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PREFACE

The author hopes that this dissertation
on the philosophy of physics will prove to be of interest
to both philoéophers and physicists. However, in
addressing himself to this dual audience, he has been
presented with the difficult task of composing a work
which would be relatively intelligible to both. In fact,
any thoughtful physicist should have little difficulty
in appreciating the significance of this work. On the
other hand, however, the phidsopher who lacks training
in applied mathematics may encounter some difficulty.
Accordingly, certain compromises have been made in the
mode of presentation. The author has presupposed only
a minimal knowledge of physics and applied mathematics
on the part of his philosophical reader. All of the more
advanced technical apparatus has been explained, although
sketchily, as it is needed. Of course, we could not
start from zero in a work of this nature. However, we
presuppose that the philosopher has only a knowledge
of the rudiments of the differential and integral
calculus, elementary vector analysis including the
theorems of Gauss and Stokes, a passing acqualntance
with the theory of matrices, an acquaintance with the

algebralc concept of a group, and as much physlcs as



would be covered in a first year university course. The
writer has made an effort to introduce the more advanced
topics step by step and as painlessly as possible.
Having been trained in philosophy, but not in mathemgtical
physics, the writer knows how useful this particular
form of sympathy can be.

The notation employed is largely that of
standard mathematics. In the case of Cartesian vectors

and tensors, no distinction is made between the covariant

-and contravarliant components, both of which are represented

by superscript indices, with the exception of the metric
coefficients which are denoted by subscripts. Jpvis the
Kronecker symbol, and the Einstein summation conventicn
is used throughout. In place of the common practice of
using primes to denote transformed variables, etc., we
have preferred to place a bar over the transformed
variable, so that primes and tensor indices do not get
confused. This practice also makes for a more tidy
appearance. Other notational devices and abbreviations
which are less standard are the following:

<» : material equivalence; if and only if; the necessary
and sufficient condition.

=df. : equivalent by definition.

=s, : semantically equivalent; having the same meaning;
having the same factual content.

t(1) : the transform of 1 by the element 't' of a given
group of transformations.

w.r.t. : with respect to.
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All other notational conventions are explained as they
are introduced.

The primary original contribution of this
dissertation is briefly the following. Most, if not =all,
physical theories are taken to satisfy a principle of
relativity of some kind. This property of theories 1is
generally held to be reflected in their mathematical or
formal structure which will be such that the fundamental
laws of the theory of interest will be covariant under a

particular group of coordinate transformations. In general,

‘physicists tend to regard the covariance principle as

nothing but the mathematical expression of the relativity
principle which is satisfied by the theory. However,
this virtual identification of covariance and relativity
principles has led to a perplexing problem. The determin-
ation of the covariance propertles of a theory is a purely
formal operation (Bunge, 1961). On the other hand, many
physicists would regard the expression of a relativity
principle as a statement about physical reality(e.g.,
Anderson, 1967). Thus, depending on the point of view,
principles of relativity are taken to be either metatheor-
etical statements, devold of physical content, or object
statements whose referent is the physical world. Clearly,
these points of view are incompatible.

We resolve the difficulty by introducing the

notion of the relativity group of a theory as distinct
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from the covariance group of a theory. On the basis of

this distinction, we show that covariance principles

differ fundamentally from relativity principles. In support
of this position we formulate the various principles of
relativity in a manner which makes manifest their status

as object statements of physical theories. In the course

of the argument we endeavour to sharpen the concept of

inertial frame of reference and to clarify the distinction

between the inertial frames of different theories, although
the latter merely supplements the work of our research
director, who has already pointed out that the concept

of inertial frame varies from one theory to another

(Bunge, 1967a). Finally, the work of this dissertation
strongly supports the broader moral that an essential
prerequisite to the understanding of any physical theory

is the recognition of the distinction between the properties

of the mathematical formalism which happens to be employed

to express that theory and the physical content of the

theory, which should be independent of the choice of
formalism.

The author particularly wishes to acknowledge
the profound value of the supervision of Professor Mario
Bunge, who made him aware that philosophy is not a
géntlemanly game but an earnest quest for knowledge and
understanding, which may only be achleved by travelling

paths which are both arduous and rigorous. If this



dissertation has any intellectual merit, it is due solely

to his strict guldance and uncompromlsing desire for

truth.



CHAPTER I
" INTRODUCTION

An interesting dispute has been simmering
in the philosophy of physics for the last fifty years.
Recently, fresh attempts have been made to settle it.
In his founding par2r, Einstein(1916) gave the clear
impression that the Principle of General Relativity led
to new physics. Briefly, he argued that if we adopt this
principle on independent epistemological grounds and
require a field theory of gravitation to satisfy it,
the resulting field equations will entall physical
consequences which are significantly different from
those of the classical theory of gravitation. The most
striking example, perhaps, of the fecundity of this
principle was the direct predictlion of the precession of
the perihelion of Mercury. Thus, it seemed clear that
the Principle of General Relativity must have physical
content, on the formal ground that in conjunction with
certain physical assumptions it entails factual
consequences which are not entailed by those assumptions
alone.

However, shortly after the publication of
Einstein's paper, an article appeared by Kretschmann(1917)
which convincingly demonstrated that any putative law,

e.g. Newton's laws of motion, could be formulated in a



generally covariant way, thus satisfying the Principle
of General Relativity. Einstein(1918) concurred with
the view of Kretschmann, and since that time the bulk
of orthodox opinion has followed a similar line.

M. Bunge(e.g., 1961) has frequently argued in
favour of the same view on independent logicel grounds.
Briefly, Bunge's position 1is to the effect tThat it is
essential to distinguish between the axioms of a theory,
e.g. its basic physical hypotheses, and those other
lawlike principles which are to be associated with a
theory but which actually belong to the corresponding
metatheory. In particular, there are principles which he

calls laws of physical laws or metalaws whose referents

are not the objective patterns of nature but the lawlike
descriptions of them. In short, metalaws are not statements
about the world but statements about physical laws.
According to Bunge, the Principle of General Covarlance
and, in fact, all covariance principles(Galilei, Lorentz,
canonical, etc.) clearly belong to the class of metalsaws.
On this view, it would be patently absurd to assert that
physical reality 1is generally covariant. Clearly, one
should and would say that the basic laws of this or that
theory are generally covariant.

A position diametrically opposed to that of
Bunge has recently recelved an exposition by J. L. Anderson

(1967) in a text-book on relativity physics. Anderson



argues in considerable detall that the imposition of =a
covariance requirement(or of a related symmetry require-
ment) has definite physicel consequences. Specificeally,
he claims to show that when a theoretical description of
a physical system is required to admit a specific group
of transformations, the choice of basic laws is severely
delimited and, in certain cases, may even be uniquely
determined.

Anderson dlisposes of Kretschmann's argument
by toeing an empiricist line that any term which occurs
in a physical formula must allow of a specific physical
and observational interpretation. He argues that Kretschmann
was able to render any arbitrary lawlike formula generally
covariant by importing terms which model no aspect of
the world. In other words, his criticism amounts to the
accusation that Kretschmann's argument depended on an
ingenious but irrelevant 'cooking of the results.'

It is clear that the treatments of Bunge and
Anderson have much wider significance than those of
Einstein and Kretschmenn. Whereas the latter were concerned
specifically with the status of general covariance, the
former are directed at all covariance principles. Thus,
what they have to say has implications for Classical
prhysics and Special Relativity physics as much as for the
Theory of General Relativity. Accordingly, we shall

examine the role of covariance principles in pre-relativity
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physics, in Special Relativity and, only thereaffer, in
the Theory of General Relativity.

A prima facie indication of the factual content

of covariance principles is that the commonly accepted
interpretation of the Principle of Special Relativity 1is
to the effect that the covariance group of electrodynamics
must contain the invariant velocity c which is interpreted
as the velocity of electromagnetic propagation. But since
the only invariant velocity of the Galilel group is an

infinite velocity, it 1s obvious, on experimental grounds,

that electromagnetic theory is not Galilel covarlant.
Thus, it would seem that there may be at least indirect
experimental confutation of a covariance principle. of
course, it is still logically possible to follow the line
advocated by Bunge which would presumably consist in
arguing that to say that Maxwell's theory is not Galilel
covariant is obviously to say something about Maxwell's
theory but to say nothing about the world. However,
Maxwell's laws are not formulae that have been picked
from a hat but purport to be reasonably accurate
descriptions of something called the electromagnetic
field. It might make a difference to say that a purportedly
true description of reality 1is not Galilei covariant.
Surely that is to say something, at least indirectly,
about the world. In any event, the invariance of ¢ under

velocity mappings is surely a brute fact, and no theory
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which incorporates that fundamental fact can admit the
Galilei group of transformations.

Actually, it is not our intention to engage
in polemics. On the contrary, the purpose of this
dissertation is to argue for a middle ground between the
two opposed points of view, each of which contains part
of the truth. The general line which we intend to pursue
will be clarified in a cursory way in the remainder of
this chapter.

The Principle of General Covariance asserts
that any genuine fundamental law of nature must hold
regardless of the coordinatization which we happen to
adopt to describe the physical system of interest. A
physical theory should be as indifferent to the coordinate
system as it is to the language of its author. Accordingly,
a well-formed basic law should retain its form under an
extremely wide class of coordinate transformations. For
obvious reasons, such transformations must be differentiable
and with a non-vanishing Jacobian. Apart from the latter
requirements, they are gquite arbitrary. It is easily
shown that such a class of mathematlcally admissible
coordinate transformations is the realization of a group.
We may call it the general covariance group Or, following
Anderson, the manifold mapping group. The regquirement
that a theory be covariant under the manifold mapping

group is the Principle of General Covariance, in a nutshell.
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It is a most fortunate aspect of the wedding
of physics and mathematics that there is a class of
geometrical objects, namely tensors, which form a basis
for the realization of the manifold mapping group.
Accordingly, the requirement that the basic laws(postulates)
of a theory be expressible as tensor equations is
equivalent to the requirement of general covariance. But
the essential meaning of the general covariance of a law
is that it be covariant under any mathematically

admissible substitution, as defined above. Hence, it

would appear to follow that Maxwell's laws, which are

expressible as tensor equations, are covariant under thel;

group of Galilel transformations - a result which is

Mxﬂllﬁ"duv—\".

blatantly false.cjg*““*tr Souy Vs

The germ of the solution to this paradox 1s
actually hinted at in Einstein's originel paper of 1916
in which he had the insight to draw a distinction
between the Principle of General Covariance and the
Principle of General Relativity. Since Kretschmann's
paper, however, everyone seems either to have ignored
the distinction completely or, at least, to have treated
the Principle of General Covariance as the mathematical
model of the physical Principle of General Relativity.
However, even the latter is a serious mistake. Bunge, 1in

his Foundations of Physics, takes considerable pains to

emphasize the distinction between a coordinate system, /

[

S

. 'l’-"i. T RO
¢

.
o L{LL Cr i ik
L2 ! ;, s

y i il e e
QA4 ,24 wft 8 " h
4 .Aﬁfgbvaf‘%src "




12

which is a conceptual object of mathematics, and a2 frame
of reference, which is a physical object such as the
walls of a laboratory. Roughly, the distinction between
covariance and relativity corresponds to that between
coordinate systems and frames of reference. The Principle
of General Relativity is a physical hypothesis which

may be stated in the negative form that there is no
privileged frame of reference to be found in nature or

in the positive form that all frames of reference are

74\/4"/./- ‘J-
dynamically equivalent. Since every frame of reference fuprete
o Lart :,;(

0
ney be coordinatized, it follows that if a law satisfies [, -~ + i)

gy esd A
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the Principle of General Covariance it will, a fortiori,
satisfy the Principle of General Relativity. However, the
two principles are not to be confused. They are by no
means coextensive.

The frequent references to general covariance
in the literature of relativity physics is partly due to
the availability of a mathematical formalism ideally
suited to obtain generally covariant laws. However, this
formalism - we naturally refer to tensor analysis - must
be treated with great care or it will lead to a serious
misunderstanding of relativity physics and the consequent
controversies which this dissertation should serve to
dispell. In any case, the physicist should not be concerned
with general covariance for its own sake but only with

those particular instances of covariance which have to do
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with possible frame transformations.

These considerations are well exemplified by
the case in hand of the generally covariant form of
Maxwell's laws. The source of the mistake was to forget
that the sole significance of the generally covariant
formulation of a law for the physicist is to demonstrate
that the law is independent of the frame of reference to
which it happens to be referred. As we shall show, (
especially in Chapter VIII, the acceptance of a physically \
unrestricted general covariance for physical theories would

permit the introduction of frames of reference which

could have no counterpart in the physical world. It is

precisely with reference to such frames, i.e. ones which g,xié,

contravene laws of physics, that Maxwell's equations

g SV

could be Galilei covariant.

our general conclusion will be that Bunge 1s
formally correct in regarding covariance principles, per
se, as devoid of factual content. In this context, they
are nothing but metatheorems of pure mathematics. On the
other hand, we shall argue that once we speak of the
relationships which hold between frames of reference,
whether inertial or arbitrary, we have moved from the
realm of pure mathematics to that of physics. When we make
assertions about the group properties of frame transform-
ations, we are referring to concrete groups which are

realized in the physical world. Such assertions certainly
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do have a factual content. This dissertation will consist

in the elaboration of the fundamental topics which have

been alluded to in this introductory chapter.
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CHAPTER 11

TECHNICAL PRELIMINARIES

The purpose of this chapter is twofold. In
the first place it should serve to introduce the reader
whose training is primarily philosophical to some of the
most basic notions of applied mathematics and theoretical
physics which happen to play a fundamental role in the
ensuing discussions. However, this chapter should not
be ignored by the scientific reader, since some of the
fundamental concepts are obscured by ambiguity. The
second function of this chapter is, accordingly, to state
unequivocally what the present writer intends to signify
by certain conceptual terms which will be employed
throughout the remainder of this dissertation.

1. Coordinate Systems and Coordinate Transformatlions:

A very wide class of physical theories concerns
the behaviour of physical systems, such as bodies and
fields and a combihation of the two, in space and time.

We may designate this the class of space-time theories.

A law of space-time physics will describe the changilng
spatial configuration of a physical system in the course
of time. Accordingly, it is necessary to label the
position or configuration of a system at any point in
time. In elementary physics, the standard method of

labelling is to utilize a Cartesian coordinate system.
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This conceptual entity consists of three mutually
orthogonal, rectilinear axes. Each axis is labelled by

a variable. Thus, the three variables X, y, 2z may
represent the spatlal axes of a particular system of
coordinates. In somewhaf more advanced treatments a

single letter with a subscript or superscript will perform
the same function, viz., xi (1 = 1,2,3). The x1 are

called the coordinate variables. More precisely, &
coordinate is a function xi on the given space to some

field, usually the real line, such that vy = &;

where the bJ are the base vectors and &j is the Kronecker

symbol. Clearly, every point of a three-dimensional
manifold will be uniquely labelled by an ordered triple
of three numbers specifying a particular value of each
of the coordinate variables. When a manifold 1s thus
associated with a set of coordinates, 1t 1is sald to be
coordinatized.

It is obvious that no coordinatization of a
given manifold is unique. Given a particular Carteslan
coordinate system, it is possible to produce an infinltude
of further systems by means of a change of origin of the
original system or by a rotation about the origin or by
a combination of these. In general, such a mathematical
operation will send every ordered triple of numbers
associated with a point of the manifold into a distinct

ordered triple associated with the same point. Such a
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change in the coordinatlization of the manifold 1is called

a coordinate transformation. The set of functlons which

maps the first set of triples onto the second set is called

the transformation equations. In general, each member

of the second or 'barred! triple is a function of every
member of the first triple. Consider two glven
coordinatizations, S and §, of the manifold and a mapping
from S onto S. Let X,¥,z be the spatial coordinates of

a point with respect to S, and X,§,Z be the spatial
coordinates of the same point with respect to S. Then,
given that the transformation is linear, the transformation

equations will be of the general form:

wi

x —» X = c11X + C12¥ + ¢13Z + X5

<
l

Yy —» F = CpyX + Cpp¥ + Cp32z + Yo (2.1)
Z—> Z = c31X + ©3¥ + C33Z + Zg
The cy4y are the direction cosines between the various
axes of the two systems of reference, and io,ﬁo, z, are
the coordinates of the origin of S with respect to S.
The class of coordinate transformations so far
considered is actually in reality, very restricted. In
addition to the‘transition from one Cartesian system to
another, we must take account of transitions between
arbitrary curvilinear systems, in which case the Cix may
be very much more complicated; For typographical

convenience in the remainder of this sectlon the coordinate

variables of the unbarred system will be denoted by xi and
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those of the barred system by yi. We may also make the
trivial generalization to an n-dimensional manifold.
Accordingly, we now consider the class of time-independent,
real, single-valued, reversible transformations of the form:

T: xt—» .Vi= Yi(xl,xz

seeesX?) (1= 1,2,...,n0)
Since, for reasons which will shortly emerge, we are
concerned only with those transformations which are
realizations of a group, the assumption of reversibility
is & necessary one, in which case we write the inverse
transformation:

T : yioxt = L,y y™

The conditions which must be imposed on the
functions yi(x) gre, firstly, that they be first-order
differentiable in a finite region R of the n-dimensional
manifold Vi, which we shall denote by saying that the yi(x)
are of class C1 in the region R. Secondly, we require
that the functional determinant (Jacobian), J =df. |§§§l,
does not vanish at any point in R. This will suffice to
ensure not only the existence of a single-valued inverse
but also that the xi(y) are of class Cl in R. If the
manifold has a Euclidean structure, these requirements
would not be restricted to a finite region but could
easiiy be made to apply to the entilre Vn by the simple
expedient of employing Cartesian coordinate systems. All

transformations, whether linear or not, which satisfy the

foregoing conditions constitute the class of mathematically
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admissible transformations. However, the reader should

be warned that the designation 'mathematically admissible!
carries no physical warrant. We shall find in subsequent
chapters that it 1s necessary to impose additional

restrictions to define the class of physically admissible

transformations which is, therefore, a subset of the set

of transformations here defined.

We shall conclude this section with a fairly
crude but adequate sketch of the proof that the set of
mathematically admissible transformations form a group.
It should be emphasized that this 1s not a trivial
conclusion, since there are distinguished subsets of the
set of mathematically admissible transformations which
lack the group property.

Lemma: If J and K are the Jacoblans of T and T respectively,
then JK 1,

By definition of T and 71, there follow the identities:

if 1,1 .2 n 1.2
yi= ¥y [x (51520 as™ e a5ty ¥R ™)

Differentiating with respect to yI:
33t - 2% XN - L ywhere §° ~- :
57 3w %3 $¢; , where 3'y1s the Kronecker symbol.
But
2_1:, )_t‘ 33‘ 'bx“! AR RS \ . =) gk]-
Df oW l')j." PRI 33}&! l JK l SJ‘ ‘

Lemma: If T4 and T, are admissible transformations, the
product T,Tq is also an admissibile transformatlion.

Consider two transformations:

Ty syt = s, )

1=

T2 : yi-PZ Zi(ylyyzv---syn)
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T3 = TpoTq : xi-fpzi = zi[yl(xl,xz,...,xn),...,yn(xl,xz,..,xnﬂ
Jo = |22 3% |25 = . T, T
3 3% 9 I" ‘ a:s“ )x* 33*\ bx“ J2Js

Theorem: The set of mathematically admissible transform-
ations form a group.

(1) The product of two admissible transformations
is an admissible transformation.

(11) There is an identity transformation I
X"y =X .

(1iii) For any transformation there is an inverse
such that T'T = I

(iv) TB(TZTl) = (T3T2)T1

2. Frames of Reference:

The distinction between frames of reference
and coordinate systems tends too often to be either
overlooked or forgotten by physicists. The blurring of
this fundamental distinction can lead to errors of both
fact and philosophy. In particular, we shall find that
the significance of the various principles of relativity
is apt to be misunderstood when this occurs.

A coordinate system is a purely conceptual
object of mathematics which, like all such objects, is
devoid of intrinsic physical significance. It may, however,
be assigned s physical meaning when it is employed as the
conceptual model of a physical frame of reference.(Bunge,
1967a, pp. 103-105; Mgller, 1952, pp. 234ff.) A frame of
reference is a physlical entity of some kind such as the
earth, the sun, a laboratory or even the centre of mass

of a system of material objects. (Strictly speaking, the
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latter is just a reference point.)

Physical space has no intrinsic cartographic
properties. Consequently, one cannot specify the absolute
position of an object, i.e. its position vis & vis space.
To specify a position, it is necessary to secure a point

of reference which is arbitrarily treated as fixed. This

fixed point may then be utilized as the origin of a
physical frame. It is at this juncture that a coordinate
system is usefully introduced as the mathematical model
of the frame of reference. For example, if one decides
to adopt a heliocentric frame of reference, one may then
specify the position of an object with respect to the sun,
but not literally with respect to the system of coordinates.
It follows from the foregoing remarks that the
coordinatization of a reference frame is not unique. In
principle, infinitely many systems of coordinates may be
associated with a single frame of reference(Bunge, 1967a,
p. 104). By the same token, the set of frame transformations
is not coextensive with the set of coordinate transform-
ations. It is frequently necessary in the practice of
physics to refer a physical system to a new frame of
reference. For example, it may be desired to effect a
transition from a laboratory frame to a centre of mass
frame, or from a geocentric to a heliocentric frame. The
mathematical procedure is, in principle, quite straight-

forward. A coordinate system which models the original
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frame of reference is first specified. Then the second
reference frame is likewise modelled by a suitable system
of coordinates. Finally, the set of transformation
equations between the two sets of coordinates is determined.

These transformation equations must model the relationship

———— T

between the two frames of reference. Consequently, it

would be correct to speak of them as transformation laws.
The set of coordinate transformations which

model frame transformations is a minute subset of the set

of mathematically admissible coordinate transformetions.

Many types of coordinate transformations which are

employed to achieve the optimum of mathematical tractability

have nothing to do with frame transformations. We may,

for example, transform the description of an electrostatic

system from rectangular to spherical coordinates to

facilitate the solving of Poisson's equation. In particular,

transformations of this kind are purely mathematical and

should not be regarded as laws in the physical sense. On

the other hand, when we deal with the relationship

between two distinct frames of reference, we are involved

with the behaviour of two physical systems, in which case

it is proper to speak of the laws which relate them.

The mark of a physically significant frame

transformation, as distinct from one which is a mere

analytical aid, 1s the occurrence of the time parameter

in the equations of transformation. In the equations(2.1),
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it was tacitly assumed that the coefficients Cik were
constant. However, if these equatlons modelled the
relationship between two frames of reference in relative
motion, the Cix would obviously vary in time. Horeover,
their explicit form would depend on the type of motion
involved, e.g. rotational or translational, accelerated

or uniforn.

3. Scalars, Vectors and Tensors:

(1)Scalers: A scalar is a one component geometrical object.
Once a number has been assigned to a scalar magnitude

on the basis of a particular scale, its value is fixed
independently of the coordinate system. This notion may

be immediately extended to that of a scalar field. The

latter may be represented in explicit numerical form as,

for example, in the case of a classical temperature
distribution throughout a given region or, analytically,
as a function of the coordinate variables. Probably, the
most fundamental example of a scalar in space-time physilcs
ijs the square of the line element, known as the interval:
(as)2 = gy axtax¥. It should not be supposed, however,
that a scalar is an object without a transformation law.
All geometrical objects are defined by the manner of their
transformetion. Moreover, not all one component objects
are scalars. For example, the transformation law of a
pseudo-scalar differs from that of a scalar. Moreover,

the individual components of vectors and ~tensors are riot
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geometrical objects at all. Consequently, they lack
jnvariant significance. Accordingly, it is desirable to
express the transformation law of a scalar formally,
although it may seem trivial to the novice:

X — X =X
(1ii) Contravariant Vectors: Take two infinitely close

1 1 + dxi

points whose coordinates are x~ and X respectively,
with respect to a given coordinate system S. The

infinitesimal displacement between the two points in S is
given by dx}. Let us transform from S to S by a mathemat-

jcally admissible transformation:

x> 3t = ii(xl,xz,...,xn) (2.2)
By differentiation of (2.2), we obtain:
dxt = X dadd (2.3)

DX
Equations (2.3) are the transformation law for coordinate

differentials. In general, any object Ai whose law of

transformation is:

23 - 3% At
Al X (2.4)

will be called a contravariant vector. It follows

immediately from the linear and homogeneous character of

i 1

the trensformation (2.4) that if A~ and B~ are two

contravariant vectors, then pA1 + qB1

is also a contra-
variant vector, where p and q are arbitrary constants.
(11i) Covariant Vectors: From a given scalar field Q(xi),

we may form the n gquantities Ay by differentiation:

ay = 24

dx¢
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which is nothing but the n-dimensional generalization of
the familiar operation of forming the gradient of a scalar
field in three dimensions. By the product rule of
differentiation, we may determine the transformation

law of the A;°

iu
2. - 28 13X ¢ = Ix*A; 2.5)
R = "a'éi B ES 5‘3-" 35 e (2:5)

In general, any quantity with the transformetion law (2.5)

is called a covariant wvector.

(iv) Tensors: Let us consider a product of arbitrary
covariant and contravariant vectors, e.g. AiBjCk. It is

easlily shown that the transformation law for this guantity

from S to 3 is a simple generalization of (2.4) and (2.5).
—y = =P Nz Y K AL nd
BPAY = o 3_3". 9Xx ‘R C
ATBYCr .)xiaxaﬁi'ﬁ * (2.6)
The quantity a’s’

i
k -

Ck is a geometrical object which may be
signified by T Thus, we may rewrite the transformation
law (2.6) as: .

TiY = %’;—‘; %%of-, %—%: T (2.7)
Any quantity with the transformation law (2.7) is said
to be a tensor of the third rank, twice contravariant and
once covarliant. The generalization to tensors of any rank
and type 1s obvious. A vector is a tensor of rank one and
a scalar is a tensor of rank zero.

If is especially noteworthy that the

transformation law of a tensor is linear and homogeneous.

Accordingly, the algebra of tensors will have the usual

properties assoclated with objects of that kind. The
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reader whose knowledge of mathematics is fairly
elementary should note, in particular, that the linear
character of the transformation coefficients holds even
though the transformation of interest may, itself, be
non-linear.

From the homogeneous character of tensors, it
follows that if a tensorial quantity is zero in one
system of coordinates, it will remain zero in every
system of coordinates. The self-evident consequence of this
is that a tensor equation which is valid in one system
of coordinates must be valid in every system which is
obteainable therefrom by a mathematically admissible
transformation. Acconrdingly, & common stratagem of
mathematical physics is to formulate a law as a tensor
equation with respect to a system of coordinates in which
it takes the simplest possible form. It then follows from
the tensorial character of the equation that it will be
valid for all admissible systems of coordinates. However,
it is important to note that, in general, this mathematic-
ally privileged coordinate system only holds locally so
that it will not normally represent a physical frame of
reference. We shall appreciate the significance of the
last remark in Chapter VIII. The great utility of the
mathematical theory of tensors lies in its providing a
means of writing laws of nature in s way that is

independent of any particular system of coordinates. This,
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of course, is an extension of the elementary theory of
Cartesian vectors on the basis of which it is possible
to express laws of nature which are independent of any
orthogonal system of coordinates.

4, Fundamental Laws:

The notion of a fundamental law is crucial to
the elucidation of such concepts as those of covariance
and inertial frame of reference. A commonly accepted
definition of a fundamental law is one that contains no
individual constants, i.e. names of particular individuals,
in its formulation. While we accept this definition, we
find it desirable to express it in terms which pertain
directly to physical theory. The motivation of the
definition is that a basic or fundamental law is of global
significance, holding for all times and all regions. Thus,
the occurrence of the name of a particular time or regilon
or physical objectt in a statement precludes its having
a fundamental character. It follows that the solutlons
of fundamental laws cannot, themselves, be fundamental
since they depend essentially on initial and/or boundary
conditions. Similarly, a law which singles out a particular
frame of reference as essentially privileged would not
be fundamental since it would contain, at least by
implication, the name of the reference frame. On this
basis, any law which refers essentlally to a particular

materisl medium would be of a non-fundamental kind. In an
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axiomatic development of a physical theory, laws in which
names occur essentially would have the status of low level
theorems. Thus, an axiomatic development of a theory is
by no means arbitrary as to the choice of sexioms. For
example, the law of sound propagation depends essentially
on the characteristics of the medium of propagation,
e.g. the air, which serves as a privileged frame of
reference, automatically precluding it from the class of
fundamental laws.

By the same token, a law statement which
contained terms which depended essentially on the state
of motion of a particular frame of reference would be
non-fundamental since it would presumably hold not globally
but only in certain regions and at certain times which
would have to be specified.

5. Invariance and Covariance:

A well-Xnown property of groups in general 1s
the existence of certain invariants which may serve to
define a given group. Let S be a set of objects which
are operated on by the elements of a group G. Let x' be
the image of X € S under an arbitrary mapping of G. Let
F be a gziven function of x. Then the function F 1s an
invariant of G if and only if F(x) = F(x'). For example,
F(X,¥42) = x2 + y2 + z2 js an invariant of the group of

spatial rotations, i.e. the three-parameter orthogonal

group. Alternatively, if x 1s any object and g(x) is an
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operation on X by an arbitrary element of G, then x is
an invariant of G if and only if x - g(x) = 0.

The invariants which are associated with the
various groups of transformations are of distinct
physical and epistemologeal interest. In the first place,
it is intuitively clear that any quantity that refers to
an invariant property of the world should be independent
of the choice of coordinates. A coordinate system is,
figuratively speaking, a language employed for the
space-time description of a physical system. Just as nature
is indifferent to the choice of natural language which
happens to be employed to describe it, so it should also
be indifferent to the physicist's cholce of technical
language, e.g. coordinate system. Now if a property of
an object is independent of the coordinatization with
respect to which it is expressed, it is, a fortiori,
jnvariant under a group of coordinate transformations.
We often refer to such invariant properties as the

symmetries of the object. We conclude that the discovery

of the symmetries or invariant properties of a physical
system, e.g. the total electric charge, has:: a fundamental
significance in the theoretical descriptions of objective
reality.

Closely allied to the concept of invariance,
but on no account to be confused with it, is that of the

covariance of lawlike statements. A physical law may bte
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regarded as an hypothesis which purports to describe
relationships or patterns which hold objectively between
given physical magnitudes. Such magnitudes are not, in
general, ilnvariant. That is to say, they will have
distinct numbers assigned to them by distinct
coordinatizations. Nevertheless, the pattern of the
relationship is still objective. For example, an
interparticle distance may be expressed in the form:

J1d )

= \xi - xY|, where the xi, x¢ are the Certesian

spatlial components of the two particles. Under a coordinate

rotation, the numbers assigned to the x1 ’ xJ will change

1)

but the gquantity s will be invariant.

