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Abstract

Wireless data transmission suffers from the fading nature of wireless channels, where the

instantaneous channel conditions and hence transmission rates randomly fluctuate over time.

Consequently, data arrivals at each transmitter might not be transmitted instantly. To

cope with this situation, the transmitter employs buffer to store the data temporarily for

later transmission. While data buffering enables more efficient radio resource allocation

to opportunistically select the favorable fading conditions for transmission, it introduces

queuing delay that needs to be controlled in order to meet the end-to-end delay quality-of-

service (QoS) requirements in supporting delay-sensitive communications. In this thesis, we

study and develop radio resource allocation schemes for buffer-aided communications over

wireless fading channels under statistical delay constraints. Using the buffering capability

as a means to exploit the fading diversity, the nodes (source and relay) perform resource

allocation, and adapt their transmissions to the channel state information (CSI) in order to

enhance the system throughput while maintaining the statistical delay QoS requirements in

terms of upper-bounded average delay or delay-outage probability.

The thesis starts by considering a source-destination communications link over a fad-

ing channel with data arriving at the source transmission buffer. In the first scenario, the

source is assumed to have a maximum power constraint and an average delay constraint.

We consider admission control applied on random data arrivals to the source buffer in order

to avoid constraint violation, and study the joint optimal data admission control and power

allocation (AC-PA) problem for throughput maximization. In the second scenario, we con-

sider an energy-harvesting (EH) source, where random amounts of energy are harvested from

renewable energy sources, and stored in a battery during the course of data transmission. In

every transmission time slot, the source is constrained to use at most the amount of energy

currently stored. We then explore optimal power allocation problems for such EH systems

under average delay or delay-outage constraints. We formulate the problems as infinite hori-

zon constrained Markov decision process (MDP) problems, which incorporate the random

variations of the fading channel, data arrival, and EH processes. A novel solution approach

based on post-decision state-value function is proposed to study the properties of the optimal

solutions. We also propose online allocation algorithms when the statistical knowledge of

the random processes is unknown, which is typical in real-life communications. Illustrative

results demonstrate the effectiveness of the proposed algorithms over existing approaches
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under similar power and delay constraints.

The thesis continues with a source-relay-destination communications link over fading

channels with buffers available at both source and relay, as part of a multi-hop network.

We investigate and develop optimal resource allocation schemes for this 3-node buffer-aided

relaying system to maximize its effective capacity under a (end-to-end) delay-outage con-

straint, with special emphasis on relay roles. We consider the typical half-duplex (HD)

relay operation in which the source-relay and relay-destination links cannot simultaneously

transmit on the same frequency slot. In particular, under the established effective capac-

ity maximization criterion and delay-outage constraint, we study the optimal adaptive link

selection relaying problem jointly with both fixed and adaptive power allocation schemes.

Such HD relaying avoids self-interference (SI) at the expense of low spectral efficiency. We

next consider the full-duplex (FD) relay that can support simultaneous transmissions of

both source-relay and relay-destination links over the same frequency slot to enhance the

spectral efficiency in presence of non-zero residual self-interference (SI) due to non-ideal SI-

cancellation. We formulate the corresponding optimal power allocation problems for both

cases of available knowledge of the channel state information at transmitter (CSIT): instan-

taneous or statistical. We employ asymptotic delay analysis to transform the delay-outage

constraint into more tractable constraints, so that the resulting constrained optimization

problems can be solved by a Lagrangian approach. Numerical studies have demonstrated

the effective capacity gains of the proposed relaying schemes over existing schemes. With

instantaneous CSIT, FD relaying is more beneficial than HD relaying. On the other hand,

with statistical CSIT, FD relaying is better than HD-relaying only when the residual SI is

below certain level (i.e., with good SI-cancellation).



iv

Sommaire

La transmission sans fil de données souffre de l’évanouissement du canal sans fil, ou les con-

ditions instantanées du canal et donc les débits de transmission fluctuent au cours du temps.

En conséquence, les données arrivant à chaque émetteur ne peuvent pas être transmises in-

stantanément. Pour remédier à cette situation, l’émetteur utilise une mémoire-tampon pour

sauvegarder les données temporairement afin d’une transmission ultérieur. Bien que la mise

en mémoire-tampon de données permet une allocation plus efficace des ressources radio pour

sélectioner les bonnes conditions de propagation à transmission par une façon opportuniste,

elle introduit de délai dans la file d’attente qui doit être contrôlée afin de satisfaire la qual-

ité de service (QoS) requise dans les communications sensibles au délai. Dans cette thèse,

nous étudions et développons des schémas d’allocation de ressource sur des canaux sans fil

à évanouissement sous contraintes de délai statistique. En utilisant la capacité de stockage

comme moyen pour exploiter la diversité de l’évanouissement, les noeuds (source et relai)

effectuent de l’allocation de ressource et adaptent leur transmissions à l’état du canal (CSI)

afin de booster le débit du système en maintenant la requise QoS du délai, en termes du

délai moyen ou la probabilité de panne en délai, limité par une borne supérieure.

La thèse commence par l’examen d’une liaison de communication entre une source et

une destination sur un canal à évanouissement avec des données arrivant dans la mémoire

tampon d’émission de la source. Dans le premier scénario, la source est supposée d’avoir

une contrainte sur la puissance maximale et le délai moyen. Nous considérons le contrôle

d’admission appliquée sur les arrivées de données aléatoires dans la mémoire tampon de la

source afin d’éviter une violation des contraintes, et d’étudier le problème de contrôle optimal

de l’admission de données et d’allocation de puissance conjointe (AC-PA) pour maximiser

le débit. Dans le deuxième scénario, nous considérons une source à récolte d’énergie (EH),

où des quantités aléatoires d’énergie sont récoltées à partir de sources d’énergie renouve-

lables, et stockés dans une batterie au cours de la transmission de données. Dans chaque

créneau temporel de transmission, la source est contrainte d’utiliser au maximum la quantité

d’énergie actuellement stockée. Nous explorons ensuite les problèmes optimaux d’allocation

de puissance pour de tels systèmes EH sous des contraintes de délai moyen ou de délai de dé-

passement. Nous formulons les problèmes sous une forme de processus de décision de Markov

à horizon infini (MDP), qui intègrent les variations aléatoires de l’évanouissement du canal,

l’arrivée de données, et les processus EH. Une nouvelle approche basée sur la fonction de
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valeur d’état post-décision est proposé afin étudier les propriétés des solutions optimales.

Nous proposons également des algorithmes d’allocation lorsque la connaissance statistique

des processus aléatoires est inconnue, ce qui est typique dans les communications réels. Les

résultats illustratifs démontrent la supériorité des algorithmes proposés sur les approches

existantes sous les contraintes et délai et de puissance.

La thèse se poursuit avec l’examen d’un lien de communication à trois noeuds: source,

relais, destination, sur des canaux d’évanouissement avec des tampons disponibles à la source

au le relais. Nous étudions et développons des schémas optimaux d’allocation des ressources

pour ce lien à 3 noeuds afin de maximiser sa capacité effective sous une contrainte de panne

en délai avec un accent particulier sur les rôles de relais. Nous considérons un relai opérant

en semi-duplex (HD), òu la communication bidirectionnelle entre la source et le relais ne

peut pas s’effectuer simultanément sur la même fréquence. En particulier, selon le critère de

maximisation de la capacité effective et la contrainte de délai de dépassement, nous étudions

la sélection optimale des liaisons adaptatives en collaboration avec des schémas d’allocation

de puissance fixe et adaptative. Le relais HD évite auto-interférence (SI) au détriment de la

faible efficacité spectrale. Nous examinons ensuite le relais operant en duplex intégral (FD)

qui peut supporter des transmissions simultanées entre le source et le relais et entre le relais

et la destination sur la même fréquence pour améliorer l’efficacité spectrale en présence de la

non-zéro SI résiduelle dû à raison l’annulation de SI non-idéale. Nous formulons les problèmes

de répartition de puissance optimale pour les deux cas de connaissance de l’information

d’état de canal à l’émetteur (CSIT): instantanée et statistique. Nous employons l’analyse du

délai asymptotique pour transformer la contrainte de panne en délai à des contraintes plus

traitables, pourque les problèmes d’optimisation sous contrainte peuvent être résolus par une

approche lagrangienne. Des études numériques ont démontré les gains de capacité effective

des schémas à relais proposés par rapport aux systèmes existants. Avec la CSIT instantanée,

le relais FD est plus bénéfique que le relais HD. D’autre part, avec la CSIT statistique, le

relais FD est meilleur que le relais HD seulement quand la SI résiduelle est inférieure à un

certain niveau (par exemple, avec une bonne annulation de SI).
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Chapter 1

Introduction

1.1 Motivation

The past decade has seen the tremendous growth of wireless communications with the in-

creasing demand for various emerging applications such as video transmissions, mobile en-

tertainment, mobile healthcare etc., which require higher data rate and/or more stringent

delay quality-of-service (QoS). Consequently, in the development of next-generation wireless

systems, it is a crucial task to provide wireless connections with better QoS such as higher

data rate, smaller delay etc. [1], [2]. However, such task is not easy due to many inherent

challenges. One challenge is the fact that wireless signal strength randomly fluctuates over

time due to varying fading [3]. There are large-scale fading effects, where the received sig-

nal strength changes over distance because of the path loss and shadowing, and small-scale

fading effects, where the received signal strength changes because of the constructive and

destructive interference of multiple reflecting and refracting signal paths. In addition, the

available radio resources are limited. Hence, efficient (radio) resource allocation is crucial to

combat the fading effects of wireless channels, and providing satisfactory QoS to the users [4].

On the communications over fading channels with data arrivals at the transmitter, due

to the instantaneous transmission rate fluctuation over time, the arriving data might not

be transmitted to the receiver instantly without delay. To cope with this situation, the

transmitter uses a buffer to store the arriving data temporarily. Such data buffering enables

the transmitter to exploit the temporal fading diversity by transmitting more data under

more favorable channel conditions, which can result in power savings. With data buffering

and appropriate power allocation, fading indeed becomes a benefit rather than an obstacle

2016/12/28
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for wireless communications. On the other hand, data buffering incurs unavoidable queu-

ing delay, which needs to be taken into consideration when developing resource allocation

schemes [5]– [7]. It is well-known that providing delay QoS guarantees through efficient re-

source allocation is critical to the successful deployment of future wireless systems, which are

expected to support various types of delay-sensitive applications such as real-time multime-

dia streaming, online games, video conferencing, intelligent transport systems etc [1], [2], [8].

In these applications, latency is the key QoS metric, and information has to be commu-

nicated from the transmitter to the receiver subject to different forms of delay constraints.

Existing literature has considered two popular delay constraint models, namely average delay

and delay-outage constraint models, each of which is suitable for a particular set of wireless

applications in practice [7], [9], [10].

One of the main concerns when deploying wireless systems is the energy consumption.

In traditional wireless communications systems, the devices have access to a fixed power

supply, or are powered by replaceable/rechargeable batteries. In these cases, data transmis-

sions are limited by power constraints of the battery-powered nodes to lengthen the system

operational life. However, in many scenarios, a fixed power supply is not available, and even

periodical battery replacement may not be a feasible option, for example, in large wireless

sensor networks etc. In such situations, the use of energy harvesting (EH) for wireless com-

munications appears appealing, or even essential by converting mechanical vibration into

energy [11], by using solar panels [12], by utilizing thermoeletric generators [13], or by con-

verting ambient radio power into energy [14]. EH provides a potentially infinite network

operating time. Additionally, EH can help to reduce green-house gas emission level and cut

down mounting energy cost for cellular service providers as compared to traditional energy

sources such as fossil fuels. Due to its many advantages, EH technology is tempting in

fifth-generation (5G) communications systems, where the wireless nodes are envisaged to be

not only energy-efficient and but also self-sustainable [15]. Numerous enabling applications

of EH can be found in the recently emerging Internet of Things (IoT) such as machine-to-

machine (M2M) type communications [16], remote sensing, smart homes, smart cities [17],

tactical networks [18] etc. To take full advantage of the EH technology, there has been a

growing interest to develop resource allocation schemes for EH communication systems under

various practical conditions [15], [19]– [21].

Motivated by the above discussions, this thesis studies novel resource allocation schemes

for practical point-to-point and relaying communications systems to support delay-sensitive
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communications. In the considered systems, to overcome fading nature of wireless chan-

nels, the nodes (source and relay) use buffers to store the data arrivals, optimally allocate

resources, and adapt transmissions to the instantaneous channel conditions to enhance the

throughput. We also consider the case when the source is equipped with an EH module.

In the following, we briefly sketch the existing resource allocation designs under delay

constraint.

1.2 Resource Allocation under Delay Constraints

Consider a point-to-point communication system over a fading channel with data arriving to

the source transmission buffer. Due to fading, the amount of information being transmitted

to the destination is random, which leads to random queuing delay for the buffered packets.

Since it is hard to characterize the delay distribution, resource allocation to provide delay

QoS guarantees is not trivial. In spite of that, there have been much progresses in this

research area, for example, see [22] and references therein.

One well-known approach for delay QoS guarantees is to impose average delay constraint

[9], [23]. Average delay constraint model can be applicable to some wireless applications

such as file downloading, emails, and web browsing etc. which may require an average

throughput under certain average delay. Power allocation under average delay constraint

has been extensively studied, for example, see [22] and references therein. Several allocation

algorithms with different complexities and performances have been developed using tools

and results in large deviation theory [24], Lyapunov optimization theory [25], and Markov

decision process (MDP) and stochastic control theory [26], [27]. The former two approaches,

although simple, perform well under large delay regime only. On the other hand, the latter

approach with higher complexity is optimal under all delay regimes.

In general, average delay constraint model is suitable for wireless applications, which

do not require a specific bounded delay. However, for most emerging delay-sensitive appli-

cations such as real-time multimedia streaming etc., the key delay QoS requirement is the

bounded delay. In other words, packets have to be delivered at the destination within a

delay bound to be useful. Satisfying the average delay requirements does not necessarily

satisfy the bounded delay requirements because the actual delay can differ much from the

average delay. For instance, in case of call admission control of IEEE 802.11 standard, the

distributed coordinated function results in a delay, which may be very different from its av-
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erage value [28]. The works [29], [30] consider power allocation problems for bounded delay

constraints. Due to the random variations of the wireless fading channels with possible deep

fades, providing bounded delay guarantees is either infeasible or results in a very high energy

consumption or low transmission rate, in practice. For instance, the only lower bound of the

transmission rate for bounded delay guarantees over a Rayleigh fading channel is zero [31].

Fortunately, most real-time multimedia applications can tolerate a certain small proba-

bility of delay bound violation. Hence, in order to support multimedia applications, delay-

outage constraint can be employed, where the delay is allowed to exceed a delay bound

within a maximum acceptable delay-outage probability [32], [33]. In general, the delay

bound and delay-outage probability parameters are determined to satisfy the quality of ex-

perience (QoE) of the users. Note that when the delay-outage probability is close to 0,

delay-outage constraint becomes bounded delay constraint. When the delay-outage prob-

ability is close to 1, it becomes unconstrained delay. Another advantage of delay-outage

constraint is that it can relax the need for high power consumption, especially when the

delay-outage probability is not too small because the source might not need to transmit

under deep fades to save power. Using the delay-outage constraint model, a wide range of

delay-sensitive applications can be modeled with different delay bounds and/or delay-outage

probabilities. Assuming large delay regime assumption, and employing asymptotic delay

analysis [34], the works [32], [33] have proposed the effective capacity (EC) concept, which is

defined as the maximum supported constant arrival rate under statistical delay constraint.

EC framework has been employed for performance analysis and resource allocation of many

delay-sensitive communications systems [7], [10], [35]. Note that when the delay-outage

probability converges to 1, the EC becomes the ergodic capacity.

1.3 Thesis Objectives, Contributions, and Outline

We have seen that the central design challenge in future wireless systems is how to satisfy

certain data rate and delay QoS requirements while making efficient use of available radio

resources. The primary objective of this thesis is to develop novel resource allocation schemes

to support delay-sensitive communications over fading channels for practical point-to-point

and relaying communications systems, which have not been considered in existing literature.

The specific issues, contributions, and corresponding outline can be elaborated as follows.

After Chapter 1, which presents the thesis motivation, objectives, and contributions,
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Chapter 2 reviews the most relevant works on resource allocation under delay constraints.

On the communications over fading channels, the works [9], [22], [23], [26], [27] have not

considered the realistic case where only a portion of the random data arrivals can be buffered

(or admitted) for transmissions. One scenario requiring admission control is to ensure queue

stability (finite queue length) when there is insufficient power to stabilize the queue if all

arriving data were to be buffered. In general, the admission control goal is to ensure as much

arriving data as possible buffered for transmission without violating the delay (or queue sta-

bility) and power constraints. In Chapter 3, we address the optimal joint data admission

control and power allocation (AC-PA) problem for throughput maximization under average

delay and power constraints. To incorporate the randomness of channel fading, data arrival

processes, as well as the constraints, we formulate the AC-PA problem as an infinite horizon

constrained MDP [36]. Then, we propose a novel solution approach based on the so-called

post-decision state-value function, which is used to rewrite the Bellman’s optimality dynamic

programming equation. The proposed approach requires smaller complexity than the tra-

ditional (pre-decision) state-value function approach since it does not include the channel

states as its argument. Using the proposed approach, we can conveniently study the mono-

tonicity and convexity properties of the optimal AC-PA solution with respect to the data

arrival, channel fading, and queue length states. Numerical results for different delay and

power constraints are compared and analyzed.

We next look at optimization for EH communications systems over fading channels, where

random amounts of energy are harvested and stored in a battery by the transmitter during

the course of data transmission from renewable energy sources [37]– [39]. While these existing

contributions do not consider delay constraints, Chapter 4 presents our findings on optimal

power allocation for EH systems for source arrival rate maximization under average delay

or delay-outage constraint. In the latter case, we convert the original problem into an EC

maximization problem. By adapting the approach in Chapter 3, the resulting problems are

solved using MDP and post-decision state-value function approach. The proposed approach

imposes causality constraint on the use of the harvested energy, where the transmitter is

constrained to use at most the amount of stored energy currently available in every time

slot, although more energy may become available in the future. The optimal solutions take

into account the random variations in amounts of harvested energy, and channel conditions

to compute the power allocation in each time slot. Moreover, in the case of delay-outage

constraint, the power allocation algorithm does not need to keep track of the data queue
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length since large delay regime is assumed. Hence, the algorithm requires less complexity as

compared to the case of average delay constraint. The monotonicity of the optimal solutions

is studied, revealing valuable insights into how to optimally allocate the power with respect to

the channel fading, battery, and data queue length states. It is illustrated that the proposed

approach achieves higher data rates than existing heuristic approaches. We demonstrate the

different effects of the two delay constraint models on the system performance in terms of

supported rates and delay performance.

In general, the pre-decision state-value functions (as well as the optimal solutions) of

the MDP problems considered in Chapters 3, and 4 can be computed using relative value

iteration algorithm (RVIA) or dynamic programming when the statistical knowledge of the

underlying random (e.g., channel fading, data arrival, EH) processes is known [40]. When

such knowledge is unavailable, which is typical in real-life communications, we also propose

online allocation algorithms, which update the state-value functions as new samples of the

random processes are realized during transmissions. The proposed algorithms provide less

complexity, and faster convergence than the conventional reinforcement learning algorithms,

which learn the pre-decision state-value functions instead [41]. From the results in stochastic

approximation theory, the proposed algorithms converge to the optimal solutions for all

channel models (e.g., discrete or continuous channel fading states) [42].

In Chapters 3, and 4, we have considered point-to-point communications, which is not

always possible in practice, for example, due to long distance, or severe shadowing. In such

scenarios, wireless relaying provides an efficient means to improve the coverage, throughput,

and reliability of wireless networks. Consider a simple 3-node source-relay-destination relay-

ing system. Recently, the works [43], [44] introduce the idea of buffer-aided relaying, where

the relay employs buffer to store the received data from the source for future transmission

to the destination. Thanks to the buffer-aided relaying capability, adaptive link selection

relaying is possible, where either the source-relay link or the relay-destination link is active

depending on the channel state information (CSI) in each transmission frame [45]– [47].

While adaptive relaying is able to exploit the link fading diversity, one disadvantage is the

(queueing) delay incurred at the relay buffer, which is assumed to be unconstrained or un-

der average delay constraint in existing works [43]– [47]. Alternatively, in Chapter 5, we

study the optimal adaptive relaying problem under delay-outage constraint. Both cases of

fixed and adaptive power allocation are considered. In general, the delay-outage constraint

is intractable since we need to know the tail distributions of the source and relay queue
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lengths. To overcome the difficulty, we employ asymptotic delay analysis to transform the

delay-outage constraint into constraints on the minimum exponential decay rates (or delay

exponents) of tail distributions. The relationships between the delay exponents and resource

allocation variables are then derived. Consequently, we obtain tractable constrained opti-

mization problems. We then derive the optimal solutions as functions of the instantaneous

CSI and delay exponents (or equivalently, delay-outage constraint) using Lagrangian ap-

proach and convex optimization. Moreover, based on the derived optimal solutions, impacts

of the delay constraint on the resource allocation solutions are studied. Specifically, the

power allocation solution is shown to converge to the conventional water-filling and channel-

inversion policies under very loose and stringent delay constraints, respectively. In general,

the power allocation solution swings between the two policies. In addition, we show that,

under very loose delay constraints, the allocation solutions converge to the solutions derived

in [46] under unconstrained delay assumption. Illustrative results show that the proposed

adaptive relaying outperforms fixed relaying under sufficiently loose delay constraints.

Last, under adaptive relaying, the relay can either receive data from the source or trans-

mit data to the destination. Such half-duplex (HD) relaying avoids self-interference (SI) at

the expense of low spectral efficiency. Moreover, recently-developed SI mitigation methods

can leverage the potential of full-duplex (FD) relaying in which a relay can receive and

transmit simultaneously over the same frequency band [48]– [50]. However, SI still cannot

be completely mitigated in practical systems, and the resulting non-zero residual SI reduces

the performance of FD relaying. Hence, in order to evaluate the potential benefits of FD

relaying over HD relaying, such non-zero residual SI needs to be taken into account. Chap-

ter 6 addresses the power allocation problems for buffer-aided FD relaying with imperfect

SI cancellation under delay-outage constraint. The non-zero residual SI is assumed to be

zero-mean, additive and Gaussian with the variance proportional to the relay transmit power

as commonly assumed in existing literature [51]– [54]. We investigate two power allocation

problems: (i) Buffer-aided FD relaying with adaptive power allocation when the instanta-

neous CSI is available at the transmitters (CSIT); (ii) Buffer-aided FD relaying with static

power allocation when only statistical CSIT is available. While instantaneous CSIT may be

unavailable due to high signaling complexity for CSI feedback from the receivers, statistical

CSIT can always be accessible, since the duration over which channel fading processes are

stationary is several orders of magnitude longer than the duration of the fades. The optimal

solutions are derived using asymptotic delay analysis. Solutions for special cases of statisti-
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cal delay constraint and residual SI are studied. Specifically, it is shown with instantaneous

CSIT, FD relaying approaches HD relaying with adaptive link selection studied in Chapter

5 when the residual SI becomes very large. Consequently, FD relaying always outperforms

HD relaying since the former can dynamically switch between HD/FD operation modes de-

pending on the instantaneous channel conditions. On the other hand, with statistical CSIT,

FD relaying outperforms HD relaying under good SI cancellation only. Also, buffer-aided

FD relaying is more beneficial than non-buffer FD relaying.

Finally, Chapter 7 concludes the thesis and discusses some future research directions.

2016/12/28
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Chapter 2

Power Allocation over Fading

Channels under Delay Constraints: A

Literature Review

In many wireless communication scenarios, energy management is an important issue for

reasons such as extending a device’s usable life-time. Since transmission power is one of the

main energy consumers in wireless devices, efficient power allocation has been an impor-

tant challenge, which has attracted significant research interests. Consider a point-to-point

communications link over a fading channel with random data arrivals at the source. Due

to fading, the channel conditions (and the corresponding instantaneous transmission rates)

unpredictably fluctuate over time. Hence, the arriving data might not be transmitted to the

destination instantly without delay. To overcome the fading nature of wireless channels, the

source uses a buffer to store the data arrivals temporarily, which introduces random queuing

delay as a consequence. Intuitively, for power savings, the source can simply defer the packet

transmission during ‘bad’ channel states, and transmit more packets during ‘good’ channel

states, i.e., more power is allocated under more favorable channel conditions. However, such

transmission mechanism can lead to long delays for buffered packets since ‘bad’ channel

states can happen often. As a result, delay QoS guarantees cannot be provided as required

in order to support delay-sensitive communications.

Toward this end, several power allocation schemes over fading channels have been pro-

posed to support delay QoS guarantees as briefly discussed in Chapter I: Introduction. In
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this chapter, we will discuss this topic in greater detail, with comments on materials related

to our research subjects as follows. In Sections 2.1 and 2.2, power allocation schemes for a

source-destination communications link under average delay, and delay-outage constraints,

respectively are presented. Section 2.3 reviews existing contributions on power allocation

with energy harvesting. In Section 2.4, resource allocation schemes for buffer-aided relay-

ing communications are described, which include both cases of half-duplex and full-duplex

relaying.

2.1 Average Delay Constraint

For delay QoS guarantees, one possible power allocation goal is to minimize the (average)

power under a constraint on the (maximum) average delay. Depending on the delay con-

straint, transmissions can take place even under unfavorable channel conditions since the

power allocation is based not only on the channel conditions but also on the current delay

of the buffered data. Such design problem has been addressed in many works, for example,

see [9], [23], [25]– [27], [55]– [59] and references therein. The central concept is the optimal

power- delay trade-off, i.e., the minimum power required to attain a delay bound [23]. As

the delay bound increases implying looser delay constraints, less power is needed since the

source can delay transmissions until more favorable channel conditions happening to save

power. The structural results of the policies achieving the optimal trade-off (or optimal

policies) have been studied in [23], [27], [58]. In general, it is proved that the optimal power

allocation increases as the queue length increases, and decreases as the channel state goes

from good to bad. It means that the optimal decision is to transmit a certain amount of

data at any given instant, where this amount increases with the current queue length and

decreases with the channel state. Thus for a fixed channel gain, the greater the queue length

the more you transmit, and for a fixed queue length, the better the channel, the more you

transmit. Such transmission mechanism, intuitively, can help to reduce the delay and save

power simultaneously.

There are several approaches with different complexities and performances to develop

power allocation algorithms under average delay constraint, for example, see [22] and ref-

erences therein. The proposed approaches rely on tools and results in large deviation the-

ory [24], Lyapunov optimization theory [25], or Markov decision process (MDP) and stochas-

tic control theory [23], [26], [27], [57], [58]. While the former two approaches allow potentially
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simple solutions depending on the channel state information (CSI) only, the resulting policies

perform well only for the large delay regime, i.e., asymptotically optimal, where the trans-

mission buffers are assumed to be non-empty. This is because the dynamics of the queue

length (or buffer) is not considered when allocating the transmit power. On the other hand,

the MDP-based approach achieves optimal performance for all delay regimes at the expense

of higher control complexity since it needs to take into account both the CSI and the queue

length state, as well as their dynamics when calculating the allocated power. It incorporates

the randomness of the channel fading and data arrival processes in the optimal solutions.

When the statistical knowledge of the random channel fading and data arrival processes is

known, optimal power allocation policies as solutions of the MDP problems can be com-

puted off-line, for instance by using dynamic programming techniques [40]. However, such

statistical knowledge is often unavailable in real-life communications, and hence, developing

online allocation algorithms without requiring known statistics of the random processes is

an important issue [26], [27], [59].

In [9], [23], [26], [27], it is shown that a given delay bound can be attained by allocating

a sufficient amount of transmit power. In Chapter 3, we consider a practical scenario where

the source is assumed to have a maximum power constraint, which is insufficient to attain

the given delay bound. In this case, admission control needs to be applied on random data

arrivals to the source buffer to avoid (delay and power) constraint violation. The goal of

admission control (jointly with power allocation) is to maximize the average admitted rate,

i.e., throughput maximization. In [25], the author proposes the energy constrained control

algorithm (ECCA) for joint admission control and power allocation (AC-PA) using Lyapunov

optimization theory. While ECCA cannot achieve optimal outcomes, Chapter 3 studies the

optimal AC-PA problem using MDP and stochastic control tools. Unlike the ECCA, the

proposed AC-PA algorithm incorporates the dynamics of the buffer as well as the random

variations of the channel fading, and data arrivals when computing the admission control

and power allocation solution in each transmission time slot. Hence, the proposed algorithm

provides higher throughput than ECCA under similar delay and power constraints.

