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Abstract 

Let (al, ... , am 1 wn) be a presentation of a group G, where w is freely and 

cyclically reduced and n 2': 2 is maximal. We define a system of codimension-

1 subspaces in the universal coyer, and invoke a construction essentially due 

to Sageev to define an action of G on a CAT(O) cube complex. By proving 

easily formulated geometric properties of the codimension-l subspaces we 

show that when n 2': 4 the action is proper and cocompact, and that the cube 

complex is finite dimensional and locally fini te. We also praye partial results 

when n = 2 or n = 3. It is also shown that the subgroups of G generated by 

non-empty proper subsets of {al, a2, ... , am} embed by isometries into the 

whole group. 
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Résumé 

Soit (al, ... , am 1 wn ) une présentation d'une groupe G, ou west reduit 

librement et cycliquement, et n ~ 2 est maximale. Nous définissons une 

collection de codimension-l sous-ensembles dans le rêvetments universel, et 

utilissons le travaille de Sageev définir une action de G sur une CAT(O) 

cube complex. Nous pouvons montre que l'action est proper et cocompact 

quand n ~ 4. Nous pouvons aussi que les sous-groupes de G engendrais par 

sous-ensembles de {al, a2, ... , am} enfonce par isométries dans la groupe 

entier. 
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1. INTRODUCTION 

In the 1970's Bass and Serre completely characterized groups that act essentially on trees. 

They proved that a group G acts freely on a tree if and only if G splits over a subgroup H 

as a non-trivial amalgamated free product or HNN extension. Their work was summarized 

by Serre in [26]. 

Trees are perhaps the simplest non-trivial ex amples of CAT(O) spaces. The CAT(O) con­

dition, which is a global non-positive curvature condition, was named and given prominence 

by Gromov [7]. The condition itself is an old one, having been defined and developed by 

Alexandrov [1] and Toponogov beginning in the 1940's. Since trees are formed by identify­

ing endpoints of a collection of edges isometric to an interval they are also cube complexes. 

In fact I-dimensional CAT(O) cube complexes correspond exactly to trees. 

In [25] Scott proved that if G splits over H, then H is an example of a codimension-

1 subgroup, meaning that the coset graph G\H has more than one end. The reasoning 

behind this terminology is that the motivating examples are infinite cyclic subgroups of 

the fundamental group of a closed orientable surface, and the fundamental group of an 

incompressible two sided surface in a 3-manifold group. 

The relationship between these two ideas was discovered in a fundamental work of 

Sageev [23]. He proved the following: 

Sageev's Theorem A group G acts essentially on a CAT(O) cube complex if and only 

if G contains a codimension-l subgroup. 

By the work of Gerasimov [6] and Niblo-Roller [19] it was later understood that G acts 

essentially meant that the action of G had no global fixed point. The theory that has 

developed as a result of Sageev's Theorem can be considered a natural higher dimensional 

analogue of Bass-Serre theory. Indeed, if G splits over H, then Sageev's construction using 

H as the codimension-l subgroup pro duces the Bass-Serre tree associated to the splitting. 

An adaptation of Sageev's construction has emerged that allows one to proceed without 

explicit knowledge of a codimension-l subgroup. This approach relies on the analysis of 

certain codimension-l subspaces, which we caU hypergraphs, in the universal coyer of the 

standard 2-complex of a group G. Once these subspaces have been defined one obtains an 
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action on a CAT(O) cube complex, and the existence of desired properties of this action is 

reduced to answering easily formulated questions about the geometry of the codimension-1 

subspaces. 

This process has proved successful in cubulating many classes of groups. We say that a 

group has been cubulated if it acts properly and cocompactly on a CAT(O) cube complex: 

Finitely generated word-hyperbolic coxeter groups [18], a certain class of small cancelation 

groups [27], graphs of groups with free vertex groups and cyclic edge groups that do not 

contain Baumslag-Solitar groups [13], and random groups with density < 1/6 [20J have aIl 

been cubulated. 

In this thesis we study the construction for one-relator groups with torsion. 

The main tool in our analysis of the properties of hypergraphs is a new structure theorem 

for disc diagrams in one-relator groups with torsion. In the spirit of the B.B. Newman 

Spelling Theorem it places restrictions on the structure, more specifically on the external 

2-ceUs, of disc diagrams that contain internaI 2-ceUs. The usefulness of this result, as it is 

applied in this thesis, is born out of the fact that it applies not only to disc diagrams, which 

are planar, but to any simply-connected compact 2-complex. 

We now give a brief outline of the sections in the thesis. 

In Section 2 we review sorne basic results about one-relator groups with torsion and 

explain sorne notation used throughout the thesis. 

In Sections 3 and 4 we provide the reader with the necessary background on towers and 

staggered complexes. We try to give the reader sorne sense of why Howie [10J caUs the 

towers the standard method in one-relator group theory. 

In Section 5 we use towers to study Magnus subgroups. These are subgroups generated 

by proper subsets of the generating set. Magnus himself proved in the Freiheitssatz [16J that 

such subgroups are free. We provide a simple proof that the elements of Magnus subgroups 

embed by isometries into the whole group, and so in particular Magnus subgroups are 

quasiconvex. This was first observed by I. Kapovich in [14]. 

The main result in Section 6 is that a certain class of compact 2-complexes cannot contain 

any internaI 2-cells. It generalizes a theorem of Pride [22J that G satisfies the C(2n) small 

cancelation condition. 
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In Section 7 we define the main objects of study: hypergraphs and hypercarriers. Each 

hypergraph consists of a connected graph 0 and a map from 0 to the univers al coyer of the 

standard 2-complex of G. The image of this map in the univers al coyer is the codimension-1 

subspace we are interested in studying. Hypercarriers are the minimal closed subcomplexes 

that contain the image. 

In order to construct a CAT(O) cube complex from a system of hypergraphs we must first 

verify certain basic properties. For example, the graphs cannot contain cycles and the maps 

must be embeddings. This is done in Section 8, and in Section 9 we explicitly construct the 

cube complex C on which G will act, and prove that it is indeed CAT(O). 

In Section 10 we prove that hypercarriers are quasi-convex. This is necessary in the proof 

of the main theorem to show that the action of G on C is cocompact. When n ~ 4 the 

hypercarriers are actually convex, but we give ex amples where this fails in the n = 2 and 

n = 3 cases. 

In Section Il we restrict to the case where n ~ 4. In that case we prove that the number 

of hypergraphs that separate two points of the univers al coyer grows linearly compared 

to the distance between them. This .aIlows us, in Section 12, to use a result in [11] that 

provides general conditions for the action to be cocompact. As a result we obtain our main 

theorem: 

Theorem 12.4 Let (al, ... ,am 1 wn) be a presentation of a group G, where w is freely 

and cyclically reduced and n ~ 4. Then G acts properly and cocompactly on a locally finite 

and finite dimensional CAT(O) cube complex. 

This result has already been established since n ~ 4 implies that G falls into the class 

of small cancelation groups covered by [27]. However, the hypergraphs defined in this work 

depend more naturally on the group structure of G, and it is expected that it will be 

possible to use them to establish the theorem in the n = 2 and n = 3 cases when the sm aIl 

cancellation arguments do not apply. 



