
Accelerating a Medical 3D Brain MRI

Analysis Algorithm using a

High-Performance Reconfigurable Computer

by

Jahyun J. Koo

Department of Electrical and Computer Engineering

McGill University, Montreal

A thesis submitted to McGill University in partial fulfillment

of the requirements of the degree of Master of Engineering.

Copyright c©Jahyun J. Koo 2007

September 30, 2007

Acknowledgments

First of all, I would like to thank my thesis supervisors, Dr. Warren J. Gross and Dr.

Alan C. Evans. Your thoughtful concerns and enthusiastic support made this thesis

possible. Once again, thank you for giving me this amazing opportunity!!

I would also like to thank to Simon Hong, Kelvin Mok, Jaejin Ryu, Eric Lee,

and Phil Chopp who proof-read my thesis. Especially to Phil and Simon, thank

you for your great revisions and insightful comments. I am further very grateful

to my fellow researchers who I met during my studies at McGill University. I will

never forget those joyful memories I shared with Dani Tannir, Tarek Alhajj, Baker

Haddadin, Kelvin Lee, Sadok Aouini, Ahmed Abdel-Aty, Mohammad Taherzadsh,

Terrance Kao, and Yousef El-Kurdi at the MACS Lab. Although the MACS lab soc-

cer team never won the championship, I am extremely proud of every single player

who participated on AC MACS and MACS UNITED. Thanks to David Fernández

and Ashraf Haddad for working extremely hard to publish our first paper. Without

your help, the ASAP paper was not possible. I would also like to thank Dr. Uicheul

Yoon, Dr. Junki Lee, Hosung Kim and Claude Lepage for their tremendous help on

image processing algorithms and statistical analysis.

For last, I dedicate this thesis to my lovely parents who relinquished their life

in Korea and moved to Canada for me and my brother. This thesis would not exist

without your insightful advice and encouragement. Thank you for your patience

and understanding!!!

i

Contributions of Authors

This thesis is based on two manuscripts([1] and [2]) which will appear in the pro-

ceedings of International Conference on Application-specific System, Architectures

and Processors (ASAP’07) and International Conference on Filed Programmable

Logic and Applications (FPL’07). I am the first author of both manuscripts and

have involved implementing and analyzing the proposed study in this thesis. In [1],

I was the primary project manager and was in charge of optimizing the primary im-

plemented algorithms and developing test plans for verification. In [2], as a primary

research of the project, I implemented and evaluated the proposed algorithm using

many different design and test strategies.

The following list summarizes the contributions of co-authors:

1. Dr. Warren J. Gross : Supervisor of the project.

2. Dr. Alan C. Evans : Co-Supervisor of the project.

3. David Fernández : developed the initial implementation of the Dense Matrix

Vector Multiplication (DMVM) algorithm in [1].

4. Ashraf Haddad : developed the initial implementation of the Spherical Bound-

ary Conditions in Molecular Dynamics (SB) algorithm in [1].

ii

Abstract

Many automatic algorithms have been proposed for analyzing Magnetic Resonance

Imaging (MRI) data sets. These algorithms allow clinical researchers to analyze

their quantitative data with consistently accurate results. With the increasingly

large data sets being used in brain mapping, there has been a significant rise in

the need for methods to accelerate these algorithms, as their computation can con-

sume many hours. This thesis presents the results from a study on implementing

such quantitative analysis algorithms on High-Performance Reconfigurable Com-

puters (HPRCs). The Partial Volume Estimation (PVE), a brain tissue classification

algorithm for MRI, was implemented on two SGI RASC RC100 systems using the

Mitrion-C High-Level Language (HLL). The CPU-based PVE algorithm was pro-

filed to identify the computationally intensive functions and two floating-point func-

tions, estimating the probability densities (PDs) of tissues and the prior information,

were implemented on FPGA-accelerators. Several simulated and real human brain

MR images were used to evaluate the accuracy and performance improvement of

the FPGA-based PVE algorithm. The Sensitivity and Kappa coefficients were cal-

culated to verify the accuracy of the images resulting from the FPGA-based im-

plementation. The FPGA-based PDs estimation and prior information estimation

function achieved an average speedup of 2.5× and 9.4×, respectively. The overall

performance improvement of the FPGA-accelerated PVE algorithm over the con-

ventional CPU-based algorithm was 5.1× with four FPGAs.

iii

Résumé

Plusieurs algorithmes ont été proposés pour l’analyse des données d’imagerie par

résonance magnétique (IRM). Ceux-ci ont permis aux chercheurs cliniques d’analyser

leurs données avec précision jusqu’à tout récemment. Mais avec l’augmentation

des données quantitatives à analyser dans le domaine de l’imagerie du cerveau, il

y a un besoin maintenant pour des méthodes pour accélérer ces algorithmes surtout

que leur temps de calcul peut prendre plusieurs heures. Cette thèse présente le

résultat d’une étude sur l’implémentation de ces algorithmes sur des ordinateurs

reconfigurables à haute performance. L’estimation de volume partiel (PVE), un al-

gorithme de classification du tissu de cerveau a été implémenté sur deux systémes

SGI RASC RC100 qui utilisent le langage de haut niveau Mitrion-C. L’algorithme

PVE sur processeur a été profilé pour identifier les fonctions intensives en temps de

calcul et deux fonctions à virgule flottante estimant les densités de probabilité de

tissus et l’information antérieure ont été implémenté sur des accélérateurs FPGA.

Plusieurs images de cerveau humain simulées et réelles ont été utilisées pour vérifier

la précision et l’amélioration en performance de l’algorithme PVE sur FPGA. Les

coefficients de sensitivité et kappa ont été mesurés dans le but de vérifier la précision

des images de l’implémentation sur FPGA. L’estimation des densités de probabilité

sur FPGA et la fonction d’estimation d’information antérieure ont eu pour résultat

des gains de performance de 2.5 et 9.4, respectivement. La performance globale

de l’amélioration de l’algorithme PVE sur FPGA comparativement à l’algorithme

établie sur processeur a été de 5.1 sur quatre processeurs.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 3

2.1 Magnetic Resonance Imaging . 3

2.2 Automatic MR Imaging Analysis Algorithm 6

2.2.1 Non-uniformity Correction 6

2.2.2 Registration . 7

2.2.3 Tissue Classification . 8

2.2.4 Surface Extraction . 8

2.3 Partial Volume Estimation (PVE) 10

2.3.1 Partial Volume (PV) classification 11

2.3.2 PVC Estimation . 14

2.3.3 Overview of the PVE Algorithm 15

2.4 HPRC System and High-Level Language 16

2.4.1 SGI RASC RC100 System 18

2.4.2 Mitrion-C HLL . 22

3 Hardware Implementation of PVE 28

3.1 Introduction . 28

3.2 Overview of Design Flow . 28

v

3.3 Profiling CPU-based PVE Algorithm 29

3.4 FPGA-implemented PD Estimation 31

3.4.1 Input and Output Buffers 33

3.4.2 FPGA-based PD Estimation for Pure Tissue Classes 35

3.4.3 FPGA-based PD Estimation for Mixed Tissue Classes . . . 36

3.4.4 FPGA-based PDs Normalization 38

3.4.5 Host Program for the FPGA-based PD Estimation 39

3.5 FPGA-implemented Prior Information Estimation 42

3.5.1 Input and Output Buffer 45

3.5.2 FPGA-based MRF Function 46

3.5.3 Host Program for FPGA-based Prior Information Estimation 52

3.6 Summary . 53

4 Results 57

4.1 Test Data Set . 58

4.1.1 The Digital Phantom . 58

4.1.2 The Simulated Images . 58

4.1.3 The Real Human Brain . 59

4.2 Performance Comparison . 62

4.3 Accuracy Comparison . 66

5 Discussions and Conclusions 72

5.1 Discussions . 72

5.2 Conclusions . 77

5.3 Future Work . 78

vi

List of Tables

2.1 A summary of Virtex-4 hardware resource. 19

2.2 A summary of RASC Abstract Layer Functions. 21

3.1 GNU gprof profiling report of the CPU-based PVE algorithm. . . . 30

3.2 Summary of input/output file formats for the PDs estimation function. 34

3.3 Possible scenarios to distribute over four FPGAs for PD estimation

function for pure and mixed tissues classes 41

3.4 Summary of input/output file formats for the prior information esti-

mation function. 45

3.5 Truth table used to identify the similarity between the reference tis-

sue and the tissue class of neighbor voxel 51

3.6 Hardware resources summary of functions implemented on a Xilinx

Virtex-4 LX200. 55

4.1 Performance enhancement achieved by FPGA-based PD estimation

function. 63

4.2 Performance enhancement achieved by FPGA-based P(C) estima-

tion function. The number inside of bracket represents the number

of iteration performed . 64

4.3 Overall performance enhancement. The number inside of bracket

represents the number of iteration performed 65

4.4 Accuracy comparison. 68

5.1 GNU gprof profiling report of the FPGA-based PVE algorithm. . . . 75

vii

List of Figures

2.1 Three major tissue classes of the brain. 4

2.2 MRI cross-sectional brain images. 4

2.3 T1, T2 and PD contrast. 6

2.4 INU correction algorithm. 7

2.5 Tissue classification algorithm. Yellow, red and teal represent GM,

WM and CSF respectively. 9

2.6 Surfrace extraction algorithm. 9

2.7 Partial volume effect on Sulcal region. 11

2.8 T1-weighted image and curvature image. (a) T1-weight MR image

(b) Curvature image (c) Curvature image is overlaid on top of T1-

weight . 14

2.9 Partial Volume Estimation input images. 16

2.10 Partial Volume Estimation algorithm. 17

2.11 Partial Volume Estimation output images. 18

2.12 SGI Altix350 and RASC RC100. 19

2.13 RASC RC100 system. 20

2.14 The block diagram of Algorithm FPGA. 21

2.15 Special features provide by SGI RASC technology. 23

2.16 Mitrion-C vector data type with foreach loop. 24

2.17 Mitrion-C list data type with foreach loop. 25

2.18 Combination of vector and list data with foreach loop. 26

2.19 Mitrion graphical simulator/debugger. 27

2.20 Mitrion design flow. 27

viii

3.1 PVE algorithm on RASC RC100. 30

3.2 Overview of the FPGA-implemented PDs estimation function. . . . 33

3.3 The structure of input and output buffer for FPGA-implemented

PDs estimation. 35

3.4 Functional blocks of FPGA-implemented PD estimation for pure

tissue types. 36

3.5 Gaussian PE from Mitrion simulator/debugger. 37

3.6 Functional blocks of FPGA-implemented PDs estimation for mixed

tissue types. 38

3.7 Functional blocks of FPGA-implemented normalization function

for PDs. 39

3.8 Normalization PE. 39

3.9 Summary of Pthreads operation. 41

3.10 Hardware-implemented PD estimation and normalization algorithm

with four FPGAs. 42

3.11 The structure of input and output buffer for FPGA-implemented

prior information estimation. 47

3.12 Hardware-implemented prior information estimation function. . . . 49

3.13 An internal Block RAM stores three rows of Slice α. 50

3.14 Functional blocks of MRF modeling block. 50

3.15 Generating aik. 51

3.16 Partitioned FPGA-based prior information function. 53

3.17 Final design of HPRC-implemented PVE algorithm 56

4.1 Single and averaged T1-weighted colin image. 58

4.2 The simulated images with INU (typically 20% of INU is present

on an image). 60

4.3 The simulated images with noise (typically 5% of noise is present

on an image). 60

4.4 Real human brain images from the ICBM data set. 61

ix

4.5 The classified image from the FPGA-based PVE algorithm and the

re-classified image (colin27). 69

4.6 Difference between two implementations (colin27). 70

4.7 ICBM images. CPU-based PVE(left), FPGA-based PVE(middle),

Differences overlaid on the T1 image(right). 70

4.8 Simulated images with artifact. CPU-based PVE(left), FPGA-based

PVE(middle), Differences overlaid on the T1 image(right).). 71

5.1 Two different classified voxels updating scheme. 74

5.2 A single histological slice (Mohlberg, “Cytoarchitectonic Brain Map-

ping” presentation at MNI, May 18, 2007). 79

x

Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) has become a paramount medical imaging

technology in brain anatomical studies due to its spatial resolution and superior

in-vivo tissue contrast. As a result, there has been a significant increase in the

need for quantitative analysis of 3D MRI data [3]. Such analysis provides an enor-

mous amount of information about the anatomy of the human brain to researchers.

In most quantitative MRI studies, several image processing algorithms are usually

performed on the 3D MRI data sets to identify and segment particular brain struc-

tures. Traditionally, MRI data sets for the human brain were manually processed by

researchers who are very familiar with anatomical structures.

Human brain anatomical studies usually acquire a large number of brain images

to conduct comparisons and determine the differences among the brains. For ex-

ample, the study in [4] compared 176 healthy normal brains, aged 7 to 87 years,

while [5] collected approximately 500 children brains, aged 7 days to 18 years,

to study human brain development. As the number of subjects acquired in these

typical studies has increased for more assurable and accurate analysis, some limita-

tions of the manual algorithms, such as long computation time and issues regarding

reproducibility, have surfaced. Over the past decade, automatic analysis methods,

which reduce computation time and improve data consistency have been proposed

and developed [6] [7] [8] [9] [10] [11]. Even though these algorithms are fully auto-

matic, some can take from a few minute to several hours to process a single subject

1

due to their complexities of the algorithms. As a result, acceleration of these algo-

rithms has become a very important task, as the researchers require faster and more

accurate processing of a very large number of 3D MRI data sets.

MRI data analysis algorithms can be accelerated using an emerging architec-

ture, High-Performance Reconfigurable Computers (HPRCs) which combine high

performance CPUs with reprogrammable accelerators such as Field Programmable

Gate-Arrays (FPGAs). The recent studies show that HPRCs are capable of acceler-

ating floating-point scientific applications up to 100 times over conventional CPUs

[1] [12] [13] [14]. HPRCs reduce the computation time of floating-point scien-

tific applications using their capability to take advantage of both the coarse-grained

parallelism offered by traditional CPU-based multiprocessors and fine-grained par-

allelism offered by reprogrammable devices. Implementing the MRI data analysis

algorithm on HPRC would be a challenging task for researchers with only a soft-

ware background, as basic hardware knowledge and low-level hardware description

languages (HDLs) such as VHDL or Verilog are required to program FPGAs. Sev-

eral commercial high-level languages (HLLs) for programming FPGAs, such as

Handel-C [15], Impulse C [16] and Mitrion-C [17], have been proposed to over-

come some of these hardware-dependent limitations associated with FPGA-based

implementations .

In this study, the 3D MRI tissue classification algorithm, Partial Volume Esti-

mation (PVE) is implemented on an SGI Altix 350 with two RASC RC100 systems

using the Mitrion-C HLL. Chapter 2 provides an overview of 3D brain MRI analy-

sis algorithms as well as the HPRC system and HLL used in this study. Moreover, a

detailed overview of the PVE algorithm is also described in Chapter 2. The design

strategies used to implement the PVE algorithm on the FPGA-accelerators are pro-

posed in Chapter 3. The CPU and FPGA-based PVE algorithms are performed on

both simulated and real images and the results are compared each other. Chapter 4

provides the performance and accuracy comparisons between the two implementa-

tions. Chapter 5 discusses the differences between the images generated from two

implementations and future works. Conclusions are also provided in Chapter 5.

2

Chapter 2

Background

2.1 Magnetic Resonance Imaging

As the interests in brain mapping have increased, many medical imaging methods

have been developed to produce images of the human brain. These images com-

monly capture the fine details of the anatomical brain structures, such as three major

brain tissue types: Gray Matter, White Matter and cerebrospinal fluid as shown in

Figure 2.1. Grey matter (GM) is one of the major components of the Central Ner-

vous System (CNS) and is the region where the functional stimuli are processed.

