania were roughly estimated.
114	3.2 Electron probe microanalysis
115	Major element compositions of minerals were obtained using a JXA-8230 electron
116	microprobe at the University of Hong Kong. The quantitative analyses were performed
117	in wavelength dispersive mode (WDS) with an accelerating voltage of 15 kV, a
118	specimen current of $2.0{\times}10^{-8}$ A, and a beam diameter of 1 $\mu m.$ The analytical
119	uncertainties were less than 2%.
120	3.3 Laser Raman Spectroscopy
121	Titania minerals were analyzed using a Thermo Scientific DXR dispersive Raman
122	microscope equipped with an Olympus M plan-BD 100X objective at the State Key
123	Laboratory of Geological Processes and Mineral Resources, China University of

- 124 Geosciences (Wuhan). The analytical conditions are described in Xiong et al. (2011). A
- 125 laser beam with an output power of 24mW irradiated samples with a maximum power
- 126 of 10 mW and an estimated spot size of 1 μ m.

127 **3.4 Transmission electron microscope (TEM)**

128	Normally, samples for TEM imaging and analysis are mechanically polished to a
129	thickness of a few micrometers and then milled to less than 1 μ m in thickness using a
130	4.0 kV argon ion-beam on a GATAN precise ion polishing system. However, black
131	shales were too soft to be milled properly. In view of this, the samples were ground to
132	\sim 200 mesh and then, micron- and nano-size titania crystals for TEM analysis/imaging
133	were selected using the SEM. The analyses were carried out at the Queen Mary
134	Hospital, the University of Hong Kong, using a FEI Tecnai G2 20 S-TWIN scanning
135	transmission electron microscope (dark field and bright field detectors with TIA
136	acquisition software). The microscope is equipped with an INCAx-sight EDS Detector
137	with INCA Energy TEM software, and Gatan image filtering system (749 1k \times 1k
138	camera system with digital/micrograph acquisition software).
139	3.5 Bulk rock trace element analyses
140	Samples analyzed in this study for their bulk composition were prepared by removing
141	the surface rind with saw. They were then crushed with a steel jaw crusher, and powered

142 using an aluminum oxide mill.

Bulk rock concentrations of trace elements, including REEs, were determined using a VG Plasma-Quad Excell inductively coupled plasma mass spectrometer (ICP-MS) at the Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang, China, after a two-day closed-beaker digestion using a mixture of HF and HNO₃ acids in high-pressure autoclaves (Qi et al., 2000). Pure elemental standard solutions were used for external calibration and BHVO-1 and SY-4 were used as reference materials.

149 The analyses were accurate to better than 5%.

150 **3.6 Total organic carbon content**

151	Total organic carbon (TOC) contents were measured using a Multi EA 4000
152	carbon/sulfur analyzer with a high temperature furnace and acidification module (Eltra,
153	Germany). Inorganic carbon (carbonate) was removed by adding 6 mol/L HCl to about
154	2 g of powdered shale. Approximately 100 mg of the solid residue was then weighed
155	into a ceramic boat and combusted in pure (99.95%) O_2 at 1350 °C for ~3 mins. The
156	analytical errors for TOC were ± 0.2 wt% based on analysis of carbonate standard,
157	AR4007 (Alpha, USA).
158	3.7 Rock-Eval pyrolysis
159	Rock-Eval pyrolysis experiments were performed on an OGE-VI Hydrocarbon

160 Evaluation Work station at Yangtze University. Samples were progressively heated to

- 161 $600 \text{ }^\circ\text{C}$ in a helium atmosphere. The measured parameters were S_1 (adsorbed free liquid
- 162 hydrocarbons) which was measured in an oven at a constant temperature of 300 °C for
- 163 3 min; and S₂ (residual petroleum potential), which was measured when samples were
- heated from 300 to 600 °C at a rate of 25 C/min. PRO-3 with $S_1=0.61$ mg HC/ g rock
- and S_2 =4.10 mg HC/ g rock was used as a standard material. The uncertainties for S_1
- and S₂ were $\leq \pm 5\%$ based on analysis of the standard. The HI parameter (hydrogen
- 167 index) was calculated with following formula: $HI = 100*S_2/TOC$.
- 168 **3.8 Sm–Nd isotopic analyses**
- 169 Bulk rock Sm-Nd isotopic analyses were performed on a VG-354 thermal

170 ionization magnetic sector mass spectrometer at the Institute of Geochemistry, 171 Guiyang, China. The chemical separation and isotopic measurement procedures are 172 described in Zhang et al. (2001). Mass fractionation corrections for Nd isotopic ratios 173 were performed assuming a 146 Nd/ 144 Nd ratio of 0.7219. The uncertainty in the Sm/Nd 174 isotopic ratio was less than $\pm 0.5\%$ (relative).

175 **4 Petrography**

176 **4.1 Black shales in the Meishucun section**

177 Black shales from the Meishucun section are finely laminated, and composed of 178 mineral assemblages involving quartz aggregates, dolomite, pyrite, biotite, clay 179 minerals and traces of amphibole (Fig. 2b). Quartz, dolomite and clay minerals 180 comprise >80 vol% of the rocks (Fig. 2b). The quartz and dolomite grains are 181 predominantly sub-angular to sub-rounded and range from 10 to 50 µm in diameter. 182 There also contain minor proportions of biotite (3 vol%) and amphibole (<0.5 vol%) 183 crystals that are generally 10 µm in width and 20-100 µm in length. They are partially 184 altered to chlorite (Figs. 2b-g). The clay minerals are $<2 \mu m$ in diameter, and occur in 185 clusters in the interstices between quartz crystals or around biotite and amphibole 186 crystals (Figs. 2e-g). Altered biotite crystals contain tabular brookite crystals (see below 187 for how they were identified) and euhedral pyrite grains along their cleavages (Figs. 188 2c-g). Without exception, the brookite is restricted to biotite relicts, whereas pyrite is 189 much more prevalent in the matrix, where it occurs as euhedral crystals, framboids or 190 nodular aggregates, and generally ranges from 2 to 15 µm in diameter (Fig. 2h).