CUBULATING ONE-RELATOR GROUPS WITH TORSION 8 

2. PRELIMINARIES 

Let G be a group defined by the presentation (al, ... ,am 1 wn
), where w is freely and 

cyclically reduced and n ~ 2. Throughout the thesis we use X to denote the standard 

2-complex of such a presentation, and X for its universal coyer. 

In this section we will review sorne of the basic properties of such groups beginning with 

the following theorem announced by B.B.Newman [17] in 1968: 

Theorem 2.1 (Spelling Theorem). Let v be a non-empty freely reduced word in G. If v 

represents the trivial word in G, then there exists a subword u of v which is also a subword 

ofwn su ch that lui> Iwn-ll· 

In particular, this implies that such a presentation is a Dehn presentation for Gand so 

G is c5-hyperbolic. 

Corollary 2.2. If v is a non-empty proper subword of wn, then v is non-trivial in G. 

Praof. Suppose otherwise. It is clear from the Spelling Theorem that Ivl > Iwn-ll. Choose 

s so that that vs is a freely reduced cyclic conjugate of wn. Then s is non-empty since 

Ivl < Iwnl, and trivial in G. Thus Isl > Iwn-ll, and hence Ivsl > Iwnl, a contradiction. 0 

As a consequence of Corollary 2.2 each path in Xl homotopie to wn is a simple cycle, 

and each such cycle is the attaching map of exactly n 2-cells. In this thesis we will work 

with X, the space obtained from X by identifying 2-cells which have the same boundary. 

For any CW-complex, K, the set of i-cells in K is denoted by Ki. For i ~ 1, i-cells are 

always assumed to be open. 

The importance of the next definition will become apparent in Section 3 when we will 

be concerned with the existence of covering spaces with infinite cyclic deck transformation 

group. 

Definition 2.3. (indicable, locally indicable) A group G is indicable if there is a homo mor­

phism of G onto ::E, and locally indicable if every finitely generated subgroup is indicable. 

The following theorem was proved independently by Brodski! [4] using algebraic methods 

and Howie [9] using topological methods. 
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Theorem 2.4. Torsion-free one-relator groups are locally indicable. 
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Let G be the group defined by the presentation (al, . .. , am 1 w). Then there is a natural 

homomorphism cp : G ---t G sending a word in the generators of G to the same word 

considered as an element of G. In 1972 Fischer, Karass and Solitar [5] proved 

Theorem 2.5. Every torsion element in G is contained in ker( cp). 

In particular, this implies that the only torsion in G is the obvious torsion: 

Corollary 2.6. Every torsion element in G is conjugate to a power of w. 

3. TOWERS AND STAGGERED 2-COMPLEXES 

The use of towers to study one-relator groups was suggested by Magnus' original proof of 

the Freiheitssatz [16]. However, the first time they appeared explicitly was nearly fifty years 

later in the realm of 3-manifolds in Papakyriakopoulos' proof [21] of Dehn's Lemma and 

the Sphere Theorem. More recently Hruska and Wise [12] have used towers to generalize 

the B.B. Newman Spelling Theorem to staggered 2-complexes, and to prove results about 

the structure of disc diagrams in one-relator groups with torsion. 

The background presented in this section and more is given by Howie in [10]. 

A map A ---t B between CW -complexes is combinatorial if its restriction to each cell 

of A is a homeomorphism onto a ceU of B. AU maps in this section are assumed to be 

combinatorial. 

Definition 3.1. (tower, tower lift) A map between CW-complexes A ---t B is a tower if it 

can be written as a composition 

where the maps alternate between inclusions of subcomplexes and covering maps, where 

the covers are regular and connected with infinite cyclic covering transformation group. 

Let f ; D -> B be a map of connected CW-complexes. A map f' ; D -> A is a tower lift 

of f provided that there is a tower T : A ---t B such that T 0 f' = f. 

A tower lift f' ; D ---t A is maximal if for any tower lift D -> A' of f', the map A' -> A 

is a homeomorphism. 
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If f' : D -; A is a maximal tower lift and D is fini te , then A is also finite sin ce f' is 

surjective. 

Note that a tower lift D -; A is not maximal if 7rlA is indicable and 7rlD is not. Indeed, 

if'ljJ : 7rlA -; Il: is an epimorphism, then the covering space corresponding to ker('ljJ) <J 1T"lA 

is regular and has deck transformation group Il. 

We will consider maximal tower lifts of combinatorial maps K -; B where K is a compact 

2-complex. The existence of such lifts was proved by Howie for any compact CW-complex 

in [8]. 

Definition 3.2. (staggered) Let K be a 2-complex such that the attaching map of each 

2-cell is an immersion. A staggering of K is a linear ordering on the 2-cells and a linear 

ordering on a subset 0 of the 1-cells (called ordered l-cells) such that: 

(1) each 2-cell contains at least one 1-cell from 0 in the image of its attaching map, and 

(2) for 2-cells a and {3, if a < (3 then min(a) < min({3) and max(a) < max(f3) , where 

min(a) and max(,B) are respectively the least and greatest ordered 1-cells in the attaching 

map of a. 

A 2-complex together with a staggering is said to be staggered. A presentation is staggered 

if its standard 2-complex can be staggered. 

Example 3.3. Any one-relator presentation is staggered since there is a unique 2-cell. 

Any non-empty subset of the 1-cells appearing in the relator can be chosen for the ordered 

1-cells. 

Example 3.4. The presentation (a, b, c, d, e 1 bc- 1a2 , ca2e- 1 , ed2c) can be staggered by 

taking the ordered set of l-cells to be {a, b, d, e} ordered by b < a < e < d. Then bc-1a2 < 

ca2e- 1 < ed2c is an ordering on K 2 which produces a staggering. 

The connection between towers and staggered 2-complexes is given by the following result: 

Construction 3.5. [10, Lemma 2]. If cP: A -; Bis a tower, and Bis a staggered 2-complex 

then there exists a staggering for A . 

Proof. It is clear that a subcomplex of a staggered 2-complex has an induced staggering 80 

the proof of Lemma 3.5 reduces to the case where cP is an infinite cyclic cover. Let p be 



CUBULATING ONE-RELATOR GROUPS WITH TORSION 11 

a generator for the covering transformation group. Define the ordering on the 1-cells and 

2-cells of A by a < 13 if either </;(a) < </;(13) or 13 = pn(a) for some n > o. It is elementary 

to check that this defines a staggering of A. D 

In general tp.e staggering of A in Lemma 3.5 is not unique. In fact, given an arbitrary 

staggered 2-complex Y with at least two 2-cells there is a new staggering of Y which keeps 

the same set of ordered 1-cells and reverses the original ordering on both the ordered 1-cells 

and the 2-cells. This process has the property that the least 2-cells of Y in the original 

ordering become the greatest 2-cells in the new ordering. In particular, this implies that 

for a given staggering, statements about the greatest 2'-cells also apply to the least 2-cells. 

Whenever a tower map A --+ B is used in this thesis it will always be assumed that 

the staggering of A is one inherited from B using Construction 3.5. However, there is no 

canonical staggering since choosing p-l instead of p has the affect of reversing the ordering 

on the 2-cells mapping to the same 2-cell via the covering map, but otherwise leaves the 

relation unchanged. 

