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SUMMARY .

A theoretical and experimental investigation has been

-conducted on a simulation of a long inflated building.
3

Thin aerofoil theory using sources and sinks, combined
with the equilibrium condition for the membrane, yields an integral
equation, This has been solved by using a Fourier Sine series and -

the shape, membrane tension and pressure distribution are predicted.

Related experiments were carried odt for various combinations
of the independent parameters, Reynolds number (2.87 x i05 - 9.77 x 105),
inflation pressure coefficient (-0.12 - 3.22), and ratio of excess
length of membrane to chord length (0.56% - 5.2%). Rasults for
tensfon in particular are in good accord with theory for values
of height-to-chord up to 0.1. The tension coefficient is shown to
be a unique function/of a parameter which combines the inflation

pressure coefficient and the excess length ratio.
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RESUME ' ' - .
Une &tude théorique et uxplriguuio a §té conduite sur un long biAtimént
gont1d. . | ‘
» [
La.théorie des ailes fines, utilisant une distribution © de pults

et de sources, et 1'analyse de tensior. gc menbrane ont §td employdes i

o

conjointement pour former uns &quation intégrale. Cette dernildre a té

s

resolus & 1'side des saries Sinus de Fourier,.

Des expériences ont &t& organisées avec une combinaison des paramitres .

indépendants, comme: nombre de Reynolds (2.87 x 100 - 9.77 x 105).
coo\f!icient de pression (-0,12 - 3,22) de gonfllment, et un r/apport
"exces de longueur de la membrane sur la corde” ((l-c)/c) (0.56% - 5.2%).
Ces résultats ont &té en accord avec ld‘théor’ie, nplcinleut;tﬂbour u'
coefficient de tension juu{u'l valeur de hauteur/corde = 0.1, \!.‘c

coefficient de tension &tait fonction unique de la combinaison de la

presaion de gonflement et du rappott exclis de longueur sur corde. -
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NOMENCLATURE

4

L)
o
Fourier Sine coefficiént

Solid blockage .

Total blockags.

Wake blockage

Chord length \ ’
Drag co§fﬁciant ’

Static pressure coefficient at the surface of the
inflated aerofoil

i

Tﬂ':gi' inflation pressure coefficient
7 ¢l

L induced tension coefficient

qc

Normal{zed .inflation pressure cosfficient

= "o .
Portion of the envelope extends outside the tunnel roof

Total end correction force

Total measured fgrce on the leading wedge
Total measured force on the trailing edge
Strength of source or sink per unit length
t/2, maximum height of the enveldpe

Tunnel working section height

o
o

"
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Length of membrane in chordwise direction <

2

. %t ‘a’-g-, laminar flow separation parameter

Number of Fourier coefficient (also, equals to the
number. of chordwise position)

Local absolute static pressure at the inflated aero-

foil surface

Atmospheric pressure "
Inflation absolute pressure
Inflatizn gauge p‘ressure

Tunnel reference pressure

Free stream static pressure without test model in
the working section )

Total pressure of the fl‘ow

%pU i , free stream dynamic pressure
Radfus of curvature

Reynolds number

Distance along the surface, measured from leading
edge

Shape factor y ) <
Laminar separation point

Transition point‘

vi

e 4




’
t . Maximum thickness of the inflated aerofoil
T Induced membrane tension per unit Tength in span
L directiqn "
T Induced tension per unit 1engthﬂ ,by the circular arc
profite of the envelope »
u Local wind velocity at the surface !
u' . Perturbation velocity '
U, Fr;e stream velochty
u Free stream just outside the boundary layer |
Uy ‘ Velocity uutsic{e the boundary layer at transit}m
Uge ’ Velocity outside the boundary layer at tu’?buiénce
, separation

W Tunnel workidg section width
Xy \ Cartesian coordinate
Greek Symbols .
8, | Momentum thickness

. 0 © Chordwise position ' . : ( .
8, Leading or trailing edge angle (Theory) . ’
o, Leading edge angie (m;sumd)
8 Trailing edge angle (measured)

. 8 The cireular arc edge ingla ‘ | .
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] L il Y .t" + « ,
. : . viid,
b ! )
- Q NIRRT
8 ( 3 Zt) '
. ® 2t\ =
- : P Free stream density ' ° ’
" v ¢ ~ ‘'Angle substained by the ciréular arc element which is

along the surface of the envelope
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1. INTRODUCTION

The use of air structures could be said to date back to
the time of the Roman civilization when inflated animal skins were
used as floats for crossing rivers [Ref. 1]. However, it was not
until the eighteenth century that air structures were used in trans-
portation. In 1783, the Montgolfier‘brothers introduced t?e hot
air balloon made of paper and linen, and at the same time Meusnier
suggested‘a‘design for an airship [Ref. 2]. These devices marked

the beginning of pneumatic air-transportation.

Initial development of pneumatic build %gs benefitted
airship design.

considerably from techniques used in balloon an
The first known architectural attémpt to apply these techniques
to an earthbound structure was by the English engineer, Lanchester
[(Ref. 3]. In his patent of 1917 for a field hospital, the basic

principles for an air supported structure were developed.

During the second wor]d war, Steven, an American engineer,
tried to promote [anchester's/idea; but the real break-tﬁrough was
achieved only after the war, at the Cornell Aeronautical Laboratory,
by Bird who designed‘and built successful spherical radomes for
early warning radar [Ref. 4].“ His work was supported by research,
and in partXcular was tﬁe wind tunnel testing of mo&els. Since
then, similar work has been done EIsewhere especially in Germany,

Britain, Japan and Sweden [Ref. 5]. In Germany, Beger and Macher




K;)/ undertook wind tunnel investigations of model buildings of spherical
and cylindrical shape, [Ref. 6] and similar experiments had been .

made by Niemann [Ref. 7].

4

- The stress distribution in a flexible air structure, is
a function of the pressure distribupion over the surface. For
two-dimensional cases, under uniform inflation pressure, and without
wind loading, equal stresses are developed at every point on the
envelope. However, the varying pressure differéntia] resulting
from airflow across the surface of the unit causes a non-uniform

loading and consequently causes deformation of the unit. As the

membrane distorts, the wind pressure distribution varies with the
change in shape until an equilibrium condition is reached or an
instability may arise. The wind pressure distribution is therefore
different from that over a solid body with the same profile as the
flexible body with wind off.

- In general, it was found that fer thickness to chord ratios
greater than or equal to half, it is necessary to relaté the inflation .

gauge pressure Pig to the free stream dynamic pressure q to avoid

; vibration or even collapse. For instance, a 3/4 spherical shape

, requires Pig/q > 1, a hemispherical shape requires Pig/q > 0.7,
and a cylipdrical shape with 1/4 spherical ends requires Pig/q > 0.6 [Ref. 7].

Recently, Hoxey and Wells [Ref. 8] did a ¥ull scale wind
? pressure measurement on a twin-span grEenhouse 1nf1ated-roo§, the

roof was a thin lenticular aerofoif.’ They pointed out it was




impractical to measure the shape. However, they predicted the shape
fndirectly from the pressure distribution. They also observed that o

a roof of increased slope was easily deformed by wind pr'essure.

k.3

The use of air structures has grown rapidly in recent years
because they are light weight, portable, easily erected, and can provide
column-free cover over a large area. However, it {s a relatively '

new building technology and many technical problems remain to be solved.

The objective is the idealization of flow across an inflated j

building in two-dimensional flow with the effect of the boundary layer removed. \/

In the present work, a theoretical and experimental study
was conducted on a thin inflated lentficular.aerofoil in two-dimensional
flow at zero flow incidence. Thin aerofoil theory [Ref. 9] and men\bran%
v

stress analysis were employed together to predict the shape, surface

pressure distribution and induced membrane tension. 7 o

A preliminary smoke tunnel investigation at Re = § x 'IO3

gave an 1ndipat10n of the maximum value of £/c for which flow separation

would be avoided. The experiments were carried out in a blower wind
tunnel of closed working section of dimensions 0.762 m wide by 0.432 m
high‘. Model sizes were restricted by consideration of wi.nd,tunnel e
blocl;age and flow separation on model. Methods of measu\ringp pressure
distribution and induced membrane tens{on were developed Experiments
_were carried out for various combinations of the independent parameters:

Reynolds number; inflation pressure coefficienf and the excest length

3
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of membrane over the chord length. The Reynolds a"\uwer varied from
2.87 x 10° to 9.77 x 105. tﬁ; inflation pressure coefficients varied
from -0.12 to 3.22, and the excess length to chord ratio varied from
0.56% to 5.2% which approximately corresponded to wind-off height-

chord ratios of ‘4.6} to 14% respectively.
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(f: ' . 2. THEORY -

‘2.1 Thin Symmetrical Aerofoil at Zero Flow Incidéfice in Potential Flow i

In poteniial flow theory, flow past a closed surface may
be obtained by considering a number of sources and sinks located |
in a uniform stream as for instance 1nbthe Rankine oval and {ts degenerate
case the circular cylinder. In these examples, modelling is done
by introducing singularities of finite strength located at isolated
points wi;hin the body.

¥

To simulate the flow past a thin aerofoil at zero incidence,
a continuous distribution of sources and sinks of strength g(x) |
per unit length located along the chordline 1s considered [Ref. 9, 10]. ’
Referring to [Fig. 12], orthogonal axes are used: the origin
fs at the leading edge with x the distance along the chordline measured
from the 1eading edge, and y the distance perpendicuiar to the cho;d-
line. The/aerofoil 1; symetrical about the x-axis. Thus an-element

of length 'dx' has associated with it a source of strength g(x)dx

on the x-axis.

