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Field Discontinuity Refinement Criteria and Optimal
Discretizations in Adaptive Finite-Element

Electromagnetic Analysis for Microelectronic
System Interconnections

Dennis Giannacopoulos

Abstract—The effectiveness of field-discontinuity refinement
criteria for achieving optimal finite element discretizations is
investigated. The criteria are first examined directly with finite-el-
ement solutions computed from optimally discretized systems.
Subsequently, the optimality of the criteria are evaluated for prac-
tical adaptive finite-element electromagnetic analysis of principal
device features in modern microelectronic system interconnection
structures.

Index Terms—Adaptive systems, electromagnetic analysis, error
analysis, finite-element methods.

I. INTRODUCTION

I N RECENT years, significant advances have been made
on the electromagnetic modeling, simulation, and com-

puter-aided design of microelectronic system interconnection
(MSI) structures [1]. The main difficulty with computational
MSI analysis is that a very large number of free-modeling pa-
rameters are needed to compute accurate and reliable simula-
tions for realistic systems. The computational effort required
for the electromagnetic analysis of the complex, dense, and
irregularly routed arrays of high-speed interconnections that
comprise modern MSI structures can often be prohibitive [1].
Yet such analyses are critical if MSI system performance is to
be simulated with confidence. Currently, one promising way to
overcome this computational barrier is by using adaptive solver
technologies that are capable of intelligently evolving and im-
proving an efficient distribution of DOF over the problem
domain [2]. Moreover, the study of error distributions cor-
responding to optimal finite-element discretizations has re-
cently attracted appreciable interest [2]–[5]. An incentive for
this research focus stems from the potential benefits of iden-
tifying effective and reliable refinement criteria, for adaptive
finite-element analysis (AFEA), based ona priori characteriza-
tions of optimal discretization solution properties. Such refine-
ment criteria could be used in practice for efficiently guiding
adaptive finite element electromagnetic solvers toward optimal
accuracy solutions, without incurring the prohibitive computa-
tional costs associated with solving the optimal discretization
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problem directly [2]. This may be useful for overcoming the
current MSI computational bottleneck.

II. FIELD DISCONTINUITY IN OPTIMAL DISCRETIZATIONS

The primary purpose of the present contribution is to inves-
tigate the ability of practical field-discontinuity refinement cri-
teria to effectively reproduce the main modeling characteristics
of optimal finite-element discretizations. While field-disconti-
nuity refinement criteria are widely used and have been shown
to be among the most effective for AFEA in electromagnetics,
their exact connection tooptimal finite-element discretizations
has yet to be reported in the mainstream literature.

In this paper, it is shown directly for the first time that the
field-discontinuity criteria considered can correctly identify
optimal error distributions, without the expense of solving the
optimal discretization problem. Specifically, it is demonstrated
that field discontinuity is satisfied precisely for optimally
discretized problem domains, whereas it is not for nonoptimal
meshes. It should be noted that the experimental data supporting
this conclusion are based on field solutions obtained using
an explicit formulation for computing optimal discretizations
directly; thus, the results computed under these conditions
cannot be refuted. Namely, the formulation derived for general
scalar Helmholtz systems in [3] was employed, which is based
on simultaneously satisfying sets of optimization equations
defined for both the geometric discretization parameters (i.e.,
element vertex positions) and the field solution unknowns. In
contrast, previous adaption studies reported with practical, but
nonoptimal discretizations, have not been able to provide the
sufficiently rigorous conditions required for examining the
relationship between field discontinuity refinement criteria and
optimal finite-element discretizations. Therefore, the novelty of
this work is, in part, the use of optimally discretized benchmark
systems for evaluating this relationship, a critical component in
obtaining the definitive data required.

