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Abstract
Rationale Adult rats emit ultrasonic calls at around 22 and
50 kHz, which are often elicited by aversive and rewarding
stimuli, respectively. Dopamine (DA) plays a role in aspects
of both reward and aversion.
Objective The purpose of this study is to investigate the
effects of DA receptor subtype-selective agonists on 22-
and 50-kHz call rates.
Methods Ultrasonic calls were recorded in adult male rats
that were initially screened with amphetamine to eliminate
low 50-kHz callers. The remaining subjects were tested after
acute intraperitoneal or subcutaneous injection of the fol-
lowing DA receptor-selective agonists and antagonists:
A68930 (D1-like agonist), quinpirole (D2-like agonist),
PD 128907 (D3 agonist), PD 168077 (D4 agonist), SCH
39166 (D1-like antagonist), L-741,626 (D2 antagonist),
NGB 2904 (D3 antagonist), and L-745,870 (D4 antagonist).
The indirect DA/noradrenaline agonist amphetamine served
as a positive control.
Results As expected, amphetamine strongly increased 50-
kHz call rates. In contrast, D1-, D2-, and D3-selective DA
receptor agonists, when given alone, inhibited calling; com-
binations of D1- and D2-like agonists also decreased call
rate. Given alone, the D1-like and D3 antagonists signifi-
cantly decreased call rate, with a similar trend for the D2
antagonist. Agonist–antagonist combinations also decreased

calling. The D4 agonist and antagonist did not significantly
affect 50-kHz call rates. Twenty-two-kilohertz calls oc-
curred infrequently under all drug conditions.
Conclusion Following systemic drug administration, tonic
pharmacological activation of D1-like or D2-like DA recep-
tors, either alone or in combination, does not appear suffi-
cient to induce 50-kHz calls. Dopaminergic transmission
through D1, D2, and D3 receptors appears necessary for
spontaneous calling.
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Introduction

Adult rat ultrasonic vocalizations (USVs) are commonly di-
vided into two main categories: calls in the the 20–30-kHz
range, termed 22-kHz USVs, and calls in the 35–90-kHz
range, termed 50-kHz USVs (Portfors 2007). These two cat-
egories have been proposed to indicate negative and positive
affective states, respectively (Knutson et al. 2002; Wöhr and
Schwarting 2012). For example, 22-kHz calls are emitted
during confrontation with an aggressive conspecific or feline
predator and in response to painful stimuli (Sales 1972b;
Cuomo et al. 1988; van der Poel et al. 1989; Blanchard et al.
1991). In contrast, 50-kHz calls have been reported during
rough-and-tumble play, copulation, and in anticipation of food
delivery (Sales 1972a; Knutson et al. 1998; Burgdorf et al.
2000). However, the association between USV categories and
affective valence appears more complex; notably, male rats
emit 22-kHz calls after ejaculation (Barfield and Geyer 1972)
and emit 50-kHz calls as well as 22-kHz calls during inter-
male aggression (Sales 1972b; Thomas et al. 1983).
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Evidence from several studies suggests that dopaminer-
gic (DAergic) neurotransmission plays a key role in the
emission of 50-kHz calls in adult rats. For example, psy-
chostimulant drugs (amphetamine, methylphenidate, and
cocaine) that increase dopamine (DA) release and/or block
reuptake at the somatodendritic and terminal level (Kalivas
et al. 1989; Sulzer 2011) increase the emission of 50-kHz
calls (Burgdorf et al. 2001; Wintink and Brudzynski 2001;
Thompson et al. 2006; Ahrens et al. 2009; Wright et al.
2010; Meyer et al. 2011; Browning et al. 2011; Brudzynski
et al. 2012; Simola et al. 2012; Wright et al. 2012a, b, c).
However, all the above indirect DAergic agonists exert
additional, non-DAergic effects, and it is therefore important
to note that several DAergic antagonists have been found to
markedly inhibit amphetamine-induced 50-kHz calling
(Wright et al. 2012b).