2.2 Delay-Outage Constraint

In the above-mentioned works, the resource allocation designs are to provide average de-

lay bound guarantees, which are suitable for applications such as email, file downloading,
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etc. These applications do not require a specific bounded delay, which is the case for most

other delay-sensitive applications such as real-time multimedia streaming, video conference

etc. Moreover, it is clear that average delay bound satisfaction do not necessarily guarantee

bounded delay requirement. Moreover, due to the random variations of the wireless fading

channels with possible deep fades, providing bounded delay guarantees is either infeasible

or results in a very high energy consumption or low transmission rate. Fortunately, most

real-time multimedia applications can tolerate a certain small probability of delay bound

violation. Hence, to support real-time multimedia applications, delay-outage constraint can

be employed, where the delay is allowed to exceed a delay bound within a maximum accept-

able delay-outage probability [32], [33]. In particular, on the communications over fading

channels as described above, we are interested in resource (or power) allocation to maximize

the supportable constant data arrival rate to the source transmission buffer under given

delay-outage constraint.

To handle the delay-outage constraint, we need to know the (tail) distribution of the delay,

which is difficult to derive in general for given arrival and service (or capacity) processes.

However, if large delay regime is assumed, we can then employ the asymptotic delay analysis

to characterize the tail distribution of the delay using an exponentially decreasing function

[34], [60].

2.2.1 Asymptotic Delay Analysis

�
��������

Fig. 2.1: Dynamic queue with arrival {a[t]} and service {r[t]} processes.

Consider a time-slotted stable queue with infinite buffer size as in Fig. 2.1. Consider

stationary and ergodic arrival process {a[t]} and service process {r[t]} with the domain,

range, and unit being [0,∞), t = 1, 2, . . ., and bits per time-slot, respectively. The processes

are assumed to satisfy the Gartner-Ellis limit [60], i.e., for all θ ≥ 0, their differential
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asymptotic logarithmic moment generating functions (LMGFs) Ωa(θ) and Ωr(θ) defined as:

Ωa(θ) = lim
t→∞

1

t
logE

{

e

θ

t
∑

τ=1

a[τ ]}

; Ωr(θ) = lim
t→∞

1

t
logE

{

e

θ

t
∑

τ=1

r[τ ]}

(2.1)

exist, where E{·} denotes mathematical expectation operator. Note that for i.i.d. processes

{a[t]}, and {r[t]}, we have:

Ωa(θ) = logE
{

eθa[t]
}

, Ωr(θ) = logE
{

eθr[t]
}

.

Assume independent processes with E{a[t]} < E{c[t]}. If there exists an unique delay

exponent θ̄ > 0 satisfying the following equation:

Ωa(θ̄) + Ωr(−θ̄) = 0, (2.2)

then, for sufficiently large x, the tail distribution the steady-state queue-length random

variable Q is given as follows [60, Theorem 2.1]:

Pr
(

Q > x
)

= e−θ̄x, (2.3)

where Pr(Q > x) denotes the probability of the event Q > x. The rigorous proof based

on large deviations principles is presented in [34], and is omitted for brevity. We can see

that, under large queue length (or delay) regime, the tail distribution function of the queue

length is an exponentially decreasing function with decay rate θ̄. A smaller θ̄ corresponds to

a slower decay rate, while a larger θ̄ leads to a faster decay rate.

2.2.2 Effective Capacity

Consider the queue in Fig. 2.1 with constant data arrival process {a[t] = µ} with LMGF

Ωa(θ) = µθ instead and some service process {r[t]} with LMGF Ωr(θ). Suppose that we

impose the following delay-outage constraint in terms of the maximum queue-length-outage

probability constraint:

Pr
(

Q > Qmax
)

≤ ζQ (2.4)
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for given queue length bound Qmax ∈ (0,∞) and queue-length-outage probability ζQ ∈ (0, 1].

The constraint on a small ζQ is applicable to delay QoS requirements, in which the user

applications are acceptable as long as the queue length (or delay) does not exceed a threshold

Qmax, and ζQ indicates how stringent the delay constraint is. For a given Qmax, smaller ζQ
indicates more stringent delay constraints. When ζQ is close to 0, the queue length cannot

exceed Qmax, i.e., (deterministic) bounded delay constraint. When ζQ is close to 1, we allow

unconstrained queue length.

Assume Qmax sufficiently large (but finite) so that the asymptotic delay analysis result

(2.3) can be applied. From (2.2) and (2.3), we can see that, in order to meet the constraint

(2.4), the arrival rate µ has to satisfy the following conditions:

µθ̄ + Ωr(−θ̄) = 0; θ̄ ≥ θtar , − log(ζQ)/Q
max (2.5)

for some delay exponent θ̄ > 0. This is because from (2.3), we would have: Pr
(

Q > Qmax
)

=

e−θ̄Q
max

≤ ζQ as required. Then, it can be seen that the maximum supportable arrival rate

µmax satisfying (2.5) is achieved when θ̄ = θtar, and is given by:

µmax = −
Ωr(−θ

tar)

θtar
. (2.6)

µmax is called the effective capacity (EC) of the service process {r[t]} with delay exponent

θtar, which is derived from the delay-outage constraint (2.4).

We shall call the function −Ωr(−θ)/θ the EC function of the service process {r[t]} (with

delay exponent θ).

2.2.3 EC-based resource allocation and performance analysis

Delay-outage constraint model and EC framework have been employed to analyze the per-

formance and develop many resource allocation schemes for various wireless communications

systems. This is because it is particularly convenient for analyzing the delay-outage per-

formance of wireless transmissions where the service process {r[t]} is determined by the

instantaneous capacity of the wireless fading channel.

As an example, consider power allocation for EC maximization for point-to-point com-

munications system over fading channel with bandwidth B (Hz) [61]. We assume ergodic

stationary independent and identically distributed (i.i.d.) block-fading channel with fading
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duration T (seconds) equal to the transmission frame, i.e., the channel power gains remain

unchanged during a frame but vary independently from frame to frame. Denote h[t], and

P [t] the instantaneous (normalized) channel gain, and transmit power, respectively, in frame

t = 1, 2, . . .. Let r[t] denote the corresponding instantaneous transmission rate (or capacity)

in frame t, which is given by the Shannon’s formula:

r[t] = log2(1 + P [t]h[t]).

From (2.6), the optimal power allocation problem to maximize the effective capacity (with

delay exponent θ) under maximum average power constraint can be formulated as:

max
P [t]≥0

−
1

θTB
logE

{

e−θTBr[t]
}

s.t.: E
{

P ∗[t]
}

≤ P̄max (2.7)

where P̄max is the maximum (average) power. Using Lagrangian approach, after some simple

manipulations, the optimal power allocation can be shown to be:

P ∗[t] =















(

θ̂

λ
(

h[t]
)θ̂

)
1

1+θ̂

− 1
h[t]
, h[t] ≥ λ

θ̂
,

0, otherwise

where we denote (normalized) delay exponent θ̂ = θTB/ log(2), and λ is the Lagrange

multiplier satisfying the following condition:

E
{

P ∗[t]
}

= P̄max.

Alternatively, we can consider the power minimization problem subject to the minimum

EC constraint. In [62]– [64], the authors study the power allocation problems for EC or

energy efficiency maximization for multi-channel settings, i.e., orthogonal frequency division

multiplexing (OFDM). We omit the details here for brevity.

EC framework has also been considered in many other communications scenarios. For

example, the effective capacities of multiple-input multiple-output (MIMO) antenna systems,

and multiple access channels are analyzed in [65], and [66], respectively. In [67], [68], the

authors studied scheduling policies for multi-user cellular networks. In [69], [70], the authors
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consider sub-channel and power allocation for power minimization for multi-user OFDM

systems under minimum effective capacity constraints of the users. In [71], the authors

propose an framework to jointly optimize effective spectrum efficiency and effective power

efficiency under different delay-outage constraints.

In Chapters 4, 5, and 6, we will employ the delay-outage constraint and EC notion

as criteria to develop resource allocation schemes for two communications systems: 1) A

source-destination communications link with energy harvesting; 2) A 3-node source-relay-

destination buffer-aided relaying system, where the buffers are employed at both the source

and relay. In this case, the delay-outage constraint is imposed on the end-to-end delay, which

is the sum of delays at the source and relay buffers.

2.3 Energy Harvesting Communications Systems

We have seen that future wireless communications systems are expected to accommodate an

ever increasing number of wireless applications with high capacity demands and/or stringent

QoS requirements such as real-time multimedia streaming, connected and autonomous ve-

hicles etc. [1]. Moreover, supporting higher data rates under strict delay QoS requirements

increases the energy consumption, which results in a detrimental impact on the environment.

A challenge for future wireless system design is to meet the increasing energy demand, while

lowering the emission of greenhouse gases for achieving the environment sustainability. Con-

sequently, green communications has attracted significant attention in academia and indus-

try. An efficient and promising technology to tackle this issue is energy harvesting (EH),

where wireless EH nodes harvest energy from the renewable sources of their surrounding

environment, convert it to electrical energy, and use the electrical energy in order to carry

out their functions. In addition to greenhouse gas emission reduction, EH technology is also

appealing for communications scenarios when a fixed power supply is not available, and even

periodical battery replacement may not be a feasible option for communications devices, for

example, in large wireless sensor networks etc. In such cases, EH provides a way of operat-

ing the network with a potentially infinite lifetime. EH nodes are particularly suitable for

machine-to-machine (M2M), and Internet-of-Things (IoT) communication systems etc. as

they are envisaged to be both energy-efficient and self-sustainable [16], [17].

There has been a growing interest in the optimization of EH communication systems,

which has to address the challenging issue of instability of renewable energy resources. In
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Fig. 2.2: A source-destination communications link with EH transmitter.

particular, power allocation issues for EH communication systems have been investigated

[15], [20], [21], [37]– [39]. Unlike the case of fixed power supply, power allocation for EH

transmitters is subject to EH constraints, where in every time slot, each transmitter is

constrained to use at most the amount of stored energy currently available, although more

energy may become available in the future slots. Consider EH communications systems over

fading channels, where the random energy arrivals are stored in battery for data transmission

as in Fig. 2.2. In [37], the authors study the throughput maximization problem assuming

delay-limited communications, where a randomly arriving packet at the source is decided

to be either transmitted or dropped without buffering. A learning theoretic approach is

introduced, which does not require any statistical information on the random fading channel,

energy arrival, and data arrival processes. The works [38], [39] explore various throughput

maximization problems assuming data arrivals being stored in a data buffer. However, it

is noted that these works do not consider delay constraints. In [72], [73], power allocation

schemes for EH systems are proposed to ensure the stability of the data and energy queues

(or battery) using Lyapunov optimization theory. In [74], the authors derived the EC for EH

systems for given power allocation policies. The derived expressions were then exploited to

evaluate commonly used power allocation policies, e.g., greedy policy, constant power policy,

etc. assuming the statistical knowledge about the random processes is known.

In Chapter 4, consider the EH system as in Fig. 2.2, we explore optimal stochastic
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power allocation problems for such EH system over fading channels under average delay or

delay-outage constraints. We develop online power allocation algorithms when the statistical

knowledge of the random channel fading, EH processes is unknown, which is typical in real-

life communications. The studies provide valuable insights into how to optimally allocate

power under different types of delay constraints.

2.4 Buffer-Aided Relaying Communications

The above-mentioned works concern resource allocation for point-to-point communications.

In practice, it is not always possible for a source to communicate directly with the desti-

nation, for example, due to long distance, or severe shadowing. An example is downlink

communications from the base station to the cell-edge users. In such scenarios, wireless

relaying provides an efficient means to improve the coverage, throughput, and reliability of

wireless networks. Typical situations where wireless relaying is needed are depicted in Fig.

2.3.

Shadowing effect mitigation

Cell-edge coverage 

extension

���	


���	


���	


Coverage hole 

extension

��
� �������

Fig. 2.3: Relaying in wireless cellular communications.

Relaying has been adopted by recent wireless communications standards, e.g., 3GPP-
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Long Term Evolution (LTE) [75]. There has been a great deal of research on the 3-node

relay network over the past decades under different configurations, (e.g., with or without

direct source-destination link) and relaying schemes, (e.g., decode-and-forward or amplify-

and-forward relaying), for example, see [76], and references therein. In these works, the relay

receives packets from the source in one time slot, and forwards it to the destination in the next

time slot, which is referred to as fixed relaying (or fixed link scheduling) in the sequel. Such

fixed relaying schemes may suffer significant performance degradation over fading channels,

where the source-relay (S-R) or relay-destination (R-D) link signal strengths can greatly vary

with time since the end-to-end transmission rate is dominated by the weaker link of the two

links. For example, for a 3-node decode-and-forward relaying network without a direct S-D

link, the capacity is given by the minimum of the S-R and the R-D link capacities [77].

2.4.1 Half-duplex Relaying with Adaptive Link Selection

Recent works have introduced buffer-aided relaying, where the relay employs buffer to store

the received data from the source for future forwarding to the destination [43], [44]. Under

buffer-aided relaying, the relay has more transmission flexibility since it might not need to

forward the received data to the destination immediately after receiving it as in the case

of fixed relaying. Hence, buffer-aided relaying can overcome the fading effects of wireless

channels. In general, fixed relaying schemes developed under non-buffer relaying setting

can be modified to exploit the relay buffering. However, the resulting relaying schemes

may fail to achieve the maximum diversity gain offered by buffer-aided relaying over the

non-buffer relaying since the relay still receives and transmits sequentially in every time

slot [43], [78]– [80]. Thus, to exploit the transmission flexibility offered by the relay buffering

capability, adaptive link selection relaying must be considered, where the relay transmission

and reception schedule is not fixed. Such adaptive relaying efficiently schedules the S-R link

and R-D link depending on their channel conditions in each frame. As a result, adaptive

relaying can attain significant throughput gains over fixed relaying since it can exploit the

link diversity by transmitting over the link with more favorable channel condition [45]– [47].

One disadvantage of buffer-aided adaptive relaying is that it introduces random queuing

delay at the relay, which is not present under non-buffer relaying. Most existing adaptive

relaying schemes are developed under the unconstrained delay or average delay constraint

settings which are reviewed in the following.
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2.4.1.1 Case of Unconstrained Delay

S R D

Fig. 2.4: Buffer-aided relaying model.

Consider 3-node buffer-aided relay network in Fig. 2.4. Assume the source always has

data to transmit. We assume ergodic stationary i.i.d. block-fading channels with fading dura-

tion equal to the transmission frame. Denote h1[t], and h2[t] the instantaneous (normalized)

channel gains in frame t = 1, 2, . . . of the S-R link and R-D link, respectively. hi[t], i = 1, 2

are assumed to be statistically independent random variables. Let P1 and P2 denote the

transmit powers of the source and relay, respectively. Similarly, denote ri[t], i = 1, 2 the

corresponding instantaneous transmission rates in frame t = 1, 2, . . . of the links:

ri[t] = log2(1 + Pihi[t]), i = 1, 2.

In [46], the authors consider the adaptive link selection relaying problem described as follows.

Let φ[t] ∈ {0, 1}, ∀t denote a binary variable for frame t where we set φ[t] = 1 if the R-D link

is active and φ[t] = 0 if the S-R link is active. The adaptive relaying scheme for throughput

maximization is shown to have the following form [46]:

φ[t] =







0, r1[t]/r2[t] ≥ ξ,

1, otherwise

(2.8)

where the parameter ξ > 0 is determined to maintain the following equality:

E
{

(1− φ[t])r1[t]
}

= E
{

φ[t]r2[t]
}

. (2.9)

Intuitively, the link scheduling solution ensure equal average arrival rate and departure rate

of the relay buffer. We can see that the adaptive link scheduling exploits the link fading

diversity by transmitting over a link when the ratio between its rate and rate of the other link

is larger than a threshold value ξ. The threshold ξ takes into account the fading statistics and

average signal-to-noise power ratios (SNRs) of the S-R and R-D links. Then, the (average)
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throughput of the adaptive relaying scheme is:

TB−ALS = E
{

(1− φ[t])r1[t]
}

.

To show the advantages of adaptive link selection relaying, consider the case that the

links have the similar fading distributions with equal average SNRs as an example. The

optimal ξ in (2.8) can be easily seen to be 1, i.e., the link with larger instantaneous rate is

selected in each slot. The throughput of adaptive link selection relaying can be shown to be:

TB−ALS =
1

2
E
{

max{r1[t], r2[t]}
}

.

Consider two non-buffer and buffer-aided relaying schemes with fixed link schedules. With

non-buffer relaying, the relay receives a packet in one time slot and transmits it in the next,

and the corresponding average throughput is [77]:

TN−FLS =
1

2
E
{

min{r1[t], r2[t]}
}

.

With buffer-aided fixed relaying scheme, the relay receives data from the source in the first

N/2 (N is even) time slots and sends this cumulative information to the destination in the

next N/2 slots [43]. The corresponding maximum achievable throughput is obtained for

N → ∞ and given by:

TB−FLS =
1

2
min

{

E{r1[t]},E{r2[t]}
}

We can see that it always holds true that:

TB−ALS > TB−FLS ≥ TN−FLS.

Note that adaptive power allocation in each slot can be considered in addition to the link

selection [46].

The work [47] considers the similar buffer-aided relaying model as in [46], and studies

two adaptive link scheduling schemes with different requirements regarding the availability

of CSIT. In the first scheme, neither the source nor the relay has full CSIT, and consequently,

both nodes are forced to transmit with fixed rates. On the other hand, in the second scheme,

the source does not have full CSIT and transmits with fixed rate but the relay has full CSIT
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and adapts its transmission rate accordingly. The optimal link scheduling solutions and the

corresponding throughput are derived. We omit the details for brevity.

Buffer-aided adaptive relaying has been considered in other settings too. For example,

in [81]– [83], the authors study the adaptive link scheduling schemes for throughput maxi-

mization for two-way relaying. Moreover, buffer-aided adaptive relaying is also employed in

3-hop relay network [84].

We can see that buffer-aided adaptive link selection relaying has significantly improved

the performance of non-buffer relaying due to its capability to exploit the link fading diver-

sity. However, we should emphasize that the QoS-blind adaptive relaying schemes in the

aforementioned works introduce unconstrained (or infinite) relaying delay, i.e., the relaying

delay can be very large [46], [47]. Hence, in order to support delay-sensitive communications,

new adaptive relaying schemes have to be developed.

2.4.1.2 Case of Average Delay Constraint

There have been several attempts to develop buffer-aided adaptive relaying schemes to pro-

vide delay QoS guarantees. In particular, several relaying schemes have been developed by

heuristically modifying the aforementioned QoS-blind relaying schemes to satisfy average

delay constraint [46], [47], [83], [84]. The schemes take into account the instantaneous link

conditions and amount of data in the relay buffer based on the observation that the (av-

erage) delay can be controlled via the arrival rate and the relay buffer size. Two different

approaches to adjust the arrival rate and the queue size are proposed. One approach is to

‘starve’ the buffer by intentionally limiting the arrival rate by choosing a threshold which is

strictly smaller than ξ in (2.8). Another approach is to limit the buffer size by forcing the

relay to transmit if the relay buffer gets full. We omit the details for brevity. Note that both

proposed relaying schemes are heuristic in nature, i.e., sub-optimal schemes.

We have seen that the developed adaptive relaying schemes assume unconstrained delay

or average delay constraint. Alternatively, in Chapter 5, we study optimal adaptive relay-

ing scheme under (end-to-end) delay-outage constraint to maximize the EC, i.e., constant

supportable arrival rate to the source buffer. Under the proposed design, the link selection

solution depends not only on the link conditions as in the case of unconstrained delay but

also on the delay constraint. To tackle the delay-outage constraint, we apply the asymptotic

delay analysis in Section 2.2, to transform the delay-outage constraint into the constraints on
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the minimum delay exponents at the source and relay buffers. We then derive the relation-

ship between the link selection variables and the delay exponents, which is used to obtain

tractable constrained optimization problem. The solution derived under delay-outage con-

straint is expected to converge to the solution (2.8) derived under unconstrained delay

assumption when the delay-outage probability converges to 1.

2.4.2 Full-duplex Relaying

Under adaptive relaying, the relay can either receive data from the source or transmit data to

the destination. Such half-duplex (HD) relaying avoids self-interference (SI) at the expense

of low spectral efficiency. Recently, several effective SI mitigation techniques have been

developed, based on combinations of antenna, analog, and digital cancellations, e.g., [48]–

[50]. Such results promise the potential full-duplex (FD) relaying operation, in which a relay

can receive and transmit simultaneously to enhance the relay system spectral efficiency [85].

Earlier works on FD relaying, e.g., [86]– [89] (for one-way relaying) and [90], [91] (for two-way

relaying), assumed the ideal FD case with zero residual SI, which can lead to overestimation

of the gains due to FD relaying over HD relaying. The works [51]– [54], [92]– [97] assumed

a more practical imperfect SI cancellation with non-zero residual SI. Also, in [51]– [54], the

residual SI power is assumed to be proportional with parameter β > 0 to the relay transmit

power, which has been validated by the experiments in [49], [50].

Since the residual SI power depends on the relay transmit power, we can see that source

and relay power allocation plays a critical role in improving the performance of FD relaying

systems. While power allocation for non-buffer FD relaying systems has been extensively

studied as reviewed above, power allocation for buffer-aided FD relaying systems has been

under-explored. In [89], a buffer-aided FD relaying scheme is proposed, which provides

significant throughput gains compared to non-buffer FD relaying schemes. However, zero

residual SI and unconstrained relaying delay are assumed. In Chapter 6, we investigate the

power allocation problems for buffer-aided FD relaying with imperfect SI cancellation and

delay-outage constraint. We investigate two power allocation problems for source arrival

rate maximization: (i) Buffer-aided FD relaying with adaptive power allocation when the

instantaneous CSI is available at the transmitters (CSIT); (ii) Buffer-aided FD relaying with

static power allocation when only statistical CSIT is available.
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2.5 Chapter Summary

In this chapter, we have first presented key existing results in resource allocation under de-

lay constraints for source-destination communications link over fading channel. For delay

QoS guarantees, average delay or delay-outage constraint can be employed, each of which is

suitable for particular set of wireless applications. In the latter case, effective capacity frame-

work is used for developing resource allocation schemes. We next review resource allocation

designs for buffer-aided relaying systems. To exploit the buffer-aided relaying capability,

adaptive link selection relaying is proposed to efficiently schedule the source-relay link or

relay-destination link depending on the instantaneous channel conditions. Such adaptive

relaying incurs relaying delay at the relay buffer, which is assumed to be unconstrained or

under average delay constraint in existing studies.

In the following Chapters 3–6, we will study novel resource allocation schemes under

delay constraints for practical source-destination and 3-node source-relay-destination buffer-

aided relaying communications systems. In the source-destination communications system,

we incorporate data admission control jointly with power allocation to meet both delay

and power constraints. The case with energy harvesting transmitter is also considered with

average delay or delay-outage constraints. For the relaying systems, we develop resource

allocation schemes for half-duplex and full-duplex relaying to support (end-to-end) delay-

outage constraint.

2016/12/28
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Chapter 3

Joint Data Admission Control and

Power Allocation over Fading Channel

under Average Delay Constraint

In this chapter, we consider a point-to-point communications link over a fading channel with

randomly arriving data at the source buffer for transmission to the destination. For delay

quality-of-service (QoS) requirement, average delay constraint is imposed. Also, the source

is assumed to have (maximum) average power constraint. To avoid constraint violation, it is

assumed that only a portion of the arriving data can be buffered (or admitted). Note that

the considered data buffer admission control is different from the common user (or stream)

admission control. In the latter case, we admit a particular user (among many users) into

the system while in the former, we admit data packets of an already admitted user (or

stream) into the transmission buffer. This chapter studies the joint data admission control

and power allocation (AC-PA) to maximize the throughput defined as the average admitted

rate. In particular, we first analyze the structural properties of the optimal AC-PA policy

with respect to (w.r.t.) fading channel, data arrival, and queue length states. We then

propose an online AC-PA algorithm when the statistical knowledge of the system random

channel fading, and data arrival processes is unknown.

In the AC-PA problem, due to the time-varying nature of the channel fading and data

Parts of Chapter 3 are presented at the 2013 IEEE International Conference on Communications (ICC)
in Budapest, Hungary [98], and published in the IEEE Transactions on Wireless Communications [99].
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arrival processes, admission control needs to be done intelligently to balance the throughout

and queue length. We can see that increasing the throughput increases the queue length

(and hence, the delay) and vice versa. Admission control is even more challenging when the

statistical knowledge of the random processes is unknown, which is typical in real-life com-

munications. To address this issue, the AC-PA problem is formulated as an infinite-horizon

constrained Markov decision process (MDP) problem, which captures the dynamics of the

random processes. We then define so-called post-decision state-value function, which is used

to rewrite the Bellman’s optimality dynamic programming equation. Using the proposed

post-decision state-value function, the monotonicity and convexity of the optimal AC-PA

policy w.r.t. the fading channel, data arrival, and queue length states can be studied. The

trade-off between maximizing the throughput and minimizing the average queue length (or

delay) is also studied. An online AC-PA algorithm is developed, which updates (or learns)

the state-value function based on the realizations of the random processes. The algorithm

does not require the statistical knowledge of the random processes, and its optimality and

convergence are based on the results in stochastic approximation theory. The proposed algo-

rithm is shown to require less storage complexity and converge faster than the conventional

Q-learning algorithms [41]. Illustrative results demonstrate that the proposed algorithm

achieves higher throughput than the algorithm in [25] under similar delay and power con-

straints.

The remainder of the chapter is organized as follows. System model and problem formu-

lation are described in Section 3.1. Sections 3.2 details the solution approach and proposes

an online learning algorithm. Numerical results are represented in Section 3.3 while Section

3.4 concludes the work.

3.1 System Model and Problem Formulation

3.1.1 Model Description

We consider a point-to-point communications link where a source transmits data stored

in a buffer over a fading channel of bandwidth B (Hz) to the destination. Transmissions

happen over frames of equal duration T (seconds). The model is depicted in Fig. 3.1, where

the dynamics of the buffer (or queue) is controlled using admission control and scheduling

(or equivalently, power allocation) actions. Specifically, in each frame, the scheduling action
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Fig. 3.1: A source-destination communications link with source buffer.

determines the amount of data (or equivalently, the amount of transmit power) removed from

the buffer for transmission to the destination. Also, the admission control action determines

the amount of data from the newly arriving data to be stored (or admitted) into the buffer.

Under the average power constraint, it is clear that there are two conflicting objectives. One

objective is to maximize the throughput. The second objective is to minimize the average

queue length (or delay). For notional simplicity, we normalize the frame duration T and

bandwidth B in the following. Hereafter, we describe the model in detail.

The wireless channel is assumed to be block-fading over the transmission frames. De-

note h[t] as the channel state representing the (normalized) channel power gain in frame

t, t = 1, 2, . . .. We assume the channel fading process {h[t]} ∈ H is stationary ergodic,

and independent and identically distributed (i.i.d.) over frames with general probability

distribution function (pdf) pH(h) over the channel state space H, which can be discrete or

continuous.

Let Q ∈ [0,∞) denote the queue state space, and let q[t] ∈ Q denote the queue state

representing the queue length (in number of bits) in frame t. We allow the buffer to be an

arbitrary real value for mathematical convenience [23], [27]. Let y[t], and a[t], a[t] ∈ [0, y[t]]

(in number of bits) represent the amount of data arrival, and the amount of data admitted

into the buffer in frame t. We assume the arrival process {y[t]} ∈ Y is stationary ergodic,

and i.i.d. over frames with general pdf pY(y) over the data arrival state space Y .