Bunge has drawn the useful distinction between
laws, and lawsz(e.g. 1963, ch. 10). Laws4 are the objective
patterns of physical reality, while laws2 are the scientific
hypotheses which purport to represent them. Just as the
magnitude of an invariant is independent of the
coordinatization, so a law; must be similarly independent.
But if a law, is independent of the choice of the
coordinate system, such independence must be mirrored by
the corresponding lawz.

Specifically, while the various terms which
compose the lawz may change undex a given group of
transformations, the functional relationships holding

between these terms should remain fixed as a reflection

of the objectivity of the lawl. An added complication in
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the case of the covariance of laws is that the functions
which occur in them, e€.g. field variables, will also in
general be transformed. Let us suppose that we are given
a law of the form:

Fleyr - H,..) =0 (2.8)
Under a group of transformations G, not only will the
x1 undergo change but also the §,VY,..., which may, as
we said, be field variables. Now (2.8) is said to be
covariant if and only if:

F(§ 9. 28,38,...) =0 (2.9)
That is to say, the transformed functions of the
transformed arguments are isomorphic with the original
functions of the original arguments. We shall subsequently
have reason to gquestion this account but it happens to
be the standard one, and the reader will gain a better
appreciation of the concept of covariance when he discovers
what 1s wrong with it.

It is unfortunate that the subject of covariance
1s neither as straightforward nor as uniformly
comprehended by physicists and philosophers as one might
wlsh. At this point, we shall merely touch on some of
the more obvious difficulties. Firstly, there is a
fundamental ambivalence in the use of the word ‘covariance’,
which appears to stem from what happens to be regarded
as the basis for the requirement of covariance on

physical laws. The philosopher and mathematician tend to
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view covarlance as a sweeping epistemological desideratum

to the effect that a genuine law of nature must be
absolutely independent of its mode of description. Hence,
any coordinate system, no matter how exotic, should be
capable of serving as an adequate vehicle for a covariant
space-time description of the world. The physicist, on the
other hand, views the covariance of physical laws as both
practically and theore tically desirable in order that
they may be expressed in a form which is independent of
the frame of reference. In short, while the philosophico-
mathematical interest in covariance tends to be focussed
on coordinate transformations, that of the physicist,
inadvertently or otherwise, has tended to be more
concerned with frame transformations.

It is true that the general mathematical
requirement may be achieved by writing laws in the tensor
notation. But that highly abstract and compressed formalism
may obscure more than it reveals if the physical basis
of the theory of interest is overlooked. A tensor
equation may be factually false even though it is
mathematically well-formed. In any event, covariance would
have been a viable requirement even in the absence of the
tensor calculus; and it is a fact that when more
elementary mathematical tools are employed, the fundamental
laws of physics fail to satisfy the requirement of

general covariance. As we have already noted, coordinate
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transformations, per se, are normally employed from the
relatively trivial motive of computational facility. While
this matter deserves more discussion, we shall, for
reasons which will emerge later, utlilize the term
‘covariance' to designate the formal requirement that the
fundamental laws be independent of their coordinatization.
The more specialized requirement that fundamental laws be
independent of the frame of reference to which they are
referred, which has nothing directly to do with the
*langnuage' in which they are expressed, we shall call the

principle of relativity, which 1s discussed in section 7

of this chapter. It is obvious that while frame |
transformations are complicated by their time-dependent

nature, they need not involve a transition to a different;

kind of coordinate system, e.g. Cartesian to spherical.

However, even when we agree to restrict the-
requirement of covariance tc the area of physically
significant frame transformations, elements of ambiguity
persist. Suppose that we take the requirement to mean
simply that the form of a law be the same in every frame

of reference. In Classical Mechanics as well as in oy

Special Relativity Mechanics, covariance is supposed to ylffil&*
pertain only to inertial frames of reference. Thus, 1if ;i”;g“; .

a fundamental law holds in a given frame of reference, if
may not hold in a frame which is rotating with respect to - .-

the original frame. However, even in such cases, it will i‘tlwg*
I
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always be possible to preserve the form inveriance of

the law of interest in a formal or vacuous fashion. For
example, if we consider a laboratory frame K and a centre
of mass frame ﬁ, the expression for the total angular
momentum of a system of particles is given in X by:

T=%+* H7+%F:$?’: | (2.10)
where the first term on the right is the angular momentum
of the centre of mass and the ith. term in the summation
is the aﬁgular momentum of the ith. particle sbout the
centre of mass. In terms of ﬁ, the first term will vanish,
and the angular momentum will be given by:

= —n =N

L=S&=xP (2.11)
However, 1fLwe so choose, we may retain the first term
and claim that (2.10) is covariant under this particular
transformation. Obviously, this would not have any effect
on the results of our computatlions, since the first term
would be identically zero in the centre of mass frame.
But there is nothing to prevent our adding any number of
such terms to the expression of a physical law, so long
as we are concerned only with the results of computations.
Consider, for example, the general case of the equation
of motion of a point-particle with respect to a frame
which has both linear and angular acceleration with
respect to an inertisl frame. Let the position vector of
the particle be —l? in the inertial frame and T in the

non-inertial frame. Accelerations and velocities with
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respect to the non-inertial frame are enclosed in
square brackets. A tedious but elementary calculation
yields the following general equation cf motion:

W(Z] = F-m Ao- Lm@x(Fl-mIB]x P~ a8 x (@™ (2.12)
where KZ is the acceleration of the origin of the moving
frame with respect to the inertial frame, and F'= mgi
The second term on the right hand side is due to the
linear acceleration, while the succeeding terms are
respectively the Coriolis, the transverse, and the
centrifugal terms. Now, (2.12) is the law of motion of a
particle in Newtonian Mechanics, expressed in vectorial
form, which is covariant under arbitrary frame transform-
ations. In the more specialized cases, the varlious terms
simply become zero.

Now the procedure that we have followed might
be ruled out by the simple declaration that every term
in a meaningful physical law must be non-vanishing under
a coordinate transformation. But such a stratagem would
be without any foundation. For example, continuity
equations may be written in a form in which they assert
that a certain quantity vanishes identically. A more
tenable position would be to hold that (2.12) is not a
fundamental law. The reader will recall that we stipulated
that a fundamental law must not contain individual names,
even covertly. But, clearly, every term on the right hand

side of (2.12), with the exception of the first, refers
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specifically to the particular non-inertial frame. For
this reason, we are obliged to discount (2.12) as an
example of a covariant law of nature, since it describes

the state of affairs in a particular frame of reference

rather than a pattern of global significance. Accordingly,
we shall keep in mind throughout this dissertation

that all references to covariant and relativistic laws

are to be understood as applicable to fundamental laws
only(Ccf. Bunge, 1967a, pp. 86f.). As we have amply
illustrated, in the absence of such a restriction, the
entire discussion would be trivialized.

6. Inertial Frames of Reference:

In all space-time physical theories, with the
possible exception of General Relativity, a certain class
of reference frames plays a fundamental role. We refer,
of course, to inertial frames of reference. The concept
of inertial frame is familiar to every student of physics.
It exemplifies those concepts which are intuitively }/
clear yet often difficult to define wlth adequacy.

Bergmann describes them as "frames in which the
laws of nature are fundamentally simple, that is, in -
which the laws of nature contain fewer elements than they
would otherwise." (1942, p. xiv) According to Mgller, an
inertial frame is one in which Newton's first law is
valid(1952, p. 1). Fock seems to say the same thing in

holding that it is a frame "in which the motion of a body

~» a.,\
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is uniform and rectilinear, provided no forces act on
1t."(1964, p. 15) Anderson offers a more sophisticated
version of this, in defining an inertial frame as one \‘{(3

in which the components of the affinity in the equation

of motion of a free particle vanish(1967, p. 113). Bungexd;pv

takes a rather different tack in defining an inertial
frame with respect to a given theory as one that satisfiles
all of the axioms of that theory(1967a, p. 136). Thus,
he would make a systematic distinction between a mechanical
inertial frame, an electromagnetic inertial frame, and
a gravitational inertial frame,

In the first place, we are bound to agree
with Bunge, who appears to maintain tacitly that it is
unsatisfactory to define an inertial frame in terms of a
single law. It 1s clearly more realistic to define it in
terms of the complete set of basic laws of a theory. In
this way, for example, even the geocentric frame is not
deprived of its local, quasi-inertial character by the
presence of a gravitational field. Strictly, on the other
definitions, an inertial frame would be infinitely
distant from all matter and would, itself, be non-material -
in short, a pure abstraction!

Nevertheless, Bunge's treatment of the concept
of inertial frame is lacking in one important respect.
Bunge treats of mechanical, electromagnetic and gravit-

ational inertial frames but falls to deal with the general

\
N
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concept of inertial frame in which, clearly, neither a

single law nor even a complete set of basic laws may occur
essentially. To form an adequate appreciation of the role
of inertial frames in various theories, it is first
necessary to have a clear idea of the general concept,
itself. In fact, this presents no great difficulty.
Intuitively, an inertial frame is one which has no influence
on the physical processes which occur in it or with
respect to it. In more precise language, it is any frame
of reference in respect of which the fundamental laws of

a given theory contain no terms which depend essentially
on it. To take the simplest of examples, by way of
jllustration, Newton's second law has the well-known form,
F = m&, in any inertial frame. If we refer the same
mechanical process to a frame which has the linear
acceleration 2. with respect to the first frame, the

o
description of that process must be reformulated as:

F = mg - me (2.13)
Clearly, the second term on the right hand side of (2.13)

depends essentially on the motion of that particular

frame of reference, whence that frame is non-inertisal.
In the second place, the reader should be
reminded that, consonant with what was sald about frames
of reference in general, the concept of inertial frame
is not a mathematical notion but a physical one. Given

a frame of reference in which the basic laws of a theory
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neve been corroborated, any other frame which is in

motion with respect to the original one and with respect
to which the basic laws continue to hold 1s to be regarded
as a member of the equivalence class of inertial frames

of that theory. That each member of such an equivalence
class, with the exception of the inertial frames of

General Relativity, is unaccelerating with respect to

every other member is to be regarded as a fact of nature
and not as a mathematical necessity. Furthermore, in
pre-reiativistic physics, 1t was assumed that the physical
coordinates of an inertial frame were related to those

of any other such frame by a Galllean transformation. The
nature of this transformation made such an assumption
appear to be purely arithmetic. We shall contend, however,
that its physical character was revealed by the mere

fact of its being rejected in the light of physical theory.
In other words, by the same token, we shall argue for

the physical character of the Lorentz frame transformations.

7. Principles of Relativity:

It is a curiosity, if not a disgrace, that so
much confusion should reign in popular philosophy over
the meaning of the concept of relativity in physics. We
have in mind, for the present, not the particular
principles of relatlivity, e.g. Classical, Special, etc.,
but the connotation of the general concept of relativity.

In fact, it 1is possible to distinguish diametrically
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opposite accounts of the meaning of relativity - those
which occur in several works of philosophy as agalinst
those which occur, albeit rather sparsely, in works of
physical theory. It is no futlle task merely to place
the two accounts side by side in order to clarify the
situation somewhat.

A popular philosophical coﬁception of relativity
principles is that they are assertions to the effect
that the statement of a physical law or the assignment of
a number to a physical magnitude is meaningless unless
the context of that law or magnitude is simultaneously
specified. Thus, it would be pointed out that Newton's
first law is devoid of content unless a frame of reference
be specified, since it refers to rectilinear motion, a
concept which has no significance in the absence of a
frame of reference. For example, we may take the edge of
a room as a reference line and propose that any body which
moves in such a way that the perpendicular distance
between it and the edge of the room is constant throughout
the motion is undergoing a rectilinear translation.
However, if the room is, itself, rotating with respect
to some other frame of reference, say the sun, then the
motion of the object will be curvilinear with respect to
the second frame. Hence, it is meaningless to assert that
an object is in a state of rectilinear transleation, tout

court. One must specify the frame relative to which the
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motion is referred. This would be taken as an instance

of the relativity of motion. Similar examples abound
anent relativity of position, velocity, weight, etc. Thus,
in summary, the philosophico-popular conception of a
principle of relativity is that it asserts that some

specified concept is one whose 'meaning' may be given only

relative to a frame of reference. In embarrassingly many

cases, this point of view is speciously extended to a
form of subjective idealism (Eddingtonianism) in which
‘frame of reference' is replaced by ‘'observer'. Then 1t
is declared that the physical world which we perceilve
does not exist objectively but only in the mind of the
beholder, or that there are as many worlds as there are
observers. However, it is not our purpose to criticize
this misguided brand of idealism but merely to contrast
the conception of relativity principles on which it is
puportedly based with that connotation of relativity
principles which is normally accepted by the physicist.
Whereas the amateur philosopher assoclates
'‘relativity' with the changes that properties of a
physical system undergo when referred to different frames
of reference, the physicist, interestingly, stresses
the very opposite, namely that a pattern of phenomena
(not necessarily the phenomena themselves) is duplicated
in different frames of reference. The larger the class

of phenomena whose laws are unchanged when referred to
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different frames, the broader the corresponding principle
of relativity. Thus, the Principle of Special Relativity
of Einstein is broader than the Principle of Classical
Relativity of Newton, since 1t encompasses both mechanical
and eleotrodynamical laws, Similarly, the wider the class
of frames to which a principle of relativity refers, the
deeper the principle is taken to be. Thus, the Principle
of General Relativity is regarded as having deeper
significance than either of the restricted principles
since it pertains to all frames of reference as distinct
from the very restricted class of inertial frames. In fine,
to the physicist, a principle of relativity is the
expression of a common objective reality, independent of
its context, to a greater or lesser degree, and certainly
independent of any minds that happen to be in the vicinity.
Apart from the discrepancy which exists between
the common philosophical conception of the principles of
relativity and that of the physicists, a more significant
confusion exists in physics itself between a principle
of relativity and a principle of covariance. A covariance
principle asserts that the form of an equation remains
the same under a specified group of transformations. A
relativity principle asserts that the content of a
physical law is unchaenged with respect to a specific class
of reference frames. What is the relation between the

two? Too often, it is made to appear that if they are not
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identical, then the covarilance principle entails the
corresponding relativity principle. But this cannot be
the case since, as we have already remarked, covariance
is a formal condition, while a relativity principle has
factual content.

The justification for the acceptance of the
aforementioned entailment is that if a law L 1s covariant
under a group of transformations G, it must retain its
form under the subgroup of G corresponding to possible
frame transformations. But while L, as stated, may have
the coveriance property G and, therefore, suggest the
existence of a corresponding relativity principle, it may
actually turn out that the elements which compose the
formal statement of L have been endowed with the incorrect
geometrical properties. Thus, a quantity which has been
treated as a scalar in pre-relativistic physlcs may
turn out to be a component of a four-vector in relativity
physics. Such mistaken ascription of geometrical
properties is certainly possible. Hence, we are not
licensed to claim that given a law with certain covariance
properties, it must conform, & priori, to a certain
relativity principle. The latter is physical and testable,
while the former is formal and, at most, a consistency
requirement. A relativity principle could only be entailed

by a covariance principle if, per impossibile, the law

of interest were absolutely incorrigible. We shall now
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attempt a general definition of a principle of relativity.
However, we stress that we are now defining only the
general concept. The formal statements of the various
particular principles of relativity will be substantially
different from the following.

If (1) Lqys... L, are the basic laws of a theory T.

(11) A set of permissible frame transformations is the
realization of a group G.

Then: T is G-relativistic if and only if the content of
Ll""’Ln is unaltered by any transformation which
is an element of G.

By the ‘content' of a law, we intend to signify
the objective state of affalrs which is conveyed by its
statement. In the present context, that of basic laws,
such states of affairs are global patterns. In the case
of low level laws, they would be frame-dependent states
of affairs, and in the case of the substitution instances
of the latter, they would be particular facts.

It should be noted that neither the concept
of inertial frame nor that of covariance occurs in this
definition of a principle of relativity. The concept of
jnertial frame is excluded for the following reasons.
Firstly, if the concept were understood in the commonly
accepted sense, then the definition would be too restrictive,
since G would be limited to a group of linear transform-
ations, which pertain only to restricted principles of

relativity. Secondly, if the concept were understood in
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the more general sense, which we advocated in the prevlous

section, in which linearity is taken to be a factual .
rather than a mathematical aspect, then particularization
to inertial frames would be redundant. On the other hand,
i1t would have been possible to include the concept of
covariance in our definition. However, this would have
entailed a much lengthier and more cumbersome statement
than is suitable for a definition, since covariance, as
we understand it in this dissertation, tends to be tied
to a particular mathematical formalism; and as we have

seen, the mathematics 1s apt to be confused with the physics.
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CHAPTER III

LAWS AND METALAWS

. As we noted in the introductory chapter, the
fundamental 1ssue of this dissertation hinges on the

distinction between laws and metalaws. Actually, the

esamrervd

distinction between object statements and metastatements
has long been common coin in mathematical logic and
philosophy. In the technical vocabulary of logic, the
distinction between metastatement and object statement is
a relative one. We express a statement S in a language

L. When we wish to make a statement about S or about L

as a whole, we must resort to a second language Lm which
i1s the metalanguage with respect to which L is the object
language. But, in turn, a statement about Lm would belong
to a different metalanguage, with respect to which Ly
would be the object language. In what follows, we depart
somewhat from this usage in treating the two levels of
discourse as absolute. That is to say, the language of
science which refers to the world of objective facts

will be called the object language not only in the

technical sense but also in respect of the function which

it performs. Thus, the metalanguage will signify the

language we employ to talk about the sclentific language,
or that part of the latter in which Bunge's laws2 are

expressed.
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This distinction has been exploited by Bunge

v %)
&
-ov\

in its application to the subject of laws and metalaws.
In fact, Bunge distinguishes several kinds of metalaw
statements, and it would be advisable to spend a little
time in exploring some of these refinements, since an
adequate explication of the nature and role of metalaws
in science is the most crucial philoseophical .prelsgomenon
to a satisfactory resolution of the problem before us.
Since Bunge has been tilling virtually virgin soil, we
shall begin with an exposition of his views which adheres
very closely to his own writings(1959, Ch. 4; 1961; 1963,
Ch. 12; 1967b, v. I, Ch. 6, Sec. 7).

The class of metalaw statements 1is obviously
of extremely wide extension. It comprises any statement
whose referent is a law or set of laws. Two of Bunge's
examples serve to exhibit their diversity: "Maxwell's
equations are invariant under space jnversion." (1961, p.
51G) and "Electricians employ Kirchhoff's laws."(Ibid.)
However, the subclass of metalaws which is of particular
concern to philosophers and physicists consists of
lawlike metalaw statements, i.e. laws of scientific laws,

for which Bunge has coined the expression metanomological

statement. It is Bunge's contention that since
metanomological statements have as theilr referents laws
rather than objective patterns of nature or, in his own

ldion, law32 rather then laws,, they are not to be regarddd
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as statements with factual content in the obvious sense.
They refer not to the world but to our modes of representing
the world.

Bunge distinguishes three principal kinds of
metanomological statements, which he calls factual,

normative and methodological. Additionally, factual

metanomological statements are grouped into two varieties
according to whether their truth value 1is nmathematically
demonstrable - the analytic variety, or decidable, a

posteriori, on the basis of the actual features of the

laws of the theory to which they are applied - the synthetic
variety. The following diagram schematizes Bunge's
classification of metalaw statements.

METALAW FTATEMENTS

L 1
metanomological casual
statements metalaws
\
fac?ual normative methodological

{ |
analytic synthetic
While Bunge admits a class of 'factual’
metanomological statements into his scheme, he cautions
us not to be misled by such terminology. The facts to
which such statements refer are not the physical facts to
which scientific theories ultimately allude. For example,
"One of the possible descriptions of the
positron happens to be the time-and-charge
mirror image of our usual description of
the electron; this, far from pointing to

a symmetry in nature, shows that our
equations are ambivalent. And it cautions
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us not to mistake properties of signs
for properties of their referents.

"As can be seen, the mere awareness
of the existence of metanomological
statements constitutes an effective
reminder that not every scientific statement
refers to facts."(1961, p. 521)

Again,

"plthough we control our pictures of
reality by means of experiment, the
statements about statements occurring
in those pictures are not themselves
descriptive of fact; in particular,
metanomological statements, whether
factual or not, are definitely not
descriptive."(Ibid., p. 523)

Let us now consider the distinction between
factual metanomological statements that are analytic and
those that are synthetic. As an example of the analytic
variety, Bunge cites the principle of CTP invariance. Thils,
he argues, is nothing but a truth of mathematics. It is
not by laboratory experiment but with the aid of paper
and pencil that one determines that the equations of
field theories are invariant under combined charge, time
and space sign reversal. It tells us nothing about the
nature of the fundamental particles to which the theory
refers. Hence, one would not subject the CTP theorem to
experimental test but only the law statements to which it
happens to apply. Thus, while the theorem is analytic, per
se, it is justifiable to regard it as factual insofar as

it stands or falls with the 1aws2 which are its referents.

The factual metanomological statements of the
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synthetic variety may be similar in mathematical kind to
those of the analytic variety. However, whereas one of

the analytic varlety refers to a definite theory or lawz,
tho§§”9f the synthetic variety are inductive generalizations
from éhe propertles of a more or less determinate body

of laws to laws 1n general. Thus, the simple parity
principle is similar in mathematical kind to the CTP
theorem. However, its use in sclence was as a synthetic
law (or metalaw), since it is expressible in the form,
'All physical laws are invariant under space inversion.'
Clearly, the hand of God would be of greater utility than
that of paper and pencil in demonstrating the truth of

the latter. At this point, we shall leave Bunge's analysis
with a finsl quotation which expresses the heart of his
distinction in & nutshell: he sums it up succinctly to

the effect that, "...metanomological statements,...while
complying with all the requisites of lawfulness do not
reproduce real patterns at the conceptual level but

rather describe or prescribe basic traits of law formulas."

(1967b, v. I, p. 364. OQur italics)

We heartily agree with the last declaration.
However, Bunge tends to blur its application in allowing
that some metalaws may be stated linguistically as object
laws and conversely. 3ignificantly for our purposes, one
of the examples which he offers is that of the Principle

of Classical Relativity. In the form of an object statement
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it is, 'All inertial systems are equivalent.' In the form
of a metastatement it is, 'Newton's laws of motion hold
in a8l1 inertial systems.' By the same token, he admits
that a postulate of a theory may be dropped from the
theory proper if, after appropriate rephrasing, it is
introduced into the corresponding metatheory.

It is at this point that we must part company
with Bunge. It is not that we disagree with his division
of scientific statements into the two fundamental varieties -
object statement and metastatement. It is rather that we
contend that the distinction needs to be sufficiently
sharpened to preclude the possibility of linguistic
games which permit the expression of equipollent
propositions in either metastatement or object statement
form, ad libitum. As Bunge would doubtless agree, the
referents of object statements are utterly distinct from
those of metastatements. The possible referents of object
laws are all of the knowable properties of the objective
patterns in physical reality, whereas the referents of
metalaws are all of the knowable properties of laws. The
latter would include their physical shape, the language
in which they are expressed and, more significantly, the
status which they occupy in a theory, e.g. postulate or
derived theorem, and their mathematical properties, e.g.
derivable from a variational principle, invariant under

a certain group of transformations, etc. The point we wish
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to stress is that, speaking metaphorically, the world to
which object statements refer is utterly distinct from
the world to which metastatements refer; with the trivial
exception that all statements,as physical entities, must
obey the laws of physics.

The apparent eguipollence of object statement
and metastatement occurs in certain contexts where the
meaning of the object statement happens to be well
understood. The prototypical metastatement is of the
form, "'3' is true," where S is any object statement.
However, in a given context an individual will either
understand or fail to understand 3. Clearly, if the former,
then the metastatement conveys much more than if the
latter be the case, but rather by association than by
what is actuslly asserted in the metastatement. Consider
the following metastatement: "'"The electromagnetic field
is representable by an antisymmetric tensor of the second
rank' is true." This is admittedly not & particularly
rewarding eXample, per se, but serves admirably to
illustrate our point. The metastatement is composed of
everything between the double quotes. It asserts that the

statement enclosed by single quotes is true, but nothing

more. In other words, it is a very simple metastatement,
which everyone should be capable of understandings.
However, the statement enclosed by single gquotes, the

object statement, is fairly sophisticated. Only someone
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with a certain background of mathematical physics could

be expected to understand it.

In actual fact, of course, the particular
example of a metastatement which we chose would seldom
occur. The object statement which is its referent, on
the other hand, might very well be asserted during a
lecture on electromagnetic theory. This example was
deliberately chosen, however, to convey the point that
the layman could understand the meaning of the metastatement,
namely that the object statement has the property of
being faithful to reelity, just as well as the physicist.
On the other hand, it is quite foreign to our intention
to suggest that all metastatements are trivial. In a more
serious vein, the metastatement that Newton's laws are
Galilei covariant is definitely not trivial, since it
conveys the information that there is a well-defined
non-denumerably infinite class of spatial coordinates
with respect to which the equations of motion may be

formulated in a covariant manner. Notice that this is not

a statement about physical reality but about the

technical language which we employ to describe it. It is

ot e s e e

not equipollent to the Principle of Classical Relativity,'
since, among other things, the latter requires the
existence of at least two frames of reference to be
testable, whereas the metastatement is true independently

of the existence of reference frames or anything else
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which is outside of the realm of mathematics.

R
rea

Since the semantical status of the object
language is so different from that of its metalanguaxe,
it would probably be of some technical value to employ
entirely different symbols to distinguish laws from
metalaws. An examination of many of the treatises of
theoretical physics would surely reveal numerous examples
of the constant confounding of the two levels of discourse.
For this reason, the student of physics is sometimes ept
to be confused, not feeling certain at a particular point
in the course of a theoretical demonstration whether he
is doing physics or mathematics. However, it will suffice,
for our purposes, to keep the distinction constantly in
mind, and to resort to the familiar device of quotation
marks whenever it appears necessary.

We should perhaps add a few elementary remarks.
When a law statement is enclosed by single guotes, Y,
the complete symbol including the quotation marks belongs
to the metalanguage. It is not to be interpreted as a
metalaw but as the name of a law of the object lansuage.
Secondly, a metalaw must contain the name of at least one
law or class of laws, e.g. 'Newton's first law', 'the
laws of physics', etc. Any statement which contains the
name of a law or class of laws is a metalaw statement.
Consequently, no.statement may belong to both the object

language and the metalanguage. It would be easy to prove,
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although we omit to 4o so, that no object statement may
be derived in the metalanguage. However, it is indeed
possible to derive logical truths at each level of
discourse which are isomorphic.

We have seen that it is always possible to

o

frame an object statement 3 in the metalangusage, the
classic example being **'3' is true." We have also seen,
however, that such a stratagem 1s specious, since it is
context dependent. In particular, it depends on the
knowledze of the individual to whom it 1s addressed. The
technical language of science, however, must be context
free. The meaning of a scientific statement, at any level
of discourse, should have nothing to do with the politics,
psychological constitution, or even the scilentific
training of the person to whom it is addressed. This is
not a fact but the stipulation of an 1ideal for which the
framers of scientific theories should strive.

On the basis of the foregoing considerations,
we reject Bunge's claim, which on occasion he seemns,
himself, to reject, that an object statement may be
equipollent to a metastatement, at least so far as such
statements occur in scientific discourse. How, then, are
we to handle the apparent instances which Bunge mentions?
Since the primary function of scientific theory is the
description of reality, we suggést that on methodological

grounds alone 1t would be desirable to formulate a given
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law in the object language whenever possible. However,
such a methodological rule is not, in fact, necessary

if we are correct in our claim that the purported cases
of equipollence are really specious. Therefore, we insist
that if a statement may be formulated in the object
language of science, then it is an object statement of

science, tout court. It will still be useful, however,

when considering the doubtful cases to investigate
whether the law of interest is required as a postulate or
is derivable as a theorem. Furthermore, it is important
to consider whether it is deductively fertile, leading

to further theorems or predictions of particular facts,
or whether it may be dispensed with entirely.

So far, to make a point, we have stressed the
gulf between laws and metalaws. However, the reader should
not take this as an indication of the slightest disdain
on the part of the writer for metalaws. On the contrary,
they serve an extremely useful role in science, both
heuristically and cognitively. The principle of covariance
is possibly the outstanding example of the use to which
metanomological statements may be put in the construction
of physical theories. The role of metatheoretical analysis
will be Tevealed to be of particular value in the field
of General Relativity, which, despite 1its contentious
status, appears to have the most richly developed

. metatheory of all physical science. In this case, we shall
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find the metatheory to be of the utmost heuristic value

insofar as it yields theorems that are almost the
analogues, formally speaking, of theorems or postulates
of the object theory. Furthermore, the philosopher of
physics, who takes physics, itself, as the object of
study, is bound to be occupied with and learn much from
the analysis of the metatheoretical structure of theories.
In conclusion, we cannot resist the temptation
to express the utterly extraneous wish that the
practitioners of the various social sciences take heed of
Bunge's distinction, which would, we strongly suspect,
help them to find out what they are actually doing when

they pretend to construct theories of social bzhaviour.
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CHAPTER IV

THE PRINCIPLE OF CLASSICAL RELATIVITY

The Principle of Classical Relativity is
applicable to several mechanical theories such as statics,
rigid body dynamics, continuum mechanics, etc. However,
it will suffice for our limited purvoses to use only the
elementary theory of point mechanics by way of illustretion.
Furthermore, we shall not attempt a rigorous axiomatization
of this theory which, again, is not necessary for our
limited objectives. However, the reader is advised to
consult Bunge(1967a) for such an axiomatization. The
reader should keep in mind that our purpose is neither
to provide a compendium of physical theories nor, still
less, to provide an axiomatization of the basic theories
of physics, but merely to discuss one crucial problem
which is connected with the foundations of all relativistic

theories, in the broadest sense of the term relativity.

From the standpoint of the worker in the axiomatic
foundations of physical theories, we hope, this work of
ours should be a useful prolegomenon.

We propose to begin with a straightforward
and elementary discussion of the covariance properties of
the physical theory of interest and then to deal with the
Frinciple of Classical Relativity. We shall then proceed

to take up the elementary theory of poilnt mechanics once



more but for the purpose of reaching one non-elementary
result, namely of showing that the usual geometrical
background may be dispensed with in favour of the less
restrictive presuppositions of affine geometry. But let
us now begin at kindergarten which, in this case, is
simply to state Newton's three laws of motion for a
system of point mechanics.