Attempts to selectively activate DAergic receptors have,
in contrast, produced conflicting findings. For example, the
50-kHz call rate was increased by intra-accumbens micro-
injection of the D2/D3 agonist (quinpirole; Brudzynski et al.
2012) and by a D2-like receptor antagonist (haloperidol;
Thompson et al. 2006). To date, only two studies have
investigated the effects of systemically administered D1-
and D2-like drugs on spontaneously emitted 50-kHz USVs.
In the first of these, neither the agonists nor antagonists
affected call rate, but baseline call rates were low (Williams
and Undieh 2010). In the second, both D1-like and D2-like
antagonists inhibited calling (Wright et al. 2012b). Howev-
er, in the two latter studies, the test drugs were only selective
for D1-like vs. D2-like receptor families rather than
individual DA receptor subtypes (Andersen and Jansen
1990; Gehlert et al. 1992; Ruskin et al. 1998; Boulougouris et
al. 2009).

The main aim of the present study was therefore to
investigate the acute effects of DA receptor subtype-selective
drugs on 50-kHz calls. To this end, we recorded USVs follow-
ing acute systemic administration of DA receptor subtype-
selective agonists, antagonists, and several agonist–antagonist
combinations. Given that DA also plays a role in aversion
(Bromberg-Martin et al. 2010, Lammel et al. 2012), we simul-
taneously recorded 22-kHz vocalizations. Finally, since func-
tional synergy is sometimes observed between D1-like and D2-
like DA receptors (Clark andWhite 1987; LaHoste et al. 2000),
we also tested combinations of a D1- and a D2-like agonist.

Methods

Subjects

Twenty experimentally naïve male Long–Evans rats
(Charles River Laboratories, St. Constant, Quebec, Canada)
were used in each experiment (total of 140 rats). The rats

initially weighed 268–356 g at the beginning of the exper-
iment. Subjects were housed two per cage in a temperature-
and humidity-controlled colony room (20–22 °C, 50–60 %).
Home cage bedding consisted of laboratory grade Sani-
Chips (Harlan Laboratories, Indianapolis, IN). Rats were
maintained on a reverse 12:12-h light/dark cycle, with lights
off at 0700 hours. Behavioral testing took place during the
dark phase of the subjects’ cycle, between 0800 and
1300 hours. Food and water were available ad libitum,
except during testing. Subjects were each handled once
daily for 3 min, for 2 days before the first experimental
day. Exceptionally, in experiment 1, subjects were handled
for 5 days before the start of the testing. All procedures were
approved by the McGill Animal Care Committee in accor-
dance with the guidelines of the Canadian Council on An-
imal Care.

Experimental protocol

Initial amphetamine screen Each experiment began with an
initial amphetamine screen (Wright et al. 2012c). This served
two purposes: (1) to exclude the significant minority of rats
that emit few 50-kHz vocalizations in response to systemic
amphetamine (Wright et al. 2010) and (2) to increase the acute
response to this drug, which was also used as a positive
control in later testing. Briefly, rats (n020) were given an
acute injection of 1 mg/kg of amphetamine immediately be-
fore placement in the testing chambers (once daily 20-min
session, for 3 days, spaced 2 days apart). Ultrasonic vocal-
izations occurring in the 12th, 14th, and 16th minute of day 3
were counted. The eight rats with the lowest call numbers
were not tested further, leaving a group size of 12.

Drug tests A separate group of rats was used for each
experiment (n012) except experiments 4 and 8, which were
completed with the same group of rats (n012). Each rat
received five to 16 test sessions, depending on the
experiment, spaced 2 days apart. Fully parametric
within-subject designs were employed (i.e., each rat
was tested under each drug condition). Amphetamine
(1 mg/kg intraperitoneal (IP)) served as a positive con-
trol throughout. The order of drug treatment within an
experiment was as nearly counterbalanced as subject
numbers allowed. By visual inspection, physical appear-
ance and any unusual behaviours were noted before all
injections, between injections (where applicable) and
after each injection and test session.