- Authigenic phosphatic grains (colloidal nodules) are sparsely distributed and occupy
 less than 2 vol% of the rock (Fig. 2b).
- 193 **4.2 Black shales in the Zhajin section**

194 Black shales in the Zhajin section are variably layered, and in places display 195 distinct submillimeter-scale parallel laminae or thin-thick beds (Fig. 3a). The samples 196 are composed mainly of quartz, clay minerals, titania minerals, pyrite and bitumen 197 (Figs. 3 and 4). Quartz and clay minerals, comprising >80 vol% of the rock, are typically less than 5 µm in diameter (Fig. 4). Disseminated anatase (see below for how 198 199 it was identified) comprises up to 3 vol% of the rock and occurs as sponge-like aggregates of micron-size crystals (Figs. 3b-f). These aggregates commonly 200 crystallized around sphalerite and range from 50 µm to 300 µm in diameter (Figs. 3c-201 202 f). Sphalerite is amorphous and porous. Bitumen (~3 vol%) is disseminated throughout 203 the rock; it occupies interstices among sphalerite and titania mineral aggregates (Figs. 204 3 and 4). Authigenic quartz and clay minerals are enclosed in bitumen (Figs. 4c and d). 205 The clay mineral crystals are sheet-like and $<2 \mu m$ in diameter, and concentrated in the 206 interstices among the quartz crystals (Figs. 3g and h). Pyrite occurs as framboids, 207 euhedral crystals or pseudomorphs replacing animal fossils. **5** Chemical composition of crystalline and organic phases 208

209 **5.1 Brookite/anatase**

The titania minerals in biotite relics of black shales from the Meishucun section
produced a sharp peak at ~153 cm⁻¹ and low-intensity peaks at 127, 213, 247, 284, 327,

^{© 2019.} This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

212	369, 456 and 544 cm ⁻¹) on the Raman spectrum (Fig. 5a). These peaks correspond to
213	those for brookite in a direction parallel to XX (the 127, 153, 247 and 544 cm ⁻¹ peaks),
214	XY (the 213, 284 and 327 cm ⁻¹ peaks) and XZ (the 369 and 456 cm ⁻¹ peaks (Fig. 5a;
215	Iliev et al., 2013). All titania crystals in black shales from the Zhajin section produced
216	strong peaks at about 146, 396, 513 and 635 cm ⁻¹ . These wave numbers are diagnostic
217	of anatase (Fig. 5a; Frank et al., 2012). Transmitted electron microscopic analysis of
218	titania crystals from black shales of the Zhajin section yielded an electron diffraction
219	pattern for the [1,1,1] plane, corresponding to d-spacings of 0.3595 nm (1,0, 11) and
220	0.3609 nm (0,1, 1) (Figs. 5b-d). These d-spacings, within the experimental error, are
221	the same as those for the [1,1,1] plane of anatase (0.3516 nm) and confirm the Laser
222	Raman Spectroscopic identification (Fig. 5).
223	In order to further characterize the titania minerals, their chemical compositions
224	were determined using the electron microprobe (EMP). The EMP analytical data were
225	obtained from a spot with a diameter of 1 μ m that correspond to an excitation volume

with a diameter of $\sim 4 \ \mu m$, which is larger than most of the analyzed mineral grains. Therefore, the EMP data represent an average composition of numerous individual nano-size crystals and possibly also non-titania mineral components. The valance of Fe and V in the minerals were not determined and instead are reported as FeO and V₂O₃

- concentrations. Brookite from the black shales of the Meishucun section has elevated Al_2O_3 (0.43-3.9 wt%), SiO₂ (0.95-10 wt%) and FeO (0.74-3.6 wt%) contents, which
- $232 \qquad \text{may reflect contamination from the surrounding clay minerals, and relatively low V_2O_3}$

233	(0.23-1.93 wt%) and TiO ₂ (71-91 wt%) contents. In contrast, anatase from the black
234	shales of the Zhajin section has high SiO ₂ (0.36-5.3 wt%) and low Al ₂ O ₃ (0.1-1.0 wt %)
235	contents, suggesting that the contamination was mainly from quartz that filled
236	interstices within the anatase aggregates. The anatase has a FeO content from 0.47 to
237	1.4 wt%, a V_2O_3 content from 3.4 to 5.4 wt% and a TiO ₂ content from 75 to 93 wt%
238	(Fig. 6; Table 1).

239 **5.2 Phyllosilicate minerals**

240 Biotite crystals in the black shales from the Meishucun section have low SiO₂ 241 contents, ranging from 30 wt% to 36.2 wt%, and high FeO (17-20 wt%) and TiO₂ 242 (>0.23 wt%) contents, whereas the clay minerals have high SiO₂ (45-57 wt%) and Al^{VI} (2.4~3.9 apfu) contents (Figs. 7a and b). The small clay mineral crystals are 243 244 compositionally similar to the large muscovite crystals (Table 2). They have relatively 245 high Fe/Fe+Al ratios and moderate K contents, consistent with Al-rich mixed layer illite 246 - smectite (I/S), smectite or Fe-rich I/S (Fig. 7b). All the clay minerals in the black 247 shales of the Meishucun section have low V_2O_3 (<0.2 wt%) and Cr_2O_3 (<0.14) contents. 248 Clay minerals in the black shales of the Zhajin section have low Fe/Fe+Al ratios 249 and variable K contents, indicating that they comprise kaolinite, Al-rich I/S and illite (Fig. 7b). Vanadium is negatively correlated with Al^{VI} in the clays (Figs. 7c). Most of 250 251 the clay minerals have high V_2O_3 (ca. 2.5 wt%) and low TiO₂ (0.22 wt%) contents; 252 V_2O_3 and TiO₂ contents display a positive correlation, except for minerals with a very 253 low V_2O_3 content (Figs. 7d).

