
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 5, MAY 2013 1749

Communication-Avoiding Krylov Techniques on Graphic Processing Units
Maryam MehriDehnavi , Yousef El-Kurdi , James Demmel , and Dennis Giannacopoulos

ECE Department, McGill University, Montreal, QC H3A2A7 Canada
EECS and Math Department, University of California Berkeley, CA 94720 USA

Communicating data within the graphic processing unit (GPU) memory system and between the CPU and GPU are major bottle-
necks in accelerating Krylov solvers on GPUs. Communication-avoiding techniques reduce the communication cost of Krylov subspace
methods by computing several vectors of a Krylov subspace “at once,” using a kernel called “matrix powers.” The matrix powers kernel
is implemented on a recent generation of NVIDIA GPUs and speedups of up to 5.7 times are reported for the communication-avoiding
matrix powers kernel compared to the standards prase matrix vector multiplication (SpMV) implementation.

Index Terms—Graphic processors, Krylov solvers, numerical algorithms, parallel algorithms.

I. INTRODUCTION

T HE sparse matrix vector multiplication (SpMV) kernel
is a dominant computing kernel in standard Krylov sub-

space methods (KSMs). Computing a few arithmetic operations
per datum, SpMV operations are classified as communication-
bound. The cost of communication (moving data between levels
of the memory hierarchy) is considerably higher than the cost of
arithmetic computations in modern architectures and this gap is
expected to further widen. Thus, in order to enhance the per-
formance of communication bound kernels such as SpMV, new
strategies should be explored to minimize communication and
data movement.

A. Communication-Avoiding Krylov Techniques

Communication-avoiding (CA) algorithms [1] communicate
less than the state-of-the-art algorithms at the expense of more
arithmetic operations. Standard implementations of SpMV in
KSMs, require reloading the sparse matrix to caches and fast
memory in each iteration when they are too large to fit in fast
memory; thus, overwhelming the algorithm with communica-
tion and data movement between fast and slow memory. Com-
munication-avoiding Krylov techniques [1] minimize commu-
nication via computing steps of the iterative solver at the same
time. To take steps at the same time, and so potentially reduce
memory traffic by a factor of , a new sparse matrix kernel is
required, called the matrix powers kernel. Where is a poly-
nomial of degree , the matrix powers kernel computes the basis

. To compute the afore-
mentioned basis for amatrix that does not fit into fast memory,
the matrix is first divided into partitions (cache-blocks) that fit
into the desired memory space. The partitions are then loaded
into fast memory to compute the basis. To avoid communication
between fast and slowmemory and between partitions, nonlocal
rows might also be copied to a partition (“remote/ghost” rows)
leading to redundant arithmetic operations [2]. For a well par-
titioned matrix (where has a low surface-to-volume ratio),
the communication cost of the - matrix powers kernel will

Manuscript received November 07, 2012; revised January 22, 2013; accepted
January 25, 2013. Date of current version May 07, 2013. Corresponding author:
M. Mehri Dehnavi (e-mail: mmehride@eecs.berkeley.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMAG.2013.2244861

be O(1) compared to for SpMV operations in a naïve
implementation [2].

B. Graphic Processing Units

GPUs have become an important resource for scientific com-
puting in recent years. With easy to learn APIs such as CUDA
[3] introduced by NVIDIA, general purpose programming for
modern scientific computations on GPUs have gained consid-
erable attention. The GPU consists of streaming multiproces-
sors (SMs) and each SM contains basic processing units called
scalar processors (SPs). To run compute intensive parts of an
application on the GPU initial data has to be transferred from
CPU memory to GPU global memory and a GPU kernel is
then launched. Using a single data multiple thread paradigm,
GPU threads grouped into thread blocks (TBs) proceed with the
computations and transfer the results back to CPU. The GPU
memory hierarchy consists of an on-board global memory with
long access latency, a fast access shared memory, registers, and
caches. Threads inside a block communicate via shared memory
and their execution can be synchronized. Every 32 threads in
a block execute the same instruction and are called a warp.
Referred to as thread divergence, if threads inside a warp go
through different computation paths their execution is serial-
ized; to achieve higher speedups, thread divergence should be
avoided while accelerating problems on GPUs.