Let r[t] ∈ [0, q[t]] represent the scheduling action in frame t, i.e., the amount of data

removed from the buffer and transmitted to the destination. Given q[1] as the initial backlog,

the queue dynamics across time slots satisfy the Lindley’s recursion:

q[t+ 1] = q[t]− r[t] + a[t], ∀t. (3.1)

Note that without admission control, a[t] = y[t], ∀t. Also, the arriving data in frame t can
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only be scheduled in the next frame earliest.

Given the scheduling action r[t], the corresponding power consumption P [t] in frame t

under channel state h[t] is given by the Shannon formula:

P [t] = P (h[t], r[t]) = (2r[t] − 1)/h[t], ∀t.

We can see that the power function P (h, r) is convex increasing in r for fixed h.

We now define the throughput, average queue length, and average power as follows:

R̄ , lim inf
t→∞

1

t
E

{

t
∑

τ=1

a[τ ]

}

Q̄ , lim sup
t→∞

1

t
E

{

t
∑

τ=1

q[τ ]

}

,

P̄ , lim sup
t→∞

1

t
E

{

t
∑

τ=1

P [t]

}

.

3.1.2 Problem Formulation

The AC-PA problem for throughput maximization under average queue length and power

constraints can be posed as:

max
r[t]≤q[t],a[t]≤y[t],∀t

R̄ s.t.: Q̄ ≤ Q̄max, P̄ ≤ P̄max, (3.2)

where Q̄max, and P̄max are the average queue length and power constraints.

3.1.3 Optimal Throughput- Delay Trade-off

We have mentioned the trade-off between maximizing throughput and minimizing the queue

length. We now study this trade-off in more details.

Fix some P̄max and vary Q̄max = Q̄ in (3.2). Let R̄(Q̄) denote the corresponding optimal

value of (3.2), i.e., R̄(Q̄) is the maximum throughput such that the average queue length is

less than or equal to Q̄. The following proposition characterizes the optimal trade-off R̄(Q̄)

under average power constraint.

Proposition 3.1. Throughput R̄(Q̄) is concave increasing in Q̄.
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Proof. Fix P̄max. We can see that the optimal policies will always achieve P̄max. Otherwise,

we can increase the scheduling rate to increase the throughput for a similar queue length.

We prove R̄(Q̄) is concave increasing with Q̄. That R̄(Q̄) is increasing with Q̄ is obvious

since more data can be admitted if the queue length is allowed to be larger (for the same

scheduling rate). We show that it is concave. Let Q̄1 and Q̄2 be two queue length values

with corresponding throughputs R̄(Q̄1) and R̄(Q̄2). We remind that R̄(Q̄) is the maximum

throughput such that the queue length is less than or equal to Q̄. We want to show that for

any η ∈ [0, 1]:

R̄(ηQ̄1 + (1− η)Q̄2) ≥ ηR̄(Q̄1) + (1− η)R̄(Q̄2). (3.3)

We will prove this using sample path arguments. Let {h[t](w)}∞t=1 and {y[t](w)}∞t=1 be given

sample paths of the channel states and data arrival states. Note that w denotes a sample

path of the random process realization. Let {r1[t](w)}
∞
t=1 and {a1[t](w)}

∞
t=1 be sequences of

control actions corresponding to the policy which attains R̄(Q̄1). Let {q1[t](w)}
∞
t=1 be the

corresponding sequence of backlog states. Likewise, define {r2[t](w)}
∞
t=1, {a2[t](w)}

∞
t=1, and

{q2[t](w)}
∞
t=1 corresponding to R̄(Q̄2). Note that ri[t](w) ≤ qi[t](w) and ai[t](w) ≤ y[t](w)

for i = 1, 2 for all sample paths w and for all t. We have:

lim
t→∞

1

t

t
∑

τ=1

E

{

P (h[τ ](w), ri[τ ](w))
}

= P̄max, i = 1, 2 (3.4)

where the expectation is taken over all sample paths. Now consider the η−policy, a new

sequences of control actions, {rη[t](w)}∞t=1 and {aη[t](w)}
∞
t=1 where for all t

rη[t](w) = ηr1[t](w) + (1− η)r2[t](w)

aη[t](w) = ηa1[t](w) + (1− η)a2[t](w). (3.5)

We show that η−policy is a feasible policy. Let {qη[t](w)}
∞
t=1 be the sequence of backlog

states using this policy.

• It can be seen that aη[t](w) ≤ y[t](w) for all w and t.

• For scheduling sequence {rη[t](w)}
∞
t=1, due to the convexity of P (h, r) with r for given

h, for each t, we have:

P (h[t](w), rη[t](w)) ≤ ηP (h[t](w), r1[t](w)) + (1− η)P (h[t](w), r2[t](w)) (3.6)
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and hence,

lim
t→∞

1

t

t
∑

τ=1

E

{

P (h[τ ](w), rη[τ ](w))
}

≤ P̄max. (3.7)

Hence, the η−policy satisfies the power constraint.

• Assume at time t = 1, qη[1](w) = q1[1](w) = q2[1](w) = 0 for all sample paths w.

By definition, we have qi[t + 1](w) = qi[t](w) − ri[t](w) + ai[t](w) for i = 1, 2 and

t ≥ 1. Then, using recursion, we have qη[t](w) = ηq1[t](w) + (1 − η)q2[t](w) for all t.

Consequently, we conclude that rη[t](w) = ηr1[t](w) + (1− η)r2[t](w) ≤ qη[t](w) for all

t.

Hence, we conclude that η−policy is a feasible policy.

We have the average queue length by the η−policy:

Q̄η = lim
t→∞

1

t

t
∑

τ=1

E

{

qη[τ ](w)
}

= ηQ̄1 + (1− η)Q̄2. (3.8)

Summing both sides of (3.5) and taking expectations, we have:

R̄η = lim
t→∞

1

t

t
∑

τ=1

E

{

rη[τ ](w)
}

= ηR̄(Q̄1) + (1− η)R̄(Q̄2) (3.9)

The η−policy achieves average queue length Q̄η = ηQ̄1 + (1 − η)Q̄2 and throughput R̄η =

ηR̄(Q̄1) + (1 − η)R̄(Q̄2). Moreover, by (3.7), the optimal policy with average power P̄max

can achieve the same average queue length but with higher throughput. Thus, we must have

R̄(ηQ̄1+(1− η)Q̄2) ≥ ηR̄(Q̄1)+ (1− η)R̄(Q̄2) as desired. We conclude that R̄(Q̄) is concave

increasing with Q̄.

In the following section, we study the optimal solution of (3.2).
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3.2 Joint Data Admission Control- Power Allocation

3.2.1 MDP-based Optimal Solution

It can be seen that the problem (3.2) is a constrained MDP. Using [36, Theorem 12.7], the

problem (3.2) admits an optimal solution that can be found using the Lagrangian approach:

min
κ≥0,λ≥0

{

max
r[t]≤q[t],a[t]≤y[t],∀t

{

R̄− κQ̄− λP̄

}

+ κQ̄max + λP̄max

}

. (3.10)

Therefore, to study (3.10) (and thus (3.2)), we can first study the inner maximization for a

given positive multipliers κ, and λ:

max
r[t]≤q[t],a[t]≤y[t],∀t

{

R̄− κQ̄− λP̄

}

. (3.11)

In the following sections, we study the optimal solution of (3.11).

In frame t, the controller observes the system state (q[t], h[t], y[t]) and determines the

actions r[t] (or equivalently P [t]) and a[t] simultaneously [58]. Hence, a stationary control

policy can be represented by a 2-tuple function (r, a) : Q × H × Y → R
+ × R

+ specifying

the control actions in slot t as r[t] = r(q[t], h[t], y[t]) ∈ [0, q[t]] and a[t] = a(q[t], h[t], y[t]) ∈

[0, y[t]] where R
+ denotes the set of non-negative numbers.

Define J(q, h, y) as the (pre-decision) state-value function of (3.11), i.e., J(q, h, y) is the

optimal value of (3.11) with the starting state (q[1], h[1], y[1]) = (q, h, y). The Bellman’s

optimality dynamic programming equation for (3.11) is:

J(q, h, y) = max
r≤q,a≤y

{

a−κq−λP (h, r)+
∑

h′∈H

∑

y′∈Y

pH(h
′)pY(y

′)J(q− r+ a, h′, y′)

}

−J(q0, h0, y0)

(3.12)

for some arbitrary but fixed state (q0, h0, y0). The optimal policy is the optimal solution of

(3.12). We can see that (3.12) requires known pdfs to evaluate the expectation. However,

the pdfs are often unknown in real-time systems which makes the exact computation of

the expectation impossible. Conventional reinforcement Q-learning algorithms [41], [59]

can be used to learn the optimal AC-PA policy via learning the so-called state-action Q

function without requiring known pdfs. Note that after knowing Q function, the state-value
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function J(q, h, y) can also be computed. However, Q-learning algorithms require large

complexity, and exhibit slow convergence [27]. We will propose an alternative approach with

less complexity and faster convergence in the following.

3.2.2 Post-decision State-value Function Approach

Similar to [26], [27], we define the post-decision state-value function Jpost(q̌) as:

Jpost(q̌) =
∑

h′∈H

∑

y′∈Y

pH(h
′)pY(y

′)J(q̌, h′, y′) (3.13)

for post-decision states q̌ ∈ Q. The post-decision state q̌[t] in frame t is the resulting

queue length after the control decisions are made. Hence, we have the queue dynamics as

q[t+1] = q̌[t] , q[t]−r[t]+a[t]. Using (3.12) and (3.13), the optimal policy can be computed

using the state-value function Jpost(q̌) as follows:

argmax
r≤q,a≤y

{

a− κq − λP (h, r) + Jpost(q − r + a)

}

. (3.14)

As we will see in the following, studying the structural properties of the optimal policy

using (3.14) and Jpost(q̌) is easier than using (3.12) and J(q, h, y). Moreover, to compute

the optimal policy, it is sufficient to know Jpost(q̌). In the following, we propose an online

learning algorithm for Jpost(q̌) without requiring known pdfs. Moreover, as we will see,

learning Jpost(q̌) requires less complexity and converges faster than learning the Q function

as in the conventional Q-learning algorithms.

From (3.12) and (3.13), we can write the optimality functional equation on Jpost(q̌):

Jpost(q̌) =
∑

h′∈H

∑

y′∈Y

pH(h
′)pY(y

′) max
r≤q̌,a≤y′

{

a− κq̌ − λP (h′, r) + Jpost(q̌ − r + a)

}

− Jpost(q̌0)

(3.15)

for some arbitrary but fixed state q̌0.

3.2.3 Structural Results

The structural properties of the optimal policy are now stated.

Theorem 3.1. The optimal control policy has the following properties:
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1. Jpost(q̌) is concave decreasing with q̌.

2. r∗(q, h, y) is non-decreasing with q and y.

3. a∗(q, h, y) is non-increasing with q and non-decreasing with y.

4. r∗(q, h, y) and a∗(q, h, y) are non-decreasing with h.

Proof. We prove the decreasing concavity property of Jpost(q̌) with q̌ ∈ Q. Note that the

monotonic property is obvious. To prove the concavity property, we show that Jpost(q̌)[t] in

the RVIA equation (3.16) is concave for t = 1, 2, . . . and since lim
t→∞

Jpost(q̌)[t] = Jpost(q̌), we

conclude that Jpost(q̌) is also concave. We use induction.

By initialization Jpost(q̌)[1] = 0. Using induction and supposing that Jpost(q̌)[1] is concave

for some t ≥ 1. Hence, for some fixed h ∈ H, we can easily see that

a− κq̌ − λP (h, r) + Jpost(q̌ − r + a)[t]

is jointly concave in (q̌, r, a) for r ∈ [0, q̌] and a ∈ [0, y]. Hence, the function

max
r≤q̌,a≤y

{

a− κq̌ − λP (h, r) + Jpost(q̌ − r + a)[t]

}

is concave with q̌ because the maximum of jointly concave function is also concave. Then,

from (3.16), we have Jpost(q̌)[t+ 1] is concave since the expectation preserves the concavity.

We conclude that Jpost(q̌) is concave decreasing with q̌.

We now prove the monotonicity of the control actions. By the concavity of Jpost(q̌),

we have the function a − κq − λP (h, r) + Jpost(q − r + a) is supermodular in (q, r) for

r ∈ [0, q] and submodular in (q, a) for a ∈ [0, y]. Then, by applying Topkis’s Monotonicity

Theorem [100, Theorems 1, 2] to (3.14), the scheduling action r∗(q, h, y) is non-decreasing

with q and the admission control action a∗(q, h, y) are non-increasing with q. Moreover,

that a∗(q, h, y) is non-decreasing with y is obvious since when y increases, the optimization

domain [0, y] for a becomes larger.

The monotonicity of the control actions with respect to h can be established using the

analogous arguments.



3 Joint Data Admission Control and Power Allocation over Fading Channel

under Average Delay Constraint 34

Theorem 3.1 reveals that with the increasing buffer occupancy q, more data should be

scheduled and less new data should be admitted. When there is more newly arriving data,

more data should be scheduled as such to make room for new data to improve the throughput.

3.2.4 Online Algorithm

To compute the optimal policy in (3.14), we need to compute the state-value function Jpost(q̌).

Using (3.15), Jpost(q̌) can be computed using the sequential relative value iteration algorithm

(RVIA) as follows

Jpost(q̌)[t+ 1] =
∑

h′∈H

∑

y′∈Y

pH(h
′)pY(y

′) max
r≤q̌,a≤y′

{

a− κq̌ − λP (h′, r)

+Jpost(q̌ − r + a)[t]

}

− Jpost(q̌0)[t] (3.16)

for t = 1, 2, . . . with initial condition Jpost(q̌)[1] = 0. The purpose of subtracting the scalar

offset is to keep the iterations stable. Iterations (3.16) converge to Jpost(q̌) satisfying (3.15)

[36].

The iterations (3.16) require known pdfs to evaluate the expectation. However, the

equation (3.16) has a nice structure such that the expectations are moved outside of the

maximization, and hence, we can use online time-averaging to learn Jpost(q̌) under unknown

pdfs, i.e., it solves the MDP (3.11) for fixed κ, and λ. Moreover, to find the solution

of (3.10), the multipliers κ, and λ can be updated using stochastic sub-gradient method.

The optimality and convergence results of the online learning algorithm are ensured using

the results in stochastic approximation theory. Using (3.16), the following online control

algorithm is employed, which based on the realizations of the random processes.

• Initialization phase: Initialize Jpost(q̌)[1] and κ[1], λ[1] ≥ 0, and fix q̌0 ∈ Q.

• Data admission control and scheduling phase: In frame t = 1, 2, . . ., based on the

current state (q[t], h[t], y[t]), the control action (r[t], a[t]) is determined by solving the

following problem:

argmax
r≤q[t],a≤y[t]

{

a− κ[t]q[t]− λ[t]P (h[t], r) + Jpost(q[t]− r + a)[t]

}

. (3.17)
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• State-value function updating phase: We update the post-decision state-value function

as:

Jpost(q̌)[t+ 1] = (1− φ[t])Jpost(q̌)[t] + φ[t]

(

max
r≤q̌,a≤y[t]

{

a− κ[t]q̌ − λ[t]P (h[t], r)

+Jpost(q̌ − r + a)[t]

}

−Jpost(q̌0)[t]

)

. (3.18)

• Multiplier updates: The multipliers κ[t], and λ[t] are updated as follows:

λ[t+ 1] =
[

λ[t] + ν[t]
(

P (h[t], r[t])− P̄max
)

]L

0

κ[t+ 1] =
[

κ[t] + ν[t](q[t]− Q̄max)
]L

0
(3.19)

where [x]ba denotes the projection of x on the interval [a, b] for a ≤ b, i.e., [x]ba = a, x,

and b for x < a, x ∈ [a, b], and x > b, respectively, and L is sufficiently large number

to ensure boundedness of the multipliers.

The learning rate sequences φ[t] and ν[t] satisfy the following properties [26]:

∞
∑

τ=1

φ[τ ] =
∞
∑

τ=1

ν[τ ] = ∞;
∞
∑

τ=1

(φ[τ ])2 + (ν[τ ])2 <∞; lim
τ→∞

ν[τ ]

φ[τ ]
= 0. (3.20)

While the conditions (3.20) guarantee convergence of the proposed algorithm under station-

ary channel fading statistics, the use of decreasing learning rate sequences may not be viable

in practice due to non-stationary channel fading statistics. In such scenarios, alternatively,

we can use a fixed and sufficiently small step size. However, the multipliers will only converge

to within a (small) neighborhood of the optimal values [101].

It is worth noting that in (3.18), we batch-update Jpost(q̌)[t + 1] for all post-decision

states q̌ ∈ Q, not only the previously-visited state q̌[t]. This is possible because the traffic

arrival and the channel processes are independent of the post-decision queue state q̌[t] [27].

The equation (3.18) can be viewed as stochastic estimate of their counterpart (3.16), and

is updated based on instantaneous traffic arrival state y[t] and channel state h[t] without

requiring known pdfs.

From the results in stochastic approximation theory and two-timescale analysis [26], [42],
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we can see that in the proposed online allocation algorithm, the state-value function and the

multiplier updates converge to the optimal state-value function, and optimal multipliers of

(3.10).

The proposed online learning algorithm does not assume any specific pdfs of the system

dynamics. Hence, it is very robust to channel and traffic arrival model variations. Due

to batch updates, the learning process converges faster. It is mentioned in [27] that batch

updates result in twice faster convergence rate than updating one state in each slot. Also,

the batch updates preserve the concavity of the value functions, i.e., the functions Jpost(q̌)[t]

is concave decreasing for all t. Hence, the computational complexity of updating the value

functions in (3.18) involves solving convex optimization problems. The convexity preserva-

tion of the value functions can also be exploited to derive approximate learning algorithm

as in [27]. Compared to Q-learning which learns the state-action Q function with large com-

plexity (which is approximately |Q|2 × |H| × |Y|2 where |.| denotes cardinality of a set) and

slow convergence [41], [59], the proposed learning requires less complexity (which is |Q|) and

converges faster. This is because Q-learning maintains a value table for each state-action

pair and updates one table entry in each slot.

We can see that the primal variables and the dual Lagrange multipliers are iterated

simultaneously albeit on different timescales. The latter is updated at a slower timescale

than the former. As seen from the slower timescale variable, the faster timescale variables

appear to be equilibrated to the optimal values corresponding to its current value. Also, as

viewed from the faster timescale variables, the slower timescale variable appears to be almost

constant. Such two timescales updates converge to the optimal solution of (3.10) [26], [42].

3.3 Illustrative Results

3.3.1 Settings

We implement the proposed learning algorithms using MATLAB. It is assumed Rayleigh

fading channel with average channel power gain 10 dB, i.e., h[t] is exponential random

variable with E{h[t]} = 10. We assume (truncated) Poisson arrival process with an average

rate of 5 (bits per slot), where the smallest and largest arrival states in each frame are

assumed to be 0 and 10.

The learning rate sequences are chosen as φ[t] = (1/t).7 and ν[t] = (1/t).85.
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Fig. 3.2: Optimal power- queue length trade-off.

3.3.2 Numerical Results

We plot in Fig. 3.2 the optimal power- queue length trade-off [23]. Note that in this case,

all data arrivals are buffered and maximum throughput R̄ = 5 (bits) is achieved. We can

see that for a given average power P̄ = 4.5 (Watts), the corresponding average queue length

Q̄ (bits) is approximately 20. It means that if we want to achieve an average queue length

smaller than 20 for P̄max = 4.5, admission control is required, which reduces the throughput.

Also, the minimum average power P̄ (∞) required to ensure finite queue length (or queue

stability) without admission control is approximately 3.75.

We now fix P̄max = 4.5. We are looking at the performance of the data admission control

and power allocation policy. Fig. 3.3 plots the optimal trade-off curve achieved by the



3 Joint Data Admission Control and Power Allocation over Fading Channel

under Average Delay Constraint 38

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Q̄

R̄

 

 

Proposed Algorithm
ECCA

Fig. 3.3: Optimal throughput- queue length trade-off for P̄max = 4.5.

proposed online learning algorithm. We also plot the trade-off obtained by the ECCA in [25].

We can observe that for the same (average) queue length, the proposed algorithm is able

to achieve higher throughput than the ECCA. Alternatively, for the same throughput, the

learning algorithms achieve smaller queue length (and delay). When the average queue length

approaches Q̄ = 20, the throughput approaches the average arrival rate or the maximum

throughput. In this case, almost all the arrivals are buffered. The results also confirm the

concavity increasing characteristic of the optimal trade-off which is analytically proved in

Proposition 3.1.

In the last experiment, we demonstrate the use of the proposed learning algorithm to

stabilize the queue when the maximum power is P̄max = 3 < P̄ (∞). Fig. 3.4 shows the

trade-off curves obtained by the proposed algorithm and the ECCA. Again, the proposed
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Fig. 3.4: Optimal throughput- queue length trade-off: P̄max = 3.

algorithm is more efficient in terms of higher throughput for a given average queue size or

smaller average queue size for a given throughput. However, the performance gap is smaller

compared to that in Fig. 3.3 for stablizable arrival process.

3.4 Chapter Summary

In this chapter, we have presented a study of the joint data admission control- power al-

location problem for point-to-point communications link over a fading channel under av-

erage delay and power constraints. Using the Markov decision process (MDP) approach

and stochastic control tools, we have derived the structural properties of the optimal policy

and proposed an online learning algorithm for the optimal policy without requiring known



3 Joint Data Admission Control and Power Allocation over Fading Channel

under Average Delay Constraint 40

statistics of the system random processes. The analysis and algorithm development are re-

lied on the introduction of new state-value function to reformulate the Bellman’s dynamic

programming equations. Moreover, such state-value function can be learned efficiently using

online time-averaging whose convergence, and optimality are ensured by the results in the

stochastic approximation theory. The online learning algorithm requires less complexity and

converges faster than the conventional Q-learning algorithms.

2016/12/28
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Chapter 4

Power Allocation with Energy

Harvesting over Fading Channel

under Statistical Delay Constraints

Next-generation wireless systems are expected to support an ever increasing number of

wireless connections with better quality-of-service (QoS), e.g., higher data rate and smaller

delay [1], [2]. As a result, energy consumption, as well as energy cost, and greenhouse

gas emission are increased, which poses challenges in the design of wireless systems. One

promising method to tackle this issue is energy harvesting (EH), where wireless nodes have

the capability to harvest energy from the renewable sources (e.g., solar, and thermoelectric,

etc) of the surrounding environment, and store the harvested energy in batteries to carry out

their functions. In this chapter, we explore power allocation problems for such EH systems

to support delay-sensitive communications.

More specifically, this chapter considers an EH system communicating over a fading chan-

nel. The stochastic power control problems for source arrival rate maximization under EH

and delay constraints are studied. The EH constraint ensures that the randomly available

(random in time and amount) renewable energy cannot be spent until it is harvested and

subsequently stored in the battery. Also, it cannot spend more energy than the currently

available amount in the battery. Moreover, in addition to the average delay constraint model

Parts of Chapter 4 are presented at the 2015 IEEE Global Communications Conference (GLOBECOM)
in San Diego, CA, USA [102], and accepted for publication in the IEEE Journal of Selected Areas in
Communications, Series on Green Communications and Networking [103].
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considered in Chapter 3, we also consider delay-outage constraint model. In the latter case,

we have converted the original problem into effective capacity maximization problem us-

ing asymptotic delay analysis. We formulate the problems as infinite-horizon constrained

Markov decision process (MDP) problems. We employ the post-decision state-value function

approach in MDP to study the structural properties of the optimal policies, i.e., the mono-

tonicity of the power allocation with channel, EH, and battery states. Throughout this work,

it is assumed that the statistics of the system random (channel fading, and EH) processes

are unknown to the source. For the model under consideration, reinforcement learning tech-

niques such as Q-learning can be employed to optimize the resource dynamically. However,

the post-decision state approach is much more appealing than the Q-learning as the former

approach provides less storage complexity and faster convergence [26], [27]. Towards this

end, we develop online power allocation algorithms without requiring known statistics of the

random processes. Illustrative results demonstrate the advantages of the proposed approach

over existing approaches, i.e., larger arrival rates can be supported under similar channel

and EH conditions, and delay constraints.

The remainder of the chapter is organized as follows. Section 4.1 describes the system

model and formulates optimization problems for both average delay and delay-outage con-

straint models. Sections 4.2 and 4.3 describe the solution approaches for the optimization

problems, respectively. Numerical results are represented in Section 4.4 while Section 4.5

concludes the work.

4.1 System Model and Problem Formulations

4.1.1 Model Description

We consider a point-to-point communication system of bandwidth B (Hz), where the source

communicates with the destination, as illustrated in Fig. 4.1. The source is equipped with

an EH module, which can harvest renewable energies from the surrounding environment,

and then store the harvested energies in an energy queue (or battery). Data is assumed

to arrive at the source buffer with the constant rate µ. We consider that the transmission

happens over frames of equal duration T (seconds). For notional simplicity, we normalize

the frame duration T and bandwidth B in the following. We next describe different parts of

the system and their assumptions in detail.
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Fig. 4.1: A source-destination communications link with EH transmitter.

1) Channel fading model: We assume block-fading channels with fading duration equal to

the frame duration. The channel power gain h[t] in frame t = 1, 2, · · · represent the channel

state in frame t. The channel fading process
{

h[t]
}

∈ H is assumed to be ergodic, stationary,

and i.i.d. with probability distribution function (pdf) pH(h) over the channel state space H,

which can be discrete or continuous.

2) EH and battery model: The source harvests energy amount e[t] from its surroundings

during frame t. Moreover, e[t] is then stored in a battery and will be available for use in

frame t+1 onwards. The random EH process
{

e[t]
}

∈ E is modeled as a stationary, ergodic

i.i.d. process with pdf pE(e) over the EH state space E . Let Ē denote the average harvested

energy in each frame.

Let b[t] ∈ B denote the energy amount currently stored in the battery in frame t, where

B denotes the battery (energy queue) state space. Let P [t] ∈ [0, b[t]] denote the transmit

power of the source in frame t. We assume that the power required for signal processing

is negligible compared to the transmit power, and hence, the energies stored and depleted

from the battery are only used for data transmissions. The battery dynamics is updated as

follows:

b[t+ 1] = ϕ(b[t], P [t], e[t]), ∀t. (4.1)

Here ϕ(·) represents a function, which depends on the battery dynamics, e.g., storage effi-

ciency, leakage effects etc. Here, we consider battery with infinite storage capacity. This

assumption is with the current trend of the battery technology, where a large amount of en-
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ergy can be stored in the battery with negligible leakage effect, e.g., a super-capacitor [104].

Therefore, as a good approximation in practice, the battery dynamics (4.1) increases and

decreases linearly as follows [39], [37], [72]:

b[t+ 1] = b[t]− P [t] + e[t], ∀t, (4.2)

We can see that the battery dynamics
{

b[t]
}

follows a first-order Markov chain that depends

only on the present and immediate past conditions. Moreover, when transmitting with

power P [t] under channel state h[t], the achievable throughput r[t] is assumed to be given

by Shannon’s formula:

r[t] = r(h[t], P [t]) = log2(1 + P [t]h[t]), ∀t. (4.3)

Our considered model can be extended for correlated channel fading and correlated EH

processes with necessary modifications. In this case, the control actions and state-value

functions (considered in Sections 4.2 and 4.3) would include the immediate past channel

and/or EH states.

The EH and channel fading processes can vary in different time-scales. In practice, the

incoming energy variation is typically slower than that of the channel state. Throughout

this work, we consider the scenario of very fast change of the incoming energy, where energy

varies in the same time-scale as the channel state. The proposed approaches can be applied

with appropriate modifications for the case of slow EH variation.

3) Data queue dynamics: The source utilizes its data buffer to store the traffic arriving

with a constant rate µ. Note that the service process of the data queue is
{

r[t]
}

in (4.3).

Let q[t] ∈ Q denote the data queue length in frame t, where Q denotes the queue length

state space. So, the queue length dynamics can be expressed as follows:

q[t+ 1] = q[t]−min
{

q[t], r[t]
}

+ µ, ∀t. (4.4)

We assume that the queue is stable, i.e., the steady-state queue length random variable Q

is bounded. The average queue length Q̄ can be expressed as:

Q̄ = lim
t→∞

sup
1

t
E

{

t
∑

τ=1

q[τ ]

}

. (4.5)
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4.1.2 Problem Formulations

We formulate the stochastic power control problem to maximize the constant arrival rate µ

under the average delay constraint as follows:

max
µ,P [t]≤b[t],∀t

µ s.t.: Q̄ ≤ Q̄max, (4.6)

where Q̄max is the average queue length bound.