Drugs

All test drugs, doses, injection timings and routes of admin-
istration are shown in Table 1. All doses were chosen based
on behavioural effectiveness in other assays (Hoffman and
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Beninger 1988; Al-Naser and Cooper 1994; Bartoszyk
1998; Hsieh et al. 2004; Millan et al. 2004a; Fenu et al.
2005; Melis et al. 2006; Xi and Gardner 2007). The
following drugs were used: the D1-like agonist A68930
hydrochloride, D1-like antagonist SCH 39166 hydrobro-
mide, D2/D3 agonist (−)-quinpirole hydrochloride, D2
antagonist L-741,626, D3 agonist (+)-PD 128907 hydro-
chloride, D3 antagonist NGB 2904, D4 agonist PD
168077 maleate, and the D4 antagonist L-745,870 trihy-
drochloride. Drugs were purchased from Tocris Biosci-
ence (Minneapolis, MN), except for D-amphetamine
(Sigma-Aldrich, Poole, UK), A68930 and quinpirole (Sig-
ma Aldrich, Oakville, ON). All drugs were dissolved in
0.9 % sterile saline, with the following exceptions: (1) L-
741,626 was dissolved in 22 % DMSO/78 % deionized
water v/v and (2) NGB 2904 was dissolved in a 5 % w/v
solution of 2-hydroxypropyl-β-cyclodextrin in deionized
water. The timing of each control (vehicle) injection
matched that of the respective drug. Drug solutions were
pH-matched to the corresponding vehicle solution (pH
5.6–7.0). All doses are expressed as salt. Drugs were
administered in a volume of 1 ml/kg except for: (1)
A68930 in experiments 1 and 5, (2) NGB 2904, and (3)
L-741,626, which were all administered in a volume of
2 mL/kg, as were their corresponding vehicles. All drugs
were administered by the IP or subcutaneous (SC) route
(see Table 1).

Acoustic data acquisition and analysis of ultrasonic
vocalizations

The apparatus, testing procedure, and acoustic analysis were
as previously described (Wright et al. 2012c). Testing was
carried out in clear Plexiglas™ experimental boxes (ENV-
007CT, Med Associates, St. Albans, VT), each enclosed in a
separate melamine compartment that was lined with sound-
attenuating acoustic foam (Primacoustic, Port Coquitlam,
BC). Condenser ultrasoundmicrophones (CM16/CMPA, Avi-
soft Bioacoustics, Berlin, Germany) were placed above a
small (5-cm diameter) hole, located at the top center of each
experimental box. The microphones were located 15–30 cm
from the rat. Microphone signals were delivered to an Ultra-
SoundGate 416H data acquisition device (Avisoft Bioacous-
tics) with a sampling rate of 250 kHz and 16-bit resolution.

Avisoft SASLab Pro software (version 5.1.14, Avisoft
Bioacoustics, Berlin, Germany) was used for acoustical
analysis. Spectrograms were created with a fast Fourier
transform length of 512 points and an overlap of 75 %
(FlatTop window, 100 % frame size) yielding a frequency
resolution of 490 Hz and a time resolution of 0.5 ms. Calls
were selected manually from spectrograms by an individual
masked to treatment conditions.

Data analysis and statistics

Data were analyzed using commercial software (Systat
v11, SPSS, Chicago, IL; GraphPad Software, La Jolla,
CA). Calls between 20 and 30 kHz were rarely observed
and were not analyzed statistically. Call rate was defined
as the total number of 50-kHz calls per minute. Analyzed
time bins (see Table 1) were evenly spaced across the
session, and the session duration was chosen based on the
behavioural time course of each drug. Use of parametric
vs. nonparametric tests depended on the distribution of
the data. For example, nonparametric tests were used
where the variances were heterogeneous. Multiple compari-
son tests were performed using Wilcoxon signed-rank tests.
Single comparisons were done using paired t tests for vehicle
conditions in all experiments except experiment 7. Differen-
ces between multiple vehicles were assessed by Friedman’s
nonparametric analysis of variance. For all tests, a two-tailed p
value less than 5 % was considered significant.

Results

Initial amphetamine screen, and subsequent saline
and amphetamine tests

Since 22-kHz calls were seldom observed, they are reported
only under the section “Other observations.” During the initial
amphetamine screen, the median 50-kHz call rate was 32 calls
per minute with an interquartile range (IQR) of 5.5–61 (i.e.,
pooling all 140 rats from all experiments); with the low callers
removed from each experiment (see “Methods”), the median
50-kHz call rate was 54 calls per minute, IQR 40–77 (i.e.,
pooling the 84 remaining rats). During drug testing blocks, the
call rate was much lower under control conditions (i.e., after
saline injection, median03 calls per minute, IQR 1–13, n084
rats) than after amphetamine administration (median061 calls
per minute, IQR 28–85). This call-promoting effect of amphet-
amine was significant in all eight experiments (Wilcoxon’s
signed-rank test, Z02.824 to 3.059, p<0.01 for each).

Experiments 1–4: receptor subtype-selective dopamine
agonist dose–response relationships

For each experiment, the two control (vehicle) tests did not
significantly differ with respect to 50-kHz call rates, and
these data were averaged for each rat.