II. PREVIOUS WORK

A brief survey of the - Krylov techniques is pre-
sented in this section; algorithmic details of these techniques
and a complete survey of previous work on - Krylov
solvers and available preconditioners can be found in [2]. The
- Krylov subspace methods were initially introduced by
Rosendale [4], and later studied in work such as [5], [6]. All
this work used a monomial basis and reported convergence for

in - KSMs. By using a scaled monomial basis [7],
a scaled and shifted Chebychev basis [8] and Newton basis [9],
the coverage of the - Krylov subspace techniques were
further improved at the expense of increased dependency in
the algorithm. This problem is resolved by Hoemmen et al.
[2] by eliminating the need for scaled basis vectors. Carson et
al. proposed techniques to extend CA-Krylov techniques to
2-sided methods such as BiCGStab in [10] and repaired their
numerical instability in [11]. A more detailed survey of avail-
able work on communication-avoiding KSMs is presented in

0018-9464/$31.00 © 2013 IEEE

1750 IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 5, MAY 2013

[2]. The dominant computing kernel in - Krylov solvers
is the matrix powers kernel which is accelerated on GPUs in
this work.
A considerable number of work has been done on acceler-

ating sparse matrix vector multiplication on GPUs [12]–[14].
None of the available implementations of SpMV on GPUs
consider cache blocking for GPU global memory (device
memory). If the matrix is larger than the device memory,
computing SpMVs requires reloading the matrix to the GPU
for each SpMV kernel which is very costly. With only 1.5 GB
of global memory in GPUs such as NVIDIA GTX480, matrices
from many real problems cannot be fully stored on the device.
Memory might also be allocated to store preconditioners and
other data structures, leaving only a part of GPU global memory
for storing . As a result, the matrix has to be transferred to
the GPU in each iteration, increasing data transfers between
GPU and CPU memory in iterative solvers. The matrix powers
kernel reduces data communication between CPU and GPU by
partitioning the matrix and computing SpMV operations at
the same time for each partition.
In this work the matrix powers kernel is implemented on

GPUs by cache blocking the matrices to fit on the GPU global
memory. Our work is closely related to the work proposed
by Mohiyuddin et al. [15], which studies the performance
of the matrix powers kernel on an 8-core Intel Clovertown.
The proposed implementation of the communication-avoiding
matrix powers kernel on GPUs will be used in communica-
tion-avoiding KSMs in future work.

III. IMPLEMENTATION DETAILS

Implementation details of the matrix powers kernel on GPU
global memory are presented in this section. The auto-tuning
stage partitions the matrix to fit into GPU global memory; the
partitions are then used in the matrix powers kernel.

A. Auto-Tuning Stage

The first stage of the algorithm is the partitioning stage where
the matrix is either divided into equal partitions using a naïve
partitioning strategy or graph and hyper-graph partitioners such
as Metis [16] and Zoltan [17]. The results presented in this work
are achieved via naïve row block partitioning; other partitioning
methods will be studied in future work. The matrix is first di-
vided into equal partitions of row blocks. The partitions are bal-
anced based on the floating point operations required to compute
steps of the matrix powers for each row block and are recur-

sively reduced to fit into GPU global memory (see Fig. 1). The
size of each partition is equal to the memory required to store
local and remote rows in compressed row storage (CSR) format
for each partition.

B. Matrix Powers Kernel

Along with the corresponding elements of the source vector
partitions generated by the auto-tuner are transferred to GPU
global memory one after another. For each partition steps
of the matrix powers kernel are computed while it is in global
memory (Fig. 2). Sparse matrix vector multiplications are com-
puted in parallel on the GPU for each partition using the CUS-

Fig. 1. Steps in the auto-tuner to generate cache blocks for global memory.

Fig. 2. Matrix powers implementation on GPU global memory, is the th
component of .

Fig. 3. Standard computation of SpMVs on the GPU, is the th component
of .