In the next section we will need the following lemma. Proofs can be found in [10] and [12]: 

Lemma 3.6. Let T be a finite staggered 2-complex which has no infinite cyclic caver. Then 

the greatest 2-cell of T, say a, is attached along a path wn , and w is a closed path in Tl 

that passes through max( cv) exactly once. Furthermore, no other 2-cell is attached along 

max(a). 

4. EXPOSED AND EXTREME 2-CELLS 

The main goal of this section is to prove Theorems 4.7 and 4.11. The former provides a 

geometric condition that can be used to find candidates for the greatest and least 2-cells in 

a staggered 2-complex, and the latter is an extremely useful structure theorem for reduced 

dise diagrams in one-relator groups with torsion. 

A cancelable pair in a combinatorial map K --+ B is a pair of 2-cells in K whose boundary 

cycles share a common 1-cell, e, and such that the two boundary paths beginning at e are 

mapped to the same path in B. A map K --+ B is reduced if it does not contain any 

cancelable pairs. 
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A dise diagram K is a 2-complex that is compact, simply-connected and planar. If K 

is a disc diagram then a combinatorial map K --t B is called a dise diagram in B. If the 

map K ----t B is reduced then it is called a reduced disk diagram in B. Disc diagrams play a 

fundamental role in much of geometric group theory. For a complete introduction see [15J. 

The main property we will need is the following result due to van Kampen: 

Theorem 4.1. Let Y be a CW-eomplex and let u be a closed path in yI. Then u is 

null-homotopie if and only if there exists a dise diagram D ----t Y with oD = u. 

If oD = u then D ----t Y is called a dise diagram for u. 

In what follows we will consider maps D ----t Y where D is a simply-connected compact 

2-complex, but is not necessarily planar. In this case we introduce the following definition 

which extends the usual notion of the boundary of a disc diagram. 

Definition 4.2. (isolated, boundary, external) Let C be a 2-complex. A l-cell e in C is 

isolated if do es not appear in the attaching map of sorne 2-ce11. 

Let E be the set of l-cells in C that are either isolated or appear exactly once in the 

attaching map of a single 2-cell. Then the boundary of D, denoted by oED, is cl(E). 

A 2-cell a in D is external if oa n oED contains a l-cell, and internal otherwise, where 

oa denotes the usual topological boundary of a. 

Definition 4.3. (position) Let a E X 2 . Two l-cells el and e2 in oa are in the same position 

in a if el and e2 map to the same l-cell of X, and the path in oa from the terminal O-cell 

of el to the terminal O-cell of e2 is a cyclic conjugate of wj for sorne j E Z. For a l-cell 

e C oa we denote the n l-cells in the same position as e in a by [eJa. 

Definition 4.4. (extreme, exposed) Let D ----t X be a combinatorial map. A 2-cell a in D 

is extreme if there is a connected subpath 'Y of the attaching path of a such that: 

(1) 'Y is a subpath of oED, 

(2) l'YI> (n - 1)lwl· 

A 2-cell a in D is exposed if there is a l-cell e in oa such that every l-cell in [eJa lies in 

oED. In this case we say that the l-cell e is exposed in a. Furthermore, if the l-cell e maps 

to a l-celllabeled ai in X then we say that a has a l-celllabeled ai exposed. 
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FIGURE 1. In this pieture n = 3. The l-cells in [e]al and [e]a:2 are labeled 
with a single arrow, and the l-cells of [fla:l with a double arrow. Two cases 
are shown depending on whether or not e and f have the same orientation 
in 80.1. The bold path is p. 
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Note that a 2-cell a is not extreme if there exists a l-cell e such that two l-cells in [e]a: 

are not in 8E D. However, it is possible for such a 2-cell to be exposed. 

Definition 4.5. (adjacent) Two n-cells a and {3 in a CW-complex are adjacent if a n /j 
contains an (n - 1 )-cell. 

Lemma 4.6. Let 'lj; : D --+ X be a reduced map fram a compact 2-complex, and let cp : 

D --+ T be a maximal tower lift of 'lj;. If al and 0.2 are 2-cells of D that are adjacent, then 

Praof. Suppose that cp(at) = cp(a2), and that e is a l-cell in al n a2. 

There exists a combinatorial homeomorphism <I> : al --+ a2 which preserves the labeling 

on the l-cells. Since w is not a proper power this homeomorphism is unique up to rotating 

the image through a power of w. 

Let f be a l-cell in <I>-1([e]c1<2) such that the distance between f and e in 80.1 is minimal. 

Observe that e =F f since 'lj; : D -t X is reduced. 

Let p be the geodesic in 80.1 between the terminal O-cell of f and the terminal O-cell of 

e. See Figure 1. Then p is a proper subword of w, and non-empty sin ce w is freely and 

cyclically reduced. We claim that p gets mapped to a closed path p' in T. lndeed, sinee 

cp(at) = cp(a2) we have cp(f) = cp 0 <I>(f) = cp(ei) = cp(e) for sorne ei E [e]a:2' 

By Corollary 2.2 the tower map T -t X sends p' to a path in X which is not nuIl­

homotopie. Thus [p'] =F 1 in '!rIT. Let G be the group defined by the presentation 
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(al, . .. , am 1 w). By Theorem 2.5 the image of [p'] under the map 

is non-trivial. Thus '!fIT maps to a non-trivial subgroup of C, and that subgroup is finitely 

generated sinee T is finte. Sinee C is locally indic able this implies that '!fIT is indicable, 

and so the tower lift D ---+ T is not maximal, a contradiction. o 

Let D ---+ X be a redueed combinatorial map into a staggered 2-complex, and let cp : 

D ---+ T be a tower lift. The ordering on the 2-cells of T given by Construction 3.5 indu ces 

a quasi-ordering on the 2-cells and ordered 1-cells of D in the following way: (cp(al) < 
cp(a2)) =} (al < a2), and (cp(al) = cp(a2)) =} (al = a2). Since this is only a quasi-ordering 

we can not expect there to be a unique greatest 2-eell in D. However, when the tower lift 

is maximal Lemma 4.6 implies that adjacent 2-cells in D are not equivalent. 

The next result provides a connection between the exposed 2-cells of a reduced, compact, 

simply-connected 2-complex and its greatest [or least] 2-cells in the quasi-ordering indueed 

by sorne maximal tower lift. We use Lemma 4.7 in Theorem 4.11 to prove that if the 2-

complex has at least two 2-eells then there are at least two extreme 2-cells. The proofs are 

typical applications of towers to one-relator group theory. Both results are proved in [12] 

in the case where D is planar, and the same proofs work here. 

Lemma 4.7. Let D be a compact simply-connected 2-complex and let cp : D ---+ T be a 

maximal tower lift of a reduced map D ---+ X. If TJ is a greatest [or least] 2-cell of D, then 

TJ is exposed. 

Pro of. There is no infinite cyclic coyer of T since the tower lift is maximal, and T is finite 

sinee the map D ---+ T is surjective. Let a be the unique greatest 2-cell of T. By Lemma 3.6 

a is attached to T along wn , and w is a closed path. Moreover, w passes through max(a) 

exactly once, and no other 2-cell is attached along max( a). 

Let e be a l-cell mapping to max(a) and suppose ei E [e]",. If ei rt âED then it must be 

contained in the attaching map of two distinct 2-cells. Each of these two cells must map to 

a sinee ei maps to max(a) and a is the only 2-eell attached along max(a). Therefore, by 

Lemma 4.6, the map D ---+ X is not reduced, a contradiction. 0 
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Notation 4.8. In what follows, we will often remove an exposed 2-cell, a, with an exposed 

l-cell e in aa, from a 2-complex D. This pro cess also requires removing the (open) l-cells 

in [e]a. 