Similarly, the corresponding optimization problem under the delay-outage constraint can

be formulated as follows:

max
µ,P [t]≤b[t],∀t

µ s.t.: Pr(Q > Qmax) ≤ ζQ, (4.7)

where Qmax ∈ (0,∞) and ζQ ∈ (0, 1] are the queue length bound and queue-length-outage

probability, respectively.

We assume that the pdfs of the channel fading and EH processes are unknown to the

source. Such assumption makes the solution approach much more challenging as compared

to the scenario with known pdfs, for example, in [38], [39]. We solve problems (4.6) and (4.7)

optimally in the next two sections and provide intuitive explanations on how to optimally

control the transmit power while satisfying the delay and EH constraints without knowing

the pdfs of the random processes.

4.2 Power Allocation under Average Delay Constraint

4.2.1 Optimal Allocation Solution

We observe that problem (4.6) is an infinite-horizon MDP. To this end, it is sufficient that we

focus on policies that are independent of time, i.e., stationary policies. The stationary policy

πA can be represented by a function πA : B×Q×H → R
+ specifying the power control action

in frame t as P [t] = πA(b[t], q[t], h[t]) such that P [t] ∈ [0, b[t]], where R
+ represents the set of

non-negative numbers. Furthermore, from (4.4), we can also impose another constraint on

P [t] such that r[t] ≤ q[t] is satisfied. This finding implies P [t] ∈ [0, Pmax(b[t], q[t], h[t])], where

Pmax(x, y, z) = min
{

(2y−1)/z, x
}

. According to [36, Theorem 12.7], the optimal solution of

the constrained MDP problem (4.6) can be obtained by exploiting the Lagrangian approach
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as follows:

min
λ≥0

{

max
µ,P [t]≤Pmax(b[t],q[t],h[t]),∀t

{

µ− λQ̄

}

+ λQ̄max

}

, (4.8)

where λ ≥ 0 represents the Lagrange multiplier associated with constraint average delay

constraint. Therefore, to study (4.8), we can first study the inner maximization for a given

λ ≥ 0 as follows:

max
µ,P [t]≤Pmax(b[t],q[t],h[t]),∀t

{

µ− λQ̄

}

. (4.9)

It is worth mentioning that we update λ by sub-gradient method [106]. In the following,

we discuss the structural properties of the optimal power allocation policy π∗
A for (4.9) and

show how to allocate the power optimally in each frame t.

Let J(b, q, h) denotes the (pre-decision) state-value function for problem (4.9) for a fixed

λ > 0. In particular, J(b, q, h) is the optimal value of problem (4.9) with the initial state

(b[1], q[1], h[1]) = (b, q, h). The Bellman’s optimality equation for problem (4.9) can be

written as follows [40]:

J(b, q, h) = max
µ,P≤Pmax(b,q,h)

{

µ− λq +
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê)J(b− P + ê, q − r(h, P )

+ µ, ĥ)

}

− J(b0, q0, h0), (4.10)

for some fixed state (b0, q0, h0). The optimal policy π∗
A is the optimal solution of (4.10).

We now adopt the post-decision state-value function approach in Chapter 3 for the prob-

lem under consideration. Similar to (3.13), we define the (post-decision) state-value function

Jpost(b̌, q̌) from the (pre-decision) state-value function J(b, q, h) as follows:

Jpost(b̌, q̌) =
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê)J(b̌+ ê, q̌, ĥ) (4.11)

for (post-decision) states (b̌, q̌) ∈ B×Q. We have the following relationships on the dynamics

of the energy and data queues: b̌[t] = b[t]−P [t] and q̌[t] = q[t]−r[t]+µ; and b[t+1] = b̌[t]+e[t]
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and q[t+ 1] = q̌[t].

Using (4.10) and (4.11), the optimal policy π∗
A can be computed using Jpost(b̌, q̌) as follows:

argmax
µ,P≤Pmax(b,q,h)

{

µ− λq + Jpost(b− P, q − r(h, P ) + µ)

}

. (4.12)

Before we study the monotonicity of the optimal policy with respect to the data queue

length and battery states, we need the following results.

Lemma 4.1. Jpost(b̌, q̌) is a concave decreasing function of q̌ for a given b̌.

Proof. At first, we prove the decreasing monotonic property of Jpost(b̌, q̌). The monotonicity

is obvious since µ− λq̌ is decreasing due to increasing q̌. We use induction method to prove

the concavity of Jpost(b̌, q̌) with respect to q̌. In particular, we show that Jpost(b̌, q̌)[t] in

(4.17) is concave in q̌ for t = 1, 2, . . . and since lim
t→∞

Jpost(b̌, q̌)[t] = Jpost(b̌, q̌), we conclude

Jpost(b̌, q̌) is concave.

We initialize Jpost(b̌, q̌)[t] as Jpost(b̌, q̌)[1] = 0. We assume Jpost(b̌, q̌)[t] as concave in q̌ for

fixed b̌ ∈ B and ĥ ∈ H. Now, we have to prove Jpost(b̌, q̌)[t+ 1] as concave in q̌ according to

the induction method. Note that µ− λq̌ is linear in q̌ and as we assume that Jpost(b̌, q̌)[t] is

concave in q̌, therefore, µ − λq̌ + Jpost(b̌ − P + ê, q̌ − r(h, P ) + µ)[t] is concave in q̌ as well.

The maximum of a concave function is also a concave function. Hence,

max
µ,P≤P̌max(b̌+ê,q̌,h)

{

µ− λq̌ + Jpost(b̌− P + ê, q̌ − r(h, P ) + µ)[t]

}

(4.13)

is concave in q̌. Since the expectation operation preserves the concavity property, we conclude

Jpost(b̌, q̌)[t+1] in (4.17) is concave in q̌. Therefore, Jpost(b̌, q̌) is concave decreasing function

in q̌ for a given b̌.

Lemma 4.2. Jpost(b̌, q̌) is a concave function of b̌ for a given q̌.

Proof. We show the concavity of Jpost(b̌, q̌) by the induction method. By following the

similar steps to prove Lemma 4.1, we can show that Jpost(b̌, q̌)[t] in (4.17) is concave in b̌ for

t = 1, 2, . . . and since lim
t→∞

Jpost(b̌, q̌)[t] = Jpost(b̌, q̌), we conclude Jpost(b̌, q̌) is concave.
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We initialize Jpost(b̌, q̌) = 0 and assume Jpost(b̌, q̌)[t] as concave in b̌ for given values

of q̌ ∈ Q and ĥ ∈ H. Next, we have to prove that Jpost(b̌, q̌)[t + 1] is concave in b̌ by

induction method. As µ − λ(q̌ + µ) is independent of b̌ and Jpost(b̌, q̌)[t] is assumed to be

concave in b̌, hence µ − λ(q̌ + µ) + Jpost(b̌ − P + ê, q̌ − r(h, P ) + µ)[t] is also concave in

b̌. Using similar arguments mentioned in the proof of Lemma 4.1, we can conclude that

Jpost(b̌− P + ê, q̌ − r(h, P ) + µ)[t+ 1] is concave in b̌ for a given q̌.

For convenience, let us drop the index of time interval [t] and denote f(b̌−P ) = Jpost(b̌−

P + ê, q̌ − r(h, P ) + µ). We apply Topkis’ monotonicity theorem [100, Theorem 2] to prove

that P is a non-decreasing function of b̌. Therefore, at first, we have to prove that for a

given ĥ and q̌, Jpost(b̌, q̌) has an increasing difference in (b̌, P ) for P ∈ [0, b̌] and a given q̌.

In particular, we need to show

f(b̌′ − P ′)− f(b̌− P ′) ≥ f(b̌′ − P )− f(b̌− P ), ∀b̌′ ≥ b̌, ∀P ′ ≥ P. (4.14)

From Lemma 4.1, we know Jpost(b̌ − P + ê, q̌ − r(ĥ, P ) + µ), i.e., f(b̌ − P ) is concave in b̌.

Hence, from the fundamental property of concave functions, we have [106]:

f(u+ δ)− f(u) ≥ f(v + δ)− f(v), u ≤ v, δ ≥ 0. (4.15)

Substituting u = b̌− P ′, v = b̌− P , and δ = b̌′ − b̌, we obtain (4.14). Thus, we obtain that

Jpost(b̌ − P + ê, q̌ − r(ĥ, P ) + µ) has an increasing difference in (b̌, P ) for P ∈ [0, b̌] and a

given q̌.

We now study the monotonicity of the optimal power control policy.

Theorem 4.1. The optimal power control policy π∗
A has the following properties:

1. π∗
A(b, q, h) is a non-decreasing function of q for given h and b.

2. π∗
A(b, q, h) is a non-decreasing function of b for given h and q.

Proof. Let us consider Lemma 4.1. As Jpost(b̌, q̌) is a concave decreasing function of q̌, hence

µ−λq̌+Jpost(b̌−P + ê, q̌−r(h, P )+µ) is supermodular in (q̌, r(h, P )) for r(h, P ) ∈ [0, q̌]. As

r(h, P ) is a concave function of P , we can say that µ−λ(q̌+µ)+Jpost(b̌−P+ê, q̌−r(h, P )+µ)

is supermodular in (q̌, P ) for P ∈ [0, (2q̌ − 1)/ĥ] for given b̌ and ĥ. As the pre-decision and

post-decision parameters are proportional to each other, therefore, we can conclude that

π∗
A(b, q, h) is a non-decreasing function of q for given h and b.
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Next, to show that π∗
A(b, q, h) is a non-decreasing function of b for given h and q, consider

Lemma 4.2. By applying Topkis’ monotonicity theorem [100, Theorem 2] and representing

the parameters in terms of pre-decision state, we conclude that π∗
A(b, q, h) is a non-decreasing

function of b for given h and q.

Theorem 4.1 prescribes that more power is used for transmission for a given channel and

available energy when there are more data-bits in the data-queue. In other words, with the

increasing buffer occupancy q, more data should be scheduled to provide more ‘room’ for new

incoming data traffic without violating the delay constraint. We also observe from Theorem

4.1 that we should increase transmit power for a given channel and data-queue condition if

we have more energy in the battery. These findings help to reduce the search space to solve

(4.12) by restricting the search space towards specified direction. Intuitively, Theorem 4.1

helps to reduce the data queue length in order to meet the average delay constraint.

4.2.2 Online Algorithm

Now we propose an online algorithm to obtain the optimal policy π∗
A without requiring known

statistics of the underlying random processes. It is equivalent to learn Jpost(b̌, q̌) since we

can obtain π∗
A from Jpost(b̌, q̌) using (4.12).

From the relationship (4.11), we first write the optimality equation for Jpost(b̌, q̌) as

follows:

Jpost(b̌, q̌) =
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê) max
µ,P≤Pmax(b̌+ê,q̌,ĥ)

{

µ− λq̌ + Jpost(b̌+ ê− P, q̌

− r(ĥ, P ) + µ)

}

− Jpost(b̌0, q̌0) (4.16)

for some fixed state (b̌0, q̌0). Toward this end, notice that when the statistics of the channel

fading and EH processes is known, Jpost(b̌, q̌) can be computed using the sequential relative
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value iteration algorithm (RVIA) as follows

Jpost(b̌, q̌)[t+ 1] =
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê) max
µ,P≤Pmax(b̌+ê,q̌,ĥ)

{

µ−λq̌+Jpost(b̌+ê−P,

q̌ −r(ĥ, P ) + µ)[t]

}

− Jpost(b̌0, q̌0)[t], (4.17)

for t = 1, 2, . . . with initial value function Jpost(b̌, q̌)[1].

Using the post-decision approach helps reducing the number of states to compute the

state-value function, as we do not need to keep track of the channel states over the time

intervals in Jpost(b̌, q̌)[t] to achieve the optimal state-value function. Learning the value

function J(b, q, h)[t] as in the conventional Q-learning approach would ultimately increase

the computational complexity to a large extent.

We now resort to an online time-averaging algorithm to obtain (4.17) without requiring

known fading and EH distributions. We now describe the implementation strategy of the

proposed online algorithm as follows:

• Initialization phase: Initialize Jpost(b̌, q̌)[1] and λ[1] ≥ 0, and fix (b̌0, q̌0) ∈ B ×Q.

• Transmission phase: For t = 1, 2, . . ., based on the current state (b[t], q[t], h[t]), the

optimal power control action P ∗[t] is determined by solving the following problem:

argmax
µ,P [t]≤Pmax(b[t],q[t],h[t])

{

µ− λq[t] + Jpost(b[t]− P [t], q[t]− r(h[t], P [t]) + µ)[t]

}

. (4.18)

• State-value function updating phase: We update the state-value function as:

Jpost(b̌, q̌)[t+ 1] = (1−φ[t])Jpost(b̌, q̌)[t]+φ[t]

(

max
µ,P≤Pmax(b̌+ê,q̌,ĥ)

{

µ−λ[t]q̌+

Jpost(b̌+ ê[t]− P, q̌ − r(h[t], P ) + µ)[t]

}

− Jpost(b̌0, q̌0)[t]

)

. (4.19)
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• Multiplier update: The multiplier λ[t] is updated as follows:

λ[t+ 1] =
[

λ[t] + ν[t](q[t]− Q̄max)
]L

0
(4.20)

where [x]ba denotes the projection of x on the interval [a, b] for a ≤ b and L is sufficiently

large number to ensure boundedness of the multiplier.

The learning rate sequences φ[t] and ν[t] represent the decreasing step-size parameters for

the value-iteration function and the Lagrange multiplier update equation, respectively. The

step-size parameters satisfy the following properties [26]:

∞
∑

t=1

φ[t] =
∞
∑

t=1

ν[t] = ∞;
∞
∑

t=1

(φ[t])2 + (ν[t])2 <∞; lim
t→∞

ν[t]

φ[t]
= 0. (4.21)

We can see that (4.19), being a stochastic estimate of (4.17), is updated based on the instan-

taneous realizations of the underlying random processes without requiring their statistics.

Moreover, this algorithm is applicable to any distributions of the channel fading and EH

processes, and hence, is considered as robust to the variations of channel fading and EH

models. The convergence of proposed online algorithm to Jpost(b̌, q̌) satisfying (4.16) can be

found by following the similar steps described in [26, Appendix].

4.2.3 Baseline Transmission Schemes

To show the effectiveness of the developed optimal power control scheme for the average

delay model by simulations in Section 4.4, we propose two baseline schemes in this sub-

section based on the results available in the existing literature. The first baseline scheme,

namely benchmark scheme, does not keep track of the battery states in each time interval

to achieve the optimal throughput. Therefore, instead of constraining the instantaneous

transmit power, the average power consumption is upper bounded by the average harvested

energy. We show by simulations that our developed scheme and the benchmark scheme result

in the same optimal throughput for a given average delay requirement. The second baseline

scheme, denoted as naive scheme, heuristically calculates the transmit power as a function

of the amount of remaining energy at the battery and the number of bits to be transmitted.

1) Benchmark scheme: It has been shown in [105] that the optimal utility of an EH

system can be calculated by knowing the average harvested energy only without requiring
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the dynamics of the battery to be considered. Based on this finding, we formulate an

optimization problem for the benchmark scheme as follows:

max
µ,P [t]

µ s.t.: E
{

P [t]
}

≤ Ē, Q̄ ≤ Q̄max, (4.22)

where we remind that Ē is the average harvested energy in each frame. Note that the

difference between problems (4.22) and (4.6) is that problem (4.6) keeps track of both the

battery and queue length states in each time interval, whereas problem (4.22) keeps track

of the queue length state only. Therefore, the computational complexity to solve problem

(4.22) is much less than that involved to solve problem (4.6). The optimal solution of problem

(4.22) can be obtained by using the Lagrangian approach as follows:

min
ζ≥0, ψ≥0

{

max
µ,P [t]

{

µ− ζQ̄− ψE
{

P [t]
}

}

+ ζQ̄max + ψĒ

}

, (4.23)

where ζ and ψ are the multipliers. The optimal solution for the benchmark scheme can be

obtained by exploiting the same post-decision state approach as used in the scheme developed

in Section 4.2.1.

Problem (4.23) is a single-dimensional constrained MDP as opposed to the two-dimensional

MDP (4.9). Therefore, the post-decision state approach is only a function of the queue length

state q for given ζ and ψ. As such, the computational complexity to update the post-decision

state is much less than the developed scheme.

In this benchmark scheme, it is implicitly assumed that the available energy in each time

interval is infinite, even if the average transmit power is constrained by finite Ē. It is worth

mentioning that the benchmark scheme is a theoretical abstraction to obtain the optimal

throughput for an EH system. Hence, this scheme cannot be applied in real-time systems

(as may not be feasible for certain time intervals), where the available energy in each time

interval depends on the random EH process and the past-control actions. Nonetheless, the

reason to consider the benchmark scheme in this paper is to show that our scheme can

achieve the same optimal throughput as that offered by the benchmark scheme. In fact, our

developed online algorithm in Section 4.2.2 takes into account the dynamics of the available

energy, unlike the benchmark scheme while providing the same optimal solution. We show

this comparison in detail in Section 4.4.
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2) Naive Scheme: In this scheme, in each frame t, we assign P [t] = min
{

b[t], 2
q[t]−1
h[t]

}

.

This scheme neither takes into account the impact of channel and energy arrival statistics nor

apply any learning technique to improve the power control policy. The purpose of considering

the naive scheme is to show the effectiveness of controlling the transmit power intelligently,

as developed in our proposed scheme, over the transmission frames.

4.3 Power Allocation under Delay-Outage Constraint

In this section, we propose an approach to solve problem (4.7).

4.3.1 Effective Capacity Maximization

In order to handle the delay-outage constraint, we need to study the tail distribution of

steady-state queue length random variable Q, which is very cumbersome. To overcome

this difficulty, we assume large delay region, i.e., Qmax is sufficiently large, and employ

the asymptotic delay analysis. More specifically, using (2.6), the problem (4.7) can be

reformulated as the effective capacity maximization problem as follows:

max
P [t]≤b[t],∀t

−
1

θtar
logE

{

e−θ
tarr[t]

}

, θtar , − log(ζQ)/Q
max, (4.24)

where r[t] is given by (4.3). In the following, for the sake of convenience and generalization,

let us denote the normalized delay exponent as θ = θtar/ log(2). Using the monotonicity of

log(·), problem (4.24) can be re-expressed as follows:

min
P [t]≤b[t],∀t

E

{

(1 + h[t]P [t])−θ
}

. (4.25)

We can now observe that problem (4.25) is an infinite-horizon MDP. In the following, we

present an approach to solve and analyze problem (4.25).

We focus on the stationary policies πS for problem (4.25). The policy πS can be rep-

resented by function πS : B × H → R
+ specifying the power control action in frame t as

P [t] = πS(b[t], h[t]) such that P [t] ∈ [0, b[t]]. Note that in contrast to πA (the policy for

the average delay constraint model), πS does not depend on Q and hence is not a function

of q[t]. The optimal value of µ for a given feasible policy πS obtained from problem (4.25)

represents the effective capacity of the considered EH system [32], [61]. Note that when
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θ → 0, i.e., no constraint is imposed on the delay requirement, the solution of problem

(4.25) can also be obtained from the classical optimal online schemes described in [38], [39]

for a sufficiently large number of transmission frames and for a known channel fading and

EH statistics. Similar to the average delay constraint model, we assume that the channel

fading and EH statistics are unknown for the delay-outage constraint model as well.

Let V (b, h) denotes the (pre-decision) state-value function for problem (4.25), i.e., V (b, h)

is the optimal value of problem (4.25) with the initial state (b[1], h[1]) = (b, h). The Bellman’s

optimality equation for problem (4.25) can be written as follows [40]:

V (b, h) = min
P≤b

{

(1 + hP )−θ +
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê)V (b− P + ê, ĥ)

}

− V (b0, h0), (4.26)

for a fixed state (b0, h0). The optimal policy π∗
S is the optimal solution of (4.26).

4.3.1.1 Post-decision State-value Function Approach

Similar to the average delay model, we adopt the post-decision state-value approach for the

delay-outage constraint model to optimally control the transmit power. The post-decision

state-value function for delay-outage constraint model Vpost(b̌) can be defined as follows:

Vpost(b̌) =
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê)V (b̌+ ê, ĥ) (4.27)

for post-decision states b̌ ∈ B. The dynamics of the battery can be represented as b̌[t] =

b[t]− P [t], and b[t+ 1] = b̌[t] + e[t]. Using (4.26) and (4.27), π∗
S can be computed as:

argmin
P≤b

{

(1 + hP )−θ + Vpost(b− P )

}

. (4.28)

Lemma 4.3. Vpost(b̌) is a convex decreasing function of b̌.

Proof. At first, we prove the decreasing monotonic property of Vpost(b̌). The monotonicity

is obvious since (1 + ĥP )−θ is decreasing due to increasing P , which is proportional to the

stored energy. We use induction method to prove the convexity of Vpost(b̌). In particular, we
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show that Vpost(b̌)[t] in (4.31) is convex for t = 1, 2, . . ., and since lim
t→∞

Vpost(b̌)[t] = Vpost(b̌),

we conclude Vpost(b̌) is convex.

We initialize Vpost(b̌)[t] as Vpost(b̌)[1] = 0. We assume Vpost(b̌)[t] as convex for a given

ĥ ∈ H. Now, we have to prove Vpost(b̌)[t + 1] as convex according to the induction method.

Note that (1 + ĥP )−θ is convex in P , and as we assume Vpost(b̌)[t] is convex in b̌, therefore,

we conclude (1 + ĥP )−θ + Vpost(b̌− P + ê)[t] is jointly convex in P and b̌ for P ∈ [0, b̌] [106].

Moreover, the minimum of jointly convex function is convex. Hence,

min
P≤b̌+ê

{

(1 + ĥP )−θ + Vpost(b̌+ ê− P )

}

(4.29)

is convex with b̌. Then, from (4.31), we conclude Vpost(b̌)[t] is convex, since the expectation

operation preserves the convexity property. So, we conclude Vpost(b̌) is a convex decreasing

function of b̌.

Theorem 4.2. The optimal control policy π∗
S(b, h) is a non-decreasing function of b for a

given h.

Proof. Using [100, Lemma 1] and Lemma 4.3, we can show that (1 + ĥP )−θ + Vpost(b̌ −

P + ê) is an increasing difference function in (b̌, P ) for P ∈ [0, b̌ + ê]. Then by applying

Topkis’ monotonicity theorem [100, Theorem 2], we deduce that the control action P is non-

decreasing with b̌ for a given ĥ. Intuitively, P is non-decreasing with b̌ is obvious, since when

b̌ increases, the optimization domain [0, b̌+ ê] for P becomes larger. The larger set helps to

reduce (1 + hP )−θ + Vpost(b̌− P + ê) more. Hence, representing the parameters in terms of

pre-decision state, we can conclude that π∗
S(b, h) is non-decreasing with b for a given h.

Similar to Theorem 4.1, we observe that we should allocate more power for transmission

to increase the throughput if we have more energy available in the battery. This finding

helps to reduce the computational complexity to solve (4.28) as we restrict the search space

towards one direction to achieve the optimal solution.

Lemma 4.3 and Theorem 4.2 provide insights about the structural properties of the

post-decision state-value function Vpost(b̌) and the optimal power control policy towards

developing the online algorithm in Section 4.3.2. However, as the post-decision state-value

function Vpost(b̌) is a convex decreasing function of b̌, following the approximation method
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developed in [27], we can approximate Vpost(b̌) as a successive convex function to alleviate

the computational complexity and develop a suboptimal online algorithm.

4.3.2 Online Algorithm

We propose an online algorithm to obtain the optimal policy π∗
S under the delay-outage

constraint.

From (4.26) and (4.27), we can write the optimality equation for delay-outage constraint

model as follows:

Vpost(b̌) =
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê) min
P≤b̌+ê

{

(1 + ĥP )−θ + Vpost(b̌+ ê− P )

}

− Vpost(b̌0) (4.30)

for some fixed state b̌0.

Notice that when the channel and EH processes are known, Vpost(b̌) can be computed

using the sequential RVIA as follows for t = 1, 2, · · · :

Vpost(b̌)[t+ 1] =
∑

ĥ∈H

∑

ê∈E

pH(ĥ)pE(ê) min
P≤b̌+ê

{

(1 + ĥP )−θ + Vpost(b̌+ ê− P )[t]

}

− Vpost(b̌0)[t],

(4.31)

with initial value function Vpost(b̌)[1]. For online implementation, we can follow the same

procedures, i.e., initialization, transmission, and learning phases as described for the average

delay model in Section 4.2.

4.3.3 Baseline Transmission Schemes

Based on the concepts behind developing the baseline schemes for the average delay model,

we describe two similar types of baseline schemes for the delay-outage constraint model to

show the effectiveness of our developed scheme.

1) Benchmark Scheme: It has been shown in [105] that the optimal utility of an EH

system can be calculated by knowing the average harvested energy only without requiring

the exact distribution of the EH process to be known. Hence, with a given average harvested
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energy Ē, we formulate an optimization problem for the ‘benchmark scheme’ as follows:

min
P [t]≥0

E

{

(1 + h[t]P [t])−θ

}

s.t.: E
{

P [t]
}

≤ Ē. (4.32)

The Lagrangian of problem (4.32) is given by

L = E

{

(1 + h[t]P [t])−θ
}

+ η(E{P [t]} − Ē), (4.33)

where η represents Lagrange multiplier associated with the only constraint of problem (4.32).

Applying Karush-Kuhn-Tucker (KKT) optimality conditions [106], we obtain optimal P [t]

as follows:

P ∗[t] =







(

θ
η(h[t])θ

)
1

1+θ
− 1

h[t]
, if h[t] ≥ η

θ

0, otherwise.
(4.34)

From the KKT optimality conditions, we can show that the constraint of problem (4.32) is

satisfied with equality at the optimal point. Hence, the optimal solution of η can be obtained

numerically by solving the following equation

∞
∫

η
θ

(

( θ

ηhθ

)
1

1+θ
−

1

h

)

pH(h)dh = Ē. (4.35)

We can see that combining (4.34) and (4.35) provides the same result as that obtained for

a non-EH system, e.g., [61, Eq. (8), (9)], if the average available energy is replaced by the

average harvested energy Ē. Note that in this benchmark scheme, it is assumed that the

available energy in each frame is infinite (see (4.34)), even if the average energy is constrained

by Ē. Hence, similar to the average delay model, this scheme cannot be applied in real-time

systems when the available energy in each frame depends on realizations of the random EH

process and the past control actions.

2) Offline Scheme: In this baseline scheme, we formulate an offline optimization problem

motivated by the contributions made in [38], [39] for performance comparison. This offline

scheme was originally proposed for finite number of transmission time intervals in [38],

[39]. However, we consider infinite time horizon. Hence, to make a fair comparison in the

numerical results, we consider a large number of time intervals for this scheme to compare
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its performance with the developed and benchmark schemes. We formulate an optimization

problem as follows:

min
P [t]≥0,∀t

1

T

T
∑

t=1

(1 + h[t]P [t])−θ

s.t.
t
∑

k=1

P [k] ≤
t−1
∑

k=0

e[k], t = 1, . . . , T (4.36)

where T denotes the maximum number of time intervals. Problem (4.36) is a convex opti-

mization problem and hence can be solved optimally and efficiently [106]. Applying KKT

optimality condition in problem (4.36), we can obtain optimal power allocation P ∗[t] as

follows:

P ∗[t] =















(

θ

(h[t])θ
T∑

k=t
λ[k]

)
1

1+θ

− 1
h[t]
, if h[t] ≥

T
∑

k=t

λ[k]/θ

0, otherwise,

where λ[k], k = 1, . . . , T denote the Lagrange multipliers associated with constraint (4.36).

Please note that when θ → 0, i.e., any amount of delay is allowed, then (4.37) provides the

same solution as that obtained in [38] for fading channels.

3) Naive Scheme: In this naive scheme, in each transmission frame t, we assign P [t] =

e[t], irrespective of the channel condition. Note that this scheme, being overly aggressive

in spending energy, does not take into account the impact of channel and energy arrival

statistics, and hence the long-term effect of the power allocation policy is completely ignored.