White matter (WM) is other major component of the CNS and is connective fibers

responsible for passing messages between functional areas, while cerebrospinal

fluid (CSF), surrounding the surface of GM, protects the brain from mechanical

pressure.

The common modern imaging technologies used for clinical and research pur-

poses are computed tomography (CT), positron emission tomography (PET) and

magnetic resonance imaging (MRI). Among these technologies, MRI has grown

rapidly since the first scanning of a human brain in the late 1970’s. MRI scanner

generates multiple 2D cross-sectional images with a greater spatial resolution and

immensely superior soft tissue contrast compare to other medical imaging modali-

ties [18]. Each volume element (voxel) of the generated MR image represents the

signal intensity of brain tissue and any image artifact introduced during the image

3

GM

WM

CSF

Figure 2.1: Three major tissue classes of the brain.

(a) Sagittal cross section (b) Coronal cross section (c) Transaxial cross section

Figure 2.2: MRI cross-sectional brain images.

acquisition. Figure 2.2 illustrates the cross-sectional images generated by an MRI

scanner. The slice orientation of each image refers to one of orthogonal directions.

Due to the superior tissue contrast among in vivo soft brain tissues, MR imaging

has become a powerful noninvasive technology in many medical and physiological

studies. The tissue contract in MRI originates from the hydrogen proton density in

each tissue and the tissue-specific transverse and longitudinal relaxation rates. The

relaxation of the magnetization of proton can be described phenomenologically by

the Bloch equation:

dM
dt

= M× γB− Mxi + Myj
T2

− (Mz −Mo)k
T1

, (2.1)

4

where i, j and k are unit vectors in the x,y, and z directions respectively. In Equation

2.1, M and γ represent the magnetization vector of proton and the gyromagnetic ra-

tio respectively, while B includes the various magnetic fields applied. Mo is the

magnitude of the equilibrium magnetization when only Bo is applied and Mx, My

and Mz represent the three orthogonal components of the M. T1 and T2 are longitu-

dinal and transverse relaxation time constants.

A magnetization moment M is produced when Bo is presented and will be “ex-

cited” when the radio frequency (RF) pulse is applied in the transverse direction.

Following an excitation, the transverse component of the magnetization starts de-

caying away as:

Mxy = M0e
−t
T2 . (2.2)

On the other hand, the longitudinal component starts its recovery to the equilibrium

state as:

Mz = Mo(1− e
−t
T1). (2.3)

Since different tissues have different T1 and T2 time constants, the transverse

and longitudinal magnitudes of the magnetized tissue vary in different rate depend-

ing on the T1 and T2 values as a function of time. As a result, the soft tissue contrast

is maximized if an image is acquired when the maximum magnitude difference is

presented between the magnetized tissues. If the tissue contrast in an image is

mainly due to the different T1 or T2 values of the tissues, the image generated from

an MRI scanner is called T1-weighted or T2-weighted image respectively. Another

image often acquired using an MRI scanner is PD-weighted image. The contrast

presented in this image is mainly due to the different proton density between tis-

sues. As shown in Figure 2.3, the T1-weighted image has very clear contrasts

among the all tissues (typically, CSF, GM and WM), however, the T2-weighted

and PD-weighted image show less clear contrast between the tissues.

5

(a) T1-weighted image (b) T2-weighted image (c) PD-weighted image

Figure 2.3: T1, T2 and PD contrast.

2.2 Automatic MR Imaging Analysis Algorithm

Due to the high resolution and the explicit tissue contrast, many clinical studies

have used MR images for quantitative analysis of human brain structure in many

clinical studies. Traditionally, these studies manually processed the MRI data sets

to identify different tissue types and to segment neuroanatomical structures in hu-

man brain. However, these manual procedures have become too time-consuming

as the sizes of data sets in many studies have tremendously increased. Moreover,

the manual tissue classification and segmentation are expensive and labor intensive

since they require well-trained individuals who are very familiar with neuroanatom-

ical structures. Furthermore, the consistency of results are limited in manual tech-

niques. Therefore, fully automatic MRI analysis algorithms have been developed to

overcome these limitations. The automatic algorithms provide more consistent re-

sults and allow researchers to process larger set of 3D MRI in a shorter time period.

The following subsections present brief descriptions of the major algorithms used

for quantitative analysis of 3D brain MRI.

2.2.1 Non-uniformity Correction

One of artifacts often seen across an MR image is the intensity non-uniformity

(INU). This artifact is usually caused by poor radio frequency (RF) field uniformity

6

(a) T1-weighted image with
INU

(b) INU corrected image

Figure 2.4: INU correction algorithm.

and eddy currents driven by the switching of field gradients [6]. The artifacts may

not be visually apparent on the image, however, they cause tissue within homoge-

neous areas to have different intensities. As a result, an algorithm to correct the

INU, such as [6], is usually performed in the early stage of automated image pro-

cessing so that the artifacts presented on MRI do not degrade the performance of

any other algorithms. Figure 2.4 illustrates a non-uniformity corrected image.

2.2.2 Registration

In human brain mapping, all image volume within as well as between populations

are compared to each other for a reliable quantitative analysis. As a result, an al-

gorithm has been developed to map all image volumes in a study into the same

spatial coordinate system so that data from a similar location in different brains can

be compared. This algorithm is distinguished into liner or non-linear registration

depending on how the algorithm transforms the image volumes to the stereotaxic

space. The linear registration algorithm uses 9-parameters (translation, rotation and

scale) to globally transfer the native MRI data set into a pre-defined atlas. The com-

monly used atlas for linear registration is produced from an averaged MRI brain

aligned with the Talairach sterotaxic coordinate system [7]. On the other hand, the

non-linear registration generates a high dimensional deformable field and locally

transfers the image volumes into the stereotaxic space using the field [19].

7

2.2.3 Tissue Classification

After the non-uniformity of MR image is corrected and the image is transferred into

the stereotaxic space, researchers use tissue classification algorithm to classify each

voxel of the image into one of four tissue classes (CSF, GM, WM and background)

as shown in Figure 2.5. The tissue classification algorithm usually exploits the

tissue contrast presented in MR images to identify brain tissues. The algorithm first

generates a histogram of each tissue type and determines the intensity distribution

of each tissue type. The classifier then evaluates the intensities of voxels and labels

the voxels into appropriate tissue classes.

The commonly used tissue classification algorithms are usually distinguished

into supervised or unsupervised methods depending on whether a priori informa-

tion is used to classify the voxels or not [20]. In the supervised classification algo-

rithm, a 3D “training” volume, which contains tissue probability information is first

generated from several hundred MR images that have been classified by a semi-

automatic or automatic method. The MR image is then classified using a classifier

and the generated “training” volume. The commonly used classifiers in the algo-

rithms are maximum likelihood [11], k-nearest neighbors (KNN) [9] or artificial

neural network (ANN) [21]. On the other hand, the unsupervised classification

algorithm clusters voxels in an image only based on statistics such as K-means

clustering algorithm without any pre-defined training data set [20]. The algorithm

classifies voxels into K different tissue classes by minimizing the sum of squares of

distance between data and the centroid of clustered data.

2.2.4 Surface Extraction

One of critical analysis stages for human brain mapping is the extraction of inner

and outer cortical surface of the human cerebrum from a 3D MR image. A surface

extraction algorithm such as Constrained Laplacian Anatomic Segmentation using

Proximity (CLASP) uses a 3D deformable polygonal mesh model to construct the

3D cortical surfaces [10]. The algorithm first deforms an ellipsoid of the model

8

(a) T1-weighted image (b) Classified image (c) Overlaid

Figure 2.5: Tissue classification algorithm. Yellow, red and teal represent GM, WM
and CSF respectively.

(a) WM surface (b) GM surface

Figure 2.6: Surfrace extraction algorithm.

inward in an iterative fashion until the classified WM surface is successfully con-

structed. The GM surface is then constructed by deforming the model outward from

the constructed WM surface. The process of expending the deforming model to the

classified GM surface has been very challenging due to the folded nature of the cor-

tex. As a result, a laplacian map, which is generated by subtracting the skeletonized

CSF from the classified cortical GM, is used to maintain topological correctness

during extracting the GM surface. Researchers then measure cortical thickness of

brain by calculating the distance between the two extracted surfaces. Figure 2.6

illustrates the WM and GM surfaces constructed from the CLASP algorithm.

9

2.3 Partial Volume Estimation (PVE)

The process of classifying three tissue types (WM, GM and CSF) in 3D MR images

of the human brain is made difficult due to the partial volume effect. This effect

blurs the intensity distinction of tissues at the boundary areas as shown in Figure

2.7. An algorithm, known as Partial Volume Estimation (PVE), has been developed

to overcome the difficulties occurred during tissue classification due to the partial

volume effect and to estimate the proportion of each tissue type present in a voxel

more accurately.

Several different PVE algorithms have been proposed and distinguished based

on how they model the partial volume effect. The PVE algorithm developed in [11]

uses a statistical model, based on Markov Random field (MRF) theory, to address

the partial volume effect. This model, first proposed in [22], assumes that the image

intensity value of each mixel can be described as a sum of weighted random vari-

ables (RVs).

Statistical model for Mixel

Let the acquired 3D MR image be denoted by X = {xi : i = 1, ... , N} where

N is the total number of voxels. In the image X , a voxel xi composed of a mixture

of several different tissue types is known as a mixel [22]. Let j = {1, ... , M}
represent the set of possible pure tissues present in the image and lj represent the

RV describing the tissue type j. The content of a mixel, xi can there be expressed

in term of the RVs as:

xi =
M∑

j=1

wij lj, (2.4)

where the weighting terms wij , known as partial volume coefficients (PVCs), rep-

resent the fractional amount of tissue type j present in the voxel xi (wij ∈ [0, 1]

and
∑M

j=1 wij = 1). The PVE algorithm is therefore divided into two main stages.

The first stage classifies voxels in the volume into appropriate tissue class, while

10

WMGMCSFSulcalRegion Voxels with Partial Volume Effect
Figure 2.7: Partial volume effect on Sulcal region.

the second stage estimates the fractional amount (PVCs) of each pure tissue type

present in each voxel.

2.3.1 Partial Volume (PV) classification

In the Partial Volume (PV) classification stage, each voxel is classified and labeled

as one of three pure tissue types (CSF, WM and GM) or two mixed tissue types.

The two possible mixed tissue types are mixed white matter/grey matter (WMGM)

or mixed gray matter/CSF (GMCSF).

Let C represent a partial volume context image and voxels in C are labeled to

one of five possible tissue classes. The estimation of the context image, C*, then

can be calculated for the given MR image X using the maximum a posteriori (MAP)

criterion as:

C∗ = arg max
C

P (C|X) = arg max
C

P (C)
N∏

i=1

P (xi|ci), (2.5)

where
N∏

i=1

p(xi|ci) and P(C) are the probability densities and the prior information

for all possible tissue classes, respectively [11].

11

Estimation of the probability densities

The probability densities for all five possible tissue classes are first required to

be calculated for the PVE classification. The mean and covariance of the three pure

tissue types (CSF, GM, WM) are calculated based on the intensity distribution of

the pre-classified voxels for each pure tissue. Since the probability densities of the

pure tissues types which are equal to the multivariate Gaussian pdf [11], the proba-

bility density for pure tissue voxel xi can be determined as:

p(xi|ci) = g

[
xi; µj,

∑
j

]
=

1√
2πΣj

e
(x−µj)2

2
∑

j , (2.6)

where µj and
∑

j represent the mean and covariance of the pure tissue type j. If

voxel xi is a mixel that is composed by tissue type j and k, the probability densities

for this voxel can be also obtained from the integration of the multivariate Gaussian

pdf [11] as :

p(xi|ci = {j, k}) =

∫ 1

0

g
[
xi; µ(w),

∑
(w)

]
dw (2.7)

where

µ(w) = wµj + (1− w)µk , (2.8)

∑
(w) = w2

∑
j

+(1− w)2
∑

k

. (2.9)

The µ(w) and
∑

(w) represent the mean and covariance of the mixed tissue class,

respectively. In Equation 2.7, {j, k} indicates voxel xi is a mixel that is composed

by tissue type j and k.

Estimation of the prior information

Since adjacent voxels can be assumed to likely have similar tissue types in

data sets generated by the 1 mm resolution MRI scanner, a MRF model with 26-

neighbour voxels is used to represent the prior information for all possible tissue

12

classes due to its flexibility in defining the neighborhood system [11] [22] [23].

The prior information can be modeled using a MRF as:

P (C) ∝ exp

(
β

N∑
i=1

∑

k∈Ni

aik

d(i, k)

)
, (2.10)

where β is the MRF weighting parameter, i is the index of a voxel in the image X,

N is the total number of voxels in image X, Ni is the 26-neighbour voxels around

voxel i, k is the index of a voxel from Ni and d(i,k) is the distance between the

voxel i and its neighbour voxel k. The value of aik is determined based on the tissue

relationship between voxel i and k [11], that is,

aik =

2 : ci = ck

1 : ci and ck share a component

−1 : otherwise.

(2.11)

During the tissue classification, the MRF model usually oversmoothes the bound-

aries between GM and CSF tissues in the deep sulcal regions of the brain shown

as in Figure 2.7. As a result, [23] proposed a solution to overcome this artifact on

sulcal regions using modified aik term and a curvature image, which pre-defined the

CSF tissues in sulcal regions. The author modified the weighting term aik to ensure

that the voxels in deep sulcal regions to be labeled as CSF or GMCSF tissue. The

modified weighting term aik provided by [23] is

aik =

−2 : ci = ck

−1 : ci and ck share a component

: ci /∈ {GMCSF, CSF} or C(i) ≥ 0

f(C(i)) : ci ∈ {GMCSF, CSF} and C(i) < 0

1 : otherwise,

(2.12)

where C(i) is the value of the curvature at voxel i and f(x) is a “transform” function,

13

Figure 2.8: T1-weighted image and curvature image. (a) T1-weight MR image (b)
Curvature image (c) Curvature image is overlaid on top of T1-weight

such as

f(x) =
A

1 + e−B(x+C)
− 1, (2.13)

which is used to calculate an appropriate MRF weight term for the voxel in the

sulcal region. Note that overlapped image in Figure 2.8 illustrates that how well the

predefined sulcal regions in a curvature image are correspond to the real regions in

a T1 weighted image.

After the probability densities and prior information for every possible tissues

class are estimated, a voxel i is classified as the tissue type which generated the

maximum P (ci|xi) term. The Iterated Conditional Modes (ICM) algorithm is used

to determine the newly estimated context image C* in Equation 2.5. This algorithm

iteratively re-estimates the context image using the tissue labels calculated in the

previous iteration until convergence is reached.

2.3.2 PVC Estimation

After every voxel is labeled by one of the possible tissue types in the PV classi-

fication stage, the fraction of each pure tissue present in a mixel is calculated in

the PVC estimation stage. If voxel i is a mixel containing tissue k and j, the frac-

14

tional amount of tissue k and j within the voxel i can be calculated by employing

the maximum-likelihood principle as:,

wik∗ = 1− wij∗ (2.14a)

wij∗ = arg max
w∈[0,1]

g(xi|µ(w),
∑

(w))

= arg max
w∈[0,1]

ln g(xi|µ(w),
∑

(w))

= arg min
w∈[0,1]

[(xi − µ(w))T
∑

(w)−1(xi − µ(w))

+ ln det(
∑

(w))],

(2.14b)

respectively [11]. In Equations 2.14a and 2.14b, µ(w) and
∑

(w) are mean and

covariance of the mixed tissue type, respectively and PVCs for all other tissues

types are zero. A grid search algorithm is used to solve the maximum-likelihood

PVC estimation [11].