We write D - (a, e) to mean D - {a U [e]a}. 

Definition 4.9. (branch) Let D ~ X be a reduced map. If a is a 2-cell of D, and e is 

an exposed l-cell in aa then the components of D - (a, e) are called the branches of D at 

(a, e). 

If a is an external 2-cell of D then there is a deformation retraction from D to D - a. 

With this observation the following lemma is immediate: 

Lemma 4.10. Let D be a simply-connected 2-complex. If e is an exposed l-cell in a 2-cell 

a then the branches of D at (a, e) are simply-connected. 

Theorem 4.11. Let X be the standard 2-complex of a presentation (al, ... 1 wn ), with 

n ~ 2. Let D be a compact, simply-connected 2-complex with at least two 2-cells and 

D ~ X be a reduced combinatorial map. Then D contains at least two extreme 2-cells. 

Proof. We prove the result by induction on the number of 2-cells in D. The result is true 

when D has exactly two 2-cells since if the common subpath is longer than w, then the 

2-cells form a cancelable pair. 

Let D ~ T be a maximal tower lift of D ~ X. If T has a unique 2-cell, say a, then every 

2-cell in D maps to a. Let 'f}l and 'f}2 be distinct 2-cells of D. Then by Lemma 4.7 each 'f}i 

is exposed so the branches of each 'f}i with respect to sorne collection of l-cells are defined. 

If each 'f}i has only one branch then they are both extreme and we are done. If one of them, 

say 'f}l has at least two branches BI and B 2 . Then the two disc diagrams Dl = BI U 'f}l 

and D 2 = B 2 U 'f}l are strictly smaller than D. Thus there exists a 2-cell al i= 'f}l in Dl 

which is extreme in Dl and a 2-cell a2 i= 'f}2 in D 2 which is extreme in D 2 by the inductive 

hypothesis. Then sinee BI and B2 are branches al and 0:2 are also extreme in D. 

Now suppose Y has two distinct 2-cells. Choose 2-cells a and T in D which map to the 

greatest and least 2-eells of Y respectively. Since the ordering can be reversed T is exposed. 

We then proceed as above with a and T replacing 'f}l and 'f}2. o 
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5. MAGNUS SUBGROUPS 

We will now demonstrate the usefulness of the methods developed in the last two sections 

by using them to give an easy proof that magnus subgroups are quasi-convex. This fact 

was first observed by 1. Kapovich in [14]. 

Definition 5.1. (K-quasiconvex, convex) For a metric space (X, d) and K > 0, a subset 

C ç X is K -quasiconvex if "Y ç N K (C) for every geodesic "Y with endpoints in C. 

A subset C ç X is said to be convex if it is O-quasiconvex. 

For a group G generated by a set A, we denote the cayley graph of G with respect to A by 

rA (G). If H is a subgroup of G then V (H) denotes the vertices of rA (G) which correspond 

to elements of H. 

Definition 5.2. (quasiconvex subgroup) Let G be group with generating set A. Then 

H ~ G is quasi-convex with respect to A if V(H) is' a K-quasiconvex subset of r A(G) for 

sorne K > O. 

It is well known that the quasi-convexity of a subgroup of a o-hyperbolic group does not 

depend on the choice of generating set. See [2] and [3] for details. 

Definition 5.3. (Magnus subgroup) Let G be the group defined by the presentation 

(al, a2, . .. , am 1 wn ). A Magnus subgroup of G is a subgroup of the forrn (M) ~ G, where 

M ç {al, a2, ... , am}. 

Magnus subgroups are free with basis M by the Freiheitsatz [16]. 

The following lernrna is useful in the case, as with Magnus subgroups, when a particular 

generator is distinguished. 

Lemma 5.4. Let G be the group given by presentation (al, a2, ... , am 1 wn ), where n 2: 2, 

and let D -+ X be a reduced dise diagram. Then for eaeh ai there exists a 2-eell a in D 

such that Da contains an exposed l-celllabeled ai. 

Proof. As noted in Exarnple 3.3 a staggering of X is determined by a choice of the ordered 

l-cells Ox and an ordering on that set. Given a generator ai, choose the staggering of X 

induced by setting Ox = {ai}' 
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Let D -+ Y be a maximal tower lift of the dise diagram D -+ X. Every l-cell in Oy, and 

in partieular the greatest l-eell of Y, must map to ai in X. Thus by Lemma 4.7 any 2-eell 

of D mapping to the greatest 2-cell of Y has an exposed l-eelliabeled ai. 0 

Theorem 5.5. Let G be the group defined by a presentation (A 1 wn ). Let H = (M) 

be a Magnus subgroup. Then the map induced by the inclusion H '---+ G is an isometric 

embedding of cayley graphs. 

Pro of. Suppose otherwise. Then there exists a short est possible subword in H, say "(, which 

is not a geodesic in G. Let 0 be a geodesic in r(G) between the endpoints of "(. Since "( 

is the short est sueh word the closed path "(0-1 is a simple loop. Let D -+ X be a reduced 

disc diagram for this closed path. 

Let ai E A be a generator of G such that ai <t M. By Lemma 5.4 there exists a 2-cell a 

of D whose boundary contains a l-cell e, which is labeled ai, and such that each l-cell in 

[eJet lies in aED. 

By assumption there are no l-cells labeled ai in "( and so each ei is contained in o. Since 

o is a geodesic aa n 0 is connected. Thus 0 cantains a subword of wn longer than Iwn - 11 
contradicting 0 as a geodesic. 0 

As an immediate corollary we obtain: 

Corollary 5.6. Magnus subgroups are quasiconvex. 

6. THIN 2-COMPLEXES 

In this section we investigate the structure of reduced 2-complexes that contain internaI 

2-cells. In Theorem 6.3 we show that such a complex contains at least 2n extreme 2-cells. 

Let D -+ T be a maximal tower lift of a reduced map D -+ X. An important part of our 

analysis is understanding the behaviour of the (not necessarily unique) greatest and least 

2-cells in subcomplexes of D. If D' c D is a subcomplex, then the restriction of the map 

D -+ T to D' may not be a maximal tower lift of the composition D' '---+ D -+ X. However, 

by looking locally at each of the greatest 2-cells of D' we obtain the same conclusion as in 

Lemma 4.7: 



CUBULATING ONE-RELATOR GROUPS WITH TORSION 18 

Lemma 6.1. Suppose D ~ T is a maximal tower lift of a reduced map D ~ X. Let D' 

be a connected subcomplex of D, and suppose that rJ is a greatest 2-cell of D'. Then rJ is 

exposed in D'. 

The quasi-ordering referred to in the following proof is the one induced by the original 

maximal tower lift D ~ T. 

Pra of. Let D' ~ T' be a maximal tower lift of the map D' <.......t D ~ T. 

Let B be the smallest closed subcomplex of D' containing rJ and all the 2-cells adjacent 

to rJ. By Lemma 4.6 no 2-cell adjacent to rJ is equivalent to rJ in the quasi-ordering and so 

rJ is the unique greatest 2-cell in B. 