4.4 Illustrative Results

In this section, we evaluate the performances of the developed power control schemes and

the baseline schemes for both average delay and delay-outage constraint models. We assume

exponentially distributed channel power gain with an average value of 0 dB. We assume a

random energy profile that is uniformly distributed between 0 and 2Ē (Joule) [39]. Note

that our developed scheme is general enough to be accommodated with any ergodic energy

distribution. To incorporate the delay-outage constraint, we consider the maximum queue

length, Qmax = 8 (bits) in Figs. 4.4 and 4.5. Further, the step-size parameters for learning

rate sequences and for Lagrange multiplier update equations are chosen as φ[t] = (1/t)0.70
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and ν[t] = (1/t)0.85, respectively.

4.4.1 Average Delay Constraint
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Fig. 4.2: Throughput versus average queue length Q̄max.

Figure 4.2 shows the optimal supportable throughput versus queue length bound trade-

off curves for the proposed and baseline schemes under the average delay constraint model.

We set the average EH rate Ē = 2, and evaluate the optimal throughputs for a given range of

maximum time-averaged queue length Q̄max (bits). We observe that the throughput increases

with increasing queue length bound for both proposed and baseline schemes. However, the

increasing rate of the throughput is high for smaller values of queue length bound, while

the (increasing) rate slows down for higher values of the bound. Fig. 4.2 also shows that

we achieve the same throughput for the proposed and the benchmark schemes. Recall that
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the benchmark scheme for the average delay model does not keep track of the battery state

in each time interval, and hence the control action taken in each time interval may not

always be feasible. For instance, the calculated optimal power in a given time interval

may be greater than the amount of remaining energy in the battery. Therefore, in spite of

the lower computational complexity offered by the benchmark scheme, this scheme is not

implementable in practice. In contrast, our developed scheme keeps track of both the battery

and data queue length states, takes optimal control actions in each time interval, and still

achieves the same optimal throughput as is achieved by the benchmark scheme. Further,

we observe that the proposed scheme outperforms the naive scheme and the performance

gap between the proposed and naive schemes increases with increasing queue length bound

requirement. The naive scheme does not learn the channel and energy statistics over the

transmission time and yields deteriorated performance by spending a large amount of energy

that the battery contains in each time interval. Therefore, we can conclude that although

the proposed scheme incurs higher complexity compared to the naive scheme, it is worth

implementing the former scheme because of the large performance gap between the two

schemes, particularly in the range of Q̄max ≥ 3.

In Fig. 4.3, we show throughput versus average harvested energy Ē for the proposed

scheme for different values of the average queue length Q̄max. In particular, we consider

Q̄max = {0.75, 1.5, 2.5, 4.5}. We observe that the throughput increases with increasing Ē

for a given Q̄max. The higher available energy helps to transmit more data bits even when

there is a stringent delay-requirement. However, the increasing rate of throughput is low for

smaller values of Q̄max, whereas the (increasing) rate is high for higher values of Q̄max. For

instance, increasing the average harvested energy Ē from 0.5 to 5 increases the throughput by

0.15 when Q̄max = 0.75. On the other hand, with the same amount of incremental harvested

energy, the throughput increases by 0.52 when Q̄max = 4.5.

4.4.2 Delay-outage Constraint

We compare the performance of our proposed scheme with that of the baseline schemes in

Fig. 4.4 for Ē = 2. Note that similar to the conventional non-EH system [61], the effective

capacity of a single link EH system increases with ζQ. This result has already been shown

in [73] for a single link EH system with known channel and energy profiles. Moreover,

similar to Fig. 4.2, we observe that the proposed scheme provides the same optimal result
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Fig. 4.3: Throughput versus average harvested energy Ē.

as that obtained from the benchmark scheme for all the considered values of ζQ. Therefore,

we can conclude for the delay-outage constraint model that by considering the dynamics

of the battery and applying the optimal control action according to the proposed learning

algorithm, we can still achieve the same optimal effective capacity even for unknown channel

and energy statistics. Moreover, the performance gap between our scheme and the naive

baseline scheme for the considered range of ζQ exemplifies the impact of an intelligent power

allocation strategy over a heuristic one, which does not take into account the channel and

energy statistics to allocate the transmit power.

In Fig. 4.5, we show the behavior of the effective capacity with Ē for ζQ = {10−6, 10−4, 10−2,

10−1, 0.4, 1}. We observe that the effective capacity increases with increasing Ē for a given

queue-length-outage probability ζQ. Note that ζQ,A denotes (simulated) outage probability
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Fig. 4.4: Effective capacity versus ζQ.

for average delay model; Q̄S denotes the (simulated) time-averaged queue length for delay-

outage model. For instance, in case of ζQ = 1, i.e., unconstrained delay, the effective capacity

can be increased by 1.53 if Ē is increased from 0.5 to 5. However, the increasing rate of

the effective capacity is comparatively less when there is a stringent delay constraint. For

example, when ζQ = 10−6, the effective capacity can be improved by 0.82 if we increase Ē

from 0.5 to 5. Furthermore, changing ζQ provides small impact on the effective capacity

for small Ē (e.g., 0.31 of effective capacity is decreased when ζQ is changed from 1 to 10−6

for Ē = 0.5) and a larger variation in the effective capacity for large Ē (e.g., the effective

capacity decreases by 1.02 when ζQ is changed from 1 to 10−6 for Ē = 5).
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4.4.3 Average Delay versus Delay-outage Constraints

We compare the performances of the average delay and delay-outage constraint models in

Tables 4.1 and 4.2. We fix Qmax = 8 for both tables and consider two cases of queue-length-

outage probabilities. Precisely, we set ζQ = 0.1 and ζQ = 0.01 for Table 4.1 and Table 4.2,

respectively for the delay-outage constraint model. We vary Ē from 0.5 to 5 in steps of

0.5 and evaluate the effective capacity and the average queue length for each value of Ē of

thedelay-outage constraint model. Then, we set the average queue length for the average

delay model in such as a way so that we achieve the throughput same as the effective capacity

obtained by the delay-outage constraint model. We calculate the outage probability for the

average delay model by considering the events when the instantaneous queue length exceeds

Qmax = 8 (the queue length bound for the delay-outage constraint model). By assuming
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Table 4.1: ζQ = 0.1.

Ē ζQ ζQ,A µ Q̄S Q̄max

0.5 0.1 0.19 0.56 2.07 1.55
1.0 0.1 0.22 0.85 2.41 1.85
1.5 0.1 0.23 1.06 2.72 2.13
2.0 0.1 0.25 1.23 2.96 2.34
2.5 0.1 0.26 1.38 3.10 2.49
3.0 0.1 0.28 1.51 3.21 2.58
3.5 0.1 0.29 1.63 3.35 2.65
4.0 0.1 0.29 1.73 3.47 2.78
4.5 0.1 0.3 1.81 3.55 2.88
5.0 0.1 0.31 1.88 3.64 3.01

Table 4.2: ζQ = 0.01.

Ē ζQ ζQ,A µ Q̄S Q̄max

0.5 0.01 0.0031 0.48 1.36 1.01
1.0 0.01 0.0035 0.74 1.62 1.37
1.5 0.01 0.0037 0.93 1.79 1.56
2.0 0.01 0.0039 1.09 1.92 1.70
2.5 0.01 0.0042 1.22 2.03 1.81
3.0 0.01 0.0043 1.33 2.12 1.89
3.5 0.01 0.0046 1.44 2.22 1.95
4.0 0.01 0.0048 1.53 2.33 2.03
4.5 0.01 0.0050 1.61 2.43 2.11
5.0 0.01 0.0053 1.69 2.51 2.20

Qmax = 8, we ensure that the maximum queue length is sufficiently long as compared to

the average queue length in order to satisfy delay-outage constraint for all the considered

values of Ē. It is worth mentioning that we can show by KKT optimality conditions that

the average queue length is same as the time-averaged queue length for the average delay

model.

We observe that the average queue length for the delay-outage constraint model is higher

than that for the average delay constraint model. In particular, the former is not intended

to minimize the average queue length as opposed to the main objective of the latter. On the

contrary, the latter yields higher queue-length-outage probability compared to the former.

In the average delay constraint model, we cannot control the events, where the queue length
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exceeds a certain queue-threshold and hence we end up with a higher outage probability.

Therefore, we can conclude that both average delay and delay-outage constraint models are

important to be considered depending on the system applications. For instance, in case

of real-time applications, where stringent delay outage probability is required, delay-outage

constraint model is more appealing to be employed. On the contrary, in case of tight average

delay requirement, average delay model is always a better choice.

0 1000 2000 3000 4000 5000 6000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frames

E
ffe

ct
iv

e 
ca

pa
ci

ty
 (

b/
s/

H
z)

Scenario 1: Converged value: 1.41

Scenario 2: Converged value: 0.80

Fig. 4.6: Online allocation algorithm convergence: Effective capacity.

4.4.4 Convergence Study of the Online Algorithms

We show the convergence behavior of the proposed online power allocation algorithms. In

order to avoid redundancy, we only show the results for the delay-outage constraint model.
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In Fig. 4.6, we show the convergence of the effective capacity for the proposed learning

algorithm for the delay-outage constraint model for two scenarios of queue-length-outage

probability ζQ. We assume ζQ = 0.90 and ζQ = 10−6, respectively. Further, we adopt Ē = 2

and determine the running average parameter Rav[t] = t−1
t
Rav[t−1]+ 1

t
(1+h[t]P [t])−θ to eval-

uate the effective capacity REC[t] in each time interval t ≥ 1 as REC[t] = − 1
θ log(2)

logRav[t].

The results confirm that the proposed method converges to the optimal solution after 6000

transmission frames for both scenarios.

We further show the convergence of the average transmit power for two scenarios of

the average harvested energy Ē. We consider Ē = 4 and Ē = 2, respectively and assume

ζQ = 0.90. Similar to Fig. 4.6, we evaluate the running average of the transmit power P av[t]

in each time frame t by P av[t] = t−1
t
P av[t− 1] + 1

t
P [t], t ≥ 1. We observe that the average
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transmit powers converge after 6000 time frames for both scenarios. It is worth mentioning

that the average transmit powers converge to the average harvested energy. This finding

complies with the fact that the average transmit power for the proposed scheme achieves the

same average value as that obtained from the benchmark scheme, because the constraint in

(4.32) always meets with equality at the optimal point [105].

4.5 Chapter Summary

In this chapter, we have studied a point-to-point energy harvesting (EH) communication

system for two delay constraint models, namely the average delay and the delay-outage

constraint models. For both delay models, we have maximized the supportable data arrival

rate by ensuring the optimal control of transmit power over the transmission frames. For each

model, we have formulated an Markov decision process (MDP) problem, adopted the post-

decision state approach to efficiently exploit Bellman’s equations, exploited the structural

properties of the optimal policies, and developed online algorithms to be implemented in

practice when the statistical knowledge of the underlying random channel fading and EH

processes is unknown. Our developed algorithms are robust to the variations of system

dynamics. We have derived optimal benchmark schemes (for both delay constraint models)

that do not keep track of the battery dynamics. We have shown that our developed online

algorithms, being practically implementable in contrast to the benchmark schemes, provide

the same optimal throughput as that obtained by the benchmark schemes. Furthermore, we

show by simulations that the average queue length of the average delay constraint model is

less compared to that of the delay-outage constraint model. In contrast, the queue-length-

outage probability for the latter is less than that for the former.

2016/12/28
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Chapter 5

Resource Allocation for Buffer-Aided

Half-Duplex Relaying under

Delay-Outage Constraint

In Chapters 3 and 4, we have considered scenarios where the source communicates directly

with the destination. When such direct communications is not possible, relaying communi-

cations is necessary to improve the coverage, throughput, and reliability of wireless networks.

In this chapter, we focus on resource allocation for a dual-hop source-relay-destination buffer-

aided half-duplex (B-HD) relaying network over fading channels. To exploit the buffer-aided

relaying capability, the B-HD relaying with adaptive link scheduling (B-HD-ALS) is pro-

posed to efficiently schedule the source-relay link and relay-destination to be active in each

frame depending on the instantaneous channel conditions.

This chapter investigates the optimal B-HD-ALS relaying under delay-outage constraint

to maximize the constant supportable arrival rate µ to the source, (i.e., the effective ca-

pacity). In the considered model, the (end-to-end) delay is the summation of the delays

at the source and relay buffers. Both cases of fixed and adaptive source and relay power

allocation are investigated. In order to handle the delay-outage constraint, we need to know

the tail distributions of the source and relay queue lengths, which are not tractable to derive

in general. To overcome this difficulty, we assume large delay and employ asymptotic delay

Parts of Chapter 5 are presented at the 2014 IEEE International Conference on Communications (ICC)
in London, UK [107], and published in the IEEE Transactions on Communications [108].
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analysis to transform the delay-outage constraint into constraints on the minimum exponen-

tial decay rates (also called delay exponents) of the tail distributions. Next, the relationship

between the delay exponents and resource allocation variables is derived. Consequently, we

obtain a more tractable constrained optimization problem. We derive the link selection (or

scheduling) and power allocation solutions as functions of the instantaneous link conditions

and delay constraint using Lagrangian approach and convex optimization. Special cases on

the link fading statistics and delay constraint are studied. Particularly, the proposed analysis

is shown to converge to the existing results when the delay-outage constraint becomes very

loose. Illustrative results are performed to demonstrate the effectiveness of the proposed

QoS-aware B-HD-ALS relaying schemes over existing relaying schemes such as QoS-blind B-

HD-ALS [46], QoS-aware B-HD with fixed link scheduling (B-HD-FLS) [79], and non-buffer

relaying [109] under different link conditions and delay constraints.

The rest of the chapter is organized as follows. In Section 5.1, the system model and the

B-HD-ALS relaying problem are presented. Section 5.2 presents asymptotic delay analysis

results for a buffer-aided relaying network. Sections 5.3 and 5.4 solve the B-HD-ALS relaying

problems with fixed and adaptive power allocation, respectively. Illustrative results are

provided in Section 5.5, followed by the Conclusions in Section 5.6.

5.1 System Model and Problem Formulation

5.1.1 Model Description

We consider a relaying network where a source (S) communicates with a destination (D)

with the help of a decode-and-forward relay (R) using the same channel with bandwidth B

(Hz) as shown in Fig. 5.1. We assume no direct communication link between the source and

destination.

S R D

Q� Q�µ

Fig. 5.1: B-HD relaying model.

We assume block-fading channels with fading duration equal to the transmission frame
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T (seconds), i.e., the channel power gains remain unchanged during a frame but vary inde-

pendently from frame to frame. Let h1[t], and h2[t] denote the normalized channel power

gains of the S-R and R-D links in frame t = 1, 2, . . ., respectively. Moreover, hi[t], i = 1, 2

are assumed to be statistically independent with means E{hi}. Let P1 and P2 denote the

power levels of the source and relay, respectively. The instantaneous signal-to-noise power

ratio (SNR) values of the S-R link and R-D link in frame t are thus snr1[t] = P1h1[t], and

snr2[t] = P2h2[t], respectively. Using Shannon’s formula, the corresponding instantaneous

link transmission rates (b/s/Hz) if active are:

ri[t] = log2(1 + snri[t]), i = 1, 2. (5.1)

The average link SNR values are SNRi = E{snri[t]}, i = 1, 2.

In this work, we consider the B-HD-ALS relaying problem described as follows. Let

φ[t] ∈ {0, 1}, ∀t denote a binary variable for frame t where we set φ[t] = 1 if the R-D link

is active and φ[t] = 0 if the S-R link is active. One way to implement the adaptive relaying

scheme is that the relay makes the link selection decision and informs the source, for example,

by using one-bit feedback. We next describe the objective and the constraint for the link

selection problem.

As shown in Fig. 5.1, the source utilizes its buffer to store the arriving traffic with the

constant rate µ (in b/s/Hz). The relay also employs its own buffer to store the received data

from the source before transmitting to the destination. Using the above notations, the service

processes of the source and the relay queues are
{

(1 − φ[t])TBr1[t]
}

, and
{

φ[t]TBr2[t]
}

,

respectively.

Denote q1[t], q2[t] ≥ 0 as the queue lengths of the source and relay buffers, respectively,

in frame t = 1, 2, . . .. Then, the corresponding queue-length dynamics are given as:

q1[t+ 1] = q1[t]−min
{

q1[t], (1− φ[t])TBr1[t]
}

+ TBµ,

q2[t+ 1] = q2[t] + min
{

q1[t], (1− φ[t])TBr1[t]
}

−min
{

q2[t], φ[t]TBr2[t]
}

,

where we account for the fact that the maximal number of bits transmitted from the source

(or the relay) is limited by the number of bits available in the source (or the relay) buffer and

the instantaneous capacity of the S-R link (or the R-D link). The last term of the second

equation represents the actual amount of data arriving at the destination.
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Assume stable source and relay queues, i.e., the queue lengths q1[t] and q2[t] do not grow

unboundedly large as t → ∞, and hence, having steady-state distributions. Denote the

steady-state queue length random variables as Q1 and Q2. In this work, we consider the

queue-length-outage constraint on the maximum acceptable E2E queue length Q = Q1+Q2,

which can be expressed as:

Pr
(

Q > Qmax
)

≤ ζQ. (5.2)

5.1.2 Problem Formulation

We formulate the optimal B-HD-ALS relaying design problem to maximize the supportable

rate µ to the source under the queue-length-outage constraint as follows:

max
µ,φ[t]∈{0,1}

µ s.t.: Constraint (5.2). (5.3)

The optimal value of (5.3) is called the effective capacity of the B-HD-ALS relaying.

It can be seen that, to solve problem (5.3), we need to know the tail distribution of Q,

which is very difficult to obtain in general. One way to circumvent this problem is to consider

the large queue length (or delay) region and then employ the asymptotic delay analysis to

attain the tail distribution of Q [34]. Hence, in the remaining of this paper, Qmax is assumed

to be sufficiently large (but finite).

We next show how to transform the queue-length-outage constraint (5.2) into more

tractable constraints.

5.2 Delay-Outage Constraint Transformation

5.2.1 Asymptotic Delay Analysis for Buffer-aided Relaying Network

Assume that the optimal relaying scheme φ∗[t] of (5.3) achieves the delay exponents θ1, and

θ2 at the source and relay queues, respectively. It implies that for sufficiently large x, from

(2.3), we have the following tail distributions of the queue lengths:

Pr
(

Q1 > x
)

= e−θ1x, Pr
(

Q2 > x
)

= e−θ2x.
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The probability density functions (pdfs) of the corresponding queue lengths are given by:

fQ1(x) = θ1e
−θ1x, fQ2(x) = θ2e

−θ2x.

We can see that the relaying scheme φ∗[t] must attain the constraint (5.2) with equality;

otherwise, we can always increase the supportable arrival rate without violating the delay

constraint. On the other hand, for a given queue length bound, the optimal relaying scheme

φ∗[t] with θ1 and θ2 must achieve the smallest outage probability.

We can derive the queue length Q = Q1 +Q2 outage probability as follows [110]:

Pr
(

Q>x
)

=1− Pr
(

Q1 +Q2 ≤ x
)

= 1−

∫ x

0

fQ1(y)

∫ x−y

0

fQ2(z)dzdy

=
θ1e

−θ2x − θ2e
−θ1x

θ1 − θ2
=
[eθ∆x − 1

θ∆
θM + 1

]

e−θMx, (5.4)

where θM = max{θ1, θ2}, 0 ≤ θ∆ = max{θ1, θ2} − min{θ1, θ2} < θM . For the assumed

sufficiently large x ≫ 1, as θ∆ decreases, the term (eθ∆x − 1)/θ∆ decreases and reaches the

smallest value at θ∆ = 0 (i.e., θ1 = θ2), which is limθ∆→0(e
θ∆x−1)/θ∆ = x by using L’Hopital

rule. In other words, the optimal relaying scheme φ∗[t] must achieve θ1 = θ2 to obtain the

smallest outage probability Pr
(

Q>x
)

= (1+θ1x)e
−θ1x. Hence, the constraint (5.2) becomes:

Pr
(

Q > Qmax
)

= (1 + θ1Q
max)e−θ1Q

max
= ζQ. The delay exponents can be computed as:

θ1 = θ2 = θtar , −
1

Qmax

(

1 +W−1

(

−
ζQ
e

)

)

, (5.5)

where W−1(.) denotes the lower branch of the real-valued Lambert W function [111], and

the Lambert W function is the inverse of Z(W ) = WeW .

Note that by applying the Little’s law to the considered source and relay queues in

tandem and using the tail distribution of the end-to-end queue-length Q, we can express the

tail distribution of the end-to-end delay D (in seconds) with θ1 = θ2 = θtar as follows:

Pr
(

D > x
)

= Pr
(

Q > xµ∗B
)

= (1 + xµ∗Bθtar)e−xµ
∗Bθtar ,

where µ∗ is the optimal value of (5.3).
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5.2.2 Delay-outage Constraint Transformation

By applying condition (2.2) at the source and relay queues, from the previous analysis, we

can see that in order to obtain the largest supportable arrival rate µ while satisfying the

delay constraint (5.2), the following conditions must be satisfied:

TBµθ1 + Ω1(−θ1) = 0,

Ωarv
2 (θ2) + Ω2(−θ2) = 0,

θ1 = θ2 = θtar, (5.6)

where Ω1(θ) and Ω2(θ) are the log moment generating functions (LMGFs) of the service

processes of the source and relay queues, i.e.,:

Ω1(θ)=logE
{

eθ(1−φ[t])TBr1[t]
}

, Ω2(θ)=logE
{

eθφ[t]TBr2[t]
}

, (5.7)

where r1[t] and r2[t] are given by (5.1). Ωarv
2 (θ2) is the LMGF of the arrival process to the

relay which is the same as the LMGF of the the departure process of the source and is given

by [60, Example 2.5]:

Ωarv
2 (θ) =







TBµθ, 0 ≤ θ ≤ θ1,

TBµθ1 + Ω1(θ − θ1), θ > θ1.
(5.8)

From (5.6) and (5.8), we have: Ωarv
2 (θ) = TBµθ.

We can see that the delay-outage constraint (5.2) can be transformed into the following

equivalent constraints in terms of arrival rate µ and link selection variables:

µTBθtar + Ωi(−θ
tar) = 0, i = 1, 2. (5.9)

5.3 Adaptive Link Scheduling with Fixed Power Allocation

5.3.1 Optimal Solution

Using (5.9), the problem (5.3) can be now re-formulated as:

max
µ,φ[t]∈{0,1}

µ s.t.: TBµθtar+Ωi(−θ
tar)=0, i = 1, 2. (5.10)
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The problem (5.10) involves link selection variables whose solutions are studied next.

Using the expressions in (5.7) and the increasing monotonicity of the log function, after

some simple manipulations, the problem (5.10) can be re-expressed as follows:

min
φ[t]∈{0,1}

E

{

e−θ
tar(1−φ[t])TBr1[t]

}

s.t.: E

{

e−θ
tar(1−φ[t])TBr1[t]

}

= E

{

e−θ
tarφ[t]TBr2[t]

}

.

(5.11)

We can see that the objective function and the left-hand side of the equality constraint

increase while the right-hand side decreases with increasing φ[t]. Hence, we can replace

the equality constraint in (5.11) by the greater-than-or-equal inequality constraint without

loosing optimality because the inequality constraint must be met with equality under optimal

solution φ∗[t]. Otherwise, we can always find another feasible solution with smaller objective

value. In other words, the problem (5.11) can be expressed as:

min
φ[t]∈{0,1}

E

{

e−θ(1−φ[t])r1[t]
}

s.t.: E

{

e−θ(1−φ[t])r1[t]
}

≥E

{

e−θφ[t]r2[t]
}

, θ , TBθtar.

(5.12)

The optimal value of (5.3) or the effective capacity is:

µB−HD−ALS = − logE
{

e−θ(1−φ
∗[t])r1[t]

}

/θ. (5.13)

We can observe that under more stringent delay constraints, i.e., larger θ, the effective

capacity is smaller and approaches zero as θ tends to infinity.

To solve problem (5.12), we employ the Lagrangian approach [46], [81], [112], [113].

Toward this end, for ease of understanding, we re-write the optimization problem (5.12) for

T → ∞ as follows:

min
φ[t]∈{0,1}

1

T

T
∑

t=1

e−θ(1−φ[t])r1[t] s.t.:
1

T

T
∑

t=1

e−θ(1−φ[t])r1[t] ≥
1

T

T
∑

t=1

e−θφ[t]r2[t]. (5.14)

The equivalent Lagrangian function of problem (5.14) can be written as follows:

L(λ,φ) =
1

T

T
∑

t=1

[

(1− λ)e−θ(1−φ[t])r1[t]+λe−θφ[t]r2[t]
]

, (5.15)

where φ = (φ[1], . . . , φ[T ]) denotes the vector of (binary) link selection variables; λ is non-
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negative Lagrange multiplier associated with the inequality constraint in (5.14). Note that

if we are to minimize L(λ,φ) with respect to φ for a given λ, and λ is determined to satisfy

the constraint in (5.14) with equality at optimality, we will obtain the optimal solution of

(5.14) as follows [113].

First, we need to determine the optimal solution φ∗ = (φ∗[1], . . . , φ∗[T ]) for a given value

of λ to minimize the Lagrangian, i.e.,:

min
φ[t]∈{0,1},t=1,...,T

L(λ,φ). (5.16)

By carefully studying the Lagrangian function (5.15), we can see that the optimization

problem (5.16) can be decomposed into T sub-problems, each for one particular frame t =

1, . . . , T as:

min
φ[t]∈{0,1}

(1− λ)e−θ(1−φ[t])r1[t] + λe−θφ[t]r2[t]. (5.17)

By computing the objective function value at φ[t] = 0 or 1, the optimal link selection solution

φ∗[t] in frame t can be easily obtained as:

φ∗[t]=







0, (1− λ)e−θr1[t] + λ ≤ (1− λ) + λe−θr2[t],

1, otherwise.
(5.18)

Note that, in (5.18), breaking ties is randomly performed, i.e., the S-R and R-D links are

selected with equal probability 0.5. It must hold true that λ ∈ (0, 1). Otherwise, we would

have trivial solution φ∗[t] = 1 (for λ = 0) or 0 (for λ ≥ 1),∀t.

Second, the multiplier λ is determined such that φ∗ satisfies (5.14) with equality. In

general, a closed-form solution for λ does not exist, however, we can use numerical search to

find λ.

For further analysis, we define ξ = λ/(1− λ) > 0, and have the following cases:

(i) For ξ ∈ (0, 1), the link selection solution (5.18) can be expressed as:

φ∗[t]=







0, r1[t] ≥ −1
θ
log
(

1 + ξ(e−θr2[t] − 1)
)

,

1, otherwise.
(5.19)
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(ii) For ξ = 1, the link selection solution (5.18) can be expressed as:

φ∗[t] =







0, r1[t] ≥ r2[t],

1, otherwise.
(5.20)

(iii) For ξ ∈ (1,∞), the link selection solution (5.18) can be expressed as:

φ∗[t]=







0, r2[t]≤−1
θ
log
(

1+ξ−1(e−θr1[t] − 1)
)

,

1, otherwise.
(5.21)

For each of the above three cases, the multiplier ξ can be determined so that the inequality

constraint in (5.12) holds with equality. Hence, ξ captures the statistical information on the

link fading and SNR values. The link selection exploits the fading diversity. In case (ii)

with ξ = 1, the link selection depends only on the instantaneous link rates. However, in

both cases (i) and (iii), the link selection depends on the instantaneous link rates as well

as the delay exponent θ. For example, more insights into the link selection solution can

be revealed by considering the case (i) with ξ ∈ (0, 1). When r2[t] is sufficiently small,

−1
θ
log
(

1+ ξ(e−θr2[t] − 1)
)

approaches 0, and the S-R link is often selected. Moreover, when

r2[t] is very large, it approaches a strictly positive constant value, namely − log
(

1 − ξ
)

/θ.

Hence, only when r1 is larger than this value, the S-R link is selected.