I In the absence of external forces, the equations of
motion of a particle are:

.

mX = 0, n¥ = 0, mZ = 0,
or more succinctly, m¥' = 0 (i = 1,2,3) (4.1)

I1 The motion of the ith. particle due to external and
internal forces 1is given by:

%f«"’ji +F‘?=m§ii = ngd (4.2)

IITI The internal force between the ith. and jth. particle
is such that:

Fig = -Fy3 (4.3)

These three postulates were regarded by Newton
zs the axiomatic basis of the object theory of elementary
point mechanics. However, as has so often been pointed
out, they lack physical content as they stand, quite
apart from the fact that the actual differential
equations of motion of a system of point mechanics could
not be set up and solved without an explicit formulation
of the force functions, viz. F(x*, %1, t,...) = mX}. we

refer, of course, to the lack of a frame of reference

with respect to which these laws are supposed to hold.
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Accordingly, we add the additional axiom that there
exists a frame of reference K such that I, II, III hold
with respect to it. It should be noted that the Xi refer
to the physical coordinates of the point particles, which
automatically puts the above axioms in the object language.
We now turn immediately to the covariance
properties of the fundamental laws: I, II, III. The
elementary treatments of Newtonian Mechanics generally
1limit the discussion of the latter's covariance properties
to the special, homogeneous Galilean group of

o

transformations. That is to say, given a system 3 of

1 and a time scale for t with

Cartesian coordinates x
respect to which Newton's laws have the standard form,
they will retain that form when expressed in terms of a
second systenm 3 with coordinate variasbles ii, sSo chosen
that the origin of S has the coordinate values x! = %! = o

at t = to = Eo’ and are undergoing a change given by

- - e T _ _— -
le = dx V = const., §x2 = 'a—l'.o\x"= 0, SxB = ?.’_‘.BJX’= 0.
At DI 333
In words, at an arbitrary initial time, the origins of

1

the two systems coincide while the variable X of 3 is
undergoing a constant and continuous change of value with
respect to xl, and the variables %' have fixed values

3 i

relative to x° and x . The values of the X~ are given

in terms of the x;by the set of transformations:
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X —xXx=x -Vt

x% — 2= %2

3, 23,3 (4.4)
t -t =1t

It is obvious that the mappings (4.4) form a group:; the
special, homogeneous Galilean group, which we shall
label Gge

In the more general case, however, each of

the %1

will be undergoing a change of value with respect
to 8l1ll of the xi. Nevertheless, any such relationship
between two coordinate systems which preserves the form
of Newton's laws may be made equivalent to the special
Galilean relationship by a suitable transformation 3 — 3
in the form of a rotation combined with a change of origin.
We call the latter transformation the inhomogeneous
rotation group in three dimensions and use the label Rij:
That RiB is a group is as obvious as the case of GS. It
is easily shown that the direct product RiB X Gs is also
a group of transformations.

Let us now apply these considerations to
Newton's laws of motion. To signify that we are in the
realm of metatheory, we shall employ the two notational
devices of enclosing the statement of laws in single quotes
and the more elegant one of employing lower case letters

for coordinate variables as distinct from upper case

letters for the physical coordinates of point particles.



We begin by noting that since the special
Galilean transformation amounts to the addition or
subtraction of a factor which is the product of a constant
first derivative and the first power of the independent
variable, any second or higher order derivatives will be
unaffected by a transformation which is an element of Gg -
The simplest general expressions which are covariant with
respect to GS are, therefore, kzgg; 0, where k is any
constant. Thus, a necessary condition for the covariance
of 'Newton I' is that mass be a scealar gquantity.

Although the content of the preceding parasraph
is almost childishly simple, it serves to convey the
following useful philosophical message. The metatheoretical
analysis of the Galilean group of transformations was
devoid of vhysical content. It dealt only with the
mathematical relationships holding between the coordinate
variables of an infinite set of Cartesian coordinate
systems under the condition of the covariance of a class
of lawlike formulae, Neveftheless, these considerations
gave rise to a result which, while not qualifying as =2
*fact of nature*', had definite implications concerning
the formulation of an object law, namely that if 'Newton I'
is éorrect then the mass of a particle must be s scalar
quantity. Thus, we are obliged to add the further axiom
to the effect that mass 1s a constant function from point

particles into the real line. In other words, this fragment
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of metatheory decreed that whatever form our physical laws
happen to take, the guantities which we employ to
represent them must be Well-behaved' geometrical objects;
and it is the metatheory which yields the appropriate
rules of behaviour. In this sense, it may be regarded as
a type of syntax, which, like the syntax of ordinary
English, at least until recently, cannot single out true
sentences but can certainly reject non-sentences. However,
as we proceed, we shall find that such an analogy 1is not
the strongest possible one, since it tends to underplay
the remarkable heuristic power of metatheoretical analysis.
Turning now to Newton's second law, let us
tentatively combine the internal and external forces

acting on the ith. particle and rewrite it in the simple

form:
Sr; =Smy% (4.5)
i d g
We have already determined that m is a scalar and that
¥t - %i = ii under G_. Consequently, the magnitude of F

S

must be preserved under GS in order that the equality
expressed by 'Newton II' be preserved. 3ut since F cannot
be & scalar, the only object at our disposal is the
three-vector. We ponclude that a necessary condition for
'*Newton II' is that force be represented by the type of
geometrical object that we have called a vector. 3ince we
have restricted the treatment to Cartesian coordinate

systems, the distinction between contravariant and
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covariant vectors is superfluous.

To determine whether 'Newton II' is covariant
under the general group of Galilean transformations 813 x Gg»

we must now investigate the group 313 or simply R the

3?
group of homogeneous proper rotations. It is an elementary
theorem of mathematics that the principal invariant of

33 is that of coordinate distance. Thus, under the group
33, we may write the equality:

(x5 - x3) = (%y - %; (4.6)

J J)

More generelly, if Cik is the rotation matrix, then:
(d5)' = Siw dxidx® « Sig Cindxidos = Sin dHtdx® = (43)* (4.7) \\

It is assumed that the interparticle forces
are a function of the straight line distance between the
point particles. Conseguently, they will not be affected
in magnitude by a coordinate rotation. Furthermore, since
the Cyy May be inferpreted as the direction cosines
between the coordinate axes, and the cosine is an even
function, we are assured of the covariance of *Newton III!
under the group of spatial rotations R3 and, intuitively
without proof, under RiB' Hence, 'Newton III' is covariant
under the general Galilean group of transformations.

So far, our main achievement has been to discuss
informall& the covariance properties of Newton's egquations
of motion without any reference to the Principle of

Classical Relativity. This has served to illustrate Bunge's

point that the determination of the covariance properties
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of a given theory is, indeed, a paper and pencil
operation. But it has served the additional purpose of
showing that the concepts of relativity and covariance
are not synonymous but, in fact, belong to different
levels of scientific discourse.

Let us now turn to a consideration of the
Principle of Classical Relativity. At the risk of seeming
otiose, we wish, as a preliminary, to impress on the
reader the distinction, which we have already laid bare
in Chapter 11, between coordinate transformations and
frame transformations. Further, in elucidating the concept

of relativity, we alluded to the physical content of law

statements as distinct from their mere formal appearance.
A perucal of the literature of physics has convinced us
that the distinction is ambiguous and fails to be grasped
by many physicists. We may bring out this distinction
more forcibly by remarking that it is by no means
inconceivable that the physical content of a law could
only be preserved under a given frame transformation by
an alteration of its form while, conversely, its form
could only be preserved by an alteration of its content.
Whether this will actually occur will depend, in most
cases, on the geometrical objects which are at our disposal
for the formulation of such laws. We shall support this
crucial point with a straightforward example from

elementary point mechanics with its standard methematical
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.apparatus.

We consider the motion of a system of point
particles with respect to an arbitrary frame of reference

with origin 0. The total angular momentum about 0 is

given by:

T =57 x B (4.8)
Now we signify the radius vector of the centre of mass
of the system of particles by K and let T, be the radius

vector from the centre of mass to the ith. particle. We
then form the obvious frame transformation equations

between the arbitrary system and the centre of mass system:

T, =Ty +R
r = TXr.
i i
- ‘:') _;,} (409)
vy SV vV

We then rewrite (4.8) as:

T-= %L(qu.ﬁ) x%}ﬁ%[}h;(ﬁz-r.ﬁ)]

(4.10)
or, =\:.—. %(?fi\i) x%. (j‘-c“\"_-ﬁ?-t W, V) (4.11)
Expanding and rearranging the terms of (4.11) we get:
:C‘.'E.L-';‘:""‘i:‘;‘+%“L%:FV+E":$%“L€+-E*%“LV (4.12)

But mi§; is the radius vector of the centre of mass in
the centre of mass frame of reference and must, therefore,
vanish. Hence, (4.12) becomes:

T-Rx M7+ =% (4.13)
(4.13) is the expression for the angular momentum of the
system of particles about the original origin 0, when

referred to the centre of mass coordinates. The second

term on the right hand side of (4.13) is identical in
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form to the right hand side of the original expression
(4.8). The first term on the right hend side of (4.12)
is the angular momentum of the centre of mass with respect
to the origin of the original coordinate system. Finally,
sincefg is arbitrary, we may set it equal to zero and
take the centre of mass as our new origin. Our new
expression is then:

f=§1:”°-1>< 3, (4.14)
Now we wish to draw the reader's attention to the
comparison of both (4.13) and (4.14) with (4.8). (4.13)
is a more complex expression than (4.8) which results from
a new coordinatization of the numerically identical frame
of reference. It has the same physical content as (4.8)
but a different form. On the other hand, (4.14) has
precisely the same form as (4.8) but a different physical
content. Whereas (4.8) expresses the angular momentum of
a system of point particles about an arbitrary point,
(4.14) expresses the angular momentum of the same system

of point particles about a particular point, namely the

centre of mass of the system of particles. By now, the
point has been sufficiently laboured, and we turn directly
to the Principle of Classical Relativity.

In studying our formulation of the Principle of
Classical Relativity, the reader should first refer to
the schema of Chapter I1I, 3ec. 7. Accordingly, we

formulate the principle as follows:
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fId = $1n1s 1ln2s 1n3} is the set of axioms of Newtonian
Point Mechanics.

$Kl is the set of possible frames of reference.

$T} is the set of possible frame transformations modelled
by elements of the transformation group Gg.

For any 1, e {Ly] and any t e §T}, there exist at least

two distinct kj,kj € (K}, such that: 1, w.r.t. k3 € {K}
«> t(1l,) =s. I, w.r.t. kj e {¥K}.

When we interpret (K} as the set of possible
frames of reference, we intend to imply only technical
feasibility. Thus, it is feasible to use a laboratory or
a galaxy as a frame of reference but not a leaf falling
from & tree. On the other hand, when we interpret §T3 as
"the set of possible frame transformations...", we rule
out all those elements of the Galilean group which
correspond to mere coordinate transformations.

ost of the standard formulations of the
Principle of Classical Relativity are high level theorems
which follow from our own formulation. For example, it
is sometimes stated in the form of a so-called 'principle

of impotence', viz. 'It is impossible to detect an

absolute velocity by mechanical means.' This is true but )&

not especially enlightening, particularly for the mathem-

e e e e e

atician. Possibly the worst version of all is, 'All inertial

frames are equivalent.' The latter is not only vague but
also viciously circular.

The reader has doubtlessly already noted that

bt Fs
A 4 : 9 . Pl
R NSO
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our formulation omits any explicit reference to the set
§I} of inertial frames. In fact, the concept is implicit
in the above formulatlion, since the set of inertial frames
EIE c §X} is precisely the subset of frames of reference
for which the Classical Principle holds. The advantage
of our avoiding explicit reference to the set of inertial
frames is that it precludes the possibility of misjudging
the nature of the concept. Furthermore, it is an
experimental fact that every ij 3 213 differs from every
distinct iy e gIg by a constant velocity. However, it
would be possible, albeit redundant, to replace the kj of
our principle by ij e EIE, if the reader should experience
any discomfort in contemplating a formulation of a
restricted principle of relativity which contains no
explicit reference to an inertial frame. Our own particular
stratagem does, however, have the virtue of achieving the
maximum of logical generality.

An importent point vis & vis the Classical
Principle, whose significance will emerge in later
chapters, is the following. The Galilei covariant theories

are, in general, those which are broadly called mechanical.

Crudely speaking, they pertain to the kinemastics and
dynamics of bits of matter in its various forms. Now a
reference frame is preeminently a chunk of matter and,
therefore, subject to the laws which describe the behaviour

of such chunks. Consequently, the kinematical relationships
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between frames of reference and, in particular, inertial
frames must be Galilei covariant. We may contrast this
situation with that of the theory of electrodynamics. On
the one hand, we are interested in the transformation
properties of the field equations when referred to
different frames of reference. But changing fields cannot
serve as reference frames. Thus, there is a fundamental
diversity between the principal subject matter of the
theory and the frames of reference such as radar stations
which are necessary to describe and to test its laws. The
absence of such diversity in the case of elementary

mechanics, including 'action at a distance' gravitational

.theory, is an obvious ground for the confusion which

has existed between the covariance properties of the formal
laws and the appropriate relativity principle.

We have frequently alluded to the formal
character of covariance principles in contrast to the
factuality of relativity principles. However, apart from
makXing the rather obvious point that frames of reference
belong to the physical world, we have saild little in
justification of the second part of our thesis which will,

however, gradually emerge in the course of this dissertation.

Nevertheless, a simple example should serve temporarily

to overcome this ommision. On the basis of the argument
of the preceding paragraph, let us imagine two frames of

reference which are in uniform parallel motion with respect
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to each other. At an arbitrary initial time to, a

molecule of one frame located on the X-axis coincides

with a molecule located on the X-axis of the second frame.
On the basis of the first of the equations (4.4), assuming
a molecule to be a point particle, the kinematical
relationship between the physical coordinates of the two

molecules is given by:

o xt - T (4.15)
From (4.15), by differentiation, we obtain:

dX' _4x' _V (4.16)

dt At

which is the well-known Galilean law of the composition

of velocities. (4.16) is an immediate consequence of the
Principle of Classical Relativity and is, moreover, factual.
It is tempting to regard (4.16) as a law of arithmetic

but this, again, we suspect is due to the special character
of Newtonian Mechanics. Should the reader doubt the

physical content of the law of the composition of velocitiles,
let him consider the case of a bullet which leaves a rifle
with a muzzle velocity vvand travels with a velocity'§,+'ﬁ
with respect to the earth, where ﬁ’is the velocity of the
rifle with respect to the earth. The latter certainly
satisfies a sufficient condition of factuality, viz. it

is both logically consistent and false, i1.e. an
approximation of the purportedly true law of velocity
composition of Special Relativity physics. In fine, it

is a claim about the physical union of two velocities,
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which is quite different from a formal proposition about
the addition of two numbers(Cf. Bunge, 1967a, p. 110f.).
In accordance with the position which we upheld in
Chapter 111, since the Principle of Classical Relativity
entails an object law of physics, it must belong to the
object theory. Many other examples abound of the factual
consequences of Classical Relativity. We merely selected
the simplest and most direct for the sake af brevity.
(The philosophical reader is advised to gloss
over the following part of this chapter and to return
to it after he has read Chapter VIII.) In the preceding
discussion of Newtonian Mechanics, we took for granted
the usual geometrical background of that theory as
presented in the various classical treatises, namely that
the Euclidean metric is globally applicable to physical
space and that physical time has the metric of a Euclidean
straight line. For both cognitive and pedagogicel
reasons, it is instructive to develop the theory on the
basis of the less restricted background of affine geometry.
Among other things, this will serve to bring into
sharper relief the distinction between the formalism and
the physical content of a theory. However, since this is
primarily a philosophical dissertation, it will suffice
to treat a tiny fragment of Newtonian Mechanics, namely
Newton's first law of motion for a point particle. The

mathematical justification for the following development
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is to be found in Schrddinger(1950, Ch. 5, 6 & 7, passim).
Our primitive background will be the usual
simply-connected, differentiable space-time manifold, Vi e

We shall endeavour to show how such a manifold may be

coordinatized independently of the standard Euclidean
metric. We first consider a non-denumerably infinite family
of non-intersecting hypersurfaces of V), which are
characterized by a single parameter t = t(xM). (M= 0,1,2,3)
Intuitively, for any t = const. hypersurface, we have

a subspace in which every point is connected to every other

point by the relationshiv of simultaneity. Thus, the

varameter t corresponds to the absolute time of Newton.
We now introduce a three-parameter congruence of curves
with the single restriction that each curve of the congruence
will intersect a given hypersurface of simultaneity at
one and only one point. It follows that no two points on
a glven curve may be simulteneous. Thus, t may serve as
e path parameter for the curves of the congruence.
Intuitively, each curve represents a spatial point which
endures through time. The entire congruence is the
counterpart of Newton's sbsolute space. Any spatial point
willl be given by the equation:

st = si(xt) (4.17)
We may now coordinatize the manifold by choosing coordinates
such that t = xo and si = xi. Thus, we may write:

xP = x®(si,t) ' (4.18)
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We now construct a field of normals to the hypersurfaces
given by:
= 4.1
Np = 2%, (4.19)
and a field of tangents to the curves of the congruence

given by:

vt = %’—:ﬂ (4.20)
It is obvious that at any point of the manifold, the
relationship between the normal field and the tangent
field will be given by:

N UY =1 (4.21)
In particular, with the appropriate coordinstization,
there would always be possible a mapping such that at any
point:

Ng = (1,0,0,0)

(4.22)

t* = (1,0,0,0)

We shall now, merely as an aid to intultion,
make & brief mathematical detour by introducinz a metric
form as a temporary scaffolding. We define a temporal
interval between the neighbouring points x* and x® + dx*
by:

(47)* = NpNv dxt d v (4.23)
1t may be shown by standard mathematical means that the
field of normals Ny must be the gradient of a scalar
field. Consequently, the above interval 1s integrable, and

a finite time interval may be given by the difference

between the two numbers characterizing the values of the
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parameter t associated with two distinct hypersurfaces.
In the same way, we introduce a spatial metric for two
neighbouring curves of the congruence, s1 and s.1 + ds.1
(or x1 + dxi). We then introduce the gquadratic form
which is equivalent to a locally Euclidean metric:
(ds)>= Siydstdst = & daddad (4.24)
This, again, can be shown to be integrable by standard

mathematics. Given two neighbouring points of the manifold,

we have:
. ési A ey
S‘- = 25 X .
d = (4.25)
Now we introduce by definition:
Spv = df. Sy 285 38 (4.26)

2xr IV
(4.25) and (4.26) enable us to write (4.24) in the form:

(4$)* = Spvdxrdxy (4.27)
With the appropriate coordinatization, Suv = diag(0,1,1,1),
a result which we shall use in Chapter VIII.
We now return to our main argument. In place
of (4.27), which is a disguised Newtonian space-time metric,

we are able to introduce its equivalent without reference

to the familiar parameters t and s*

. We impose on the
manifold a flat, symmetric affinity which is, in general,
almost arbitrary, such that under the conditions 1in which
Ny and U™ would have components (1,0,0,0), the affinity
vanishes identically. The reader should note that an

affinity behaves like a tensor under llnear or affine

transformations. That is to say, its transformation law
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is linear and homogeneous. On our affine manifold, the
constancy of the u¥ and the Nu 1is a covariant property.
That is to say, their covariant derivatives vanish
identically. On the basis of the choice of a four-
dimensional Cartesian coordinate system, we have at our
disposal the following geometrical objects: Ny = uk =.(1,0,0,0)
and ™, = 0. We now proceed to reconstruct Newton's first
law. This will be followed by a further discussion of the
Principle of Classical Relativity.

The physical coordinates of a particle may be
represented by means of the path parameter s, namely:

XM = ¥ (s) (4.28)
(4.28) are the equations for all of the trajectories of

a particle that are kinematically conceivable. However,

it is kinematically impossible for two points on the
trajectory of a particle to be simultaneous, SO that the
path parameter could be time as measured by a standard
clock. The velocity of the particle would be given by %%"
and would satisfy:

Ny d$™ - | (4.29)

ar

In our system, S, or we may say t, 1s the
path parameter of an affine geodesic on the manifold glven
by Mf,= 0. It should be noted that without recourse to
metrical geometry it is possible to compare distances so

long as they are on the same geodesic curve. The affinity

is only defined up to a linear transformation with
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constant coefficients, so that one could not compare
distances along two distinct geodesic curves. It should
also be noted, for future reference, that the condition
for the vanishing of the flat affinity is the vanishing -
of the Riemann-Christoffel tensor Rﬁv(. Furthermore, it
is shown in most of the standard texts that the Riemann-
Christoffel tensor is defined wholly in terms of affine
symbols. The metric term guv is only required for the
formation of the completely covariant form of the Riemann-
Christoffel tensor. We merely mention this to preclude
the reader's supposing that we have smuggled metrical
geometry through the back door. This 1is a reasonable
suspicion on the part of the reader who has been exposed
to less rigorous treatments of manifold geometry or tensor
analysis in which the affine basis is often disregarded
and the Riemann-Christoffel tensor is defined in terms
of the metric coefficients and their derivatives, i.e. the
Christoffel symbols.

We are now prepared to write the equations of

motion of a free particle in generally covariant form.

The equations of motion of a point particle under the

influence of no forces, corresponding to 'Newton 1' are:

L L], ko AP S -
R L

The most significant property of an affinity is that it
is always possible to find a permissible mapping in which

the components of the affinity vanish identically. We may

VY A - o o~ . e -

11 P )
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single out the equivalence class of coordinate systems
in which the affinity vanishes, and in terms of such

coordinates rewrite (4.30) in the form:

LM 1Lm
‘%—é‘l = 437- 0 (4.31)

Integrating twice, we get:
= Mt + kt (4.32)
We may relate (4.32) to the equations of motion of a free

particle in an inertial frame of reference by choosing

a real clock with a time scale such that co = 1 and

ko = 0, Then the c1 are the familiar components of the

velocity of the point particle.

Once again, we note that even followlng the
choice of an equivalence class of coordinate systems in
which the affinity vanishes, which are gquite properly
described as geodesic systems, there does not result a
set of coordinate systems which is coextensive with the
" set of inertial frames of reference. When we speak of a
reference frame in the context of four-dimensional space-
time, we refer not only to a physical scaffolding of some
sort but also to a standard clock.

Conversely, we may choose coordinate systems in
which the components of the affinity do not vanish
identically. The particle trajectory would continue to
be classifiable as free in accordance with (4.30), and
certain of these coordinate systems would again serve as

models of reference frames. However, one would now have
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to take account of inertial forces. In fine, we come to
the same conclusion that we reached in dealing with
Newtonian Mechanics from a completely elementary
standpoint. The inertial forces are characteristic of
theories that are associated with restricted principles
of relativity. However, we have learned a new feature

of the metatheoretical background of Newtonian Mechanilcs,
namely that the standard Euclidean metric has no intrinsic
significance for Newtonian Mechanics since it may be
replaced by the less restrictive affine geometry. This,
in itself, is an example of a significant proposition of
the metatheory of Newtonian Mechanics. We refrain from
following this development any further since it would
jnvolve the use of advanced mathematical techniques which
we prefer to introduce gradually.

Insofar as the covariance group of a set of
space-time equations is determined in part by the
background geometry of the theory, it is clear that the
covariance properties of a theory, per se, have no physical
content. The covariance group of (4.30) is the most
general real linear group in four dimensions. However,
while the Galilean group 1is a subgroup of the four-
dimensional affine group, it would be a logical mistake
to modify the Principle of Classical Relativity on account

of the preceding considerations. We suggest, therefore,



80

that it would be useful to make a methodological

distinction between the covariance group of a physical

theory and the relativity group of the same theory. On

this basis, instead of declaring Newtonlan Mechanics to
be Galllei covariant, which is an understatement, we

would more aptly describe it as Galilel relativistic.

The covariance group of elementary point
mechanics is actually the direct product of three groups,
namely the inhomogeneous, proper rotation group, the
special Galilean group and the group of time translations:
Rij3 X Gg X T. From the time of Newton until that of
Einstein, RiB % T was regarded as expressing the universal
symmetries of all physical theories. That is to say, space
and time were regarded as absolutes. On the other hand,

Gg was regarded as the expression of the particular
properties of Newton's laws of motion. Since Ri3 X T was
the covariance group of all theories, it did not play

any role in the formulation of the Principle of Classical
Relativity. In semi-popular expositions, the interpretation
of R13 X T is to the effect that if an experiment be
performed at a certain place and at a particular time with
apparatus which has a specific spatial orientation, then,

ceteris paribus, the 'identical' experiment performed at

a different place, a different time, and with a different
spatial orientation would yield the ildentical result, i.e.,

from a physical standpoint, space is homogeneous and
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isotropic and time is homogeneous. While the foregoing

is an example of a pedagogical fiction, it serves to
1liustrate the outlook of the Newtonian era. On the other
hand, the general Galilean group was obviously regarded

as a specific property of Newtonian Mechanics. In fact,

it is this group alone that is singled out in most textbooks
as the covariance group of the theory; and the corresponding
relativity principle is formulated in connection with

the latter group alone. While the thinking is often
confused, we are now in a position to offer some rational
justification for the distinction.

RiB X Ty while & covariance group of Newtonian
{iechanics, is interpretable only in terms of alternative
coordinatizations of the physical system of interest. On
the other hand, GS is interpretable as the symmetry group
of the equivalence class of inertial frames of reference.

In our exposition of the metatheoretical background of
Newtonian lMechanics, we introduced the vector UM. This,
of course, is directly related to the velocity %%“of the

object theory. Experiment revealed that %&f:= V™ is not

an observable property, i.e. it is not an absolute like
spatial distance. Since U¥ is not, in the foregoing sense,
an absolute, it follows that there must be a relativity
principle, namely that the velocity of a material object
(any object under the purview of Classical Mechanics, which

includes frames of reference) cannot be ascertained.
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In conclusion, we may summarize our argument
that the covariance group of Newtonian liechanics, in its
elenentary form is 313 X Gs * T. On the assumption of an
affine as distinct from a metric manifold, the covariance
group of Newtonian Mechanics is the affine group in four
dimensions. It is clear that both of these declaratlions
pertain to the mathematical formalism of the theory..The
Principle of Classical Relativity, to the effect that the
inertial frames of Newtonian Mechanics are defined up to
a Galilean transformation is an experimentally confirmed
hypothesis which could, we suspect, be shown to serve as
part of an alternative axiomatic basis for Newtonian
tfechanics,

In passing, it may be mentioned that a rather
conclusive piece of intuitive support for the essential
distinction between the covariance group and the relativity
group of Newtonian Mechanics is that T, the group of time
translations, is a subgroup of the covariance group. But
that is to say that the laws of Newtonian Mechanics have
a formal structure which is invariant under time reversal,
since every element of a group must have an inverse. But
it does not follow from this that it is possible to find
a frame of reference in which the order of physical events
is reversed. Hence, T cannot be a subgroup of the

relativity group of Newtonian Mechanics.
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CHAPTER V

SPECIAL RELATIVITY KINEMATICS

It is customary to develop introductory
expositions of Special Relativity on the basis of the
well-kXnown kinematics of that theory. The shortcomings of
this tradition are: (i) that it gives a misleading flavour
to the theory by depriving it of most of its physical
content; (ii) that it gives a superficial appearance of
arbitrariness to the theory in the eyes of the student;
(iii) that it leads the amateur, who often reads only
the introductory chapters of textbooks on physiecs, to
suppose that Special Relativity is nothing but a theory
of kinematics; (iv) that, in particular, it suggests to
the philosopher that the Lorentz transformation is of
purely kinematical significance, which has led many
philosophers and, curiously, even eminent physicists
such as Eddington, to suppose that it is a theory about
the way in which we observe the world and, hence,
subjectivistic. Experts in the foundations of physics,
such as Bunze, argue, accordingly, that the theory should
be developed on the basis of the structure of electrodynamics,
which, logically speaking, is its legitimate parent.
However, keeping such shortcomings im mind, we shall
follow the traditional procedure of beginning with the

kinematical part of the theory in virtue of 1its relative
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simplicity, which enables us to clarify its logical
structure and, in particular, to distinguish the object
theory from the metatheory, which.is a rather subtle
problem in this context, while avolding the additional
mathematical and physical burdens of the rather complex
theory of electrodynamics. Nevertheless, in deference

to the demands of logical rigour, we shall refrain from
making a formal statement of the Principle of Special
Relativity until we come to the chapter of this
dissertation which is devoted to electrodynamics. We

should also add that what follows does not pretend to

be an exhaustive treatment of Special Relativity Kinematics.
For example, the reader will find no reference to the
relativistic Doppler effect, while the Lorentz-Fitzgerald
contraction will simply be taken for granted. There are
many excellent textbooks on the subject(e.g. Mgller, 1952),
and the interested lay reader should consult one of these
for further information or read the appropriate section

of Bunge(1967a).

The fundamental postulate of Special Relativity
Kinematics is the law of the constancy of the velocity of
light. There is an abundance of experimental evidence in
support of the factual hypothesis which asserts that, 1in
en inertial frame of reference, in vacuo, the ratio between
the distance traversed by a light ray travelling along

a given path and the total time elapsed 1s equal to a
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universal constant c. However, we prefer to say that an
inertial frame of Special Relativity is one in which c

is a universal constant. In other words, we treat the law
of light propagation as the fundamental law which is the
basis for the selection of the equivalence class of
inertial fremes of that theory. For the time being, at
least, we may define an inertial frame of Special Relativity
physics as one in which the form of the law of light
propagation contains no terms which depend essentially on
the state of motion of the given frame. Our primary

purpose in this chapter is to show that the principle of
relativity which emerges from this physical hypothesis 1is,
indeed, an object statement of the theory. In other words,
in the sense of the preceding chapter, we shall argue

that one is fully justified in speaking of Lorentz
relativistic as distinct from Lorentz covariant theoriles.
We also intend to shed some much needed 1light on the
distinction between a so-called Galilean frame of reference
and what we shall call a Lorentz frame of reference.

Were we to follow the procedure of the previous
chapter, we would begin with the equations of a relativistic
theory and proceed.to determine their covariance properties.
However, since we have elected to follow a pedagogical
route rather than a logical one, we shall begin by
deriving the Lorentz transformation from a simple example.

our procedure is deliberately calculated to reveal the
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assumptions on which such a derivation may be based.