- 1f the aerofoil is sufficiently thin the slope of the surface
is small and for the purposes of determiping the source distribution

the flow velocity inside the aerofoil may be taken as U,

Within the profile, the difference between the quantity

of fluid flowing at X) and Xy + dxl is equal to that emanating from

the ‘'sources contained within this interval. ;




»

o o

Hence,

, ¢,
g(x)dx1 a2 U”(y] + HIT dx]) -2y, Y,

; dy]
g(x) =?U”a—,(—1- (2.1.1)

Thus the required source distribution is simply determined by the
shape of the aerofail. The slope fos the first half of the body
is bositive, which implies a continuous seurce distribution. The
second half body has negative sl&pe. which implies a continuous

sink distribution.

If the thickness is small, the velocity induced at 4 point
(x;y) on the surfaée of the profile by a fluid source or sink at
the point (xl’ 0) is approximately equal to that which would be intluced at
the point (x, 0) by the same source or sink [Fig. 12]. Then -
the perturbation velocity at point (x, y) due to source at (x,,O)
is given by: | ”

du'= 9hxyldxy . (2.1.2)
EW(X"X‘l ;

and the perturbation due to the combined effect of source and sink
along the chord length is,

.
y g(x])dx]
ZH(X"xl ’ ’

0

Using equation (2.1.1) gives

¢ dyl ] . . -
. J ] ]_ ) a-;]— X} . (2.1.3)
- ‘ U; WO . !x-x],

- ! »
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and hence the total velocity at (x ,y) 1s

u=| + v '
¢ d.V‘ ;
i.e. U—" 1+

2.2 Formulation of Inflated Lenticular Aerofoil

In (Fig. 13] let the chordwise tension per unit
" span of the inflated aerofoil be 7. [Due to: ideal flow, the skin

friction {s zero, and tangential equilibrium requh-es that tension

T must be constant throughout the membrane [Ref, 11, 12, 13].

Thus,

T = constant
The condition of normal equilibrium is,

2T sin (¢/2) + 8p « 2R sin (¢/2) = O
where Ap-pi-p _ . .
Hence

bp = - 'i'/R

where R is the radius of curvature and is given by:

2
LI - 6
R []-P(%l
. x) 6 |
with the assumption y ;s small from thin aerofoil theory, % is
small. Therefore (gf) can be neglected when comparing to unity

and consequently,

(2.1.4)

(2.2.1)

(2.2.2) "

(2.2.3)

(2.2.4)




) :
' :—§ — | (2.2.5)
X e
combine (2.2.3) and (2.2.5), |
z =
-1y (2.2.6)
dx
s (PiPe) (PP
Bt TR TR T
el R cp - 0p (2.2.7)

where q is the free stream dynamic pressuve,

_Cpf is the inflation pressure coefficient.

bp is the.local surface pressure coefficient.

By Bernoulli's equation,

P..**o”f'P*ipuz

-hence,

2
Cp=1 - (U“-) : , (2.2.8)
substitute (2.1.4) into (2.2.8) and neglecting the second power of

perturbation, givei,

dy] dx I )
=22 | ] (2.2.9)
"Jo  (xexy)

and consequently combine (2.2.7) and (2.2.9),

[ ~c dy-' d

X
8 ,¢p +2 & 1 (2.2.10)
@ AU TG
i E

IS o Ve

.
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Normalize equation (2.2.6) by q, and combine with (2.2.10),

2 o |
X
Iyl dx, " (2.2.11)

9 dx " Jo =
Equation (2.2.11) is_the master equation for amalysis; it relates

the induced membrane tension, inflation pressure, and flow condition.

In oeder to solve this integral equation, Fourier Series

and numerical matrix techniques are employed [Ref. 12]. x and y
are transformed into parametric equatfons fnvolving 8 with y expressed

as a Sine Series.
|

hence,
x= %-(1 - ¢cos 6) : (2.2.12)
$ .
y = flx) = c;] A, sin (ne) (2.2.13)
n= '

where 0 ¢ 9 ¢

. S

8 = 0 at leading edge

v

8 = 7 at trailing edge.
An's are the non-dimensional Fourier coefficients and' ¢ is th chord
length. The use of Sine Series satisfies the boundary conditions
at the leading and trailing edges; which require y equal to zero.

Taking the differential of (2.2.12) and (2.2.13), gives,

dxy = § sin e, ds,

dy, = c ; nA, cos (nd;) doy .
n=1

-
—~




I uher‘e CT

b

Subs'tiktute them into equation (2.1.3), _
n

* nA, cos ("91)

9.;.- = .z_ I
U "7 J, ne (cos Gocos 8] 0

It is shown in the reference by Glauert

"
cos (ng) dq = 7 . Sin (n8)
o (cos G]x-cos 0) sin 9§

(Ref. 14)

With the above integral result, equatfon (2.2.14) reduces to:

u' n (n6)
foe2z o o

n=1
hence,

U; - sl A" no

Consequently, equatioh (2.2 9) and (2.2.11) give

Cp iv-4 Z n Ay 53-—(—":1 29)

n=1

in {ne)
= Cp, +4 Zn 3
ol 0T an i s

d2 / 4[ ‘; n A, ccs{ge»w[;:og'!e)+

e ] =t sin’s .

. Supstitute (2.2.20) into (2.2.19) and rearrange,

2 St cos (no) coslo)+ n sin(no) sinel) /An:
\ (Cpi

< n=i

- n sin(ne) s1n2 )
v ,
qc o

i
- @

T nl
n=1

={-sin 0~

An sin(ne)

sinze

3

)

10

(2.2.14)

(2.2.15)

(2.2.16)

€2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)
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’ ’ 2 It can be shM that the-shape is symmetrical ‘about the

centre line of the chord [Appendix 1], and this requires that for

)
K n even An's = 0.* f
- Equation (2.2.21) is the governing equation, 1t must satisfy
the requirement of sharp edges (i.e. leading and trailing edge).
Thus at the edges it is required that . ~ . f‘, .
e ) "ﬁ'ﬁ.;
2t nhA, cos(ne) oo . T o
dy . ol | nisodd .. - (2.2.22)
X sin® D ; ‘ ‘5:, ; -
E be finite. . A
; i
: At the leading. edge (6 =,0), sin(a)= 0 and fora’- l )to be o
Finite, requires l -
o . . ' * F . - .
I nh=o n 1s odd ' ‘ - . (2.2.23) ;
i n=1 LT 3%
“ For the trailing edge (e = a), 'it gives the samé end conditions T SR

as (2.2.23).
; . A ‘
The léngth of the surface in chordwise direstion is given
~, - s

by: Lot i ) !
Y _ @ oo

fiﬁis can be 11near1zed and yields the excess 1ength to thord

ratio (L-c)[c

’ fT/ dx dx ) . (- / “‘ :“‘ -(2'2'25)1 "
+ 4 * ’ . . ‘. ¢ ' N '
S * From now on, it 1s understood tﬁat all summation signs are for . .
‘s (‘ =1,3,5,7, ..... @ (odd terms on1y) ' .
. 4 ' Q
! ‘ } t -
i U ) o ’ A

r vy 21 T ,
l= [ 1+ (3%) ]vdx R ' (2.2.24) |
) . : |
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To find the relation of the edg% angle as a function

~

5
-

o'? the tension,parameter CT,“equa'tfon (2.2.19) is used,

. : o d2 sin (no)
o ;{- Cpy + 4 ):1 " An g _ (2.2.26)
oL odd ‘

oo inteéra}:ing once’ [Appendix 11].

TR Ly, 1 va s Ao g2 Lo
J '53; L ZC;[I + 4n£'l o, cos(n cos (1 c))] T, (2.2.27)
. . odd’ : :
Y
at "the 1ead1ng edge x, = 0,”this gives
ﬂ ik " & An . s
.. ,‘ . E;all 1+ 4'1?] 'E-Ei- n is odd (2.2.28)
S since 31 g m'sh)pe at leading edgjé,: . - ’
L x=0 C e
‘ | a tan(a ) - ) ‘
" o where 9 is the leading edge ang]e *. K o "
.. ' Rearr&ngingh(Z.Z.Z&) gives ‘ :
, . . - ) . . o [
A Cpi ‘ An -] ’ LT T )
. -‘-t-ﬁ-e——=2[ 1 +4nX] Eb_i-] CT ’ njs O’dd - (2.2.29)

To obtain the relation of excess length as a function of
) ‘} o ‘ the tension coefficient CT, substitute (2 2.27) llnto (2.2.25) and
| aarry Qut the 1ntegraT [Appendix III] It gives S .

. ) A

A R X R RPN

’ _El-’./zT Ao I 1 .13 Z I Am An\ 4 ]nam R 3

: : t-c . ' oy n’
e Cfel (nz-a)\ 1 ne) [(1-n32-ne3[ (14n)2-n®]) (G

L e (2.2.30)

A ’ 0 §
” “ . 1

w) [ "¢, where m;.m,are odd.
. + ‘ e . v v

* Due to synmétryil'eagfng and utraﬂ‘igi{; edge angles’are the same (Theory).

- . i

Y
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Eliminate C in (2.2.29) and (2.2.30),

] {1-24 I A 1,4 Am An V-nlen -

R BEP | 1By (g “’1 - %y By [(1-n)2 mf][(Hn)2
taneo B ‘ ‘ [] . 4 ; _A_'.‘..
nal “Py

== ) (2.2.31)\

2.3 Numerical Solution and Discussion

The determination of the Fourier's coefficients.involves
the transformation of the master equation (2.2.21). ‘Equgtion (2}2.21{
is valid at any chorinsé position. Thus a set of linear simulfaneous
equations can be obtained by specifying a number of chordwise positions

in the equation (2.2.21).