254 **5.3 Organic phases**

255	Black shales of the Meishucun section have much lower TOC contents (1 to 4
256	wt%) than those of the Zhajin section (7 to 15 wt%) (Table 4; Fig. 8). However, they
257	yielded higher S_1 (0.04-0.24 mg HC/ g rock), S_2 (0.1-0.43 mg HC/ g rock) and HI (3.8-
258	20 mg HC/ g TOC) values than the black shales of the Zhajin section, which yielded
259	the following values $S_1{=}0.01{-}0.14~\mathrm{mg}~\mathrm{HC}/~\mathrm{g}$ rock, $S_2{=}0.01{-}0.29~\mathrm{mg}~\mathrm{HC}/~\mathrm{g}$ rock and
260	HI=0.1-2.0 mg HC/ g TOC. Forty energy dispersive X-ray spectroscopic and 14 EPM
261	spot analyses of the bitumen aggregates yielded large peaks for carbon and oxygen and
262	small peaks for Si, Al, S, K, Ti, V, Fe and Zn (Table 3 and supplementary Table A1).
263	6 Bulk rock compositions
264	Black shales from the Meishucun section have high Ti (5205 ppm on average) and
265	low V (98-555 ppm) contents. They also have high Sc (13.8-17.4 ppm), Co (9.8-17.5
266	ppm) and Th (5.9-11 ppm) contents and low Cr (60-781 ppm), Ni (39-86 ppm) and U
267	(4.4-15.8 ppm) contents. By comparison, black shales in the Zhajin section have over
268	an order of magnitude higher V (2900-11000 ppm), and much higher Cr (125-1221
269	ppm), Ni (41-294 ppm) and U (28-663 ppm) contents than black shales from the
270	Meishucun section. However, they have significantly lower Ti (1830 ppm on average),
271	Sc (4-16 ppm), Co (0.4-15.4 ppm) and Th (3.1-6.5 ppm) contents. Barium is highly
272	enriched in Ba-feldspar-rich layers in black shales from the Zhajin section. Black shales
273	from both sections have low $\varepsilon Nd(t)$ values (~-20; Table 5), although a relatively high
274	ϵ Nd(t) value (-12) was obtained from a shale at the top of the Zhajin section.

275 **7 Discussion**

276 7.1 Derivation of Ti from detrital components

Detrital titania minerals are rarely observed in marine sediments owing to their 277 278 high density (3.8~4.3g/cm³), which impedes their transport into marine basins (Schulz 279 et al., 2016). Wherever these minerals are present, they are either rounded in shape 280 (Baioumy, 2014) or show signs of partial dissolution (Schulz et al., 2016). In contrast, 281 brookite in black shales of the Meishucun section occurs as tabular crystals along 282 cleavages of biotite (Fig. 2c), and anatase in black shales of the Zhajin section forms 283 sponge-like crystal aggregates and is intergrown with sphalerite (Fig. 3c). These 284 observations imply that the titania minerals (brookite and anatase) in the Meishucun 285 and Zhajin black shales are authigenic.

286 Vertical redox changes and remineralization of organic matter in the water column are two widely invoked mechanisms for producing trace element-rich authigenic 287 288 minerals in sediments (Algeo and Maynard, 2004; Emerson and Huested, 1991; 289 Gregory et al., 2017; Jones and Manning, 1994). During the deposition of black shales, 290 accumulation and subsequent decay of organisms along and below the water-sediment 291 interface consumes the O₂ of the bottom water, generating a stratified redox state in the 292 basin (Kristensen, 2000). Redox sensitive elements, such as V, Mo and Cr have 293 relatively high solubility under oxic conditions and are insoluble in reduced 294 environments. They are thus precipitated and accumulated in black shales (Algeo and 295 Maynard, 2004). However, Ti is inert to the redox change in seawater. It has a low

296	solubility under both oxic and anoxic conditions in its dominant valance state (4+),
297	which explains its extremely low concentration in open seawater (0.005 to 0.35nM; Van
298	Den Berg et al., 1994; Skrabal, 2006). Organisms have the ability to extract elements
299	(e.g., V and P) from seawater and release them to form authigenic minerals after burial,
300	even if the elements are present in very low concentrations (e.g., Algeo and Maynard,
301	2004; Yu and Wang, 2004). Unfortunately, Ti is not an essential element for life, and
302	thus cannot be accumulated biologically as authigenic titania minerals.
303	Titanium-bearing minerals, such as biotite and amphibole, can be carried as
304	detritus into oceans, and subsequently accumulate in fine-grained clastic sediments. It
305	is possible that authigenic titania minerals form from these minerals, particularly from
306	igneous and metamorphic biotite, which may contain several weight percent of TiO_2
307	(Henry and Guidott, 2002). Indeed, this would be the case for black shales of the
308	Meishucum section, in which the only authigenic titania mineral, brookite, occurs
309	exclusively along cleavages in relics of detrital biotite (Figs. 2c-g). Based on the
310	association of brookite with illite or illite-smectite and biotite relicts, we propose that
311	biotite decomposed to form clay minerals during diagenesis, thereby releasing Ti,
312	which was then incorporated into brookite.

313

7.2 The bitumen-anatase association

In contrast to the Meishucum section, relicts of biotite or any other detrital Tibearing minerals are not observed in black shales from the Zhajin section. However, bitumen, which formed during hydrocarbon generation and solidification, is an

317 important phase in black shales from the Zhajin section and is closely associated with 318 anatase. Furthermore, the bitumen contains appreciable Ti (up to 1 wt%; Table 3 and 319 supplementary Table A1). It is thus reasonable to argue that hydrocarbon liquids 320 released during diagenesis played a key role in the transport and deposition of Ti. Fuchs 321 et al. (2015) noted that anatase nano-crystals in the Witwatersrand Carbon Leader Reef 322 occur within bitumen masses rather than along their borders, consistent with their 323 precipitation from liquid hydrocarbons. By contrast, in the Zhajin section, anatase 324 concentrated either around or inter-mingled with bitumen, arguing against dissolution 325 and transport of Ti in a hydrocarbon liquid. Anatase and bitumen have also been reported to occur at the oil-water interface in 326 an oil field (Schulz et al., 2016). Oil-water interfaces are locations of very low pH (<3 327 328 - 7) in the aqueous phase due to the anaerobic degradation of the oil and the resulting 329 production of methane, carbon dioxide and acetic acid (Schulz et al., 2016). Aqueous 330 fluids at such interfaces could be very effective in dissolving Ti-minerals in the host