We consider two inertial frames of reference,
X and K, modelled by Cartesian coordinate systems,S and S,
which are so oriented that theilr axes are parallel and
their respective origins, O and 0, coincide at t = £ = 0.
In other words, we shall begin with the situation which
corresponds to the restricted, homogeneous transformation
of Newtonian Mechanics. Incidentally, we shall now use

the term restricted in a different sense from that in which

it is usually employed in the theory of groups of

transformations. In that theory, restricted is taken to

mean the exclusion of improper rotations, 1i.e. with a
determinant equal to -1. Such inversions, while interesting,
play no significant role in any of the theories which we
discuss in this dissertation. While the group of spatisal
inversions may be a covariance group of these theories,

jt 1s definitely not s relativity group of any of them
since, apart from obvious grounds of intuition, it 1is
non-continuous. Accordingly, we shall use the useful term

restricted to apply to the case where the motion of one

frame of reference with respect to a ‘*stationary’ frame

may be represented by a vector of which only one component

differs from zero. Where all three components are

generally non-vanishing, we shall employ the term general.
From the principle of constancy of light

propagation, it follows that the equation for a spherical
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wave front in K emitted from O has the form:

x2 + y2 + 22 = c2t2 (5.1)
K is, ex hzgothesi, also an inertial frame. Accordingly,
the form of the wave front equation must, with respect

to K, be:

iz + §2 + 22 = 0252

(5.2)
We first assure ourselves that the mapping between S and
S is not given by the restricted, homogeneous Galilean
transformation (4.4). Performing the mapping (4.4) on
(5.1) yields:

<2 - 2xvt + v2t2 + y° + 22 = c?t? (5.3)

It is obvious that (5.3) is inconsistent with (5.1).
Consequently, we make our first metatheoretical declaration,
albeit negative, that *'the wave front equation' is not
Galilei covariant.

To determine the appropriate transformation, we
shall forsake mathematical rigour in favour of certain
simplifying assumptions which happen, nevertheless, to be
correct. Firstly, considerations of symmetry and relativity
will require for the restricted case the mapplngs:

y —y =7

- (5.4)

zZ —PZ =2
In the second place, consideratilons of relativity regulre
that the uniformity of expansion of the wave front in

one inertial frame must entail the uniformity of its

expansion in every jnertial frame. The alternative would
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be to abandon the concept of inertial frame. This implies
the valuable clue that the transformation be linear in

x and t. This, in turn, entails that the dimensional
homogeneity of the transformation equations can be
preserved only if the relative acceleration between the
two frames vanishes. Combining these considerations with
(5.4), it follows that the required transformation must

be of the form:

x — X = f(x) - g(vt)
y —>y =73
- (5.5)
Z —s Z = Z
t —» t = j(t) + h(x/v)

where f,g,j,h are constant functions of their arguments.

Performing the mappings (5.5) on (5.1) yields:

fz(x) - 2g(vt)f(x) + gz(vt) + y2 + 22

= 0232(¢) + 2¢23(t)n(x/v) + 2ni(x/v) (5-6)
We have now simply to determine f,g,j,h such that (5.6)
reduces identically to the form of (5.1). Immediate
inspection suggests:
f(x) = x; j(t) = t; glvt) = vt (5.7)
Substituting equations (5.7) into (5.6) yields:

x2 - 2xvt + v2t2 + y2 + 22

2,2 2

s 2 (5.8)
= ¢“t° + 2¢7th(x/v) + ¢ h (x/v)

If we now set h(x/v) = -vx/cz, (5.8) reduces to:
x2(1 - v2/02) + y2 + z2 = c%t?(1 - v2/c?) (5.9)

We now find that x and t differ from their required values
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by a factor which is constant for any given mapping.
Accordingly, we may divide by the constant factor

(1 - vz/cz)% to achieve the desired result. The mappings
which transform uniform wave front equations into uniform
wave front equations must, therefore ,have the form:

(x - vt)/(1 - vo/cB)E

X — X =
y — 5 =Yy

~ (5.10)
zZ —> 2z =2

t —» t = (t - vx/cz)/(l - v2/02)§
(5.10) constitute the restricted, homogeneous Lorentz
transformation.

We immediately note that the preceding
derivation of the Lorentz transformation did not make
use of the standard heuristic devices, namely that they
reduce to the Galilean transformation when v/c —» 0 or,
in particular, that an inertial frame of Special Relativity
Kinematics have precisely the same signiflicance as an
jnertial frame of Newtonian Mechanics. Indeed, it did
emerge that the required transformation be linear, but
this followed not from an analogy with Newtonian Mechanics
but from the principle of relativity coupled witﬁ the
formal structure of the wave front equation.

So far, as our conventional use of lower case
letters indicated, we have been concerned with the
establishment of a metatheorem, namely that 'the wave

front equation‘ is Lorentz covariant. Indeed, we began
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by referring to moving frames of reference, but had we
regarded the situation from the four-dimensional or
space-time standpoint, with t as the fourth coordinate,

we could have conducted the discussion solely in terms

of coordinate transformations. We now turn to the level

of the object theory where Xi,t will refer to the physical
coordinates of events. The results turn out to be

rather interesting.

Recently a book was published on Special
Relativity which dealt in very large part with the twin
paradox and the other so-called paradoxes of Specilal
Relativity(Prokhovnik, 1967). The author did not appear
to reach any definitive resolution of the problems which
he discussed. In fact, this topic would require at least
one doctoral dissertation to itself. In what follows,
however, we shall deal with one aspect of these problems
and, we hope, resolve it to the reader's satisfaction
on the basis of our general theme regarding the
distinction between coordinate and frame transformations
or covariance and relativity principles. We refer to the

spherical wave front paradoX. But first, we must prepare

the ground with some comments about the relativistic
phenomenon of time dilatation.

Firstly, we note that the restricted Lorentz
transformations are the realization of a group, & subgroup

of the complete Lorentz group, which entails that every
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element has an inverse, which, in this case, is obtained
simply by the interchange of barred and unbarred variables
and the replacement of +v by -v in all of its occurrences.
When we deal with the object theory of Special Relativity
Kinematics, the implication of the relationship between
the transformations and their inverses carries an obvious
but counterintuitive message. In fact, it is largely in
virtue of its counterintuitive character that Speclal
Relativity aroused the interest of certain philosophers
from the time of its inception, and led to so many
counterrational interpretations.

In the realm of the object theory, the Lorentz
transformation equations relate the physical coordinates
of the wave front in one frame of reference to the
physical coordinates of the same wave front in a second
or 'moving' frame of reference, assuming both frames to
be inertial. However, the latter is not gquite so clear as
many physicists who specialize in other areas are inclined
to assume. In particular, there is a certain ambiguity
in the expression 'same wave front'.

We have already intimated that a significant
pert of the philosophical literature on Specisl Relativity
has been based on misconceptions. Such philosophical
misconceptions frequently aid and abet the scientific
popularists, the modern day sophists, in endowing the

theory with as great an air of paradox as possible in order



to make it 'good reading'. Many of these paradoxes depend
on the aforementioned nature of the relationship between
a Lorentz mapping and its inverse,

We now turn, as promissed ,to a preliminary
discussion of time dilatation and the so-called clock
paradox, which is, incidentally, not to be confused with

the twin paradox, the latter opening a veritable Pandora's

30x of problems. We are given two inertial frames, K and K,
each having a clock, C and C. With respect to K, C is
running slow in comparison with C., With respect to ﬁ, C
is running slow in comparison with 5. But that is to say
that each clock is running slow with respect to the other,
which is logically impossible. A facile philosophical
tactic is to point out that, in fact, there is no formal
contradiction since each claim pertalns to a different
frame of reference. So far so good. But then it is argued
that this indicates that time dilatation is not 'real’
but merely the outcome of a coordinate transformation.
This is to trivialize the phenomenon by making it appear
to be of no greater significance than, for example, a
change of scale. It is also to make nonsense of the
~abundance of experimentallevidence concerning the duration
of high sbeed particles.

Let us now indulge in one of the *thought-
experiments?! of theoretical physics. Consider an inertial

frame in the form of a rigid platform on which is mounted
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a clock end a light source at one end and a mirror at
the other. We assume the round trip constan;y of the
velocity of light. Let the distance between the light
source and the mirror be L. A light signal is sent out
and reflected back to its source. The clock will measure
the time interval between the two events as:

ty, - t1 = Bt = 2L/c (5.11)
We call this the proper time interval between the events.
By this is meant, in this simple context, the time

interval between two events at the same location.

We now consider the 'same physical process'
referred to a different reference frame which is moving
uniformly with velocity'v'in the transverse direction.

The length of the time interval between the beginning and

end of the round trip passage of the light ray is T.

The distance travelled by the light ray is Z[L2 + (VE/Z)Z]%.

But, ex hypothesi, the velocity of light is constant. Hence:
cat = Z[L2 + (VoE/Z)Z]%

oE =(L/X1 - v E = ar - VDT (5a12)
In words, the proper time interval between two events is
less than any improper time interval between them. It may
appear that this result 1is incompatible with the principle
of relativity, since it distinguishes a unique frame of
reference, namely that in which a time interval is a
minimum. We shall shortly dispell this.

what we have just presented is the case of a



oL

single physical process referred to two distinct frames
of reference. We now consider a different state of affairs.
A similar apparatus is attached to the second or ‘moving?
frame, and the experiment is repeated. It wlll now turn
out that the time interval is less in the second frame
than in the first. As the twentieth century sophists
would say, clocks in the second frame run both slower and
faster than clocks in the first frame. This does preserve
the symmetry between the two frames as required by the
principle of relativity but at the apparent cost of
logical consistency. In fact, the difficulty is easily
resolved.

A proper frame is distinguished for a particular

pair of events. In that frame, the time interval between
such events will be a minimum. However, the principle of
relativity is not violated, since no particular pair of
events is uniquely determined or preferred. Secondly,
there is no logical contradiction. A given clock which
measures a proper time interval appears to 'run slow!'
with respect to another frame. But in the second frame a
clock measures a proper time interval and appears to
‘run slow' with respect to the first frame. But different
pairs of events are involved in the two cases.

The confusion would doubtless be alleviated if
it were kept in mind that clocks do not measure the flow

of a temporal substance but always and only the intervals



95

between events. In this sense, time is relational rather
than absolute. Of course, the same could have been sald
vis & vis the universal time of Newtonian Mechanics.
However, the fiction of absolute time could be consistently
maintained therein simply because there is no quantitative
difference between a proper and an improper time interval
in Newtonian Mechanlcs.

We are now in a position to resolve the paradox
of the light spheres. What we have just related in regard
to the clock paradox will be common coin to most
physicists who have had even passing acquaintance with
Special Relativity. We thank such readers for their
forbearance. What we are about to show 1s possibly more
original and, we hope, of greater interest to the scientific
reader. Consider two distinct frames of reference whose
origins, O and 0, coincide at the moment that a spherical
light pulse is radiated from the point of coincidence. At
any later time, in accordance with the principle of
relativity, the light wave will be a uniformly expanding
sphere centred at O but also a uniformly expanding sphere
centred at 0 # O. This, in brief, is the paradox of the
uniformly expanding wave front.

At the outset, let us remark that we deplore
the attitude of those teachers who tell their students
that this is simply an unanalyzable fact of nature, like

gravitational attraction, which simply cannot be questioned.
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This is to lower science to the level of dogmatic
theology. We shall make use of a greatly simplified
argument, since the generalization is obvisus. We consilder
the case in which not only do the origins of the two
frames coincide at the time of emission of the light pulse
but also in which the frames are so coordinatized that

the motion of K is restricted to the +x-direction with
respect to K. A necessary kinematical condition for a

wave front to be expanding radially from a point O is that
for every point on the wave front with the position

vector ?(tl), there is a corresponding point on the same

wave front whose position vector 1is J?(tl). We shall restrict

our analysis, however, to those polnts which 1lie on the
x-axis. In what follows, we employ the term event to
signify a point on a wave front at a fixed time.

Accordingly, we may think of a wave front as an event

surface.

In the 'stationary' frame of reference K, &
light pulse is emitted from the origin at t = to. At a
later time t, an event E, occurs with coordinates (X,t)
and its simultaneous mate E, with coofdinates (-X,t). The
physical coordinates of Eq and E, satisfy the equation,
x° = cztz. At t =t = t,s the origin 0 of the 'moving'
frame coincides with 0. Therefore, the same light pulse
must expand radially from O in the 'moving' frame. The

event E, is recorded in the moving frame, where it has the
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coordinates (X,t). Since i is moving in the +x-direction,
it is obvious that x < X, t < t. We may refer to the
event in K as El’ but it is clear that the barred
coordinates are nothing but a different label for the same
event. In the language of space-time relativity kinematics,
Eq and El are simply two representations of the numerically
identical point on the world line of a light ray. The
relationship is given by:
- 2, 2.%

x —» X = (x - vt)/(1 - v7/c™)
- 2 2 2 3% (5.13)
t = t=(t - vx/c )/(1L - v /c)
Just as El(X,t) has the simultaneous mate Ez(—x,t), so
to EI(X,E) = El(X,t) there must correspond the simultaneous
event ﬁz(-i,E). The Ehxsical_coordinates of EZ are given
in K by:

X —» =X = (=X + Vt)/(1 - Vz/cz)%
(5.14)

t =t =(t - Vx/cz)/(l - V2/cz)%
It is obvious by inspection that the coordinates
of él given by (5.13) and those of ﬁz given by (5.14)
both satisfy the wave front equation, iz = ¢ t°. However,
‘whereas El and El were deliberately chosen to be the
self-identical event, E2 and Ez are distinct events. The
event EZ which is identical to E, in K has the coordinates
(-X,t) given by:
x —> % = (-x - vt)/(1 - v¥/c?)E g
_ 2 2.3 (5.15)
t —t = (t + vx/c )/(1 - v /c7)

Comparing equations (5.15) with (5.14), we
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conclude that EZ is both farther from the origin and
later than EZ. (The reader will note that we have used
inverse transformations whenever necessary to give all
coordinate values in terms of K and S for purposes of
comparison.) We are now able to resolve the paradox of

the light spheres, not for its own intrinsic interest, but
to deepen our understanding of the Lorentz transformatlon.
The effect of the Lorentz transformation is to ‘carry’
light spheres into light spheres. In other words, the
wave front is a symmetry or invariant of the Lorentz
group. However, we are able to have a spherically
symmetrical wave front in the two frames of reference,

K and ﬁ, only because the transformation 'selects'
different sets of events to constitute the event surfaces
of the 1light pulse.

It is at this juncture that we find ourself in
disagreement with Bunge who speaks of the Lorentz
transformation as "just the relation between two different
representations of events."(1967a, p. 189) In one sense
he is correct, insofar as the Lorentz covariant character
of the wave front equation can be determined by pure
computation. However, he is wrong in supposing that the
transformation is merely a formal device for represénting
the same physical process in different frames of reference.
Moreover, since the frames of reference in question are

inertial frames of Special Relativity Kinematics, i.e. not



99

affecting the laws of that theory, Bunge's view virtuelly
entails that such a frame transformation is essentlally
the same as a coordinate transformation, but with time
dependent coefficients. In falirness, we are obliged to
reiterate that it depends on the meaning that one attaches
to 'same physical process'. If this means the history

of a certain light pulse, then Bunge's claim is essentially
correct. However, a deeper view of the Lorentz transfor-
mation is that it results in representations of distinct
physical processes, €.g£. event surfaces, taking place

in distinct frames of reference but in accordance with
the same physical laws of optics as required by the
principle of relativity. Since the transformation singles
out different sets of events instead of representing

the same events in different frames of reference, it can
hardly be regarded as purely formal. Admittedly, the
situation is extremely subtle as attested to by the
necessity for our constant switching from lower case to
upper case variables. The subtlety of this particular
case arises from the fact that the specific covarlance
group of 3Special Relativity Kinematics which we have
studied, namely the restricted, homogeneous Lorentz group
also happens to be a relativity group of that theory.
While the former is a calculable metatheorem, the latter
is a testable physical hypothesis whose falsification

would require a modification of the laws of optics.
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In concluding this part of our treatment of
Special Relativity Kinematics, we should remark that the
foregoing serves as the best possible illustration of
the distinction between a pure coordinate transformation
which simply applies new labels to the same physical
events, and a frame transformation which, in this case,
leads to the selection of different physical events in
different frames of reference, but obeying the same
fundamental laws. We believe that the apparent 'queerness’
of the Lorentz transformation is fully accounted for by
the foregoing conslderations. Finally, we think it
relevant to reiterate that even in the highly delimited
context of Special Relativity Kinematics, there is a sharp
distinction to be drawn between the metatheory and the
object theory.

So far, we have restricted our treatment of
the Lorentz transformation to the simple case in which
the origins of two coordinate systems coincide at an
arbitrary initial time, the spatial axes are parallel,
and the motion of the barred frame is restricted to the
+x-direction. The resulting transformation equations (5.10)
constitute the restricted, homogeneous Lorentz group
of transformations. We now proceed to make certain
generalizations.

Firstly, in place of the wave front equation,

we consider the more general expression:
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2 2 2 2 2

s"T=x" 4y 4+ 27 -c¢ t2

(5.16)
We define this gquantity as the space-time distance, which

can be shown to be the principal invariant of the
homogeneous Lorentz group. In other words, a homogeneous
Lorentz mapping preserves the equality:

s? = 3% (5.17)
Secondly, we consider the case in which the coordinatization
of the two inertial frames is such that their relative
velocity has three non-vanishing components. 3ince the
latter may be reduced. to the restricted case by an
appropriate spatial rotation, under which 52 remains
invariant, it is obvious that the general, homogeneous
Lorentz transformation is the realization of & group.
However, contrary to intuition, the latter group may not
be decomposed into the direct product, RB X Lg. We shall
shortly explain this peculiarity of the general Lorentz
transformation, although its full significance will only
appear in Chapter VII, in which we formalize the Principle
of Special Relativity. Finally, we consider the case 1in
which the origins of the coordinate systems do not

coincide. The quantity s2

is no longer invarisnt in this,

the inhomogeneous case. We may settle this matter easily

by rewriting the principal invariant in differential form:
(as)2 = (ax)? + (ay)? + (dz)2 - c(at)? (5.18)

which is invariant under a general, inhomogenous Lorentz

mapping. It is known as the space-time interval. However,
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from the standpoint of the relativity group, (5.18) which
is the differential form of (5.16) is irrelevant, since
the inhomogeneous term is independent of time and therefore
eliminable by a pure coordinate transformation.

We remarked in Chapter II, Sec. 1 that the
group property of a set of permissible mappings 1is by no
means trivial. In the context of Classical Relativity and
Special Relativity, it is possible to restrict the models
of reference frames to Cartesian coordinate systems, in
which case the coordinate transformations are such that
their Jacobian is non-vanishing throughout all space,
and it is not necessary tq restrict the application to
a finite region of the Vn' Hence, it is obvious that for
any mapping there is an inverse, and for any succession
of mappings there is a single mapping which will transform
a given quantity into the original quantity.

In the case of mappings which model frame
transformations, there are obvious epistemological
reasons for the relativity mappings, whatever they happen
to be, to possess the group property. Very simply, since,
ex hypothesi, a relativity principle applies, it must be
the case that if a relativistic process is referred
successively to several distinct inertial frames and
ultimately to the original frame, no change should be
induced 'along the way' in the fundamental law of interest.

To speak in terms of subjective observations, which is
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justifiable in an epistemological context, an objective
process cannot be affected by the viewpoint of the
observer. An objective process 1is characterized in
relativity physics, including Newtonian, by the fact that
whatever point of view, i.e. frame of reference, the
observer happens to adopt, 1t 1is always possible to change
that point of view back to the original one without
jnducing a change in the nature of the observed process.
Thus, the projection of a cube on a two-dimensional
surface may be a square for a particular observer. The
projection will undergo & series of changes as the observer
moves with respect to the cubej; but whatever the

situation of observer and cube at a given time, there is
always possible, in principle, a single movement of the
observer which will restore his original orientation with
respect to the cube and such that the projection of the
latter on the same two-dimensional surface will once more

be a square. This reveals the objectivity of the projective

propérties of the cube. Clearly there is, in general, an
intimate 1ink between the objective reallty of a physical
pattern and its appropriate relativity group. Accordingly,
since the group property of physical frame transformations
is non-trivial, we should not expect to find that any

set of frame transformations which happens to be
mathematically representable is the reslization of a

group.
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The foregoing remarks apply to an interesting
property of the Lorentz group which distinguishes it from
the Galilean group. We have noted that the restricted
Lorentz mappings are the realization of a group which
is a subgroup of the complete Lorentz group. Similarly,
the inhomogeneous spatial rotation group is a subgroup
of the Lorentz group. However, in Newtonian Mechanics,
the general Galilean transformation without rotation 1is
the realization of a group, whereas its counterpart, the
general Lorentz transformation without rotation is not.
That is to say, the combination of two successive
general Lorentz transformations without rotation is not
necessarily equivalent to a single general Lorentz
transformation without rotation. This is probably why the
majority of textbooks 1limit their exposition to the
restricted Lorentz group. The proof is rather lengthy,
although not advanced, but since it 1is part of standard
mathematics we leave it to the interested reader to try
it out for himself.

In physical terms, suppose that a particle has
a velocity v’in an inertial frame K. Under a Lorentz
transformation without rotation, we calculate that its
image in K is given by klg’(kl = const.). We then make
a similar Lorentz transformation to a third frame but
find that the mapping from K to ﬁ does not indqu’the

=y -
mapping, V-—bkzv’(kz = const.). That is to say, V will not
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generally be parallel to -\-I’but will have undergone &a
rotation. In general, a vector in K will only be

parallel to its lmage in % when the velocity vector
between K and K is parallel to the velocity vectof between
ﬁ and f. This case, however, is always reducible to the
restricted Lorentz transformation by the appropriate
choice of Cartesian coordinate system..The rotation of

the image vector is known as the Thomas precessiou(Thomas,

1927). In short, the counterparts of what are sometimes

called velocity mappings in Newtonian Mechanics are not

the realization of a group in Special Relativity physics.”
That, of course, is not to say that velocity mappings
cannot be performed in Special Relativity physics. There
is a well-¥nown set of formulae for the composition of
velocities in Special Relativity, which are easily
obtained by differentiation of the general Lorentz
transformation and a little algebra. It is merely that
the composition of velocities in Specilal Relativity not
only obeys a different law from the classical one but also
has a different significance, As we have already remarked,
we shall have occasion to refer to this matter once
more in a later chapter.

We mention the Thomas precession not for the
sake of completeness in our treatment of Special Relativity
Kinematics, for which we are obviously not endeavouring,

but to bring out the difference, alluded to clsewhere,
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between an inertial frame of Newtonian Mechanics and

an inertial frame of Special Relativity Kinematics. Several
writers including Einstein and Fock identify them. Einstein
frequently alluded to Galilean frames when referring to

the inertial frames of Special Relativity. In fact, the
most that can be said is that the total set of Galilean
frames {K,} 1s coextensive with the total set of Lorentz
frames §X,3. This will be the case if there is at least

one frame which is rigorously inertial for both

electrodynamics and Newtonian Mechanilcs. This would not,
however, be a useful subject of investigation for the
experimental physicists. Such an investigation would

be pointless since it would presuppose that an accuracy
of measurement of the second order in v/c could be
attained not only in electrodynamical experiments but also
in purely mechanical ones. In the second place, however,
Newtonian Mechanics is regarded only as an approximation.
Consequently, & sufficiently accurate experiment would
be influenced by the effects of Special Relativity
Mechanics. However, even if one allowed that there exist
in the universe a frame which is both Galilean, in the
sense of Newtonian physics, and inertial, in the sense of
Special Relativity, so that in virtue of the linearity

of both Galilean and Lorentz mappings, we could assert
the equality iyg} = iKlg, there would still be no element

to element egquivalence between them. A very simple
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argument which does not depend on the Thomas precession
may serve to illustrate this,

We choose an example in which all velocity
vectors are parallel so that the Thomas precession cannot
enter. Let us suppose that we have a 'stationary’
laboratory frame K with respect to which a second frame K
is moving in the +x-direction with velocity U. A particle
has the velocity g.with respect to K. According to
Newtonian Kinematics, the magnitude of the velocity of
the particle with respect to K must be |U + Tl= T+ (71,
According to Special Relativity Kinematics, the particle
will have the velocity (§,+-§)/(1 + UV/CZ) with respect
to K. Bridgman(1962) expressed serious doubts concerning
the relativistie law for the composition of velocities
on the ground that it involves two distinct differential

operators d/dt and d/dt. However, what follows would

depend only on direct observation. Specifically, we

introduce a third frame K which is the rest frame of the

particle.Whether or not a particle is at rest in a
particular frame is, of course, determined by direct
observation. By simple logic, the velocity of the rest
frame with respect to K must be (? + _\7?)/(1 + UV/cZ).
Hoﬁever, if we use the formula of Newtonian Kinematics,

the rest frame of the particle will have the velocity

— -

U + V with respect to K. In short, while the equality

{Kgl = {Kiﬁ conceivably holds, the corresponding transformetion
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1aws relate different elements of the set of inertial
frames. In more formal language:

{¥} is the basic set of reference frames.

g(=df. kinematically equivalent up to a Galilean
transformation) is a relation which is reflexive, symmetric
and transitive in §K{.

1(=4f. kinematically equivalent up to & Lorentz
transformation) 1is a relation which is reflexive, symmetric

and transitive in §K3%.

ixgg =df. g{k¢{ is the equivalence class of inertial frames
of®Newtonian Mechanics.

§x13 =af. 1{x} is the equivalence class of inertial frames
of Special Relativity Kinematics.

iKgg c (K3} is an equivalence class of $x3.
{%¥,2 c {k} is an equivalence class of SK3.
The elements of iKgg are 8,D,Cy...

The elements of {K;} are Kafryse-

5 is a binary operation on iKgg.

I is a binary operation on $K%.

= is a binary relation which is reflexive, symmetric and
transitive in {K3%.

<{Ké ,G,-l, I> is a group ¥.
<{K1{ ,L,-l, I) is a group L.
a' =
bt = p
aGb —» c; «L p 27
(aGb)* # 7
The foregoing merely proves that in spite of

the putative identity of the set of Galilean frames and
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the set of Lorentz frames, the structures "5 and £ are of
different types. Accordingly, one may not spesak
jndiscriminately of a Galilean frame to denote either an
element of the first member of the structure % or an

element of the first member of the structure X . At most,

one would be entitled to speak jndiscriminately of inertial

reference frames, but even this is a practice which we
would strongly discourage. In fine, to speak, in the
manner of Einstein, of Galilean frames 1s to treat the
relatively complex structure of a group as though it were
that of a mere set.

If it had been the case that the relativity
group of electrodynamics were realized by non-linear
transformations, the confusion between a Galilean frame
and a Lorentz frame would never have arisen. In fact,
however, we have already noted that frames of reference
belong to the category of mechanical objects. Insofar as
electrodynamics requires inertlial frames, the latter must
be regarded as objects which belong to the theory of
electrodynamics. Thus, the foregoing discusslion ceases to
be of such great importance for physics, albeit of
considerable methodological significance, since the
mappings between mechanical inertisl frames and electro-
dynamic inertial frames must be of the same kind. This
is the rational basis for the development of the program

of Special Relativity Mechanics, wnich we treat in the
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following chapter. This program is not based on the

fixity of meaning of inertial frame, namely a frame that

moves uniformly (relative to what?). It is quite conceivable
that an accelerating frame could serve as an inertial
frame if only the laws of nature were different. Having
perused several introductory treatments of relativity
physics, we are surprised that the student is not generally
more confused than he actually is, since, almost without
exception, there is a serious lacuna in the logical
development. We quote from one of the more highly respected
textbooks:

"Having obtained the Lorentz transformation

to replace the incorrect Galilean

transformation, we can now proceed to

the second stage and require that the

laws of mechanics, in common with all of

physics, shall have the same form in all

uniformly moving systems."(Goldstein, 1950)

But the Galilean transformation is correct?

That is to say, it is a realization of the relativity
group of Newtonian Mechanics. Can the Lorentz covarliance
of Maxwell's laws serve to falsify the laws of Newtonlan
Mechanics? This is an absurdity. There is no apparent
reason why different theories should not have different
transformation properties. The point is that electrodynamics
includes mechanical objects within its purview. Hence,
Newtonian Mechanics which is inconsistent with

electrodynamics must be modified. Otherwise, the theory

of electrodynamics would be inconsistent. Conversely, one
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could argue that Maxwell's laws should be modifiled to

make them Galilei covariant. In fact, both paths were
pursued but only one proved fruitful. However, we shall
show in Chapter VIII that from the deeper standpoint of
General Relativity, the coexistence of a Gallilel

covariant mechanics and a Lorentz covariant electrodynamics

is not only a physical but also a mathematical impossibility.
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CHAPTER V

SPECIAL RELATIVITY MECHANICS

At the close of the preceding chapter, we
briefly indicated the rationale for the general progran
of Special Relativity physics. In the case of electro-
dynamics, this program had, in a sense, been carried out
prior to the formulation of the Principle of Special
Relativity, insofar as the basic laws of that theory
are covertly Lorentz covariant as they stand. However,
Newtonian Mechanics is not a Lorentz covariant theory.
Hence, in executing the program of Speclilal Relativity
physics, it is natural to anticipate a modification of
Newton's laws.

Fortunately, it was shown by Minkowski(1908)
that a formalism could be employed in which properly
constructed equations are automatically Lorentz covarilant.
This formalism plays a similar role vis é vis the Lorentz
group of coordinate transformations to that played by
the elementary three-vector formalism vis & vis the
Galilean group of transformations. The particular version
of this formalism which we shall adopt for the time
being involves the replacing of the ordinary time
parameter by a fourth coordinate ict = x*(1 = J=1). This

particular version of the so-called four-vector formallism

is beginning to go out of fashion. Today, many writers,
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e.g. Bunge, Fock, et al., favour the use of the real time
coordinate ct. The principal objections to the original
Minkowski version are that it treats of rotations through
imaginary angles and, in general, involves reference to
imaginary quantities, which tends to obscure the physical
content of theoretical laws. Furthermore, it is of no
value in the Theory of General Relativity. The principal
advantages of the imaginary coordinate are that it enables

one to treat the space-time manifold as though it were

formally Euclidean, which leads to some notational

simplification, and, moreover allows one to continue to
ignore the distinction between the covariant and
contravariant components of a vector. On balance, we have
decided that the imaginary coordinate is well suited to
our purposes. There 1s no danger in adopting the most
convenient formalism for a particular purpose, provided
only that one does not confuse the special properties of
the formalism with those of physical reality.

The purpose of this chapter 1s quite stralilght-
forward, namely to provide supporting evidence for the
thesis that the Principle of Special Relativity has

physical content, i.e. that, as distinct from Lorentz

covariance, per se, it belongs to the object language of

physics. Our general procedure will be the rather
workaday one of taking Newtonian laws and, with the aid

of the four-vector formalism, of rewriting them in
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manifestly Lorentz covariant form. The point will be to
show that the laws which are obtained in this way differ
in physical content from those of Newtonian Mechanics.,

For the benefit of the reader who 1s unfamiliar
with the four-vector formalism, we shall begin with a
very brief sketch of the manner of its working. We employ
a four-dimensional orthogonal coordinate system with the
xi having their usual significance and with the fourth

coordinate x4 = jict. It is then clear that the space-time

2

interval: (ds)2 = (dx)2 + (dy)© + (dz)”~ - cz(dt)2 may be

represented by the homogeneous quadratic form:

(48) = Spvdatdx (rovz uzadk) (6.1)
Since our purpose is to construct geometrical objects
which are analogous to three-vectors, we require that
the linear, homogeneous transformation:

NG :ogrw)cv (6.2)
be such that the space-time intervel be an invariant.