5.3.2 Special Cases

5.3.2.1 Case of very loose delay constraints

When θ approaches 0, using L’Hopital rule, we can derive the following limits:

lim
θ→0

−
1

θ
log
(

1 + ξ(e−θr2[t] − 1)
)

= lim
θ→0

ξr2[t]e
−θr2[t]

1 + ξ(e−θr2[t] − 1)
= ξr2[t],

lim
θ→0

−
1

θ
log
(

1 + ξ−1(e−θr1[t] − 1)
)

= ξ−1r1[t],

for the cases ξ ∈ (0, 1), and ξ ∈ (1,∞), respectively.
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Hence, in this case, the link selection solutions (5.19) and (5.21) converge to the following

general form:

φ∗[t] =







0, r1[t] ≥ ξr2[t]

1, otherwise,
(5.22)

for ξ ∈ (0,∞). In addition, this solution satisfies the following condition:

lim
θ→0

−
1

θ
E

{

e−θ(1−φ
∗[t])r1[t]

}

= lim
θ→0

−
1

θ
E

{

e−θφ
∗[t]r2[t]

}

. (5.23)

Again, by applying the L’Hopital rule for both sides, the above condition becomes:

E
{

(1− φ∗[t])r1[t]
}

= E
{

φ∗[t]r2[t]
}

. (5.24)

The link selection solution (5.22) was derived in [46] under a-priori unconstrained delay

assumption, e.g., see Section 2.4.1.1. Hence, the our analysis with delay-outage constraint

contains the unconstrained delay assumption as a special case.

5.3.2.2 Case of very stringent delay constraints

When θ approaches ∞ (as the outage probability ζQ approaches 0), ξ = 1 and the link

selection solution (5.20) applies. However, as mentioned previously, under very stringent

delay constraints, the effective capacity approaches 0.

5.3.2.3 Case of negligible fading variation

When the R-D link has an almost constant capacity due to negligible fading variation r2[t] =

R2, ∀t, the link selection solution (5.19) is used with r2[t] = R2 and ξ < 1. As a result, the S-R

link is selected when its instantaneous rate r1[t] is larger than a (fixed) threshold, otherwise,

the R-D link is selected. Similarly, when the S-R link has negligible fading variation with an

almost constant rate r1[t] = R1, ∀t, the link selection solution (5.21) applies with r1[t] = R1

and ξ > 1.

5.3.2.4 Case of similar link fading distributions

When both the S-R and R-D links have similar fading distributions, whether ξ is less than,

equal to, or larger than 1 depends only on the average link SNR values SNR1 and SNR2.
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If SNR1 = SNR2, then ξ = 1, and the link selection solution (5.20) applies. If SNR1 <

SNR2, then ξ increases with increasing θ, approaches 1 for sufficiently large θ, and the

link selection solution (5.19) applies. If SNR1 > SNR2, then ξ decreases with increasing θ,

approaches 1 for sufficiently large θ, and the link selection solution (5.21) applies.

The above results can be used to devise a numerical search algorithm for the multiplier

ξ as follows.

For x, ψ > 0, and θ̂ = θ/ log(2), define: r(x) = 2x − 1, and f(x, ψ) = − log
(

1 + ψ((1 +

x)−θ̂ − 1)
)

/
(

θ̂ log(2)
)

.

We first consider case (i) with ξ ∈ (0, 1). Then, the link selection solution (5.19) can be

expressed in terms of the link instantaneous SNR values as follows:

φ∗[t] =







0, snr1[t] ≥ r(f(snr2[t], ξ)),

1, otherwise.
(5.25)

Hence, we can compute the expectation terms in (5.12) as:

E

{

e−θ(1−φ
∗[t])r1[t]

}

=

∫ ∞

0

[

[

∫ r(f(x2,ξ))

0

1 +

∫ ∞

r(f(x2,ξ))

(1 + x1)
−θ̂
]

fsnr1(x1)dx1

]

fsnr2(x2)dx2,

(5.26)

E

{

e−θφ
∗[t]r2[t]

}

=

∫ r
(

− log(1−ξ)/θ
)

0

[

[

∫ r(f(x1,ξ−1))

0

1 +

∫ ∞

r(f(x1,ξ−1))

(1 + x2)
−θ̂
]

fsnr2(x2)dx2

]

fsnr1(x1)dx1 +

∫ ∞

r
(

− log(1−ξ)/θ
)
fsnr1(x1)dx1, (5.27)

where fsnr1(x1) and fsnr2(x2) denote the probability density functions of snr1[t] and snr2[t].

Notice that the terms increase in (5.26), and decrease in (5.27) with increasing ξ. Hence,

as described in Algorithm 1, a simple one-dimension bisection search over ξ ∈ (0, 1) can

be carried out to determine ξ in which the terms in (5.26), (5.27) are equal. Such value can

be computed offline since these terms involve only statistical properties of the S-R and R-D

links.
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Algorithm 1 Bisection search for ξ ∈ (0, 1)

Input: ε > 0 is a given tolerance.

Initialization:

Set ξmin = 0, ξmax = 1, ξ = (ξmin + ξmax)/2.

Set ǫ = E

{

e−θ(1−φ
∗[t])r1[t]

}

− E

{

e−θφ
∗[t]r2[t]

}

.

while ǫ > |ε| do

if ǫ > ε then

Update ξmax = ξ.

else

Update ξmin = ξ.

end

Update ξ = (ξmin + ξmax)/2.

Update ǫ = E

{

e−θ(1−φ
∗[t])r1[t]

}

− E

{

e−θφ
∗[t]r2[t]

}

.

end

We now consider case (iii) with ξ ∈ (1,∞). The link selection solution (5.21) can be

expressed in terms of the link instantaneous SNRs as:

φ∗[t] =







0, snr2[t] ≤ r(f(snr1[t], ξ
−1)),

1, otherwise.
(5.28)

When snr1[t] becomes very large, r(f(snr1[t], ξ−1)) approaches a strictly positive constant

value r
(

− log(1− ξ−1)/θ
)

. We can compute the expectation terms in (5.12) as follows.

E

{

e−θ(1−φ
∗[t])r1[t]

}

=

∫ r
(

− log(1−ξ−1)/θ
)

0

[

[

∫ r(f(x2,ξ))

0

1 +

∫ ∞

r(f(x2,ξ))

(1 + x1)
−θ̂
]

fsnr1(x1)dx1

]

fsnr2(x2)dx2 +

∫ ∞

r
(

− log(1−ξ−1)/θ
)
fsnr2(x2)dx2, (5.29)

E

{

e−θφ
∗[t]r2[t]

}

=

∫ ∞

0

[

[

∫ r(f(x1,ξ−1))

0

1 +

∫ ∞

r(f(x1,ξ−1))

(1 + x2)
−θ̂
]

fsnr2(x2)dx2

]

fsnr1(x1)dx1.

(5.30)

Similarly, we can find ξ such that the two terms (5.29) and (5.30) are equal.
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5.3.2.5 Rayleigh fading links

For Rayleigh fading links, we have the pdfs for the two links as fsnr1(x) = ζ1e
−ζ1x where

ζ1 = 1/SNR1 and fsnr2(x) = ζ2e
−ζ2x where ζ2 = 1/SNR2. Let us first consider the case

ξ ∈ (0, 1). From (5.26), we have:

E

{

e−θ(1−φ
∗[t])r1[t]

}

=

∫ ∞

0

[

1− e−ζ1r(f(x2,ξ))+ ζ θ̂1e
ζ1Γ
(

−θ̂+1, ζ1
(

r(f(x2, ξ))+1
)

)

]

ζ2e
−ζ2x2dx2,

where Γ(s, x) =
∫∞

x
ts−1e−tdt is the incomplete gamma function. Similarly, from (5.27), we

have:

E

{

e−θφ
∗[t]r2[t]

}

=

∫ r
(

− log(1−ξ)/θ
)

0

[

1− e−ζ2r(f(x1,ξ
−1)) + ζ θ̂2e

ζ2Γ
(

−θ̂ + 1, ζ2
(

r(f(x1, ξ
−1))

+1
)

)

]

ζ1e
−ζ1x1dx1 + exp

(

−ζ1r
(

− log(1− ξ)/θ
)

)

.

We can evaluate these functions using available software such as MATLAB. The expectation

terms (5.29) and (5.30) for the case ξ ∈ (1,∞) can be computed analogously. We omit the

details for brevity.

5.3.2.6 Illustration

For numerical illustration, we fix the average SNR2 = 10 dB and we plot ξ versus θ for

SNR1 = 5, 15 dB in Figure 5.2. It is observed that ξ increases, and decreases with increasing

θ for SNR1 < SNR2 and SNR1 > SNR2, respectively. Moreover, when θ becomes larger, ξ

approaches 1 in both cases. When θ becomes sufficiently small, ξ approaches its minimum

and maximum values (which is ξ0 satisfying (5.22) and (5.24)), respectively.

To further illustrate the effect of delay constraint on the link selection solution, in Figure

5.3, we plot the following function:

F (θ, r2) = −
1

θ
log
(

1 + ξ(e−θr2 − 1)
)

(5.31)

versus r2 for three values of θ = 10−1, 1, and 10 for SNR1 = 5 dB (and hence, ξ < 1). Note

that from (5.19), the S-R link is selected in frame t if and only if r1[t] ≥ F (θ, r2[t]). We
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Fig. 5.2: Multiplier ξ versus delay exponent θ with SNR2 = 10 dB.
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also plot the linear function ξ0 × r2. We can observe that when θ is sufficiently small, e.g.,

θ = 10−1, F (θ, r2) becomes linear as expected. It can be seen that the delay constraint has

different impacts on the link selection. For example, for large θ, when r1[t] ≤ 1.8, the S-R

link is selected whenever r1[t] ≥ r2[t]. However, when r1[t] > 1.8, the S-R link is always

selected.
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Fig. 5.3: F (θ, r2) versus r2

5.3.3 Comparison Benchmarks

We compare the effective capacity of the proposed QoS-aware B-HD-ALS with those of the

QoS-aware B-HD-FLS [79], QoS-blind B-HD-ALS [46], and non-buffer relaying [109]. We

next describe these relaying schemes and present how to derive the corresponding effective

capacities.
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5.3.3.1 QoS-aware B-HD-FLS

In the fixed relaying, each transmission frame t is divided into two time slots with (possibly)

unequal durations. In the first slot of duration τT (seconds), τ ∈ (0, 1), the source transmits

packets to the relay with rate r1[t] and in the second slot of duration (1− τ)T (seconds), the

relay transmits its currently buffered packets to the destination with rate r2[t]. The effective

capacity of the fixed relaying scheme with equal delay exponent θ at the source and relay is

given as [79]:

µB−HD−FLS(Q
max, ζQ) = −

1

θ
logE

{

e−θτ
†r1[t]

}

, (5.32)

where τ † ∈ (0, 1) satisfies:

E

{

e−θτ
†r1[t]

}

= E

{

e−θ(1−τ
†)r2[t]

}

, (5.33)

where r1[t] and r2[t] are given by (5.1).

5.3.3.2 QoS-blind B-HD-ALS

The QoS-blind adaptive relaying scheme maximizes the (ergodic) capacity under uncon-

strained delay assumption [46]. It has the following form:

φ[t] =







0, r1[t] ≥ ρr2[t],

1, otherwise,
(5.34)

where ρ is determined to maintain the following equality:

E
{

(1− φ[t])r1[t]
}

= E
{

φ[t]r2[t]
}

. (5.35)

We can see that ρ in this case is optimized in consideration of the link fading distributions

and average SNR values only. Recall that (5.35) is the limiting case of (5.19) or (5.21) when

θ approaches 0 as we discussed previously. It can be shown that the effective capacity of the

QoS-blind relaying scheme is given by:

µQoS−blind
B−HD−ALS(Q

max, ζQ)=min

{

−
1

θ
Λ1(−θ),−

1

θ
Λ2(−θ)

}

, (5.36)
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where Λ1 and Λ2 are, respectively, the LMGFs of the service processes of the source and

relay queues, which are computed using the relaying scheme (5.34) as follows:

Λ1(θ) = log

∫ ∞

0

[

[

∫ (1+x2)ρ−1

0

1+

∫ ∞

(1+x2)ρ−1

(1+x1)
θ/ log(2)

]

fsnr1(x1)dx1

]

fsnr2(x2)dx2,

Λ2(θ) = log

∫ ∞

0

[

[

∫ (1+x1)1/ρ−1

0

1 +

∫ ∞

(1+x1)1/ρ−1

(1 + x2)
θ/ log(2)

]

fsnr2(x2)dx2

]

fsnr1(x1)dx1.

Note that the first term and the second term in (5.36) are the effective capacities of the S-R

link, and R-D link, respectively. The end-to-end effective capacity is the minimum of the

two. The proof can be adapted from that in [79] and is omitted for brevity. We can see that

the capacity µQoS−blind
B−HD−ALS = µB−HD−ALS is achieved only under the following two scenarios:

• either θ is close to 0, i.e., very loose delay constraints,

• or the S-R and R-D links have similar fading distribution and average SNR. In this

case, the two adaptive relaying schemes are the same where the link with better in-

stantaneous rate is selected.

In other scenarios, it is expected that µB−HD−ALS > µQoS−blind
B−HD−ALS.

5.3.3.3 Non-buffer relaying

In the non-buffer relaying, (i.e., the relay queue Q2 in Fig. 5.1 does not exist), the relay

forwards the received packets from the source immediately in the next time-slot. Consider

the constant arrival rate µN−HD to the source buffer and suppose that each frame t is divided

into two equal time slots. During the first time-slot, the source transmits packets to the

relay. In the second time-slot, the relay decodes and forwards the decoded packets to the

destination. As previously defined, P1, and P2 are the power levels of the source and relay.

The achievable rate in frame t is given by:

r[t] =
1

2
min

{

log2(1 + P1h1[t]), log2(1 + P2h2[t])
}

.
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With non-buffer relaying, the packets are delayed at the source buffer only. The effective

capacity of the non-buffer relaying is given by [32]:

µN−HD(Q
max, ζQ) =

−1

θ̄1
logE

{

e−θ̄1r[t]
}

, θ̄1 = −TB log(ζQ)/Q
max.

In Section 5.5, we will compare the effective capacities of these relaying schemes under

different delay constraints and link average SNR values.

5.4 Adaptive Link Scheduling with Adaptive Power Allocation

Previously, we have assumed fixed source and relay transmit power levels P1, and P2, re-

spectively. However, we can jointly and adaptively optimize the link selection and power

allocation in each transmission frame to potentially enhance the capacity as follows. Denote

the source and relay transmit power levels in frame t as P1[t] and P2[t], respectively. If

φ[t] = 0 then P1[t] ≥ 0 and P2[t] = 0 while if φ[t] = 1 then P1[t] = 0 and P2[t] ≥ 0. Then,

the average total power is given by E

{

(1− φ[t])P1[t] + φ[t]P2[t]
}

.

In this section, we consider the joint adaptive link selection and power allocation problem

under the delay-outage and the maximum average power constraints.

5.4.1 Optimal Solution

After some simple manipulations, similar to (5.12), the joint adaptive relaying and power

allocation problem to maximize the capacity can be equivalently written as:

min
P1[t]≥0,P2[t]≥0,φ[t]∈{0,1}

E

{(

1 + P1[t]h1[t]
)−θ̂(1−φ[t])}

s.t.: E

{(

1 + P1[t]h1[t]
)−θ̂(1−φ[t])}

≥ E

{(

1 + P2[t]h2[t]
)−θ̂φ[t]}

,

E

{

(1− φ[t])P1[t] + φ[t]P2[t]
}

≤ P̄max, (5.37)

where P̄max denotes the maximum average power constraint.

We can see that at optimality, the inequality constraints in (5.37) must be met with

equality. Also, it can be verified that if P1[t], P2[t] are fixed, then the problem (5.37) reduces

to the problem (5.12). The effective capacity with joint adaptive link selection and power



5 Resource Allocation for Buffer-Aided Half-Duplex Relaying under

Delay-Outage Constraint 86

allocation is:

µB−HD−APA =
−1

θ̂ log(2)
logE

{(

1 + P ∗
1 [t]h1[t]

)−θ̂(1−φ∗[t])}

, (5.38)

where P ∗
1 [t], P

∗
2 [t], and φ∗[t] are the optimal solutions of (5.37).

To solve (5.37), again, we employ the Lagrangian approach. The Lagrangian of (5.37) is:

L = E

{

L[t] = (1− ω)
(

1 + P1[t]h1[t]
)−θ̂(1−φ[t])

+ω
(

1+P2[t]h2[t]
)−θ̂φ[t]

+σ
(

(1−φ[t])P1[t]+φ[t]P2[t]
)

}

, (5.39)

where ω, and σ are the non-negative Lagrange multipliers associated with the inequality

constraints in (5.37). Again, we can see that ω ∈ (0, 1); otherwise, we would have trivial

solution φ∗[t] = 1, ∀t.

We first study the power allocation solution assuming the link selection solution is given.

First, suppose that φ∗[t] = 0, then we have:

P ∗
1 [t]=argmin

P1[t]≥0

{

(1− ω)
(

1 + P1[t]h1[t]
)−θ̂

+ σP1[t]

}

. (5.40)

The second-order derivative of the objective function of (5.40) is found as:

(1− ω)θ̂(θ̂ + 1)(h1[t])
2
(

1 + P1[t]h1[t]
)−θ̂−2

,

which is non-negative for P1[t] ≥ 0. Hence, the objective function is a convex function in P1[t],

and (5.40) is a convex optimization problem. Thus, by differentiating the objective function,

setting it equal to 0, and accounting for the non-negativeness of the power allocation, we

can derive the optimal power allocation P ∗
1 [t] as:

P ∗
1 [t]=







1
h1[t]

(

(1−ω)θ̂h1[t]
σ

)1/(θ̂+1)

− 1
h1[t]

, h1[t] ≥
σ

(1−ω)θ̂
,

0, otherwise.
(5.41)
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Now consider the case φ∗[t] = 1, then we have:

P ∗
2 [t] = argmin

P2[t]≥0

{

ω
(

1 + P2[t]h2[t]
)−θ̂

+ σP2[t]

}

. (5.42)

Analogous to (5.40), we can derive the optimal power allocation P ∗
2 [t] as follows:

P ∗
2 [t] =







1
h2[t]

(

ωθ̂h2[t]
σ

)1/(θ̂+1)

− 1
h2[t]

, h2[t] ≥
σ

ωθ̂
,

0, otherwise.
(5.43)

Using the derived power allocation solutions P ∗
1 [t] and P ∗

2 [t] , we can derive the optimal link

selection solution to minimize the Lagrangian (5.39) in each frame as follows:

φ∗[t] =



















0, (1− ω)(1 + P ∗
1 [t]h1[t])

−θ̂ + σP ∗
1 [t] + ω

≤ (1− ω) + ω(1 + P ∗
2 [t]h2[t])

−θ̂ + σP ∗
2 [t],

1, otherwise.

The Lagrange multipliers ω and σ can be determined so that the inequality constraints

in (5.37) are met with equalities. We can see that at optimality, all the power budget must

be consumed as expected.

To obtain more insights, we study the optimal power allocation policies P ∗
1 [t] and P ∗

2 [t].

By examining ∂P ∗
1 [t]/∂h1[t] (or ∂P

∗
2 [t]/∂h2[t]), we can see that P ∗

1 [t] (or P
∗
2 [t]) increases with

increasing h1[t] when h1[t] is less than a threshold value and then decreases with increasing

h1[t] otherwise. Hence, the power allocation solutions swing between the water-filling (for

smaller h1[t]) and channel inversion (for larger h1[t]) policies.

The maximum sum power constraint has been considered in many scenarios [114]– [117].

Although the source and relay may not be able to share the power, the maximum sum

power constraint allows performance comparison with other schemes to support the same

source-destination path (e.g., direct source-destination link, buffer-aided relaying, non-buffer

relaying, QoS-aware relaying, QoS-blind relaying, fixed relaying, adaptive relaying, and so

on) in a fair manner on the basis of the same maximum total power constraint. Furthermore,

the total power constraint is a way to limit the interference from one network to other

coexisting networks.
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Fig. 5.4: Optimal power allocation P ∗
1 [t] versus h1[t].
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The proposed solution approach can be extended to study the problem with individual

power constraints at the source and relay. By introducing three Lagrange multipliers: one for

the delay constraint and the other two for the source and relay individual power constraints,

the link selection and power allocation solution in each frame t depends on these Lagrange

multipliers. It can be verified that the delay constraint and at least one of the two power

constraints must hold with equality at optimality. Detailed analysis of each possible case

must be developed to determine the Lagrange multipliers.

5.4.2 Special Cases

5.4.2.1 Case of very loose delay constraints

When the delay constraint becomes very loose, i.e., θ̂ is small, the power allocation P ∗
1 [t] in

(5.41) and P ∗
2 [t] in (5.43) approach the following:

P ∗
1 [t] =







(1−ω)θ̂
σ

− (h1[t])
−1, h1[t] ≥ σ/((1− ω)θ̂),

0, otherwise

and

P ∗
2 [t] =







ωθ̂
σ
− (h2[t])

−1, h2[t] ≥ σ/(ωθ̂),

0, otherwise.

Hence, the power allocation solutions tend to the conventional water-filling policies, albeit

with two different water-levels. Again, this result has been derived in [46] under infinite

delay assumption.

5.4.2.2 Case of very stringent delay constraints

When the delay constraint becomes more stringent, i.e., θ̂ becomes large, the power allocation

P ∗
1 [t] in (5.41) and P ∗

2 [t] in (5.43) become:

P ∗
1 [t] =

1

h1[t]

[

((1− ω)θ̂

σ

)1/(θ̂+1)

− 1

]

, h1[t] ≥
σ

(1− ω)θ̂
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and

P ∗
2 [t] =

1

h2[t]

[

(ωθ̂

σ

)1/(θ̂+1)

− 1

]

, h2[t] ≥ σ/(ωθ̂)

which are similar to the channel-inversion policies. We re-emphasize that under very strin-

gent delay constraints, the effective capacity still approaches 0, even under optimal power

allocation.

Intuitively, under loose delay constraints, since the queue length bound violation is al-

lowed with large probability, more data is stored in the (source and relay) queues for longer

duration. Hence, it is better to transmit at higher power under more favorable channel con-

ditions to exploit the temporal fading diversity, i.e., the water-filling policy. On the other

hand, under more stringent delay constraints, in order to avoid queue length bound violation,

it is better to transmit at lower power levels under more favorable channel conditions, i.e.,

channel-inversion policy. For illustration, in Fig. 5.4, we plot P ∗
1 [t] versus h1[t] for ω = 0.1,

σ = 0.05, and different values of θ = 10−2, 10−1, and 1. This figure shows that the power

allocation policies approach the water-filling and channel-inversion policies for small and

large θ, respectively, as analyzed. For medium θ, the allocation policy swings between these

two policies as we discussed above.

5.4.3 Resource Allocation Algorithm over Unknown Fading Links

The link selection and power allocation solutions depend on the fading statistics through the

Lagrange multipliers ω and σ, which are determined so that the inequality constraints (5.37)

are met with equality. We can use a (two-dimension) numerical search method as in the case

of fixed power allocation. However, such numerical approach has two possible limitations: 1)

It requires the fading statistics to be known, which is usually not the case in reality; 2) Even

when the fading statistics are known, it may be complicated, if not impossible, to compute

the expectation terms in closed-form which are then used for numerical computation. Hence,

in general, it may not be possible to employ the numerical method to compute the Lagrange

multipliers ω and σ. To overcome these limitations, we can utilize the following online

allocation algorithm. We initialize the Lagrange multipliers with ω[1] ∈ (0, 1), and σ[1] > 0.
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Then, in transmission frame t = 1, 2, . . ., we carry out the following updates:

ω[t+ 1]=

[

ω[t] + ǫ[t]
(

(1 + P ∗
2 [t]h2[t])

−θ̂φ∗[t] − (1 + P ∗
1 [t]h1[t])

−θ̂(1−φ∗[t])
)

]1

ε

σ[t+ 1]=
[

σ[t] + ǫ[t]
(

(1− φ∗[t])P ∗
1 [t] + φ∗[t]P ∗

2 [t]− P̄max
)]L

ε

for small positive coefficient ε, where [x]ba denotes the projection of x on the interval [a, b] for

a ≤ b and L is sufficiently large to ensure boundedness of σ[t + 1]. The decreasing positive

sequence ǫ[t] that dictates the convergence speed, satisfies:

∞
∑

t=1

ǫ[t] = ∞;
∞
∑

t=1

(ǫ[t])2 <∞.

The allocation solutions P ∗
1 [t], P

∗
2 [t], and φ∗[t] in frame t are computed using the current

estimates ω[t] and σ[t]. These iterative stochastic-approximation updates are guaranteed to

converge to the optimal multipliers. We can see that these updates do not require the fading

statistical knowledge and have very low implementation complexity. Moreover, the allocation

algorithm does not assume any specification on the fading statistics, and it converges for any

independent link fading distributions. Hence, it is very robust to channel model variations.

5.5 Illustrative Results

5.5.1 Settings

For illustrative purposes, we assume Rayleigh fading links with block-fading duration T = 5

ms, the bandwidth B = 10kHz. For the delay-outage constraint, we fix the queue length

bound Qmax = 3000 (bits) to obtain numerical results in this section. The queue-length-

outage probability ζQ can be fixed or varied depending on the simulation scenarios.

5.5.2 Fixed Power Allocation

For a given delay constraint (5.2), we wish to demonstrate that by provisioning similar delay

statistics (performance)at the source and relay, i.e., θ1 = θ2, we can achieve the largest

effective capacity.
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Fig. 5.5: Effective capacity versus scaling parameter υ.

We fix ζQ = 10−2 and SNR2 = 10 dB and assume θ1 = υθ2 where the scaling parameter

υ > 0 represents the relative required delay performance at the source and relay queues.

In particular, υ < 1 means that more delay is allowed at the source than the relay due to

θ1 < θ2. On the other hand, υ > 1 means that more delay is allowed at the relay. In Figure

5.5, we plot the capacity versus υ ∈ [10−2, 102] for SNR1 = 5, 10, 15 dB. We use (5.4) to

compute the delay exponents θ1 and θ2 corresponding to each value of υ. We can see that

for all three values of SNR1, the capacities are largest when υ = 1, i.e., θ1 = θ2. Even when

the links have different signal strengths, applying the same delay exponent at the source and

relay queues achieves the largest capacity. This is because the QoS-aware relaying scheme

takes into account the delay allocation at the source and relay and link average SNR values.

In contrast, it can be observed that provisioning different delay performance at the source
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and relay reduces the capacity. We study the power allocation at source and relay to achieve
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Fig. 5.6: Effective capacity versus P1.

the largest capacity under the same average total power constraint. Note that this power

allocation is determined before transmission (i.e., off-line calculation). For this purpose, we

fix ζQ = 10−2 and set up the experiment as follows.

First, we assume that E{h1} = E{h2} = 1 for convenience. Hence, P1 and P2 are also the

average link SNR values. Now, for unequal power allocation at the source and relay, we fix

P2 = 10 dB and vary P1. For each value of P1, we determine the optimal B-HD-ALS relaying

scheme and compute its corresponding capacity µUNEQ. We also compute the average total

power as follows:

P̄ = Pr
(

φ∗[t] = 0
)

P1 + Pr
(

φ∗[t] = 1
)

P2. (5.44)

We next compute the capacity µEQ of the B-HD-ALS relaying scheme with equal source
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and relay transmit power. To ensure that the two schemes utilize the same average power,

in the latter scheme, the source or the relay transmit with power P1 = P2 = P̄ in (5.44)

if active in each frame. In Figure 5.6, we plot the capacities versus P1. We can see that

equal power allocation at the source and relay, and hence, equal link average SNR, achieves

the highest capacity. Otherwise, the link with smaller average SNR becomes the bottleneck

link that reduces the capacity even though B-HD-ALS does consider the link average SNR

values. However, note that equal average SNR might not achieve the highest capacity if the

links have different fading distributions.
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Fig. 5.7: Effective capacity versus SNR1.

We numerically compare the capacities of the proposed QoS-aware B-HD-ALS and the

other relaying schemes: 1) QoS-aware B-HD-FLS [79]; 2) QoS-blind B-HD-ALS [46]; 3) Non-

buffer relaying. The capacities of these schemes are described in Section 5.3.3. To conduct
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the comparisons, we fix SNR2 = 10 dB.
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Fig. 5.8: Effective capacity versus ζQ.