331 shales by forming stable Ti-organic complexes. Low pH and the anaerobic degradation 332 of the oil would also promote formation and aggregation of nano-crystal titania (Chen

et al., 2012; Schulz et al., 2016). However, owing to the very low porosity of black 334 shales, it is difficult to envisage a large-scale migration of oil and water and the formation of an oil-water interface in such rocks. 335

333

336 On the other hand, the release of diagenetic acids such as acetic or oxalic acid 337 during the formation of hydrocarbons would decrease pore-water pH, generating a

micro-environment that is favorable for the dissolution of Ti-bearing minerals (Schulz et al., 2016). The organic acids could also form chelation complexes with Ti ⁴⁺, which promotes migration of Ti in pore waters. In the Zhajin section, anatase occur as spongelike aggregates, which likely precipitated in pore water cavities. It is thus possible that low-pH pore water with abundant organic acids released during diagenesis played a key role in the dissolution and transport of Ti.

344 Titanium could also have been transported by and deposited from an acidic low 345 temperature hydrothermal fluid that interacted with the shales after diagenesis (Parnell, 346 2004). Because Nd isotopes do not fractionate, even at low temperature (Ling et al., 1997), and the oceanic residence time of Nd (300~1000 year) is less than the oceanic 347 348 mixing time (1500 ~2000 years) (Tachikawa et al., 2003), Nd isotopes can be used to 349 determine whether rocks have undergone modification by post-diagenetic hydrothermal fluids. Black shales in the Meishucun and Zhajin sections have relatively constant 350 351 ɛNd(t) values (mostly between -19.7 and -18.8), which are indicative of stable 352 continental inputs with no involvement of hydrothermal fluids (Table 5). An exception 353 is a sample collected at top of the Zhajin section that has a relatively high $\varepsilon Nd(t)$ value of -12, which may reflect prolonged interaction with meteoric water. We therefore 354 355 conclude that anatase in the Zhajin section formed as a result of dissolution and 356 transportation by hydrocarbons during late-diagenesis.

- 357 7.3 Growth of titania minerals
- 358 7.3.1 Precipitation of brookite and anatase

359	Brookite in black shales from the Meishucun section occurs along cleavages of
360	partially decomposed detrital biotite crystals (Fig. 2). Given the very low solubility of
361	Ti in aqueous fluids and the preferential adsorption of metal oxides (Cornu et al., 1999),
362	Ti was predictably immobile and crystallized in situ in black shales of the Meishucun
363	section. In contrast, Ti in the Zhajin black shales was likely mobilized by the formation
364	of stable organic complexes. Precipitation of anatase nano-crystals is inferred to have
365	resulted from a subsequent increase in pH, which destabilized the organic Ti complexes;
366	a temperature increase may also have been a contributing factor by destroying essential
367	organic ligands (Schulz et al., 2016). Increasing pH was also likely responsible for the
368	observed aggregation of the nano-crystals, on the basis of the experimental results
369	showing that adsorption of humic acids by nano-crystals of TiO2 strongly decreases
370	above pH values of 5 to 6, and that this decrease promotes anatase aggregation (Yang
371	et al., 2009).
372	As discussed above, titania mineralization in the Zhajin section involved a role for
373	liquid hydrocarbons, the genetration of which depended on the thermal maturity and

373 liquid hydrocarbons, the genetration of which depended on the thermal maturity and 374 TOC content of the black shales. The assessment of thermal maturity in pre-Devonian 375 shales is challenging due to the absence of vitrinite macerals that precludes the 376 application of vitrinite reflectance petrography, the most-widely used assessment 377 technique (c.f. Cheshire et al., 2017). We therefore compared the thermal maturity of 378 the Meishucun and Zhajin sections using Rock-Eval pyrolysis data. As is the case with 379 most Cambrian shales, black shales from the Zhajin section have very low residual

380	petroleum potential (S ₂ =0.01-0.29 mg HC/ g rock) but a very high TOC content (7 to
381	15 wt%). The extremely low HI values (0.1-2.0 mg HC/ g TOC) for this section indicate
382	that the black shales have a very high thermal maturity and released abundant
383	hydrocarbons during burial and late-diagenesis. In contract, black shales from the
384	Meishucun section have a little higher S_2 value (0.1-0.43 mg HC/ g rock) and much
385	lower TOC (1 to 4 wt%) than the black shales of the Zhajin section. The high HI values
386	(3.8-20 mg HC/ g TOC) indicate that the Zhajin black shales have lower thermal
387	maturity and still retain the potential for hydrocarbon generation. Also, the higher TOC
388	content led to the formation relatively large pores and higher overall porosity during
389	cracking, which accelerated the migration of Ti. The clay mineral in the black shales
390	from the Zhajin section has a much lower Fe/Al ratio, and is much closer in composition
391	to illite in composition than the clay mineral in black shales from the Meishucun section
392	(Fig. 7b). In addition, V and Al ^{VI} , and Cr and Al ^{VI} are negatively correlated (Fig. 7c;
393	Table 2), indicating the substitution of Cr and V for Al during the smectite-illite
394	transition. This is consistent with the deeper burial depth and a higher degree of
395	hydrocarbon maturation of the Zhajin black shales relative to the Meishucun black
396	shales.

Thus, we propose that, in both sections, detrital biotite was the main source of Ti and partially decomposed during early diagenesis, forming tabular authigenic brookite crystals within the relict grains. In the Zhajin black shales, however, the greater maturity do of the organic matter and high TOC content led to the generation of liquid

401 hydrocarbons, which interacted locally with pore waters reducing their pH, thereby
402 destroying the relict biotite grains and enabling mobilization of the authigenic brookite
403 (and Ti in the biotite) as aqueous organic Ti complexes. These complexes, as discussed
404 above, were subsequently destabilized to form anatase nano-crystals and, in turn,
405 sponge-like aggregates of anatase nano-crystals.