That is to say, under the transformation (6.2), we must

have:
Cdx™)* = (452 (6.3)
Employing the transformation (6.2) in (6.3), we have:
okpa,dxfo{,ssdx“ = J‘,‘v dx* dxv (6.4)
or, KpxAhpedx¥dxf = Spev dx™ dx¥ (6.5)

Clearly, (6.5) can only be satisfied identically when:

The superficial appearance of (6.6) is that of
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one of the orthogonality conditions under a rotation in
three dimensions; the only difference is that the indices
run from 1 to 4 instead of from 1 to 3. Thus, we may
formally treat a homogeneous Lorentz-transformation as a
rotation of‘a four-dimensional Carteslan coordiﬁate
system. However, 1t should be abundantly clear to the
reader that we are in the mathematical universe of
discourse. To forget this would be profoundly misleadilng.
The Minkowski coordinates are useful precisely in virtue
of their formal analogy with Cartesian coordinates.
However, we must not forget the imaginary character of xu.
If we were using real coordinates, (6.1) could not be
expressed in its present form. In particular, if real
coordinates were employed, the metric gquadratic form
could not possibly be transformed to positive definite
form by any real transformation. This 1is but one reason
why Minkowskil cocordinates would be nothing but a handicap
in the more complex arena of General Relativity. But at
that point, in any case, we need a Riemannian as distinct
from a Euclidean or pseudo-Euclidean metric.

We now define a four-vector in Minkowskl space

as any quantity that transforms like the dxM. It follows
from this condition that the square of the magnitude of
a four-vector must be a Lorentz invariant. It is called
the norm of the four-vector. In spite of the formal

analogy with Euclidean geometry, differences appear as
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soon as we consider the invariant norm. As & conseguence
of the imaginary character of xu, it is possible for the
norm of a four-vector to be zero even though it have
non-vanishing components. In general, we have:

(@s)2 = (axt)? = (axh)? - cB(ap)? (6.7)

If the norm of the four-vector is greater than zero,

i.e. dx' is the dominant quantity, we have a space-like

vector. If it is less than zero, i.e. dx4 is the dominant
quantity, we have a time-like vector. (Employing real
coordinates, we may interchange these relations.) If it

is equal to zero, we have a null-vector, which is most

important in 3pecial Relativity physics, since it obviously
corresponds to the condition of light propagation, i.e.
(dxi)2 = cz(dt)z. In this four-dimensional context, it

is customary to speak of the light-cone as defined by

(ds)2 = 0. This concept is intuitively useful in the
following way. Suppose that we have two neighbouring
events: Eq(X") and E,(X* + ax¥). The light-cone with E,

as centre is given by (ds)2 = 0. Now, 1if E, lies on the
light-cone, Eq and E, may be connected by a 1light signal.
If Ep 1s inside the region defined by the light-cone, then
dx* is a time-like vector. If Ep lies outside of this
region, then axt is space~like. Furthermore, it is easy

to show that if a vector is time-like, there is always a
permissible transformation which makes the spatial 'part’

of the vector vanish; whereas, if a vector 1s space-like,
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there is always a permissible transformation which makes
the temporal 'part' of the vector vanish. Intuitively,
if the norm of the space-time distance is non-posltive,
the two events may be regarded as simultaneous, whereas
if the norm of the space-time separation is greater than
zero, the two events are absolutely successive.

We now define the time-track on our mathematical

manifold by the definite linear functions:

S o= Xt (xv) (6.8)
Next, we choose a coordinate system such that the curve §L
lies along the x“-axis. With respect to such a coordinate
system, we have:

X" = 0, (6.9)
for the spatial coordinates of the time-track. Clearly,
the values of Xu correspond to the path length s and also
to the proper time of which we spoke in the preceding
chapter. By a suitable choice of scale, we make dx4 = ds.
It is obvious that the displacement ds is a time-like
vector with the components (0,0,0,icdt). Let us replace
the parameter x4 of (6.8) by the space-time distance s.
Then we represent the curve by:

SV = M (s) = x*(ich) (6.10)
We define the real auxiliary variable X by:
dv = 45 (6.11)
te
From (6.7), (6.9) and (6.11) we deduce the equality:
dT = dt¢t (6.12)
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We have just demonstrated that it 1is always
possible to choose a coordinate system such that the real
coordinate time t corresponds to the proper time 7.
Furthermore, we have shown that in such a system the
proper time interval must be orthogonal to the spatial
axes. In general, however, the spatial components of the
displacement ds will be non-vanishing. We now determilne
the relgdonship between dt and dt for the general case.
Inserting (6.11) in (6.7), we have:

~c2(am? = (axh)? - ¢2(at)?, (6.13)
from which there immediately follows:

av = (1 - v2/c?)3at, (6.14)
which is Lorentz invarilant.

We now have the necessary tools at our disposal
to deal with Special Relativity Mechanics. We wish to
underline the important point that all of the preceding
discussion, although aimed at a physical application,
strictly belongs to the realm of methematics. We have
lapsed into the language of physics with such terms as
tevent', 'time-track', 'light propagetion', etc., only
as an aid te intuition. None of these terms were essential
to the mathematical development. In short, nothing so far
saiq nas had anything to do with the physical world. We
have simply constructed a formallsm which may be so
interpreted as to lend itself to the expression of physical

laws. The laws of that formalism belong to the mathematical
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frameworX of physics. We now turn to the object theory
of Special Relativity lMechanics. We stress, once again,
that our treatment of physical principles is not intended
to be exhaustive but merely, we hope, instructive. In
particular, to keep matters fairly simple, we limit our
discussion to point mechanics.
is mentioned at the beginning of the chapter,
we shall employ the simple (and probably simple-minded)
stratagem of modifying Newton's equations in such a way
that the resulting equations are Lorentz covariant.
Naturally, we do not imply by this procedure that a Lorentz
covariant formula must, & fortiori, correspond to a
physically true law of nature. This would be just as
unfounded as to argue that a Galilei covaeriant formula
is necessarily the expression of a true law of nature.
We do, however, intend to show that such a procedure
leads to testable physical consequences. For information
on the actual confirmation of such conseguences, the
reader should turn to any standard textbook on the subject.
1t is natural to begin our account with the
concept of the velocity of a point particle. The classical
velocity dxi/dt is not & vector in four-space. Obviously,
since time is not universal in Special Relativity physics,
1t would be difficult to construct a four-vector with
its aid. We turn, therefore, to the Lorentz invariant

proper time T . We interpret T very crudely and strictly



@

120

as an aid to intuition in operationalistic terms as the
time measured by a clock which is attached to the moving
particle. A change of reference frame obviously cannot
alter the value of ¥, since it does not involve the
transmission of a signal but depends on the direct

coincidence of events. We may express the four-velocity

u* by: 9
%ﬂ = % f\% (6.15)
By (6.14), we may express (6.15) as:
U = %‘/" - (V-VYer)E (‘ﬁ—’ii> ic) (6.16)

The norm of UM is easily obtained:
(W = gr(v UMuUY = (\-v’/c")-((vl-cz) = —¢* (6.17)
In short, we reach the rather interesting
result that the norm of the four-velocity is a universal
invariant. Moreover, we note for future reference that ur
is a time-like vector. The universal invariance of the
norm of U™ should not be regarded as too surprising, since
differentiation was with respect to ¥ which is invariant,
and the frame of reference is the rest frame of the
particle in which time has been coordinatized by ict.
Intuitively, the measurement of the four-velocity of the
particle is relative to the velocity of light, which must
be the same for all inertial frames. (Essentially the same
result would have been obtained using the real coordinate
ct.) \

Instead of working out the components of the
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four-acceleration of a particle, which involves some
tedious mathematics, we shall follow the time-honoured
and easier path of deriving a Lorentz covariant formulation
of the conservation of momentum for the collision of
two particles. This will, in turn, lead us to the definition
of the four~force, often called the Minkowski force.
Incidentally, this type of example is one of the few
physical cases in point mechanics for which a Lorentz
covariant counterpart is possible, since the nature of
Special Relativity rules out instantaneous action at =
distance. Special Relativity fully comes into its own
only in the case of field theories. The conservation of
momentum in elementary point mechanics is given by the
well-known formula:

mlﬁﬁ + mzﬁé = mlﬁﬁ + m2§} (6.18)
We naturally assume that the velocities must be replaced
by four-velocities and the masses by some quantities
which are Lorentz invariant. Consequently, we rewrite
(6.18) as:

M UL + MoUL = My Vg o+ MpVyT (6.19)
More generally, we may write:

MnUg = const. (6.20)
Inserting (6.16) in (6.20), we obtain:

M, (1 - vz/cz)-%
We now define the quantity:

m =af. M(1 - vZ/c?)-% (6.22)

(dxi/dt,ic)n = const. (6.21)
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We call m the relativistic mass. Clearly, in an inertial

frame in which m is at rest, we have m = M. Consequently,
M is an invariant which we henceforth denote by m, and

call the rest-mass or proper mass. 1t has the same value

in all inertial frames and may, therefore, be employed to
define a Lorentz covariant momentum given by:

p* =af. m,U* = (mdx’/dt,imc) (6.23)

The direct significance of the foregoing for
this dissertation is that the imposition of Lorentz
covariance on the law of conservation of momentum led to
a physical consequence, namely that the Newtonian or
classical concept of mass must be abandoned in Special
Relativity Mechanics. Many writers with a similar motivation
to our own prefer to say that a factual consequence of
Special Relativity Mechanics 1is that the mass increases
with the velocity, contrary to the doctrine of Newtonlan
Mechanics. However, while this is true, it refers to the
relativistic mass, which does not occur 1n Newtonian
Mechanics. Another frequent declaration is that the
classical mass is equivalent to the proper mass of Special
Relativity Mechanics. But since the proper mass is always
measured in its rest frame, it clearly has a different
meaning from that which Newton attached to the concept
of mass. The proponents of the latter view are, in effect,
using a 'correspondence principle', according to which

Special Relativity Mechanics reduces to Newtonian Mechanics
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as v/c = 0, as a constitutive law of Special Relativity
physics instead of as an occasional heuristic gulde. We
have just employed the classicle principle of the
conservation of momentum as a guide to the construction
of a four-vector; but the classical principle of momentum
conservation certainly does not belong to the Theory of
Special Relativity. In short, it appears that when we
speak either of relativistic mass or of proper mass, we
are guilty of semantic confusion in identifying either

one with the Newtonian gquantity of matter. We prefer,

therefore, the more cautious statement that the four-
momentum of a particle, defined as the product of 1its
rest-mass and its four-velocity, is conserved. We shall
shortly see that it is semantically admissible to compare
Newtonian and Special Relativity Mechanics at certain
points, but this is not one of them. It is philosophically
more profitable to regard Special Relativity Mechanilcs
as a distinct theory from Newtonian Mechanics than as a
modification of it.

By the same token, writers who state that
'P* = (P,imc)' signifies that the spatial components of
the four-momentum vector are identical with the classical
momentum are gullty of a similer, if not worse, error.
This error is probably bolstered by the true but physically
irrelevant statement that the three spatial components of

a four-vector constitute a geometrical object which
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transforms like a three-vector. In fact, of course, such
a transformation simply represents a neﬁ céordinatization
and has no bearing on the principle of relativity. More
significantly, the spatial components P-1 of the four-
momentum vector are given in the restricted case by:

ot = o1 - vieB)E (6.24)
Clearly, (6.24) behaves quite differently under a Gallilean

frame transformation from the Newtonian momentum. In

particular, if (6.24) is subjected to a Galllean
transformation under which c, of course, would no longer
be an invariant, it would be found that the momentum
relative to the second frame would not be in the same
proportion to the momentum in the first frame as the
velocity of the second frame relative to the first - a
result which is at complete variance with Newtonian
Mechanics.

In fact, we may consider two possibilities for
the Newtonian physicist, when confronted by (6.24). In the
first case, he might know, although falling to understand
why, ¢ is a universal constant in all inertial frames of
reference, so that he would leave it untouched in
subjecting (6.24) to a Galilean transformation. Suppose
a transformation is made with respect to an inertial
frame moving with velocity ﬁ'in the +x-direction with
respect to the original frame., Then:

PP = (V-0 - (v- 022t (6.25)



125

In accordance with Newtonian Mechanics, dividing (6.25)
by (6.24) we should get the identity:

mo(‘\—f? - TJ’)[l - (Vv - U)Z/czl'%.(l - V2/02)"1;/mov

= {31/ W) (6.26)

But, in fact, (6.26) is not satisfied identically, although
it naturally approaches an identity as U —» O.

in the second case, we suppose that the Newtonian
physicist is unaware of the invariance of c¢ but has
measured it in a stationary frame. He will then include
in the Galilean transformation the mapping:

3=>3=2¢-1T (6.27)
We leave it to any reader who has time to waste to verify
that the insertion of (6.27) in (6.26) would still be
inconsistent with Newtonian Mechanics.

The most we can say of the symbol on the left
hand side of (6.24) is that it represents the same kind
of geometrical object as the momentum of classical physics.
But the two are, on no account, to be jdentified, as 1is
the practice in many textbooks on the subject. The writers
of such books would not, of course, represent the spatial
components of the four momentum by (6.24) but rather by:

<P1,P2, P3) =P =V ‘ (6.28)
This has exactly the same appearance as the Newtonlian
definition of momentum and, moreover, the same covariance
properties under a rotation of coordinates. However, the

physicist carelessly overlooks the point that 'm*' in (6.28)
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denotes the relativistic mass not the Newtonian mass of
the particle.

So long as we are working with Newtonian
Mechanics, the meaning of 'm' must be made explicit as
in (6.24). In fine, we have exposed a compound confusion,
namely between covariance and relativity principles and
between two distinct theories. An incidental but important
moral of this 1is that one should not take correspondence
principles too seriously. They emphatically do not belong
to physical theories, and their heuristic value is
explained not on a physical basis but on an epistemological
one. The difference in magnitude between the spatial
components of the four-momentum vector and the Newtonian
momentum is very small for low velocities and vanishes in
the trivial case of the rest frame of the particle. This,
rlus the fact that pre-Einsteinian physicists were not
completely blind in the making of measurements, explains
why correspondence principles seem to work.

However, we have shown that the two theories
of Newtonian Mechanics and Special Relativity Mechanics
are gquite distinct. The concepts which occur in them,
while often bearing the same name and entering analogous
logical relationships, denote different entities. Moreover,
the difference in the two theories which we have discussed
has been exposed on the basis of their satisfylng different

relativity groups! To indulge in a slogan, the comparison
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of (6.24) and (6.28) entitles us to assert that 'Covariance
is not enough!'

We have already mentioned that Newtonian
(instantaneous, action-at-a-distance) forces cannot be
incorporated into Special Relativity physics. In particular,
there is no Lorentz covariant generalization of 'Newton III'.

However, there is a natural counterpart to '*Newton II':

Fro= et o g 4V (6.29)
aT &%

It has already been noted(6.17) that the norm of the
four-velocity is equal to a universal constant. Rewriting

(6.17) as:

(UM ? = —c%, (6.30)

and differentiating with respect toYT, we get:

W, o du = yw.F" =0 (6.31)
dX
ILet us now ascertain the components of the

four-force. From (6.23) and (6.29), we have:

F"‘= (P, ime) = dc J (8,imc) (6.32)
or, PR = (1 - v2/c )'%(f,imc) (6.33)
From (6.16), (6.31) and (6.33), we have:

(1 - v2/c¢2) " H(Fhie) (FHrifie) = (6.34)
Hence,

V.F = c%i = 0 (6.35)
and, (1/¢)V.F = imc : (6.36)

Inserting (6.36) in (6.33), we have:
FR = (1 - v2/c8) " H(F, (1/0)T.F) (6.37)

which must be a four-vector by virtue of (6.29).
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It is apparent from (6.37) that the 'direction'
of FM® will depend on the ordinary veloclty of the particle
on which it is acting. Consequently, two four-forces which
are parallel with respect to an inertial frame of reference
will not, in general, be parallel in a second frame
which differs from the former by a Lorentz transformation.
This is one reason why there is no Lorentz covariant
counterpart of 'Newton III'. However, this very fact will
give us a deeper understanding of the force law of
electrodynamics, which we consider in the next chapter.

In addition, an important physical consequence
arises. Since the norm of F¥" is invariant, it follows that
the Newtonian force which acts on a particle must vary
with the velocity of the particle. It is possible to
demonstrate this result by means of 2 simple computation
which avoids the usual complexities of subjecting Newtonian
forces to Lorentz transformations. The norm of FM is
given by:

(e#)* = (\F1*- ‘L':}f'lcos B)U‘VI/C")—l

= |FI%sint8 = & (6.38)

1

Since FMis a space-like vector, it is permissible to
transform to the rest frame of the particle in which the
time component of FM vanishes. Physically, this simply
amounts to the force's acting on a particle whose

instantaneous velocity 1is zero. The norm of ﬁ“ is given by:

(FZ = \FI% - (6.39)
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Equating (6.38) and (6.39), we have:
l'?’l2 9 (6.40)

(6.41)

-, 2
IF | sin

*Ile I

Hence, E’>
The Newtonian case would hold rigorously only in the
highly restricted circumstance in which vpand anre
parallel so that cosf = 1. In this case, we would have:

F=F, (6.42)
which is consistent with Newtonian Mechanics.

It may be objected that (6.41), on our own
argument, has no meaning since it pertains to Newtonian
forces but was deduced from the laws of Special Relativity
Mechanics. Are we not guilty of the very error which we
have ascribed to others? While it is true that one must
avoid the 'semantic nixing' of two distinct theoriles, it
is still possible to establish 'contacts' between them.
With due semantic care, it is possible to demonstrate
that one theory is incompatible with another. Thus, while
(6.41) is expressed in the language of Newtonian Mechanics,
it is not a theorem of Newtonian Mechanics but is a
theorem of Special Relativity Mechanics. Moreover, it
shows a physical hypothesis of Newtonian Mechanics to be
false. There is nothing in this case which 1s comparable
with the identification of the proper mass of 3pecilal
Relativity Mechanics with the Newtonian mass.

We wish to stress that the transformation:

FM —> ﬁ", which was employed in our computation, belongs
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to the relativity group of point mechanics and not merely

to the covariance group. That is to say, it did not
correspond to a rotation of spatial coordinates but to
a change of reference frame, since it involved the
xu-coordinate of the Minkowsk¥l system. A veloclity may be
transformed away by a change of reference frame but not
by a new coordinatization of the same frame.

In summary, we have shown that by imposing
the condition that a theory of point mechanics be Lorentz
relativistic rather than Galilei relativistic, we are
led to definite physical consequences. It follows that
the Principle of Special Relativity must belong to the
object language of physics, even though its more general
metatheoretical counterpart, the Principle of Lorentz

Covariance, does not.
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CHAPTER VII

ELECTRODYNAMICS

The modifications of the laws of mechanics which
were brought about by making those laws Lorentz covariant
may strike the newcomer. to relativistic physics as rather
Procrustean, and the activity of writing the new laws in
the four-vector formalism as a mere mathematical exercise.
In the case of Classical Electrodynamics, however, the
situation is quite different. No fundamental change 1s
brought sbout by writing its laws in manifestly Lorentz
covariant form, although, as we shall see, greater insight
is thereby achieved. In fact, the Lorentz covariant
formalism turns out to be more natural than the classical
formalism. In its classical form, the most unsatisfactory
aspect. of electromagnetic theory is the distinction
between the electric and magnetic fields. What appears 1in
one frame of reference as the manifestation of a magnetlc
field will appear in another as an effect of the electric
field. While this does not contravene the principle of
relativity, it is epistemologically unsatisfying. For
example, the magnetic force acting on a particle which
moves with velocity V is given by F = (q/¢)(V x B). This
doesn't even have the form of a fundamental law, slnce
the right hand side depends on the state of motion of

the frame of reference. In particular, the magnetic force
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could be 'transformed out of existence' simply by referring
it to another inertial frame, which may make one wonder
whether it was really there in the first place.

Despite the naturalness of the four-dimensional
formalism in the case of Electrodynamics, the least
fruitful approach to a genuine appreciation of the Lorentz
covariance of Maxwell's laws of Electrodynamics would be
to write them in their classical form and then to perform
the purely formal task of rewriting them in four-dimensional,
i.e. manifestly Lorentz covariant, form. In this way, the
physics which underlies the Lorentz covariance of Maxwell's
1aws would be entirely lost, especially to a philosopher.
The situation is not anslogous to that of Newtonian
Mechanics in which the introduction of four-dimensional
formalism forces a modification of the physical content
of the laws of Iinterest.

Accordingly, before making use of the four-
dimensional formalism, we shall examine some simple
situations which serve to bring out the relatlonship
between the electric and magnetic fields from the stand-
point of the Principle of Special Relativity. The
simplicity of the basic physical situations which we intend
to examine is quite justified as a basis for generalization
provided that one pays more than lip-service to the
concept of the field. If the field description of electro-

magnetic phenomena 1is correct, then 1t 1is possible to
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transform a field point from one frame of reference to
snother regardless of the simplicity or complexity of the
sources of that field. In fact, as Bunge has shown(1967a,
p. 164), the field concepts are logically independent

of the source concepts, so that one cannot say that the
one is more fundamental than the other.

Thus, we come to the apex of our discussion of
the Principle of Special Relativity. The theory of
Electrodynamics is the true physical basis of Special
Relativity physics. It was Poincaré who noted in 1904
that Maxwell's equations are covariant under Lorentz
transformations. Shortly thereafter, Einstein published

his epochal paper: On the Electrodynamics of Moving

Bodies(1905) which heralded the beginning of the Theory
of Special Relativity.

There are many ways in which thils chapter could
be presented. Throughout this dissertation we have
attempted to steer a course which would be of interest
both to the physicist and to the philosopher who has some
knowledge of physics. We shall continue to adhere to
this course in the present chapter, which 1s the justification
for the particular mode of presentation that we now adopt.
In brief, we shall begin with a presentation of the
classical version of the theory which we hope will be
comprehensible to the majority of phi¥osmhical readers.

However, in presenting the classical theory, we will not
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attempt to hide our knowledge of Special Relativity but
shall emphasize those aspects of the physics which
illuminate the basis of the Lorentz transformation, our
purpose being to show that the latter is not simply a
formal device but the representation of a fundamental
aspect of physical reality.

our treatment thereafter will be more formal
and, for the first time, we shall utilize tensors of the
second rank. This will help to prepare the philosophical
reader for the eventual confrontation with General Relativity
in Chapter VIII. However, to take as small a step as
possible at each stage, we shall continue to employ the
Cartesian coordinates of MNinkowski, so that no distinction
will be made between the covariant and contravariant
indices. While objectionable, on some grounds, it will,
at least, help to clarify the distinction between a flat
Euclidean or pseudo-Euclidean manifold and a Riemannian
manifold in which the aforementioned distinction is
inescapable. Finally, since this is not a treatise on
physics, as the reader by now knows, we shall limit
the treatment to the behaviour of the electromagnetic
field in a vacuum(but Cf. Bunge, 1967a, pp. 160f.). That
is to say, there will be little or no talk, except
heuristically, of dielectrics and conductors. In our
sparse universe, we shall admit electrically neutral frames

of reference, the electromagnetic field, and polnt charges.
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The scientifically trained reader may omit or skim over
the early parts of this chapter. In the Appendix to the
present chapter, we shall make up for one of our omissions
by endowing our point charges with mass. This, again,
will prepare the ground for the chapter on General
Relativity.

There are two kinds of electric charge which
are nominally designated as positive and negative. Two
charged particles at rest and bearing the same kind of
charge exert a mutually repulsive force, whereas two
particles at rest but with opposite charge exert a mutually
attractive force. With charges g3 and q 3 separated by the

distance r-

130 the foregoing is summerized in Coulomb's law,

which for the vacuum and in ESU units is given by:

= 2

Fij~= Q1QJ-fij/(rij) s (7.1)
where fij is the unit vector in the direction of ?Hj. If
we consider a static distribution of charges, we are able

to calculate the force that they would exert on a glven

test charge dq in a fixed location.
e

=S %% & (7.2)

- 3 C(foy)® °
We call F, the electric field intensity or simply the
electric field arising from the sources aj and denote it

-

by E. Incidentally, this is not an operational definition
of E; since q, would, in fact, disturb the static
configuration of qje Some physicists, in a self-stultifyling

attempt to be operationalistic, produce the non-physical,
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non-sense formula:

E = }L{:o%
Qur appraisal of this is indicated by our not bothering
to number it. In general, if the system of point charges
ijs sufficiently dense, we conventionally treat it as a
continuous charge distribution and replace the sum of (7.2)
by an integral. Then we have the electric field intensity
at (x,y,z) produced by a charge distribution over the
region jdx'dy'dz' given by:

Sf(x,:s,z,)r dx’oly’dy’ (7.3)

where p is the charge density. We now define the flux of

E through an arbitrary closed surface in terms of the
total charge enclosed by that surface as: .

§E.92 - e { gV, (7.%)
which is known as Gauss's law. Then by the divergence
theorem, we have:

V- = uWg, (7.5)
which is one of Maxﬁell's equations.

It is easily shown that the nature of the
electrostatic field is such that it may be expressed

as the gradient of a scalar field; that is:

-y

E=—-9¢ (7.6)
Inserting (7.6) in (7.5), we have:

Tty = -uiWg (7.7)
which is known as Poisson's equation. It should be noted

that whereas (7.5) holds for all electric flelds, in vacuo,



&Y

137

(7.7) is only applicable in the case of an electrostatic
field. That is to say, if a frame of reference can be
found relative to which all of the charges are at rest,
then (7.7) may be applied.

There is a mass of experimental evidence,
including the very existence of matter as we know it,
that the charge q is a relativistic invariant. Hence,

(7.4) may be evaluated in any inertial frame. That is:
JE. 4z = JE.4F (7.8)
SG) Q)
A fortiori, (7.5) must be relativistically covariant. In
fact, we must bear in mind a certain restriction on (7.8),
namely that the Gaussian surface 3 at time t encloses the
same charge as § at T # t. On the other hand, (7.5) is a
local relationship in which such a consideration could
not arise.

Let us pause to consider the implications of
charge invariance. Since charges produce fields, the
invariance of charge must have an effect on the trans-
formation properties of the electric field. Suppose that
we have two parallel sheets of charge of density +f and -p,
in the frame K, which are of negligible thickness and
whose surface areas are very large relative to the
distance between them, so that the field between them may
be regarded as effectively uniform. Let us coordinatize
K so that both sheets are parallel to the xy-plane. Now

the magnitude of such a field is simply Uﬂf. A second
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frame R is moving in the -x-direction with respect to K.
The length of the sheet must undergo a relativistic
contraction with respect to the 'moving' frame. However,
the total charge must remain constant. Hence, the charge
deﬁsity must be increased by:

p=F= (1-V/) p | (7.9)
The only component of E’between the sheets of charge 1s
in the z-direction. Hence, by applying Gauss's law(7.4)
in i, we have:

Ey = wiWf = (1= vYe) 2Ty (7.10)
On the other hand, if the sheets of charge were oriented
parallel tc the yz-plane of X, the surface would not have
been subject to relativistic contraction. In this case,
there would be a uniform field with one non-vanishing

component X and with respect to K we would have:

X
Ey = By (7.11)
The example that we have employed is that of

an extremely simple charge configuration. However, as we

intimated earlier, if the field is of objective signif-

ijcance it must be independent of its sources. Hence, under

any circumstances, regardless of sources, the principle

of relativity should enable us to determine the nature of

the field in any inertial frame, given its description in

a particular frame.

Let us, once more, take a 'stationary' frame K,

coordinatized by the system 3 such that a point charge Q
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is stationary at the origin of S. Let ? be a radius vector
in S. It follows as an elementary consequence of (7.4)
that the field of Q 1s given by:
E = q/r° (7.12)
Let us restrict our considerations to the field in the
-

xz-plane of S. Resolving E into its components in this

plane, we have:

Ex = - ex

~ T s ® Goeg)™ (7.13)
- = k¥ )

By = 3,50 Gy

- -y
Now consider a 'moving!' frame X having the velocity V in

the -x-direction with respect to K and coordinatized by

S such that x = ¥ = 0 at t = £t = 0. We now express the
t

components Ey and E, in K at 0. From (5.10), (7.10),

(7.11) and (7.13), we have:
- 1=V Q%
[(1=v¥c)'x?
(1= Vz/cl)-%. Q-k
(=YY" ™ *?13/"( 7.15)

Dividing (7.15) by (7.14), we have:
EZ/EX = Z/X (7.16)

Ex — Ex = Esc

"31_']3/1 (7-14)

and, E£5 — E} = (“"I/C").'hEb' -

Thus, the direction of the field vector E?must be in the
direction of %: which is the radius vector from Q at
t=1t =0,

It follows from the above considerations that
at an ‘observation point' in R, say ten miles from the
origin of §, the field will 'appear! to be emanating from

0 at £ = 0. Since we cannot have instantaneous action at



&

140

a distance, it follows that the field at the observation
point in K was determined by its source at a time prior
to T = 0. We shall refer to the significance of this
shortly.

Continuing to work in two dimensions, we now
make a purely notational change by suppressing the bars
of the K variables. In effect, we are now treating K as
a 'stationary' frame in which a point charge is moving in
the +x-direction with velocitylﬁa However, since the
change is purely notational, the form of (7.14) and
(7.15) is unmodified. We now compute the strength of the
field in the new *stationary' frame K, our former K. From

(7.14) and (7.15), we have in the new notation:

- 2 2\ _ (\-Vl/ct)-""Q(X"*E_)_‘_,,’:
‘E-l = [-(E’d * (E}) ] - B‘_u’/ct)-lxl + 3::.]3/2.