D1-like agonist. A68930 (0.0625–4 mg/kg) significant-
ly decreased the 50-kHz call rate at the three highest
doses (Wilcoxon: Z02.357–3.059, p<0.05 to p<0.01;
Fig. 1a, b).
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D2/D3 agonist. Quinpirole (0.033–1 mg/kg) inhibited
50-kHz calling at all doses tested (Wilcoxon: Z01.961–
3.059, p<0.05 to p<0.01; Fig. 1c, d).
D3 agonist. PD 128907 (0.001–1 mg/kg) significantly
reduced the 50-kHz call rate at all doses except the

second lowest (Wilcoxon: Z01.961–2.825, p<0.05 to
p<0.01; Fig. 1e, f).
D4 agonist. PD 168077 (0.033–1 mg/kg) did not sig-
nificantly affect 50-kHz call rates, except at the second
lowest dose (Wilcoxon: Z02.118, p<0.05; Fig. 1g, h).

Fig. 1 Experiments 1, 2, 3, and
4: dose-dependent (a, c, e, g)
and time-dependent (b, d, f, h)
effects of DAergic agonists on
50-kHz call rate (n012 in each
panel). Panels a, c, e, and g are
box plots showing median
± IQR. The lowest and highest
doses in these left-hand panels
are represented as median calls
per 1-min time bin in panels
b, d, f, and h, respectively (for
the same panels with IQR
bars added, see Supplementary
Fig. S1). Amphetamine
(AMPH, 1 mg/kg IP) served
as a positive control. *p<0.05;
**p<0.01 vs. zero dose
(Wilcoxon's tests). The same
vehicle condition is shown
twice in panels a, c, e, and g
(i.e., 0 and CTL)

Psychopharmacology (2013) 226:589–600 593



Experiment 5: combination of D1-like and D2/D3-selective
agonists

We next tested the D1-like agonist, A68930, and the D2/D3
agonist, quinpirole, in combination. Low- and high-dose
combinations were chosen based on the results of experi-
ments 1 and 2, i.e., A68930 0.0625 mg/kg+quinpirole
0.033 mg/kg and A68990 0.25 mg/kg+quinpirole 0.1 mg/
kg (Fig. 2). The high-dose combination significantly de-
creased 50-kHz call rates (Wilcoxon: Z02.194, p<0.05),
and a similar trend was observed with the low-dose combi-
nation (Wilcoxon: Z01.836, p00.066).

Experiment 6: D3 and D2/D3 agonists in combination
with a D3 antagonist

The observed effects of quinpirole (D2/D3 agonist) on call
rate in experiment 2 resembled the call-suppressive effect
of the selective D3 agonist PD 128907 from experiment 3.
To test whether quinpirole’s effects were due to its actions
at the D3 receptor, we administered this drug in combination
with a selective D3 receptor antagonist, NGB 2904 (Fig. 3).
The call rates in the two control conditions, saline and
β-cyclodextrin, did not differ significantly (paired t test,
NS) and were averaged for each rat. Quinpirole and PD
128907, given alone, both significantly decreased call-
ing (Wilcoxon: Z02.118 and 2.001, p<0.05). The D3
antagonist NGB 2904 itself did not significantly affect
the call rate (Wilcoxon: Z00.549, NS) and did not
appear to reduce the agonist-induced call suppression
(Fig. 3). In the presence of the D3 antagonist, both
quinpirole and PD 128907 exerted a residual depressant
effect on the call rate (antagonist alone vs. antagonist/
agonist combination, Wilcoxon: Z02.511 and 1.961,
p<0.05).

Experiment 7: D1-like, D2/D3, and D3 selective agonists
in combination with selective antagonists

In experiment 6, the D3 antagonist NGB 2904 failed to
counter the call-suppressant effect of the D2/D3 agonist
quinpirole and the D3 agonist PD 128907. Therefore, we
next tested these agonists in combination with a higher dose
of NGB 2904 (i.e., 2 mg/kg instead of 1 mg/kg). The same
two agonists were also tested together with the D2-selective
antagonist L-741,626. Within the same drug testing block,
the D1-like agonist (A68930) was tested in combination
with a D1-like antagonist (SCH 39166).