&

Due to symmetry of the shape about the chordline centre,
all positions can be chosen within 6 = 0 and 6 = n/2. The sharp
edge condition Fequires that 8 = 0 must be included, and sgmnnetry
about the chordline centre requires 6 = w/2 be included. The rest
of the positions are chosen to-be equally spaced between-O and w/2 [Ref. 14].

The"magnitude of the interval is then equal tq'g- T&E%T‘ where N,
which is also the number of Fourier's-coefficients chosen, is the

number_of chordwise positions. The use of equal intervals of 0 was
found to produce a well behaved and non-singular matrix. Some trials
“with non-equal intervals produced a néarly singular matrix and numerical

inaccuracy. ' . -
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ﬂd) . , In matrix form, equation (2.2.21) is rewritten as:
cn’m Sn =0, (2.3.1)

where: C . = C; [n cos(ne,) cos(e ) + n? sin(ng_) sin(e, )]

2
-n sin(nem) sin (em)

m-1

Sp = An/Cpy , 0= 7

Dm = 4 Sin3(ey)
and n =1,3,5,7,---~ (2N-1)
m=1,2,3,4, ----N

In order to find the sufficient number of coefficients
s - : which gives acceptable accuracy, the work by Nielsen [Ref. 12] was

used as a guide.

For a given CT,-thé matrix was solved for different numbers
of N's, say N] < H2 <'N3 etc. Then the fol]owiqg comparisons were
made: (1) the difference between each correéponding coefficient;
(2) the difference in maximum thickness which was evaluated from
the corresponding set of coefficiénts; (3) the difference in excess
‘ length to chord ratio. For comparison (2) within a ﬁractically acceptable
tolerance, say 0.01% (Nielsen), the smallest value of N which gives

$ such tolerance would be accépted as the optimum number of coefficients
k4:2/ \ for analysis.

!

[} .
-The matrix had been solved by truncation with N equal to

10, 15, 20 and 25 for various values of the tension parameter CT'

=
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Results had been compared and presented in Tables 1-7, It was seen
that the successive coefficients decrease rapidly in magnitude, and

only the first two coefficients are dominant.

Assunring for the moment that the 'true' values are given for
N = 25, comparison for N = 20 ;hows that the percentage difference
for (h/c)/Cpi is about 0.0QSZ andffor the excess length to chord
ratio (5—;5) /Cp_i2 is about 0.05% for all values of CT greater than
0.5. It is concluded that N = 20 gives~a'pear1y asymptotic solution

dnd provides a sufficiently accurate solution. *

Once the Fourier coefficients are known, all the characteristics

of the inflated aerofoil can be obtained.

‘It is interesting to note that the numerical solytion gives
values of An/Cpi and not An. [Fig..14]3 ;hows CT‘is‘a unique function
of Cpi(éég) 4 givéhvby equation (2.2.30). The value of C; equals
to about 0.5 separgtespositive and negative value of Cpi. Cp1(£%£) -i/bT
achieves the asymptotic value /2%, wh?ch corresponds to wind off

when CT reachés yery large value,

In [Fig. 15], for CT greater than 0.5, the normalized shape
(y/c)/Cp1 starts with cusps at the edges for low value of Crs and

tends to become ‘a circular arc profile és CT increases.

In [Fig. 161, for values of C. less than about 0.5, the |

‘ ngrmalized sHapes_(y/c)/Cp1 are negative, except-for CT = (.2 and

'CT = 0.125 which cross over the.zero line. In the range of CT between

0.49847 and 0.28438, the'shabes are only different in amplitude

* ANl theoretical results are obtained for N = 20, /

Vex-
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They are geometrically similar with only one peak at the centre.

At CT equak to 0.28438, the shapé has zero slope af: the leading and '
trailing edges. For CT from (.28438 to 0.2, the shapes start go

cross over the zero 1ine near the edges. The amplitude of the cross
over as well as the width grow rapidly, and have their haximum case
at cT equals to 0.2, Further decrease of CT from 0.2 to 0.17625,
changes the shapes in such a way that they are inverse of the case

for C; equals to 0.2 but with smaller amplitudes. - When C; reaches
0.125, it crosﬁes over the zero line again with more ripples and
smaller amplitude. For C; less than 0.125 until 0.05 the shape becomes

negative, and once again more ripples and smaller amplitude. *

In [Fig. 17], this provides a direct estimate of the tension
in the membrane for a given flow speed, inflation pressure and height-

\
to-chord ratio. It shows that the smaller the height-to-chord ratio,

" the higher the induced membrane tension. However, the percentage

of increase is larger for large height-to-chord ratio.

) In [Fig. 18], as a practical example, the change of shape
for a particular £ corresponding to wind off height-to-chord ratio
0.14, (1%;5 = 0.05), has been determined for variqys values of Cpi.
Their correséonding induced tension is also given in the figure.

As th¥"inflation pressure‘coe?fitieqt gges from large to small, tﬁe'
corresponding shapes are once again seen to change from almost a

circular arc to a cusp shape.

* The wavy shapes in Fig. 16 were "3} achieved experimentally.




3. EXPERIMENT

3.1 Wind Tunnel Description and Calibration

The general arrangement of the blower wind-tunnel {s as
shown in [Fig. 1]. The tunnel is of the blower type, and pas.an
open jet exit of 0.762 m wide by 9.432 m high (30" x 17"). The con-
tracting section which leads t6 the working seétfon [Fig. 2, 3] 1s
a two-dimensional type having a contraction ratio of 6:1 ERef.l;’].

The tgst model extended through the roof and floor.‘located
at the centre of the working section. The model was aligned in flow
direction by means of ﬁressure faps at front of leading edge wedge.

A device which carried a static tube for the measurement of surface’
pressure distribution Qas attached to the plexiglas window. It could

/

be moved parallel to flow direction. S

The tunnel calibration involved two pressure taps 16c5ted .
on each side of the vertical walls of the settling chamber, one foot
from the upstream end. These tubes were connected to give an average

pressure Pr for the determination of wind speed. .
\ ;

Working Section
| .

A ‘ ' A" 6
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Pitot-static tube, which was located at the centre of the
working ;eciion, was used to measure the values of (Pr-Pa), (Pt-Pa)
. +and (Ps-Pa) simultaneously. Inclined alcohol. (S.G. 0.8) manometers
were ysed for/ these measurements. Results were presented by plotting
(Pt-Ps)/(Pr-Pa) and (Ps-Pa)/(Pr-Pa) versus [(Pr-Pa)/pv 214 here
v is the kinematic viscosity (Fig. 10]. The value [{Pr-Pa)/pv ]i

‘when myltiplied by unit length is a measurement of the Reynolds number.

The calibration curves had been fitted by linear regression

method to give the followihg expressions.

Pt-Pa
| ‘ Pra '“1 .029
Pt-Ps-
FI‘-FG

| 1 4 - 0.2176 x 107 Redy x 107

lsssa 052 + 0. 575324 x 10 Re + 0.495353 x 10° 10,4 Re?

14

{;é-‘;i- (750.296 - 0.184041 x 1073 Re + 0.49051 + 10710 ge?

W .

.274852 x 10 Re ]l x 10

where Re = [(Pr-Pa)/pv/1t /metre

1 “and 2.5 x 10° < Re < 18 x 10°/petre
- ‘ . . E . . . \y ,

3. 2 Hode'l DesLL n_and Accessor_y Measurement Devlces

. The chord Iength was chosen to avoid separation ahead of
the traﬂing edge. ‘The method to determine laminar and transition.
was by:the followfng equations [Ref. 16].

o * o , .-
i o _ , , : . .
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: us
C ~Z . QEg.S. f v g (3.2.1) ;
4]
8 ' « '
s me-2 f'i-g" (3.2.2)

where U is the free stream velocity just outside boundary layer
v is the kinematic viscosity
8, mome Xtum thickness
s, is th? distance along the surface,

and together with [Fiq 11] of "boundary layer Reynolds number at

transition plotted -against the pressure parameter » Which was obtained b

from L.F. Crabtree [Ref. 17]. Laminar separation occurs when m = 0.99.

When no laminar separation occurs, the procedure of calculafing
the transition point is as follows: m and ReG2 at points along the
surface are calculated and plotted on Crabtree's diagram So long
as this curve lies to the 1eft of Crabtree s critical curve, the

boundary layer s laminar; transition occurs where the curves cross. ‘

. 4
After determining the transition point, the turbulent separation

is found approximately by Spence's method,

S
2 2 | * :
1.829 Uy = U, - 0.00135, j U ds (3.2.3)
s

* t 1 M i
U, 6
where@* 62t "’t""'J'g“'t‘ ’ ' . ,

and Ut’ Uts are the velocity outside the boundary layer at transition

and the turbulence- separation points. ’St’ Ss are their corresponding

locations along the surface,

' i
. i
L t




Based on the above consideration, and avoiding the merge
o£%§he boundary layer growth at the roof and floor along the surface,
the chord was chosen about 0.38 m (h/c was assumed 0.05). It was

found that this dimension of chor@ was satisfactory for experiments.

Only solid and wake blockage were considered for determining

. the model sizes. The blockages tan be estimated by [Ref. 18 and 197,
* Total blockage B, =B, +B, (3.2.4)
Wake blockage B, = ;(5)2 ¢ | | (3.2.5)
- |
Solid blockage u B = (,3_-)2 S * , (3.2.6)
Cc

Shape factor. ] Sf = % I%’ y 9% (3.2.7)

‘ 0o e Tt
Corrected velocity U = Uy (1 + Bt) - (3.2.8)

s  wherew  width of tunnel - :

t maximum thickness of object
¢ chord Jength '

y ordinate of the Suéfabe measured from the chordline

u Tlocal velacity of the surface at a distance s from the leading
N !
edge
Cp measured drag coefficient. (It was assumed 0.01 from NACAO010-35)

N

i _ Uy measured tunnel wind velocity

| u. corrected tunnel_ﬁind velocity

e o o : Joial blockage was estimated for a few chord to thi;kness
ratios, for 1nstance; ' | |
when ¢/t - 10 B, 0.01

Y o/t 5.5, B, 0.02

I

» e/t 4 . B, 0.027 o | ’

[T . \

| -
-

-
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They provided a guide for determining the c/t ratio. These were applied
for the correction of measured inflation pressure coefficient (Cp1),

tension parameter (CT). and Reynolds number (Re}.

