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PREFACE 

The author hopes that this dissertation 

on the philosophy of physics will prove to be of interest 

to both philosophers and physicists. However, in 

addressing himself to this dual audience, he has been 

presented with the difficult task of composing a work 

which would be relatively intelligible to both. In fact, 

any thoughtful physicist should have little difficulty 

in appreciating the significance of this work. On the 

other hand, however, the phili.sopher who lacks training 

in applied mathematics may encounter some difficulty. 

Accordingly, certain compromises have been made in the 

mode of presentation. The author has presupposed only 

a minimal knowledge of physics and applied mathematics 

on the part of his philosophical reader. AlI of the more 

advanced technical apparatus has been explained, although 

sketchily, as it is needed. Of course, we could not 

start from zero in a work of this nature. However, we 

presuppose that the philosopher has only a knowledge 

of the rudiments of the differential and integral 

calculus, elementary vector analysis including the 

theorems of Gauss and Stokes, a passing acquaintance 

with the theory of matrices, an acquaintance with the 

algebralc concept of a group, and as much physlcs as 
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would be covered in a first year university course. The 

writer has made an effort to introduce the more advanced 

topics step by step and as painlessly as possible. 

Having been trained in philosophy, but not in rnathematical 

physics, the writer knows how useful this particular 

form of sympathy can be. 

The notation employed is largely that of 

standard mathematics. In the case of Cartesian vectors 

and tensors, no distinction 1s made between the covariant 

"and contravariant components, both of which are represented 

by superscript indices, with the exception of the metric 

coefficients which are denoted by subscripts. l~vis the 

Kronecker symbol, and the Einstein summation convention 

is used throughout. In place of the common practice of 

using primes to denote transformed variables, etc., we 

have preferred to place a bar over the transformed 

variable, so that primes and tensor indices do not get 

confused. This practice also makes for a more tidy 

appearance. Other notational devices and abbreviations 

which are less standard are the following: 

~ : material equivalencei if and only if; the necessary 
and sufficient condition. 

=df. : equivalent by definition. 

=s. : semantically equivalent; having the same meaning; 
having the same factual content. 

tel) : the transform of 1 by the element 't'of a given 
group of transformations. 

w.r.t. : with respect to. 
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AlI other notat1onal conventions are expla1ned as they 

are introduced. 

The pr1mary original contribution of this 

dissertation 1s briefly the following. Most, if not aIl, 

p~ysical theories are taken to satisfy a pr1nciple of 

relativity of some k1nd. This property of theories is 

generally held to be reflected in their mathemat1cal or 

formaI structure which will be such that the fundamental 

laws of the the ory of interest will be covariant under a 

particular group of coordinate transformations. In general, 

physicists tend to regard the covariance pr1nciple as 

nothing but the mathematical expression of the relativity 

pr1nc1ple which is sat1sfied by the theory. However, 

th1s virtual identification of covariance and relativity 

principles has led to a perplexing problem. The determin­

at10n of the covariance properties of a theory is a purely 

formaI operation (Bunge, 1961). On the other hand, many 

phys1cists would regard the expression of a relativity 

pr1nc1ple as a statement about physical real1ty(e.g., 

Anderson, 1967). Thus, depending on the point of view, 

pr1nc1ples of relat1v1ty are taken to be e1ther metatheor­

et1cal statements, devoid of phys1cal content, or object 

statements whose referent 1s the physical world. Clearly, 

these points of view are incompatible. 

We resolve the d1fficulty by 1ntroducing the 

notion of the relat1v1ty group of a theory as distinct 
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from the covariance group of a theory. On the basis of 

this distinction, we show that covariance principles 

differ fundamentally from relativity principles. In support 

of this position we formulate the various principles of 

relativity in a manner which makes manifest their status 

as object statements of physical theories. In the course 

of the argument we endeavour to sharpen the concept of 

inertial frame of reference and to clarify the distinction 

between the inertial frames of different theories, although 

the latter merely supplements the work of our research 

director, who has already pointed out that the concept 

of inertial frame varies from one theory to another 

(Bunge, 1967a). Finally, the work of this dissertation 

strongly supports the broader moral that an essential 

prerequisite to the understanding of any physical theory 

is the recognition of the distinction between the properties 

of the mathematical formalism which happens to be employed 

to express that theory and the physical content of the 

theory, which should be independent of the choice of 

formalisme 

The author particularly wishes to acknowledge 

the profound value of the supervision of Professor Mario 

Bunge, who made him aware that philosophy is not a 

gentlemanly game but an earnest quest for knowledge and 

understanding, which may only be achieved by travelling 

paths which are both arduous and rigorous. If this 
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dissertation has any intellectual merit, it is due sOlely 

to his strict guidance and uncompromising des ire for 

truth. 
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CHAPTER l 

. INTRODUCTION 

An interesting dispute has been simmering 

in the philosophy of physics for the last fifty years. 