406 **7.3.2 Controls on crystallization of brookite and anatase**

407 According to Schulz et al. (2016), anatase is the first titania phase to crystallize 408 from aqueous solutions (as nano-crystals) as its surface energy is lower than that of 409 brookite. However, it can be readily converted to brookite during growth. One of the 410 mechanisms is the nucleation of brookite from the twin planes of anatase, which has a similar structure to that of brookite (Zhang and Banfield, 2014). In sol-gel experiments 411 412 designed to synthesize nano-crystalline TiO₂, anatase is the dominant phase if the 413 crystals are <11 nm in diameter, whereas brookite dominates when the crystals are 414 between 11 and 35 nm in diameter and rutile forms when the crystal size is >35nm 415 (Zhang and Banfield, 2014). However, micron-size crystals of both anatase and 416 brookite are observed in black shales (Cabral et al., 2012; Parnell, 2004; Schulz et al., 2016). It has therefore been suggested that, in natural environments, the stability and 417 growth of titania are mainly controlled by pH, with brookite formation favored at 418 419 moderately acidic pH (3-6) and anatase at high pH (>5) (Zhang and Banfield, 2014). 420 These findings are consistent with the observation that brookite in the Meishucun 421 section crystallized in a micro-environment with abundant HS⁻ (acidic), and anatase

422 precipitated rapidly in black shales of the Zhajin section after destabilization of organo-

423 Ti complexes as pH increased to a near neutral value.

424 Dopants in the titania change its lattice and thus can lead to the formation of 425 different phases. For example, in sol-gel syntheses of titania, it has been observed that elevated concentrations of Mo⁶⁺ lead to the transformation of brookite to anatase, 426 whereas high concentrations of Fe^{3+} and V^{5+} favor the formation of brookite (Khan and 427 Berk, 2014). In contrast, it has been shown that incorporation of V⁴⁺ leads to preferential 428 formation of anatase (Li et al., 2010). Although these two studies were undertaken at 429 430 different temperatures (300°C/500°C and 50°C, respectively) using different inorganic Ti precursors (Ti oxysulfate vs. tetrabutyl titanate), the results suggest that the 431 incorporation of V with lower valance in the second study may be the reason for the 432 433 formation of anatase rather than brookite (Li et al., 2010). 434 In our study, both brookite in black shales from Meishucun and anatase in black 435 shales from Zhajin contain abundant vanadium (>1 wt% V2O3). As discussed above, 436 brookite in the Meishucun black shales precipitated within pore water, whereas the 437 formation of anatase in black shales from Zhajin was closely linked to the generation of organic-rich liquids after burial. Significantly, V in crude oils occurs mainly as V⁴⁺ 438

(Baranova and Fortunatov, 2012; Mandal et al., 2014; Zhang et al., 2014), which may
be a reason why anatase was favored over brookite in black shales from Zhajin. By
analogy, it is therefore possible that V in black shales from Meishucun was mostly

442 present as V^{5+} , thereby favoring the precipitation of brookite. Thus, a different pH

- 443 and/or valance state of V may be the reason that authigenic titania occurs as brookite in
- the Meishucun black shales and as anatase in the Zhajin black shales.
- 445 **7.4 Implications for the reliability of redox proxies**

446 The geochemistry of marine black shales, including the concentration of redox 447 sensitive elements (RSEs; e.g., Mo, U and V), the ratios of V/V+Ni and the Fe 448 speciation, have long been taken as important proxies for paleo-environmental 449 conditions (e.g., Algeo and Maynard, 2004; Anderson and Raiswell, 2004; Tribovillard 450 et al., 2006). Recent studies, however, have demonstrated that multiple geochemical 451 proxies may yield conflicting redox interpretations. For example, early Ediacaran black shales from the Yanjia section have highly variable Fe speciation and enrichment of 452 RSEs, suggesting that redox conditions varied from oxic to euxinic, whereas their 453 454 persistently high TOC/P ratios argue for an anoxic dominated depositional environment 455 (Jin et al., 2018). Similarly, Early Cambrian black shales from the Hetang Formation 456 have high but variable RSEs/TOC ratios, which are indictive of a euxinic depositional 457 environment but conflict with the presence of oxygen-dependent sponge species in the 458 shales (Cheng et al., 2017). Although the high variability in the values of geochemical redox proxies have been attributed to transient redox changes (Cheng et al., 2017), or 459 different sensitivities of the elements to high-frequency redox fluctuations (Jin et al., 460 461 2018), the driving forces for the transient or high-frequency redox changes are unclear. 462 The mobilization of the normally inert element, Ti, the Zhajin black shales is 463 evidence that trace element re-distribution during late-diagenesis may be common.

464	Indeed, some redox sensitive or environmentally toxic elements, including V, Ni, Fe,
465	Cr, Zn, Mo and Hg, have been shown to be re-distribute as a result of their concentration
466	in the organic fraction at conditions of high thermal maturity (de Souza et al., 2006;
467	Fein and Williams-Jones, 1997). For example, bitumen in black shales from the La
468	Luna Formation, Maracaibo Basin has a high V concentration (up to 1730 ppm) and a
469	higher V/V+Ni ratio than its host rocks (Lo Monaco et al., 2002). Similarly, Fe
470	concentrations in crude oils and their condensates from South African Basins can be as
471	high as 7300 ppm (Akinlua et al., 2015). The affinity of organic phases for these metals
472	indicates that, as is the case for Ti, they are readily mobilized when hydrocarbon-rich
473	liquids are generated in the sediments.
474	Owing to the extremely low permeability of black shales, liquid hydrocarbon
475	migration is spatially limited (Gao et al., 2018). Thus, although sedimentary sequences
476	likely exhibit increased variability in the contents of RSEs after they have interacted
477	with hydrocarbon-rich liquids, this increase may be relatively small. A more significant
478	effect of the interaction of these sequences with hydrocarbon liquids is the release of
479	highly reactive Fe into the liquids through the dissolution of detritus, e.g., biotite (Figs.
480	3c and 3e), which could change the bulk-rock Fe speciation. Nonetheless, because
481	hydrocarbon liquids cannot migrate far in shales due to the low-porosity of the latter,
482	the average contents of RSEs of these rocks, if established with high-resolution
483	sampling, are likely to record relatively reliable redox information. For this reason, our
484	overarching conclusion for the black shales considered in this study, which was reached