2.3.3 Overview of the PVE Algorithm

Figure 2.9 shows four input images required to perform the PVE algorithm on a sin-

gle 3D MR brain image. Figure 2.9(a) is a normal T1-weighted MR image from an

MR scanner. Pre-generated curvature image is given in Figure 2.9(b) and this image

contains the information of CSF in the sulcal region. The classified image is used

to calculate the mean and covariance of the pure tissue classes. In Figure 2.9(c),

white, grey, dark grey and black regions represent WM, GM, CSF and BG, respec-

tively. The Skull mask image in Figure 2.9(d) is used to reduce the computation

complexity by eliminating the voxels in the background.

An overview of the described PVE algorithm is provided in Figure 2.10. The

algorithm first calculates the mean and covariance of pure tissue type from the pre-

classified image before performing the PV classification stage. The algorithm then

evaluates whether the voxel is in background or not. If the voxel is not located in

background, the PVE algorithm performs the PV classification stage and labels the

15

(a) T1-weighted image (b) Curvature image (c) Classified image (d) Skull mask image

Figure 2.9: Partial Volume Estimation input images.

voxel with an appropriate tissue type from the calculated probability densities and

prior information of all possible tissues as described in Section 2.3.1. Otherwise,

the algorithm classifies the voxel as background. The PV classification stage is

iteratively executed and terminates when the total number of changed voxels during

the previous iteration is lower than the total number of changed voxels during the

current iteration or the maximum number of iterations (20) is reached. After the

classification is done, the fractions of each pure tissue class within the voxels are

estimated as described in Section 2.3.2.

Figure 2.11 illustrates four output images generated from the PVE algorithm.

Each voxel in the PVE classified image is labeled to the dominant tissue type among

all possible tissue types as shown in Figure 2.11(d). Each color represents different

tissue types. Purple, blue, teal, green and yellow regions represent CSF, GM, WM,

GNCSF, WMGM and background respectively. The PVE CSF, GM and WM im-

ages provide the proportion of CSF, GM and WM present in each voxel as shown

in Figures 2.11(a), 2.11(b), 2.11(c), respectively.

2.4 HPRC System and High-Level Language

High-Performance Reconfigurable Computers (HPRCs) combine high performance

CPUs with reprogrammable accelerators such as Field Programmable Gate-Arrays

(FPGAs). The computationally intensive portions of the floating-point scientific ap-

plications can be implemented on FPGAs to achieve full fine-grained parallelism,

16

PVclassification stage
Estimate the fractional amount of each tissue within each voxel

Compute the prior information P(C)
PVC estimation stage

Estimate probability densities for pure and mixed tissue types
NoYesTermination criteria

Estimate the mean and covariance of pure tissue typesIn Background?NoYes

Figure 2.10: Partial Volume Estimation algorithm.

while other portions that exploit the coarse-grained parallelism can be implemented

on the conventional CPU. However, the complex nature of hardware design for FP-

GAs requires specialist engineering knowledge and presents a significant barrier to

scientific users with only a limited amount of programming background. Recently,

a number of High-Level Languages (HLL) for programming FPGAs have emerged

that aim to lower this barrier and abstract away hardware-dependent details.

Several commercial HPRCs and HLLs have been developed and became avail-

able for the researchers to accelerate different scientific applications. The following

subsections present SGI RASC RC100 HPRC system and Mitrion-C HLL and their

17

(a) PVE CSF (b) PVE GM (c) PVE WM (d) PVE classified

Figure 2.11: Partial Volume Estimation output images.

special features.

2.4.1 SGI RASC RC100 System

Silicon Graphic Inc. (SGI) Reconfigurable Application Specific Computing (RASC)

technology is one of the commercial HPRC systems that allow researchers to dra-

matically reduce the algorithm computation time by exploiting the fine-grain paral-

lelism provided by FPGA-accelerators. The RC100 system is the third generation

of RASC technology hardware module and is connected to the Altix 350 multipro-

cessor system via a NUMAlink interconnect network as shown in Figure 2.12. The

Altix 350 has eight 1.5GHz Intel Itanium 2 CPUs with 16GB of shared physical

memory.

As illustrated in Figure 2.13, a RASC RC100 system is composed of two Xilinx

Virtex-4 LX200 FPGAs, two TIO interface ASICs and a bitstream loader FPGA

[24]. Table 2.1 provides a summary of available hardware resource of a Virtex-

4 LX200 FPGA. Each computational FPGA has five 8MB QDR SRAM DIMM

memory banks, although the core services currently provide access to 32MB per

FPGA. The TIO ASIC is a peer-to-peer I/O brick which handles the interface be-

tween NUMAlink interconnect and IO buses from the algorithm FPGAs. A loader

FPGA enables fast bitstream loading into the computational FPGAs.

The bitstream loaded into algorithm FPGAs consists of two different blocks:

algorithm block and core service block as shown in Figure 2.14. The components

18

RASC RC100
NUMAlink Interconnect (6.4 GB/S)

16 GB Global Shared
Memory

Interface Chip RASC RC100CPU

Eight 1.5GHz Intel Itanium 2 CPUs
CPU

Altix350 system

Figure 2.12: SGI Altix350 and RASC RC100.

Table 2.1: A summary of Virtex-4 hardware resource.

Resource Availability
Logic Cells 200,448

Slices 89,088
18 X 18 multiplier 96
18kb Block RAM 336

inside of the pre-synthesized core service block help execution of the user imple-

mented algorithm in the algorithm block. The read/write Direct Memory Access

(DMA) and SSP interface on the core service block control the data transfer be-

tween the external SRAMs of FPGA and the main memory on the Altix system.

The algorithm block has an access to the debug port and algorithm defined registers

via Peer Input/ouput (PIO) block. Memory Mapped Registers (MMR) handle the

registers used to control the FPGAs. Algorithm control block includes logics used

to control the implementation on the algorithm block.

The RASC abstract layer provides Application Programmable Interface (API)

functions through which the host program on the Altix system can communicate

19

TIOSSP TIOSSPLoader FPGA
NUMALink 4NUMALink 4

8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM 8MB QDR SRAM Bank 0/1
Bank 2/3

Bank 0/1
Bank 2/3

Algorithm FPGA 0Algorithm Block Algorithm BlockCore Service Block Core Service Block
Algorithm FPGA 1

Figure 2.13: RASC RC100 system.

with the RASC RC100 modules. The developers can implement the abstract layer

as an Algorithm or a Co-processor (COP) layer. The Algorithm layer is built on top

of the COP layer and treats multiple devices as a single large logical device, whereas

the COP layer treats each device individually. Due to the difference between the

two layers, the developer cannot use both layers simultaneously and should decide

which layer to use based on the algorithm beforehand. The API functions provide

developers some standard and advanced interfaces required to run the implemented

algorithm. Table 2.2 provides a summary of the abstract layer functions. When a

host program calls the rasclib functions, they are not executed immediately. Instead,

the host program first queues the functions within the RASC abstract layer. When

the rasclib algorithm commit function is executed, the host program then sends

the queued commands to the driver. When all of the committed commands are

finished, the rasclib algorithm wait function returns a validated value to the host

program [24].

Two special features, streaming and wide-scaling, help efficiently execute al-

gorithms on large data sets in the SGI RASC RC100 system. Streaming reduces

20

Algorithm block
QDR

SRAM 0/1

QDR

SRAM 2/3

TIO SSP
SSP

Interface External

memory

control

Algorithm

control

MMRsPIO

WRITE

DMA

Engine
Core service

blocks

Algorithm block READ

DMA

Engine

Figure 2.14: The block diagram of Algorithm FPGA.

Table 2.2: A summary of RASC Abstract Layer Functions.

Functions Description
rasclib resource alloc allocate the devices
rasclib resource free free the allocated devices
rasclib algorithm open open bitstream
rasclib algorithm send send input buffer to external memory
rasclib algorithm go start computing algorithm

rasclib algorithm receive receive output buffer from external memory
rasclib algorithm commit commit queued commands

rasclib algorithm wait wait till all commands are executed
rasclib algorithm close close the allocated bitstream

the overhead of data transfer by overlapping the data loading and unloading with

algorithm execution. As shown in Figure 2.15(a), the streaming feature requires the

designer to split the 32MB SRAM into two memory blocks; one for input memory

(Bank A) and the other for output memory (Bank B). These memory banks are fur-

ther segmented into two sub-blocks so that the implemented algorithm can process

data in Bank A1 and write the results in Bank B0, while the algorithm loads the

next input data into Bank A0 and unloads the final computed results from Bank B1

to the host buffer. When the algorithm processes all data in Bank A1, the FPGA

starts executing on the loaded segment (Bank A0), while the freed segment (Bank

21

A1) begins loading the next input data set.

The wide-scaling feature allows the algorithm to be automatically scaled over

multiple FPGAs, by equally distributing large input data sets to the available FPGAs

to process them simultaneously. This feature uploads the generated bitstream into

all available FPGAs and re-assembles the computed results from each FPGA into a

single results data set automatically. As shown in Figure 2.15(b), the wide-scaling,

therefore provides an implementation to easily exploit coarse-grained parallelism.

In the cases where the algorithm requires different bitstreams for each FPGA or a

non-uniform data partitioning, the programmer needs to manually scale the appli-

cation.

2.4.2 Mitrion-C HLL

Dataflow-oriented Mitrion-C is a fully parallel programming HLL. Since its syntax

is very similar to ANSI-C, it is readily available to programmers with only software

background. As shown in Figures 2.16, 2.17 and 2.18, the Mitrion-C HLL is a

single-assignment language which emphasizes defining data dependencies instead

of order of the execution [25]. Therefore, the programmer only needs to be con-

cerned about expressing the dataflow of the algorithm, and not any hardware-based

concerns such as timing. The programmer can express parallelism using explicit

language constructs and exploit it in the form of vectorization and/or pipelining,

based on the selection of data types and the parallel constructs provided by Mitrion-

C [17].

There are two available array data types in Mitrion-C HLL: lists of elements

accessible sequentially, and vectors in which all elements can be addressed at once

in any order. The resulting architecture is determined by the selection of data type

(list or vector) and the parallel operator applied to it. A parallel foreach construct

indicates a data-parallel loop. While combining the vector data type with the fore-

ach loop creates explicit parallel structures with multiple processing elements (PEs),

this design style rapidly consumes FPGA resources as shown in Figure 2.16. In con-

trast, applying a foreach loop to a list implements a pipelined architecture, where

22

Algorithm FPGA
8 MB(Bank A0)8 MB(Bank A1)
8 MB(Bank B0)8 MB(Bank B1)

TIO

128-bits long

128-bits long

Bank A
Bank B

Global
Memory

(a) Streaming [1]

Algorithm FPGA 0(bitstream 0) Algorithm FPGA 1(bitstream 0) Algorithm FPGA 2(bitstream 0) Algorithm FPGA 3(bitstream 0)
Segment 4Segment 0 Segment 5Segment 1 Segment 6Segment 2 Segment 7Segment 3

Segment 0 resultSegment 1 resultSegment 2 resultSegment 3 resultSegment 4 resultSegment 5 resultSegment 6 resultSegment 7 result
(b) Wide-scaling

Figure 2.15: Special features provide by SGI RASC technology.

a single PE is generated to process the input data sequentially as shown in Figure

2.17.

The programmers can also use a combination of both lists and vectors as il-

lustrated in Figure 2.18. While this design approach requires more resources than

the list-foreach approach, it requires less than the vector-foreach approach. By con-

trast, this design style exploits more parallelism than the list-foreach design and less

than the vector-foreach design. As a result, the programmer needs to select an ap-

propriate data type for the application to fully utilize available hardware resources

23

PE PE PEtemp[0] PE PE PEtemp[1] temp[2] temp[3] temp[4] temp[5]0data[0] 1 2 3 4 5res[0] res[1] res[2] res[3] res[4] res[4]
data[1] data[2] data[3] data[4] data[5]

Mitrion-C 1.2;// options: -cpp main (){ int:8[6] data = [0 .. 5]; // Vector data typeres = foreach(i in data){temp = i * i);}temp;}(res);
Figure 2.16: Mitrion-C vector data type with foreach loop.

and parallelism, since there clearly is a tradeoff between the circuit area and the

execution time.

Mitiron Software Development Kit (SDK) helps the programmers to develop

FPGA applications that are time consuming. The simulator/debugger in SDK gen-

erates a graphical representation of the hardware data flow graph and is the key in

identifying data-dependency and bottlenecks in the design. In the Mitrion simu-

lator/debugger, developers can also use breakpoint and watch functions similar to

the ones used in software debuggers to determine program errors. Figure 2.19 is

an example of the graphical simulator/debugger generated from the code example

in Figure 2.18. As shown in Figure 2.19, the graphical simulator/debugger shows

the data-dependency and variables to help programmers optimize and debug the de-

sign. Another tool in Mitrion SDK, the Mitrion Compiler, generates the Mitrion

machine code from Mitrion-C source code. The machine code is used to generate a

24

Mitrion-C 1.2;// options: -cpp main (){ int:8<6> data = <0 .. 5>; // List data typeres = foreach(i in data){temp = i * i);}temp;}(res);
PEdata[5] data[4] data[3] data[2] data[1] data[0] i temp res[5] res[4] res[3] res[2] res[1] res[0]

Figure 2.17: Mitrion-C list data type with foreach loop.

fine-grained massively parallel Mitrion Virtual Processor (MVP) correspondent to

the application developed in the Mitrion-C HLL [17].

Figure 2.20 shows the overview of the Mitrion design flow. The Mitrion com-

piler generates Mitrion machine code which can be used either for simulation in the

debugger/simulator or for Mitrion Processor Configurator depending on the stage

of the development cycle. The Mitrion Processor Configurator generates VHDL

which corresponds to the MVP constructed from the Mitrion machine code and the

pre-defined target FPGA architecture. The generated MVP is designed to run at a

pre-fixed frequency and is wrapped in the core services which provide memory and

communications interfaces between the HPRC system and CPUs in the host system.

Mitrion platform currently supports several commercial HPRC systems such as SGI

25

Mitrion-C 1.2;// options: -cpp main (){ // combination of vector and listint:8[3]<2> data = [<0,1>,<2,3>,<4,5>]; res = foreach(list in data){value = foreach(i in list){temp = i *i;}temp;}value;}(res);
PE PE PEtemp[0] temp[1] temp[2]data[0] data[2] data[4]data[1] data[3] data[5]
res[0] res[2] res[4]res[1] res[3] res[5]

Figure 2.18: Combination of vector and list data with foreach loop.

RASC RC100, Cray XD1, Nallatech BenDATA-DD, and DRC Reconfigurable Pro-

cessor Unit (RPU) [26]. Third party Computer-Aided Design (CAD) tools, such as

Synplify Pro and Xilinx ISE, are used to synthesize and place-and-route the design

to generate bitstream which will be uploaded into the FPGA-accelerator.

26

Figure 2.19: Mitrion graphical simulator/debugger.

Figure 2.20: Mitrion design flow.

27

Chapter 3

Hardware Implementation of PVE

3.1 Introduction

The PVE algorithm described in Section 2.3 is very attractive for hardware acceler-

ation due to its ability to independently process voxels. We implemented the PVE

algorithm on RASC RC100 FPGA-accelerators using the Mitrion-C HLL to reduce

its computation time. The FPGA-implemented PVE algorithm was optimized to

fully utilize available parallelism and hardware resources on the RASC RC100.

3.2 Overview of Design Flow

In developing the hardware implementation, we first profiled the CPU-based PVE

algorithm in order to identify the computationally intensive functions. The identi-

fied functions were then re-developed using the Mitrion-C HLL for hardware imple-

mentation. We verified their functionality using Mitrion simulator/debugger before

the time-consuming synthesis and place-and-route operations. After the verifica-

tion, we generated MVP from the source code and performed synthesis and place-

and-route operations to generate its bitstreams. After the bitstreams were success-

fully generated, we uploaded them to the RASC bitstream registry using the device

manager (devmgr). We also developed a host program which maintains commu-

nication between the Altix 350 system and the algorithm FPGAs on the RC100

28

modules using C programming language. Finally, we verified the results from the

FPGA-based algorithm against the ones from the CPU-based algorithm. The fol-

lowing sections present the detailed design concepts that we used to implement the

PVE algorithm on the RASC RC100 using the Mitrion-C HLL.