Thus if B ~ Til is a maximal tower lift of B <.......t D ~ X, then rJ maps to the greatest 

2-cell of Til. Therefore rJ is exposed in B by Lemma 4.7, and hence in D' since B inc1udes 

all the 2-cells of D' adjacent to rJ. 0 

Again, let D ~ T be a maximal tower lift of a reduced map D ~ X. Let ft be an internaI 

2-cell of D. Using the quasi-ordering on 2-cells of D induced by the map D ~ T we define 

CJl = cl( {a E D 2 
1 a ~ Il}) 

and 

and let GJl and LJl be the eonnected components of CJl and LJl respectively that contain Il· 

Note that Il is exposed in each of LJl and GJl by Lemma 6.1. 

Lemma 6.2. Each component of CJl or LJl is simply-connected. 

Pra of. The components of CJl can be obtained from D by successively removing the least 

2-cells. Let ao be any least 2-cell of D. By Lemma 6.1, ao will be exposed, and by 

Lemma 4.10 the components of D - (ao, e) are simply-connected, where e is an exposed 1-

cell in a. Repeat this pro cess for a least 2-cell (in the original quasi-ordering) of D - (ao, e). 

After finitely many steps we obtain Cil" 
By successively removing the greatest 2-cells of D the same argument shows that the 

components of Lo = cl({a E D 2 
1 a :s ft}) are simply-connected. Now let a be a 2-cell 
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FIGURE 2. In this example n=3, and the unshaded 2-cell is IL. This picture 
shows how a disc diagram might be look wh en it is decomposed'into âJ..t and 
Lw We can see the 6 disjoint branches which we prove must each contain 
at least one extreme 2-cell of D. 
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different from IL such that a = IL in the quasi-ordering. By Lemma 6.1, a has an exposed 

l-cell el and so the components of Lü - (a, el) are simply-connected. Repeating this proeess 

for each such 2-cell we obtain LJ..t in finitely many steps. o 
The following theorem is used heavily in subsequent sections to restrict certain combina­

torial configurations in X. 

Theorem 6.3. Let D --t X be a reduced map, where D is a simply-connected compact 2-

complex and X is the standard' 2-complex of the presentation (al, ... , am 1 wn ) with n 2': 2. 

If D has an internal 2-cell then D contains at least 2n extreme 2-cells. 

Praof. Let D --t T be a maximal tower lift of the map D --t X. 

Let IL be an internaI 2-eell of D, and let âJ..t, LJ..t, GJ..t and LJ..t be defined as above using 

the quasi-ordering indueed by the map D --t T. 

Sinee IL is exposed in GJ..t there exists a l-eell e in âIL sueh that eaeh l-eell in [e]J..t lies 

in âGw Let BI, ... ,Bn be the branches of GJ..t at (IL, e). See Figure 2. Each branch 

contains a 2-cell sinee IL is internaI, and branches are disjoint since G J..t is simply-connected 

by Lemma 6.2. For 1 ::; i ::; n let Gi be the component of LJ..t U Bi containing IL. 
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The complex Ci contains at least one 2-cell which is strictly greater than f..l since Bi 

contains a 2-cell adjacent to f..l. This implies that any greatest 2-cell of Gi lies in Bi. By 

Lemma 6.1 there exists a 2-cell a in Bi such that a is exposed in Gi. But we claim that 

an âGi = an âD. lndeed, if f3 is a 2-cell of D adjacent to a and f3 do es not lie in LfL then 

f3 2:: f..l and so f3 lies in Ci. Therefore a is exposed in D. 

Thus there is a 2-cell in each of the n disjoint branches that is exposed in D. By the 

same (slightly simpler) argument applied to LfL we ob tain n more exposed 2-cells. Thus D 

contains at least 2n exposed 2-cells. To finish off the proof we need to translate this into 

information about extreme 2-cells. 

Let R be the maximal subcomplex of D containing f..l so that aIl exposed 2-cells in Rare 

extreme. Clearly f..l is internaI in Rand so by the work above R contains 2n extreme 2-cells 

al, ... , a2n. Suppose ai is not extreme in D. Then ai has at least two non-trivial branches. 

Let B be a non-trivial branch of ai that does not contain f..l. By Lemma 5.4 there exists 

f3i i= ai, which is extreme in Bu ai, and hence extreme in D. Repeating this for each i we 

ob tain 2n extreme 2-cells. They are distinct since for j i= i each aj lies in the branch of ai 

containing f..l. This completes the proof. D 

7. HYPERGRAPHS AND HYPERCARRIERS 

We now define the main object of study in the sequel: hypergraphs and hypercarriers. 

Hypercarriers themselves play no part in the construction of the cube complex, but are 

introduced to faciliate easier proofs of the properties of hypergraphs. 

An n-star is the unique graph with n vertices of degree one, and one vertex of degree n. 

Let a be a 2-cell in X and let e be a 1-cell in âa. Define T[e]a C a to be an embedded n-star 

whose degree one vertices map to the midpoints of the n 1-cells in relu. See Figure 3[al. 

Let T{e]a be an E-thickening of T[e] a . Then âT{ela na consists of n connected components 

homeomorphic to a 1-ce11. See Figure 3[bl. 

Construct a graph r as follows: 

(1) V(r) = {vx 1 x E â(U T{e]J n Xl}, where the union is taken over aIl possible relu. 
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[a] 

[bl 

[cl 

FIGURE 3. In this example w = a2b and n = 4. [a] The three subspaces 
T[eil,,' tb] The corresponding spaces âT{ei],,' [cl The three images from the 
second row have been superimposed. This shows· the image <p(r) in a par­
ticular 2-cell of X. Each such 2-cell contains the image of nlwl 1-cells of r 
and vertices of r arc mapped into the open 1-ce11s of X. It is clear from this 
picture that <p is far from an embedding. However, we will prove in the next 
section that <p restricted to each component of r is an embedding. 

FIGURE 4. Five 2-ce11s in X, each containing an embedded 3-star. The bold 
lines represent the image of a subgraph of a hypergraph. 

21 
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(2) (vx , Vy) E E(r) if there exists a pair (a, e) such that x and y lie in the same connected 

component of 8T{e)a no:. 

There are exactly two vertices of r corresponding to each l-cell in X, and there is a 

natural injective map CPv : V (r) -+ X, sending V x to x. This map can be extended to 

an immersion cp : r -+ X from the whole graph. If the edge (vx , Vy) is witnessed by the 

pair (a, e) then cp sends the edge (vx, Vy) to the path between x and y in 8T{e)a na. See 

Figure 3[c]. 

Definition 7.1. (hypergraph) Let Ai, i E 1, be the connected components of r. A hyper­

graph in X is any of the maps cp : Ai -> X. Usually we will suppress the functional notation 

and only refer to the hypergraph Ai, and consider it a su bset of X. The l-cells of X w hich 

cross a hypergraph are said to be dual to it. 

Remark 7.2. When n = 2 the E-thickening is unnecessary since the construction results 

in paired hypergraphs running parallel through .K. Without the thickening, a single hy­

pergraph replaces each pair, and cp then sends each vertex of r to the midpoint of a l-cell. 

When we refer to the n=2 case in subsequent sections it will always be with the unthickened 

construction in mind. 

Definition 7.3. (hypercarrier) Let A be a hypergraph. Then the hypercarrier of A is the 

smallest closed subcomplex of X containing cp(A). 