{
The design of the test model consisted of an envelope made

of Stablekote II'Nylon (25 gm/m2) [Fig. 4, 5] wrapped around two
steel wedges in order to achieve aerofoil ghape when inflated.
Wedge angle was restricted to about 10°, because large wedge angle
would affect the edge angle of the envelope during the experiments.
The wedges together with the end edges of the ervelope extended
through the tunnel roof and floor via the bicircular arc holes.
The holes' sizes were made to closely resemble the inflated aero-

foil so as to minimize the amount of leakage of tunnel flow.

The ends of the wedges were each held by flexures which were
specially designed [Fig. 6] to allow very small and parallel movement
tn the direction of the main stream flow when forces act on the wedges.
To éach flexure, a full bridge connection of strain gauges was attached

for force measurement [Fig. 7, 8.] The flexures were attached to the roof

and floor [Fig. 8] of the working section.

The test model was two-dimensional, and required that there
should be no induced membrane tension in tgz spanwise direction of
the envelope. Thus two plexiglas plates were used which attached
the ends of the envelope and served as end plates to reduce the escape

of air from the inside of the aerofoil [Fig. 4].

> —— A
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The inflation pressure was subplied from both ends of a
0.0127 m (0.5“)'d1ameter pipe which extended through the covers.
The pipe was designed to give uniform inflation pressure. Holes
were drilled in it with varying spacing so as to give a uniform
distribution of pressure inside [Ref. 20].

!
3.3 Measurement

The measurement of parameters included Cpi, local Cp, and

the excess length-to-chord ratio.

Measurements of inf\ation’bressure, surface pressure distribu-
tion and tunnel speed give Cpi and Cp. The measurements of wedge forces
together with Poth leading and trailing edge angles give the value
of CT.

The Anflation pressure was measured using 3 small tubes
(0.318 cm). Two open ended and one static tubes were inserted inside
the envelope from both top and bottom covers. There was negligible
difference with readings from these tubes. They were however, connected

together and measured by an inclined manometer.

A device was designed-[Fig. 9] which allowed a mounted static
tube (0.16 cm diameter) to be rotated or moved in and out so as to
align the static tube parallel to the inflated,surface at any chosen
chordwise position. Thg device itself was mounted on the plexiglas

window, and could -be adjusted in the chordwise direction of the aerofoil.

" ,Again, the pressures were measured on an inclined manometer.

i

|
[
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The forces on the leading edge and trailing edge were measured
by the strain gauges attached to the supporting flexures, and the
complete systems were individually calibrated with dead weights (Fig. 41).
The outputs of the strain gduges were picked up by a B and K type 1562
strain indicator. The leading and trailing edge angles were détenmined
from orientation of the static tube at these locations.

Since the shé%e of the membrane outside the tunnel was
different from that affected by the wind, it Qas impossible to photograph
the shape directly i.e. longitudinally. Some idea of the change

of shape with speed was obtained from oblique photographs.

3.4 Experiment Procedure

To start the experiment, it was necessary tq calibrate
the membrane length, 1ndpced tension verfus inflation pressure with
wind off, because the fabric stretched slightly under tension. This
was done with wind off by measuring the thickness of the circular
arc aerofoil using calipers. This information combined with the
measured internal pressure enabled the radius of curvature and membrane
length (£) to be determined. The information was also used to correct
the wind-on readings for the effect of the ends which were outside

the tunnel. Sample calibration curves are shown in [Fig. 19A, 198].

Ambient temperature and pressure were recorded and used
3
to calculate the corresponding density and kinematic viscosity of

air, s

S




24
LN

*‘\
‘) : For each envelope and combination of tunnel speed and inflation
_pressure, oblique photographs of the membrane shape were taken, and
the corresponding surface pressure distribution and membrane tension

were recorded. Ay

{

Different excess length to chord ratios were obtained maiply .
Q by changing the size of the envelope, although slight adjustments
were possible by changing the chord length.

Cases with negative Cpi could be run b& starting initially
with a positive internal pressure and then, with wind on, reducing

this to a value less than that in the working section.

The cérrection for the end effects on the measurement of
tension was necessary. Since, with wind off the envelope had a circu]ﬁr
arc profile over the whole length, with wind on, the portion of the
envelope within the tuhnel changed sbape and the portion outside the
tunnel also did, but presumably ti(:hless extent. To make the correction

for the end effects, it was assumed that the outside portion of the’

envelope remained a circular arc profile when wind was on. Thus the

; measured force would be due to two parts, namely the tunnel portion

é affected by the air flow, and the outside portion which was surrounded

y

by effectively still air, “ For a given

inflation pressure, the value of 555- can be found from the calibration
curve [Fig. 19A]. With the value of % and [Fig. 198], the tension

" per unit length may be determined. The total correction force is

given by .-
, s
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Let FL and Fy be the total measured forces on the leading wedge

The central portion of the aerofoil affected by the tunnel air is:

H is the height of the tunnel.

-taken as the induced tension (T) per unit 1etigth. In fact their

]

25

F. = (2 Tc cos ec)d’
where d is the total distance of the wedge extended outside the floor
and ceiling.
- ec is the circular arc edge angle
Tc is the induced tension per unit length by the circular

arc profile.

and trailing wedge due to combined effect of wind and inflation pressure.

T = (FL - Fc)/(ZH coseL) .

where 8 eT, are the measured leading and trailing edge angles,

It has been assumed in the theory that the tension should be

uniform throughout the membrane. Thus the av‘erage of TL and ‘r.r was

difference was usually less than 1%.

* Where TL’ T; are the induced tension per unit length in spanwise

direction at the ‘leadingﬁ and trailing edge of the inflated envelope

respectively. ’
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4, EXPERIMENTAL RESULTS AND DISCUSSION

3

4.1 Comparison of Experimental Results with Theory

Comparison of equation (2.2.30) and experimental results
are shown in [Fig. 20), where the tension coeffjcient CT is plotted
against Cpi( éés)'i. The agreement is very good. Experimental results
nearly all collapse convincingly on the theoretical curve within
about 3%. The results are for a range of Reyno]d; number from 2.8? X 105
to 8.02 x 105, and indicate that they are insensitive to the change
of Reynolds number. 1In all cases with positive inflation pressure

(Fig. 20] the membrane appeared to be stable,

Some results for suction cases (negative Cpi) were obtained
also [Fig. 21). These results, however, are less accurate because
the portion of the membrane outside the tunnel was usually"partia11y
collapsed, and thus the end correction for the measured tensions '
were uncertain. Nevertheless, the results are gtill in fairly good
agreement with the theoretical curve. Partial or total collapse
occurred at the value of Cp 1es; than about 0.4. The less the value
of (£-c)/c, the more readiI} it is subjected to collapse. To avoid
collapse, it should keep CT greater than about 0.4, thch corresponds

to Cp, ( %9) -4 about’ -0.45. .

The actual phenomenon of the membrane behaviour for negative

Cp1 was a gradual process. When the inflation pressure was reduced
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to the cniti,caﬁ/a'lue which corresponds to a given flow speed and
excess length to chord ratio, the envelope oscillated with very small
amplitude but high frequency. There were no prominent wavy ripples
observed. With further decrease of pressure, the membrane oscillated
with larger amplitude but lower frequency. Finally, when the applied
suction pressure was large enough for the given conditions, the envelope
co]]apsed in such a way that the maximum thickness propagated rear-
wards to the trailing edge as one simple pulse wave [Fig. 40]. After
collapse, the two surfaces of the envelope contacted each other tightly.
However, when the suction pressure was removed, the envelope was
inflated again. Also, the envelope could recover its stable state

from oscillation when the flow speed increased, which is really an
increase of Cpi. High flow speed is favourable for stability, even for
a small amount of suction. It was true for different (&-c)/c

even up to 0.038.

Edge slopes given by equatioh (2.2.31) as a function of
the Cpi (%5) -1 is compared in [Fig. 22]. In theory, the curve
will achieve a slope of (6) -1 for high value of (:p1 (b) 1 here
is good agreement for low value of Cp4 (L-——) -4 below 4, and is still
fairly good even up to 10. However, discreparnicy between theory and
experiment increases as (:p1 (—-;—':5- -4 beyond 10. Such disagreement
is most probabiy due to measurement of angles when they are small.
Similar features happened in [Fig. 23] where the edge slopes plotted
against the tension coefficient CT The theoretical curve achieved‘
a slope of 2 for high Cy- In both figures, disagreement between
theov:y and experi‘met;t begins when Cpi/tan(eo) is above 4.5.
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Consider the pressure 11stributions which are shown in
[Fig. 24-35]. They show that for iow height to chord ratio, experiment
and theory 1n.general are in good accord [Fig. 24, 25]. However,
as height to chord ratio is increased, the agreement is worse in
some local regions [Fig. 28, 29]. Around the region of s/£ equals
0.075 to 0.3, the theory gives lower pressures and larger values
in the region 0.3§9to 0.8. It may be noted that although there is
considerable disagreement at s/£ = 0.8, the agreement surprisingly
improves towards the trailing edge. This could be due to flow separation
and reattachment near s/f = 0.8. Ffor even thicker cases [Fig. 34, 35],
separation bubble has m&ved forward and becomes larger as would be
expected. The flow pattern around the region were investigated quantitatively
using a . tuft gttacheq,@b a hand held wand, and light tufts attthed
to the surface of the membrane itself. The pressure distribution
discrepancy for the forward part of the aerofoil can only be partially
explained as an error in the potential flow analysis. In [Fig. 36],
for potential flow, the presént 1inearizéd theory for a lenticular )
aerofoil with circular arc gives more negative pressures for s/¢
in the region 0.05 to 0.3 and vice versa in the region 0.4 to 0.5,
as comp;red with Karman-Trefftz's method. The latter method is a
conformal transformation of a circle and in the potential flow theory
is exact. The compé;ison shown in [Fig. 36] indicates that the linearized
theory gives satisfa;tory results for heighé to, chord ratios of perhaps

up to 0.1. This gives maximum reasonable h/c.
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A second reason for the discrepancy over the rear half of
, the aerofoil could be the effect of the bouhdary layer buﬂd- up\
over the surface. It would effectively thicken the shape of the
aerofoil especially over the downst;'eam half where there are uﬁfavourable S
pressure gradients. Thus the pressure is reduced in these regfons
fbecause of the vlvake; An additional effect of. the lower pressure
‘on the back of the aerofoil 1s to move the maximum thickness of
the membrane rearwards and thus further ‘reduce the pressure on the
rear half surface. It also has the effect of increasing the pressure

on the front half surface as is observed [Fig. 35]. '