The call rates in the three control conditions (saline, dimeth-
yl sulfoxide (DMSO), and β-cyclodextrin) were not signifi-
cantly different and were averaged. As shown in Fig. 4, the D1-
like antagonist SCH 39166 decreased call rate when given
alone (Wilcoxon: Z02.903, p<0.01); this drug also produced
lethargy within a few minutes of injection. The D1-like agonist
A68930 also tended to inhibit calling (Wilcoxon: Z01.726, p0
0.084) and exerted a marginally significant residual effect in the
presence of SCH 39166 (Wilcoxon: Z01.962, p00.0498). The
combination of D1-like antagonist and agonist virtually abol-
ished 50-kHz calling (Wilcoxon: Z03.060, p<0.01).

The D3 antagonist NGB 2904 decreased call rate when
given alone (Wilcoxon: Z01.962, p<0.05) and the D2 an-
tagonist L-741,626 also tended to decrease calling (Wilcoxon:
Z01.726, p00.084). In the absence of an antagonist, quinpirole
and PD 128907 significantly decreased 50-kHz calls, as found
earlier (Wilcoxon: Z02.903 and 3.061, p<0.01). Following
D2-selective antagonist pretreatment, quinpirole exerted resid-
ual call-suppressant effects (i.e., when compared to antagonist
alone), while PD 128907 did not (Wilcoxon: Z02.805, p<0.01;
Z00.297, NS). Conversely, following D3 antagonist treatment,
PD 128907 but not quinpirole, exerted significant residual call-
suppressant effects (Wilcoxon: Z02.654, p<0.01; Z01.939,
p00.053, respectively).

Fig. 2 Experiment 5: effect of D1-like (A68930; A6) and D2/D3
dopamine agonist (quinpirole (Q)) combinations on 50-kHz call rate.
Each rat (n012) was tested under each treatment condition, doses are
expressed as mg/kg and were given SC (A6) or IP (Q). Amphetamine
(AMPH, 1 mg/kg IP) and vehicle (CTL) served as controls. *p<0.05;
**p<0.01 vs. CTL (Wilcoxon’s tests)

Fig. 3 Experiment 6: the D2/D3 agonist quinpirole (Q) (0.1 mg/kg
IP), and the D3 agonist PD 128907 (P) (0.1 mg/kg SC) administered
with either vehicle pretreatment (i.e., C, average of both vehicles used)
or the D3 antagonist NGB 2904 (N) (0.1 mg/kg IP). Amphetamine
(AMPH, 1 mg/kg IP) served as a positive control. Each rat (n012) was
tested under all conditions. *p<0.05; **p<0.01 vs. control (C). The
same control condition is shown in both panels. †p<0.05 vs. antagonist
alone (Wilcoxon's tests)
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Experiment 8: D4 selective antagonist

The D4 antagonist, L-745 870 (1 mg/kg IP) did not signif-
icantly affect 50-kHz call rate (Wilcoxon: Z01.784, NS).
The median call rates under drug and saline were, respec-
tively, 0.7 calls per minute (IQR, 0.1–3.2) and 1.2 calls per
minute (IQR, 0.2–5).

Other observations

Novel 22-kHz calls intermingled with 50-kHz calls We ob-
served frequencymodulated long 22-kHz calls that are different
from the typically reported long 22-kHz calls. More specifical-
ly, these calls comprised a long (400–1,520 ms) low-frequency
(24–29 kHz) component, preceded and/or followed by a high-
frequency (41–61 kHz) component. These calls, which were
intermingled with 50-kHz calls, occurred infrequently (i.e., a
total of eight calls, found in two out of 12 rats in experiment 6)
and only under amphetamine. In contrast, constant frequency
22-kHz calls were not observed in rats receiving amphetamine
and seldom occurred under other drug conditions (14 calls in
two rats).

Audible calls In experiment 1, the two highest doses of
A68930 (1 and 4 mg/kg), caused audible calls approximate-
ly 1 h after the end of the session (2 h postinjection), in three
of the 12 rats tested. These calls were emitted in their home
cage in the presence of their cage mate and stopped imme-
diately upon social separation.

Discussion

The present study provides the first report that spontaneous
50-kHz call rates can be reduced by systemic administration
of DAergic agonists. Call inhibition occurred not only with
D1-like, D2, and D3 receptor-selective agonists, but also
with DAergic antagonists and agonist/antagonist combina-
tions. These call rate-suppressive effects contrasted strongly
with the well-established rate-enhancing effects of the indi-
rect DA/noradrenaline (NA) agonist amphetamine that oc-
curred reliably in the same animals.