PARSE SpMV kernel [14]. The generated vectors for each par-
tition can then be used in the communication-avoiding Krylov
solvers.
Performance results for the matrix powers kernel are tested

on the NVIDIA GTX480. The GTX480 graphic card contains
480 CUDA cores and operates at 1.4 GHz, the size of global
memory is 1.5 GB with a bandwidth of 177 GB/s. The shared
memory is configured to 48 KB. All speedups are calculated
using the following formula:

time matrix powers kernel for
time strandard operations

(1)

The SpMV standard operations in (1) are computed using
the implementation in Fig. 3. Similar to the matrix powers
kernel implementation, the SpMV operations in the standard

MEHRIDEHNAVI et al.: COMMUNICATION-AVOIDING KRYLOV TECHNIQUES ON GRAPHIC PROCESSING UNITS 1751

Fig. 4. Each matrix is described by its name, description, number of rows, number of nonzeros, average number of nonzeros per row and its nonzero pattern. The
matrices are stored in compressed row storage format.

Fig. 5. Performance of the matrix powers kernel cache blocking for global memory on NVIDIA GTX480. The “AkX” indicates the best performance obtained
for all . The label “upper bound” shows the performance achievable via scaling the standard SpMV.

(also referred to as naïve) algorithm are accelerated on the GPU
using the CUSPARSE SpMV kernel.

IV. RESULTS

In this section, the performance of the proposed implemen-
tation of the matrix powers kernel on GPU global memory is
studied using tenmatrices (Fig. 4) from theUniversity of Florida
matrix repository [18]. All matrices are cache blocked assuming
only one fourth of the matrix can be stored in global memory at
one time.
Fig. 5 shows the performance of the matrix powers kernel for

global memory cache blocking (the best performance obtained
for all). Speedups of up to 5.7 and 4.98 are achieved
for well structured matrices, such as ‘Cant’ and “2d-9pt.” The
naïve SpMV performance is lower for matrices with smaller
numbers of nonzeros per row such as “2d9pt” and “mc2depi.”

The CUSPARSE SpMV implementation performs poorly for
such problems due to an increase in thread divergence. The extra
flops performed in the matrix powers kernel (for the best)
compared to steps of the standard SpMV is shown in Table I.
For an unstructured matrix such as “Xenon” that achieves the
least speedup from the matrix powers kernel, in only 5 steps of
the matrix powers kernel up to 23% more flops are computed
(see Table I). The upper bound in Fig. 5 is computed for the
best performing using

arithmetic intensity (matrix powers
arithmetic intensity performance

where the arithmetic intensity is the effective flops to bytes
transferred ratio [15]. The generated vectors (where

) are transferred to the CPU for both the naïve SpMV
and matrix powers kernels at each step. The aforementioned
transfers are also included in computing the upperbound. Table I

1752 IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 5, MAY 2013

TABLE I
THE BEST SPEEDUP OF THE MATRIX POWERS KERNEL COMPARED TO NAÏVE SPMV, FRACTION OF TOTAL TIME SPENT IN COMMUNICATING DATA IN THE NAÏVE

SPMV IMPLEMENTATION AND EXTRA COMPUTED FLOPS IN THE MATRIX POWERS KERNEL PERFORMING STEPS

shows the fraction of total time spent in communicating data be-
tween GPU and CPU memory for all the tested problems (for
the best performing). The table shows on average 90 per-
cent of the SpMV kernel execution time is spent in transferring
data between CPU and GPU global memory which further justi-
fies the importance of avoiding communications using the com-
munication-avoiding matrix powers kernel. For matrices such
as “2d-9pt” and “mc2depi,” which have the least number of
nonzeros per row, a smaller percentage of total time is spent
in communicating data. Also, compared to other matrices, the
performance gap between the matrix powers kernel and the up-
perbound is larger for the aforementioned matrices. This is be-
cause the time spent in computing operations such as spreading
the initial and source vectors at each step of the matrix powers
kernel are no longer negligible for these problems. Increased
thread divergence on the GPU for matrices with fewer nonzeros
per row also increases the execution time of arithmetic com-
putations for “2d9pt” and “mc2depi.” As shown in Table I for
some matrices the best speedup for the matrix powers kernel is
achieved for parameters as high as 34 and 15, which indicates
the importance of using better polynomial bases and residual
replacement to achieve both stability and convergence in CA
Krylov techniques[11].

V. CONCLUSION AND FUTURE WORK

The matrix powers kernel in communication-avoiding
Krylov techniques is accelerated and speedups of up to 5.7
are obtained for global memory cache blocking compared to
the standard implementation of SpMV operations; in future
work, we intend to enhance the performance of this kernel by
implementing other matrix partitioning schemes and enhancing
the auto-tuning phase. The performance of the matrix powers
kernel in Krylov subspace methods will be studied and precon-
ditioners such as the sparse approximate inverse [19] will be
used to enhance the convergence of communication-avoiding
KSMs.