Recently, fresh attempts have been made to settle 1t. 

In his founding pa~~r, Einstein(1916) gave the clear 

impression that the Principle of General Relativity led 

to new physics. Briefly, he argued that if we adopt this 

principle on independent epistemological grounds and 

require a field theory of gravitation to satisfy it, 

the resulting field equations will entail physical 

consequences which are significantly different from 

those of the classical theory of gravitation. The most 

striking example, perhaps, of the fecundity of this 

principle was the direct prediction of the precession of 

the perihelion of Mercury. Thus, it seemed clear that 

the Principle of General Relativity must have physical 

content, on the formaI ground that in conjunction with 

certain physical assumptions it entails factual 

consequences which are not entailed by those assumptions 

alone. 

However, shortly after the publication of 

Einstein's paper, an article appeared by Kretschmann(1917) 

which convincingly demonstrated that any putative law, 

e.g. Newton's laws of motion, could be formulated in a 
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generally covariant way, thus satisfying the Principle 

of General Relativity. Einstein(1918) concurred with 

the view of Kretschmann, and since that time the bulk 

of orthodox opinion has followed a similar line. 

M. Bunge(e.g., 1961) has frequently argued in 

favour of the same view on independent logical grounds. 

Briefly, Bunge's position is to the effect that it is 

essential to distinguish between the axioms of a theory, 

e.g. its basic physical hypotheses, and those other 

lawlike principles which are to be associated with a 

theory but which actually belong to the corresponding 

metatheory. In particular, there are principles which he 

calls laws of physical laws or metalaws whose referents 

are not the objective patterns of nature but the lawlike 

descriptions of them. In short, metalaws are not statements 

about the world but statements about physical laws. 

According to Bunge, the Principle of General Covariance 

and, in fact, aIl covariance principles(Galilei, Lorentz, 

canonical, etc.) clearly belong to the class of metalaws. 

On this view, it would be patently absurd to assert that 

physical reality is generally covariant. Clearly, one 

should and would say that the basic laws of this or that 

theory are generally covariant. 

A position diametrically opposed to that of 

Bunge has recently received an exposition by J. L. Anderson 

(1967) in a text-book on relativity physics. Anderson 
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argues in considerable detail that the imposition of a 

covariance requirement(or of a related symmetry require-

ment) has definite physical consequences. Specifically, 

he claims to show that when a theoretical description of 

a physical system is required to admit a specific group 

of transformations, the choice of basic laws is severely 

delimited and, in certain cases, may even be uniquely 

determined. 

Anderson disposes of Kretschmann's argument 

by toeing an empiricist line that any term which occurs 

in a physical formula must allow of a specific physical 

and observational interpretation. He argues that Kretschmann 

was able to render any arbitrary lawlike formula generally 

covariant by importing terms which model no aspect of 

the world. In other words, his criticism amounts to the 

accusation that Kretschmann's argument depended on an 

ingenious but irrelevant 'cooking of the results.' 

It is clear that the treatments of Bunge and 

Anderson have much wider significance than those of 

Einstein and Kretschmann. Whereas the latter were concerned 

specifically with the status of general covariance, the 

former are directed at aIl covariance principles. Thus, 

what they have to say has implications for Classical 

physics and Special Relativity physics as much as for the 

Theory of General Relativity. Accordingly, we shall 

examine the role of covariance principles in pre-relativity 
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physics, in Special Relativity and, only thereafter, in 

the Theory of General Relativity. 

A prima facie indication of the factual content 

of covariance principles is that the commonly accepted 

interpretation of the Principle of Special Relativity is 

to the effect that the covariance group of electrodynamics 

must contain the invariant velocity ~ which is interpreted 

as the velocity of electromagnetic propagation. But since 

the only invariant velocity of the Galilei group is an 

infinite velocity, it is obvious, ~ experimental grounds, 

that electromagnetic the ory is not Galilei covariant. 

Thus, it would ~ that there may be at least indirect 

experimental confutation of a covariance principle. Of 

course, it is still logically possible to follow the line 

advocated by Bunge which would presumably consist in 

arguing that to say that Maxwell's theory is not Galilei 

covariant is obviously to say something about Maxwell's 

theory but to say nothing about the world. However, 

Maxwell's laws are not formulae that have been picked 

from a hat but purport to be reasonably accurate 

descriptions of something called the electromagnetic 

field. It might make a difference to say that a purportedly 

true description of reality 1s not Gal1lei covariant. 