Call-suppressive drug effects vs. motor inhibition

Several classes of DAergic drugs affect motor function (for
a review see Jackson and Westlind-Danielsson 1994). In the
present study, the majority of DAergic agents decreased 50-
kHz call rates, but only SCH 39166 (D1-like antagonist)
produced visible signs of motor impairment or lethargy. For
the remaining drugs, there was no consistent relationship
with motor output. First, at the doses used there was no
visible sign of catalepsy, which is consistent with literature
reports (Millan et al. 1998, 2000; Banasikowski and
Beninger 2012). Second, quinpirole inhibited calling not
only at low, locomotor depressant doses (0.033 and
0.1 mg/kg; Schaub et al. 1997; Schindler and Carmona
2002) but also at higher doses reported to increase locomo-
tor activity (LA) (1–10 mg/kg; Horvitz et al. 2001). Third,
the D3 agonist PD 128907 inhibited calling even at low
doses that would not be expected to affect LA (Gyertyan
and Saghy 2004; Millan et al. 2004b). Fourth, NGB 2904
(D3 antagonist) decreased the call rate at doses that have
been shown to increase spontaneous LA (Pritchard et al.
2007). Fifth, A68930 (D1-like agonist) and L-741,626 (D2
antagonist) are reported not to affect LA (Deveney and
Waddington 1997; Clifford and Waddington 2000; Isacson
et al. 2004; Nergardh et al. 2005; Koffarnus et al. 2011;
Chang et al. 2011) at doses which inhibited calling. In
conclusion, we cannot exclude the possibility that some
drugs at certain doses (notably high-dose SCH 39166 and
low-dose quinpirole) reduced 50-kHz call rates by inhibiting
motor function. However, the present findings also provide
examples where USV emission and locomotor activity can
be dissociated, as previously reported with other drugs
(Burgdorf et al. 2001; Natusch and Schwarting 2010;
Wright et al. 2012a).

D1-like, D2/D3-, and D3-selective agonists alone decreased
50-kHz vocalizations

In the present study, all DAergic agonists, with the possible
exception of the D4-selective agonist, decreased the 50-kHz
call rate. Only one previous study has reported the effects of

Fig. 4 Experiment 7: effects of dopamine agonists given alone (i.e., with
control (C) pretreatment) or in combination with their corresponding
antagonist. All drugs were given IP or SC (see Table 1): D1-like agonist,
A68930 (A6); D2/D3 agonist, quinpirole (Q); D3 agonist, PD 128907 (P);
D1-like antagonist, SCH 39166 (S); D2 antagonist, L-741,626 (L), and
D3 antagonist, NGB 2904 (N). Amphetamine (1 mg/kg IP) served as a
positive control. *p<0.05; **p<0.01 vs. C (control 0 mean of the three
vehicles used). The same drug-free control condition (i.e., C/C) is
represented three times. †p<0.05 vs. corresponding antagonist alone
(Wilcoxon’s tests), n012
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acute, systemically administered D1- and D2-like selective
agonists on spontaneous 50-kHz calling (Williams and
Undieh 2010); neither SKF 38393 (D1-like) nor quinpirole
(D2/D3) exerted any detectable effect on 50-kHz call rates.
Several procedural factors could readily account for differ-
ences between the two studies. These factors include the
specific drugs used (only quinpirole was common to both),
the route of drug administration (i.e., IP vs. SC), rat strain,
and the recording and analysis methodology. Importantly, in
the earlier study, call rates under saline were extremely low
(e.g., ~5 calls per hour), impeding detection of any inhibi-
tory drug effects.

Combinations of D1-like and D2/D3-selective agonists
decreased 50-kHz vocalizations

Concurrent activation of postsynaptic D1-like and D2-like
receptors appears to be required for the expression of several
DAergic agonist-induced behaviours (Clark and White
1987; Dall'olio et al. 1988; Wachtel et al. 1989; Garrett
and Holtzman 1994; Capper-Loup et al. 2002; Hasbi et al.
2011; Ikemoto et al. 1997). To address whether concurrent
activation of D1 and D2 receptors is sufficient to elicit
USVs, we administered A68930 and quinpirole in combi-
nation. Our lower dose of quinpirole (0.033 mg/kg) would
selectively target inhibitory DA autoreceptors (Widzowski
and Cory-Slechta 1993), whereas the higher dose (0.33 mg/
kg) would be expected to act predominantly at postsynaptic
D2 receptors (Cory-Slechta et al. 1996). In the present study,
both dose combinations inhibited calling. This result con-
trasts with a clear stimulant effect reported after systemic
administration of the D1/D2-like DAergic agonist apomor-
phine (Williams and Undieh 2010). However, apomorphine
may also have exerted non-DAergic actions at the high dose
administered (2 mg/kg SC), for example at adrenergic and
5-HT receptors (Millan et al. 2002; Newman-Tancredi et al.
2002).