In addition, the operational value of field-discontinuity
refinement criteria is evaluated for practical electromagnetic
AFEA of principal device features present in modern MSI
structures, which are known to pose challenging problems
in numerical modeling. Although these types of refinement
criteria are well established, the study of their effectiveness in
AFEA for electromagnetic simulation of MSI is still relatively
new and can provide valuable insight.
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TABLE I
NUMERICAL RESULTS FORPOINT SINGULARITY BENCHMARK

III. RESULTS

Two simple one-dimensional (1-D) free-space examples
are presented first, in order to examine the effectiveness of
field-discontinuity measures for identifying optimal finite
element error distributions. Subsequently, the performance of
field-discontinuity refinement criteria is compared to that of
optimal discretization-based refinement criteria for practical
electromagnetic AFEA using a two-dimensional (2-D) Laplace
test system. Finally, a three-dimensional (3-D) high-frequency
structure is considered in order to confirm the potential im-
plications of AFEA based on field-discontinuity refinement
criteria for the electromagnetic simulation of MSI structures.

A. 1-D: Free-Space Singularity Test Systems

These static benchmark systems were first studied in [6] and
are based on the classical point and line singularity models in
free space. The objective for each benchmark system is to com-
pute the functional value based on the resolution of a radial
neighborhood close to the singularity and spanning a 100-fold
decay in potential: the point charge and line current, of magni-
tudes C and 5 10 A, respectively, are located at the
origin, and the two boundaries of both problem domains are set
at radial distances of 0.1 and 10 m away from the singular source
distributions. It may be noted that the field solutions associated
with the free-space point charge and line current models contain
the types of singularities associated with the sharp material cor-
ners and edges that are present in many practical MSI structures
[2]. Thus, the primary feature of these test systems is the rapid
field solution variation close to the singularity, which has been
shown to drastically reduce the finite-element convergence rate.

The results for the point and line singularity models are given
in Tables I and II, respectively. To focus ideas, a field discon-
tinuity error measure [7] was evaluated for both uniform and
globally optimal second-order meshes. All results were com-
puted using standard second-order Lagrangian elements for the
analysis of these 1-D examples. Furthermore, the results corre-
sponding to the optimal meshes are based on solving the opti-
mization equations for the geometric discretization parameters
[3], as previously explained. Hence, each of the optimal dis-
cretization results computed for these two benchmark systems
represents the ideal mesh for a given number of DOF, i.e., the
mesh that produces the most accurate solution possible for the

TABLE II
NUMERICAL RESULTS FORLINE SINGULARITY BENCHMARK

variational finite element formulation used [3]. In each case,
Error indicates the error in the global functional value. For the
results reported in Table I, Error indicates the average error
in the electric field continuity at the element interfaces. Simi-
larly, in Table II, Error indicates the average error in the mag-
netic field continuity at the element interfaces. It should be noted
that for the uniform discretizations, the nonzero field-disconti-
nuity quantities correctly indicate a large error for the functional
value. However, for the optimal discretizations, the field-discon-
tinuity errors are identically zero. Hence, field discontinuity is
satisfied exactly with respect to these optimal finite element so-
lutions. For each of the uniform and optimal second-order so-
lutions considered, the average error in field discontinuity was
calculated as the mean of the difference in field values over
each individual element interface. Hence, the field discontinuity
criteria evaluated for these 1-D test systems confirm that they
can correctly identify optimal error distributions for electrostatic
and magnetostatic finite element solutions. Although the prin-
ciple of using field discontinuity for characterizing optimal fi-
nite element discretizations appears to be quite effective for the
benchmark systems considered, it would not be prudent to rec-
ommend this principle for general use without providing theo-
retical justification or further investigating its effectiveness for a
wider range of practical problems. Therefore, the practical value
of this approach is considered next.

B. 2-D Laplace Test System

A 2-D test system is examined to investigate the practical
value of using field-discontinuity refinement criteria to identify
optimal finite element discretizations. Specifically, the perfor-
mance of field-discontinuity refinement criteria is compared to
that of optimal discretization-based refinement criteria for prac-
tical electromagnetic AFEA using a 2-D Laplace test system.
The Laplace benchmark system is described by Fig. 1. It is
one-quarter of a square coaxial line in cross section—the stan-
dard “L” problem. The conductor boundary conditions are 1 and
0 V as indicated, and the symmetry planes are labeled.