First, we set ζQ = 10−2. Figure 5.7 shows the capacities of the relaying schemes versus

SNR1. It can be observed that the QoS-aware B-HD-ALS attains the highest capacity for all

values of SNR1. Note that when SNR1 = 10 dB, the QoS-aware and QoS-blind B-HD-ALS

schemes are similar, hence, they achieve similar capacity. Also, QoS-blind B-HD-ALS does

not capitalize on the increased SNR1 when SNR1 > SNR2 because the S-R link is forced

to transmit less often resulting in small supportable arrival rates. Moreover, it can be seen

that the gain due to adaptive link selection relaying over fixed relaying is reduced when

SNR1 becomes larger. In this case, fixed relaying performs well since both links now have

favorable channel conditions in each frame. When SNR1 is small, the S-R link is still active

in each frame even if it might have unfavorable channel conditions, which leads to reduced
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capacity for the fixed relaying. We can see that buffer-aided relaying is more effective than

non-buffer relaying to support delay-sensitive applications because in non-buffer relaying,

the end-to-end rate is dominated by the weaker of the two links.

Figure 5.8 shows the capacities of the relaying schemes versus ζQ for SNR1 = 15 dB. It

is clear that as ζQ becomes larger, higher capacities can be achieved for all schemes. For

each case, we can see that adaptive relaying outperforms fixed relaying when ζQ is higher

than a certain threshold. QoS-aware relaying performs better than QoS-blind relaying for all

queue-length-outage probabilities as shown previously and the gain becomes smaller under

looser delay constraints.

5.5.3 Adaptive Power Allocation
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Fig. 5.9: Effective capacity versus P̄max.
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Fig. 5.10: Effective capacity versus ζQ.

In this numerical study, we assume that E{h1} = E{h2} = 1 for convenience.

We study the capacity gains achieved by the adaptive power allocation over fixed power

allocation. We assume equal average power consumption P̄max in both relaying schemes.

For fixed power allocation, we further assume P1 = P2 = P̄max in order to attain the highest

capacity as studied in Figure 5.6. For the case that P1 6= P2 in fixed power allocation scheme,

we expect to achieve higher gains due to power adaption for the same average power.

Figure 5.9 shows the capacities of the relaying schemes versus P̄max for different ζQ =

10−2, 10−1. It can be observed that power adaptation is more beneficial at lower SNR, e.g.,

P̄max ≤ 5 dB. This can be explained as follows. At low SNR, since the capacity is dominated

by the transmission rates, and hence, by adaptively allocating the power to the source and

relay to exploit the link and temporal diversities, higher capacity gains can be achieved.
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On the other hand, at high SNR, the capacity is dominated by the delay constraint, and

hence, power adaption is not much advantageous. As a result, under more stringent delay

constraints, the gains due to power adaptation are expected to be reduced. This observation

is further confirmed in the following investigation.

We plot the capacities of the relaying schemes versus ζQ for average power P̄max = 0, 5

dB in Figure 5.10. We can see that power adaptation is less beneficial under more stringent

delay constraints because the capacity is dominated by the delay constraints. Particularly, for

large P̄max, the gains are marginal under stringent delay constraints. However, under looser

delay constraints, power adaption can provide significant capacity gains over fixed power

allocation. Since data transmissions can be delayed for longer time, temporal diversity can

be exploited better by transmitting more under more favorable channel conditions and vice

versa. From the above numerical studies, we can conclude that power adaption is useful

when sufficiently long delay can be tolerated and/or when the power budget is limited.

5.6 Chapter Summary

In this chapter, we have studied buffer-aided half-duplex (B-HD) relaying network over

fading channels under the delay-outage constraint. To exploit the buffer-aided relaying

capability and link fading diversity, B-HD with adaptive link selection (B-HD-ALS) relaying

schemes with fixed and adaptive source and relay power allocation are proposed. In each

transmission frame, the relay can be activated adaptively to receive packets from the source

or to transmit packets to the destination depending on the instantaneous channel state

information. The link selection and power allocation solutions are derived to maximize the

constant supportable arrival rate µ to the source using Lagrangian approach and convex

optimization. The effects of the delay constraint on the derived solutions are identified.

Illustrative results compare the capacities of the proposed relaying schemes and other existing

schemes. In general, the simulation results show that B-HD-ALS is beneficial as long as a

certain delay can be tolerated.

2016/12/28
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Chapter 6

Power Allocation for Buffer-Aided

Full-Duplex Relaying with Imperfect

Self-Interference Cancellation under

Delay-Outage Constraint

In Chapter 5, we have considered half-duplex (HD) relaying where the relay either transmits

or receives in each transmission frame to avoid self-interference (SI) at the expense of low

spectral efficiency. Recently-developed SI mitigation methods can leverage the potential

full-duplex (FD) relaying, in which a relay can receive and transmit simultaneously over the

same frequency. However, SI cannot be completely mitigated in practice. In this chapter, we

consider a buffer-aided FD (B-FD) relaying with imperfect SI cancellation, where the non-

zero residual SI is assumed to be proportional with parameter β > 0 to the relay transmit

power. We investigate two source and relay transmit power allocation problems for effective

capacity maximization, which depend on the availability of the channel state information at

the transmitters (CSIT).

First, when the instantaneous CSIT is available, we investigate the B-FD relaying with

adaptive power allocation (B-FD-APA) problem. The source and relay powers are adap-

tively allocated in each frame depending on the channel conditions. Depending on the

Parts of Chapter 6 are presented at the IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC) in Hong Kong, China [118], and published in the IEEE Access [119].
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channel conditions, the relay can switch between HD and FD operation modes, i.e., hybrid

HD/FD relaying [52]. Moreover, the optimal B-FD-APA solutions for special cases on the

delay constraint and SI cancellation parameter β are also studied. In particular, for large

β and loose delay constraint, B-FD-APA approaches buffer-aided HD (B-HD) relaying with

adaptive link scheduling (B-HD-ALS) [108].

Second, it is known that instantaneous CSIT is not always possible in wireless systems due

to CSI feedback complexity from the receivers. Then, the source and relay might not be able

to adapt their transmit powers efficiently and need to transmit with fixed powers. On the

other hand, statistical CSIT (or link fading statistics) is more accessible than instantaneous

CSIT since the duration over which the fading processes are stationary is much longer than

the duration of the fades. By exploiting the statistical CSIT, we study the B-FD relaying with

static power allocation (B-FD-SPA) problem. The optimal B-FD-SPA solution is derived

taking into account the fading statistics, SI cancellation parameter β, as well as the delay

constraint. Several properties of the optimal B-FD-SPA solution are investigated. Also,

solutions for various special cases on the delay constraint and β are analyzed.

Furthermore, to investigate the potential benefits of B-FD relaying over non-buffer FD

(N-FD) relaying, we also study two power allocation problems in N-FD relaying under delay-

outage constraint: 1) N-FD relaying with adaptive power allocation (N-FD-APA) when in-

stantaneous CSIT is available; 2) N-FD relaying with static power allocation (N-FD-SPA)

when only statistical CSIT is available. The solutions for both problems are derived. Il-

lustrative results are performed to demonstrate the effectiveness of the proposed relaying

schemes over the existing relaying schemes (e.g., B-HD relaying and N-FD relaying).

The rest of the chapter is organized as follows. In Section 6.1, the system model is

presented, and the power allocation problems are formulated. The solution approaches for

the B-FD-APA and B-FD-SPA problems are presented in Sections 6.2, and 6.3, respectively.

In Section 6.4, N-FD relaying problems are described. Numerical studies are presented in

Section 6.5 and Section 6.6 presents the conclusion.
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6.1 System Model and Problem Formulations

6.1.1 Model Description

Consider a decode-and-forward buffer-aided relaying network where a source (S) communi-

cates with its destination (D) with the help of an intermediate relay (R) with FD relaying

capability over a channel with bandwidth B (Hz) as shown in Fig. 6.1. Data packets are

assumed to arrive at the source buffer with constant rate µ.

S R D

Q� Q�
µ

Self-interference

Fig. 6.1: B-FD relaying model.

We consider block-fading channels with fading duration T (seconds) which is equal to the

transmission frame duration, i.e., the instantaneous channel power gains in frame t = 1, 2, . . .,

hi[t], i = 1, 2 of the S-R and R-D links, respectively, remain unchanged during frame t

but vary independently from frame to frame. Moreover, hi[t], i = 1, 2 are assumed to be

statistically independent with means E{hi[t]}. We assume that perfect instantaneous channel

state information (CSI) is available at the receivers in each frame, i.e., the relay knows h1[t]

and the destination knows h2[t].

Let P1[t], P2[t] ≥ 0 denote the source and the relay transmit power levels in frame t,

respectively. It can be seen that, in HD relaying, at most one of P1[t] or P2[t] is positive,

i.e., the relay cannot simultaneously receive and transmit, while in FD relaying, it is possible

that both P1[t] and P2[t] are non-zero. Moreover, in FD relaying, the residual SI is assumed

to be zero-mean, additive and Gaussian with the variance proportional to the relay transmit

power P2[t] as commonly assumed in existing literature [51]– [53], i.e., βP2[t] represents the

residual SI power, and the parameter β ≥ 0 represents the SI cancellation quality. Larger

β implies worse SI cancellation performance. In this work, we study two following power

allocation schemes for P1[t], and P2[t].

Case 1: Adaptive power allocation (B-FD-APA). When instantaneous CSIT is available,

P1[t], and P2[t] are adaptively allocated in each frame t according to h1[t], and h2[t]. The
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instantaneous signal-to-SI-plus-noise power ratio (SINR) of the S-R link and signal-to-noise

power ratio (SNR) of the R-D link can be expressed as:

sinr1[t] =
h1[t]P1[t]

βP2[t] + 1
, snr2[t] = h2[t]P2[t], (6.1)

where the noise power is taken as reference and normalized to 1. It is noted that the path

loss (including both transmitter and receiver antenna gains) is also normalized to 1. βP2[t]

also represents the residual-SI-to-noise ratio (INR). The instantaneous transmission rates of

the S-R link and R-D link (b/s/Hz) are:

r1[t] = log2(1 + sinr1[t]), r2[t] = log2(1 + snr2[t]). (6.2)

Note that instantaneous CSIT is achieved by using feedback from the receiver. Since there is

feedback delay, instantaneous CSIT is meaningful when the fading block duration is (much)

larger than the CSI feedback delay.

Case 2: Static power allocation (B-FD-SPA). When only statistical CSIT is available,

the source and relay might not be able to adapt their transmit powers efficiently. In this

case, they should transmit with constant powers over frames, i.e., P1[t] = P1 > 0, and

P2[t] = P2 > 0, ∀t. The instantaneous transmission rates of the S-R link and R-D link are:

r1[t]=log2

(

1 +
h1[t]P1

βP2 + 1

)

, r2[t]=log2

(

1 + h2[t]P2

)

. (6.3)

In (6.3), it is assumed that the transmission rates are still given by (6.2) and hence the

transmitters employ variable-rate transmission schemes, even though the transmitters do not

know the instantaneous CSI [65], [120]. This can be accomplished by using recently developed

rateless codes such as LT codes [121], Raptor codes [122], which enable the transmitter to

adapt its rate to the channel realization without requiring CSIT [123]. We omit the details

here.

As shown in Fig. 6.1, using the above notations, the service processes of the source and

the relay queues are
{

TBr1[t]
}

, and
{

TBr2[t]
}

, respectively where r1[t] and r2[t] are given

by (6.2) (for B-FD-APA) or (6.3) (for B-FD-SPA). Let q1[t], q2[t] ≥ 0 denote the source and

relay queue lengths in frame t, respectively. Then, the corresponding queue length dynamics
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are given as:

q1[t+ 1] = q1[t]−min
{

q1[t], TBr1[t]
}

+ µTB

q2[t+ 1] = q2[t] + min
{

q1[t], TBr1[t]
}

−min
{

q2[t], TBr2[t]
}

. (6.4)

The delay-outage constraint can be imposed as follows:

Pr
(

Q > Qmax
)

≤ ζQ. (6.5)

Using (5.9), the delay-outage constraint (6.5) can be transformed into the following con-

straints in terms of arrival rate µ and power allocation variables:

µTBθtar + Ωi(−θ
tar) = 0, i = 1, 2, (6.6)

where the delay exponent θtar is given by (5.5); Ω1(θ) and Ω2(θ) are the log moment gener-

ating functions (LMGFs) of the service processes of the source and relay queues, i.e.,:

Ωi(θ) = logE
{

eθTBri[t]
}

, i = 1, 2. (6.7)

6.1.2 Problem Formulation

Using (6.6) as the constraint transformation of (6.5), we formulate the power allocation

problems with instantaneous CSIT or statistical CSIT.

With instantaneous CSIT, the B-FD-APA problem to maximize µ can be cast as follows:

max
µ,P1[t],P2[t]≥0

µ

s.t.: µTBθtar+Ωi(−θ
tar) = 0, i = 1, 2,

P1[t] + P2[t] ≤ Pmax, ∀t, (6.8)

where Pmax is the maximum total transmit power of the source and relay.
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On the other hand, with only statistical CSIT, the B-FD-SPA problem can be cast as:

max
µ,P1,P2≥0

µ

s.t.: µTBθtar+Ωi(−θ
tar) = 0, i = 1, 2,

P1 + P2 ≤ Pmax, (6.9)

Let µB−FD−APA, and µB−FD−SPA denote the optimal values of (6.8) and (6.9), respectively,

which are refereed as the effective capacities of the B-FD relaying under the corresponding

power allocation schemes.

We now solve the optimization problems (6.8), and (6.9) in the following sections.

6.2 Adaptive Power Allocation with Instantaneous CSIT

6.2.1 Optimal Solution

Using (6.7) where ri[t], i = 1, 2 are given by (6.2), the first set of constraints in (6.8) can be

explicitly expressed as:

µ = −
Ω1(−θ

tar)

TBθtar
=−

logE

{(

1 + h1[t]P1[t]
βP2[t]+1

)−θ̂}

θ̂ log(2)

µ = −
Ω2(−θ

tar)

TBθtar
=−

logE

{

(

1 + h2[t]P2[t]
)−θ̂
}

θ̂ log(2)
, (6.10)

where we denote the (normalized) delay exponent:

θ̂ = θtarTB/ log(2). (6.11)
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Substituting the latter expression in (6.10) for µ into the objective function, the problem

(6.8) can be equivalently re-written in terms of power allocation variables as:

max
P1[t],P2[t]≥0

−

logE

{

(

1 + h2[t]P2[t]
)−θ̂
}

θ̂ log(2)
s.t.:

− logE

{(

1 + h1[t]P1[t]
βP2[t]+1

)−θ̂}

θ̂ log(2)
=

− logE

{

(

1 + h2[t]P2[t]
)−θ̂
}

θ̂ log(2)

P1[t] + P2[t] ≤ Pmax, ∀t. (6.12)

The effective capacity µB−FD−APA under a given delay constraint set by θ̂ is:

µB−FD−APA = −
logE

{(

1 + h2[t]P
∗
2 [t]
)−θ̂}

θ̂ log(2)
, (6.13)

where P ∗
1 [t], and P ∗

2 [t] is the optimal solution of (6.12).

From the monotonic property of log function, the problem (6.12) is now equivalent to

the following problem:

min
P1[t],P2[t]≥0

E

{(

1 + h2[t]P2[t]
)−θ̂}

s.t.:

E

{(

1 +
h1[t]P1[t]

βP2[t] + 1

)−θ̂}

= E

{

(

1 + h2[t]P2[t]
)−θ̂
}

P1[t] + P2[t] ≤ Pmax, ∀t (6.14)

The equality constraint can be equivalently replaced by the smaller-or-equal inequality

constraint. This is because at optimality, the inequality has to be satisfied with equality,

otherwise, we can find another feasible solution with smaller objective function value.

To solve the constrained optimization problem (6.14), we employ Lagrangian approach.
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The (partial) Lagrangian of (6.14) is given by:

L = E
{

L[t]
}

(6.15)

where we have:

L[t] = (1− ω)
(

1 + h2[t]P2[t]
)−θ̂

+ ω

(

1 +
h1[t]P1[t]

βP2[t] + 1

)−θ̂

, (6.16)

where ω ∈ (0, 1) is the Lagrange multiplier associated with the first ≤ inequality constraint

in (6.14).

We can see that, in order to minimize the Lagrangian L in (6.15), the B-FD-APA solutions

P ∗
1 [t], and P ∗

2 [t] are found to minimize L[t] in (6.16) in each frame t, i.e.,:

min
P1[t],P2[t]≥0

L[t] s.t.: P1[t] + P2[t] ≤ Pmax. (6.17)

Moreover, the multiplier ω is determined such that the following relationship holds at opti-

mality:

E

{(

1 +
h1[t]P

∗
1 [t]

βP ∗
2 [t] + 1

)−θ̂}

= E

{

(

1 + h2[t]P
∗
2 [t]
)−θ̂
}

. (6.18)

The following proposition is in order.

Proposition 6.1. The optimal B-FD-APA solution has P ∗
1 [t] + P ∗

2 [t] = Pmax, ∀t.

Proof. Since L[t] decreases with increasing P1[t], hence, at optimality, P ∗
1 [t] + P ∗

2 [t] = Pmax.

Otherwise, we can find another feasible solution with smaller objective function value.

Using Proposition 6.1, by substituting P1[t] = Pmax − P2[t], the optimization problem

(6.17) has single variable P2[t]. Then, the optimal solution P ∗
2 [t] (and P ∗

1 [t]) can be found

using numerical search. We omit the details for brevity.

Depending on the instantaneous CSI h1[t] and h2[t], when the resulting P ∗
1 [t] = Pmax

or P ∗
2 [t] = Pmax, the relay actually operates in HD mode. In other words, the optimal

Note that ω cannot not be equal to zero or equal-or-larger than 1, otherwise, we would have trivial
solutions.
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B-FD-APA solution includes a built-in dynamic switching mechanism between HD and FD

relaying as described in Algorithm 2.

Algorithm 2 Hybrid HD/FD relaying
Input: Multiplier ω and CSI h1[t] and h2[t] in frame t.

Solve (6.17) for P ∗
1 [t] and P ∗

2 [t].

if P ∗
1 [t] = Pmax

or P ∗
2 [t] = Pmax then

HD relaying

else

FD relaying

end

In the following, we study the optimal B-FD-APA solution under special cases on the

delay constraint and SI cancellation parameter β.

6.2.2 Special Cases

6.2.2.1 Very loose delay constraints

When the delay constraint becomes very loose, i.e., ζQ → 1 (and θ̂ → 0), omitting the

intermediate steps, we can show that the B-FD-APA problem in each frame t can be written

as follows:

max (1− σ) log2
(

1 + h2[t]P2[t]
)

+σ log2

(

1 +
h1[t]P1[t]

βP2[t] + 1

)

s.t.: P1[t] + P2[t] ≤ Pmax. (6.19)

The multiplier σ ∈ (0, 1) is determined such that:

E

{

log2

(

1 +
h1[t]P

∗
1 [t]

βP ∗
2 [t] + 1

)}

= E

{

log2
(

1 + h2[t]P
∗
2 [t]
)

}

. (6.20)

The problem (6.19) is similar to the weighted sum-rate maximization problem [124]. We can

see that in this case, the optimal B-FD-APA solution ensures equal average (ergodic) rates

of the S-R and R-D links.
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6.2.2.2 Very stringent delay constraints

Under very stringent delay constraints, i.e., ζQ → 0 (and θ̂ → ∞), as seen from (6.13), the

effective capacity µB−FD−APA approaches 0. It implies that B-FD relaying cannot support

applications with very stringent delay constraints over fading channels. This result is not

surprising since the delay-limited capacity of fading channels is shown to be zero.

6.2.2.3 Zero residual SI

Under the ideal FD assumption with zero residual SI, i.e., β = 0, by omitting the intermediate

steps, similar to (6.17), we have the following power allocation problem in each frame t:

min (1− ξ)
(

1 + h2[t]P2[t]
)−θ̂

+ ξ
(

1 + h1[t]P1[t]
)−θ̂

s.t.: P1[t] + P2[t] ≤ Pmax, (6.21)

where ξ ∈ (0, 1) is the multiplier which is determined such that:

E

{(

1 + h1[t]P
∗
1 [t]
)−θ̂}

= E

{(

1 + h2[t]P
∗
2 [t]
)−θ̂}

. (6.22)

It can be seen that the problem (6.21) is a convex optimization problem by verifying the

non-negativeness of the second-order derivative of the objective function. Using Lagrangian

approach, we can differentiate the objective function in (6.21), and set the resulting equations

to zero, and accounting for the non-negativeness of the power allocation solution, we can

derive the optimal solution with zero residual SI as:

P ∗
1 [t] =

1

h1[t]

[

(ξθ̂h1[t]

η[t]

)1/(θ̂+1)

− 1

]+

, (6.23)

and

P ∗
2 [t] =

1

h2[t]

[

((1− ξ)θ̂h2[t]

η[t]

)1/(θ̂+1)

− 1

]+

, (6.24)

where the multiplier η[t] > 0 is determined such that:

P ∗
1 [t] + P ∗

2 [t] = Pmax. (6.25)
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6.2.2.4 Very large SI cancellation parameter β

For simplicity, consider the unconstrained delay case with the optimization problem (6.19).

It can be observed that for large β, any positive P2[t] will result in large INR, which then

significantly reduces the rate of the S-R link if the source is transmitting. It implies that

FD relaying mode is not beneficial. Mathematically, the optimal solution of (6.19) mostly

prescribes either P ∗
1 [t] or P ∗

2 [t] being positive depending on h1[t] and h2[t]. It implies that

when the SI cancellation quality is very bad, B-FD-APA approaches B-HD-ALS relaying

[108]. This finding will be demonstrated in the illustrative examples in Section VI.

6.2.3 Iterative Power Allocation Algorithm

The optimal B-FD-APA solution depends on the multiplier ω, which satisfies (6.18). Numer-

ical approaches can be used to determine ω, which require the fading statistics to be known.

When the fading statistics are unknown, which is common in real-life communications, we

can utilize the following iterative algorithm. We initialize the multiplier with ω[1] ∈ (0, 1).

Then, in transmission frame t = 1, 2, . . ., we carry out the following update:

ω[t+ 1] =

[

ω[t] + ǫ[t]

(

(

1 +
h1[t]P

∗
1 [t]

βP ∗
2 [t] + 1

)−θ̂

−
(

1 + h2[t]P
∗
2 [t]
)−θ̂
)]1−ς

ς

(6.26)

where [x]ba denotes the projection of x on the interval [a, b] for a ≤ b and ς is some small

positive number. The decreasing positive sequence ǫ[t] that dictates the convergence speed,

satisfies:
∞
∑

t=1

ǫ[t] = ∞;
∞
∑

t=1

(ǫ[t])2 <∞.

The power allocation P ∗
1 [t], and P ∗

2 [t] in frame t is computed from (6.17) using the current es-

timate ω[t]. The iterative update (6.26) converges, and satisfies the equality constraint (6.14)

at convergence. The algorithm does not assume any specification on the fading statistics.
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6.3 Static Power Allocation with Statistical CSIT

We recall that implementing B-FD-APA requires instantaneous CSIT. However, in real-

life system, instantaneous CSIT may be unavailable due to high signaling complexity for

CSI feedback from the receivers. In such scenario, the source and relay should transmit

with constant powers. Moreover, statistical information about the channels, can always be

accessible to the transmitters, e.g., statistical CSIT, since the duration over which channel

fading processes are stationary is several orders of magnitude longer than the duration of the

fades. Exploiting the statistical CSIT, we can optimize source and relay power allocation

for source arrival rate maximization, i.e., the B-FD-SPA problem (6.9). In the following, we

derive the optimal solution of (6.9) and study its properties.

6.3.1 Optimal Solution

Consider static source and relay power allocation P1, and P2, respectively. In the following,

for the sake of clarity, we explicitly express the LMGFs of the service processes of the source

and relay queues in (6.7) as functions of (normalized) delay exponent θ, P1, and P2 as follows:

Ω1(θ, P1, P2) = logE

{

(

1+
h1[t]P1

βP2+1

)θ
}

,

Ω2(θ, P2) = logE
{(

1 + h2[t]P2

)θ}

. (6.27)

Using the above notations, the B-FD-SPA problem (6.9) can be re-written as:

max
µ,P1,P2≥0

µ s.t.: µθ̂ log(2) + Ω1(−θ̂, P1, P2) = 0,

µθ̂ log(2) + Ω2(−θ̂, P2) = 0,

P1 + P2 ≤ Pmax, (6.28)

where θ̂ is given by (6.11). From the first two constraints in (6.28), we have:

µ = −
Ω1(−θ̂, P1, P2)

θ̂ log(2)
, µ = −

Ω2(−θ̂, P2)

θ̂ log(2)
. (6.29)
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Substituting the latter expression in (6.29) for µ into the objective function, and after some

simple manipulations, the optimal B-FD-SPA solution P ∗
1 , and P ∗

2 of (6.28) can be shown

to be the solution of the following problem:

min
P1,P2≥0

Ω2(−θ̂, P2) s.t. : Ω1(−θ̂, P1, P2) = Ω2(−θ̂, P2),

P1 + P2 ≤ Pmax. (6.30)

The following proposition is needed.

Proposition 6.2. Ω1(−θ, P1, P2) decreases with increasing P1, and increases with increasing

P2. Ω2(−θ, P2) decreases with increasing P2.

Proof. Proposition 6.2 follows directly from the expressions in (6.27).

Theorem 6.1. The effective capacity of B-FD-SPA is given by:

µB−FD−SPA = −Ω2(−θ̂, P
∗
2 )/(θ̂ log(2))

where the optimal B-FD-SPA solution P ∗
1 = Pmax−P ∗

2 , and P ∗
2 ∈ (0, Pmax) uniquely satisfies:

Ω1(−θ̂, P
max − P ∗

2 , P
∗
2 ) = Ω2(−θ̂, P

∗
2 ). (6.31)

Proof. First, we prove that P ∗
1 , and P ∗

2 satisfy P ∗
1 + P ∗

2 = Pmax by contradiction. Suppose

P ∗
1 + P ∗

2 < Pmax, and from (6.30), Ω2(−θ̂, P
∗
2 ) is minimized.

Consider another feasible solution P †
1 , and P †

2 such that P †
1 > P ∗

1 , P †
2 > P ∗

2 , P †
1 + P †

2 =

Pmax, and, by Proposition 2,

Ω1(−θ̂, P
†
1 , P

†
2 ) = Ω2(−θ̂, P

†
2 )

Hence, we have Ω2(−θ̂, P
†
2 ) < Ω2(−θ̂, P

∗
2 ) by Proposition 2, contradicting our assumption

that Ω2(−θ̂, P
∗
2 ) is minimized. We conclude that at optimality, P ∗

1 + P ∗
2 = Pmax.

By substituting P ∗
1 = Pmax − P ∗

2 in the equality constraint of (6.30), we obtain (6.31).

Moreover, using the monotonicity of the functions in Proposition 6.2, the solution P ∗
2 ∈

(0, Pmax) satisfying (6.31) is unique.
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To obtain more insights, we study several properties of the optimal B-FD-SPA solution

in Theorem 6.1.

6.3.2 Properties of the Optimal Solution

Proposition 6.3. The optimal B-FD-SPA solution P ∗
1 , and P ∗

2 increases with increasing

Pmax.

Proof. Notice that while Ω1(−θ̂, P
max − P2, P2) decreases with Pmax and increases with P2,

Ω2(−θ̂, P2) decreases with P2. Hence, when Pmax increases, P ∗
2 increases in order to satisfy

(6.31). That P ∗
1 increases with increasing Pmax can be argued analogously.

A consequence of Proposition 6.3 is that µB−FD−SPA increases with increasing Pmax as

expected.

Proposition 6.4. The optimal relay power allocation P ∗
2 decreases with increasing β.

Proof. Let us define the following function:

g(P2, β) = Ω1(−θ̂, P
max − P2, P2)− Ω2(−θ̂, P2), (6.32)

By Proposition 6.2, we can see that g(P2, β) increases with increasing P2. Moreover, g(P2, β)

increases with increasing β. Hence, as β increases, P2 = P ∗
2 decreases in order to satisfy

g(P ∗
2 , β) = 0.