By (7.16), we know that the direction of the field is

(7.17)

given by the radius vector from the instantaneous position
of the point charge to the observation point. Since the
origin O is arbitrary, this result is general. However,
there is a significant difference between the new field E?
and that of (7.6). Taking the curl of (7.6), we have:
UXE = -(vxvg§)=0 (7.18)
This is a necessary consegquence of the radial symmetry
of the field of a stationary charge. We call such flelds

conservative, and 1t is this that permits us to express

them as the gradient of a scalar. In general, for any
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electrostatic field:

$E.47 =0 (7.19)
However, inspection of (7.17) reveals that the values of
the physical coordinates X and Z are no longer formally
interchangeable. In short, our new field, while still
radial, is no longer radially symmetrical. In particular,
the field at right angles to the x-axis, the direction of
¥, will be stronger than the field parallel to V. (7.19)
will no longer hold and, accordingly, no static charge

configuration could produce 1it. In differential form:

VXE * 0 ) (7.20)

or, $E.IT#O (7.21)
At first sight, the principle of relativity

seems to have been violated. We arrived at the condition
(7.20) via a transformation from one inertial frame to
another. Surely, the field equations should be covariant
under such a transformation. For the moment, we shall
content ourselves with a partial resolution of this
problem. Firstly, the situation is somewhat analogous to
the issue of the proper time interval which was discussed
in Chapter V. The non-covariance of (7.19) is based on

the selection of a privileged point charge, namely one

that is at rest in the 'stationary' frame. If we considered

a similarly distinguished point charge in the 'moving!
frame, we would find that the effect is completely

reciprocal between the two frames. Thus, the dlscrepancy
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between (7.19) and (7.21) does not provide a basis for
distinguishing one inertial frame from another or, in
particular, for distinguishing a privileged frame. On the
other hand, it is true that we have contrived a velocity
dependent force field. The velocity dependent factor

must be worked into the field equations to make then
covariant. The study of the covariance properties of the
electrostatic field does not reveal a direct violation

of the principle of relativity, which would falsify our
thesis since the one is formal while the other is physical,

but does reveal that electrostatics 1is an incomplete

theory. Ultimately, we shall find that a complete
relativistic theory must have as 1its primary object the
electromagnetic field, of which the electrostatic field
is a very special case. However, we must first return to
a piece of unfinished business.

We noted in our last physical example that at
an observation point ten miles from the point charge,
the field vector will be in the radial direction. This
implied that the source had produced a field prior to its
reaching O at t = T = 0. Suppose, now, that we have a
frame of reference X in which the point charge is in
uniform motion in the +x-direction. When it reaches the
arbitrary origin O it is brought instantaneously to rest
at t = 0. At the observation point(x,z) at t = 0, the

field must be given by (7.17), i.e. the field of a moving
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charge at the origin. However, at any other observation
point, at a distance s € ct from 0, the field will be
that of a motionless charge. Hence, there must be a
sudden change in both the magnitude and direction of the
field. Let us take two observation points: Pl(il,zl) in
the field of the stationary charge and PZ(XZ’ZZ) in the
field of the moving charge. The direction of'g at Pq is
measured at the same time as the direction of E at Py. If
@ is the angle which Ekl) mekes with the x-axis and § is
the angle which E}Z) makes with the x-axis, then a shrewd
application of Gauss's law, which we need not explain,
will yield the relation:

tend = (tanb(1l - v2/02)—% (7.22)
Thus, to conform to the principle of relativity, it is
necessary that the direction of the electric field undergo
a precession determined by a change of velocity relative
to an inertiasl frame. At a later point in this chapter,
we shall find that such effects have profound significance
in the formulation of the Principle of Specieal Relativily.

We have, so far, considered the force field
generated by a uniformly moving charge. We now consider
the case of the force exerted on a charge which moves
uniformly in the field of an existing charge configuration.
In the case of an electrostatic field, the answer 1is
virtually at hand. Given a point charge with velocityi?

with respect to K, transform to the rest frame, of the
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charge K. The force on the point charge will be given by:
= =

F = qE (7.23)
We then find the transformation law for the force. We
shall omit the mathematical computation, since we have
not yet introduced the convenient four-vector formalism
in this chapter. However, we state the result:

F »F=qF (7.24)
In words, the force of an electrostatic field on a moving
charge is independent of the velocity of the charge.
Relativistic factors enter the computation of the
components ofig’and Ez but they cancel out to give (7.24).

To consider the force on a charge which 1is
moving in the field of a non-static configuration, it 1is
necessary to turn at last to the magnetic field. We shall
begin by considering the idealization of the magnetic
field which is produced by steady currents and constant
charge densities. This aspect of electrodynamics is often,
in analogy with electrostatics, given the unfortunate
title of magnetostatics which, at least from the Amperian
point of view, is actually a contradiction in terms.

It is & ﬁell-established empirical fact that
moving charges exert forces on each other whose magnitude
is velocity dependent and whose direction is at right angles
to the velocity and a unique spatial direction. it is

possible to represent this relatively complicated force

by utilizing a vector fileld g’given by:
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F = (a/c)(T * B) (7.25)
For example, current-carrying parallel wires will attract
or repel each other depending on whether the currents are
respectively in the same or opposite directions. When a
charge density f is in motion it constitutes a flow of
charge. We define the flow density or current density by:

T =5V (7.26)
The total charge passing through a surface per unit of
time is the electric current, given by:

I =§T.a% (7.27)

Cons;der an inertial frame K with a current-
carrying wire which 1is aligned with the x-axis of 3. The
positive charges are fixed in the wire while some of the
negative charges are moving in the +x-direction with
velocity V. Let us suppose that f, =-f , SO that the
wire is electrically neutral and generates no electric
field. At a distance r from the wire, a negative point
charge g is moving parallel to the wire with a velocity ?;
in the +x-direction. Consequently, the moving charge must
be deflected towards the wire under the action of the
magnetic force given by (7.25). We now transform to K in
which g is at rest. The charge can no longer experience
a magnetic force since its velocity is now zero. However,
the principle of relativity requires that the charge still
be deflected towards the wire. We assume that there must

be an electric force acting on the charge. With respect
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to ﬁ, the wire is now moving in the -x-direction, with

the velocity'vg. By (7.9), the charge densities £ and f.
must undergo a relativistic change. The positive charges
are now moving with velocity G; in the -x-direction, while

—ry - —_
the negative charges are moving with velocity V - Vo = Vq
in the -x-direction. Hence, the new charge densities with

respect to i are given by:

Fo = B (1= /er)T

f., £ U__\/',_/CT_)—‘IL (7.28)
Clearly, the wire is now positively charged and produces
an electric field §>which exerts a force on the stationary
charge towards the wire. The scientific reader may be
disturbed by the qualitative nature of the foregoing
account. However, we merely wish to interpret in an
intuitive way the interrelationship between the electric
and magnetic fields from the standpoint of the principle
of relativity.

We now state the general relationship between

the magnetic fieldfg and the current density J. The total

4
current enclosed by & curve C is equal to the flux of J

through a surface which spans C. Thus:

J8.az = {7 43 (7.29)
'By Stoke:; theorem, we have: ‘

§8.437 = “Ef(oxB).ax (7.30)
Whence: - Jj

UrE = g (7.31)
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Finally, the magnetic field 1is determined by the further
condition:

v.-é, =0

(7.32)
That is to say, unlike the electric field, the magnetic

field has no sources, i.e. there are no magnetic charges.

We may now summarize the basic equations of

electrostatics and magnetostatics:
-

J-E = uwWvy
\7<€ = O
v xE = © (7.33)
9 xB = wrF
C

However, when there are changes in the currents and charges,
the time derivatives of the fields must be included. Then

the general equations of the electromagnetic field are

ziven by Maxwell's equations:

V-E = L

\

Q.B: O N
T = -1

v xE = < e (7.34)
B = L+ F gt

Y x8 e N

The field equations are, of course, to be supplemented by
the force law:

-y -
F = qE + (a/c)(V »B) (7.35)
We conclude this part of the presentation with

two further elementary points. Just as the electrostatic

field could be expressed in terms of the gradient of a

scalar potential, so the magnetic field may be expressed
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in terms of the curl of a vector which is called the

vector potential:

—

= xR (7.36)
Secondly, we wish to comment on the significance of the
first term on the right hand side of the last of the
equations (7.34).

Since charge is invariant, the amount of charge
leaving an enciosed volume must precisely equal the
decrease in charge in that volume. This appears to be a
tautology but actually hes physical signifilcance. Accordingly,
we may express the relationship between current density
and charse density by a so-called equation of continuity.
Incidentally, while charge invariance is a sufficient

condition, it is not necessary for charge conservation.

V-3 = —g_.tﬁ (7.37)
But in the case of a 'stationary' current, we have:

Ux® = % F (7.33)
In the case of a varying charge distribution, by (7.37):

-3 #0 \ (7.38)

However, the divergence of the curl of en arbitrary vector
vanishes identically. Hence, by (7.33), we have:

V(v xB)= &é"v-fzo (7.39)
Obviously, (7.39) is incompatible with (7.37) end,
since we cannot doubt the truth of (7.37), 1t follows that
(7.33) cannot hold for varying currents. In fact, even

'Q-J=0' 1is a gross jdealization in magnetostatics. In any

STYTEAR
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event, it is clear that another term nust be added to
(7.33) in the physically real case of varying currents.
According to Faraday's law, a changing magnetic field 1is
accompanied by an electric field.
VrE=-1238 (7.34)
¢ J¢c
It is natural to assume, and this 1is strictly heuristic,

that a changing electric field '*induces' a magnetic field.

Thus, by analogy with (7.34), we rewrite (7.33) as:

® _ L YE "\
I B = C‘S—C—* _C—,—? (7.40)

This is not necessarily a physically true law, but by
virtue of (7.37) it does satisfy the identity (7.39), so
that the contradiction is resolved. The new tern1%:%£ is

called the displacement current. Faraday failed to discover

the displacement current, since for relatively slow changes
in the field, the convection (and conduction) currents
alone suffice to account for observed magnetic effects.
After a lengthy discussion, which was trying
for the philosopher and excruciatingly boring for the
physicist, we are now ready for the payoff which begins
with the rewriting of Classical Electrodynamics in
manifestly Lorentz covariant form. It is well known to
the student of elementary vector analysis that when one
performé a coordinate transformation, for example from
Ccartesian to polar coordinates, it 1is not only the vectors
but also the vector operators that must be appropriately

modified. Similarly, in the four-vector formalism, it is
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normal to expect the four-vector operators to differ from
their three-vector counterparts. However, so long as we
continue to use Minkowski coordinates, the modification
is the most simple and natural one possible. We simply
replace Y by O given by:

O =df 2+ 2 2 +2 (7.41)
Similarly, the four-vector counterpart of the Laplacian,
known as the d'Alembertian, is given by:

* - X

0% = df 25+ (7.42)

Ja e T T et
We shall, however, make use of the comma notation to
signify four-dimensional differential operations. Thus,
the four-divergence of an arbitrary vector VM is given by:
gvh =4 Vihin (7.43)
The equation of continuity (7.37) may be
rewritten as:

Q.f-r%}_:; DI" =TT (7.44)
(7.44) is Lorentz covariant provided that JM® is a four-
vector. Now JM may be written as:

TH= (T,icp)=(p¥, tep)= j’(l—""/c’)‘l2 U™ (7.45)
UM is the already familiar four-velocity, and we gather
from (7.9) that:
f(l-_-_vl/ci)'h‘: fo : C(7.46)
iélthe proper charge density. Hence, J¥" is the four-current
density ziven by:
T = fo VN, (7.47)

which is manifestly Lorentz covariant. J® is a useful
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theoretical quantity, since Ji gives the current density
while Ju gives the charge density.

It is well known in Classical Electrodynamics
that whereas the vector potential K’determines the field.g,
the converse does not hold. Since the curl of a gradient
is identically zero, it is always permissible to add such
a quantity to K>without affecting_g. However, to preserve
the consistency of the eguations, it 1s necessary to make
a corresponding change in the scalar potential. Thus,

we have the so-called gauge transformation:

ﬁ—_—: ﬁ":'ﬁ-rvtl's

» - — 3
9 v = 9 - W

q/is known as the gauge function. If it is made to satisfy

(7.48)

the condition:

v.ﬁ + 1 B_f = O (7.49)
c 3¢
which is called the Lorentz gauge, there follows:
i@ _ L YA - _wr 2
Y "R ¢ Yk - = 9 (7-50)
and, W @ -5 4 . -wnTp (7.51)
C acx
Defining the four-vector potential AM Dby:
-y .
AY =ds. (A,t4) (7.52)
we may combine (7.50) and (7.51) in the form:
HH)VV = - L.!_C!.}—\,‘_M (7.53)
Given the values of 2 and § in an inertial frame K, the

-r> -
correspending values of E and B are given by:

- -1 YA
= -V-t (7.54)

E
© (7.55)

= I xA



152

Let us now see how (7.54) and (7.55) may be
combined by way of the four-vector potential. By (7.52),
(7.54) and (7.55), we may work out a sample component

= -
of E and one of B.

(7.55)

in general, we define the electromagnetic field tensor:

FHY = A% e~ Ay (7.57)

where FM™VY is given by the matrix:

o B, -8B, -iE
-5 o . -

gmv = 3 O, -L
B, -0, o} - L E3 (7.572)
LE, VEq 'LE3 (®)

Naxwell's two sets of equations may now be written as

a single 'source' eguation and a single '*internal®

equation.
T -
PR,y = BT 3
FRV, ¢ + FYI,pu * FSM,, =0 (7.58)

So far we have shown that Maxwell's equatilons
assume a simple and elegant form in which their Lorentz
covariance is manifest. Moreover, we perceive that the
peculiarities of the field'g; in particuler its being
a so-called axial vector, are simply consequences of 1its
actually forming part of an antisymmetric tensor.
Moreover, in the course of our presentation, we have

attempted to show that the Lorentz covarlance of (7+58)
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has a physical basis of which the tensor formalism is

the mere expression. A mathematician confronted by (7.58)
needs merely to be told that they are four-tensor
equations to be able to assert thelr Lorentz covariance.
However, that (7.58) represents a real field is another
matter. To Xnow thils, one must understand the physical
basis which justifies the claim that (7.58) are laws of
nature. It is not the case that one can ascribe geometrical
properties to the representations of physical quantities
ad libitum. That linear momentum is a polar vector, that
angular momentum is an axial vector are not conventions

of Classical Mechanics but the mathematical representation
of physical reality. By the same token, that the electro-
magnetic field is an antisymmetric space-time tensor is
not a formal thesis of mathematics but an expression of
'the way things are'.

Qur next step is to formulate the force law in
terms of the electromagnetic field tensor. We shall find
that this has particular philosophical significance. We
remind the unmathematical reader that a four-tensor
equation that holds in one inertial frame must hold in
every inertial frame. (This will be generalized in
Chapter VIII, where we introduce Riemannian tensors.) To
construct a tensor equation, a common stretagem is to
choose a frame of reference, in this context inertiasl, in

which it acquires its simplest form. It is then guaranteed
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to hold in any other inertial frame. Our task, now, is to
determine the force exerted on & moving charge in the
electromagnetic field F¥ . Following the aforementioned
stratagem, we choose a frame ¥ in which the charge 1is
instantaneously at rest. Let f'be the electric field
intensity at the location of the charge in K. It follows
from (6.37) that the four-force exerted on the charge g
must be:

P = (qE,0) (7.59)
The four-velocity of the charge in K is given by:

u* = (0,0,0,ic) (7.60)
We now form the gquantity:

FHYUVY = 2 (7.61)
The only non-vanishing component of UY is Uu. Hence,
(7.61) reduces to:

FRYUY = 2 (7.62)
Referring to the matrix array (7.57a) of F™, we may write:

FHegt = _ic(iEq,1Ep,1E3,0) = c(E1,E2,E3,0) (7.63)
By (7.59) and (7.63), we have:

(q/c)F**u% = F¥ (7.64)
In general, therefore:

(q/c)F"VUV'= F* _ (7.65)
The reader may verify that by letting the indices run
from 1 to 3, the familiar Lorentz force equation 1s
obtained. With p = v = 4, the equation vanishes identically.

However, we are not jnterested in the classical
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form of the Lorentz force, but directly in (7.65). The
reader will recall that our definition of a fundamental
law precluded it from containing terms which depend
essentially on a particular frame of reference. 1t was

for this reason that the laws of sound propagation could
not possibly be regarded as fundamental. But, by the same
token, we would be obliged to exclude the force equation
of electrodynamics, since it contains a velocity dependent
part which depends essentially on the frame of reference.
One might even go so far as to say that the classical
Lorentz force equation is only covariant under a pure
coordinate transformation, in paerticuler, a rotation of
the spatial coordinates, since the magnetic force (although
not the field) could be %transformed away' by a Lorentz
frame transformation. On the other hand, the tensor
equation (7.65) contains the four-velocity U™ which has
the same value, i.e. norm, in all inertial frames. It 1is,
of course, true that the spatial components do not vanish
in every frame, but the values of the components are merely
incidental just as in the case of three-vectors. We
conclude, therefore, that the four-dimensional formalism
and, in particular, the combined electromagnetic field
tensor is not merely a more elegant way of representing
electrodynamics but the only philosophically acceptable
way.

Such considerations,however, do not apply to all
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tensorial laws. One can learn little from an examination
of the mathematical formalism of a theory, per se. One
must also understand the physics which it purports to
represent. The distinction between E'and'g in Maxwell's
equations is frame dependent and can, accordingly, have
little to do with the structure of the global patterns

of nature. 3Such considerations add even further support
to our distinction between a Galilean frame and a Lorentz
frame, namely that the latter must include some sort of
clock, which, in the former is regarded as a test instrument,
ancillary to the spatial frame of reference.

Qur treatment, to this point, has merely
scratched the surface of the intriguingly rich theory of
electrodynamics. In particular, we have sald nothing of
the action of the electromagnetic field on matter. In the
Appendix we rapidly cover certain more advanced topics,
particularly by taking into account the mechanical mass
of our point charges. However, we have exposed enough of
the theory to deal in a precise fashion with the Principle
of 3pecial Relativity and its connection with Lorentz
covariance.

In the first place, it is clear that the
restricted Lorentz transformation Lg is a subgroup of the
complete group and is, moreover, a relativity group of
electrodynamics. The inhomogeneous spatial rotation

group 813 is a subgroup but not a relativity subgroup.
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When dealing with the Galilean group, we pointed out that
the general Galilean transformations were the realization
of the direct product Ri} * Gg. One would expect that the
general Lorentz transformation could be represented by

the direct product RiB x Lg- However, such 1is not the case.
The proof, which is not difficult but too long to include
here, is given by Ngller(1952, pp. 118ff.). Specifically,
if the element of 813 is the identity element, then the
resultant of two successive transformations:

I B M = Ape XY and M > XM = Kp XY (7.66)
which is given by:

XM B = Kppapy Xt = Xpe XY (7.67)
is not, in general, a Lorentz transformation without
rotation.

In simple terms, if 3 and S5 are fixed systems
of coordinates of ¥ and ¥ with paraellel axes, and 5 is the
coordinatization of i which differs from K by a restricted
Lorentz transformation, then the image of an arbitrary
vector vbin E will not, in general, be parallel to Gﬁ
This is nothing but a manifestation of the Thomas precession
effect which we have already mentioned. Furthermore, 1t
may be shown that this effect is independent of the
coordinatization. That is to say, it is a time dependent
effect. Hence, to preserve the content of the fundamental
equations of electrodynamics, it is necessary that the

inertial frames undergo spatial rotations. Of course, these
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need not be continuous rotations, 1in which case the

frames would not be inertial. If .we think of an abstract
vector space in which inertial frames are moving uniformly
in all directions, then the transformation (7.67) would

not relate a ¥ to a ﬁ according to the laws of vector
addition. The angle of precession will depend on the
relative velocities and directions of the inertial frames.
We have already come across an example of such an effect

in (7.22) which revealed that the direction of the field
vector E?depended on the velocity of 1ts source with
respect to an inertial frame. Other examples eXxist to
confirm that this is a physical effect which is independent
of the coordinatization of the frames of reference. tience,
it must be taken intc account 1in determining the relativity
group of Zpecial Relativity physics.

Actually, this consideration sheds considerable
1izht on the difference between a restricted, iln our sense,
Galilean transformation and a restricted Lorentz
transformation. The extent to which this is ignored by
the authors of textbooks on physics is as remarkable as
it is deplorable. In elementary texts on Newtonian
Mechanics, the restricted Galilean transformation 1s usually
given with the correct, although often unstated, implication
that the general Galilean transformation is physically
the same as the restricted one but with a different

coordinatization. It so happens that when three Galllean
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frames are in relative motion with non-parallel relative
velocities, the relationship between the first and the
third is representable by a restricted Galilean transform-
ation. But when the analogous situation arises vis & vis
three Lorentz frames, the relationship between the first
and the third will generally involve a rotation of axes.
The unsuspecting student who graduates to Special Relativity
physics will be presented with the restricted Lorentz
transformation, e.g. in Bergmann(1942), and presume that
it is simply a particular way of representing the general
Lorentz transformation, a perfectly natural but false
supposition for which the author of the text is responsible.
In fine, when we speak of the restricted Lorentz
transformation as a subgroup, we imply that the relative
velocities of all the elements of the subgroup are parallel,
which is a real physical restriction. In the Gallilean
case, 'restricted' is simply a figure of speech and a
formal simplification attained by the most convenient choice
of coordinates.
The covariance group of Newtonian Mechanics 1is
Gg X RiB X T, while its relativity group is the subgroup Gg.
The covariance group of Special Relativity physics 1s
the complete Lorentz group L,. The restricted Lorentz
group, in its true meaning, is a relativity group but not
the complete relativity group. We cannot represent the

complete relativity group as Ls X RB’ since this would
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relativity subgroup when, in fact, it is only & covariance

subgroup. Thus, we are forced to represent the relativity
group of 3pecial Relativity physics simply 2s Lr’ the

group of general Lorentz transformatiors with rotation. 1lts
only relativity subgroup is LS. We are now, at last, in

a position to formulate the Principle of Special Relativity.
{L% is the set of fundamental laws of & given theory.

Ck} is the set of possible frames of reference.

{71 is the set of possible frame transformations modelled
by elements of the transformation group L.

For any 1 € $L% and any t e §T§, there exist at least

two distinct Xj,kj € §K3, such that 1 w.r.t. ¥ e § ¥

e t(1) =s. 1 w.r.t. ¥; e {X.

It is interesting to compare this with the
formal statement of the Principle of Classical Relativity.
In the first place, it 1is more general since it is, in
principle, applicable to any physical theory. In the
second place, it clearly shows the necessity for distinguish-
ing between a Galilean frame and a Lorentz frame, since
the distinguished subset {I% < §K{ differs in the two
principles by virtue of the profound difference between
the signification of {T} in the two cases. As to the
greater generality of the Principle of 3pecial Relativity,
it could be objected that Classical Relativity could have

been endowed with the same degree of generality had 913
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been interpreted with the same degree of freedom in the

two cases. In fact, in his original paper, Einstein(1905)
seems to have been motivated partly by philosophical
considerations in applying the Principle of Special
Relativity to the laws of nature in general. Ve have zlready
remarked, however, that attempts to broaden the application
of Classical Relativity, for example in extending it to
electrodynamics, failed to withstand experimental testing.
It is true that in virtue of its generality, Special
Relativity may play a heuristic role in the construction

of new theories and the modification of existing ones, but
this in no way supports its conventionalistic interpretation.
The Principle of 3Special Relativity may be of heuristic
value in virtue of its generality, but the basis of 1its
generality is its factuality.

Finally, we should mention the so-called reality
conditions on the transformation matrix e uv, since they
must equally be kept in mind in the context of General
Relativity. In the form in which we now state them, they
depend on the Minkowski coordinates, but a corresponding
set exists for real coordinates. It is obvious that «{j
must be real since they are the coefficients of a pure
spatial rotation. Similarly, Ky, must be real. It 1is
equal to (1 - v2/02)'%, and the square root must be taken
as positive. This is the necessary condition for:

dE .t
;;>0 > aé>o (7.68)
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In words, it is impossible to go backwards in
time, which is why the one-parameter group of time
translations cannot be part of the relativity group of
any theory. We refer to the condition (7.68) as restricting
the Lorentz group to the orthochronous subgroup. The
reader should be clear concerning the distinction between
so-called time reversibility in which time is treated as
an independent parameter, and the group of time translations
in which time plays the role of a ccordinate variable. Time
reversibility simply means that 1t is possible to change
the sign of the time parameter throughout an entire theory
without altering the significance of that theory. It is
a purely mathematical peculiarity which has nothing to do
with science fiction. On the other hand, the time translation
group entails the possibility of going both ways which 1is
why it isexeluded from the relativity group of every
theory.(Ccf. Bunge, 1959, Ch. 10.)

To return to the Lorentz matrix,<xi4 and A 4¢ must
be imaginary. These conditions entail that there 1s no
permissible Minkowski rotation isomorphic to a Lorentz
transformation which transforms a spatial aXxis 1lnto a
temporal one or vice versa. Moreover, it follows that a
time-like vector cannot be transformed into a space-like

vector or vice versa by a Lorentz transformation.
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CHAPTER VIII

THE PRINCIPLE OF GENERAL RELATIVITY*

3efore dealing specifically with thoese aspects
of General Relativity which pertain to this dissertation,
namely the significance of general covariance and its
relationship to the Principle of General Relativity, we
shall permit ourself the luxury of setting the scene in
that rather discursive manner that few philosophers are
able to resist. Since few authorities appear to agree on
even the very meaning of the theory; on whether, for

example, it is primarily a theory of gravitation or

something much broader, we indicate what the theory signifies

to the present writer - a time Ior considerable temerity.
Let us first review some of our principal points
so far. We have shown that both the Principle of Galllel
Covariance and the Principle of Lorentz Covariance are
strictly formal. It is sheer nonsense to regard them as
rival hypotheses or even as rival metatheoretical theorems.
From a formal standpoint, each is correct vis & vis its
particular referent. The metastatement:"'The laws of
Newtonian Mechanics' are Galilei covariant," happens to
be true. 3By the same token, the metastatement: "'The laws

of electrodynamics' are Lorentz covariant,”" also happens

# The non-mathematical reader should turn to the Appendix
before reading the present chapter.
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to be true. There is absolutely no contradiction, implied
or explicit, between these metastatements.

On the other hand, we distinguished two principles
of relativity: Classical and Special. These have been
interpreted to be incompatible physical hypothesés. However,
contrary to widespread opinion, their incompatibility is

not prima facie. The one asserts that the fundamental

laws of mechanics have the same content with respect to

a distinguished class of reference frames which are

called Galilean frames, while the other asserts that the
content of the fundamental laws of electrodynamics have
the same content in a distinguished class of reference
frames which we have chosen to call Lorentz frames.
Superficially, the two claims appear to be compatible as,
indeed, logically they are. However, the Lorentz frame

is a mechanical object and, as such, is subject to the
laws of mechanics. The physical coordinates that occur

in electrodynamics refer not only to the position of charges,
wave fronts, etc. but also to the material particles

which compose the frames of reference. Ultimately,
therefore, either the laws of mechanics would have to be
modified to satisfy the Principle of 3Special Relativity

or those of electrodynamics made to satisfy the Principle
of Classical Relativity. As it happened, the former course
led to confirmable consequences while the latter did not.

The outcome of the clash between the two hypotheses and
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the consequent overthrow of one was the birth of Special
Relativity Mechanics. That is to say, the Principle of

Special Relativity led to new physics, confirming our

contention that its status is that of a physical hypothesis,
j.e. an object statement. (Later we shall find a deeper

but more formal reason for the necessity of subsuming

both mechanics and electrodynamics under a single principle
of relativity.)

As originally expounded by Einstein, the Theory
of General 3Ielativity is a natural extension of the Theory
of Special Relativity, which was dictated by epistemological
considerations. Very simply, since physical processes are
indifferent to the method of coordinatizing the space-time
manifold, the fundamental laws of physics should be
indifferent to an arbitrary choice of coordinates, subject
only to some obvious formal restrictions, the most
important of which were mentioned 1in Chapter II. In
particular, this entails that the time dependent
transformations which model frame transformations need
not be restricted to the linear transformations of 3Special
Relativity but may be chosen arbitrarily. Hence, the
Theory of General Relativity would not distinguish a
privileged class of inertiasl frames. A frame of reference
which is accelerating with respect to a Lorentz frame
would be just as 'inertial', from the standpoint of

General Relativity, as the Lorentz frame, itself.
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while the present writer admits to & strong
prejudice against any attempt to derive matters of feact
from epistemic premises(Kantianism), there is no doubt
that such reasoning may be suggestive, albeit the same
could be said of dreams and visions. However, Einsteiln
might have provided an equally heuristic but philosophically
more palateble introduction to his new theory on
methodological grounds rather than epistemological ones.
From a methodological standpoint, the most unsatisfactory
aspect of any restricted principle of relativity is the
occurrence of so-called inertial forces. They are
frequently referred to as '*fictitious' forces, with the
implication that they have arisen simply from en incorrect
choice of reference frame. They provide considerable
grist for the mill of the conventionalists, who picture
them as mere book-keeping entries which enable us to
retain the simple but otherwise valueless 'F = mar.

In fact, in this modern age, very few of us
have the opportunity to occupy even a quasi-inertial frame
for very long and, consequently, have had all too
intimate an acquaintance with such ‘fictions’, which we
know to be only too real. Accordingly, Einstein might
just as well have satisfied his philosophical comtemporaries
by arguing that the recognition in the Theory of Specilal
Relativity of a privileged class of inertial frames was

unsatisfactory on the ground of its requiring the relegation
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of a large class of physical phenomena to the status of
quasi-occult entities. That is to say, in a methodologically
(and ontologically?) sound theory, all phenomena within
the scope of that theory should have the same status of
reality. Zven il we could, unlike the present writer,
comprehend the concept of degrees of reality (as in
neo-rlatonism, Scholasticism and Existentialism), one must
at least accord the same reality status to entities or
phenomena of a sinilar kiad. That is to say, it is
unintellizible, at least to the present writer, to sneak
of some forces' havinzg a greater degree of reality than that
of others. Thus, Einstein might have argued that a 'complete'
law of nature should incorporate the so-called inertial
forces. Accordingzly, such a law would hold with respect
to frames of reference in which inertial forces occur
as well as with respect to those in which they do not occur.
Admittedly, many of the subsegquent remarks of
Einstein amounted to a recognition of precisely what we
have been saying, although often on the basis of the
unclear and unnecessary lach's Principle. The point we wish
to make is not that Einstein was ignorant of the foregoing
considerations but merely that they constitute a more
‘physical' philosophical motivation than the Principle of
General Covariance, which Einstein, himself, subsequently
came to regard as purely formal. The argument based on

the Principle of General Covarisnce is possibly more
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appropriate to the doctrine of kinematical relativity
which was a more or less crude intuitive precursor to the
Theory of General Relativity.

Such considerations lead us naturally to the
celebrated Principle of Equivalence. Actually, there are
three so-called principles of eguivalence connected with
Seneral Relativity: viz. the equivalence of gravitational
and inertial mass, which has at last been ‘comnitted to
the flames' by Bunge(1967a, pp. 207ff.), and the two
theorems of General Relativity to the effect that there
ijs at least one coordinate system with respect to which
a static homogeneous gravitational field vanishes and
that there is at least one reference frame in which the
four-acceleration of a test particle vanishes. (Ccf. Bunge,
op. cit., pp. 231-232.) The last two may be combined in
the more familiar statement of the equivalence of
gravitational and inertial fields of force. It is to the
latter that we now refer. In popular treatments, this
principle is usually misrepresented as asserting that a
gravitational field may be transformed away by the selectlon
of a suitably accelerating frame of reference which 1s
attached to a particle which is moving under the influence
of such a field, just as inertial forces may be transformed
away by the selection of a Lorentz frame., Hence, it 1is
held to follow that gravitational forces must have the

very same status as 'fictitious' forces, since all frames
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of reference are equivalent. In fact, of course, this
is not true. While it would be possible to attach a
reference frame to a single particle whose trajectory 1is
a free-fall, it would not be possible to attach a single
frame to two such particles in different regions of space.
To be more precise, such a transformation could only hold
locally in the case of real, non-uniform gravitational
fields.