REFERENCES
[1] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick,

Avoiding Communication in Computing Krylov Subspaces Univ.
California Berkeley EECS, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2007-123, 2007.

[2] M. Hoemmen, “Communication-Avoiding Krylov Subspace
Methods,” Thesis, Dept. Comput. Sci., UC Berkeley, , 2010.

[3] NVIDIA CUDA [Online]. Available: http://developer.nvidia.com/ob-
ject/cuda.html

[4] J. V. Rosendale, Minimizing Inner Product Data Dependencies in Con-
jugate Gradient Iteration. Silver Spring, MD, USA: IEEE Computer
Society Press, 1983.

[5] A. Chronopoulos and C. W. Gear, “S-step iterative methods for sym-
metric linear systems,” J. Comput. Appl. Math., vol. 25, no. 2, pp.
153–156, 1989.

[6] H. F. Walker, “Implementation of the GMRES method using House-
holder transformations,” SIAM J. Sci. Statist. Comput., pp. 9–152,
1988.

[7] A. C. Hindmarsh and H. F. Walker, Note on a Householder Implemen-
tation of the GMRES Method Lawrence Livermore National Labor-
tory, USA, Tech. Rep. UCID-20899, 1986.

[8] W. D. Joubert and G. F. Carey, “Parallelizable restarted iterative
methods for nonsymmetric linear systems,” Part I: Theory. Int. J.
Comput. Math., vol. 44, no. 1, pp. 243–267, 1992.

[9] Z. Bai, D. Hu, and L. Reichel, “A Newton basis GMRES implementa-
tion,” IMA J. Numer. Anal., vol. 14, no. 4, pp. 563–581, 1994.

[10] E. Carson, N. Knight, and J. Demmel, Avoiding Communication in
Two-Sided Krylov Subspace Methods U.C. Berkeley, Berkeley, CA,
USA, Tech. Rep. EECS-2011-93, 2011.

[11] E. Carson and J. Demmel, A Residual Replacement Strategy for Im-
proving the Maximum Attainable Accuracy of s-step Krylov Subspace
Methods U.C. Berkeley, Berkeley, CA, USA, Tech. Rep. EECS-2012-
197, 2012.

[12] N. Bell and M. Garland, Efficient Sparse Matrix-Vector Multiplication
on CUDA NVIDIA Tech. Rep., 2008.

[13] M. Mehri Dehnavi, D. Fernandez, and D. Giannacopoulos, “Finite
element sparse matrix vector multiplication on GPUs,” IEEE Trans.
Magn., vol. 46, no. 8, pp. 2982–2985, Aug. 2010.

[14] NVIDIA CUSPARSE Library [Online]. Available: http://devel-
oper.download. nvidia.com/compute/cuda/40rc2/toolkit/docs/CUS-
PARSE_Library. pdf

[15] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick, “Min-
imizing.communication in sparse matrix solvers,” presented at the
ACM/IEEE Conf. Supercomput., New York, NY, USA, Nov 2009.

[16] G. Karypis and V. Kumar, “METIS 3.0: Unstructured graph parti-
tioning and sparse matrix ordering system Dept. Computer Sci., Univ.
Minnesota, Minneapolis, MN, USA, Tech. Rep. 97-061, 1997.

[17] K. D. Devine, E. G. Boman, and R. HeaphyR. H. Bisseling and
U.K. Catalyurek, “Parallel hypergraph partitioning for scientific
computing,” in Proc. of IPDPS’06, Rhodos, Greece, 2006.

[18] T. A. Davis and Y. Hu, “The university of Florida sparse matrix col-
lection,” ACM Trans. Math. Software Jan. 2009 [Online]. Available:
http://www.cise.ufl.edu/research/sparse/matrices, (to appear)

[19] M. Mehri Dehnavi, D. Fernandez, J. Gaudiot, and D. Giannacopoulos,
“Parallel sparse approximate inverse preconditioners on graphic pro-
cessing units,” IEEE Trans. Parallel Distrib. Syst., 2012, doi:10.1109/
TPDS.2012.286, to be published.