Proposition 6.4 indicates that for larger β, less power is allocated to the relay to avoid

excessively large INR. A consequence of Proposition 6.4 is that µB−FD−SPA decreases under

worse SI cancellation quality.

Proposition 6.5. When the links have similar fading distributions, the optimal relay power

allocation P ∗
2 satisfies:

E{h1[t]}(P
max − P ∗

2 )

βP ∗
2 + 1

= E{h2[t]}P
∗
2 . (6.33)

Proof. From (6.27), we can see that in order to satisfy (6.31), the links have to have equal

average signal strengths. Hence, (6.33) follows because the terms in the left side, and right

side are the average SINR of the S-R link and average SNR of the R-D link, respectively.
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Proposition 6.5 implies that when the links have similar fading distributions, the optimal

B-FD-SPA solution is independent of the delay constraint.

6.3.3 Special Cases

We study the B-FD-SPA solution for various special cases on the delay constraint and SI

cancellation parameter β.

6.3.3.1 Very loose delay constraints

Proposition 6.6. Under very loose delay constraints, i.e., θ̂ → 0, the optimal relay power

allocation P ∗
2 satisfies:

E

{

log2

(

1 +
h1[t](P

max − P ∗
2 )

βP ∗
2 + 1

)}

= E

{

log2

(

1 + h2[t]P
∗
2

)

}

. (6.34)

Proof. Dividing both sides of (6.31) by θ̂ log(2) and then taking the limits of both sides when

θ̂ → 0 using L’Hopital rule, we obtain (6.34).

Proposition 6.6 implies that under very loose delay constraints, the optimal B-FD-SPA

solution guarantees equal ergodic rates of the S-R and R-D links, which is similar to the case

of B-FD-APA.

6.3.3.2 Very stringent delay constraints

Under very stringent delay constraints, similar to the case of B-FD-APA, the effective ca-

pacity µB−FD−SPA approaches 0.

6.3.3.3 Zero residual SI

Under zero residual SI assumption, from (6.27), the LMGF of the service process of the

source queue is:

ΩIdeal
1 (θ, P1)=logE

{

(

1 + h1[t]P1

)θ
}

.

The LMGF of the service process of the relay queue remains Ω2(θ, P2) in (6.27).
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Proposition 6.7. The effective capacity of the B-FD-SPA with zero residual SI is given by:

µIdeal
B−FD−SPA = −Ω2(−θ̂, P

‡
2 )/(θ̂ log(2))

with optimal power allocation P ‡
1 = Pmax − P ‡

2 , and P ‡
2 ∈ (0, Pmax) uniquely satisfies:

ΩIdeal
1 (−θ̂, Pmax − P ‡

2 ) = Ω2(−θ̂, P
‡
2 ). (6.35)

Proof. Proposition 6.7 can be viewed as a special case of Theorem 6.1 when the SI cancel-

lation parameter β = 0.

6.3.3.4 Very large SI cancellation parameter β

For large β, the optimal relay power allocation P ∗
2 satisfying (6.31) becomes small and

approaches 0 (due to Proposition 6.4). Hence, µB−FD−SPA approaches 0.

We can see the benefits of B-FD-APA over B-FD-SPA. For large INR, while µB−FD−APA

approaches the effective capacity of HD relaying, µB−FD−SPA approaches 0. This fact will be

demonstrated in the numerical studies in Section VI.

6.4 Power Allocation in Non-Buffer Full-Duplex Relaying

In this section, we deal with power allocation and effective capacity analysis for non-buffer

FD (N-FD) relaying, which was not reported in existing literature. In N-FD relaying, the

relay forwards the received packets to the destination immediately without buffering them,

i.e., the queue Q2 in Figure 6.1 does not exist. Hence, the delay-outage constraint (6.5) for

this case is described as follows:

Pr
(

Q1 > Qmax
)

≤ ζQ. (6.36)

For decode-and-forward relaying scheme, the equivalent end-to-end rate in frame t is equal

to the minimum of the rates of the S-R and R-D links [52], [53]:

r[t] = min
{

r1[t], r2[t]
}

, (6.37)
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where r1[t], r2[t] are given in (6.2) (for adaptive power allocation) or (6.3) (for static power

allocation). The effective capacity of the N-FD relaying can be shown to be [32]:

µN−FD = −
1

θ̄1
logE

{

e−θ̄1r[t]
}

, (6.38)

where the (normalized) delay exponent θ̄1 can be derived from (6.36) as:

θ̄1 = −TB log(ζQ)/Qmax. (6.39)

The power allocation problems for N-FD relaying are described next.

6.4.1 Adaptive Power Allocation

With instantaneous CSIT, the N-FD relaying with adaptive power allocation (N-FD-APA)

problem can be cast as:

max
P1[t],P2[t]≥0

µN−FD s.t. : P1[t] + P2[t] ≤ Pmax. (6.40)

It can be seen that the optimal N-FD-APA solution P ⋆
1 [t], and P ⋆

2 [t] of (6.40) should ensure

r1[t] = r2[t] in each frame t. Also, it must be true that P ⋆
1 [t] + P ⋆

2 [t] = Pmax. Hence, we

have:

h2[t]P
⋆
2 [t] =

h1[t](P
max − P ⋆

2 [t])

βP ⋆
2 [t] + 1

.

Then, we can solve for P ⋆
1 [t], and P ⋆

2 [t]. Let µN−FD−APA denote the optimal value of (6.40).

We can see that when β becomes large, the end-to-end rate r[t] becomes small, and hence,

µN−FD−APA becomes small and approaches 0.

6.4.2 Static Power Allocation

With statistical CSIT, the N-FD relaying with static power allocation (N-FD-SPA) problem

can be expressed as:

max
P1,P2≥0

µN−FD s.t. : P1 + P2 ≤ Pmax. (6.41)

The optimal N-FD-SPA solution P ⋆
1 , and P ⋆

2 should satisfy P ⋆
1 +P

⋆
2 = Pmax. Let µN−FD−SPA

denote the optimal value of (6.41).
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From (6.37), we have:

r[t] = log2
(

1 + min
{

sinr1[t], snr2[t]
})

.

Consider the case of Rayleigh fading links. Consequently, from (6.3), we have sinr1[t], and

snr2[t] are exponential random variables with hazard rates z1, and z2, respectively, where:

z1 =
βP2 + 1

E{h1[t]}P1

; z2 =
1

E{h2[t]}P2

. (6.42)

Hence, the random variable min{sinr1[t], snr2[t]} is also exponentially distributed with hazard

rate z = z1 + z2 and mean 1/z. Hence, in order to maximize µN−FD, we need to maximize

1/z, and equivalently, minimize z. Hence, the optimal P ⋆
2 for N-FD-SPA can be found as

the optimal solution of the following problem:

min
P2≥0

βP2 + 1

E{h1[t]}(Pmax − P2)
+

1

E{h2[t]}P2

. (6.43)

By differentiating the objective function and setting the resulting expression to 0, we can

solve for P ⋆
2 .

6.5 Illustrative Results and Discussions

6.5.1 Settings

We consider a decode-and-forward S-R-D link as shown in Fig. 6.1 where the relay is assumed

to be in the middle of the source and the destination with equal S-R and R-D distances.

As previously mentioned, the path loss (including both transmit and receive antenna gains)

is normalized to 1 in both S-R link and R-D link. We assume Rayleigh fading links with

average channel power gains E{h1[t]} = E{h2[t]} = E{h} = 0 dB, block-fading duration T ,

and bandwidth B. Hence, the average SINR of the S-R link, and average SNR of the R-D

link are P1/(βP2 + 1), and P2, respectively. Also, βP2 represents the INR. For the delay

constraint (6.5), we fix Qmax = 3000.

In the following, we illustrate the effects of the SI cancellation quality (by varying β),

the total power constraint (by varying Pmax), and the delay constraint (by varying queue-

length-outage probability ζQ) on the performance of the various relaying schemes including
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the proposed B-FD, and N-FD relaying schemes (B-FD-APA, B-FD-SPA, N-FD-APA, N-

FD-SPA), and existing B-HD relaying schemes. Recall that, in HD relaying, the relay can

only transmit or receive during a frame. With statistical CSIT, [79] proposed and analyzed

the effective capacity of a B-HD relaying with fixed link scheduling (B-HD-FLS), where the

source and relay alternatively transmit over transmission frames independently of the CSI.

With instantaneous CSIT, [108] studied the B-HD relaying with adaptive link scheduling

(B-HD-ALS) under delay-outage constraint. In each frame, depending on h1[t] and h2[t],

either the S-R link or the R-D link is selected to be active.

For fair comparisons, all the transmission schemes have similar total power and delay

constraints.

6.5.2 Effects of SI Cancellation

We first investigate the optimal static power allocation when β varies. The results are

displayed in Fig. 6.2 for Pmax = 20 dB, and 10 dB. Under the assumptions of Rayleigh

fading links with E{h1[t]} = E{h2[t]} = 1, from (6.33) and (6.43), we can see that B-FD-

SPA and N-FD-SPA offer the same optimal solutions, that are independent of the delay

constraint. We can verify that P ∗
1 + P ∗

2 = Pmax as expected. For a given β, P ∗
1 , and P ∗

2

increase with increasing Pmax as stated in Proposition 6.3. Also, due to non-zero residual SI,

P ∗
2 is always smaller than P ∗

1 , i.e., for ideal FD with β = 0, P ∗
1 = P ∗

2 , and for a given Pmax,

P ∗
2 decreases (and P ∗

1 increases) with increasing β (i.e., worse SI cancellation) to reduce the

resulting INR βP ∗
2 as expected by Proposition 6.4.

With the total power Pmax = 20 dB, Figures 6.3 and 6.4 plot the (effective) capacities

of the relaying schemes versus β for two values of ζQ = 1, and 10−4, respectively. Notice

that the performances of the HD relaying schemes are independent of β. In both figures,

we can observe that the capacities of the FD relaying schemes decrease with increasing β as

expected.

Consider the case of unconstrained delay, i.e., ζQ = 1. With instantaneous CSIT, B-

FD-APA always outperforms B-HD-ALS, which is expected as we mentioned previously, the

latter can be considered as a special case of the former. For instance, for β = .03, and

.1, B-FD-APA achieves 129.8%, and 117.9%, respectively, higher capacity than B-HD-ALS.

When β becomes large, B-FD-APA approaches B-HD-ALS as mentioned in Section III.C.

In fact, B-HD-ALS can be viewed as a special case of the proposed B-FD-APA when only
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Fig. 6.2: Optimal static power allocation versus β.

either P1[t] or P2[t] can be non-zero (and equal to Pmax) in each frame t. Also, B-FD-

APA attains higher capacity than N-FD-APA for all values of β. With statistical CSIT,

similar observations regarding the performances of the relaying schemes as in the case of

instantaneous CSIT can be made. For β = .01, and 0.1, B-FD-SPA attains 159.2% and

133.5%, respectively, higher capacity than B-HD-FLS. However, while B-FD-APA always

outperforms B-HD-ALS for all β, B-FD-SPA outperforms B-HD-FLS only under sufficiently

small β, i.e., β ≤∼ .75 for the considered example. The reason is that for large β, the signal

qualities of the S-R and R-D links are severely degraded under B-FD-SPA relaying since FD

relaying mode is always employed. Furthermore, from Fig. 6.3, we can observe the gain

of adaptive power allocation (APA) over static power allocation (SPA) in B-FD relaying

increasing with β. For small β, the gain is marginal. This implies that we might not need
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Fig. 6.3: Effective capacity versus β with ζQ = 1.
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instantaneous CSIT when the SI cancellation is good. In other words, good SI cancellation

can save CSI feedback complexity.

β
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Fig. 6.4: Effective capacity versus β with ζQ = 10−4.

Now, consider the case of stringent delay constraint with ζQ = 10−4 in Fig. 6.4. In this

case, B-HD-FLS performs better than B-HD-ALS as mentioned previously. We can see that

B-FD-SPA attains higher capacity than B-HD-FLS when β is sufficiently small. However,

unlike in the case ζQ = 1, B-FD-APA can be worse than B-HD-FLS for sufficiently large

β. Under such setting, while the data needs to be transmitted soon to the destination, FD

relaying mode is preferred, but still inefficient (due to large β). Moreover, the capacity gain

of B-FD-APA over B-FD-SPA for ζQ = 10−4 is decreased as compared with the unconstrained

delay case. This is because the capacity is dominated by the (stringent) delay constraints, and

hence, adaptive power allocation to increase the instantaneous rates become less beneficial.
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6.5.3 Effects of Total Power Constraint

In this section, we fix the SI cancellation parameter β = .1, and investigate the performance

of various transmission schemes when the total power Pmax varies.

For comparison, we also include the direct transmission (DT) from source (S) to (D), i.e.,

without relay (D) in Fig. 6.1. In this case, the source transmits with power Pmax in each

frame. The effective capacity of the direct S-D link under delay constraint (6.5) is given as:

µDT = −
1

θ̄1
logE

{

(1 + PmaxhSD[t])
−θ̄1/ log(2)

}

where θ̄1 is given by (6.39); hSD[t] is the channel power gain of the S-D link in frame t with

mean E{hSD[t]}. We also assume Rayleigh fading S-D link. Due to our assumptions that the

S-D distance is twice the S-R (or R-D) distance, we have hSD[t] is exponentially distributed

with E{hSD[t]} = E{h1}/2
γ = E{h2}/2

γ , where γ is the path-loss exponent. In the following,

we choose γ = 2 for illustrative purpose.

Figures 6.5 and 6.6 plot the capacities of the relaying schemes and DT scheme versus

Pmax for two values of ζQ = 1, and 10−4, respectively.

It can be observed that B-FD relaying outperforms B-HD relaying and N-FD relaying

under similar CSIT availability assumption. The gain of B-FD relaying over B-HD relaying

increases with increasing Pmax, implying the advantages of the former in high SNR region.

For small Pmax, while the gaps between B-FD-APA and B-HD-ALS are small, the gaps

between B-FD-SPA and B-HD-FLS are more significant. This demonstrates the benefits

of B-FD relaying with statistical CSIT in low SNR region. In comparing with DT mode,

we can see that B-FD relaying outperforms DT when Pmax is sufficiently small. This is

expected since, in general, relaying is preferable to DT mode when the direct link power

is weak. Moreover, the gaps between B-FD-APA and B-FD-SPA remain almost constant

for all Pmax and are smaller under more stringent delay constraints (Fig. 6.6). Hence, the

choice between B-FD-APA and B-FD-SPA depends very much on the trade-off between the

required effective capacity and the CSI feedback complexity/costs.

To provide more insights into the performances of various transmission schemes, we

consider the statistical CSIT case with ζQ = 1 for simplicity. Assume total power Pmax, SI

cancellation parameter β with corresponding B-FD-SPA and N-FD-SPA power allocation
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Fig. 6.5: Effective capacity versus Pmax with ζQ = 1.

P ∗
1 , and P ∗

2 . We can derive the capacities of the different transmission schemes as:

µB−FD−SPA = E
{

log2(1 + h2[t]P
∗
2 )
}

,

µN−FD−SPA = E
{

log2(1 + min{h1[t], h2[t]}P
∗
2 )
}

,

µB−HD−FLS =
1

2
E
{

log2(1 + h2[t]P
max)

}

,

µDT = E
{

log2(1 + hSD[t]P
max)

}

= E
{

log2(1 + h2[t]P
max/4)

}

.

From the above expressions, we can see that µB−FD−SPA > µN−FD−SPA. Also, that µB−FD−SPA >

µB−HD−FLS holds true when P ∗
2 is larger than a threshold, or equivalently, β needs to be
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Fig. 6.6: Effective capacity versus Pmax with ζQ = 10−4.

smaller than a threshold, i.e., sufficiently good SI cancellation. Compared with DT, we can

see that µB−FD−SPA > µDT when P ∗
2 > Pmax/4, i.e., P ∗

2 is within ∼6dB from Pmax. For

instance, consider the case β = .1. For Pmax = 20 dB, from Fig. 6.2, we have P ∗
2 = 13.64

dB, and hence, µB−FD−SPA < µDT as shown in Fig. 6.5; For Pmax = 10 dB, from Fig. 6.2,

we have P ∗
2 = 6.11 dB, and hence, µB−FD−SPA > µDT as shown in Fig. 6.5. It implies that

in order to have µB−FD−SPA > µDT, for a given Pmax, β has to be smaller than a threshold;

Or for a given β, Pmax should be smaller than a threshold. Note that when β = 0, i.e., zero

residual SI, we have P ∗
2 = Pmax/2, implying B-FD-SPA is always more efficient than DT.

These discussions are reflected in Figs. 6.3 and 6.5.
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6.5.4 Effects of the Delay Constraint

In this section, we fix Pmax = 20 dB, and SI cancellation parameter β = 0, .1 or 1, which

correspond to three different levels of SI cancellation. Note that the corresponding B-FD-

SPA and N-FD-SPA optimal solutions are shown in Fig. 6.2. We then vary ζQ and investigate

its effects on the effective capacities of the relaying schemes.
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Fig. 6.7: Effective capacity versus ζQ with adaptive power allocation.

Consider the case with instantaneous CSIT. The capacities of B-FD-APA and N-FD-

APA versus ζQ are shown in Fig. 6.7. We also plot the capacities of B-HD-ALS and B-HD-

FLS. As mentioned previously, under sufficiently stringent delay constraints, B-HD-FLS is

more efficient than B-HD-ALS. First, we can see that B-FD-APA outperforms N-FD-APA as

shown in the previous results, where the capacity gains are smaller under more stringent delay
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constraints (for a given β). This is because the data needs to be forwarded to the destination

with very small delay, and hence, buffer-aided relaying may not be much useful. Second, B-

FD-APA outperforms H-FD relaying for sufficiently small β, and the gains are larger under

more stringent delay constraints. For large β = 1, B-FD-APA performs worse than B-HD-

FLS under sufficiently stringent delay constraints. As the delay constraint becomes looser,

B-FD-APA provides capacity gains over B-HD-FLS as well as B-HD-ALS. Under very loose

delay constraints, B-FD-APA approaches B-HD-ALS as mentioned in Section III.C and also

illustrated in Fig. 6.3. We can see that, even for very bad SI cancellation, i.e., β = 1, B-FD

relaying can offer noticeable gains over B-FD relaying under neither stringent nor loose delay

constraint region with instantaneous CSIT.

Next consider the case with statistical CSIT. The capacities of B-FD-SPA, N-FD-SPA, as

well as B-HD-FLS versus ζQ are shown in Fig. 6.8. As seen, B-FD-SPA outperforms N-FD-

SPA, and the gains are larger as compared with the case of instantaneous CSIT. Moreover,

B-FD-SPA outperforms B-FD-SPA for sufficiently small β. For large β = 1, B-FD-SPA

performs worse than B-FD-SPA, unlike the case with instantaneous CSIT, where B-FD-

APA can even be more efficient than H-FD-ALS under sufficiently loose delay constraints.

6.5.5 Summary of Key Results

The presented numerical results have demonstrated the effects of SI cancellation, total power,

delay constraint, as well as CSIT availability on the capacities of the transmission schemes.

We summarize the following main observations.

• Compared with B-HD relaying, with instantaneous CSIT, B-FD relaying is more ad-

vantageous. For bad SI cancellation and under loose delay constraint, B-FD relaying

approaches B-HD relaying. With only statistical CSIT, B-FD relaying is more benefi-

cial for good SI cancellation.

• Compared with N-FD relaying, B-FD relaying achieves better performance under sim-

ilar CSIT availability assumption.

• Compared with DT mode, B-FD-SPA relaying (for given β) is more spectrum-efficient

except when the direct S-D link power becomes too strong.

• The capacity gains offered by adaptive power allocation over static power allocation
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Fig. 6.8: Effective capacity versus ζQ with static power allocation.

in B-FD relaying decrease for better SI cancellation and under more stringent delay

constraints.

6.6 Chapter Summary

In this chapter, we have studied the source and relay power allocation problems for a 3-

node buffer-aided full-duplex (B-FD) relaying network under the presence of imperfect self-

interference (SI) cancellation. The objective is to maximize the constant supportable source

arrival rate under the delay-outage constraint in terms of maximum acceptable queue-length-

outage probability. When the instantaneous channel state information is available at the

transmitters (CSIT), we have investigated the adaptive power allocation problem (B-FD-
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APA) for each transmission frame. When only statistical CSIT is available, we have studied

the static power allocation problem (B-FD-SPA). Assuming large delay regime, the optimal

allocation solutions are derived using asymptotic delay analysis. Special cases on the delay

constraint and residual SI are also investigated. Numerical studies are performed to show

the performance of the proposed relaying schemes and other existing schemes under different

settings. Our studies demonstrate the effectiveness of B-FD relaying to support delay-

constrained communications.

2016/12/28
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Chapter 7

Conclusions and Future Works

7.1 Summary

One main challenge for reliable wireless data transmission is the fading nature of wireless

channels causing random fluctuations in the instantaneous channel conditions (and the cor-

responding transmission rates). As a result, the data arrivals at each transmitter might not

be transmitted instantly, and need to be buffered for later transmissions. Such data buffer-

ing enables the transmitter to adapt its transmission to exploit temporal fading diversity,

but at the same time introduces queuing delay. Providing delay QoS guarantees is a critical

task in order to support delay-sensitive applications such as real-time multimedia streaming

etc. Under such settings, radio resource allocation is an efficient means for throughput en-

hancement and delay QoS guarantees. Along this thesis, we investigate resource allocation

schemes for practical point-to-point and relaying communications systems over fading chan-

nels to support delay-sensitive communications, where the nodes (source and relay) employ

buffers to store the data arrivals. The main contributions and corresponding results are

summarized as follows.

In Chapters 3, and 4, we consider a point-to-point communications system over a fading

channel with data arriving at the source transmission buffer. More specifically, in Chapter

3, the source is assumed to have maximum average power constraint. Also, average delay

constraint is imposed for delay QoS guarantee. We studied the data admission control- power

allocation (AC-PA) problem for throughput maximization. The problem is formulated as an

infinite horizon constrained Markov decision process (MDP) problem, which can be solved

using a novel approach based on the post-decision state-value function. Using the proposed
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approach, the structural properties of the optimal AC-PA solution, e.g., monotonicity and

convexity with respect to the channel fading, data arrival, and queue length states are

studied. We also develop online allocation algorithm when the statistical information about

the random processes governing the system is unknown. By updating the post-decision state-

value function using realizations of the random processes, the developed algorithm requires

less complexity and converge faster than traditional reinforcement learning algorithms [41].

It is demonstrated that the proposed approach achieves higher throughput than existing

approaches under similar delay and power constraints, which do not keep track of the system

dynamics and random variations in the data arrivals and channel conditions. Under large

delay regime, the two approaches perform similarly since the effects of queue dynamics and

random data arrivals become negligible.

In Chapter 4, an energy harvesting (EH) source is assumed, where a random amount

of energy is harvested in every time slot and stored in battery during the course of data

transmission. We have explored power allocation problems for such EH systems for source

arrival rate maximization under either average delay or delay-outage constraints. For the

latter case, by assuming large delay regime and employing asymptotic delay analysis, we

have converted the original problem into an effective capacity (EC) maximization problem.

We have formulated the power allocation problems as constrained MDP problems, which can

be solved using post-decision state-value function approach. The formulations incorporate

the randomness of the EH process and ensure causality constraint on the use of energy for

data transmission. Properties of the optimal solutions are studied, which reveal valuable

insights on how to optimally allocate the power according to the channel conditions and . It

is illustrated that the proposed approaches achieve higher data rates than existing heuristic

approaches, which do not take into account the random variations of energy arrivals. We

have also demonstrated the different effects of the two delay constraint models on the system

performance in terms of supported rates and delay performance.

In practice, it is not always possible for a source to communicate directly with the des-

tination, for example, due to long distance, or severe shadowing. Under such scenarios,

relaying communications is needed. Chapters 5 and 6 develop resource allocation schemes

for 3-node buffer-aided relaying system under delay-outage constraint .

More specifically, in Chapter 5, we studied the optimal buffer-aided half-duplex (B-HD)

relaying with adaptive link selection (B-HD-ALS) problem. In each frame, the relay can

receive or transmit depending on the instantaneous channel state information (CSI). Both
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cases of fixed and adaptive power allocation are considered. By employing asymptotic delay

analysis, we derive the optimal solution as a function of the instantaneous link conditions

and delay constraint using Lagrangian approach and convex optimization. Solutions for

various special cases of link conditions, and delay constraint are presented. Illustrative

results show that B-HD-ALS outperforms B-HD with fixed relaying under sufficiently loose

delay constraints. Also, adaptive power allocation provides significant gains over fixed power

allocation as long as a certain delay can be tolerated. Also, B-HD-ALS is more beneficial

than non-buffer relaying.

In Chapter 6, the relay is assumed to have buffer-aided full-duplex (B-FD) relaying ca-

pability with non-zero residual self-interference (SI). Toward this end, two source and relay

transmit power allocation problems are investigated, which depend on the availability of the

CSI at the transmitters (CSIT). With instantaneous CSIT, we have considered the B-FD

with adaptive power allocation (B-FD-APA) problem. On the other hand, with statisti-

cal CSIT, the B-FD with static power allocation (B-FD-SPA) problem is considered. The

optimal solutions are derived using Lagrangian approach for the constrained optimization

problems. Solutions for special cases of delay constraint and residual SI are studied. It is

demonstrated that B-FD-SPA relaying outperforms B-HD relaying under sufficiently small

residual SI. However, B-FD-APA relaying always outperforms B-HD relaying since the former

can dynamically switch between HD/FD relaying mode depending on the link conditions.

When the residual SI becomes large, B-FD-APA approaches B-HD relaying. Moreover, B-FD

relaying is more advantageous than non-buffer FD relaying under delay-outage constraint.

7.2 Potential Future Works

The research presented in this thesis has considered resource allocation for point-to-point or

3-node relaying communications networks, which are the two basic network segments forming

more general wireless networks with multiple sources, multiple relays, and even multi-hop

(more than two hops) communications. Hence, the proposed approaches and solutions in

this thesis have the potential to be employed to tackle the challenging resource allocation

designs for more general wireless systems, which are outlined in the following.
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Relay selection, and resource allocation for general dual-hop networks

In Chapters 5, and 6, we have considered resource allocation for 3-node buffer-aided relaying

networks. However, in practice, multiple relays can be deployed to assist several sources

over large communications area [125]– [127]. One potential future work is to study resource

allocation schemes for such general dual-hop networks. Similar to our work in Chapters 5,

and 6, buffer-aided relaying is considered. For delay QoS guarantees, we can impose delay

outage constraint for each traffic flow originated from the sources.

For the considered networks, due to resource sharing among the sources, it is critical to

determine which relay(s) to assist which source(s) to ensure performance satisfaction, i.e.,

relay selection problem. In addition to the relay selection problem, the resource allocation

problem includes the link scheduling, rate, and power allocation for the sources and relays.

Note that when a relay is transmitting, it must allocate the relay-destination link capacity to

transmit data of its forwarded sources. In general, the optimal relay selection, and resource

allocation solution has to be jointly considered, which has to take into account the delay and

rate requirements of the sources. Such a problem remains unsolved.

Cross-layer optimization for multi-hop wireless networks

The ultimate goal is to study resource allocation schemes for general wireless multi-hop

networks, where nodes at different locations transmit their own information as well as relay

information of other nodes toward a common sink. In order to efficiently support real-time

applications, for example, video streaming or surveillance applications, it is important to

provision end-to-end delay QoS constraint for each data flow even when each flow requires

multi-hop transmissions. In general, to achieve optimal network performance, a cross-layer

design has to be considered, which includes joint routing, link scheduling, rate, and power

allocation [128]. Unfortunately, such cross-layer design for multi-hop networks is challenging

because it involves large number of variables to be optimized. Hence, efficient network

designs with low complexity and delay constraint satisfaction are desirable.

Motivated by the above discussions, one potential future work is look for efficient cross-

layer designs of multi-hop networks supporting delay-constrained communications. We ob-

serve that a multi-hop network is made up of multiple atomic network segments, each being

a dual-hop or single-hop network. Then, by adapting the design results obtained for the

single-hop and dual-hop networks, it is possible to devise sub-optimal but efficient designs



7 Conclusions and Future Works 132

for general multi-hop networks.
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