Surely that is to say something, at least 1ndirectly, 

about the world. In. any event, the invariance of c under 

velocity mappings 1s surely a brute fact, and no theory 
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which incorporates that fundamental fact can admit the 

Galilei group of transformations. 

Actually, it is not our intention to engage 

in polemics. On the contrary, the purpose of this 

dissertation is to argue for a middle ground between the 

two opposed points of view, each of which contains part 

of the truth. The general line which we intend to pursue 

will be clarified in a cursory way in the remainder of 

this chapter. 

The Principle of General Covariance asserts 

that any genuine fundamental law of nature must hold 

regardless of the coordinatization which we happen to 

adopt to describe the physical system of interest. A 

physical the ory should be as indifferent to the coordinate 

system as it is to the language of its author. Accordingly, 

a weII-formed basic law should retain its form under an 

extremely wide class of coordinate transformations. For 

obvious reasons, such transformations must be differentiable 

and with a non-vanishing Jacobian. Apart from the latter 

requirements, they are quite arbitrary. It is easily 

shown that such a class of mathematically admissible 

coordinate transformations is the realization of a group. 

We May calI it thè general covariance group or, following 

Anderson, the manifold mapping group. The requirement 

that a theory be covariant under the manifold mapping 

group is the Principle of General Covariance, in a nutshell. 



11 

It is a most fortunate aspect of the wedding 

of physics and mathematics that there is a class of 

geometrical objects, namely tensors, which form a basis 

for the realization of the manifold mapping group. 

Accordingly, the requirement that the basic laws(postulates) 

of a the ory be expressible as tensor equations is 

equivalent to the requirement of general covariance. But 

the essential meaning of the general covariance of a law 

is that it be covariant under any mathematically 

admissible substitution, as defined above. Hence, it l' 
would appear to follow that 11axwell' s laws, which are 1 

expressible as tensor equations, are covariant under the\~ 
group of Galilei transformations - a result which is 

.:. 1 
, J!'J1..4. ItM l;" .s~; V.;.c.t,4. 

blatantly false. "'i" '.~" ~ 

The germ of the solution to this paradox is 

actually hinted at in Einstein's original paper of 1916 

in which he had the insight to draw a distinction 

between the Principle of General Covariance and the 

Principle of General Relativity. Since Kretschmann's 

paper, however, everyone seems either to have ignored 

the distinction completely or, at least, to have treated 

the Principle of General Covariance as the mathematical 

model of the physical Principle of General Relativity. 

However, even the latter is a serious mistake. Bunge, in 

his Foundations of Physics, takes considerable pains to 

emphasize the distinction between a coordinate system, 

1 ~ 
l, 
~ : : '; 

1 

/ 

'. 
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which is a conceptual object of mathematics, and ~ frame 

of reference, which is a physical object such as the 

walls of a laboratory. Roughly, the distinction between 

covariance and re~ativity corresponds to that between 

coordinate systems and frames of reference. The Principle 

of General Relativity is a physical hypothesis which 

may be stated in the negative form that there is no 

privileged frame of reference to be found in nature or 

in the positive form that aIl frames of reference are 
, .': . r~ .. .J,.t 

9N';""": -~ ..... ,'~ .. -

dynamically equivalent. Since every frame of reference \ ".~.«".)."', 
JOCV<l' ~0 :y: 

may be coordinatized, i t follows that if a law satisfies : ".. (,-..... -,.\,,;..:.: ... ,1 : .~:-~ ',' " :' .. ' 

the Principle of General Covariance it will, a fortiori, 

satisfy the Principle of General Relativity. However, the 

two principles are not to be confused. They are by no 

means coextensive. 

The frequent references to general covariance 

in the literature of relativity physics is partI y due to 

the availability of a mathematical formalism ideally 

suited to obtain generally covariant laws. However, this 

formalism - we naturally refer to tensor analysis - must 

be treated with great care or Lt will lead to a serious 

misunderstanding of relativity physics and the consequent 

controversies which this dissertation should serve to 

dispell. In any case, the physicist should not be concerned 

with general covariance for its own sake but only with 

those particular instances of covariance which have to do 
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with possible frame transformations. 

These considerations are weIl exemplified by 

the case in hand of the generally covariant form of 

Maxwell's laws. The source of the mistake was to forget 

that the sole significance of the generally covariant 

formulation of a law for the physicist is to demonstrate 

that the law is independent of the frame of reference to 

which it happens to be referred. As we shall show, r 

\ 
especially in Chapter VIII, the acceptance of a physically \ 

\ 
unrestricted general covariance for physical theories WOUld\ 

permit the introduction of frames of reference which ) 

could have no counterpart in the physical world. It is 

precisely with reference to such frames, i.e. ones which 

contravene laws of physics, that Maxwell's equations 

could be Galilei c07sxiant. 