485	by considering the various redox proxies jointly, is that black shales in the Meishucun
486	section formed under oxic-dysoxic conditions, whereas the Zhajin black shales were
487	deposited in an anoxic environment (Fig. 8a; Hatch and Leventhal, 1992; Jones and
488	Manning, 1994). In summary, although it appears that the above proxies can be applied
489	reliably to estimate redox conditions for high thermal maturity black shales, this may
490	not be the case for shales in which there are transient or high-frequency changes in the
491	concentrations of RSEs and Fe species.
492	8 Conclusions

493 Detrital biotite was the major source of Ti for the authigenic titania in early 494 Cambrian black shales, South China. During early diagenesis, Ti in black shales was 495 immobile and precipitated in situ as brookite. However, the generation of hydrocarbon 496 liquids can lead to complete destruction of the Ti-bearing detritus and the mobilization 497 of Ti from brookite due to the formation of stable organic-Ti complexes. These liquids 498 precipitated nano-crystalline anatase and eventually nanocrystalline anatase aggregates 499 in response to increasing pH. Because of the high solubility of vanadium in liquid hydrocarbons, this also led to the incorporation of V^{4+} in the anatase structure. Our 500 501 study illustrates the role that liquid hydrocarbons play in the mobilization of Ti in black 502 shales. Finally, the study emphasizes the need to consider the possibility that many 503 elements used as redox proxies may be re-distributed in organic rich shales during late-504 diagenesis, which could potential render them unreliable.

505

506 Acknowledgements

507	This research was supported financially by grants from the Research Council of
508	Hong Kong (17306814), the National Nature Science Foundation of China (41572170
509	and 41772087), the "CAS Hundred Talents" Project to J.F. Gao and an HKU Visiting
510	Professorship to Williams-Jones. We thank Dr. Wen Zhao for his assistance in the field
511	and Prof. Liang Qi for the trace element analysis. We appreciate the constructive
512	comments from the journal editor (Prof. Karen Johannesson) and three reviewers (Dr.
513	Junpeng Zhang, Dr. Arkadiusz Derkowski and an anonymous reviewer) that helped
514	improve the paper.
515	
516	References
517	Algeo, T.J., Maynard, J.B., 2004. Trace-element behavior and redox facies in core
518	shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology,
519	206 (3-4): 289-318.
520	Akinlua, A., Sigedle, A., Buthelezi, T., Fadipe, O.A., 2015. Trace element geochemistry
521	
	of crude oils and condensates from South African Basins. Marine and Petroleum
522	of crude oils and condensates from South African Basins. Marine and Petroleum Geology, 59: 286-293.
522 523	of crude oils and condensates from South African Basins. Marine and Petroleum Geology, 59: 286-293. Baioumy, H.M., 2014. Ti-bearing minerals in sedimentary kaolin deposits of Egypt.
522523524	of crude oils and condensates from South African Basins. Marine and Petroleum Geology, 59: 286-293. Baioumy, H.M., 2014. Ti-bearing minerals in sedimentary kaolin deposits of Egypt. Applied Clay Science, 101: 345-353.
522523524525	of crude oils and condensates from South African Basins. Marine and Petroleum Geology, 59: 286-293. Baioumy, H.M., 2014. Ti-bearing minerals in sedimentary kaolin deposits of Egypt. Applied Clay Science, 101: 345-353. Bao, S., Zhang, Y., Hang, J., Yang, X., Hu, Y., 2012. Determination of vanadium

527	method, MRS Proceedings. Cambridge Univ Press, pp. imrc2011-1380-s21-
528	full013.
529	Baranova, V.N., Fortunatov, A.V., 2012. Vanadium: chemical properties, uses and
530	environmental effects. Chemical Engineering Methods and Technology. Nova
531	Science Pub Inc.
532	Byrne, C., Fagan, R., Hinder, S., McCormack, D.E., Pillai, S.C., 2016. New approach
533	of modifying the anatase to rutile transition temperature in TiO ₂ photocatalysts.
534	RSC Advances, 6 (97): 95232-95238.
535	Cabral, A.R. et al., 2012. Anatase nanoparticles on supergene platinum-palladium
536	aggregates from Brazil: titanium mobility in natural waters. Chemical Geology,
537	334: 182-188.
538	Cheng, M. et al., 2017. Transient deep-water oxygenation in the early Cambrian Nanhua
539	Basin, South China. Geochimica Et Cosmochimica Acta, 210: 42-58.
540	Cheshire, S. et al., 2017. Assessing thermal maturity beyond the reaches of vitrinite
541	reflectance and Rock-Eval pyrolysis: a case study from the Silurian Qusaiba
542	formation. International Journal of Coal Geology, 180: 29-45.
543	Chen, G.X., Liu, X.Y., Su, C.M., 2012. Distinct effects of humic acid on transport and
544	retention of TiO ₂ rutile nanoparticles in saturated sand columns. Environmental
545	Science & Technology, 46 (13): 7142-7150.
546	Cornu, S. et al., 1999. Evidence of titanium mobility in soil profiles, Manaus, central
547	Amazonia. Geoderma, 91 (3-4): 281-295.