The leading edge angle is always slightly less than the
fraﬂing edge angle. ‘ |

I el

, | - . ]
4.2 Estimation of the Error in the Measured Coefficients

From [Fig. 20]; it appears that Cp, (%—c—) '*, and C;. have
been measured to an accuracy of somewhere between 2% to 3%. Cp1
fnvolved the measurement of internal pressure and tunnel ‘dynamic
pressure using manometers which could have been measured to an accuracy
of 1%. The remains 1n$ccuracy in (2-c)/c 1is therefore between 2% and 4%.

This .corresponds to an error in the wind off t/c of about 1% and 2.

It is somewhat surprising that such accuracy was achieved
in the measurement of t using calipers. The measurement of CT is inaccurate
due to 1n5ccuracy in T and q. The force on the wedg:es was measured

to an accuracy of about 1% and the edge angles were relatively unimportant

S P - o
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. for determining T since the cosine was taken. Thus with a small
‘ — rd
additional error from tunnel dynamic pressure, CT may well have
. ‘ )
{
been measured to an accuracy better than 2%. \
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( 5. CONCLUSION . y

Idealization of flow over a long low inflated building .
with the effect of the earth's boundary layer removed has been studied

successfully both in theory and experiment. . \

/ \ \
The tension coefficient CT is a unique function of the

collapsed parameter Cpy (%—9-)'5 obtained theoretically and confirmed

experimentally. The relation is insensitive to the Reynolds number,
and applies for (£-c)/c less ‘th\an approximately 0.05. (about h/c = 0.14,
{r'

with wind off). -

“"The membrane was found to be stable for all positive values
)

of Cp;. Cp, (%—9-)7* should be greater than about -0.45 which corresponds

to (; about 0.4 to avold partial or total collapse,

The non-dimensional shape [(y/c/CpJ] of the membrane {s
determined uniquely by Cpy (%—_:g_)-)’ and the actual dimension is

scaled accordingly to Cpy-

The induced absolute tension is higher for low heights,

however, the proportional increase with wind speed is less.

The measured pressure distribution broadly agrees with
the theory although there appears to be some effect of the boundary
layer built up on the aerofofl which results in a movement rearwards \

of the point of maximum thickness.

The theory is good for h/c up to 0.1 for design purposes.

* i
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APPENDIX I

{

c Thin inflated lenticular aerdfoil in potential flow at /
zero incidence is symmetrical in shape.

/

The governing equation for the analysis is given by
equation (2.2.21),

'; CT[ncosnB cosb + nzsinne sinel] (?%%) = isinae

n=1 [ -nsinnesinze

Replace 8 by (n-6):

sin 1s unchanged

sinne+simeé n is odd
-sinne n i; even

c0s9 + -cos@

cosnd + -cosné n is odd

cosnd n is even

hence (2.2.21) becomes: '

; [ Cy{n(¥cosne)(-cose) + nz(tsinne)sine]] ({hf)* ;s1n3e

Py

i

n=1 -n(:;inne)sinze

If n is’0dd:

' ‘bduation (1.1) is identical to (2.2.21) and this implies equation

(2.2.21) s symmetrical.

If n is even:

’ | A
2 n
get: = C;[-ncosne cos8-n"sinnd-sing (—-—):0
5 [ T[ ] CPi :

ne2 | 4 n sinne sine
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(2.2.21)

(1.1)

(1.2a)




( Rearrange (1.22)

i z "(C CT[(nH) cos(n-1)6 -(n-1) cos(n+1)6] -0
n=2 + sin(ne) <4[sin(n-2)0 +sin(n+2)e] ~

/

N

take ] (1.2b) x cosmede:
o

the typical terms will be:

"
f cos(nx1)B-cosmoéde = Q
o

Al

] 1
™ —— F - @ = odd, n even
[ sinnecosmede -&M" M. ’
° 0 m = even, n even

~ .
Hence (I.3) 1is reduced to

/

i ron [ 1’ ( 5+ 1
n=2 EE; rri T nwf n-m T n-m-Z
for a1l odd m ‘ r %
Hence A = 0 for all n even.. '
Consequently, equa‘tion (2.2.21) becomes:
2.,
» [ncosie)cosé + n“sin(ndsine]}
» by CT 2 (%Q-) = isinae
. n=} -hsinlndsin“e i

n=o0dd

el

ki

(1.2b)

(1.3)

(1.4)

(1.5)
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APPENDIX 11

Derivation of relation between inflation pressure coefficient,

tension coefficient and edge angle.

To obtain the relation

Cp
. = 1(cp)
y (0) .
From equation (2.2.19) and with CT = T/qc, o
- " ; sin{ne)
i-cT cy" = Cp,' +4 el nAp STpe N odd (11.1)
- c-‘y" ™ ] + 4;" Aﬂ Sin(H’B) »*
fﬁ; ] Py Sing ]

Integrate once fromx = 0 to x = x

[N
-

X
e, An  sinne)
F-p1y+.(1-=x+4 In G, ‘sing z ~(11.2)
0

where 2z is a dummy variable, K' is integration constant.

-

at x = 0, »
’ K :
Integrate (II1.2) fromx = 0 to x = ¢ ' a
1 LT R T TR A Ly P

- . - X - n_ sinne 4

. ﬁ?y i "“ZE;E +q€ j tb(/0 L t-p-i—?-r("e‘ldl-l-l(z (11.4)
0 v 10 0

() * Al1 £ from n=1 to n=~ for odd n .

\ / .

1

"




: lg‘

Atx-o,y-o,-rl(z‘-o

Atx=c,y=0,

0
R K c X An
1.1 4 sin(nﬂ)%
- = + . dx £n (11.5)
. % cTcz /o ( o Py sSi®
X A '
"n sin(na)
Let I-l j In Eb—ir Sne (11.6a)
0
where 0 = cos'] (l - -23-)

cosd ={1 - —-—

dz = % sinbdo

A, cos”! ( _Ec!.(_ )

so: I, = $p—
1°2°0py nsin(ne) de

A ! .
'%xﬁ’?[ 1- COS(n cos 1(‘ X))] (H.Gb)
Substitute I1 back into II.S: .
K A |
1 . A, n - ~1 . 2%
el [ ‘+ C.‘cz / dx L 75, [ 1 - cosn cos™ (1- ))]
A c
2 n n l
+ =1 - L cos (n cos l dx (I1.7)
cErhTe ey [ 1)
. Arl ¢ -1 2%
Let 12: :r,ﬁ)—i— cos n cos ( 1-’3—)) dx. {11.8a)
) y
A
/ /

o e —————————— - m . P L e v,

%I—_f
ﬁi N X



|

|

also let: ]
u=n cos"](l-gcl) ,

atx=0 u=o9

)

X*®¢c u=nn

ofl):(2)

dx = —-sin( ) du

/

| 1 ] nm
e A cos(;‘--l)u cosa-+1)u
BEAETE T il G veren e
n n /o

- %.+ %-(cos(vr;nn) + cos(1r+mr))

| )

L 2]

™t

£
by
=
———
[
-~

+ cos{n-nw) - cos(ntnx)

::]N

%—-cow -cosny + 2- simtvsmmr]

i
) Py n(l [
=cr tﬁ;- [ (liicosnw)]
3
el o ]1 + cosmr)
@y 2(1n?)
but n is od +cosny = -]
S0 Iy = 0 ' : S (11.8b)
Substitute I, = 0 back 1nto 1.7, S

X A \
1 2, o~ m (11.9)
T

1
A A
E}E?‘ﬁfc

e,
.
)
L —
|
+
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- N ‘ . . . /
;o substitute (I11.9) into (II.3), L
/ " i
L " : A
lé—'it ] ] + 4‘ z ..._!L ) .
f TR Cpy
o
% - w . I3
% ' . § . 1 o .
i . - f.e = 211+42 ¢
[ X ) y o i p‘t (II‘]O.}
. i
7 . ) ) ' ‘ ) ’
A - where y'{0) = tang,, and 8, {s the edge angle, ) ,
+ ‘- i s s o
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v v . ., ; #ﬂ . o N
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APPENDIX III

Derivation of relation :betweean excess length to chord

ratio, inflation pressure coefficient and tension coefficient.