Our general conclusion will be that Bunge is 

formally correct in regarding covariance principles, per 

~, as devoid of factual content. In this context, they 

are nothing but metatheorems of pure mathematics. On the 

other hand, we shall argue that once we speak of the 

relationships which hold between frames of reference, 

whether inertial or arbitrary, we have moved from the 

realm of pure mathematics to that of physics. When we make 

assertions about the group properties of frame transform-

ations, we are referring to concrete groups which are 

realized in the physical world. Such assertions certainly 
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do have a factual content. This dissertation will consist 

in the elaboration of the fundamental topics which have 

been alluded to in this introductory chapter. 
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CHAPTER II 

TECHNICAL PRELIMINARIES 

The purpose of this chapter is twofold. In 

the first place it should serve to introduce the reader 

whose training is primarily philosophical to some of the 

most basic notions of applied mathematics and theoretical 

physics which happen to play a fundamental role in the 

ensuing discussions. However, this chapter should not 

be ignored by the scientific reader, since some of the 

fundamental concepts are obscured by ambiguity. The 

second function of this chapter is, accordingly, to state 

unequivocally what the present writer intends to signify 

by certain conceptual terms which will be employed 

throughout the remainder of this dissertation. 

1. Coordinate Systems and Coordinate Transformations: 

A very wide class of physical theories concerns 

the behaviour of physical systems, such as bodies and 

fields and a combination of the two, in space and time. 

We may designate this the class of space-t1me theories. 

A law of space-time physics will describe the changing 

spatial configuration of a phys1cal system in the course 

of time. Accordingly, it is necessary to label the 

position or configuration of a system at any point in 

time. In elementary physics, the standard method of 

labelling is to util1ze a Cartesian coordinate system. 
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This conceptual entity consists of three mutually 

orthogonal, rectilinear axes. Each axis is labelled by 

a variable. Thus, the three variables ~, ~, ~ may 

represent the spatial axes of a particular system of 

coordinates. In somewhat more advanced treatments a 

Single letter with a subscript or superscript will perform 

i i the same function, viz., x (i = 1,2,3). The x are 

called the coordinate variables. More precisely, a 

coordinate is a function xi on the given space to sorne 

field, usually the real line, such that xi(b j
) = ~tj 

where the b j are the bas e vectors and g.~j is the Kronecker 

symbole Clearly, every point of a three-dimensional 

manifold will be uniquely labelled by an ordered triple 

of three numbers specifying a particular value of each 

of the coordinate variables. When a manifold is thus 

associated with a set of coordinates, it is said to be 

coordinatized. 

It is obvious that no coo~dinatization of a 

given manifold is unique. Given a particular Cartesian 

coordinate system, it is possible to produce an infinitude 

of further systems by means of a change of origin of the 

original system or by a rotation about the origin or by 

a combination of these. In general, such a mathematical 

operation will send every ordered triple of numbers 

associated with a point of the manifold into a distinct 

ordered triple associated with the same point. Such a 
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change in the coordinatization of the manifold is called 

a coordinate transformation. The set of functions which 

maps the first set of triples onto the second set is called 

the transformation eguations. In general, each member 

of the second or 'barred' triple is a function of every 

member of the first triple. Consider two given 

coordinatizations, S and S, of the manifold and a mapping 
-from S onto S. Let x,y,z be the spatial coordinates of 

a point with respect to S, and x,y,z be the spatial 

coordinates of the same point with respect to S. Then, 

given that the transformation is linear, the transformation 

equations will be of the general form: 

x ~ x = cl1x + c12Y + c1)z + Xo 

y --, y = c21x + c22Y + c2)z + Yo (2.1) 

z~ z = c)lx + c)2Y + c))z + Zo 

The c ik are the direction cosines between the various 

- - -axes of the two systems of reference, and xo'Yo' Zo are 

the coordinates of the origin of S with respect to S. 

The class of coordinate transformations so far 

considered is actually in reality; very restricted. In 

addition to the transition from one Cartesian system to 

another, we must take account of transitions between 

arbitrary curvilinear systems, in which case the c ik may 

be very much more complicated. For typographical 

convenience in the remainder of this section the coordinate 

variables of the unbarred sys~em will be denoted by xi and 
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those of the barred system by yi. We may also make the 

trivial generalization to an n-dimensional manifold. 