3.3 Profiling CPU-based PVE Algorithm

Unfortunately, not every function in the PVE algorithm can be implemented on the

RASC RC100 FPGA-accelerators, due to the limited availability of hardware re-

sources and memory. As a result, it is very important to identify the primary perfor-

mance bottleneck of the PVE algorithm and to implement it on FPGA-accelerators

for hardware acceleration. This process can be completed by profiling the CPU-

based PVE algorithm, as a report generated by such a profiling tool will indicate

which parts of a program are consuming most of the execution time and which

functions are called while it was executing.

We profiled the CPU-based PVE algorithm using GNU gprof [27] to identify

the computationally intensive portions and places where data-parallelism could be

exploited on the FPGA. The resulting profiling report is shown in Table 3.1. This

report indicates that the PV classification stage, described in Section 2.3.1, is the

primary performance bottleneck, as the stage consumes approximately 94% of the

total computation time. Especially, in the PV classification stage, the estimation of

the probability densities function consumes approximately 13% of the total PVE

algorithm computation time due to the expensive computation of the stage. More-

over, approximately 81% of the total PVE algorithm computation time is consumed

by the estimation of the prior information for all tissue types in the PV classifi-

cation stage. This stage becomes one of the main computation bottleneck of the

CPU-based PVE algorithm because it requires to re-estimate the prior information

iteratively. As a result, these two functions are the most ideal candidate for imple-

mentation on the RASC RC100 FPGA-accelerators. Figure 3.1 shows the distribu-

tion of the PVE algorithm functions on the Altix 350 system and RASC RC100.

29

Table 3.1: GNU gprof profiling report of the CPU-based PVE algorithm.

Functions CPU-based
†The estimation of the prior information 301s (81%)

†The estimation of the probability densities 49.8s (13%)
PVC Estimation 3.8s (1%)

IO functions 18.2s (5%)
Total 372.8s

† Two subsections within the PV classification stageRead volumes from input imagesCompute parameters(µCSF, µGM, µWM, ΣCSF, ΣGM, ΣWM) The estimation of the probability densities for all tissue typesThe estimation of the prior information for all tissue types
PVC EstimationWrite volumes into output images

RASC RC100 Altix 350TerminationYESNO
Figure 3.1: PVE algorithm on RASC RC100.

After we identified the computationally intensive functions from profiling, we

estimated the total possible performance improvement that can be achieved by the

FPGA-based PVE algorithm using Amdahl’s law,

SU =
TSW

THW

=
1

(1− FHW) + FHW

SpeedupHW

, (3.1)

where TSW and THW represent the total computation time of the CPU-based and

FPGA-based implementations, respectively, while the SU represents the overall

30

speedup. In Equation 3.1, FHW is the fraction of the computation time of the func-

tion which is implemented on the FPGA and SpeedupHW is the performance gain

from the hardware-implemented function. Amdahl’s law states that the overall per-

formance improvement (SU) is limited by the fraction of the function (FHW) that

can be accelerated [28]. The FPGA-based PVE algorithm can achieve an over-

all speedup of 5× when the performance of the PV classification implemented on

FPGA-accelerator (FHW =0.94) is enhanced by approximately a factor of 6.7.

3.4 FPGA-implemented PD Estimation

The PD estimation function estimates the probability densities (PDs) of every

possible tissue class for voxels in the volume. The PDs are only estimated once at

the first iteration of the PV classification stage. Algorithm 1 provides an overview of

the CPU-based PD estimation function. The CPU-based implementation, which is

developed in C, first reads the mean and covariance of pure tissue types (CSF, GM

and WM) which are pre-calculated from the previous step. The algorithm reads

the intensity of the voxel in the skull mask volume and verifies whether the voxel

belongs to background or not. If the voxel is part of the background, the algorithm

sets the PDs of all tissue classes to zero and labels the voxel as BG. Otherwise,

the PDs of pure and mixed tissue for the voxel are calculated from Equations 2.6

and 2.7, respectively. The five generated PDs are normalized to ensure that the

summation of all PDs is equal to one. After normalization, the algorithm classifies

the tissue type of the voxel as the tissue class which has the highest PD among the

five. The PD estimation terminates when the described processes are performed on

every voxel in the T1-weight volume.

We first identified the functions that can benefit from hardware parallelism to

implement the PD estimation function on the RASC RC100 FPGA-accelerators.

Since the tasks of computing PDs of pure and mixed tissue are independent, we

designed and implemented them to perform simultaneously. Moreover, since the

tissue PDs of voxels are independent, we designed the hardware implementation to

31

Algorithm 1 Estimation of probability density for all possible tissue classes
Require: The first iteration of the PV classification

INPUT : Skull mask image, T1-weighted image
µCSF ⇐ mean of CSF
µGM ⇐ mean of GM
µWM ⇐ mean of WM
ΣCSf ⇐ covariance of CSF
ΣGM ⇐ covariance of GM
ΣWM ⇐ covariance of WM
for i = 0 to last voxel − 1 do

if voxel ∈ background then
pdfi[CSF]⇐ 0
pdfi[GM]⇐ 0
pdfi[WM]⇐ 0
pdfi[WMGM]⇐ 0
pdfi[GMCSF]⇐ 0
classi ⇐ background

else
x ⇐ intensity value of voxel from T1-weighted image
for all possible tissue classes do

if tissue = CSF, GM or WM then
pdfi[tissue]⇐ gaussian(x, µtissue, Σtissue)

else {tissue = WMGM or GMCSF}
pdfi[tissue] ⇐ 0
for w = 0 to 49 do

compute µtissue(w)
compute Σtissue(w)
pdfi[tissue] = pdfi[tissue] + gaussian(x, µtissue(w), Σtissue(w))

end for
end if

end for
norm pdfi ⇐ nomalize pdfi

classi ⇐ argmin
tissue

{norm pdfi[tissue]}, tissue = CSF, . . . , GMCSF

end if
CSF pdf volume[i] ⇐ norm pdfi[CSF]
GM pdf volume[i] ⇐ norm pdfi[GM]
WM pdf volume[i] ⇐ norm pdfi[WM]
WMGM pdf volume[i] ⇐ norm pdfi[WMGM]
GMCSF pdf volume[i] ⇐ norm pdfi[GMCSF]
classified volume[i] ⇐ classi

end for
OUTPUT : CSF pdf volume, GM pdf volume, WM pdf volume, WMGM pdf
volume, GMCSF pdf volume, classified pdf volume,

32

Estimate PDs

for pure tissues

Estimate PDs

for mixed

tissues

Normalization

of five PDs

PDWMGM PDGMCSfPDCSF PDGM PDWM
Classified

volume

Parameters

(µCSF, µGM, µWM,

ΣCSF, ΣGM, ΣWM)

Processing

in parallel

Pipelined

Ouputs

Inputs

Functions

implemented

on FPGA

Figure 3.2: Overview of the FPGA-implemented PDs estimation function.

process the voxels in a pipelined fashion. Figure 3.2 illustrates the overview of the

FPGA-implemented PDs estimation function. The following sections presents the

detailed design principles and techniques used to implement PD estimation func-

tions on FPGAs.

3.4.1 Input and Output Buffers

The PD estimation function requires two input images: the T1-weight and the skull

mask image. Each image is composed of 181 slices and each slice contains 39277

voxels (217 × 181). The intensity values of voxels in the T1-weight image are

stored in unsigned short data type (2 Bytes). The values in the skull mask image

are stored in unsigned char data type (1 Byte) to identify the location of voxel (0

⇒ if it is in the background, 1 ⇒ otherwise). The PD estimation function also

generates six resulting volumes: PDCSF , PDGM , PDWM , PDWMGM , PDCSFWM

33

Table 3.2: Summary of input/output file formats for the PDs estimation function.

Volume Data type Total Size
T1-weighted image (Input) Unsigned short (2B) 13.56 MB

Skull image (Input) Unsigned char (1B) 6.78 MB
PDs (Output) Unsigned short (2B) 13.56 MB

Classified image (Output) Unsigned chart (1B) 6.78 MB

and a classified image. Each PD volume contains PDs of voxels for a specific tissue

type. The calculated floating-point PDs are converted to unsigned short data type

and stored in a file to reduce data transfer overhead. The classified image uses

unsigned char data type to store the classified tissue type of each voxel. Table 3.2

shows the summary of the input and output files for the PDs estimation function.

Due to the limitation of the available external memories in RASC RC100, we

first carefully designed the usage of the off-chip memory before we ported the PDs

estimation function into the Mitrion-C HLL and implemented on FPGA-accelerators.

Figure 3.2 indicates that the input buffer of normalization function includes five sin-

gle precision floating-point PD volumes. Therefore, the total size of the input buffer

is approximately 142.38MB (5 × 7109137 voxels × 4B), which is larger than the

size of the available external memories on the RASC RC100 module (16MB). As

a result, we applied the RASC streaming technique described in Section 2.4.1 to

reduce data transfer overhead between the host system and the RASC RC100. The

available input and output off-chip memories were set to 8MB instead of 16MB

and then the total number of voxel can be stored in 8MB SRAM were manually

calculated as:

number of voxel per 8MB segment =
total number of voxel
number of segment

=
181× 217× 181

142.38 MB / 8MB

' 399456 voxels.

(3.2)

Since each segment can transfer 399456 voxels, we needed to transfer eighteen

34

µCSF, µGM, µWMΣCSF ,ΣGM, ΣWMIntensity values of 399456 voxelsPadded by zerosµCSF, µGM, µWMΣCSF ,ΣGM, ΣWMIntensity values of 399456 voxelsPadded by zerosSeg #17
Seg #0 1 line1 line49932lines128-bits wide

(a) Input buffer.

399456 PDCSF399456 PDGM399456 PDWM399456 PDWMGM399456 PDGMCSF399456 classified voxelsPadded by zeors
128-bits wide

lines
lineB

B

249660
/16

25399456

=

××

lines
lineB

B

24966
/16

1399456

=

×399456 PDCSF399456 PDGM399456 PDWM399456 PDWMGM399456 PDGMCSF399456 classified voxelsPadded by zeors
Seg #0
Seg #17

(b) Output buffer.

Figure 3.3: The structure of input and output buffer for FPGA-implemented PDs
estimation.

segments (7109137 voxels / 399456 voxels) from the Altix 350 system to the off-

chip memory of the algorithm FPGAs. Figures 3.3(a) and 3.3(b) show the structure

of input and output buffer used for FPGA-implemented PDs estimation function,

respectively.

3.4.2 FPGA-based PD Estimation for Pure Tissue Classes

We first implemented the PD estimation for pure tissue classes on the hardware

accelerators. Figure 3.4 illustrates its functional building blocks. The implemented

design first reads the mean and covariance of pure tissues from the external memory,

and then stores them in the internal memory of FPGA. The implemented design

calculates the single precision floating-point PDs of three pure tissue classes using

the mean and covariance values and then writes them into the external SRAM in the

order shown in Figure 3.4.

35

Figure 3.4: Functional blocks of FPGA-implemented PD estimation for pure tissue
types.

We implemented the gaussian probability density function, provided in Equa-

tion 2.6, on FPGA-accelerators using the Mitrion-C HLL to compute PDs of three

pure tissue classes. The gaussian PE was composed of six multipliers, one di-

vider, one square root function and one exponent function, as shown in Figure 3.5.

Mitrion-C constructed these single precision floating-point arithmetic functions us-

ing 18-bit × 18-bit multipliers and logic cells provided by the Xilinx Virtex-4. We

were only able to implement two gaussian PEs to compute the PDs simultaneously

due to the limited hardware resources available on the Xilinx Virtex-4. The Mitrion-

C list data type was also used with foreach loop such that the PEs can generate

outputs in a pipelined fashion.

3.4.3 FPGA-based PD Estimation for Mixed Tissue Classes

We also ported the PD estimation for mixed tissue classes into Mitrion-C HLL and

implemented on FPGA-accelerators. The implementation was very similar to the

one described in Section 3.4.2, however, the required integral calculation made it

more complicated. Equation 2.7 estimates the PDs of the two mixed tissue classes

by integrating the gaussian PDs from zero to one with an increment of w. Figure 3.6

shows the functional building blocks of the FPGA-implemented PD estimation for

mixed tissues. The implemented design first reads the mean and covariance of pure

tissues from the external memory, and then stores them in the internal memory. The

mean and covariance of the mixed tissue class are calculated based on the reference

36

Figure 3.5: Gaussian PE from Mitrion simulator/debugger.

tissue type and the value of w, as shown in Equations 2.8 and 2.9, respectively. The

integration step size, w, is set to 0.02 as in the CPU-based implementation. The

implemented design generates the single precision floating-point PDs of two mixed

tissue classes and writes them into the external SRAM in the order shown in Figure

3.6.

We implemented the integral operation over fifty different gaussian PD func-

tions using a reduction tree design technique [29] [30] instead of a sequential loop.

As we were only able to implement two gaussian PEs on one algorithm FPGA due

to the limit number of available logic blocks, we designed and implemented one-

level single precision floating-point reduction tree. A single precision floating-point

accumulator was then used to accumulate the outputs generated by the reduction

tree. Moreover, since the algorithm requires intermediate results (1 − w), w2 and

(1 − w)2 for fifty different w values between zero and one to calculate the mean

and covariance for mixed tissues, we pre-calculated the values and stored in tables

to reduce computational complexity. We also used a combination of the Mitrion-C

list and vector data types with foreach loop to estimate the PDs of the two mixed

tissue classes in a pipelined fashion.

37

Figure 3.6: Functional blocks of FPGA-implemented PDs estimation for mixed
tissue types.

3.4.4 FPGA-based PDs Normalization

We implemented a function on the FPGA-accelerators to normalize the five single

precision floating-point PDs, generated as described in Sections 3.4.2 and 3.4.3.

Moreover, we also designed the implementation to evaluate the voxel value of mask

skull volume. The FPGA-implemented normalization function first reads the PDs

of all tissue types and the voxel value of the mask skull from the external SRAM.

If the voxel is in the background, the implemented design sets the normalized PDs

of every tissue class to zero and labels the voxel as background. Otherwise, the five

PDs of a voxel are normalized by a normalization PE. After the PDs are normalized,

the implemented design determines the tissue type that generates the maximum PD

among them and classifies the voxel according to the tissue type. The converted

normalized PDs and classified tissue labels are then written into the external SRAM

in the order as shown in Figure 3.7.

Figure 3.8 provides the detailed functional building blocks of the normalization

PE are provided. The sum of the five PDs was computed from the three-level re-

duction tree. Each PD was multiplied by the inverse of the calculated sum rather

than being divided by the sum, as single precision floating multiplication operation

is computationally and logically less expensive than the division operation. The

normalized single precision floating point PDs were multiplied by 65535 (216-1)

and converted to unsigned short data type using the Mitrion-C type casting fea-

38

Figure 3.7: Functional blocks of FPGA-implemented normalization function for
PDs.

PDGMCSF

PDWMGM

PDCSF

PDWM

PDGM

Inverter

PDGMCSF

PDWMGM

PDCSF

PDWM

PDGM

Convert

to short

data type

Convert

to short

data type

Convert

to short

data type

Convert

to short

data type

Convert

to short

data type

Reduction Tree Normalization
Data format

conversion

Figure 3.8: Normalization PE.

ture. Since normalization of the PDs is an independent process for every voxel,

we employed four normalization PEs to normalize the tissue PDs for four voxels

simultaneously as shown in Figure 3.7.

3.4.5 Host Program for the FPGA-based PD Estimation

After bitstreams were successfully generated for the implementations described in

Sections 3.4.2, 3.4.3 and 3.4.4, we developed a host program to allocate memory for

input/output buffers and to handle the data transfer between the Altix 350 system

and the RASC RC100 algorithm FPGAs. This host program was also responsible

39

for controlling the sequence of operations that are required to run the implemented

algorithm on the FPGA-accelerators.