. To obtain the relation

from appendix II, it has been shown that:

.

x s
< A ' A,
o z ~ N sin(ne <L N _ -1 2x .
I, L n=1 n fﬁ <Tng 42 =72 _Cp1 [1 cos(ncos (1 - c))]

5
//'(
iy
|
e

I E—’l (n cos™! (1- %’i))

2 \
)l -

Y2 h cos”(1- 2
+ Z(R; CTc) qz > cos(n cos ( )

. __1__2_+ « _3‘2__+._4.2[z§6ﬂ- cos(ncos'](I-%-))]'
% G Ge & b - |
| " A i

+ ET?.Z.Z Coy cos(n cos™! (1 - ~—)) ":'2‘% "5'!1" cos(n cos o

40

(111.2)

2
.cé) )

(111.3)
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The equation of a length is given by

N c 2
L= J[; / 1 1—(§§) ’ d |

Since % is small, then by binomfial expansion and rearrangement

c p
v \&
gy L1 [(La
( c ) c x / (Cp.' dx dx
Py 0

Bubstitute (11.3) into (11.5),

(111.4)

(111.5)

eyl 1 (<[ .2 x .4 N, ]2
&=t —— + - + L cos(n cos " (J- ==
o= [ {or g - i rdme =o-B)
- \ ,
+ ézz E'ﬁ:' cos (n cos"‘( 1 --2-65)) \
-E-.:z -’éz%‘:- cos( n cos"(‘l -/-z-é’-‘-)) dxl . \‘
\’ ‘ ‘ 1
\\ = -—-1-2- " —32— j c[ztﬁﬂfcos(n cos"(! - -2-5-))]2 dx
1 © A H Y, 2 |
+ . z =2 co (1 - £2))d
\ (:-TT:: jo by cos (:n cos™ (1 - £2))ax
b ! ’ c i r
- -ET%: -/o zf:';l -’é—cos(n cos~1(1 -%—f—))dx (11”1~5)

SN

e




i

From (11.8a)

R c [ A ‘ . .
I, = j ' tﬁ'i—cos(ncos"(_l-%’-‘-))dx*O
o ’

c :
.- A
Let: I;=" Jo 27_.-5';- T cos(n cos™ (1 - -z?x)) dx

. letu=n 905'1(1 - %’i)

AAx=0 u=0

X®=C U=nn,

iﬂ_ nw

i(l - cos %)acosu»(é%)"-sin %"— du

/
}

0
- nn .
. N u Yos U
'y £ E{' ) ] sin cosu - sin y COS o cosu ) du
o ~
R w1 (™
= n P i ! n ——— i ..y-
%2 Ei- n fo sin n cosu du - E/Cﬁi f sin cosu du
- ‘“//

|
-
» J sin -‘-':— cosu du =,0
o

-

: - 0N : I
o j sin ?n-‘i cosu du = -‘-‘—49-2— (with n's are odd)
i ‘b ] . -} N

e et v e e 7 sy o o Bl a1

(111.7)




Hence ’
La.ceh (& "
"3 T8y W Z?.F)

| 2
cos(n cos™'( 1 - -za’-‘-))] dx

P

%,
fe 1I,= j [E ‘c%‘m" cos(m cos"( 1 -l 2—:-))][2 E-:-E— cos (n cos'](l i gc!-))]dx -

43

(111.8)

{

c
® o A ) '
=F I L) f cos(m cos™Y 1 - ch ) cos(n cos™1( 1 - %&))dx
mn 0 |

" !

X=C Yy=mn
cosu=(l--2ci.
dx-%’sinudd'
Hence

A

® L
14 = 2—: z . o, . cosmu cosnu sinu du
mn “F§ ] 0

\
by applying: 2 sinA cosB = sin(A - B) + sin(A+B),

-4

. n
Y g A hy ) y
14 If' lz: E-'-,-i- e j( sin(1-n)u cosmu + sin{l+nlu cosm) du

0 '

—r

TR B skt
R B
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N

. ‘ ) = . 1| cos(p- x+cos‘g+g;x ,
‘»_) ) by: jsinpx cosqx dx i[‘—{%;g-;—— P ] \

and all m, n's are odd.

Sty n 2(1-n 2(1+n
I t—;r[—i'r)’z

. (1-n)"=m°  (1+n)®-m :
e Alﬂ Arl V-n"- 2 1
I, = CLL -
J 4 OO ['w-m mJ[(1+m)2 n‘] )

substitute Ips 13, 1, back into (111.8), ) 3

3‘

g\ 11 2 - Am An[ 1-n?-m’
lep? “ac? T cFe)” R (1-m) -e21[ (14n) -]

' s -[0]-2[9-;:."“ 1 ]
: 1 :c-TTE E_Trc 2 nCpy (n2-4)
22
l'C) ] - ] f] - 242 Al’l 1 + 48?; Am An ] -
( AT [ By (n-4)  mn OOy [(1-n)2-m2][(1+n)2-m2]J
¢
(111.9a)
or: - .
Cp
| w 1 © = Ap An 1 nZ-n? -
i —_ - /A| 1-21 —2——~+ 48 I 2
1 =t [ c"’T(n -4) n n Py 0Py [(-n)Z-n?30(1n) Zom ]] T
: (111.9b)
from (11.10):
, Ap V-1
m [14-42-—5;-} . CT
& \\
\(‘) * |
\
¥ "‘;..‘:v““}‘ ‘J“ . \
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{
(' Eliminate C, between (11.10) and (1I1.9b) . ]
' cp , 2 2 . .
i1 M A A 1-n°-m
-11-24 ¢ +48L L = =— =0
THORN™ 1 (la)  mn P OPf. [(Ten)-ml[(1en)2n7]
“
’ Aﬂ -]
-C
< (111.10)
| !
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APPENDIX IV

Computer Program

This program solves for the coefficients (An/Cpi) from the

master equation (2.2.21), and hence the rest of the characteristics

" of the inflated lenticular aerofoil can be found by using equations

(2.2.13), (2.2.17), (2.2.18), (2.2.19), (2.2.30) and (2.2.31).

List of symbols used in the computer program and sample

program are shown on the following paﬁesl .

46
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List of symbols used in the computer program

A(1, J)

B8S
BW
BT
c

a1
c2

CF2

CF1

cT

CPl
CC(M, N)
CL(M, N)
COA(M, N)
DXDYO
EST

ESA
ITE

NDS

o replace COA(M, N) .
.e. COA(M, 2N-1) + A(M, N) !

solid blockage
wake blockage "
BS + BW total blockage
chord length (cm)

-24 £(An/Cpy) (n® - &)

m2
1

. 1-n°-
48 2Z(An/Cpy) (An/Cpy) [(l-n)z-mz?[( S

drag coefficient (0.01)

C1+C2

4 £(An/Cp,)

tension coefficient

inflation pressure coefficient
nsinném sinzem

n cos(nem) cosem-l-n2 sin(nam) sing,
= C; * CL(M, N) - CL(M, N)
Cp;/y' (o)

Cp, (éis)'i theoretical value

Cpy (£%£)°§ = V2% Cr» asymptotic value

= |: if both theoretical and experimental results desired
i.e. Uo, C, Vis,inputs must have some value

= 0: 1f only theoretical results desired
i.e. Ub, C, VIS,inputs are zero

number of data sets inputed




DUl A e e
‘

v..

RCP
RV

RYC

RE

RCT
RCN
RTW:
S(M)
SF
st
SOL(N)

TCP
TRV
TRYC
uo
VIS
W
SLEQN

CHANGE
ESLOPE
SLENGT

number of coefficients (An/Cpi) desired

2 * NR

Cp/Cpy

(U/Uo-l)/Cpi |
(y/c)/Cpy

Reynolds number base on chord length
c/t

c/w

t/w

¥ sinz(em)

shape factor

L - membrane length (cm)
solution of (An/Cpi)

t nflated aerofoil thickness
CP

u/Uo

yl/c | »

free stream velocity

v kinematic vigcosity (m2/s) '
tunnel width

this subroutine solves a system of linear equations
by pivoting method

this subroutine interchanges the values of the variables
this subroutine solves equation (2.2.29)
this subroutine solves equation (2.2.30)
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(§ BLOCKG this subroutine to find the blockages )

"

RXYUCP t(:tzﬂs iul):routine to solve equations (2.2.13), (2.2.17),
‘ 2.18

.
!

G _ All the rest are dummy variables .
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=y

“I
’ CORNORPU N~

&
npnm”.nuuwuqnn-ucx
SLUN=QOONORPUN.

NN N -
=0 0B ~NO]

8 G
LL"1.]

SBATIM WATFIV MEG2000 M, CoTSE=741192
LR TR R IR 2 I 2 Py Yy byt

*+90

)
T T P T R R e T T PP Y

SWATEIV Xo TIMERQD PAGES=30

0n
l

4 DATA INPUT .
INPLICIT REALSS (A=~H,0-2

)
DOUBLE PRECISTION CC{25.50).CLI25.50)«COA(25,30) A(25,26)0 .
+8(28),80L(50) . -

101 FORMATI

E e
™

U0sCe VIS IT
cD!.oBolXQoeoaolXobﬁa3vll-°llo’-’x!l"‘
'c

’f " '¢D2216¢/712 %0

m
]
My~
- WA
e bt Py b
OAINNGAND
JoeDae Orinprs

Tc
l
//
.