Even in reputable treatises on the subject of
relativity physics, the analogy is often made between
the transforming away of a magnetic field and that of a
gravitational field. The analogy 1s extremely weak on
two grounds. In the first place, it only works for
electrostatic configurations and, in the second place,
even in the electrostatic case, the electric field will
persist. From the deeper standpoint which postulates the
existence of a single electromagnetic field, F"v; nothing

is transformed away in any case but certailn components

of a tensor. In short, we transform away nothing, but
merely give a different representation of the self-identical
persisting field.

However, the Principle of Equivalence 1s a very
valuable, albeit qualitative, guide to the approach to
the Theory of General Relativity, so long as 1it is
interpreted to mean only that inertial forces are similsr

in kind to gravitational forces, insofar as both produce
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sccelerations which are independent of the mass of the
accelerating body. As such, the principle is strictly true,
and this is how we interpret it. 3ince this is the case,
it would seem plausible to attempt to construct laws in
which the *'fictitious' terms may be assimilated as special
cases of gravitational terms, just as the electrostatic
field, with its magically disappearing magnetic aspects,
is a special case of the electromagnetic field. Accordingly,
a theory of general relativity could be realized in the
form of a generally relativistic set of gravitational
field egquations.

To anticipate the mathematical apparatus which
we shall shortly introduce, it 1is fairly easy to show that
if the kinetic energy of a mechanical system be identified
with the gquadratic form: T = %gikiiik, the covariant
Lagrange equation of motion may be written in the form:

&b« iecngigi& = Ft (8.1)

where the igig, ¥nown as the Christoffel symbol, constitute
a system of differential coefficients whose significance
will be explained later. The classical approach to inertial
forces would be to identify them with -{é;}ikil which is
a term arising from the use of the wrong frame of reference.
Alternatively, we may treat all forces as equivalent and
write Newton's law as:

pr = i1 (8.2)

i 1 L . .p 1
where Fg = F - EK ggxfxu However, the combined force F¢
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would obviously depend on the frame of reference. The
relativistic approach is, in a sense, the diametric
opposite of the latter, insofar as it endeavours to
incorporate the external forces in the Christoffel symbol.
By virtue of the Principle of Equivalence, such an approach
should be successful, at least in the case in which the
external forces are exclusively gravitational. Thus, the
relativistic approach would be to reduce (8.1) to the form:

gt o= - L3RRS (8.3)
which is the equation of motion in the configuration space
of the system of interest.

Unfortunately, the program of General Relativity
is not realizable by the simple expedient of generalizing
the classical equations of motion in this way. Specifically,
(8.3) could not possibly serve as a generally covariant
law of gravitation, since it would entail that the
acceleration of a particle under the influence of a
gravitational field would depend quadratically on its
velocity in the chosen frame of reference. Moreover, the
principal referent of (8.3) is not the field but the
point particle. We merely wish the reader to contrast (8.2)
with (8.3) to illustrate the method of approach which is
adopted in General Relativity, which does not seem to be
generally understood.

Two further points which we might have raised

in this preamble pertain to the relationship between
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General Relativity and Special Relativity, and the sense
in which or the extent to which General Relativity
constitutes a 'geometrization®' of physics. Both of these
are contentious issues, but we shall discuss them only
in the context of the more precise presentation which now
follows. Again, in recognition that our audience 1s partly
non-mathematical, we begin with a skeletal mathematicel
exposition which the physicist should skip over. The
reader with no training in applied mathematics should
begin by rereading Chapter II1, Sec. 3. For the moment,
the only additional notational convention will be in
the formal recognition of the distinction between the
covariant and contravariant components of a tensor, which
will be indicated by the use of subscript and superscript
indices, respectively.

As most readers will know, A Euclidean manifold
is defined by the global condition:

(as)? = axtax? (8.4)
A general Riemannian manifold 1s one 1in which the theorem
of Pythagoras(8.4) is replaced by the more general
condition:

(ds)2 = gikdxidxk, (1,k = 1,2,...,0n) (8.5)
In this case, the xi are arbitrary curvilinear coordinates,

and the 8330 known as the metric tensor, may be assigned

arbitrarily, subject only to the condition that (8.5) be

invariant. If a tensor is attached to every point of a
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Riemannian menifold we have a tensor field, which is an
obvious generalization of the vector field of elementary
analysis. However, when we attempt to define the derivative
of a Riemannian tensor field, we encounter difficulties.
Specifically, one cannot compare a tensor(We shall now drop

the specification Riemannian which will be taken for

granted.) at one point of the manifold with the same tensor
at another point. In elementary vector analysis, two
vectors are equivalent at different points just in case
they have the same Cartesian components. But in the more
general Riemannian space, such a definition breaks down.
To surmount this difficulty, it is necessary to
introduce a specific law of vector displacement which
enables us to define the derivative of a tensor. Such a
law will enable one to compare a vector Vi at xi with the
vector Vi + dVi at xi + dxi. The increment in the
components of a vector under an infinitesimal displacement

1 and the

is a bilinear function of the components V
displacement dxk tangent to the curve along which the
displacement takes place. The law of displacement 1is
determined by: .

roo= 3 E 3 Nl EELRSE o)
Such an object is known as an affinity or affine connection.
The reader will note that its law of transformation is
linear but not homogeneous. However, since.the inhomogeneous

term is arbitrary, the difference between two affinities
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is a tensor. Moreover, it is obvious thaf under a linear
transformation (8.6) reduces to the transformation law
of a tensor. Thus, the Y‘§* may be regérded as affine
tensors.

It may be shown that the necessary and sufficlient
condition for the existence of a coordinate system in
which the components of a vector are unaltered by an
infinitesimal displacement 1s that the affinity be symmetric
in its subscripts. Under this conditlon, it is possible
to choose a local coordinate system in which the affinity
vanishes. Such a coordinate system 1s described as a
geodesic system with respect to the given affinity. As in
the case of Cartesian tensors, which we have already
encountered, a tensor equation 1is greatly simplified when
expressed in terms of geodesic coordinates and, moreover,
will hold in any other system.

So far, we have imposed conditions on the
manifold similar to those imposed in the latter part of
Chapter IV. We now impose the further requirement that
the scalar product of two vectors eand, a fortiori, the
interval (ds)2 be invariant under displacement. This
strong requirement renders the system of coefficlents r‘gn

far from arbitrary. It is now called the metric affinity.

The condition of the invariance of the scalar product
uniquely determines the affine coefficients in terms of

the metric tensor. That is to say:
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-f; (9iViVE) (8.7)
leads after expansion and various algebraic manipulations
to:

i _ L oqRi 2352 4 392 o Wik

r‘h" =z3 ( dxs >t 33}> (8.8)

For ease of expression, we define the Christoffel symbol

of the first kind by:

K w,2] =45 —5_(3—5——3;‘.} + 3———%; - b———‘—g%x“) - (8.9)
and the Christoffel symbol of the second kind is given by:
. Qe
$OWy =44 At 8] (8.10)
Whence:
1 _ . .
3R Eh Kg (8.11)

It is important to note that, contrary to the practice
of several elementary expositions, the symbol of affine
connection is not simply a different notation for the
Christoffel symbol of the second kind.

We now adopt the comma notation to indicate
ordinary differentiation and the semicolon to indicate
covariant differentiation. It is easily shown that the
cévariant derivative of a contravariant vector 1s given by:

viii o= Vag + §5tvE (8.12)
Similarly, the covariant derivative of a covariant vector
is given by:

Visj = Vij - g.fjgvx (8.13)
The generalization to tensors of arbitrary rank and type
foliows naturally from (8.12) and (8.13). We also note

that in a geodesic system the covariant derivative 1s



W ? oy

176

jdentical with the ordinary derivative since the affinity
and, therefore, the Christoffel symbols vanish in such

a system. The covariant derivative of the metric tensor
js zero. Unlike ordinary differentiation, covariant
differentiation is not commutative, i.e., in general,
T:lm # T;ml, where T is an arbitrary tensor.

All of the foregoing belongs to standard
mathematics and has been stated without proof. We do not
expect the philosophical reader who is not conversant
with higher mathematics to have fully understood all of
our exposition, due to its highly compressed character.
However, it at least has the virtue of indicating what he
needs to know as the barest minimum of mathematics to make
sense of the Theory of General Relativity. For such a
person, we highly recommenend the leisurely and readable,
yet fairly rigorous, treatment of these matters by
Schr8dinger(1950).

We are now prepared to lay the foundation for
the gravitational equations of General Relativity. The
n-dimensional Riemannian manifold is now specialized to
the four-dimensional space-time manifold. The use of the
imaginary coordinate, which enabled us to treat space-time
as formelly Euclidean, ceases to be of any use and we
now sbandon it. We let Greek space-time indices run from

0

0 to 3 and Latin space indices from to 3. Thus x = ct.

)
(]
We define the Lorentz metric quv = §uv by diag(l,-1,-1,-1).
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We spoke earlier of the disputatious question
concerning the relationship between 3Special and General
Relativity. While it is not the purpose of this
dissertation to consider the finer details of this matter,
it is obvious that the two theories are not unrelated. In
previous chapters, we have examined the fundamental laws
of physics under the assumption that gravitational forces
could be neglected. And it is certainly the case that in
comparison with electromagnetic forces they are very
minute. Consider that a tiny magnet in picking up a pilece
of iron is able to overcome the gravitational force
exerted on the iron by the masslive earth. We would assume
that in the complete absence of gravitational forces, the
laws of Special Relativity physics would hold rigorously.
Hence, the field equations of General Relativity must
entail a global Lorentz metric for gravity free space,
This is not simply a heuristic correspondence principle
but, in our opinion at least, a theoretical necessity.
Since the Lorentz metric is intimately connected with the
law of light propagation, in vaecuo, a solution of the
field equations for gravity free space which d4id not
admit the Lorentz metric globally would require a
fundamental revision of the laws of optics and, mutatis
mutandis, those of electrodynamics. For this reason, an
axiomatization of a high level theory such as General

Relativity must be treated with caution. Sometimes the
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heuristic scaffolding may be thrown away when primitive
concepts are introduced, but at 6ther times the scaffolding
is not merely heuristic but also constitutive. Bunge(1967a,
p. 218) is not gquite as incisive as we would have liked
vis & vis his statement concerning the connectlon between
the two theories, but appears to regard it largely, 1if
not wholly, in terms of an heuristic correspondence
principle. One thing, at least, is certain. General
Relativity is not simply the generally covariant formulation
of Special Relativity. That is to say, the casting of
the laws of 3Speciel Relativity physics in generally
covariant form does not yield the physical consequences
of General Relativity. We shall say a little more on the
subject shortly.

An important property of a globally constant
metric, Lorentz or otherwise, 1s that it may be reduced
to canonical form throughout the entire manifold. Thus,
one can always find a permissible mapping in which the
affinity and, & fortiori, the Christoffel symbols are
everywhere zero. As We know, in such a system covariant
differentiation reduces to ordinary differentiation
and is, therefore, commutative. This provides a basis for
a sufficient condition for the manifold to admit a
globally Lorentz metric. For an arbitrary covariant vector

TP’ we have:

Thiap - Tp;pa = 0 (8.14)
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Although the consequence of (8.14) 1is standard,
it is of such great importance that we shall perform the
jndicated operation step by step for the benefit of the
nonmathematical reader. By following each step, he will
considerably enhance his appreciation of the tensor
notation. We begin with the first term on the left hand
side of (8.14).

Trsap = (Trsad;p = (Trichp = 3 0l Ty ~ L0 Thjg
= (Twya- iﬁc&)»p - Szﬁg (T?‘*‘iggo&.l—f) -ix"pi(‘ln.x-ifgi)&
= Tr,pq—iﬁﬁ»p"a’-ﬁﬁd&TrP "igﬁgTa"*

+§z[& 239'081.1’ - Efpa\‘ma"' i;\xp%{::a})'\(

(8.15)
By interchanging « and p in (8.15) and subtracting, we

get after relabelling dummy indlces:

Triag- T Bak = 3 T -C¥ _Cf T
467 T PA ir*p%g-«vz Er‘d&)ﬂ.\—? i,‘&”ﬁz (8.16)
+ 39

Defining: i"“"‘g’cﬂ-a’

P-4 - s 1 - T Y

KI“‘*P =45 s-{upgifyc\?) g?“’&’P Ei«i{fﬂg'*ir*(’g"*(s‘l?)
(8.16) reduces to:

Tpjap - Trspa = RiuapTy (8.18)
Since the left hand side of (8.18) is a tensor, it follows
that (8.17) is a tensor of the fourth rank. It is known
as the Riemann-Christoffel tensor, and in the pure theory
of tensor analysis plays the role of the commutator of

covariant differentiation. We now have the following lilne
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of reasoning. If the metric is constant throughout space,
then covariant differentiation reduces to ordinary
differentiation in which case the former must be commutative
and the commutator must venish. Hence, the condition (8.14)
for a flat manifold may be expressed as:

?\7!““‘*(3 = 0 (8.19)

It should be noted that although we have used
Christoffel symbols, we have not exploited their metric
properties. Consequently, they :zeould have been replaced
throughout the preceding computation by symmetric affine
symbols. Thus, our result applies to an affine as well
as to the more specialized metric manifold. Furthermore,
we have nowhere presupposed the Lorentz metric. Consequently,
(8.19) must be regarded as purely mathematical.

In spite of the notational simplicity of (8.19),
as a four-dimensional tensor of the fourth rank, 1t
corresponds to a system of 256 second order partial
differential equations. However, if we assume a metric
connection, we may form the associated tensor of (8.17) by:

954 R pap = Kspap (8.20)
which is still in the realm of pure mathematics. It 1is
called the covariant Riemann-Christoffel tensor. By
exploiting the many symmetry properties of‘{5p¢p, it is
possible to show that of the 256 components, only 20 are
independent and non-vanishing.

our original motivation for constructing the
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Riemann~Christoffel tensor was to find a generally covariant
field equation which admitted the Lorentz metric as a
possible solution. In fact, (8.19) is sufficient but not
necessary for the latter. Two points should be noted. (8.19)
is the condition for a flat metric of any signature. The
Lorentz metric 332 is a particular case which satisfies
(8.19). However, as soon as we specify 3&3 as the particular
solution of (8.19) we move from the level of mathematics

to that of the interpreted object theory. The Lorentz

metric is introduced for physical reasons. It 1is interesting
to consider whether these reasons are simply to preserve

the distinction between space and time or the stronger
condition that the Lorentz metric is dictated by Speciel
Relativity physics. Schr8dinger has shown(op. cit., p. 85)
that a global metric in which there is more than one
time-like coordinate is analytically as well behaved as

the standard (3 + 1) coordinatization. Hence, we suspect
that the physically interpreted counterpart of (8.19)
depends on the full factual content of electrodynamics in
which the Lorentz metric, as distinct from any other
canonical matrix, plays a special role. For this reason,

we believe that foundation workers should tackle the '
difficult task of axiomatizing General Relativity in such

a fashion that the laws of Special Relativity would not

be the basis of a correspondence principle to the effect

that General Relativity must reduce to them in the degenerate
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case of gravity free space; but rather such that Special
Relativity physics would be a constitutive part of the
higher level Theory of General Relativity.

It is clear that (8.19) is far too strong a
restriction for a field equation in matter free space,
since its interpreted counterpart is a law which holds
globally for gravity free space. It is the precise
mathematical representation of the void of Democritus. It
represents a 'worldtcompletely devoid of variety or
content, a world of maximum uniformity. Nevertheless, it
is important to us since we deliberately designed 1t to
admit the Lorentz metric as a possible solution. Obviously,
we must seek a generalization of (8.19) which satisfiles
our initial requirement but is sufficiently flexible to
provide the basis for a covariant theory of gravitation.

The next step in the formation of the covariant
gravitational field equations 1s well known to anyone

who has a passing knowledge of the Theory of General

Relativity, namely the contraction of the Riemann-Christoffel

tensor. However, there is some room for disagreement in
regard to the basis or motivation for this essential step.
It could, of course, be argued that we may ignore the
matter since the heuristic criteria for the construction
of a theory have no bearing on the ultimate success and
acceptability of that theory in terms of its providing

a basis for correct predictions, etc. However, virtually
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all writers base this step on some form of correspondence
principle to the effect that the gravitational equation(s)
must reduce to the Newton-Polilsson equation for slow
moving particles in weak fields, and since this may be
achieved to a first approximation by a second order linear
equation in 360, it is assumed that the exact covariant
field equation would be of second order in 3uv. In other
words, there would be ten equations in place of the single
Newton-Poisson equation, corresponding to the ten
independent components of the §mv. (In fact, there can be
only six such components.)

The present writer has already indicated his
belief that correspondence principles are vacuous, and for
this reason finds it interesting to explore metatheoretical
indications for the contraction of the Riemann-Christoffel
tensor. So let us pretend that we know nothing of the
classical law of gravitation and see, briefly, how far

metatheoretical considerations will take us. However, we

emphasize that we are seeking indications and not an a prioril

derivation of Einstein's law of gravitation.

In the first place, if (8.19) were an adequate
description of the field (or lack of it), say before the
Creation, then the entire spirit of General Relatlvity
would be violated, since (8.19) depends essentially on a
fixed fundamental tensor Quv which would take over the

role of Newton's absolute space and time. Crudely speaking,



&

184

if such a theory were possible, the guv would play the
same role in the metrical quadratic form as g(& in the
theory of Newton. The geometry of space-time would be
absolute although hyperbolic rather than Euclidean. In
the second place, it has been shown by Hilbert(191s5, Cf.
also Bergmann, 1942, p. 178) that the field equations
must satisfy four additional identities over and above
the symmetry conditions of the curvature tensor. These
correspond to the arbitrary choice of coordinates and
are necessary for the attainment of a generally covarlant
metric. Hence, we know on formal grounds that the vanishing
of the Riemann-Christoffel tensor 1is a necessary and
sufficient condition for the manifold to be globally
flat in gravity free space and that the 20 independent
equations must be reduced by at least four. Furthermore,
we know that (8.19) could not be a special case of the
field equation in the sense, for example, in which Laplace's
equation is a special case of Polisson's equation, since
it is incompatible with the very idea of a principle of
general relativity. It is natural, therefore, as a tentative
step, to contract the Riemann-Christoffel tensor. Fortunately,
there is but one such contraction that does not vanish
identically, namely:

R uap = Rpg (8.21)
which is called the contracted curvature tensor. It is a

symmetric tensor with ten independent components. However,
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by virtue of the four coordinate conditions, the
contraction of (8.19):

(\r\p =0 (8.22)
is a system of six second order differential equations
which are quasi-linear in the guv. It may be shown,
although actually it 1s obvious, that (8.22) admits a flat
space solution but does not require it. Thus, something
like (8.22) would be a reasonable candidate for a system
of gravitational equations in matter free space.

We were able to arrive at (8.22) by formal
reasoning; but this is as far as we can go. There is no
way in which metatheoretical considerations could lead us
to the Lorentz metric, which must be postulated as the
gravity free solution of (8.22) on physical grounds. This
may seem to be very little in the way of physics and a
great deal in the way of mathematics, but we repeat our
conviction that the privileged role of the Lorentz metric
is based on the full weight of Special Relativity physics
and, in particular, on electrodynamics.

We now mention, without proof, the important
mathematical result employed by Einstein. From the
.contracted curvature tensor, it is possible to construct
another tensor of the same rank which has a vanishing
divergence, which we know to be of particular significance
in a space-time manifold. The Elnsteln or Ricci tensor

is given by:
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Guv = Rr\v"‘\isv\"&«d\ (8.23)
It was shown by Cartan(1922) that the most general second
rank tensor which may be constructed wholly from the metric
tensor and its derivatives 1s given by:

RAY = G*Y +NgHT (8.24)
However, at least for the non-cosmological form of
General Relativity,/\ may be taken to be zero on physilcal
grounds. Thus, the gravitational field equation in the
absence of matter may be written as

Guv = O (8.25)
Finally, the more general version of (8.25) may be
constructed on the assumption that the complete energy-
momentum tensor(See Appendix) includes every form of
matter and energy apart from gravitational energy, and we
may write the general law of gravitation in the form:

G’r«(v = kR Tuv (8.26)
where k is a universal constant. The special significance
of the divergenceless character of THY is that if any
quantity is omitted from it, it would be manifested as a
force and TPY could not, in that case, be divergenceless.
That is to say, the total energy and momentum in the
universe as represented by T"Ywould not be conserved even
locally.

To complete our exposition of the basic laws of
General Relativity, we may add a ponderomotive equation

to the field equations. The equation of motion of a mass
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point moving in a gravitational field is well known to
define a geodesic trajectory. This is the famous geodesic
postulate which links the effects of the gravitational
field to the geometry of the space-time manifold via the
first and second derivatives of the metric tensor. In
words, given the space-time geometry, the equation of
motion may be derived from the variational principle:

&Sd\s =0 (8.27)
In fact, however, the equation of motion may be derived
as a theorem(Bunge, 1967a, p. 231; Fock, 1964, p. 240)
from the condition:

T"":‘v =0 (8.28)
That is to say, the equation of motion may be derived
from the field equations of which (8.28) is a direct
consequence. If (8.28) is written out in explicit form
and integrated over the volume at whose boundariles T *v

disappears, we are led by a straight computation to the

ponderomotive equation of a mass point:

XL fpiax 4xf = o (8.29)
As Bunge has pointed out, this does not constitute a
geometrization of physics. In fact, it is neither more
nor less geometrical than *Newton 1I', which states that
the trajectory of a free mass point is a geodesic in a
Euclidean space-time manifold. This completes our brief

exposition of the basic laws of General Relativity, and

we are now prepared to consider its philosephical implications.
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The subject of tensor analysis or manifold
geometry to which the reader was given a cursory introduction

i have

is a strictly formal theory in which the wvariables x
no physical significance. For example, the indices may
run over any number n. A ten-dimensional differentiable
manifold has the same reality, for the mathematician, as,
for example, a two-dimensional Euclidean plane. However,
when manifold geometry is applied to physical spacé-time,
the situation 1is altogether different. In the first place,
we are normally restricted to the consideration of a
four-dimensional differentiable manifold. In the second
place, there is a distinguished variable, xo = ct. Thirdly,
the signature of the metric is +2, depending on convention.
Fourthly, the mathematically allowable transformations
must be restricted by the so-called reality conditions.
From these considerations aloné, it should be obvious that
when it is said that the basic laws of General Relativity
are generally covariant in virtue of their being expressible
as tensor or pseudo-tensor equations, such a claim is
misleading.
From the standpoint of the pure mathematician,

a permissible traﬁsformation in Riemannian geometry is of
the form:

M —> M= Fu - -, ) (“z"l'"'“%s.Bo)

where fﬂ are arbitrary functions of class CB®, where m may

be any integer subject to the whim or design of the
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mathematician. Confronted by a tensor equation of physics,

the mathematician could transform it into a form which
violates the most fundamental (protophysical) requirements

of any physical theory. Since, in physics, the fn are not
arbitrary functions, it is incorrect, under any circumstances,
to speak of physical laws as generally covariant, even

though the geometrical objects which we employ to express

those laws may, indeed, constitute a basis for the
realization of & generally covariant group of transformations.
Thus, at the outset, we declare that the
general covariance of physical laws is a myth, one of the
many engendered by the confounding of mathematical theories
with the physical theories which they are employed to
represent. To give a naive analogy, as every philosopher
¥nows, there is an infinitude of sentences of English which
are syntactically permissible but devoid of literal
significance. Nevertheless, English syntax is still a
useful system for constructing meaningful sentences. A
similar relationship holds between physical laws and the
mathematical formalism which is employed to express them.
It should be noted that the foregoing has nothing to do
with our distinction between covariance groups and
relativity groups. We do not forbid time independent
transformations which serve many useful computational ends.
We have merely declared them to be devold of physical

significance. To extend our snalogy, they correspond to
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the useful but vacuous laws of logic which enable us to
deduce semantically equivalent sentences from each other.
In fine, what we have been saying cuts across the
distinction between coordinate transformations and frame -
transformations, with which we shall deal later in the
chapter.

The protophysical conditions, of which we have
spoken, which the transformed variables must satisfy are

that the %' be spatial coordinates while %0

be temporal.
Furthermore, for two points Pl(x”) and Py(x¥): if Pl(xi) =
Po(x1) and Py(x0) # Pp(x0), then Py(Z°) # Pp(°). Moreover,
the time order of P, and P, is fixed. If the time interval
is infinitesimal, then the points will have temporal
coordinates Py (x°) and P,(x0 + ax¥) and:

04x® > o, (8.31)

8oodx
whence g, > 0. Similarly, given Pl(xi) and P2(xi + dxi)
such that Pl(xo) = Pz(xo), then:

gikdxidxk <0 (8.32)
Therefore, (8.32) must be negative definite. These
conditions entail that in any infinitesimal region of Vh’
there is always & permissible mapping such that Bmuv =
diag(l,-1,-1,-1) which we call the canonical form of the
Lorentz metric or simply the Lorentz metric. It 1s also
called the hyperbolic metric, since under the conditlon

that a permissible transformation carries the entire Vu

into diag(i,-1,-1,-1), the geometry of the manifold has
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the so-called hyperbolic structure of Lobatchewski. (In
fact, it is of some metatheoretlcal interest to note that
by assuming a hyperbolic manifold, it is possible to
express tHe laws of Special Relativity physics in Newtonlan
form - a point which is widely misinterpreced by the
conventionalists) (Angel, 1961, 1962; Rougier, 1914)

Within this delimited framework, there 1is no
question that certain types of coordinate systems play an
outstanding role in General Relativity. For example, the
time independent, spherically symmetrical system of
Schwarzschild has served as a basis for virtually all of
the computations of testable consequences of General
Relativity physics. However, such outstanding coordinate
systems have no direct bearing on the Principle of
General Relativity, per se, but only on the confirmation
of the field equations. They play a comparable role to
that of spherical coordinates in computing the solution
of Laplace's equation.

In general, it is impossible to discover a
coordinate system for General Relativity which plays,
for example, & similar role to the Cartesian system in
Newtonian Mechanics; that is to say, a coordinate system
which is preeminently qualified to providé a model of =&
frame of reference. In general, in an accelerating frame
of reference, the spatial geometry, not to speak of the

space-time geometry, is constantly changing. Even on the
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assumption that an acceleration, per se, has no effect

on geometrical measurements, a variable velocity must
entail a time dependent Lorentz contraction. For these
reasons, 1t is impossible to distinguish a privileged
subset of inertial frames of reference in General Relativity.
The si>-called Einstein boxes or 1lifts are mere heuristic
metaphors which are sulted only to the unacceptable
theory of kinematical relativity. In General Relativity,
an Einstein box would enclose an infinitesimal volume

and could not, therefore, be realistically regarded as a
frame of reference but merely as a particle in free-fall.
Bunge(1967a, p. 231) provides a definition of an inertial
frame of General Relativity which is indeed consistent
with the postulates of the theory. However, such frames
are only vacuously realised insofar as the definition
refers to static gravitational fields which do not exist
in the physical world.

Nevertheless, it would be instructive to attempt
to construct a privileged type of reference frame which
has the appearance of being intuitively preferable to
various alternatives. However, we warn the reader that
our attempt will not succeed. However, the writer has
discovered that in the exploration of the foundations of
physics failure is often as instructive as success.
| We naturally take for granted the standard

restrictions, already mentioned, on the four-dimensional
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differentiable space-time manifold. Let us consider a
three-dirmensional hypersurface 83 of Vi such that any
vector normal to 83 satisfies the condition:

thep > 0 (8.33)
In virtue of the conditions (8.31) and (8.32), t" is a
time-like vector and 83 is spatially oriented. Let P*(xi)
be a variable point in 83. By a well-known theorem,
through any P*(xi) there is one and only one geodesic
which is orthogonal to 33. In a finite reglion of 83, such
geodesics will form a congruence of curves. It is clear
that along any curve of the congruence, the coordinates x1
will be fixed. The fourth coordinate of a fixed point P
may be given by the arc length P*P = Axo. The distance
along a curve of the congruence will be given by:

(as)? = (ax")?, (8.34)
whence 800 = 1, Furthermore, any vector with components (O,xi)
must be orthogonal to the unit tangent vector (1,0,0,0) at
the same point, whence 801 = 810 = 0. The line element
on the hypersurface 83 must, therefore, have the form:

(ds)2 = (dxo)2 + gikdxidxk (8.35)
This is an intuitively satisfying metric, since it separates
the spatial geometry from the time. However, we have yet
to determine whether such a metric can be extended throughout
the Vi In terms familiar to the non-mathematician, it 1is

as though we had just discovered how to coordinatize a

Euclidean plane and express distances by the theorem of
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Pythagoras, and now desire to discover whether the
technigque may be extended to three-dimensional space.

As we know, the equation of a geodesic 1s:

arx” X7 dat Axn’
Jst Em Ts ac =0 (8.36)

The parameter s, in our case, 1s obviously xo. Since the

dxi are constant along the geodesic, we must have:
AN 0}

Coou] = 0 (8.37)

Let us write the second of (8.37) explicitly:

Since ggpp 1S constant,zfo: is identically zero. Hence,
x

we deduce that:
e (639
throughout at least a fin;te region of the Vu. That 1is
to say, any hypersurface must be orthogonal to the time-
like geodesics. Thus, their status is similar to that of
the surfaces of simultaneity of Newtonlan space-time.
Moreover, since our manifold has a metric affinity, it
follows that the time-like separations between two given
hypersurfaces are comparable along all of the time-like
geodesics. Thus, we have a universal, although not absolute,
time parameter. We now construct a frame of reference in
which the time coordinate lies along one of the time-like
geodesics, which is to say that a standard clock will give

a proper time reading, and the spatial axes will be

oriented so that they are orthogonal to the time-llike axis.



195

Thus, the coordinate system with the line element (8.35)
would model such a frame of reference. The reader will .
note that we have done the reverse of the usual procedure
by inventing a system of coordinates and then hypothesizing
a frame of reference which they represent.