The host program uses a special RASC API function, rasclib huge alloc, to

allocate the memory space that is required to store the input and output buffers.

This function allows developers to allocate memory from the specially pre-reserved

spaces by RASC library, such that a DMA can transfer the data faster between the

global shared memory in the Altix 350 and the external memory of the FPGA. After

all of the spaces have been allocated, the host program writes the data required to

perform the algorithms into the allocated input buffer using the memcpy function

provided in C.

As shown in Figure 3.2, we designed PD estimation to perform simultaneously

for pure and mixed tissues. As a result, the host program employs the POSIX

threads (Pthreads) API [31] [32] to invoke the two FPGA-implemented algorithms

at the same time. It first calls the rasclib resource alloc function to allocate the

available FPGAs for both algorithms. After the available devices are allocated, the

host program calls the pthread create() function to create two individual threads

and to initialize the attributes used by the threads. Each thread sequentially calls

the RASC API functions, described in Section 2.4.2, to transfer data to and from

the device and to start the algorithm implemented on each FPGA. When a thread

has completed its work, the host program calls the pthread exit() function and

receives the termination statuses of the threads. For last, the host program calls the

pthread join() function to ensure synchronization between the two threads. Figure

3.9 shows a summary of Pthreads operation.

The current Altix 350 system contains two RASC RC100 modules such that

four FPGA-accelerators are available to execute multiple algorithms in parallel.

Therefore, properly partitioning the implemented algorithms over four available

FPGAs is essential to achieving optimal performance. Since every PD needs to be

estimated before normalization, two PD estimation algorithms for pure and mixed

tissue classes are partitioned over the four FPGAs using the RASC wide-scaling

feature described in Section 2.4.1. Table 3.3 shows several different partitioning

40

pthread_create()

pthread_exit()

pthread_joint()

pthread_exit()

Host program

(Master Thread)

Thread1 :

Estimating PDs for

pure tissues

Thread2 :

Estimating PDs for

mixed tissues

Figure 3.9: Summary of Pthreads operation.

Table 3.3: Possible scenarios to distribute over four FPGAs for PD estimation func-
tion for pure and mixed tissues classes

of FPGAs used to # of FPGAs used to Timepure Timemixed Total time
estimate the PD estimate the PD
for pure tissues for mixed tissues

1 3 0.359s 13.54s 17.35s
2 2 0.188s 19.32s 23.12s
3 1 0.161s 38.62s 42.4s

scenarios over four FPGAs and indicates that estimating PDs of the mixed tissue

classes dominates most of the computation time. As a result, the best performance

improvement is achieved by using three FPGAs and one FPGA to estimate PDs of

mixed tissue and pure classes respectively.

After the FPGA-implemented algorithm estimates PDs of all tissue classes for

voxels, the host program reconstructs the input buffer, as shown in Figure 3.7. At

the same time, the four FPGAs allocated for the PD estimation algorithms are un-

reserved and re-allocated for the normalization algorithm. The host program also

partitions and invokes the normalization function over four FPGAs using wide scal-

ing feature. Figure 3.10 illustrates the final design of the hardware-implemented

PD estimation and normalization algorithm.

41

FPGA 1

Estimate PD for

pure tissues

FPGA 2

Estimate PD for

mixed tissues

FPGA 3

Estimate PD for

mixed tissues

FPGA 4

Estimate PD for

mixed tissues

FPGA 1

Normalize PDs

FPGA 2

Normalize PDs

FPGA 3

Normalize PDs

FPGA 4

Normalize PDs

Host program

Read volumes

from input images

Compute

parameters

(µCSF, µGM, µWM,

ΣCSF, ΣGM, ΣWM)

Reconstruct

input buffer for

normalization

Figure 3.10: Hardware-implemented PD estimation and normalization algorithm
with four FPGAs.

3.5 FPGA-implemented Prior Information Estimation

The CPU-based prior information estimation function is designed to estimate

the prior information, P(C), terms, for every possible tissue class using the MRF

model provided in Equation 2.10. Although the PVE algorithm performs the PD es-

timation function only once during the PV classification stage, it invokes the prior

information estimation function iteratively. The algorithm re-classifies the tissue

classes of voxels using the new estimated P(C) terms in each iteration. The current

iteration terminates when the total number of changed voxels during the previous it-

eration is lower than the total number of changed voxels during the current iteration

or the maximum number of iterations (20) has been reached. Algorithm 2 provides

an overview of the CPU-based prior information estimation for each tissue class of

every voxel in the volume.

The CPU-based prior information estimation function first reads a tissue class of

a voxeli from the classified volume, generated from the PD estimation stage (i ∈ {0

. . . total number of voxel -1}). If the voxel is labeled as background, the algorithm

skips every step. Otherwise, the algorithm estimates the prior terms to determine

the appropriate tissue class for the voxel. The algorithm reads the 26-neighborhood

42

Algorithm 2 Estimation of the prior information for all possible tissue classes
Require: Run until the criteria in Section 2.3.3 is satisfied.

INPUT : Curvature image, classified image and five PDs volumes
for i = 0 to last voxel − 1 do

current tissue⇐ tissue type of voxeli from the classified image
if current tissue = background then

new tissue classi ⇐ background
else

curve var ⇐ value of voxeli in the curvature volume
for ref tissue = CSF . . . GMCSF do

sum ⇐ 0
for k = 0 to 25 do

if voxeli is located at the border of volume then
tissuek ⇐ 0

else
tissuek ⇐ tissue class of one of voxeli’s 26 neighborhood voxels

end if
if tissuek and ref tissue are same then

aik ⇐ -2
else if tissuek and ref tissue are similar then

if curve var < 0 then
aik ⇐ −1

1+e−25(curve var−1) − 1
else

aik ⇐ −1
end if

else
aik ⇐ 1

end if
compute aik

d(i,k)

sum ⇐ sum + aik
d(i,k)

end for
P(C) ⇐ esum

end for
final[CSF] ⇐ pdfi[CSF] × CSF P(C)
final[GM] ⇐ pdfi[GM] × GM P(C)
final[WM] ⇐ pdfi[WM] × WM P(C)
final[WMGM] ⇐ pdfi[WMGM] × WMGM P(C)
final[GMCSF] ⇐ pdfi[GMCSF] × GMCSF P(C)
new tissue classi ⇐ argmin

tissue
{final[tissue]}, tissue = CSF, . . . , GMCSF

end if
end for
OUTPUT : Classified image

43

voxels around voxeli from the classified volume to calculate P(C) for the reference

tissue type using the MRF model as provided in Equation 2.10. If voxeli is lo-

cated at the boundary of the volume, some of its 26-neighborhood voxels might be

located outside the volume. Therefore, the algorithm manually sets the neighbor-

hood voxels located outside the volume to the background instead of reading from

the classified volume. The algorithm compares the 26-neighborhood voxels with

the reference tissue classes (CSF, GM, WM, WMGM and GMCSF) to compute the

similarity terms, aik, as shown in Equation 2.12. The 26 calculated aik terms are

divided by the corresponding d(i,k), which represents the distances between voxeli

and neighborhood voxelk. A sequential loop then sums up the 26 calculated aik

d(i,k)

terms to compute the prior information. This process is repeated for every other

reference tissue type. After the algorithm generates the prior information for every

tissue class, it is multiplied by the corresponding PDs generated from the imple-

mentations describe in Section 3.4 and the final products are normalized. As a final

step, the algorithm classifies the tissue class of the voxeli as the type that generates

the maximum term among the final five products of the prior information and PDs.

The algorithm increase a variable, changed num, if the tissue class of voxeli is

changed. After the described steps are performed on every voxel in the volume, the

algorithm compares the final value of changed num to the value from the previous

iteration to verify the termination criteria.

We first evaluated the functions in the CPU-based prior information estima-

tion implementation to identify any data-parallelism that could be exploited on the

FPGA-accelerators. Since the 26 aik terms required to compute a P(C) term are

independent, we implemented these to perform simultaneously. Moreover, we de-

signed the FPGA-implemented algorithm in a pipelined fashion because the prior

information for different tissue types is independent. The following sections present

the detailed design principles and techniques used in implementing prior informa-

tion estimation on FPGA-accelerators.

44

Table 3.4: Summary of input/output file formats for the prior information estimation
function.

Volume Data type Total Size
Classified image (Input) Unsigned char (1B) 6.78 MB
Curvature image (Input) floating point (4B) 27.12 MB

five PDs (Input) Unsigned short (2B) 5 × 13.56 MB
classified image (Output) Unsigned chart (1B) 6.78 MB

3.5.1 Input and Output Buffer

To run the FPGA-based prior information estimation algorithm, three images are

required: the classified image, the curvature image and an image that contains the

probability densities of voxels for different tissue classes. These images are com-

posed of 181 slices, where each slice contains 39277 voxels (217 × 181). The

classified image generated from the PD estimation function or the previous itera-

tion of the prior information estimation function stores the tissue classes of voxels

using unsigned char data type (1B). The value of the curvature image is stored using

a single precision floating point data type (4B). An unsigned short data type (2B)

is used to store each of the voxel values in the five PD volumes (PDCSF , PDGM ,

PDWM , PDWMGM and PDCSFWM). The prior information estimation algorithm

also generates one classified image which uses unsigned char data type to store the

re-classified tissue classes of voxels. Table 3.4 provides a summary of the input and

output files for the prior estimation function.

Due to the limited size of the external SRAMs on the RASC RC100 module,

we cannot sent all three input images to the FPGA at once. As a result, we utilized

the RASC streaming feature to reduce the overhead of the data transfer between the

memory on the Altix 350 and the off-chip memory. We set the available input and

output off-chip memories to 8MB and manually calculated the total number of slice

45

can be stored in 8MB SRAM as:

8MB = ((x+2) × 399456 voxels × 1B)

+ (x × 399456 voxels × 4B)

+ 5 × (x × 399456 voxels × 2B)

∴ x = 13 slices per 8MB.

(3.3)

We transferred extra two slices of the classified image (front and back) in each

segment in order to obtain 26-neighborhood voxels.

Moreover, we transferred fourteen 8MB segments from the Altix 350 system to

the external memory of the RASC RC100 module using the streaming feature, as

each volume contains 181 slices. Figures 3.11(a) and 3.11(b) show the structure of

input and output buffer used for FPGA-implemented prior information estimation

function, respectively.

3.5.2 FPGA-based MRF Function

We re-programmed the C-kernel of the CPU-based P (C) estimation function using

the Mitrion-C HLL to generate the bitstreams for the FPGA-accelerators. As shown

in Figure 3.12, the hardware-implemented algorithm first reads three rows of each

slice (slice α-1, α and α+1) of the classified image from the input SRAM and stores

them in the internal Block RAMs on the FPGA. The CPU-based algorithm stores the

voxel values of the classified image in an array of unsigned char (8-bits) data type.

However, in order to reduce hardware resources and achieve better performance,

we stored the rows read from the classified volume in 3-bit internal Block RAMs in

the FPGA-based implementation, as all possible tissue classes can be represented as

3-bit data. The implemented design also reads a single row of the curvature image

and the five probability densities volumes for all possible tissue types and stores in

the internal Block RAMs.

The implementation then reads the 26-neighborhood voxels around the current

voxeli from the internal Block RAMs, where three rows of each slice are stored as

46

128-bits wide

15 slices of Classified image

(†One zero padded slice and

Slice 0 - Slice 14)

13 slices of Curvature image

(Slice 0 - Slice 12)

13 slices of CSF PD

(Slice 0 - Slice 12)

Seg #13

(8MB)

13 slices of GM PD

(Slice 0 - Slice 12)

13 slices of WM PD

(Slice 0 - Slice 12)

13 slices of WMGM PD

(Slice 0 - Slice 12)

13 slices of GMCSF PD

(Slice 0 - Slice 12)

15 slices of Classified image

(Slice 167 – Slice 180 and
†One zero padded slice)

13 slices of Curvature image

(Slice 169 – Slice 180)

13 slices of CSF PD

(Slice 169 – Slice 180)

13 slices of GM PD

(Slice 169 – Slice 180)

13 slices of WM PD

(Slice 169 – Slice 180)

13 slices of WMGM PD

(Slice 169 – Slice 180)

13 slices of GMCSF PD

(Slice 169 – Slice 180)

Seg #0

(8MB)

(a) Input buffer.

128-bits wide

Padded by zeros

Re-classified Slice 0

Re-classified Slice 1

Re-classified Slice 11

Re-classified Slice 12

Padded by zeros

Re-classified Slice 169

Re-classified Slice 170

Re-classified Slice 179

Re-classified Slice 180

Seg #13

(8MB)

Seg #0

(8MB)

(b) Output buffer.
† Zero padded slices are introduced in Section 3.5.3

Figure 3.11: The structure of input and output buffer for FPGA-implemented prior
information estimation.

shown in Figure 3.13. For an example, if the current voxeli is stored at the address

183 of a internal Block RAM, its eight of 26-neighborhood voxels are stored at the

addresses 2, 3, 4, 182, 184, 362, 363 and 364. The remaining neighborhood voxels

can be simply obtained from the other internal Block RAMs, which store the three

rows of slices α-1 and α+1.

After the implementation reads the 26-neighborhood voxels, it generates the

prior information for all possible tissue classes using the MRF modeling block.

Figure 3.14 provides an overview of the MRF modeling block. Since the algorithm

requires 26 aik

d(i,k)
terms to compute P(C) as shown Equation 2.10, we designed and

implemented a PE which generates a single aik

d(i,k)
term on the FPGA-accelerator

47

using the Mitrion-C HLL as shown in Figure 3.15. Each aik PE first verifies the

relationship between the reference tissue class and one of its 26-neighborhood vox-

els, and then determines the appropriate aik term. To reduce the complexity of the

verification process, we implemented a truth table, shown in Table 3.5, to validate

the similarity between two tissue classes. The weighting term is multiplied by the

inverse of the distance between voxeli and its neighborhood voxel voxelk, instead

of dividing, to avoid costly floating-point division operations. Since the inverted

distance between two voxels are fixed, we pre-calculated and stored these values in

a table to reduce the computational complexity.

48

Figure 3.12: Hardware-implemented prior information estimation function.

49

V1 V2 V3 V4 . . . V177 V178 V179 V180

V181 V182 V183 V184 . . . V356 V357 V359 V360

V361 V362 V363 V364 . . . V537 V538 V539 V540

Figure 3.13: An internal Block RAM stores three rows of Slice α.

aik

PE �26-

neighbour

voxels

∑
˛ iNk

ik

kid

a

),(

Reference

tissue class

),(kid

a
ik

EXP)(
i

CP

aik

PE

aik

PE

aik

PE

aik

PE

aik

PE

aik

PE

aik

PE

aik

PE

Curvature

value of

voxel i

Figure 3.14: Functional blocks of MRF modeling block.

Since the 26 aik

d(i,k)
terms are completely independent, we implemented several

aik PEs in parallel to generated these terms simultaneously. Due to the limited

availability of hardware resources, we were only able to utilize nine aik PEs in the

proposed implementation. We also exploited a four-level single precision reduction

tree to accumulate the output of each PE instead of a data-dependent for-loop and

implemented a sequential loop-dependent accumulator at the end of the reduction

tree. The final P (C) was then generated using a single precision floating-point

exponential operation, as shown in Figure 3.14.

The implementation then reads the five PDs of voxeli from the internal Block

RAMs and they are multiplied by 1
65535

to convert them to single precision floating-

50

Ci < 0
YESAre

same

Neighborhood

voxel k

Are

similar

NO

-2

Reference

tissue

aik

Curvature

value(Ci)

1 -1

YES

f(Ci)

Inverted dik

),(kid

a
ik

1
1

2
)1(25
-

+

-

--
i

C
e

Figure 3.15: Generating aik.