~
S
o
*
-
SOD
rd
X
»
gﬂ
R
e Orw
NN\ w X

CP1l,
Syt X
11X,
v12¢7

TO GENERATE THE COEFF, OF A(N)/CPI NsODD

annnn

PIaDATANLS D0 )¢4 DO .
O=DFLOATI(NR-1)

D={@L/2.D0)70Q .
X=0, 600

NTsNReNR LT . —
DO 1 M=}l ,NR

S(MI:O.!SDOQDS!N(X)..S X

00 2 MB1.NT,2 ~ .-

CCK“;“)-NQOSIN(N‘K,QDS!N1I’ . .
CL(“ON’IN‘DCOS'N‘x)‘)cos‘x’*“*ﬂ‘ﬁs’“‘"*x,‘DSlNlK’ )

gg:;?;ﬁé’CL(ﬂ.N"CT-CC‘NQN’

X=X+
1 CONT INUE

Y

TO RE-ARRANGE THE COEFF, AS STARTING MATRIX ELEMENTS

ao0nNnNo

= 00 3 Isi.N®
=1

4 .
BO & NElJNT,2
1Fi{NeED.L) GO YD S0 .
JEN- ) .
ACT+ JInCOACT (N}
GO YO &

O Afl41)=COA{T,1])

4 CONTIN

3 CONTINUE .

NC=MR ¢}

DO 3 [sl.Nd -~ w» -

A(LsNCIuS(1) - -

CONT INUE

TQ SOLVE YHE MATRIX FOR A(N)/CPI N®0DD - . e ¢

- cw - ——— —— U »
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2
BN
"

LY
#

)
R

et o g £

>

CALL SLEGNINR.NC.A,CT)

B
] 3 -
T ay Po

:‘;.’:“‘:E)‘m b

TO RE=-ARRANGE THE  SOLUTION-

LGlaYals L W2

2

L5

¥

!?CKo Onl) 60 TO S5t
=K~
SDLCK)-;(!.NC)
S1 SOL(1)=A(1.NC)
ONT INUE
WRITE(S,201)

201 FORMAT(1HO, 10X
WRITE(S,202

U

e

1 N'OOD'./)
NT

Zz)
1 = '151205)

FORMAT(11 Xy

MAXIMUM (Y/C)/sCPL

nnonn

ANGI:!IZoDO

DO 115 N=El1.N
RYCIQVCOSOL(N)'3SIN(N‘ANGI
3111 CONTINUE
WRITE{6.210) RYC
TRYCOCesCPY-

210 FBRHAT(!HO-/I!X-'MAX!"UM (y/C)/CP1

TO FIND CPI/DYDX AT X/C=0

ﬂﬂfﬂﬁﬂ“

CALL ESLOPE
WRITE(6,213
213 FORNAT( HO-

+CT43XDY0,CF1L)
0

1 _844SUMEAN/CPL)

7c=z0) | =

TO FIND CPI/SGRYIIL-C)H/C)

anaon

’ €
214 FORMAT(1

tysCysert

'sD12.%)

=
20125,
1 D12.5)

2
2

{usuo=-1)7CPt

IF(ITE.NE<l) GO YO 999
REsUOS(C/ T

o annan

B 5
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2o o - *na-a: B i L e R e S a m" 5, e
- . . . N * - B
\ > - -«
o ol ) L ” » ) 3
',7 . - hd
- o . - -
. b - ta -
't&) ¢ - -
o
B Y SLC#(] . DO+{CPLI/EST)®N2) . )
. 70 WRITE(G.206) CT.CPI AN,U0,C,SL - -
71 ° - 208 FOARMATCIML//7/7/7/715X%*CT = * ,D23.18./14X:°CPI = ¢,D18,.8,/12%
4°RE[(C) = ",D185,8,/10X,'UO(N/S) = '.01s.aq/xzx.'c¢c~n = 0 ,D1%.8, -
3 712X *LICM) = P,D15.8) g .
72 WRITE(8:207) o
. 73 207 FORMATIIHOW /8K ' X/C sOXe* S/LY & 7x.'tVIc1/cp!'.3x
. 7o 0;§U{Uo-l)/CP!'.SX.'CDICP!'.OX. T¥/C e 9Xy FUSUO 51 OXo * -P"I! -
- _ . .
78 T 1Exa) . - ‘ i
76 SSL.=0.DO — . - .
77 RSL=0.DO . .
78 B0 23 I=iT.1E
r9 - RV=0 .00
gg nvc:o.oo N - °
82 nxc:-o.oasoo»t-o.ozsoo . -
83 CaLL RXYUCP(NToSOL.RXC.RVC;RV.RC#! — -
86, TRYC*RYC*CP1
s Tnv-a.bo+nv¢cpx . - -7 .
as - TCPsRC2RL ~ - .
a7 XX=RXCKC - v . 4 .
88 YYsTRYC4C :
8% IF(1.50e1) GO TO 929
S 90 s ovox-cvv-vvt)ztxx-xxt: - -
o1 XXE=XX
o 92 YYI=YY, g .
93 ssL-sero.ozsooccnosont«:.oooovdxttzt -
7Y ASLESSL/SL . -
98 unxfscs.zoa) RXCsRSL s RYCoRV s RCB s TAYC o TRV, TCH N -
o8 208 ﬂonnAT(zx.oo.a.3x.oq.s.zx.ngz.s.lx.o::.s.lx.oxs.s. .
. +I1NeD1268, 1XeD12e8¢1XeI1268) ’ ) -
97 GO TO 23 ,
o8 929 xXXI=XX -
- 99 YYI=YY . & _ .-
100 wnzre(e.zoa) RXCsRSLIRY CoRV, RCP, TRYCy TRV, TCP ‘ . .
101 . 23 CONTINUE i . .
L o g , e - -
- g ,TO FIND SHAPE FACTOR.SOLID.WAKE & TOTAL BLOCKAGE. . ,
¢ < : )
102 ) CALL BLOCKGINTY :SOL +CPToCeTaW SF,B88,8%W,BT) . N N
103 RITEL{G6+211) CTCPI+SFE,BS,BW.nT
108 211 FOR AYCYHL G 277777777777 77738%,CT 3 % ,D23,16, /737X, 'CPL = °.0t5.a.
$£/723X, ' SHAPE FASTOR (SF) & ' ,D12,5,//721X+'SOLID BLOCKAGE (BS) = ¢, .
g@&DlZ Se//722% s *WAKE BLOCKAGE (BW) - $3012.8./7/7Z21X°TOYAL BLOCKAGE®,
$* (BT) 2 ",012.5.,//7} .
108 GO TO =35 . s
c - v -
c
. c TO FIND x/C (VIC)I¢P£; (Us7UB=1)/7U CP/CPI d
! C » N
] c - . .
- 106 999 CONTINUE .
, 107 WRITE(4,300) CT
108 300 FORMAT(V\HL W //7/2/72/77710X+CT = 3 ,0D22,11 ///rxbx.0n1c*.ax. B S
! +1LY/7CI/CP It s 4N TLUZUO-1 ) 7CPT * w6 X: *CPLCPL Y o/ > -
109 17=1 ¢ w
110 1E=241 e
6.%\7«» * ’ -
- — & — —_— C = e )
T = N
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9
%88 CONTINUE

D

9 CALL CHANGE(ALIK¢J)sALTTsJIsNN)

11

12

13

Do g’ ImiTslE
RV=O.00 ’

RYCs0eDO "
RCP=04D0
RXC=0s 028008 I=0, 02500

CALL HXVUC# NT.SOL.RXCvﬂYC.RV-RCD!

WRITE(6301) RXC+RYCoRY

30! FORMAT (111.09e3o3(3300t2.5))

CONT INU

-~

uaxr:(o.ﬁnz» . P
FQﬂ"AY‘l

A -

A Y

SUBROUTINE SLEQNINR,NC, A, CT)
IMPLICIT REAL®E (A-H,0-2)
DOUBLE PREZISION A(25.28)
INTEGER IR(28),.JC125)
EPS5£0,30~10

N=NR ° S5
#=0, 000 )
O 6 K=l +NR

IRI{K )=xK .
JCEK) =K

CONT INUE o=
00 7 K=l +NR
PIvad. 000

o
‘GEDABS(A{T,J)
PIVDMAX1I (P IV
IF(IPIV=G).GT
I1=1,

JJ=J
CONTINUE
00 O U=zl ,.NC

00 10 I=t1,NR

CALL CHANGE(A(I«K)sAlTeJJI)eNWN)

CALL CHANGE(B,8, IR(K). IR(I1))
CALL CHANGE (B8 +JCIK)+JICCII))
PIVEA(K K}

IF(DABS(PIV).LT.EPS) GO TO 500

00 13 I=1,.NR
00 11 J=1,NC
1IF(1+EQ.X) GO TO l

IF{JoNE.K) A(I.J)tl(loJ)-A(loK)tA(K-J’/P!V

CONT INUE-

D0 12 J=21,NC

A(Ke JI=A(K, JV /2 IV
CONT INUE

DO 13 1=1..NR
IF(1aNEeK) At
IF(1 «EQ.K) AL
CONT INUE

Te
K,

o ————— b & o ———— .
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300
208

222

CONT INUE

DO 14 K=l NR

IF{IR(X)eEQ.K) GO TO 18

DO 15 I=1,NR

IFCIR{T)eEQ.X)

CALL CNANGE(B.B-!"(K"!Q‘L’,

DO 16 I=},

CALL CHANGE(‘(IcK)nA'l-L’oNoN’
CONTINUE

DD 17 K=}l (NR

IF(JCIKYe EQeK) GO TO 17 N
00 18 I=xl NR .
IF(JICLI)EQJK) L1 -
CALL CHANGE(BB+JCIK)sJCLL))

DO 19 U=l 4NC

CALL CH‘NGE(A(K-J,tA(LpJ,!NdN’

CONT INUE

GO TO 222

WRITEL(S

204) €T ‘
FOR“AT(iné L00erIXa T '.uzz.xo.rtra:x.'o!rcnnxnnnr = 0.0,

/7711 X%,
RETURN
END

NVERSE MATRIX‘v[’/

SUBROUTINE CHANGE(Xs¥elsd)
DOUBLE PRECISION Xo¥.2
E

Ry

Y=Z

K=

f1ay -
JaxK

RETURN -
END .