So long as we continue to heed the requirement

J

that gijdxidx be negative definite, we are free to
perform any purely spatial coordinate transformations that
we choose. However, we can no longer claim general
covariance for the space-time metric gpydx"dxv, even in
the restricted sense. Moreover, since the proper time

xo = ¢Yis uniquely determined for different accelerating
bodies, not only would the geometry of the hypersurface
be relatively complex, but the transformation equations
between distinct time orthogonal frames of reference
would be a mathematical Chinese torture. Add to this the
fact that every distinct accelerating body would require
its own reference frame, and we see how fruitless our
attempt has been to discover a system of coordinates
which could play a preeminent role in General Relativity.
Such coordinatizations, l1ike that of Schwarzschild and
the harmonic coordinates favoured by Fock, are useful

for obtaining solutions of specially simplified physical
problems such as that of planetary motion in the

gravitational field of the sun, which is treated as a one

body problem. These cases are invaluable for the important
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task of testing Einstein's field equations; but while they
help us to confirm the theory of gravitation, they shed

no light on the broader implications of the Principle of
General Relativity. By the same token, it is possible to
introduce new coordinatizations of accelerating frames of
reference(Cf. Mgller, 1952, pp. 250ff.) which are akin to
the gauge transformations of electrodynamics, such that
the gravitational potentials vanish over a finite region.
However, such mathematical tricks only work in the case

of non-permanent filelds.

Fock has argued that a privilegéd system of
coordinates exists in the context of General Relativity,
the so-called harmonic coordinates, albeit, as we shall
subsequently see, he rejects the Principle of General
Relativity, itself. We shall first consider the harmonic
coordinates from a mathematical standpoint and then dilscuss
their physical and methodological significance. As we
know, the covariant derivative of an arbitrary contravariant

vector is given by:

A
A%;v = A% ¢ $ ORA (8.40)
Accordingly, the four-divergence of AR is given by:
. v o4
AY;v = AY,v + T v A (8.41)
But Vi =danv yamy (8.42)
2 s PE]

is a result of standard mathematics. Moreover, if g is the

determinant of 8 pvs then:
Y
%KVVE = (%533)\/ = \n(-9) l,\/ (8.43)
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Inserting (8.43) into (8.41), we have:
v L ._ Y} v
A%y - = gy L9 A"y (8.44)
Suppose, now, that we have a vector Ar‘which is

the gradient of a scalard . That is:

Hf" = &;H (8.45)
Then, AY = qnv ] ,m (8.46)
ana Div AY = AV s e (R IN By (507

which is the d*Alembertian of § . It should be noted that
if the x" are four solutions of

a8 =0 (8.48)
then §Y,}will vanish identically. Although this condition
is seemingly trivial, the reader may verify that it leads
to the non-trivial consequence that the covariant divergence
will be equivalent to the ordinary divergence. In more
robust terms, each axis of the coordinate system would
represent a possible world line of a light ray. It is
obvious that the Cartesian coordinates of Special Relativity
are a special case of harmonic coordinates. The reader
will recall that it is necessary to supplement the gy, by
four coordinate conditions to ensure the general covariance
of the metric form. Fock's point is that instead of
letting the coordinate conditions be arbitrary we make
them unique by requiring them to satisfy (8.48). It could
be argued that such a move would require our abandoning
the requirement of general covarlance, However, this would

not be a fair criticism, since Fock does not argue for the
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mathematical necessity of harmonic coordinates but for

their privileged physical role. Naturally, 1f we restrict
the expression of physical laws to special systems of
coordinates, such expressions cease to be generally
covariant; but this in no way precludes our returning to
the use of arbitrary coordinates if we should so desire.

It is well known to the student of electrodynamics
that the equation for the propagation of an gectromagnetic
wave front is a specilal case of electromagnetic
propagation which corresponds to a discontinuity of the
field. Obviously, the surfaces oﬁ which the field is
discontinuous must coincide with the advancing wave fronts.
Such surfaces, in electrodynamics, are known as the

characteristic surfaces of Maxwell's equetions. Expressing

the wave front equation implicitly in the form:
@ (X,5,2,t) = 0 ' (8.49)

we express the law of wave propagation in vacuo in the form:
-é-t(%fg (W)= 0 (8.50)

which is the equation of a characteristic of Maxwell's laws.
By the same token, Fock(1964, p. 194) is able

to show that employing harmonic coordinates and expressing

the equation of a gravitational wave front implicitly as:
1

» (x9,x1,%%,x3) = const. (8-51)

one is able to express the law of gravitational propagation
in the formn:

g MV 3__‘_)‘_2“%}_;’0,: 0 (8.52)



55

199

which is in conformity with the special relativistic
requirement of the existence of a limiting velocity.
It should be clear that Fock's introduction of

narmonic coordinates as essentially privileged 1s quite

contrary to the point of view of General Relativity, which
is not to say that such systems have no practical value.
It is noteworthy that in the application of such coordinates
to physical problems, one 1is restricted to the case of
jnsular mass distributions (one body problems) and
particular boundary conditions, the most important of which
is that the gravitational waves die off at infinity, so
that the metric must assume the Lorentz form over the
boundary surface of the 'universe'. We may interpret this
condition either as an example of physlcally untested, and
probably untestable, cosmological speculation or as an
artificial simplification designed for the purpose of
achieving computational results, 1i.e. solutions of the
field equations & la Schwarzschild. Physically, the
harmonic coordinates are possible models of unaccelerating
frames containing or constituting a very large insular mass.
Fock argues that one of the principal methodologlcal
advantages of such models is that they distinguish
permanent from impermanent gravitational fields. From our
point of view, this is a philosophical disadvantage since

it forces the reintroduction of the concept of fictitlous

force which is unsuited to a satisfactory theory of the real,
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i.e. non-fictitious, world. A methodologically sound
theory should have no recourse to fictions of any kind,
with the possible exception of purely mathematical ones.
In fine, we regard Fock's viewpoint as a rather Procrustean
one, which endeavours to squeeze the theory of gravitation
into the restricted framework of Special Relativity, while
missing the entire point of the Principle of General
Relativity which does not require the conjuring up of a
tuniverse' which obviously does not correspond to reality.
It is unfortunate that a man of Fock's intellectual
stature, attested to by several important insights such
as the rejection of operationalism, should fall prey to
one of the common vices of the physicist, namely that of
attempting to justify a set of speclial assumptions which
facilitate the solving of equations by destroylng an
entire theory that honestly endeavours to represent the
nature of physical reality. A position similar to our
own, but less harsh, is taken by Bunge in his aXiomatization
of the Theory of General Relativity. Commenting on the
harmonic coordinates, he writes:
w_ .. though particular coordinate systems
should be irrelevant at the level of
principles, they become conspicuous s at the
level of theorems, both for the latter's
statement and for their physical interpretation.
But it does not show that Nature wears one

kind of coordinates preferably to others."
(1967a, p. 230. The italics are ours.)
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In fine, we conclude that it is impossible to
find a distinguished subset of physically realizable frames
of reference which play the role analogous to that of the
inertial frames associated with a restricted principle of
relativity. In this regard, the adjective general is well
chosen to describe Einstein's principle of relativity.

But, of course, liberty is not to be confused with license,

which, in this case, means that General Relativity is not

to be interpreted as General Covariance. It is true that

the field equations are generally covariant. But that does
not imply that we may take advantage of that formal property
to introduce coordinate systems which model physically
unrealizable frames of reference. We wish to underline,
however, that such formal manipulations are nevertheless
permissible on the basis of the structure of the theory
of tensors. Hence, while the Principle of General Relativity
does not distinguish a subset of inertial frames of
reference, it does distinguish a subset of physically
permissible space-time transformatioris. Moreover, the
frames of reference which are physically attaineble do form
an equivalence class of a kind, although, as one should
expect, not of the same kind as that which we associate
with restricted principles of relativity.

We may define a physically realizable spatial
frame of reference as one which, while not necessarily

rigid, which 1is, strictly speaking, excluded even by the
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Theory of Special Relativity, is such that no point of
reference may have a velocity greater than the velocity
of light with respect to any other point of reference
belonging to the same frame. Thus, the tangential velocity
of a distant star may exceed the velocity of light with
respect to the rotating earth but the earth and the star
do not belong to the same frame of reference. A second
condition for é physically realizable frame of reference,
which may not be independent of the first, is that it is
a frame with respect to which the time track of a light
ray is a null geodesic. Since the time track is null in
a Lorentz frame, a condition which may be expressed by:

(A’T)"‘:Sw,o\x"dx" = 0 (8.56)
and since (8.56) is a tensor equation, the time track
must be null in every permissible frame of reference.
These conditions may easily be shown to be equivalent
to the following definition of a physically permissible
frame of reference.

A physically permissible frame of reference
is-one which may be so coordinatized that for every
infinitesimal region of the manifold, there exists a
permissible mapping such that the metric coeffcients may
be transformed to 3&9:= diag(l,-1,-1,-1). That the metric
of any Riemannian manifold may be transformed to Sylvester
canonical form by a non-singular transformation 1s a

formal condition that follows from the theory of symmetrical
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not a peculiarity of Riemannian manifolds but of the
physical space-time manifold. We shall call the class of
reference frames which satisfy this special property of

the manifold Einstein frames. Any theory which can be

expressed in a form, not necessarily by means of the
tensor calculus, that 1s indifferent to the set of Einstein

frames will be termed generally relativistic.

En passant, we are now in the position to
understand the deeper reason, to which we alluded earlier,
for the incompatibility of Classical and Special Relativity.
The canonical form of the Quv in an infinitesimal region
of the space-time manifold, i.e. the signature of the
metric, is a peculiarity of the given manifold which is
either imposed arbitrarily or on the basis on physical
considerations. While the mapping which transforms the
metric to canonical form is not unique, the canonical form,
itself, is. The signature of the usual classical(Galileo-
Newton) space-time metric is (0,1,1,1). Thus, the
incontrovertible reason for the impossibility of a Galileil
covariant N=2wtonian Mechanics and a Lorentz covariant
electrodynamics is that it would entail that the space-
time manifold simultaneously carry two different metric
signatures, a mathematical impossibility. The present
writer has no idea whether this has previously been pointed

out but finds it curious that it is not mentioned in any
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of the standard treatises with which he is familllar,

We may now speak more precisely of the relationship
between General Relativity and Special Relativity. It
would be simplistic to argue, as some writers do, that
General Relativity is simply a generalization of Special
Relativity, despite its being the probabie motivation for
Einstein's entertaining the idea of General Relativity in
the first place. It is equally wrong to suggest that
Lorentz frames in the form of so-called Einstein boxes
constitute the equivalence class of inertial frames of
General Relativity. Such frames only occur in the special,
and non-existent, case of the field of an infinitely
extended sheet of matter of uniform density. They belong
to Einstein's speculations during the period between the
Special and General theories in which he thought of a
general theory of'relativity as a kinematical generalization
of Special Relativity on the basis of the Principle of
Equivalence. It is well known that such heuristic
reasoning led to qualitative predictions which were most
remarkable but, nevertheless, inaccurate to the order of
as much as 503%.

Conversely, we should consider the status of
Special Relativity physics in the light of the General
Theory. Although Special Relativity supplied General
Relativity with an essential ingredlent, namely 5&?, we

are bound to admit that the laws of Special Relativity
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physics must now be treated as approximations, although

o~ their approximate character may doubtless be ignored in
the realm of strong interactions. To take the two basic
theories which we have considered in earlier chapters,
namely point mechanics and electrodynamics, their
respective positions vis é vis General Relativity are not
absolutely identical. We would suggest that whereas
Special Relativity Mechanics is strongly incompatible with
General Relativity, Special Relativity Electrodynamics

is only wesakly incompatible with it. A special relativistic
theory rests on the assumption of a flat metric in finite,
if not global, regions of the space-time manifold. This,
in turn, entails the absence of permanent gravitational
fields. Now, since material bodies are sources of the
gravitational field, Special Relativity Mechanics is
rendered inconsistent in the light of General Relativity.
In the case of electrodynamics the situation may be

somewhat different. Bunge has argued(1967a, pp. 200ff.)

S
T -
2 '] = s

that the celebrated 'E = mc is a theorem of Special

W RIVE "
Relativity Mechanics, and should not be interpreted as ey
SRR 2 7
implying that radiant energy has inertia. In that case, \.L“Qt%“f
ia :,\Z:f;‘-;v ¥

it is conceivable that electromagnetic fields are not

sources of gravitational fields, in which case the matter!
|
tensor should be appropriately modified. In that case, . 3'

one could conceive of a universe populated only by

electromagnetic flelds which producelgg gravitational
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effects, and which obey Maxwell's laws rigorously in the
large. In that case, electrodynamics would be a logically
consistent theory, rigorously compatible with the field

eguation:

Guv =0 (8.57)

Thus,,§pecgaf>felagivistic electrodynamics. could be the

basis for a consistént description of a non-existent

universe. Special relativistic mechanics, on the other

hand, is strictly incompatible with General Relativity.

We hope that our scientific readers will forgive the T
foregoing speculative remarks which, in any case, play no Qifh;.
essential role in this dissertation. We made them only as E;}“Q%
a suggestion concerning one of the many matters to be ‘ﬂﬁ
taken into account in what we regard as the still open
foundation problem concerning the relationship between

Special Relativity and General Relativity. Moreover, it . \
rests on the shoulders of the experimental physicist to e

determine definitively whether the electromagnetic field -

!
{
ke

is indeed a gravitational source.

Let us now deal with Fock's criticism of the
Einsteinian interpretation of the Principle of General
Relativity. Fock correctly argues that general covariance
is a formal principle which holds that any putative law
of nature must be independent of the coordinatization. He
treats it, therefore, as a correct consistency requirement

on the basic laws of physics but as nothing more.
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Furthermore, following Cartan(1927), he argues for the
vacuity of the general covariance of the metrical quadratic
form on the ground that one has complete freedom in the
choice of the transformed coefficients §uv. The reader

will recall that given a function f of a certain argument A,
the function is covariant under a given group of
transformations if and only if the transformed function

of the transformed argument f(A) is of the same form as

the original. This is indeed the case for the laws of
Newtonian Mechanics under the Galilean group and for the
laws of electrodynamics under the Lorentz group. For
example, when we employ the imaginary coordinate ict, the
Lorentz metric has the form gpvdxﬁéxx which under an
arbitrary Lorentz mapping goes m:gpvdiﬂdiy.

Moreover, Fock argues that the existence of an
equivalence class of frames of reference, namely inertlal
frames, is directly related to the degree of uniformity
of the manifold. Specifically, in an n-dimensional manifold,
the maximum uniformity of a geometrical object is attained
when that object is mapped onto itself under a group of
i#n(n + 1) independent parameters. For example, the surface
of a sphere is a two-dimensional manifold, aﬁd the largest
group of transformations which map every point of the
spherical surface onto points of the same surface, 1i.e.
map the sphere onto itself, is a three-parameter group.

Similarly, the space-time manifold is four-dimensional.
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Therefore, the most general group which maps the manifold
onto itself must be a ten-parameter group, which is
precisely the order of the Lorentz group. Accordingly,
Fock argues, 1t is impossible to generalize on the
transformation theory of Special Relativity which employs
a manifold of maximum uniformity. In particular, the
expression 'General Relativity® is, according to Fock,

a contradictio in adjecto. Einsteln's second theory

should not be called the Theory of General Relativity, but
simply the theory of gravitation. (It is presumably for
this reason that Fock sees so much significance in the
harmonic coordinates.)

Let us begin by pointing out that we are in
accord with Fock on at least one point, namely that one
should not be seduced by the highly compressed notation
of the tensor formalism. The mapping:

Qv dXM A = Fuv dxX%d Y (8.58)
certainly appears to be covarilant. However, whether it 1is
truly covariant can only be determined when the ten

mappings represented by (8.58) have been expressed in \

notion of covariance -is ambiguous to the extent to which
it depends on the notation which happens to be employed.
The practical value of the tensor formalism is that it
enables one to write equations which are independent of

any particular system of coordinates. We have seen, in fact,
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that even in the case of Galilean and Lorentz transformations,
the question as to whether the covariantly transformed

laws have the same physical content as the original
expressions requires careful physlcal analysis.

On the other hand, Fock's argument is really
rather trivial. On the basis of Fock's premisses, Einstein
is beaten before he begins. The requirement that the
transformed function of its transformed argument be
isomorphic with the original function of the original
argument could only be satisfied under a group of linear
transformations and, hence, only by a restricted principle
of relativity. If we took Fock seriously, we would be
taking undue liberties in carrying out so elementary a
transformation as that from Cartesian to spherical
coordinates, which is non-linear. We would violate physical
principles in expressing the divergence and curl operators
of elementary vector analysis in spherical coordinates.
But, as every physicist surely knows, it would be possible
to expound the entire compass of Special Relativity physics
in terms of curvilinear coordinates without altering the
content of the theory in any way. In fact, we prefer
Cartesian coordinates precisely because they permit the
Lorentz transformation to be expressed as a linear
transformation.

Actually, Fock has fallen into the very trap

which he set for Einstein, whom he accuses of failing to
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understand his own theory. On the one hand, he argues
that the Principle of General Covariance is a purely
formal requirement which any theory can be made to satisfy
and indeed, for logical reasons, should satisfy, while

a principle of relativity is a physical matter; but, on
the other hand, he claims that there can be no principle
of general relativity on the basis of & purely formal
criterion. In fact, whether or not there is a principle
of general relativity, that is to say whether or not all
physically realizable frames of reference are equivalent
is a matter which can be settled only be experiment. Thils
is the case for restricted and general principles alike.
We are justified in claiming that Maxwell's equatlons

satisfy the Principle of Special Relativity not because

it is possible to write them in manifestly Lorentz covariant

form, but are justified in writing them in such a form
because it has been experimentally determined that they
satisfy the Principle of Special Relativity.

Crudely speaking. if several scientists
performed appropriate experiments in distinct Lorentz
frames, they would all agree that the results of their
respective experiments were in conformity with the
predictions of Maxwell's laws of electrodynamics. Then
they would find it convenient to employ the four-vector
formalism which is indifferent with respect to Lorentz

frames. By the same token, if several sclentists performed
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appropriate experiments, either mechanical or optical,
in distinct Einstein frames, i.e. physically realizable
but otherwise arbitrary frames, and found that in all
cases the gravitational effects were compatible with
Einstein's field equations, they would be justified in
claiming that Einstein's laws were in conformity with
the Principle of General Relativity. Then they could claim
a physical justification for writing those laws in
generally covarlant form which, among other things, is
indifferent with respect to Einstein frames. It is
unfortunate, of course, that the tensor formalism is
indifferent to any frame including those which are physically
unrealizable.

Of course, the excessive latitude of the tensor
formalism may be remedied simply by stating the necessary
restrictions on the {uv. Howeye:,ﬁ;ﬁ‘wqulg_be a useful

task for the applied mathematician to attempt to axiomatize

a restficted theory of space-time tensors Wh?S? formal

structure would be based on the lgéaiAﬁééé;tz character
of the ﬁgﬁifold. They would be geometrical objects whose
covariance group corresponded to the general relativity

group. We might call such objects either steinors or

framors. The first step would be to work out the theory

of representations of the group which maps Einstein frames
into Einstein frames. The rest should be easy. (our

assumption that such a group exists rests on physical
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intuition and epistemological considerations.) Such a
suggestion, incidentally, would have no significance for
Newtonian Mechanics in which three-vectors sre quite
adequate geometrical objects. It is true that we make a
distinction between the relativity group and the covariance
group of Newtonian Mechanics. However, apart from time
reversal, the transformations which are excluded from the
relativity (sub)group are only so excluded on the basis

of their triviality. In the case of General Relativity,

the situation is different. Transformations exist which
are mathematically permissible, in terms of the formalism,
but must be excluded from the relativity group on the

ground of their physical impossibility.

If we may be permitted briefly to psychologize,
we would suggest that Fock, like many other physicists,
has been seduced into regarding the linear relationshlps
between inertial frames as given a priori, merely because
the two known principles of relativity, apart from the
General Principle, happen to pertaln to frames of reference
that are linearly related. However, there is nothing
self-contradictory in the concept of an accelerating
inertial frame unless, like Fock, one chooses to define
such frames out of existence. We repeat our esarlier
implication that Fock's argument is specious because it
is irrefutable and no physical hypotheses are irrefutable.

In a nutshell, Fock rejects the Principle of General
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Relativity on the ground that it contravenes a requirement
that only a restricted principle of relativity could
possibly satisfy.

While we contend that the Principle of General
Relativity is a genuine physical hypothesis, we are bound
to admit that its experimental support is very slight
and only indirect. We spoke hypothetically of performing
experiments in distinct Einstein frames. Unfortunately,
the only significant case of an Einstein frame in which
we may perform experiments is the solar system. It would
be pointless to attempt to test Einstein's field theory
in a man-made Einstein frame such as an accelerating
rocket, since all of the experimental results would be in
conformity with the classical law of gravitation as well
as with the Einsteinian law. It would seem that a satisfactery:
test of the Principle of General Relativity must awalt
the journey by some future Astronomer Royal to another
star system.

On the other hand, there is considerable
presumptive evidence in support of the Principle of
General Relativity insofar as the generally covariant
field equations, albeit in the special Schwarzschild case,
have mett with remsrkable predictive sﬁccess. We refer, of
course, to the red-shift, the precession of Mercury, and
the deflection of starlight. It is worthwhile to remark

at this point on the distinction between the experlimental
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confirmation of a theory and the experimental confirmation
of a relativity principle which that theory putatively
satisfies. This further supports our contention that a
principle of relativity 1s not a metalaw but an independent
physical hypothesis. No physical hypothesis is capable
of absolute verification, but a principle of relativity
is, in principle, as testable as any other object statement
of science.

It is interesting to compare the points of
view of Bunge and Fock vis & vis General Relativity.
According to Fock, such a principle is physically impossible
since it necessarily fails to conform to certain formal
requirements of the space-time manifold., In other words,
he rejects what he regards as a physical hypothesis on
certain formal grounds, which we have held to be appropriate
only to restricted principles of relativity. On the other
hand, he accepts the gravitational field equations, while
treating thelr general covariance as a mere consistency
requirement that every fundamental law must satisfy. Bunge,
in contrast, does not reject the Principle of General
Relativity but incorrectly identifies it with the Principle
of General Covarilance, thus relegating it to the
metatheoretical level.

Let us now state our own position in capsule
form to contrast it with those of Bunge and Fock. Firstly,

we hold that it is essential to distinguish between the
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relativity group of a theory and its covariance group. The
Principle of General Relativity belongs to a different
level of scientific discourse from that of the Principle
of General Covariance. It is obvious that the verification
of the general covariance of Einstein's field equations
is, as Bunge would argue, a paper and pencil operation.
The testing of the Principle of General Relativity, on

the other hand, requires observation and experiment in

at least two distinct Einstein frames. Finally, in any
case, no physical theory could strictly satisfy the
Principle of General Covariance, even in the formal sense,
since every physical theory must satisfy the reality
conditions which are imposed on the gmv but which are not
part of the formal structure of tensor theory. For example,

per impossibile, if the velocity of electromegnetic

propagation were infinite, then the equations of electro-
dynamics would be Galilel covariant. But this would in no
way preclude their being written in generally covariant

form, i.e. as tensor equatlons. Equivalently, the

demonstrations by Cartan and others that classical mechanics:

may be written in generally covariant form should not be
1hterpreted as trivializing the Principle of General
Relativity (& la Kretschmann) but as confirming 1its

status as an object law rather than as a metalaw. In fine,
we must distinguish between the form of general covariance

and the substance of general relativity.
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As our grand finale, we offer our formal

statement of the Principle of General Relativity.
¢L} is the set of fundamental laws of a given theory.

$K3 is the set of physically realizable frames of
reference, i.e. Einstein frames.

(T} is the set of mathematically admissible coordinate
transformations.

For any 1 € I}, any t €T3 and any ky,k; € $XS:
1 w.r.t. k; € $K3 e (1) =s. 1 w.r.t. k; e §K3.

The reader is urged immediately to compare the
foregoing with the formal statement of the Principle of
Special Relativity. He should note the following fundamental
distinctions between the two. (T3 is here restricted
only by the weakest formal requlrements on coordinsate
transformations in general. On the other hand. the
denotation of K} places definite limits on the t; € §Tt
which would, in fact, be applicable. The generality of
the above principle is reflected in its ranging over the
entire EKE as distinct from a distinguished subset of the
latter, which was the case for both of the restricted
principles. Finally, it should be noted that the latitude
in the interpretation of {Li reflects our view that the
Theory of General Relativity 1s not merely a theory of
gravitation but rather one in which gravitational laws

necessarily play a fundamental role.
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APPENDIX TO CHAPTER VITI

This appendix merely serves to add some physical
information to Chapter VII. The mathematical machinery
is simply that which is required for Special Relativity
physics. However, our purpose is to construct a new
tensorial quantity which plays an essential role in the
Theory of General Relativity. The following treatment 1is
purely physical, and absolutely no philosophical
considerations will arise. For details, the reader should
consult a textbook on relativity physics. What follows is
simply a sketch which 1is adequate for the purposes of
this dissertation. Its only virtue 1is its brevity.
| Given a continuous distribution of incoherent

matter moving in a force fleld, let dwobe an element of
the proper volume of the mass. We write the defining
equation:

F\"\ =d4. DHAUo (9.1)
We call D™ the four-force density. In component form, it
may be written as:

o = (d, % A7) (9.2)
Now we consider the case of a supposedly contlinuous
charge distribution given by J®" 1f deeis an element of
proper volume of the charge distribution and fe is the

proper cherge density, then by (7.46) and (7.65), we have:
E® = f% F*™W UVdw, = -é— F“VIVJQJO (9.3)
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Hence, by (9.1), we may define the four-force density

of the electromagnetic field by:

v

P =L FWI (9.4)
Substituting the first of (7.58) in (9.4) gives:

pr = -l—‘r—& FYW FOV g (9.5)

We now wish to show that (9.5) is the negative
of the divergence of a particular symmetric tensor which

we call the energy-momentum tensor of the electromagnetic

field. We define the latter tensor by:
SHY =iy FRIFYS-fn Suv FEFFTF (9.6)
Taking the divergence of (9.6). we have:

SNV)V ._.;Lﬂ Fr\f,_’, Fvo’_,t“‘:r«a-‘;vo’w ;_8#} 3,4\/ g e F(f’v (9.7)
By virtue of the antisymmetry of F™ and the second
equation of (7.58), a few algebraic manipulations will
yield:

Sﬂvyv:ﬁ'“. Fno"‘—;vo’;v :___‘:P_“FKO'F‘-‘/,Vz—D" (9.8)
The reader may ascertain the physical significance of sh
by substituting the values of F" from the matrix array

(7.57a). We merely mention the more significant results.
Sij is the negative of Maxwell's stress tensor, which by
virtue of the suppression of Si4 and 841 is only a tensor
in an inertial frame with a fixed coordinatization.
st* = sl 15 Poynting's vector 3, multiplied by a factor i/c.
Finally,

§¢% = -gp LE1T+1E1) = -V 5.9)

which is the energy density of the electromagnetic field.
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In summary:

(tli I S/ie
MV = -
S . | v (9.10)

We have, thus far, ignored the mass of the point
charges. However, if we assume a system of point charges
which are not interacting mechanically, by virtue of the
constancy of thelr proper mass, one may easily write an
equation of continuity for proper mass. That is to say,
1f S is a closed surface bounding a volume V, then the
rate at which proper mass is flowing through S must be
equal to the decrease of proper mass in V. If dw is an
element of volume of the charge distributlon with respect
to K, we may wrlte the proper mass of the element aS|4°Jw.
We know this quantity to be Lorentz invariant. But dw is
not an invariant, hence mocannot be an invariant. It is
actually the density of proper mass with respect to K. We
may write our equation of continulty in the form:

—ﬁ‘.réu.,olw = §g°§7.o\§’ (9.11)
By Gauss's theorem, the right hand side of (9.11) 1is
given by:

§,..c7. d¢ = §V.M.7dw (9.12)
By (9.11) and (9.12), we have:

ST e v (u¥)]do = 0 (9.13)

>
But since V is arbitrary, the integral must be identically

zero; whence:

a_’:.“ +V.H0V=O (9.14)
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Let poo be the proper density of the proper mass. Then:

Moo dwo = Medw (9.15)
Clearly, Hoe must be Lorentz invariant. Hence, by (9.15):

oo = (1-v¥/e)'® Mo (9.16)
Therefore, the equation of continuity may be written in
manifestly covariant form as:

Hoo UMy = O (9.17)
The reader should compare (9.17) with (7.44). By (9.1),
the equation of motion may be formed as:

D" = Moo é;lg’; (9.18)

Furthermore, by virtue of (9.17) and an easy computation,

it may be shown that:

(Moo UYUR) s = DM (9.19)
We now define a symmetric tensor eﬂvby:
MY =df. He, UM VY (9.20)
Whence:
= 8" (9.21)

We may leave it to the reader to work out the significance

of the components of B"ﬁ known as the kinetic energy-

momentum tensor, on the basis of its being the counterpart

for matter of the energy-momentum tensor S*Y. By (9.8)
and (9.21), it is obvious that: .

- ™, = ™, (9.22)
It should be emphasized that (9.22) is not an identity

but a physical hypothesis. Finally, we construct the tensor:
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P LV MV v
TR = S"V + B (9.23)
By (9.22), it follows that:

TRV, =0 " (9.24)

TMY is the complete energy-momentum tensor which comprises

the energy contributions of both the electromagnetic
field and matter.

We have crammed into a single quantity, albeit
on the basis of several simplifications, every type of
energy contribution except gravity. (We, of course, forget
about nuclear forces.) (9.24) at least has the appearance
of & continuity equation. Sometimes T™Y is called the

matter tensor. In a covariant theory of gravitation, we

should expect T™, or something analogous, to play the
role of the source of the gravitational field.

We apologize for the terseness of this appendix,
which was really just an interlude between Special
Relativity and General Relativity. At least, the lay
reader will now have a limited conceptlon of the physics
of General Relativity which is treated in a limited way
in Chapter VIII, which is of a far different order from

having the ability to follow its mathematical formalism.
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Errata

The author is indebted to Dr. David Salt of
MeGill University, whose cereful reading of this
dissertation uncovered the following errors and mental
lapses,

p. 19: In fact, the group operation is not defined for
every pair of elements. Hence, the set of mathematically
admissible coordinate transformations is the realization
of a groupoid or .pseudo group but not of a group.

p. 62: The status of mass as a scalar object is merely
sufficient but not necessary for the covariance of
Newton's first law.

p. 62: Delete constant from the penultimate line.

p. 79: (4.30) is generally covariant. It is the equation
of an affine geodesic.

p. 82: The second paragraph is incorrect. Time translations
do not involve time reversal.

p. 88, line 13: f,g,j,h are, of course, linear functions
not constant functions.

pp. 161 & 190: The reality conditions imposed on the g}
are only required on the assumption that a reference
frame is of the standard type having three spatially
oriented axes and one time-like axis. However, the
utilisation of a different kind of reference frame would
not have any effect on the metric signature of the
manifold.

p. 197: The sentence which begins on line 14 is incorrect
and should be deleted.