548	de Souza, R.M., Meliande, A.L.S., da Silveira, C.L.P., Aucelio, R.Q., 2006.
549	Determination of Mo, Zn, Cd, Ti, NiVFe, Mn, Cr and Co in crude oil using
550	inductively coupled plasma optical emission spectrometry and sample
551	introduction as detergentless microemulsions. Microchemical Journal, 82 (2):
552	137-141.
553	Emerson, S.R., Huested, S.S., 1991. Ocean anoxia and the concentrations of
554	molybdenum and vanadium in Seawater. Marine Chemistry, 34 (3-4): 177-196.
555	Fein, J.B., Williams-Jones, A., 1997. The role of mercury-organic interactions in the
556	hydrothermal transport of mercury. Economic Geology, 92(1): 20-28.
557	Frank, O. et al., 2012. Raman spectra of titanium dioxide (anatase, rutile) with identified
558	oxygen isotopes (16,17,18). Physical Chemistry Chemical Physics, 14 (42):
559	14567-14572.
560	Fuchs, S., Schumann, D., Williams-Jones, A.E., Vali, H., 2015. The growth and
561	concentration of uranium and titanium minerals in hydrocarbons of the Carbon
562	Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology, 393-
563	394: 55-66.
564	Gao, F. et al., 2018. Pore characteristics and dominant controlling factors of overmature
565	shales: A case study of the Wangyinpu and Guanyintang Formations in the
566	Jiangxi Xiuwu Basin. Interpretation, 6 (2): T393-T412.
567	Gregory, D.D. et al., 2017. Whole rock and discrete pyrite geochemistry as
568	complementary tracers of ancient ocean chemistry: An example from the

569	Neoproterozoic Doushantuo Formation, China. Geochimica Et Cosmochimica
570	Acta, 216: 201-220.
571	Guo, Q.J. et al., 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian
572	successions in South China: implications for organosedimentary metal
573	enrichment and silicification in the early Cambrian. Palaeogeography
574	Palaeoclimatology Palaeoecology, 254 (1-2): 194-216.
575	Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the
576	depositional environment and geochemistry of the upper pennsylvanian
577	(Missourian) Stark shale Member of the Dennis Limestone, Wabaunsee
578	Country, Kansas, USA. Chemical Geology, 99 (1-3): 65-82.
579	Henry, D.J., Guidott, C.V., 2002. Titanium in biotite from metapelitic rocks:
580	Temperature effects, crystal-chemical controls, and petrologic applications.
581	American Mineralogist, 87(4): 375-382.
582	Iliev, M.N., Hadjiev, V.G., Litvinchuk, A.P., 2013. Raman and infrared spectra of
583	brookite (TiO2): Experiment and theory. Vibrational Spectroscopy, 64: 148-
584	152.
585	Jiang, S.Y. et al., 2006. Trace-and rare-earth element geochemistry and Pb-Pb dating
586	of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower
587	Cambrian strata, Yangtze Platform, South China. Mineralium Deposita, 41(5):
588	453-467.
589	Jin, C.S. et al., 2018. Highly heterogeneous "poikiloredox" conditions in the early

28

590	Ediacaran Yangtze Sea. Precambrian Research, 311: 157-166.
591	Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indexes used for the
592	interpretation of palaeoredox conditions in ancient mudstones. Chemical
593	Geology, 111(1-4): 111-129.
594	Khan, H., Berk, D., 2014. Synthesis, physicochemical properties and visible light
595	photocatalytic studies of molybdenum, iron and vanadium doped titanium
596	dioxide. Reaction Kinetics Mechanisms and Catalysis, 111(1): 393-414.
597	Kim, J., Dong, H.L., Seabaugh, J., Newell, S.W., Eberl, D.D., 2004. Role of microbes
598	in the smectite-to-illite reaction. Science, 303(5659): 830-832.
599	Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal
600	marine sediments, with emphasis on the role of burrowing animals.
601	Hydrobiologia, 426(1-3): 1-24.
602	Li, H., Zhao, G.L., Chen, Z.J., Han, G.R., Song, B., 2010. Low temperature synthesis
603	of visible light-driven vanadium doped titania photocatalyst. Journal of Colloid
604	and Interface Science, 344(2): 247-250.
605	Ling, H.F. et al., 1997. Evolution of Nd and Pb isotopes in Central Pacific seawater
606	from ferromanganese crusts. Earth and Planetary Science Letters, 146(1-2): 1-
607	12.
608	Liu, ZR.R., Zhou, MF., 2017. Meishucun phosphorite succession (SW China)
609	records redox changes of the early Cambrian ocean. GSA Bulletin, 129 (11-12):
610	1554-1567.

611	Lo Monaco, S. et al., 2002. Distribution of major and trace elements in La Luna
612	formation, southwestern Venezuelan basin. Organic Geochemistry, 33(12):
613	1593-1608.
614	Mandal, P.C., Goto, M., Sasaki, M., 2014. Removal of Nickel and Vanadium from
615	Heavy Oils Using Supercritical Water. Journal of the Japan Petroleum Institute,
616	57 (1): 18-28.
617	Parnell, J., 2004. Titanium mobilization by hydrocarbon fluids related to sill intrusion
618	in a sedimentary sequence, Scotland. Ore Geology Reviews, 24 (1-2): 155-167.
619	Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites by
620	inductively coupled plasma mass spectrometry. Talanta, 51 (3): 507-513.
621	Ruiz Cruz, M., 2007. Genesis and evolution of the kaolin-group minerals during the
622	diagenesis and the beginning of metamorphism. Diagenesis and Low-
623	Temperature Metamorphism. Theory, Methods and Regional Aspects
624	Seminarios SEM, 3: 41-52.
625	Schulz, HM., Wirth, R., Schreiber, A., 2016. Nano-crystal formation of TiO2
626	polymorphs brookite and anatase due to organic-inorganic rock-fluid
627	interactions. Journal of Sedimentary Research, 86 (2): 59-72.
628	Skrabal, S.A., 2006. Dissolved titanium distributions in the Mid-Atlantic Bight. Marine
629	Chemistry, 102 (3-4): 218-229.
630	Steiner, M., Wallis, E., Erdtmann, B.D., Zhao, Y.L., Yang, R.D., 2001. Submarine-