SUBROUT INE_ESLOPE (NT.SOL.CT,0XDY0.CF1)
IMPLICIY REALSS (A=M,0=-Z)

DOUBLE pnsczs:uu SOL(NT)

RANCP1I=0,00

DO 25 N=l,NT,2 . f
RANCP [aRANCP T +SOL (N} /
CONTINUE :
CF124.00%RANCRL
OKDYD=CT*Z.DO/(!-DO&‘-DO#&ANCP!)

o

SUBROUT INE SLENGT(NT,SIL,CT CF2,E8T)
IMOLICIT REALS®S (A-MH,0~-27)
DINENSION SOLINTY) -
Ci=0'4.D0
CZ!O.DO
8 NII-NT.Z
LOAT(
CISCIOSUL(")/(P*P-‘.DOl
SSAMAN=0,400
DO 27 N=1 4NT,2
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R

24

-Clu=24,00%C1

— e g . —

Q=OFLOAT(N)
CMN'(!.DD'O#O‘P.P)I((!-DO-Qitiz‘PtPil((l-DOQO!OO!-Q‘P)
SSAMAN= SSAMAN+SOL(M)SSOLEN) $CMN

CONT INUE

C2=C24+SSAMAN

CONT INUE

C2»48,.D0%C2 *
ch2=Cl+C2

zsr:criosoartzu.oo)/osonrt1.oofcrzb

LHE

SUSROUTINE RXYUCP{NT ,SOL «
TMPL ICIT REALSS (A-H,0-2)
DOUBLE PRECISION SOLINT) .
PI=DATAN(1.00)%4,D0

A=DARCOS({1.D0=2,D0%RXC)

IFIRXC.EQ.Q.500) A=PI/2.D0  —

IF(RXCeLTs14D0-~10) GO TO 53 - .
IF((14D00-RXCJalTelaD=10) GO TO 53

DO 28 N=1 .NT,2

DD=SOL(N)*DSININZA)

RYC=RYC+DD

RV=RV+NEDD ' , °

CONT INUE
RV:g.DOtRV/DstN(A)
RCP=2«2,D0%R -
GO TO 54

DO 2% N=i (NT,2
RYC=RYC+SOL(NISDSININEA)
RVSRY+2 .,D0%NESOL (NI N
CONTINUE . :
RCP=-2, DOSAY ' M T~
CONT INUE

RETURN \ " - -
END

QXCQ"g. RV, RCP)

Sorosh
SUBQOU?!NE BLOCKG(NTQSOLiCP!oC'T.'os »AS,BW . 8T)
IMPLICEIT REAL®*E (A=~M;0-2)
DOUBLE PHECISION SOLINT) -
cor=0.01D0
wa?6 4200
PI=DATAN(1.DO) %4 .DO
RCT=C/T _
RCwW=C/¥W =
RTW=T/W v
DIV=2100.00
H=1.,00/01V .
$=0.,00
SVY=0,00 . e
DO 1 M=1,99 =
S=SaH -
A=DARCOS(1.D0=2+D0%*S) ¢
IF(SeFEQeQaSDO) A=PL /2,00
RYC=0.00
V=0.D0
DO 2 N=x1«NT,2

-,
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D=SOL (N) ®OSININ®A) R
RYC=RYCeD
VYEYVS&NED ¢ - -
2 CONTINUE .
- RYCuCPISRYC ¢ , -
Va1 ,00+2.D0%CPIsV/DSIN(A) ‘
VeV ERYL .
IF{M.EQ.M/22%2) GO TO 111 X
SVYESVY+4 . DOSVY - B} . P
GO ¥

o1
111 SVY=SVY+2,.00%VY - .
1 CONTINUE - - ;
SVY=SVYYaH/3.D0 .
SFaSVYYSA,DORRCT*S2/PT
BS=SERRITWEE22P 1%22/12,00 R
AWz=RCWEE22C0T/6 .00 : ~
- BT=BS+BW . :
RETURN - - .
END ,

SDATAS ‘ )




" CT '= 0.45000000000000000 00
NO. OF COEFF. .= 1S

A{ N)/ZCPI N=0DD ~
Al 13/CP] = ~0,20262D 01} '

AU 3)7€DT = 0.62369) 00

Al S5)/7CPI =" «0,20507D~01

Al 7)sCPT1 = 0.922%56D=02

Al 9)/CPY = 0.39915Q-02
A(11)/CPI = 0.227070-02
A(13)/7CPT = 0.14022D-02
A{15)/CO1 = 0.924595-03
A{17)/7CPI = 0.54109D0-03_
A{19)/7CPY = 0,46260D0-03
.?ZIJICPI = (0+348486D-03
A(23)/CP1 = 0.26431D-03
Af25)s€CP1 = 04207890« 03 -
A(273/CPIL = De.12316D-02
A(29)1/CPT = 0.98702D0-01

MAXIMUM (Y/C)/sCPI = =0.267720

CF1 &#SUM(AN/CPI)

-0.560420
CPI/DYOX (X/C=0) . = =0,19587D
CF2 (C1+C2) = 0.79902D
CPRI/SQRT((L=-CI/C) 'T 0.,245100D
CPI/SORT((L=C)/C) A = 06220850

e
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= ’h
h g
Y
R
uo (
c
L
xss
04 000> 0O
0.2500-01
0.5003-01
O¢ 7500-01
0.100> 00"
061253 00
0.150) 00
0.175> 00
0.200> QO
0.225> 00
0e250> 00
0.275> 00
0+300> 0O
Os 325> 0O
0.350) 00
Qe 3753, 00
0.400> 00
0.425> 00
04503 00
0.4275) 00
0.500> 00
0.525) 00
065503 00
0.575> 00
0.600> 00
06250 00
046503 00
0.,675> 00
0.700> 00
0.725> 00
047500 00
0. 7752 00
0.800) 00
0.825) 00
0.850> 00
0.875> 00
0« 9003 0¢
049250 00
‘De 950> 00
0.9753 00
041092 01t

~~xm

CT = 0.45000000000000000 0O
CPYT = «0,75000000D-01}
{C) = 04374285900 05
/8) = 0150000000 02
CM) = Ce 380000005 02
CM) = 0,415582080D 02

sS/7L (vs7CYsCP1 (U/7vo=-1)/CP1
00000 0O 0« 000000 00 0«141430 02
0.2470=-01 -0.138230 00 0.542510 01!
0.5002~01 -0.,295210 00O 0375340 01
0.7560-01 -0.456230D 00 0.256840D0 01
0.3020 00 =-0.6404852 00 0.15010D 01
01270 00 =0¢8193955 00 O+ 778860 00
0.154D0 00 -0.10072D0 01 -0+30755D0 00
Q.180D0 00 =0.11942D 01 ~0.128140 01}
0«206D QO -~0.13764D 01 -0.2022050 01
0.2320 00 -0.15562D 01 ~0.28834D .01
025880 00 =0.173080 01 =-0437949D 01
0.283D 00 ~-0.,18946D 01 ~0.+.45348D0 01
03080 00 =-0.20454D 01t ~0+51674D 01
03330 00 =-0.218630 01 ~0.582260 01
0.,3580 00 -0,23123D 01 -0.568279D 01}
0e¢382D0 00 ~00242210D 01 -~0.,69431D 01
0.405D 00 ~-0.251120 01 -0.72221D 01
0.429D0 00 =0.258280 01 ~0.76418D0 01
04520 00 -0263500 01 ~0+78950D0 01
O«4750 00 =0.266670 01 -0.804480 01
0ed498D 00 ~0426772D0 01 ~-0.,80905D 01
05200 00 =—-0.266&6567D 01} -0.8048456D 0}
0O«543D 00 -0+26350D0 01 ~0e 789500 01
0.567D 00 -0.25828D 01 -0,.,754180 01
05900 00 ~-0.25112D 01 ~0.73221D 01
04614D 0O -0.242100 01 -0.569431D0 01
046380 00 ~0,23123D 01 «~0,563479D 01}
06620 00 «0e21863D0 01 -0+58226D 01
0.687D0 00 <«0.20464D 01} ~0.516740 01
07120 00 ~0.189460 01 -0,453480 O1
0738D 00 =0,17308D 01 ~0.37%9a%3D 013
Q.767D 00 -D.155620D 01} ~0.288340 01
0.789> 00 _~0,13764D 01 -0620220D 01
0.815D 00 =0.11942D O1 ~0.12814D 01
0.8420 00 ~0.10072D0 O1 ~0.+307550 00
0+868D 00 =0.81995D 00 0, 77886D 00
0.894D 00 -0.5640A6D 00 0.150100 01
De9200 00 =~04462200 00 0268400 01
0.945D 00 =0.29521D 00 0.,37534D 01
0.971D 0O -0.138235 00 0.54251n 01
06993D 00 =0.5b37950-16 0.14143D0 02

cr/sCPI

-0.28286D
-0.10850D
~075068D
~0.53680D
-0.300210
-0.15877D
0.615090
0.25629D
0.40841D
0.57669D
0e 758980
0+920695D
0.103350
0.11645D
0.128960D
O.13886D
6440

VO®Rmo®
Q=wuo b
0000

86D

[eJeXeleloReRoloRoToRodoRagoRel
(P 0 gt 1m0 00 1t gt Gt ot et 9 s
CO=NWPARARRONVN &
PFUPROANNG~ONN
O W
A
0o

#9098 g v 00 %00t

758980
0 .STEHID
0e404410
0.256290
0615090

-015577D

-0.300210

-0¢53680D

-C«75068D

-0.108500

-0.28286D

oQoOo0o
Q +t bt ot

o1

y/C

0000000 ¢€O
0.103673~01
0e221410~-01

"0.3386720>-01

0.43035D0-01
0.61497D-