Accordingly, we now consider the class of time-independent, 

real, single-valued, reversible transformations of the form: 

i i i 1 2 n T: x ~y = y (x,x , .•• ,x) (i = 1,2, ..• ,n) 

Since, for reasons which will shortly emerge, we are 

concerned only with those transformations which are 

realizations of a group-; the assumption of reversibility 

is a necessary one, in which case we write the inverse 

transformation: 

i i _ i 1 2 n 
T:y~x -x(y,y, ••• ,y) 

The conditions which must be imposed on the 

functions yi(x) are, firstly, that they be first-order 

differentiable in a finite region R of the n-dimensional 

manifold Vn , which we shall denote by saying that the yi(x) 

are of class Cl in the region R. Secondly, we require 

that the functional determinant (Jacobian), J =df. (\~" 

does not va~ish at any point in R. This will suffice to 

ensure not only the existence of a single-valued inverse 

but also that the xi(y) are of class Cl in R. If the 

manifold has a Euclidean structure, these requirements 

would not be restricted to a finite region but could 

easily be made to apply to the entire Vn by the simple 

expedient of employing Cartesian coordinate systems. AlI 

transformations, whether linear or not, which satisfy the 

foregoing conditions constitute the class of mathematically 
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admissible transformations. However, the reader should 

be warned that the designation 'mathematically admissible' 

carries no physical warrant. We shall find in subsequent 

chapters that it is necessary to impose additional 

restrictions to define the class of physicallY admissible 

transformations which is, therefore, a subset of the set 

of transformations here defined. 

We shall conclude this section with a fairly 

crude but adequate sketch of the proof that the set of 

mathematically admissible transformations form a group. 

It should be emphasized that this is not a trivial 

conclusion, since there are distinguished subsets of the 

set of mathematically admissible transformations which 

lack the group property. 

Lemma: If J and K are the Jacobians of T and T-1 respectively, 
then JK =-1~ - - - --- -

By definition of T and T-t, there follow the identities: 

i i(l 1 2 n n 1 2 n.l y == y x (y , y , ••• , y ), ••• , x ( y , y ,..., y )J 

Differentiating with respect to yj: 

,~ = ~ U!' = S tJ' , where $ "j is the Kronecker symbol. . 
) ~J ")'S,")~.; 

But 

\ ~ ~ 1 = 1 *" 1·1 ; ~~ ( = l ~;~ ,., W ~ \ = :r K :: \ ~ 'j l ; 1 
Lemma: If Tl and T2 ~ admissible transformations, the 

product Tz!l is also ~ admissible transformation. 

Consider two transformations: 

1 i i 1 2 ~ Tl x ~y = y (x ,x , ••• ,r-) 

T 2 Y i ~ z i = z i ( Y 1 ,y 2 , ••• , yn ) 
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i i i [1 1 2 n) n 1 2 n l T3 = T2T1 : x ~z = z y (x ,x , ••• ,x , •.• ,y (x ,x , •. ,x ~ 

J 3 = 1 ~ b;' 1 :. , ~ \. \ h': 1 ::. \~., . \ ~. \ :: J 1.. J, 
~~ .. ')~ c>~n. ')1'.' )~.a }-x...,a 

Theorem: The set of mathematically admissible transform­
ations form ~ group. 

(i) The product of two admissible transformations 
is a~ admissible transformation. 

(li) T~ere ls an identity transformation l : 
x ~y = x • 

(1ii) For any transformation there is an inverse 
such that T~T = l 

2. Frames of Reference: 

The distinction between frames of reference 

and coordinate systems tends too often to be either 

overlooked or forgotten by physicists. The blurring of 

this fundamental distinction can lead to errors of both 

fact and philosophy. In particular, we shall find that 

the significance of the various principles of relativity 

is apt to be misunderstood when this occurs. 

A coordinate system is a purely conceptual 

object of mathematics which, like all such objects, is 

devoid of intrinsic physical significance. It may, however, 

be assigned a physical meaning when it is employed as the 

conceptual model of a physical frame of reference.(Bunge, 

1967a, pp. 103-105; ï-19Sller, 1952, pp. 234ff.) A frame of 

reference is a physical entity of some kind such as the 

earth, the sun, a laboratory or even the centre of mass 

of a system of material objects. {Strictly speaking, the 
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latter is just a reference point.) 

Physical space has no intrinsic cartographie 

properties. Consequently, one cannot specify the absolute 

position of an object, i.e. its position vis à vis space. 

To specify a position, it is necessary to secure a point 

of reference which is arbitrarily treated as fixed. This 

fixed point may then be utilized as the origin of a 

physical frame. It is at this juncture that a coordinate 

system is usefully introduced as the mathematical model 

of the frame of reference. For example, if one decides 

to adopt a heliocentric frame of reference, one may then 

specify the position of an object with respect to the sun, 

but not literally with respect to the system of coordinates. 