Table 3.5: Truth table used to identify the similarity between the reference tissue
and the tissue class of neighbor voxel

tissue CSF GM WM WMGM GMCSF
CSF 0 0 0 0 1
GM 0 0 0 1 1
WM 0 0 0 1 0

WMGM 0 1 1 0 0
GMCSF 1 1 0 0 0

point values using the Mitrion-C type casting function. The generated P (C)s are

multiplied by the corresponding single precision tissue probability densities in a

pipelined fashion, and the final products are normalized using the normalization

PE described in Section 3.4.4. As a final step, the implementation determines the

tissue type which generates the maximum product of P (C) and PD and classifies

the tissue class of the voxeli as the determined tissue type. The newly classified

tissue type is then written to the output RAM.

51

3.5.3 Host Program for FPGA-based Prior Information Estima-

tion

We developed the host program for the FPGA-based prior information estimation

function in C and its responsibilities were very similar to those described in Sec-

tion 3.4.5. The host program first allocates the memory space for input and output

buffers using the RASC rasclib huge alloc function. The FPGA-based implemen-

tation requires a special scheme to handle the 26-neighborhood voxels of a voxel

located on the border of the volume. To reduce computational complexity, the host

program pads the volume with zeros such that the neighborhood voxels located out-

side of the volume are automatically set to zero, which represents the background.

The memcpy function provided in C writes the required input data into the allocated

memory space as shown in Figure 3.11(a).

Since the prior information for each voxel can be computed independently, the

algorithm execution is distributed among the four available FPGA-accelerators to

exploit coarse-grained parallelism. We modified and partitioned the implementa-

tion described in Section 3.5.2 into four different implementations such that each

partition can compute one quarter of the voxels in each row of the slice that is be-

ing processed as shown in Figure 3.16. Unfortunately, we could not use the RASC

wide-scaling feature in this algorithm because the generated bitstreams from the

four partitions are not identical. As a result, we generated four threads which manu-

ally uploaded each bitstream onto FPGAs and invoked the implemented algorithms

simultaneously.

When the prior information estimation algorithm is performed successfully, the

CPU-based PVE algorithm evaluates whether the iteration termination criteria is

satisfied or not. The evaluation process requires to compare the classified image

from the current and previous iteration and then it determines how many voxels

have been classified to a new tissue class in the current iteration with respect to the

previous iteration. As a result, this function is not a good candidate to be imple-

mented on FPGA-accelerators because there is a data-dependency between voxels

52

FPGA 1

(Voxel 0-47)

FPGA 4

(Voxel 144-180)

FPGA 3

(Voxel 96-143)

FPGA 2

(Voxel 48-95)

Row

Voxel

Figure 3.16: Partitioned FPGA-based prior information function.

from two classified images. Therefore, we implemented the evaluation function in

the host program instead of on the FPGAs using a counter and a sequential for-loop

provided in C. Since the evaluation function in the host program performs extremely

fast, the computation time spent by the evaluation function is neglected.

3.6 Summary

We profiled the CPU-based PVE algorithm using GNU gprof to determine the most

computationally intensive functions in the algorithm. The functions were then im-

plemented on SGI RASC RC100 FPGA-accelerators using the Mitrion-C HLL to

reduce the computation time. This chapter describes the design concepts used to

implement the primary performance bottleneck of PVE algorithm, the PV classifi-

cation stage, on the RASC RC100. Figure 3.17 illustrates the completed implemen-

tation. We developed the host program for the FPGA-based PVE algorithm using

53

SGI RASC library 2.1, while the hardware-implemented functions are programmed

using Mitrion-C 1.2. We then used the third party tool, Xilinx ISE 8.2i, to generate

bitstreams by performing synthesize and place-and-route operations on the imple-

mented designs. Table 3.6 shows the hardware resources used and the time spent to

perform the synthesis and place-and-route on each implemented function.

54

Ta
bl

e
3.

6:
H

ar
dw

ar
e

re
so

ur
ce

s
su

m
m

ar
y

of
fu

nc
tio

ns
im

pl
em

en
te

d
on

a
X

ili
nx

V
ir

te
x-

4
L

X
20

0.

R
es

ou
rc

e
(t

ot
al

)
Pu

re
tis

su
e

PD
M

ix
ed

tis
su

e
PD

N
or

m
al

iz
at

io
n

P(
C

)e
st

im
at

io
n

es
tim

at
io

n
fu

nc
tio

n
es

tim
at

io
n

fu
nc

tio
n

fu
nc

tio
n

fu
nc

tio
n

Sl
ic

es
(8

9,
08

8)
38

,9
57

(4
3%

)
79

,2
32

(8
8%

)
56

,7
84

(6
3%

)
77

,9
54

(8
7%

)
Fl

ip
Fl

op
s

(1
78

,1
76

)
46

,3
62

(2
6%

)
86

,7
39

(4
8%

)
62

,3
50

(3
4%

)
82

,1
59

(4
6%

)
4-

in
pu

ts
L

U
T

s
(1

78
,1

76
)

42
,8

86
(2

4%
)

96
,4

89
(5

4%
)

65
,5

79
(3

6%
)

96
,4

79
(5

4%
)

M
ul

tip
lie

rs
(9

6
18
×1

8)
64

(6
6%

)
64

(6
6%

)
64

(6
6%

)
65

(6
7%

)
18

kb
B

lo
ck

R
A

M
s

(3
36

)
39

(1
1%

)
57

(1
6%

)
25

(7
%

)
37

(1
1%

)
† C

A
D

Ti
m

e
≈

6
ho

ur
≈

6
ho

ur
≈

6
ho

ur
≈

9.
5

ho
ur

s
†

Sy
nt

he
si

s
an

d
pl

ac
e-

an
d-

ro
ut

e
op

er
at

io
ns

ar
e

do
ne

by
a

se
rv

er
w

ith
2.

0
G

H
z

In
te

lX
eo

n
pr

oc
es

so
ra

nd
4G

B
m

em
or

y.

55

FPGA 1

Estimate PDs for

pure tissues

FPGA 2

Estimate PDs for

mixed tissues

FPGA 3

Estimate PDs for

mixed tissues

FPGA 4

Estimate PDs for

mixed tissues

FPGA 1

Normalize PDs

FPGA 2

Normalize PDs

FPGA 3

Normalize PDs

FPGA 4

Normalize PDs

Reconstruct

input buffer for

normalization

FPGA 1

P(C) estimation

FPGA 2

P(C) estimation

FPGA 3

P(C) estimation

FPGA 4

P(C) estimation

Read volumes

from input images

Compute

parameters

(µCSF, µGM, µWM,

ΣCSF, ΣGM, ΣWM)

Host program

Reconstruct

input buffer for prior

information estimation

PVC Estimation

Write volumes into

output images

Termination

YES

NO

Figure 3.17: Final design of HPRC-implemented PVE algorithm

56

Chapter 4

Results

In order to evaluate the performance improvement and accuracy of the proposed

FPGA-based PVE algorithm, we performed several tests with both simulated and

real MR brain images. We first used the simulated images to evaluate the perfor-

mance improvement and accuracy of the implementation, as they are fairly rigorous

representation of a true MR brain image. Moreover, several real MR brain im-

ages were randomly selected from the International Consortium for Brain Mapping

(ICBM) data set [33] and processed using the FPGA-based PVE algorithm to en-

sure the performance improvement and the robustness of the implementation. In

order to evaluate the performance improvement, a timing function in the host pro-

gram measured the computation times of both CPU-based and FPGA-based PVE

algorithm and the results were compared. We also used several statistical simi-

larity measurements to verify images that resulted from both the CPU-based and

FPGA-based PVE algorithms. The following sections provide detailed descriptions

of the test data sets and the measurements that we used to evaluate the performance

improvement and accuracy of the FPGA-based PVE algorithm.

57

(a) Single T1 image. (b) Averaged T1 image (colin27).

Figure 4.1: Single and averaged T1-weighted colin image.

4.1 Test Data Set

4.1.1 The Digital Phantom

The digital phantom image, known as “colin27”, was generated by averaging the

intensity of the 27 distinct T1-weighted MRI scans that are acquired from a sin-

gle subject [34]. The signal-to-noise ratio of the intensity-averaged image was en-

hanced, and the contrast between tissues was also significantly improved, as shown

in Figure 4.1. This image has been used during the development and performance

evaluation of the FPGA-based PVE algorithm, as it minimizes classification errors

due to the noise and poor tissue contrast found in typical MR brain images.

4.1.2 The Simulated Images

Noise and intensity non-uniformity (INU), two major acquisition artifacts found in

MR images, are a significant challenge for automated brain MR image analysis al-

gorithms because they can degrade the performance of these algorithms. In the past,

it has been very difficult for developers to determine the behavior of the algorithm

on images with artifacts, because no information is known about the artifacts be-

fore the image is processed. As a result, researchers have developed a sophisticated

MRI simulator [35] to obtain realistic brain MR images with a user-specified quan-

58

tity of artifacts. The simulator uses the Bloch equation to generate 3D simulated

MR images from pre-defined tissue templates and a 3D brain phantom, by varying

the specific imaging parameters and artifacts.

The simulated images have been very useful for many anatomical brain mapping

communities because they accurately represent the major morphological features

of the human brain. As a result, many 3D MR brain image analysis algorithm

developers perform their algorithms on the simulated images and use them as the

“gold standard” for quantitative analysis of their techniques [9] [23]. Moreover, as

the MRI simulator can easily introduce different amounts of artifacts on the images,

algorithm developers have used the generated images to validate the performance

of their algorithms over different quantities of artifacts.

Images from the flexible and convenient MRI simulator are available to the pub-

lic through an online interface. The McConnell Brain Image Center (BIC) has de-

veloped the BrainWeb [36] for the neuroimaging community so that researchers can

have an access to images from the pre-computed simulated brain database (SBD) 1.

Figures 4.2 and 4.3 provide the simulated images downloaded from the BrainWeb

with different noise and INU parameters respectively. The denotation pn3rf20 is

used to represent an image with 3% of noise and 20% of INU.

4.1.3 The Real Human Brain

For last, we used several real brain images from the ICBM data set, in order to val-

idate the performance and the robustness of the FPGA-based PVE algorithm. The

ICBM has been collecting human brain images since 1992, to develop a probability

atlas and reference system for the human brain. The first ICBM data set contains 88

male subjects and 66 female subjects with healthy, normal brains. The age range of

subjects is from 18 to 22 years. Figure 4.4 provides T1-weighted images selected

from the ICBM data set.
1http://www.bic.mni.mcgill.ca/brainweb/

59

(a) pn0rf0 : 0% noise and 0%
RF noise.

(b) pn0rf20 : 0% noise and
20% RF noise.

(c) pn0rf40 : 0% noise and
40% RF noise.

Figure 4.2: The simulated images with INU (typically 20% of INU is present on an
image).

(a) pn1rf0 : 1% noise and 0%
RF noise.

(b) pn1rf0 : 3% noise and 0%
RF noise.

(c) pn1rf0 : 5% noise and 0%
RF noise.

(d) pn1rf0 : 7% noise and 0%
RF noise.

(e) pn1rf0 : 9% noise and 0%
RF noise.

Figure 4.3: The simulated images with noise (typically 5% of noise is present on an
image).

60

(a) ICBM101. (b) ICBM102. (c) ICBM103.

(d) ICBM104. (e) ICBM105. (f) ICBM106.

(g) ICBM107. (h) ICBM108. (i) ICBM109.

Figure 4.4: Real human brain images from the ICBM data set.

61

4.2 Performance Comparison

We compiled the original CPU-based PVE algorithm and the host program of the

FPGA-based PVE algorithm useing GNU gcc 4.1.0 with level 2 optimization option

to compile . They were executed using a single 1.5 GHz Itanium 2 processor on an

Altix 350 system. The hardware-implemented portions of the FPGA-based PVE al-

gorithm were distributed among four FPGA-accelerators. The computation time of

the CPU-based and the FPGA-based algorithm were measured using gettimeofday

function, which reads the current CPU time from the host program. To allow for

a fair comparison, the hardware execution time included the overhead associated

with preparing the input buffer, loading bitstreams onto FPGAs, transmitting input

buffers, running the bitstream and receiving resulting data [37].

Table 4.1 demonstrates the performance improvement achieved by the FPGA-

based PD estimation function on the simulated and real images. The average com-

putation time of the CPU-based and FPGA-based PD estimation function were

47.16 seconds and 18.70 seconds respectively, while the overall performance en-

hancement of the FPGA-based PD estimation implementation was an average 2.5×
over the CPU-based PD estimation function.

The FPGA-based prior information estimation implementation also achieved a

significant speedup over the CPU-based algorithm, as shown in Table 4.2. The

average execution time per iteration of the CPU-based and the FPGA-based prior

estimation function were 21.9 seconds and 1.9 seconds respectively, which repre-

sents a 11.5× performance enhancement. However, as the number of iterations

required to satisfy the termination criteria differ between the two implementations,

the speedup of the overall prior information estimation function was 9.4× instead

of 11.5×. On average, the CPU-based prior information estimation function re-

quired 12 iterations for a total computation time of 263.40 seconds. Conversely, the

FPGA-based algorithm required an average of 15 iterations and a total computation

time of 28.52 seconds.

Table 4.3 provides the overall computation time spent by the CPU-based and the

62

Table 4.1: Performance enhancement achieved by FPGA-based PD estimation func-
tion.

Subject CPU-based PD estimation FPGA-based PD estimation Speedup
colin27 47.97s 18.67s 2.6×

ICBM101 47.69s 18.69s 2.6×
ICBM102 46.7s 18.66s 2.5×
ICBM103 46.92s 18.77s 2.5×
ICBM104 46.94s 18.73s 2.5×
ICBM105 46.86s 18.76s 2.5×
ICBM106 46.74s 18.72s 2.5×
ICBM107 46.58s 18.66s 2.5×
ICBM108 46.73s 18.67s 2.5×
ICBM109 47.00s 18.7s 2.5×
ICBM110 47.28s 18.67s 2.5×
ICBM111 47.62s 18.72s 2.5×
ICBM112 46.82s 18.7s 2.5×
ICBM113 47.57s 18.72s 2.5×
ICBM114 47.11s 18.65s 2.5×
ICBM115 46.95s 18.64s 2.5×
ICBM116 47.09s 18.68s 2.5×
ICBM117 47.66s 18.73s 2.5×
ICBM118 47.89s 18.65s 2.6×
ICBM119 47.01s 18.65s 2.5×
ICBM120 47.30s 18.67s 2.5×
Average 47.16s 18.70s 2.5×

FPGA-based PVE algorithms, along with the overall speedup enhancement. The

average computation time of the CPU-based and the FPGA-based PVE algorithms

were 331.60 seconds and 65.09 seconds respectively. The overall computation time

and speedup varied depending on the subject due to the number of the required iter-

ations. The maximum speedup enhancement achieved by the FPGA-based PVE al-

gorithm was 5.7× (ICBM102) when the same number of iterations were performed

for both implementations. On the other hand, the minimum achieved speedup was

4.3× (ICBM114). The FPGA-based PVE algorithm achieved an average speedup

of 5.1× over the CPU-based PVE algorithm.