A hypergraph segment is a finite path in a hypergraph. The hypercarrier chain associated 

to a hypergraph segment is the smallest closed subcomplex of X containing that hypergraph 

segment. The end 2-cells of a hypercarrier chain are the 2-cells that contain the first and 

last edges of the associated hypergraph segment. 

8. THE HYPERGRAPHS ARE TREES AND EMBED IN X 

We will now prove that the hypergraphs defined in the last section have the basic prop­

erties necessary to define the cube complex on which the group G will act. 

Theorem 8.1. Let H be the hypercarrier chain associated to an arbitrary hypergraph seg­

ment. Then H is simply-connected. 
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FIGURE 5. By gluing a reduced disc diagram to each of these complexes we 
create simply-connected 2-complexes with internaI 2-cells that have at most 
2,0 and 1 extreme 2-cells respectively (from left to right). 
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Pra of. Suppose H is not simply-connected. By considering a counterexample so that the 

hypergraph segment is as short as possible we may assume that 7rIH ~ Z. See Figure 5 for 

the different possibilities, depending on how the hypergraph segment sits inside X. 

Let P be the set of closed paths in Hl that represent a generator of 7r I H. Let D ---+ X 

be a minimal area reduced disc diagram for paths in P, and set p = BD. The 2-complex 

L = H Up D is simply-connected since [pl is a generator of 7r I H. 

Observe that since H has no isolated 1-cells every 2-cell of Dis internaI in L. In particular, 

since D is non-empty this implies that L contains an internaI 2-cell. 

Now, only the end 2-cell(s) of H can be extreme in L. Indeed, any other 2-cells contain 

two dual 1-cells in its boundary which are internaI in H, and hence in L. Therefore L 

contains at most two extreme 2-cells and an internaI 2-cell and so by Theorem 6.3 there 

exists a cancelable pair in L. 

Since H and D are reduced any cancelable pair in L must contain one 2-cell from D, 

say a, and one 2-cell from H, say (3. Let, = Œ n~, and define 6 to be the path with the 

same endpoints as , such that ,-16 = B(3. Let p' be the path obtained from p by replacing 

the subpath , by 6. Then [p'] = [pl in 7rlH, and D - a is a di sc diagram for p' which has 

strictly smaller area than D, a contradiction. o 

Theorem 8.2. Each hypergraph is a tree and embeds in X. 

Proof. Suppose that there exists a cycle, Ck, in ,a hypergraph A. By Theorem 8.1 the 

hypercarrier chain, K, associated to Ck is simply-connected, and clearly K contains at 

least two 2-cells. Thus it must contain at least two extreme 2-cells by Theorem 4.11. But 
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no 2-cell of K is extreme since the l-cells dual to A are internaI in K. Thus each hypergraph 

is a tree. 

Now suppose el and e2 are two edges of a hypergraph A which get mapped into the same 

2-ceIl, say a, of X. Let K be hypercarrier chain containing the image of the unique path 

between el and e2 in A. The same argument as above appHes to K except that the 2-cell 

a could potentiallybe extreme in K. Since a is the only such 2-cell we arrive at the same 

contradiction. o 

The last result of this section is an easy consequence of Thereom 8.1. 

Corollary 8.3. For each i E 1, X - Ai consists of two infini te connected components. 

9. CONSTRUCTING THE CAT(O) CUBE COMPLEX 

We now demonstrate how to use a hypergraph system satisfying the properties proved 

in Section 8 to construct a CAT(O) cube complex on which the group G will act. This is 

essentially Sageev's construction, but appears in the current context in [27], an account we 

follow closely here. Superficial differences arise simply because, when n ~ 3, our construc­

tion produces two hypergraphs dual to each edge. 

Before beginning the construction we will quickly review the notion of a CAT(O) cube 

complex. 

Definition 9.1. (CAT(O) cube complex) A cube complex is a metric polyhedral complex 

where èach cell is isometric to a Euclidean n-cube [-I,I]n, and such that the gluing maps 

are isometries. 

It is CAT(O) if the following conditions are satisfied: 

(1) C is simply-connected 

(2) For each n ~ 0 if Cl, C2, c3 are three (n + 2)-cubes such that each pairwise intersection 

is an (n + 1)-cube and Cl n C2 n c3 is an n-cube, then there exists an (n + 3)-cube that 

contains each Ci as a face. 

Definition 9.2. (halfspace) For each hypergraph A the set X - A contains exactly two 

components. A halfspace is the closure of one such component. If A is a halfspace then we 

use AC to denote the other halfspace associated to the same hypergraph. 
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We now define a graph n that will serve as the 1-skeleton of a cube complex Co. The 

CAT(O) cube complex C on which G will act will be a connected component of Co. 

Let S be the set of aIl halfspaces. A vertex of r is a subset V c S such that for any 

halfspaces A and B the following hold: 

(1) Ac B and A E V implies B E V, and 

(2) IV n {A, AC}I = 1. 

Two vertices VI, V2 C Sare joined by an edge in n if and only if VI = {V2 - A} u AC 

for sorne halfspace A. In this case we say that VI is obtained from V2 by switching the 

halfspace A. 

The construction of Co is completed inductively by gluing an n-cube to n anywhere its 

(n - 1 )-skeleton exists. 

An n-cube in Co arises from a collection, say ~, of n pairwise intersecting hypergraphs. 

For any hypergraph A 1:. ~, there cannot be two hypergraphs in I: which are contained in 

distinct halfspaces of A, since then those two hypergraphs would not intersect. Let Vo be 

the set of halfspaces which contains for each A 1:. I: a halfspace A so that any hypergraph 

in I: intersects A non-trivially. This ensures that condition (1) in Definition 9.1 will be 

satisfied for any of the 2n possible collections of halfspaces which extend Vo andsatisfy 

condition (2). These 2n vertices will be the O-cells of an n-cube. 

For any O-cell x E 5( let Va; = {A E Six E A}. It is easily verified that such a set of 

halfspaces satisfies the conditions above and so correspond to a vertex in Co. 

Lemma 9.3. For any x, y E 5(0 the vertices Va; and Vy lie in the same connected component 

of Co. 

Praof. Since 5( is connected it is enough to prove the result in the case where x and y are 

connected by a 1-cell e in 5(. Suppose n ;::: 3. Let Aa; and Ay be the hypergraphs dual to 

e. Clearly the sets Va; and Vy are identical except for the halfspaces corresponding to Aa; 

and Ay. There is a length two path from Va; to Vy found by first switching the halfspace 

associated to Aa; and then switching the halfspace associated to Ay. 

If n = 2 then there is only one hypergraph between x and y, and so Va; and Vy are 

adjacent in Co. 0 
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Remark 9.4. Wh en n ~ 3 switching halfspaces in the opposite order does n?t define a 

path in Co 1 since at the intermediate step the set of halfspaces would not satisfy condition 

(1) in the definition of the vertices of r. 

Definition 9.5. Let C be the connected component of Co containing Vx for each x E Xo. 

Since the hypergraph system is G-equivariant the action of G on X indu ces an action 

on the set of halfspaces. This in turn induces an action of G on the cube complex Co. For 

instance, for a vertex V = {AO"}O"E~ we have gV = {gAO"}O"E~' But since gVx = Vgx the 

action on Co actually stabilizes C giving an action of G on C. 