It follows from the foregoing remarks that the 

coordinatization of a reference frame is not unique. In 

principle, infinitely many systems of coordinat es may be 

associated with a Single frame of reference(Bunge, 1967a, 

p. 104). By the same token, the set of frame transformations 

is not coextensive with the set of coordinate transform-

ations. It is frequently necessary in the practice of 

physics to refer a physical system to a new frame of 

reference. For example, it may be desired to effect a 

transition from a laboratory frame to a centre of mass 

frame, or from a geocentric to a heliocentric frame. The 

mathematical procedure is, in principle, quite straight­

forward. A coordinate system which models the original 
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frame of reference is first specified. Then the second 

reference frame is likewise modelled by a suitable system 

of coordinates. Finally, the set of transformation 

equations between the two sets of coordinates is determined. 

These transformation equations must model the relationship 
-----.=:=- - . -----

between the two frames of reference. Consequently, it 

would be correct to speak of them as transformation laws. 

The set of coordinate transformations which 

model frame transformations is a minute subset of the set 

of mathematically admissible coordinate transformations. 

Many types of coordinate transformations which are 

employed to achieve the optimum of mathematical tractability 

have nothing to do with frame transformations. We may, 

for example, transform the description of an electrostatic 

system from rectangular to spherical coordinates to 

facilitate the solving of Poisson's equation. In particular, 

transformations of this kind are purely mathematical and 

should not be regarded as laws in the physical sense. On 

the other hand, when we deal with the relationship 

between two distinct frames of reference, we are .involved 

with the behaviour of two physical systems, in which case 

it is proper to speak of the laws which relate them. 

The mark of a physically significant frame 

transformation, as distinct from one which is a mere 

analytical aid, is the occurrence of the time parameter 

in the equations of transformation. In the equations(2.1) , 
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it was tacitly assumed that the coefficients c ik were 

constant. However, if these equations modelled the 

relationship between two frames of reference in relative 

mo tion, the cile would obviously vary in time. f.'loreover, 

their explicit form would depend on the type of motion 

involved, e.g. rotational or translational, accelerated 

or uniform. 

3. Scalars, Vectors and Tensors: 

(i)Scalars: A scalar is a one component geometrical object. 

Once a number has been assigned to a scalar magnitude 

on the basis of a particular scale, its value is fixed 

independently of the coordinate system. This notion may 

be immediately extended to that of a scalar field. The 

latter may be represented in explicit numerical form as, 

for example, in the case of a classical temperature 

distribution throughout a given region or, analytically, 

as a function of the coordinate variables. Probably, the 

most fundamental example of a scalar in space-time physics 

is the square of the line element, known as the interval: 
2 i k (ds) = gikdx dx • It should not be supposed, however, 

that a scalar 1s an object w1thout a transformation law. 

AlI geometr1cal objects are defined by the manner of their 

transformation. Moreover, not aIl one component objects 

are scalars. For example, the transformation law of a 

pseudo-scalar d1ffers from that of a scalar. Moreover, 

the 1ndi vidual components of vee:tors.·:ànd .''t;ensoI's ':are: ·ri.ot 
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geometrical objects at aIl. Consequently, they lack 

invariant slgnificance. Accordingly, it is desirable to 

express the transformation law of a scalar formally, 

although lt may seem trivial to the novice: 

x ~ x = x 

(ii) Contravariant Vectors: Take two infinitely close 

points whose coordinates are xi and xi + dxi respectively, 

with respect to a given coordinate system S. The 

infinitesimal displacement between the two points in S is 

given by dxi • Let us transform from S to S by a mathemat-

ically admissible transformation: 
i -1 -i 1 2 n x ~ x = x (x ,x , ..• ,x ) ( 2.2) 

By d1fferentiation of (2.2), we obtain: 

cl i..'":: ~: J x j ( 2 • ) ) 
~~.a 

Equations (2.)) are the transformation law for coordinate 

differentials. In general, any object Ai whose law of 

transformation is: 
-j _ ~x.j Ai. 
fi - ~i. 

will be called a contravariant ve~tor. It follows 

( 2.4) 

immediately from the linear and homogeneous character of 

the transformation (2.4) that if Ai and Bi are two 

contravariant vectors, then PAi + qBi is also a contra-

variant vector, where p and q are arbitrary constants. 

(i1i) Covariant Vectors: From a g1ven scalar field ~(xi), 

we may form the n quant1ties Ai by differentiation: 

Ai = u.. 
~:x.." 
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which is nothing but the n-dimensional generalization of 

the familiar operation of forming the gradient of a scalar 

field in three dimensions. By the product rule of 

dlfferentiation, we may determine the transformation 

law of the Ai: 

A' = Ù. ~~.~. = ~~ At (2.5) 
J ~i..) ")~J 'b;)t.'" ê)5t.) 

In general, any quantity with the transformation law (2.5) 

is called a covariant vector. 