Performance results for first-order-adaption studies are
presented in Fig. 2. In addition to the uniform-refinement
baseline (initial mesh uniformly subdivided to add elements
to the discretization), a practical field discontinuity-based

-adaption [7] and an optimal discretization based-adaption
(Type-A [3]) result are included for comparison. Specifically,
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Fig. 1. Laplace benchmark system: Initialh mesh (eight triangles).

Fig. 2. Cumulative cost of adaption versus percent error in functional for the
Laplace system.

for the latter the relative discretization errors over a nonoptimal
finite element mesh can be estimated in terms of how well the
optimization equations corresponding to the geometric dis-
cretization parameters are satisfied by that discretization. These
optimization equations are defined elementwise, and they can
be evaluated locally to indicate the relative optimality of the
elements in a mesh. Hence, the optimal discretization-based
refinement criteria are defined implicitly as measures of the
residuals of the geometric optimization equations, which will
evaluate identically to zero for an optimal mesh. Note: all the
results shown in Fig. 2 correspond to the initial mesh of Fig. 1.
A 50% increment in the number of DOF per adaptive step was
used for these -adaption results. An example-adapted mesh
is shown in Fig. 3 for reference.

Fig. 3. Example refinement due toh-adaption for Laplace system.

It should be noted that the optimal discretization-based re-
finement criteria that were used for comparison purposes are di-
rectly related to the optimality of a finite element discretization,
and they have been shown to be effective in guiding practical
AFEA procedures toward optimal discretizations [3]. Further-
more, the performance results for the field discontinuity-based
refinement criteria shown in Fig. 2 are comparable to those of
the optimal discretization based criteria. Therefore, these find-
ings corroborate the 1-D results presented above that field dis-
continuity-based refinement criteria can correctly identify op-
timal finite-element discretizations and, further, that they may
be used to adaptively evolve the main modeling characteristics
of optimal finite element discretizations.

C. 3-D: Microstrip Filter Structure

A 3-D test system is considered in order to confirm the poten-
tial value of field discontinuity refinement criteria in AFEA for
the electromagnetic simulation of MSI structures. The system
is a microstrip low-pass filter of the type that commonly occurs
in monolithic integrated circuits [1]. This single-layer structure
consists of three rectangular microstrips printed on a dielec-
tric substrate. The system is fully shielded, backed by a ground
plane from below, and terminated 3 mm above the substrate. The
dielectric has a thickness of 1 mm and a relative permittivity of
2.2. The layout of the strips is described by Fig. 4. The surface of
the substrate is 20 by 20 mm, and the strips are 2 mm wide. The
port strips are 9 mm long with their centers offset 6 mm from the
sides of the structure, and the central strip is 16 mm long. The
primary features of this test system are the sharp corners that
occur at the strip terminations and at the strip-to-strip junctions,
which are typical in MSI structures and can introduce mathe-
matical singularities in the FEM field models. The objective of
the analysis is to resolve the magnitude of at a prescribed
operating frequency.

This MSI structure requires a 3-D high-frequency solution
and is well suited to full-wave vector field analysis. All compu-
tations reported in this section were obtained using first-order
edge-element tetrahedra to solve for the electric field. Results
are reported for -adaption studies based upon a standard
field-discontinuity error estimator [7]. The-adaption results
are based on refining 50% of the tetrahedra in the mesh at
each adaptive step, and the initial mesh is shown in Fig. 4. The
convergence of the error in the magnitude of (at 7.44 GHz)
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Fig. 4. The initial tetrahedral mesh used for theh-adaption studies for the
microstrip filter structure is illustrated with a sectional view of the element faces
that lie in the plane of the strips (shaded), on the substrate surface. The mesh
consists of 1017 tetrahedra.