The observed effects of systemically administered DAer-
gic agonists suggest that DA receptor activation in multiple
brain regions is insufficient to induce calling. Consistent
with this conclusion, we recently observed that the call-
enhancing effect of systemically administered amphetamine
is critically dependent on both dopaminergic and adrenergic
receptor mechanisms (Wright et al. 2012b, c).

DA receptor antagonists decreased 50-kHz call rate
without affecting agonist-induced inhibition

Dopaminergic antagonists were initially reported to have no
effect on spontaneous rates of 50-kHz vocalization after
systemic administration (Wintink and Brudzynski 2001;
Williams and Undieh 2010), but in both these studies the
low basal rates of calling could potentially have masked any

inhibitory effects. More recently, we observed a suppression
of 50-kHz calling following systemic administration of the
D1- and D2-like antagonists SCH 39166 and raclopride
(Wright et al. 2012b). Extending the latter observations,
the D1-like and D3-selective antagonists tested in the pres-
ent study both decreased the 50-kHz call rate, with a similar
trend for the D2-selective antagonist. Taken together, the
inhibitory effects of systemically administered DAergic
antagonists suggest that DA receptors are necessary for
USV emission.

In the present study, the D2- and D3-selective antag-
onists did not significantly inhibit the effects of their
respective agonists. It is likely that the antagonist doses
were sufficiently high; first, these drugs appeared to
inhibit calling when given alone, and second, compara-
ble doses were effective in other behavioural assays
(Fenu et al. 2005; Melis et al. 2006; Collins et al. 2007; Xi
and Gardner 2007). In the latter studies, off target
actions appear improbable since these drugs are reported
to be highly receptor-selective (McQuade et al. 1991;
Kebabian et al. 1992; Levant et al. 1993; Pugsley et al.
1995; Bowery et al. 1996; Glase et al. 1997; Patel et al.
1997; Yuan et al. 1998).

Comparisons with amphetamine and cocaine

The inhibition of 50-kHz calling by D1-like and D2-like
agonists is particularly striking when set against the robust
call stimulation associated with systemic administration of
the indirect agonists amphetamine (Wintink and Brudzynski
2001; Thompson et al. 2006; Wright et al. 2010; Simola et
al. 2012) and cocaine (Mu et al. 2009; Williams and Undieh
2010; Meyer et al. 2011; Wright et al. 2012c). Psychosti-
mulant drugs, via presynaptic actions, enhance NA as well
as DAergic transmission (Kuczenski et al. 1995, 1997;
Berridge and Stalnaker 2002), and NAergic mechanisms
are clearly critical to amphetamine-induced 50-kHz calling
(Wright et al. 2012c). However, a NAergic contribution
does not readily explain why DA receptor agonists and
antagonists both decreased call rate. Another neuropharma-
cological difference between amphetamine/cocaine and di-
rect DAergic agonists is that, according to recent in vivo
voltammetric evidence, amphetamine and cocaine both en-
hance phasic DAergic signaling to an important degree
(Cheer et al. 2007; Aragona et al. 2008; Ramsson et al.
2011a, b). Transient DA release events are known to occur
spontaneously (Wightman and Robinson 2002; Schultz
2007), and their postsynaptic impact would likely be
masked after administration of DA receptor agonists, antag-
onists, and their combination. Therefore, based on the pres-
ent USV findings, we propose the hypothesis that 50-kHz
vocalizations (or certain call subtypes) are driven by DA
transients.
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Behavioral significance of decreased 50-kHz call rate