(iv) Tensors: Let us consider a product of arbitrary 

covariant and contravariant vectors, e.g. AiBjCk • It is 

easily shown that the transformation law for this quantity 

froID S to S is a simple generalization of (2.4) and (2.5). 

-RPsC\-ë = ~~~ d:i.~~1( A,,~jC~ (2.6) 
r 11 ~ " ~ ~J ") -x,.r 

The quantity AiBjCk is a geometrical object which may be 
ij 

signified by Tk • Thus, we may rewrite the transformation 

law (2.6) as: . . 
- pC\- _ )x,,~ a-x.~ ~ X. a. T (..J 
T r - ~JLt ~x.J ~S.r .... (2.7) 

Any quantity with the transformation law (2.7) is said 

to be a tensor of the third rank, twice contravariant and 

once covariant. The generalization to tensors of any rank 

and type is obvious. A vector is a tensor of rank one and 

a scalar is a tensor of rank zero. 

It is especially noteworthy that the 

transformation law of a tensor is linear and homogeneous. 

Accordingly, the algebra of tensors will have the usual 

properties associated with objects of that kind. The 
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reader whose knowledge of mathematics is fairly 

elementary should note, in particular, that the linear 

character of the transformation coefficients holds even 

though the transformation of interest may, itself, be 

non-linear. 

From the homogeneous character of tensors, it 

follows that if a tensorial quantity is zero in one 

system of coordinates, it will remain zero in every 

system of coordinates. The self-evident consequence of this 

is that a tensor equation which is valid in one system 

of coordinates must be valid in every system which is 

obtainable therefrom by a mathematically admissible 

transformation. AccQrdingly, a common stratagem of 

mathematical physics is to formulate a law as a tensor 

equation with respect to a system of coordinates in which 

it takes the simplest possible forme It then follows from 

the tensorial character of the equation that it will be 

valid for aIl admissible systems of coordinates. However, 

it is important to note that, in general, this mathematic­

ally privileged coordinate system only holds locally so 

that it will not normally represent a physical frame of 

reference. \ve shall appreciate the s ignificance of the 

last remark in Chapter VIII. The great utility of the 

mathematical the ory of tensors lles in lts provlding a 

meana of wrltlng laws of nature ln a way that la 

lndependent of any partlcular system of coordlnates. Thls, 
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of course, is an extension of the elementary theory of 

Cartesia~ vectors on the basis of which it is possible 

to express laws of nature which are inde pendent of any 

orthogonal system of coordinates. 

4. Fundamental Laws: 

The notion of a fundamental law is crucial to 

the elucidation of such concepts as those of covariance 

and inertial frame of reference. A commonly accepted 

definition of a fundamental law is one that contains no 

individual constants, i.e. names of particular individuals, 

in its formulation. While we accept this definition, we 

find it desirable to express it in terms which pertain 

directly to physical theory. The motivation of the 

definition is that a basic or fundamental law is of global 

significance, holding for aIl times and aIl regions. Thus, 

the occurrence of the name of a particular time or region 

or physical objectt in a statement precludes its having 

a fundamental character. It follows that the solutions 

of fundamental laws cannot, themselves, be fundamental 

since they depend essentially on initial and/or boundary 

conditions. Similarly, a law which singles· out a particular 

frame of reference as essentially privileged would not 

be fundamental since it would contain, at least by 

implication, the name of the reference frame. On this 

basis, any law which refers essentially to a particular 

material medium would be of a non-fundamental kind. In an 



28 

axiomatic development of a physical theory, laws in which 

names occur essentially would have the status of low level 

theorems. Thus, an axiomatic development of a theory is 

by no means arbitrary as to the choice of 8.xioms. For 

example, the law of sound propagation depends essentially 

on the characteristics of the medium of propagation, 

e.g. the air, which serves as a privileged frame of 

reference, automatically precluding it from the class of 

fundamental laws. 

By the same token, a law statement which 

contained terms which depended essentially on the state 

of motion of a particular frame of reference would be 

non-fundamental since it would presumably hold not globally 

but only in certain regions and at certain times which 

would have to be specified. 

5. Invariance and Covariance: 

A well-known property of groups in general is 

the existence of certain invariants which may serve to 

define a given group. Let S be a set of objects which 

are operated on by the elements of a group G. Let x' be 

the image of x E S under an arbitrary mapping of G. Let 

F be a given function of x. Then the function F is an 

invariant 2t Q if and only if F{x) = F{x'). For example, 

( ) 2 2 + z2 f h f F x,y,z = x + y is an invariant 0 t e group 0 

spatial rotations, i.e. the three-parameter orthogonal 

group. Alternatively, if x is any object and g(x) is an 
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operation on x by an arbitrary element of G, then x is 

an invariant of G if and only if x - g(x) = O. 