63

Table 4.2: Performance enhancement achieved by FPGA-based P(C) estimation
function. The number inside of bracket represents the number of iteration per-
formed

Subject CPU-based P(C) estimation1 FPGA-based P(C) estimation2 Speedup
colin27 246.93s (11) 27.59s (14) 9.0×

ICBM101 245.61s (11) 31.00s (16) 7.9×
ICBM102 305.60s (14) 27.74s (14) 11.0×
ICBM103 263.08s (12) 27.75s (14) 9.5×
ICBM104 284.96s (13) 34.64s (18) 8.2×
ICBM105 218.84s (10) 27.77s (14) 7.9×
ICBM106 262.31s (12) 27.32s (14) 9.6×
ICBM107 239.32s (11) 25.80s (13) 9.3×
ICBM108 279.37s (13) 25.72s (13) 10.9×
ICBM109 284.00s (13) 25.72s (13) 11.0×
ICBM110 243.12s (11) 27.33s (14) 8.9×
ICBM111 311.48s (14) 33.33s (17) 9.4×
ICBM112 240.18s (11) 25.62s (13) 9.4×
ICBM113 260.03s (12) 25.85s (13) 10.1×
ICBM114 219.59s (10) 29.28s (15) 7.5×
ICBM115 328.28s (15) 32.35s (17) 10.2×
ICBM116 285.51s (13) 32.34s (17) 8.8×
ICBM117 283.74s (13) 26.09s (13) 10.9×
ICBM118 284.71s (13) 29.15s (15) 9.8×
ICBM119 284.99s (13) 30.62s (16) 9.3×
ICBM120 264.7s (12) 26.01s (13) 10.2×
Average 263.40s (12) 28.52s (15) 9.4×

1 Number of iteration × 21.9 seconds
2 Number of iteration × 1.9 seconds

64

Table 4.3: Overall performance enhancement. The number inside of bracket repre-
sents the number of iteration performed

Subject CPU-based PVE FPGA-based PVE Speedup
colin27 311.1s (11) 62.46s (14) 5.0×

ICBM101 309.3s (11) 67.56s (16) 4.6×
ICBM102 368.1s (14) 64.23s (14) 5.7×
ICBM103 326.1s (12) 64.64s (14) 5.0×
ICBM104 348.2s (13) 71.59s (18) 4.9×
ICBM105 281.8s (10) 64.50s (14) 4.4×
ICBM106 324.8s (12) 63.90s (14) 5.1×
ICBM107 302.1s (11) 62.68s (13) 4.8×
ICBM108 342.3s (13) 62.54s (13) 5.5×
ICBM109 347.4s (13) 62.57s (13) 5.6×
ICBM110 306.7s (11) 64.22s (14) 4.8×
ICBM111 375.20s (14) 70.08s (17) 5.4×
ICBM112 302.9s (11) 62.1s (13) 4.9×
ICBM113 323.5s (12) 62.4s (13) 5.2×
ICBM114 282.6s (10) 65.77s (15) 4.3×
ICBM115 391.2s (15) 68.9s (17) 5.7×
ICBM116 348.6s (13) 68.85s (17) 5.1×
ICBM117 347.2s (13) 62.63s (13) 5.5×
ICBM118 348.6s (13) 65.65s (15) 5.3×
ICBM119 347.8s (13) 66.98s (16) 5.2×
ICBM120 328s (12) 62.56s (13) 5.2×
Average 331.60s (12) 65.09s (15) 5.1×

65

4.3 Accuracy Comparison

We used the same digital phantom and real human brain 3D MR images to verify

the accuracy of the images that were generated using the FPGA-based PVE algo-

rithm. Furthermore, the simulated images from BrainWeb were used to evaluate

the accuracy of implementation on the images with artifacts. We measured several

statistical values to quantify the level of agreement between the images resulting

from the two implementations.

The first statistic used to measure the accuracy of the resulting images was

sensitivity. This value represents the ratio of the total number of voxels correctly

classified as tissue i (HWi ∩ SWi) to the total number of voxels classified as tissue

i in the “golden standard” image (SWi), that is,

Sensitivity =
HWi ∩ SWi

SWi

. (4.1)

In this study, we employed the image classified using the CPU-based PVE algo-

rithm as the “golden standard” image. The sensitivity values for all possible tissue

classes were then calculated to evaluate the performance of the FPGA-based PVE

algorithm, as these values gave a concrete idea of how well the FPGA-based PVE

algorithm classified each tissue type with respect to the CPU-based PVE algorithm.

The second statistic used to measure the accuracy of the FPGA-based PVE al-

gorithm was the Kappa coefficient (K) [38]. Since the Kappa statistic is a relative

value, which varies from 0 to 1 and represents the level of agreement, it is usually

used to compare the accuracy of different algorithms. A Kappa coefficient of 1

indicates perfect agreement, whereas a value of 0 represents agreement equivalent

to chance. Moreover, due to its simplicity and robustness, many fields of research,

such as radiographic interpretation, diagnostics, linguistics and brain MRI classifi-

cation have used the Kappa statistic [23], [9], [39], [40], [41], [42].

The Kappa coefficient provides a chance-correct measure of similarity between

two classifications and is the ratio of the actual present agreement to the agreement

66

expected by chance. It is defined as:

K =
Po − Pe

1− Pe

, (4.2)

where Po and Pe represent the observed and expected agreement respectively. For

a classification of C different tissues, Po is known as the “accuracy” and is defined

as:

P0 =
1

N

C∑
i=1

ai, (4.3)

where the total number of samples is denoted as N and ai represents the number of

correctly classified tissue i. Pe is defined as:

Pe =
1

N2

C∑
i=1

citi, (4.4)

where ci and ti represent the the number of samples classified as tissue i and the

number of the true number of samples in class i respectively.

Since anatomical studies and human brain mapping are usually only interested

in the pure tissue classes (CSF, GM, and WM), in this study, we only calculated

the Kappa coefficient over these three tissue types to evaluate the accuracy of the

FPGA-based PVE algorithm. As a result, the images classified using each PVE

implementations were re-classified to ensure that the mixed tissue classes, WMGM

or CSFWM, were labeled as dominant pure tissue types and that biologically re-

alistic contours were maintained. If a voxeli was classified as WMGM and 80%

of the voxel was composed of GM, this voxel was re-classified as GM. Figure 4.5

provides the classified image from the PVE algorithm and the newly re-classified

image.

Table 4.4 illustrates the calculated sensitivity and Kappa coefficients of the

simulated and real 3D brain MR images. In order to validate the robustness of

the FPGA-based PVE algorithm against different artifacts, we did not perform the

non-uniformity correction algorithm on the simulated images downloaded from the

BrainWeb. The average sensitivity of CSF, GM, WM, GMCSF and WMGM tissue

67

Table 4.4: Accuracy comparison.

Subject CSF GM WM GMCSF WMGM Kappa
colin27 0.994 0.998 0.999 0.996 0.998 1
pn0rf0 0.947 0.999 0.999 0.999 0.999 0.998
pn1rf0 0.983 0.997 0.999 0.996 0.997 0.999
pn3rf0 0.999 0.999 0.999 0.999 0.999 0.999
pn5rf0 0.999 0.999 0.999 0.999 0.998 1
pn7rf0 0.998 0.998 0.999 0.998 0.997 0.999
pn9rf0 0.997 0.997 0.998 0.998 0.995 0.999

pn0rf20 0.946 0.999 0.999 0.999 0.999 0.998
pn0rf40 0.961 0.999 0.999 0.999 0.999 0.998

ICBM101 0.996 0.997 0.999 0.994 0.995 0.999
ICBM102 0.996 0.996 0.998 0.995 0.995 0.999
ICBM103 0.996 0.998 0.998 0.995 0.996 0.999
ICBM104 0.996 0.997 0.999 0.996 0.997 0.999
ICBM105 0.997 0.998 0.998 0.995 0.996 1
ICBM106 0.996 0.997 0.998 0.996 0.995 0.999
ICBM107 0.991 0.998 0.998 0.997 0.996 0.999
ICBM108 0.995 0.997 0.998 0.997 0.996 0.999
ICBM109 0.994 0.998 0.998 0.998 0.997 0.999
ICBM110 0.998 0.997 0.998 0.997 0.997 0.999
ICBM111 0.993 0.997 0.998 0.996 0.996 0.999
ICBM112 0.995 0.997 0.999 0.998 0.996 0.999
ICBM113 0.994 0.998 0.999 0.997 0.996 0.999
ICBM114 0.995 0.998 0.999 0.998 0.995 0.999
ICBM115 0.995 0.997 0.998 0.998 0.996 0.999
ICBM116 0.992 0.997 0.999 0.998 0.995 0.999
ICBM117 0.990 0.997 0.999 0.997 0.996 0.999
ICBM118 0.993 0.997 0.999 0.997 0.996 0.999
ICBM119 0.997 0.998 0.999 0.994 0.996 0.999
ICBM120 0.992 0.998 0.999 0.997 0.996 0.999
Average 0.990 0.998 0.999 0.997 0.992 0.999

68

(a) 5 different tissues. (b) 3 different tissues.

Figure 4.5: The classified image from the FPGA-based PVE algorithm and the re-
classified image (colin27).

over the whole image volume were 0.990, 0.998, 0.999, 0.997 and 0.992 respec-

tively. The average Kappa coefficient calculated over the three pure tissues was

0.999.

Since the sensitivity and Kappa coefficients only indicate the level of agreement

between two implementations, we performed a further test to evaluate the location

of the differences. The voxels in the images classified using the CPU-based and

FPGA-based PVE algorithms were compared and marked if the tissue was classi-

fied differently. This test was performed on both the simulated and real 3D brain

images. Figure 4.6 shows the resulting digital phantom images. A single slice of the

resulting classified image from each implementation is illustrated in Figures 4.6(a)

and 4.6(b). The mismatched 1 mm3 voxels were overlaid on the T1 images and

represented by red, as shown in Figure 4.6(c). Figures 4.7 and 4.8 illustrates the

resulting ICBM and simulated images respectively.

69

(a) CPU-based (b) FPGA-based (c) Differences overlaid
on the T1 image

Figure 4.6: Difference between two implementations (colin27).

(a) ICBM104

(b) ICBM105

Figure 4.7: ICBM images. CPU-based PVE(left), FPGA-based PVE(middle), Dif-
ferences overlaid on the T1 image(right).

70

(a) PN9RF0

(b) PN0RF20

Figure 4.8: Simulated images with artifact. CPU-based PVE(left), FPGA-based
PVE(middle), Differences overlaid on the T1 image(right).).

71

Chapter 5

Discussions and Conclusions

5.1 Discussions

In this study, we implemented the 3D brain MRI tissue classification algorithm PVE

on HPRC using the Mitrion-C HLL. Two computationally intensive functions, PD

and P(C) estimation, were identified and accelerated using four FPGA-accelerators

on two SGI RASC RC100s. The average performance enhancements achieved by

the PD estimation and P(C) estimation function were 2.5× and 9.4× respectively.

Moreover, the FPGA-based PVE algorithm achieved an average of 5.1× speedup

over the conventional CPU-based PVE algorithm (varying from 4.3× to 5.7×). We

also verified the accuracy of the images resulting from the FPGA-based PVE algo-

rithm using several different statistics. The sensitivity and Kappa coefficients, de-

scribed in Section 4.3, indicated that the results from the two implementation were

slightly different. However, Figures 4.6, 4.7 and 4.8 illustrated that the observed

difference would not cause significant errors in clinical studies, as the number of

mismatched voxels was minimal and they were diversely distributed. Moreover,

Table 4.4 demonstrated that the performance of the FPGA-based PVE algorithm is

not degraded as the amount of artifacts increases.

The variable speedup and quantities of mismatched voxels observed for different

subjects were due to differing strategies used for updating the estimated tissue type

between two implementations. The CPU-based algorithm classified voxels sequen-

72

tially and instantly stored the new classified tissue types into memory. As a result,

the 26-neighbor voxels of the current computing voxel were instantly updated as

they were changed. However, we could not implement a similar updating scheme

for the FPGA-based PVE implementation due to data-dependencies between vox-

els. In order to fully exploit the parallelism offered by the FPGA, voxels needed

to be classified independently. In the FPGA-based implementation, the indepen-

dently classified voxels were first stored in the external SRAMs of the FPGA and

then transferred to the memory on the Altix 350 system when the algorithm has

processed all voxels. As a result, even the tissue class of one of 26-neighbor voxels

was changed, it was not used to classify its adjacent voxel.

Figure 5.1 illustrates the two different tissue updating strategies described above.

Note that in this figure, 8-neighbor voxels are used instead of 26-neighbor voxels

to explain the difference between two methodologies. As shown in Figure 5.1(a),

the CPU-based PVE algorithm previously classified certain neighbors (voxel 2, 3, 4

and 182) of voxel 183, before voxel 183 is classified. Therefore, when voxel 183 is

classified, the new tissue types for the neighbor voxels are used instead of the tissue

type from the previous iteration. On the other hand, the FPGA-based implementa-

tion classified every voxel independently, as shown in Figure 5.1(b). Therefore, the

newly classified tissue types of voxel 2, 3, 4 and 182 are not used to classify voxel

183 because they are not yet updated.

The difference between two tissue updating schemes also degraded the perfor-

mance enhancement of the FPGA-based implementation. As Tables 4.2 and 4.3

illustrated, the FPGA-based algorithm performed an average of 3 more iterations to

converge than the CPU-based algorithm. As a result, if we can design a new tissue

update methodology, which ensures the algorithm to be converged within the same

number of iterations as the CPU-based implementation does, more performance en-

hancement can be achieved. The new scheme will reduce the total computation time

of the proposed design by an average of 5.7 seconds (8.8%).

We profiled the FPGA-based PVE algorithm again and the new report is pro-

vided in Table 5.1. The report indicated that the computation time, spent by the

73

V1 V2 V3

V181 V182 V183

V361 V362 V363

V183 V184

V362 V363 V364

Computing voxel 182 Computing voxel 183

V182

Current computing voxel

Previously classified voxel

Instantly updated

V2 V3 V4

(a) CPU-based

V1 V2 V3

V181 V182 V183

V361 V362 V363

V2 V3 V4

V183 V184

V362 V363 V364

Computing voxel 182 Computing voxel 183

V182

Current computing voxel

Computing

independently

(b) FPGA-based

Figure 5.1: Two different classified voxels updating scheme.

prior information estimation function in the FPGA-based PVE implementation, was

significantly reduced from 79.4% to 44.2% of the total computation time. More-

over, the accelerated PVE algorithm spent 27% of the total computation time on

the non hardware-accelerated functions, PVC estimation and I/O function. On the

other hand, the computation time spent by the FPGA-based PD estimation function

was actually increased from 15.4% to 29.0% of the total computation time. This

indicated that the performance enhancement achieved by the FPGA-based PD esti-

mation function was not significant compared to what was achieved by the FPGA-

based prior information estimation function.

74

Table 5.1: GNU gprof profiling report of the FPGA-based PVE algorithm.

Functions CPU-based FPGA-based
†The estimation of the prior information 246.39s (79.4%) 27.59s (44.2%)

†The estimation of the probability densities 47.97s (15.4%) 18.67s (29.0%)
PVC Estimation 3.8s (1.2%) 3.8s (6.1%)

IO functions 12.4s (4%) 12.4s (19.9%)
Total 311.1s 62.7s

† Functions implemented on FPGA-accelerators

Of the execution time required for the FPGA-based PD estimation function, an

average of 1.33 seconds were consumed normalizing the five computed PDs and

determining the tissue type with the largest PD among the five. An average of

17.35 seconds were spent estimating the PD of five possible tissue classes for each

voxel. Within the 17.35 seconds, approximately 78% was spent estimating PD of

two mixed tissue classes due to the requirement for several floating point arith-

metic operations and integration over fifty elements. These results indicated that

estimation of the GMCSF and WMGM PDs was the bottleneck of the hardware im-

plemented PD estimation function. This function could be improved using several

alternative optimization techniques. One solution is to implement the fixed-point or

custom-bitwidth arithmetic units for faster operation instead of floating point arith-

metic units. This method also reduces the hardware resources, such that we can

implement a higher level of the reduction tree to improve the performance of the

integration operation. The other solution is to replace the primitive numerical inte-

gration algorithm used in the implementation with an advanced algorithm such as

the Gauss-Legendre quadrature. This solution allows rapid and accurate integration

with bigger integration step size.