Theorem 9.6. C is a CAT(O) cube complex. 

We will not prove that C is simply-connected. A proof of this fact that transfers exactly 

to our situation can be found in [27]. We will however prove that C satisfies condition (2) 

in Definition 9.1. 

Praof. Let Cl, C2, C3 be three (n + 2)-cubes such that Ci n Cj is an (n + l)-cube when i i= j 

and Cl n C2 n C3 is an n-cube. 

Each Ci is determined by a set of n + 2 independent hypergraphs, say 8 i . Then 181 n 8 2 n 

831 = n by assumption and 18in8jl = n+1 when i i= j. Recalling the formula for the number 

of elements in a Venn diagram we get that 181 U 82 U 831 = 3(n + 2) - 3(n + 1) + n = n + 3. 

Moreover, each pair of hypergraphs in 81 U 82 U 83 cross. Let Al be a hypergraph and 

assume without 10ss of genera1ity that is lies in 8 1 . By definition Al crosses each of the 

other hypergraphs in 81, There is on1y one hypegraph A2 not in 8 1, but it lies in 82 n 83, 

Since Al lies in either 8 2 or 83 this implies that Al and A2 intersect non-trivially. 

Thus the n + 3 hypergraphs in 8 1 U 82 U 83 correspond to an (n + 3)-cube of which each 

Ci is face. 0 

10. HYPERCARRIERS ARE QUASICONVEX 

In this section we app1y Theorem 6.3 to prove that hypercarriers are quasiconvex sub­

spaces of X. This fact will be used in Theorem 12.1 to he1p conclude that the group action 

on C is cocompact. 
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FIGURE 6. The disc diagram D on the left is glued to H' U 'Y along BED. 
Since the resulting complex cannot contaÏn any internaI 2-cells every 2-cell 
of D must lie along the subpath of BED that gets mapped to 'Y. In the figure 
this subpath of BED is boldo The shaded 2-cells of D are the 2-cells that lie 
along H' in the resultin complex. 

Theorem 10.1. Hyperéarriers are quasiconvex. 
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Proof. Let H be the hypercarrier associated to a hypergraph A. Suppose that there exists 

a geodesic 'Y with endpoints x, y E H such that 'Y n H = {x, y}. Let H' be the minimal 

connected hypercarrier chain containing bath x and y. We will prove that any point of 'Y 

lies within a ~Iwnl-neighbourhood of H'. 

Let D -+ X be a minimal area redueed disc diagram whose boundary is a generator of 

7T'l(H/U'Y) ~ Z. Let K be the compact 2-complex formed by gluing D to H/U'Y along BED. 

Observe that K is reduced sin ce D was chosen ta be minimal area. This follows from 

the same argument as in the proof of Theorem 8.1. K is also simply-connected since D is 

gl ued to H' U 'Y along a generator of 7T'l (H U 'Y). 

Let a be a 2-cell in D. Then a is not extreme in K. Indeed, any subpath of Ba which is 

external in K lies along the geodesic and sa has length less than I~nl. The only 2-cells of 

H' that could possibly be extreme in K are the end 2-cells of H'. The other 2-cells are not 

even extreme in H'. Thus K contains at most two extreme 2-eells, and sa every 2-eell of K 

is external by Theorem 6.3. In particular, for each 2-eell a of D we have that Ba n 'Y C K 

contains an edge. See Figure 6. 

Let A be the set of 2-cells of D whose closures intersect H' in K, and let x E 'Y. If x E A 

then clearly we have d(x, H') ::; !Iwnl. If x tJ. A let 8 be the maximal connected subpath of 

'Y containing x suçh that int(o) nA = 0. Let Ul,U2 E A be the endpoints of 0, and let 0' be 

the path between Ul and U2 in BA - H'. 

We claim that at most two 2-eells of A lie along int(8' ). If not, then there exists a 2-cell 

a in A, and a O-eell v such that v E Ba n 8' C int(8' ). Note that Ba n 8' is connected sinee 



CUBULATING ONE-RELATOR GROUPS WITH TORSION 

FIGURE 7. Let X be the standard 2-complex of the presentation (a, b 1 
((abab- I )2a)2). The complex shown is a subcomplex of X, and the dotted 
line is a hypergraph segment. The corresponding hypercarrier, which is 
shaded, is not convex sinee the path outside it is a geodesic. The unshaded 2-
eell does not lie in the hypercarrier sinee the hypergraphs embed. Gonvexity 
also fails in (a,bl((abab- 1 )5a)3) using an analogous picture. 
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otherwise D contains an internaI 2-ce11. AIso, sinee every 2-eell of D lies along 'Y there exists 

a O-cell w E Ci n ('Y - 0). We may assume that w lies in the connected component of 'Y - 0 

containing UI. Let Pl be the path between w and v in Ci - H' and P2 be the path between 

v and U2 contained in 0'. Then Pl U P2 separates Ul from H' in K, contradicting the fact 

that UI E 8A. 

Henee 101 ~ 10'1 < 21wnl since 0 is a geodesic. Thus d(Ui, x) < Iwnl for i = 1 or i = 2, and 

since UI, U2 E Athis yields d(x, H) < ~Iwnl as required. o 

When n ~ 4 a st ronger result is possible. In this case the hypercarriers are actually 

convex. However, when n = 2 or n = 3 convexity fails, as can be seen in Figure 7. 

11. LINEAR SEPARATION 

In this section we restrict to the case where n ~ 4. Each hypergraph splits X into two 

infinite components. For x, y E XO let #(x, y) be the number of hypergraphs, A, for which 

x and y lie in distinct components of X -A. Clearly #(x, y) ~ 2d(x, y), since any separating 

hypergraph must be dual to sorne edge in each geodesic between x and y. 

In order to satisfy the hypothesis of Theorem 12.2 we need to show that #(x, y) grows 

proportionally to d(x, y). This will allow us to conclude that the cube complex constructed 

from the hypergraphs is locally finite and that the action is proper. 

We begin by introducing sorne terminology. Let 'Y be a geodesic with endpoints x, y E go, 

and let e be a 1-cell in 'Y. There are two hypergraphs, Aex and Aey ' dual to e, labeled so 
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x y 

FIGURE 8. The path between x and y is a geodesic , and the two hyper­
graphs are dual to the same edge e. The hypergraph on the left is denoted 
Aex and the hypergraph on the right is denoted Aey. 
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that d( Aex ne, x) < d( Aey ne, x). Let Cx and Cy be the components of , - e which contain 

x and y respectively. See Figure 8. With this notation we have the following lemma, which 

says that if a hypergraph crosses a geodesic twice it is turning in the expected direction. 

Lernrna 11.1. Let, be a geodesic in Xl between two O-cells x and y, and let e be a l-cell 

in ,. Then, n Aex cCx. 

Pra of. Suppose otherwise. Define Vx = e n Ax, and let Vx' be the point in Ax n Cy which is 

closest to vx . Let H be the hypercarrier chain associated to the unique hypergraph segment 

between Vx and Vx" Note that H contains at least two 2-cells since otherwise the geodesic 

contains a subword of wn longer than wn - l . 

If, is not contained in H then we proeeed as in the proof of Theorem 10.1 byattaching 

a minimal are a reduced disc diagram to the complex HU, to form a new complex L. If 

, c H then let L = H. 