631 hydrothermal exhalative ore layers in black shales from South China and

- 632 associated fossils insights into a Lower Cambrian facies and bio-evolution.
- 633 Palaeogeography Palaeoclimatology Palaeoecology, 169 (3-4): 165-191.
- 634 Tachikawa, K., Athias, V., Jeandel, C., 2003. Neodymium budget in the modern ocean
- and paleo-oceanographic implications. Journal of Geophysical ResearchOceans, 108 (C8): 3254.
- Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as
 paleoredox and paleoproductivity proxies: an update. Chemical Geology,
 232(1-2): 12-32.
- 640 Van Den Berg, C.M.G., Boussemart, M., Yokoi, K., Prartono, T., Campos, M.L.A.M.,
- 641 1994. Speciation of aluminum, chromium and titanium in the NW
 642 Mediterranean. Marine Chemistry, 45 (4): 267-282.
- Velde, B.B., Meunier, A., 2008. The origin of clay minerals in soils and weathered
 rocks. Springer Science & Business Media, 1-405.
- 645 Wen, H.J. et al., 2011. Molybdenum isotopic records across the Precambrian-Cambrian
- 646 boundary. Geology, 39 (8): 775-778.
- 647 Wen, H.J., Fan, H.F., Zhang, Y.X., Cloquet, C., Carignan, J., 2015. Reconstruction of
- 648 early Cambrian ocean chemistry from Mo isotopes. Geochimica Et649 Cosmochimica Acta, 164: 1-16.
- Kiong, Q., Zheng, J., Griffin, W.L., O'Reilly, S.Y., Zhao, J., 2011. Zircons in the
- 651 Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks
- 652 from the North Qaidam terrane (western China): Meso-Neoproterozoic crust-

- mantle coupling and early Paleozoic convergent plate-margin processes.
 Precambrian Research, 187 (1): 33-57.
- Yang, K., Lin, D.H., Xing, B.S., 2009. Interactions of humic acid with nanosized
 inorganic oxides. Langmuir, 25 (6): 3571-3576.
- 657 Yin, L., Li, J., Tian, H., Long, X., 2018. Rhenium–osmium and molybdenum isotope
- 658 systematics of black shales from the Lower Cambrian Niutitang Formation, SW
- 659 China: Evidence of a well oxygenated ocean at ca. 520 Ma. Chemical Geology,
- 660 **499: 26-42**.
- 661 Young, G.M., Nesbitt, H.W., 1998. Processes controlling the distribution of Ti and Al
- in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal ofSedimentary Research, 68 (3): 448-455.
- Yu, R.Q., Wang, W.X., 2004. Biological uptake of Cd, Se(IV) and Zn by
 Chlamydomonas reinhardtii in response to different phosphate and nitrate
 additions. Aquatic Microbial Ecology, 35 (2): 163-173.
- 667Zhang, H. et al., 2001. Moderately depleted lithospheric mantle underneath the Yangtze
- Block: evidence from a garnet lherzolite xenolith in the Dahongshan kimberlite.Geochemical Journal, 35: 315-331.
- 670 Zhang, H.Z., Banfield, J.F., 2014. Structural Characteristics and Mechanical and
- 671 Thermodynamic Properties of Nanocrystalline TiO₂. Chemical Reviews, 114672 (19): 9613-9644.
- 673 Zhang, Y. et al., 2017. Marine redox stratification during the early Cambrian (ca. 529-

- 509 Ma) and its control on the development of organic-rich shales in Yangtze
- 675 Platform. Geochemistry, Geophysics, Geosystems, 18(6): 2354-2369

676

677 Figure captions

678

Figure 1. A simplified paleogeographic map of the Yangtze platform during the
Ediacaran-Cambrian transition, showing the four major facies under consideration
(modified from (Steiner et al., 2001; Zhang et al., 2017)).

682

683 Figure 2. Photograph (a), backscattered electron (BSE) (b and h) and secondary electron 684 (SE_2) (c-g) images of the black shale in the Meishucun section. a) the black shale 685 profile; b) the mineral distribution in a thin section cut oblique to the bedding plane; the mineral distribution was determined using AMICS software; c) tabular brookite 686 crystals and pyrite along cleavages in a biotite relict; d) biotite grains replaced by nano-687 crystalline aggregates of clay minerals; e) and f) authigenic clay minerals in the 688 689 interstices between detrital grains; g) directional alignment of biotite; h) pyrite 690 framboids and euhedral pyrite. Q+C = quartz + trace clay mineral; Qtz = quartz; Fra=691 Francolite; Chl = chlorite; Cl = clay minerals; Py = pyrite; Bio = biotite; Brk =692 brookite Am = amphibole; Dol = dolomite; Un = undermined mineral or holes or693 organic matter or bitumen. 694

Figure 3. Photograph (a), BSE (b-d, g and h) and SE₂ (e and f) images of black shales
in the Zhajin section, Xiuwu area. a) the black shales profile; b) disseminated anatase
and bitumen; c) sponge-like anatase, and sphalerite intergrown with bitumen; d) the

^{© 2019.} This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

698	mineral distribution determined using the AMICS software; anatase coated Fe-oxide;
699	e) and f) the association of bitumen, sphalerite and anatase; g) and h) clay minerals.
700	Ana = anatase; Un = undermined mineral or holes or organic matters; Bt = Bitumen
701	
702	Figure 4. Secondary electron (a-d) and BSE (e and f) images of the black shale in the
703	Zhajin section, Xiuwu area. a) and b) bitumen filling pores in the black shales; c) quartz
704	fragments in bitumen; d) clay mineral in contact with bitumen.
705	
706	Figure 5. Raman shift and a TEM image of titania minerals from black shales of the
707	Meishucun and Zhajin sections, South China. a) Raman shift diagram, the red lines
708	illustrate our spectra and the black line the spectra presented in (Iliev et al., 2013); b)
709	bright field TEM images of anatase crystals from the Zhajin section; c) enlargement of
710	the area labeled "c" in (b), showing individual anatase crystals; d) electron diffraction
711	pattern for the [1,1,1] plane of anatase.
712	
713	Figure 6. Binary diagrams illustrating compositional data for the titania minerals.
714	
715	Figure 7. Binary diagrams illustrating compositional data for the phyllosilicate
716	minerals. In a) bio=biotite and chl= chlorite; the shaded areas in b) indicate the fields
717	of illite (il); smectite (sm); Al-rich illite - smectite mixed layer mineral (I/S _{Al}); Fe-rich
718	illite - smectite mixed layer mineral (I/S _{Fe}); and glauconite (Gla).

719

- Figure 8. Plots showing the depositional redox states of the Meishucun and Zhajin black
- shales based on proxies involving vanadium: a) bulk rock V/V+NI vs. V/Cr; and b)
- 722 U/Th vs. Ni/Co of the black shales. *WR*=*whole rock*.