While the CPU-based PVE algorithm used double-precision floating-point to

estimate PD of tissues and P(C), the FPGA-based implementation used single-

precision floating-point to reduce the required hardware resources and to achieve

faster arithmetic operation. This difference did not cause any errors in the output

75

images because the minimal precision error will not degrade determining the tissue

that generates the maximum P (C)P (x|c) term.

We used four CPUs to execute the bitstreams on four FPGAs by invoking Pthread

functions which start four direct memory accesses (DMAs) simultaneously. Al-

though three extra CPUs were utilized for the FPGA-based algorithm, the workload

on the extra CPUs can be neglected since their execution times were minimal.

The performance of the FPGA-based PVE algorithm demonstrated that the RASC

RC100 is a promising HPRC platform to accelerate the computationally inten-

sive algorithms. Although the proposed implementation was running at 100MHz,

it achieved 5.1× performance improvement over the CPU-based PVE algorithm,

which was running at 1.5 GHz. The sophisticated RASC streaming feature was

also very beneficial when processing the large input images utilized by the PVE al-

gorithm as it increased efficiency by reducing the data overhead. Moreover, the

wide-scaling was very simple to use and allowed the algorithm to fully exploit

coarse-grained parallelism, which is provided by all available FPGA-accelerators.

When performing the FPGA-based PVE algorithm, we sequentially uploaded

three different bitstreams (PD estimation, normalization and P(C) estimation) to the

FPGA-accelerators using a loader FPGA, which was specially designed for fast bit-

stream uploading and downloading. However, the actual time required to upload a

new bitstream into the FPGAs was approximately three seconds. In fact, approx-

imately 14% (9 seconds) of the total computation time of the FPGA-based PVE

algorithm was spent uploading the three bitstreams into the FPGA-accelerators.

If the bitstream uploading and downloading time could be reduced to within one

second, the average performance improvement achieve by the FPGA-based PVE

implementation should become 5.6× instead of 5.1×, as the total computation time

is reduced.

The Mitrion-C HLL was an effective and useful tool for implementing the PVE

algorithm on the RASC RC100 FPGA-accelerators. It abstracted most of the hard-

ware details from the designer, meaning they can focus on the algorithm data flow.

Only minor hardware consideration was required during the implementation phase

76

to define the memory layout and load variables into the external SRAMs. Although

the learning curve demanded by the language varied among different individuals,

engineers with basic background in programming were able to develop simple al-

gorithms and to achieve significant performance improvement in relatively short

time [1].

Although it has been demonstrated that the Mitrion-C HLL can be used to over-

come the hardware barrier imposed by tradition low-level methodologies, certain

improvements were required. Sometimes the preliminary hardware usage report

generated by the Mitrion compiler was not convincing. Several times the report in-

dicated that a design consumed less than 50% of the FF and did not fully utilize the

slices, however, it did not successfully complete place-and-route even after 9 hours.

Generating a consistent hardware usage report is very critical for the developers

so that they could reduce the design, before the time consuming place-and-route is

performed.

The current version of the Mitrion-C HLL does not support eight available 64-

bit wide registers, which can be very useful for storing parameters required by the

algorithm. In the proposed implementation, we sent these parameters (mean and

covariance of pure tissue classes) with input data in every segment. This approach

was inefficient, as it increased the data overhead.

5.2 Conclusions

In the described study, we accelerated a quantitative analysis algorithm for 3D MR

imaging using HPRC. The computationally intensive portions of the PVE algorithm

were identified from the algorithm profiling report and were implemented on RASC

RC100 FPGA-accelerators using Mitrion-C HLL. We used several simulated and

real human brain MR images in order to evaluate accuracy and the performance en-

hancement of the FPGA-based PVE algorithm. The PD estimation function, imple-

mented on four FPGAs, achieved an average speedup of 2.5× over the CPU-based

implementation, while the performance improvement of the P(C) estimation func-

77

tion was approximately 9.4×. The overall performance improvement of the FPGA-

based PVE algorithm was approximately 5.1× over the conventionally CPU-based

algorithm. We also calculated the sensitivity and Kappa coefficients and used them

as mean of verification. Furthermore, the images generated by both algorithms

were then compared in order to verify the accuracy of the resulting images by the

FPGA-based algorithm. These tests demonstrated that while there were very slight

differences between the images generated by the two implementations, they were

not critical in clinical studies.

5.3 Future Work

We have designed the proposed implementation to process 3D brain MR imaging

with a resolution of 1 mm, which is the common resolution used in clinical stud-

ies. As the demand for higher resolution images increases, some subjects have been

scanned with higher resolution. If the resolution of an MR image increases from

1 mm to 0.5 mm, the computation time of the conventional CPU-based PVE al-

gorithm is expected to be increased by a factor of 8 since the number of voxels in

an image also increases by a factor of 8. The FPGA-based PVE algorithm pro-

posed in this study can also achieve a significant performance improvement when

it is used to process a brain MRI data set with a resolution greater than 1 mm.

These adjustments would require some minor memory structure modification and

new partitioning strategies.

The CPU-based PVE algorithm is also developed to process multispectral MRI

data sets. The multispectral PVE algorithm classifies brain tissues using the con-

trasts presented on the sets of T1, T2 and PD-weighted images, not only the con-

trast in T1-weighted image. As a result, the algorithm can classify the tissue classes

more accurately, as more intensity information of tissues are available to estimate

PDs of tissues. However, as the algorithm employs two more images, the computa-

tion time of PDs estimation function is increased because more voxels are needed

to be processed. The proposed FPGA-based PVE algorithm can be used to process

78

Figure 5.2: A single histological slice (Mohlberg, “Cytoarchitectonic Brain Map-
ping” presentation at MNI, May 18, 2007).

the multispectral data sets and to accelerate the computation. However, it also re-

quires some memory structure and PDs estimation modifications such that the new

algorithm can estimate PDs of tissues from the three images.

The histology on human brain focuses on the anatomical study of the micro-

scopic structure of brain tissues. In the histological examination of a human brain,

the postmortem brain is first frozen or embedded and then cut into very thin slices

using a microtome. Each slice is then stained to contrast the different tissues and

a high resolution microscope captures a picture of each slice for cytoarchitectonic

mapping. One of the postmortem brain data sets available at MNI has a resolution of

20 µm. It is constructed of 7408 slices, where each slice contains 101200000 voxels

(11500 × 8800 voxel), as shown in Figure 5.2. Due to the high resolution of the

image, the histological data has been very attractive to many human brain mapping

researchers. As a result, there has been a great interest in processing the histologi-

cal images with the existing automated 3D brain MRI analysis algorithms, as they

will generate more consistent and rapid results. However, the computation time of

the algorithms is expected to be increased significantly, since the histological im-

ages consist of a tremendous number of voxels as compared to the conventional 3D

brain MR images. Therefore, accelerating the algorithms to process the histological

data using HPRC should be very beneficial to many brain clinical studies.

79

Bibliography

[1] J. J. Koo, D. Fernández, A. Haddad, and W. J. Gross, “Evaluation of High-

Level-Language Methodology for High-Performance Reconfigurable Com-

puter,” to appear in the Processings of the IEEE 18th International Conference

on Application-specific System, Architectures and Processors (ASAP), 2007.

[2] J. J. Koo, A. C. Evans, and W. J. Gross, “Accelerating a Medical 3D Brain MRI

Analysis Algorithm using a High-Performance Reconfigurable Computer,” to

appear in the Proceedings of the IEEE 17th International Conference on Field

Programmable Logic and Applications (FPL’07), 2007.

[3] A. P. Zijdenbos, R. Forghani, and A. C. Evans, “Automatic “pipeline” analysis

of 3-D MRI data for clinical trials: application to multiple sclerosis,” IEEE

Transactions on Medical Imaging, vol. 21, no. 10, pp. 1280–1291, October

2002.

[4] E. R. Sowell, B. S. Peterson, P. M. Thompson, S. E. Welcome, A. L. Henke-

nius, and A. W. Toga1, “Mapping cortical change across the human life span,”

Nature Neuroscience, vol. 6, pp. 309–315, January 2003.

[5] A. C. Evans, “The NIH MRI study of normal brain development,” NeuroIm-

age, vol. 30, pp. 184–202, 2006.

[6] J. G. Sled, A. P. Zijdenbos, and A. C. Evans, “A nonparametric method for

automatic correction of intensity nonuniformity in MRI data,” IEEE Transac-

tions on Medical Imaging, vol. 17, no. 1, pp. 87–97, February 1998.

80

[7] D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans, “Automatic 3D

Inter-Subject Registration of MR Volumetric Data in Standardized Talairach

Space,” Journal of Computer Assisted Tomography, vol. 18(2), pp. 192–205,

March/April 1994.

[8] D. L. Collins, C. J. Holmes, T. M. Peters, and A. C. Evans, “Automatic 3-D

model-based neuroanatomical segmentation,” Human Brain Mapping, vol. 3,

no. 3, pp. 190–208, 1995.

[9] C. A. Cocosco, A. P. Zijdenbos, and A. C. Evans, “A fully automatic and ro-

bust brain MRI tissue classification method,” Medical Image Analysis, vol. 7,

no. 4, pp. 513–527, December 2003.

[10] J. S. Kim, V. Singh, J. K. Lee, J. Lerch, Y. Ad-Dab’bagh, D. MacDonald, J. M.

Lee, S. I. Kim, and A. C. Evans, “Automated 3-D extraction and evaluation of

the inner and outer cortical surfaces using a Laplacian map and partial volume

effect classification,” Neuroimage, vol. 27, no. 1, pp. 210–221, August 2005.

[11] J. Tohka, A. Zijdenbos, and A. Evans, “Fast and robust parameter estimation

for statistical partial volume models in brain MRI,” NeuroImage, vol. 23, no. 1,

pp. 84–97, September 2004.

[12] Y. El-Kurdi, W. J. Gross, and D. Giannacopoulos, “Sparse Matrix-Vector Mul-

tiplication for Finite Element Method Matrices on FPGAs,” in Proceedings of

the 14th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM’06), vol. 00. IEEE Computer Society, 2006, pp. 293–294.

[13] J. S. Beeckler and W. J. Gross, “FPGA Particle Graphics Hardware,” in Pro-

ceedings of the 13th Annual IEEE Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM’05), vol. 00. IEEE Computer Society,

2005, pp. 85–94.

[14] T. Todman, G. Constantinides, S. Wilton, P. Cheung, W. Luk, and O. Mencer,

“Reconfigurable Computing: Architectures and Design Methods,” IEE Pro-

81

ceedings: Computer and Digital Techniques, vol. 152, no. 2, pp. 193–205,

March 2005.

[15] Celoxica, Handel-C Language Reference Manual for DK4 version, Celoxica

Limited., 2005.

[16] Impulse Accelerated Technologies, Inc., “C Programming Tools for FPGA

Platforms,” 2007, http://www.impulsec.com/.

[17] S. Mohl, The Mitrion-C Programming Language, Mitrionics Inc., 2005.

[18] D. G. Nishimura, Principles of Magnetic Resonace Imaging. Stanford Uni-

versity, 1995.

[19] D. L. Collins, T. M. Peters, and A. C. Evans, “An automated 3D non-linear

deformation procedure for determination of gross morphometric variability in

human brain,” in Proceedings of the International Conference on Visualization

in Biomedical Computing, vol. 2359. SPIE, 1994, pp. 180–190.

[20] R. O. Duda and P. E. Hart, Patern Classification and Scene Analysis. A

Wiley-interscience publication, 1973.

[21] A. P. Zijdenbos, R. Forghani, and A. C. Evans, “Automatic Quantification of

MS Lesions in 3D MRI Brain Data Sets: Validation of INSECT,” in Proceed-

ings of the First International Conference on Medical Image Computing and

Computer-Assisted Intervention, vol. 1496. Springer, 1998, pp. 439–448.

[22] H. S. Choi, D. R. Haynor, and Y. Kim, “Partial volume tissue classification of

multichannel magnetic resonance images-A mixel model,” IEEE Transactions

on Medical Imaging, vol. 10, no. 3, pp. 395–407, September 1991.

[23] V. Singh, “Use of a Non-Stationary Markov Random Field in Brain Tissue Par-

tial Volume Segmentation,” Master’s thesis, Dept. of Electrical and Computer

Eng, McGill University, February 2005.

82

[24] Silicon graphics Inc., Reconfigurable Application-specific Computing User’s

Guide, 007th ed., 2006.

[25] A. Dellson, G. Sandberg, and S. Mhl, “Turning FPGAs Into Supercomputers,”

in Cray User Group (CUG) Conference. Cray User Group, 2006.

[26] Mitrionics, “Mitrionics,” March 2004, http://www.mitrion.com.

[27] Free Software Foundation, “GNU gprof - Table of Contents,” November 1998,

http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html.

[28] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, 3rd ed. Morgan Kaufmann Publishers, 2003.

[29] L. Zhuo and V. K. Prasanna, “Sparse Matrix-Vector Multiplication on FP-

GAs,” in Proceedings of the 2005 ACM/SIGDA 13th international symposium

on Field-programmable gate arrays(FPGA’05). ACM Press, 2005, pp. 63–

74.

[30] G. R. Morris, V. K. Prasanna, and R. D. Anderson, “A Hybrid Approach for

Mapping Conjugate Gradient onto an FPGA-Augmented Reconfigurable Su-

percomputer,” in Proceedings of the 14th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM’06). IEEE Computer

Society, 2006, pp. 3–12.

[31] S. Kleiman, D. Shah, and B. Smaalders, Programming With Threads, 1st ed.

Prentice Hall, 1996.

[32] B. Nichols, D. Buttlar, and J. P. Farrell, PThreads Programming, 1st ed.

O’Reilly Media, Inc., 1996.

[33] J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, “A proba-

bilistic atlas of the human brain: theory and rationale for its development. The

International Consortium for Brain Mapping (ICBM),” NeuroImage, vol. 2,

no. 2, pp. 89–101, June 1995.

83

[34] C. J. Holmes, R. Hoge, L. Collins, R. Woods, A. W. Toga, and A. C. Evans,

“Enhancement of MR images using registration for signal averaging,” Journal

of computer assisted tomography, vol. 22, no. 2, pp. 324–333, March 1998.

[35] R. K.-S. Kwan, A. C. Evans, and G. B. Pike, “MRI simulation-based evalu-

ation of image-processing and classification methods,” IEEE Transactions on

Medical Imaging, vol. 18, no. 11, pp. 1085–1097, November 1999.

[36] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan., G. B. Pike, and A. C. Evans,

“BrainWeb: Online Interface to a 3D MRI Simulated Brain Database,” in Pro-

ceedings of 3rd International Conference on Functional Mapping of the Hu-

man Brain. NeuroImage, May 1997, p. S425.

[37] V. Kindratenko, D. Pointer, D. Raila, and G. Steffen, “Comparing CPU and

FPGA Application Performance,” Natinal Center for Supercomputing Appli-

cation (NCSA),” White Paper, February 2006.

[38] J. Cohen, “A Coefficient of agreement for nominal scales,” Education and

Psychological Measurment, vol. 60, pp. 37–60, 1960.

[39] S. Ruan, C. Jaggi, J. Xue, J. Fadili, and D. Bloyet, “Brain tissue classification

of magnetic resonance images using partial volume modeling,” IEEE Trans-

actions on Medical Imaging, vol. 19, no. 12, pp. 1179–1187, December 2000.

[40] A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer, “Morpho-

metric Analysis of White Matter Lesions in MR Images: Method and Vali-

dation,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 716–724,

December 1994.

[41] A. J. Viera and J. M. Garrett, “Understanding Interobserver Agreement : The

Kappa Statistic,” Family Madicine, vol. 37, no. 5, pp. 360–363, May 2005.

[42] J. Carletta, “Assessing Agreement on Classification Tasks: The Kappa Statis-

tic,” Computational Linguistics, vol. 22, no. 2, pp. 249–254, 1996.

84