The relationship of 50-kHz calls with conventional meas-
ures of drug reward has been little explored. Specifically, the
psychostimulants amphetamine and cocaine, after IP or SC
administration, reliably produce CPP (0.5–2 mg/kg and 4–
20 mg/kg, respectively; Tzschentke 1998) and acutely pro-
mote 50-kHz USVs (AMPH 0.5–2 mg/kg, cocaine 10–
20 mg/kg; see above for references), whereas morphine
can produce a CPP without a concomitant increase in un-
conditioned USV emissions (Wright et al. 2012a). The pres-
ent study provides further evidence that unconditioned drug
effects on 50-kHz call rate do not necessarily match the
conditioned drug effects that are revealed in the CPP/CPA
procedure. Our test drugs that decreased 50-kHz calling
either (1) produced CPP or no effect (quinpirole; Hoffman
and Beninger 1988; Graham et al. 2007), (2) produced CPA
or no effect (SCH 39166; Acquas and Di Chiara 1994; Spina
et al. 2006), or (3) produced CPP or CPA, even at the same
dose (PD 128907; Khroyan et al. 1997; Gyertyan and Gal
2003). Lastly, no published CPP/CPA data appear available
for A68930, PD 168077, L-741,626, L-745,870, or NGB
2904.

Several groups have proposed that 50-kHz calls may
represent a behavioural expression of positive affect
(Cuomo and Cagiano 1987; Knutson et al. 2002; Panksepp
and Burgdorf 2003; Brudzynski 2007; Mallo et al. 2009;
Barker et al. 2010; Browning et al. 2011; Burgdorf et al.
2011; Hamdani and White 2011). In the present study, most
DAergic antagonists and agonists inhibited calling, and
on this basis we speculate that a decrease in 50-kHz
call rate may not necessarily reflect a negative shift in
affect, but rather a response to an unfamiliar stimulus or
context.

Limitations

Route of administration The present study demonstrated
that systemically administered DAergic agonists and antag-
onists, given alone, decreased calling. Inhibition of calling
by DAergic agonists indicates that DA receptor activation in
multiple brain regions is insufficient to induce calling,
whereas the inhibitory effects produced by DAergic antag-
onists suggest that DA receptors are necessary for USV
emission. These conclusions run counter to findings from
two studies based on intra-accumbens infusions of DAergic
agents. In one study, the D2/D3 agonist quinpirole increased
50-kHz calling, while neither D2- nor D3-selective antago-
nists produced a significant effect (Brudzynski et al. 2012).
In the other study, the D1- and D2-like antagonists SKF
32957 and raclopride did not alter 50-kHz call rate, whereas
the D2-like haloperidol increased it (Thompson et al. 2006).
Taken together, these findings highlight the importance of

route of administration and raise the possibility of both
inhibitory and excitatory DAergic influences on 50-kHz call
emissions.

Adverse drug effects High doses of A68930 (1.2 and
3.7 mg/kg) have been reported to trigger motor seizures in
adult rats (DeNinno et al. 1991). However, no such effect
was noted in several other studies (Salmi 1998; Salmi and
Ahlenius 2000; Isacson et al. 2004; Nergardh et al. 2005),
including at the two highest doses tested here (1 and 4 mg/
kg; D'Aquila et al. 1994; Deveney and Waddington 1997).
Although we did not observe seizures in our rats, we cannot
exclude the possibility that our rats suffered convulsions
while in the testing chamber since they were not video
recorded.

Pharmacology Each DA receptor subtype was probed
with a single agonist and antagonist. However, these
agents were chosen from the most target-selective avail-
able. To our knowledge, no agonists or antagonists
currently discriminate between D1 and D5 receptors;
for example, the D1-like agonist A68930 and antagonist
SCH 39166 have near-equal in vitro affinities for D1
and D5 (Tice et al. 1994; Nergardh et al. 2005). In
addition, at the start of each experiment, rats underwent
an initial screen comprising three spaced injections of
amphetamine; we cannot exclude the possibility that this
amphetamine exposure affected subsequent calling to
other DAergic agents.

Call-subtype analysis Call subtype analysis was not feasible
in view of the low overall call rates (often less than four calls
per minute) following receptor subtype-selective agonist
and antagonist administration.

Conclusion

Overall, the literature is mixed with regard to the role
of dopamine in ultrasonic vocalizations and whether
these vocalizations may represent affective state. Here
we have shown that following systemic drug adminis-
tration, tonic pharmacological activation of dopamine
receptors is not sufficient to increase 50-kHz vocaliza-
tion call rates, whereas D1, D2, and D3 receptors may
all be necessary for spontaneous calling. The observed
drug effects require further investigation with respect to
their neurochemical underpinnings (e.g., DA transients)
and behavioural significance (e.g., interpretations not
based on affect). Elucidation of the neurochemical
events underpinning USV emission may provide a clearer
understanding of the affective information that these
vocalizations putatively convey.
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