Fig. 5. The convergence of the error in the magnitude ofS versus
computational cost forh-adaption studies of the microstrip filter structure are
plotted. Both uniform adaption and 50% update adaption (field discontinuity
error indicator) results are provided. The single square knot represents the
result for the nonadaptive mesh described by the right panel in Fig. 6. Note: All
costs are for a complex profile Gaussian elimination solver.

versus computational cost is plotted in Fig. 5, to illustrate
the potential advantages of directedadaption over uniform
refinements. For example, 1% error results can be computed
using 50% adaption for less than one-quarter of the cost
of uniform adaption. A sample -adaption mesh from this
study is described in Fig. 6 (left panel). Also, the single square
knot result in Fig. 5 corresponds to the nonadaptive intuitively
reasonable strip-focused discretization shown in Fig. 6 (right
panel) and is included for comparison. Finally, it is important
to note that the intuitively reasonable nonuniform mesh result
is significantly inferior to both the field-discontinuity driven
and the uniform adaption results.

Fig. 6. An example of anh-adaption mesh (left) and the nonadaptive
nonuniform strip-focused mesh (right), produced in the study reported by
Fig. 5, are shown with a sectional view of the element faces that lie in the plane
of the strips (shaded) on the substrate surface. Theh-adaption mesh (left) was
generated from the initial mesh described by Fig. 4, using a field discontinuity
error indicator, with standard 8:1 element subdivisions and follow-up Delaunay
mesh corrections; it consists of 30 948 tetrahedra. The nonadaptive mesh (right)
consists of 31 004 tetrahedra.

IV. CONCLUSION

In this work, previously established field discontinuity refine-
ment criteria were shown to directly correspond to optimal error
distributions for finite element electromagnetic solutions. More-
over, the performance of these types of refinement criteria com-
pared to refinement criteria derived expressly from the optimal
discretization principle itself was examined for practical AFEA
of the electromagnetic behavior of key MSI device features. The
the field discontinuity refinement criteria were shown to be ef-
fective in guiding practical AFEA procedures toward optimal
finite-element discretizations. In addition, the potential value of
using field discontinuity refinement criteria for the 3-D electro-
magnetic AFEA of practical high-frequency MSI structures was
illustrated.

REFERENCES

[1] A. Polycarpou, P. Tirkas, and C. Balanis, “The finite-element method
for modeling circuits & interconnects for electronic packaging,”IEEE
Trans. Microwave Theory Tech., vol. 45, pp. 1868–1874, Oct. 1997.

[2] D. Giannacopoulos, “Toward optimal error distributions in adaptive fi-
nite element electromagnetic analysis for microelectronic interconnec-
tion structures,”IEEE Trans. Magn., vol. 38, pp. 401–404, Mar. 2002.

[3] , “Optimal discretization-based adaptive finite element analysis for
electromagnetics,” Ph.D. dissertation, McGill Univ., Montreal, Canada,
1998.

[4] L. Janicke, A. Kost, and P. A. Bastos, “Local error distribution in adap-
tively generated meshes,”IEEE Trans. Magn., vol. 36, pp. 1627–1630,
July 2000.

[5] L. Y. Li and P. Bettess, “Notes on mesh optimal criteria in adaptive finite
element computations,”Com. Num. Meth. Eng., vol. 11, pp. 911–915,
1995.

[6] D. Giannacopoulos and S. McFee, “Toward optimalh–p adaption near
singularities in finite element electromagnetics,”IEEE Trans. Magn.,
vol. 30, pp. 3523–3526, Sept. 1994.

[7] J. P. Webb and B. Forghani, “Adaptive improvement of magnetic fields
using hierarchal tetrahedral finite elements,”IEEE Trans. Magn., vol.
30, pp. 3511–3514, Sept. 1994.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