Let 0: be the 2-eell in H such that Vx E 80:, and let 6 be the subpath of 80: which is 

internaI in L. Sineethe only 2-cells of L that can be extreme are the end 2-cells of H 0: 

must be extreme in L by Theorem 4.11. Thus J6J < JwJ. 

Let ~ = Œ n,. Then J~J + J6J > (n - l)JwJ since ~ U 6 contains the longer subpath of 

âa containing two l-cells dual to the same hypergraph. Combining this with 101 < Iwl we 

have that 
. n 

J~J > (n - 1)JwJ-J6J > (n - 2)JwJ 2: "2 JwJ 

sinee n 2: 4, contradicting the fact that , is a geodesic. o 
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FIGURE 9. The hypercarrier chains H' and K with H' lying above the geo­
desic'"'l and K below. Once a reduced disc diagram is glued to this complex 
the shaded 2-cell is the only 2-cell that could be extreme. 
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Lemma 11.1 is not true wh en n = 3, and cannot even be stated properly when n = 2 

since there is only one hypergraph dual to each 1-cell. 

Definition 11.2. (cornes back) Let 8 be any simple path in Xl. For a hypergraph A and a 

2-cell 0: we say that A comes back to 0 through 0: if there is a hypergraph segment between 

two distinct points in 0 n A such that 0: is extreme in the associated hypercarrier chain. 

Theorem 11.3. Let '"'1 be a geodesic in Xl with endpoints x and y. For any l-cell e in '"'l, 

there exists a hypergraph that intersects '"'1 exactly once, and the point in the intersection is 

within Iw;1 edges of e. 

Proof. If Aey intersects '"'1 once then we are done, so suppose d· is a second 1-cell in '"'1 dual 

to Aey chosen so that the distance between e and d is minimal. 

By Lemma 11.1 we know that d is contained in the component of '"'1 - e that contains y. 

Let H be the hypercarrier chain for the unique hypergraph segment between e and d, 

and let 0:1 be the 2-cell in H such that e C 80:1' 

Let el, e2,'" ,em be the 1-cells in the path 80: l nCy (where Gy is defined as for Lemma 11.1). 

Choose 0 ::; s ::; m to be maximal so that Aesy cornes back through 0:1, and let H' be the 

hypercarrier chain for this new hypergraph segment between points of '"'1. Note that s < m 

since Œl must be extreme in H'. Label the 2-cells of H', Œl, Œ2,"" Œm, in the order that 

the hypergraph passes through them. 

Now we daim that Ae8+1y intersects '"'1 exactly once. By Lemma 11.1 this hypergraph 

does not intersect '"'1 in the component of '"'1 - es+! containing x. By assumption it does 
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not come back to 'Y. through al. Thus if it intersects 'Y more than once it cornes back to 'Y 

through a 2-cell, f31, giving rise to a second hypercarrier chain K. We label the 2-cells of K 

in order f31, f32, ... , f3f.. See Figure 9. 

Let 8 be the subpath of 'Y between the two endpoints of the hypergraph segments that 

are not contained in al and il1. This is the bold path in Figure 9. If H' U K U 8 is sim ply­

connected let L = H' U K. Otherwise, let D be a minimal are a reduced disc diagram for a 

generator of 'lr1(H'UKU8). Gluing D to H'UKu8 we obtain a simply-connected compact 

2-complex, which we call L. 

No 2-cell of D is extreme in L since any 2-cell of D that is external in L lies along 8 in 

L so its external subpath has length at most Iw;l. No 2-cell aj, for 1 < j < m, orf3i, for 

1 ~ i < fis extreme in H'UK since for each such 2-cell there are two l-cells in its boundary 

that are internaI in H' U K and dual to the same hypergraph. If es c âf31 then the same is 

true for al, but certainly es+! C âf31. Thus, although the internaI subpath of âal may not 

contain two l-cells dual to the same hypergraph it still has length at least Iwl, and so al is 

also not extreme in L. 

We finish the proof by noting that at most one of am and f3f. can be extreme in L. lndeed, 

ass,ume without loss of generality that f3f. is closer to y than am (this is the situation shown 

in Figure 9). Then both dual l-cells in am are internaI in Land so am cannot be extreme 

in L. Therefore L contains at most one extreme 2-cell contradicting Theorem 4.11, and so 

AeS+1y intersects 'Y exactly once. 

Finally, note that s + 1 ~ Iw;1 since both eo and es+! lie on a geodesic contained in 

boundary of a single 2-cell. D 

Corollary 11.4. #(x, y) ~ dl~;'I) . 

Corollàry 11.5. For any r ~ 1, if d(x, y) ~ rlwnl apart can be separated by at least r 

hypergraphs. In particular, #(x, y) ~ I~~) . 

Proof. Let 'Y be a geodesic between x and y. Then 'Y contains at least r disjoint subpaths 

of length jwnj. By Theorem 11.3 each such subpath contains at least one hypergraph which 

separates x and y. D 
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12. CAT(O) CUBULATION 

The first three theorems listed in this section connect what we have proved so far about 

the geometry of hypergraphs and the action of G on C defined in Section 9. Theorem 12.3 is 

due to Sageev [24], but aU three theorems can be found as stated here in [11] where Hruska 

and Wise present a systematic approach to cubulating a class of groups. 

Theorem 12.1. Suppose G acts cocompactly on K. Then G acts cocompactly on the cube 

complex C if the following hold: 

(1) K is o-hyperbolic. 

(2) The hypergraphs are quasiconvex. 

(3) The hypergraph system is locally finite. 

Theorem 12.2. Let K be a 2-complex equipped with a collection of hypergraphs satisfying 

the following properties. Then the cube complex C associated to K is locally finite. 

(1) K is locally finite. 

(2) The hypergraph system is uniformly locally finite. 

(3) There is a constant M so that for each r ~ 1, every pair of points at a distance at 

least r M apart are separated by at least r distinct hypergraphs. 

(4) There is a constant 8 such that every hypergraph triangle is 0 -thin. 

Theorem 12.3. Let K be locally finite 2-complex with a collection of hypergraphs su ch 

that the associated cube complex C is locally finite. Then if G acts properly on K, G acts 

properly on C. 

Using these theorems we are now in position to prove our main theorem: 

Theorem 12.4. Let (al, . .. , am 1 wn
) be a presentation of a group a, where w is freely 

and cyclically reduced and n ~ 4. Then G acts properly and cocompactly on a locally finite 

CAT(O) cube complex C. 

Pro of. It is clear that X is 10caUy finite, and that the hypergraph system is uniformly locally 

finite. Condition (3) of Theorem 12.2 is satisfied by Theorem 11.5. By the B.B. Newman 

Spelling Theorem, the presentation (al, ... , am 1 wn ) is a Dehn presentation for Gand so 
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Gis word-hyperbolic. By Theorem 10.1 the hypergraphs embed by quasi-isometries and so 

the hypergraph triangles in X are O'-thin, with 0' depending on the hyperbolicity constant 

for G and the quasi-isometry constants for the hypergraphs. Therefore, the cube complex 

C associated to the hypergraph system is locally finite. 

Since G acts properly on X and hence on X, Theorem 12.3 implies that the action of G 

on C is proper. 

We have shown that an the conditions of Theorem 12.1 hold so the action of G on C is 

cocompact. o 
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