The invariants which are associated with the 

various groups of transformations are of distinct 

phys ical and epistemolo's)::)al interest. In the flrst place, 

it ls lntuitively clear that any quantity that refers to 

an invariant property of the world should be independent 

of the cholce of coordinates. A coordinate system is, 

figuratively speaking, a language employed for the 

space-time description of a physical system. Just as nature 

is indifferent to the choice of naturel language which 

happens to be employed to describe it, so it should also 

be indifferent to the physlcist's choice of technical 

language, e.g. coordinate system. Now if a property of 

an object is independent of the coordlnatization with 

respect to which it is expressed, it ls, ~ fortiori, 

invariant under a group of coordlnate transformations. 

We often refer to such invariant properties as the 

symmetries of the objecte We conclude that the discovery 

of the symmetries or invariant properties of a physical 

system, e.g. the total electric charge, has') a fundamental 

signiflcance in the theoretical descriptions of objective 

reality. 

Closely allled to the concept of invariance, 

but on no account to be confused with it, is that of the 

covariance of lawlike statements. A physical law may be 
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regarded as an hypothes1s wh1ch purports to descr1be 

relat1onsh1ps or patterns wh1ch hold object1vely between 

g1ven phys1cal magn1tudes. Such magn1tudes are not, 1n 

general, 1nvar1ant. That 1s to say, they will have 

d1st1nct numbers assigned to them by dist1nct 

coord1nat1zat10ns. Nevertheless, the pattern of the 

relat10nsh1p is st1ll object1ve. For example, an 

1nterparticle d1stance may be expressed 1n the form: 

sij = \x1 _ xjl, where the xi, x j are the Cartesian 

spatial components of the two particles. Under a coordinate 

rotation, the numbers assigned to the xi , x j will change 

but the quantity s1j will be invariant. 

Bunge has drawn the useful distinction between 

lawsl and laws2(e.g. 196), ch. 10). Lawsl are the objective 

patterns of phys1cal real1ty, while laws 2 are the sc1entific 

hypotheses which purport to represent them. Just as the 

magn1tude of an invariant 1s independent of the 

coordinat1zation, so a 1awl must be similarly independent. 

But if. a lawl 1s 1ndependent of the ch01ce of the 

coord1nate system, such 1ndependence must be mirrored by 

the corresponding law2 • 

Specifically, while the various terms which 

compose the law2 may change under a given group of 

transformations, the functiona~ relationships holding 

between these terms should remain fixed as a reflection 

of the objectivity of the lawl' An added complication in 
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the case of the covariance of laws is that the functions 

which occur in them, e.g. field variables, will also in 

general be transformed. Let us suppose that we are given 

a law of the form: 

F ( AI , u.. , - . ') U. ) U ) ... ) - 0 
~.... T ~ x.'" ~)(.fC (2.8) 

Under a group of transformations G, not only will the 

xi undergo change but also the ~ , 'f J ••• , which may, as 

we said, be field variables. Now (2.8) is said to be 

covariant if and only if: 

F (, ) \fJ 1 ••• ) Ni' \ ~K ' ••• ) =- 0 

That is to say, the transformed functions of the 

transformed arguments are isomorphic with the original 

functions of the original arguments. We shall subsequently 

have reason to question this account but it happens to 

be the standard one, and the reader will gain a better 

appreciation of the concept of covariance when he discovers 

what is wrong with it. 

It is unfortunate that the subject of covariance 

is neither as straightforward nor as uniformly 

comprehended by physicists and philosophers as one might 

wish. At this point, we shall merely touch on some of 

the more obvious difficulties. Firstly, there is a 

fundamental ambivalence in the use of the word 'covariance', 

which appears to stem from what happens to be regarded 

as the basis for the requirement of covariance on 

physical laws. The philosopher and mathematician tend to 
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view covariance as a sweeping epistemological desideratum 

to the effect that a genuine law of nature must be 

absolutely independent of its mode of description. Renee, 

any coordinate system, no matter how exotic, should be 

capable of serving as an adequate vehicle for a covariant 

space-time description of the world. The physicist, on the 

other hand, views the covariance of physical laws as both 

practically and theo re tically des irable in order that 

they may be expressed in a form which is independent of 

the frame of reference. In short, while the philosophico-

mathematical interest in covariance tends to be focussed 

on coordinate transformations, that of the physicist, 

inadvertently or otherwise, has tended to be more 

concerned with frame transformations. 

It is true that the general mathemat1cal 

requirement may be achieved by writing laws in the tensor 

notation. But that highly abstract and compressed formalism 

may obscure more than it reveals if the physical basis 

of the theory of interest 1s overlooked. A tensor 

equation may be factually false even though it is 

mathematicaIIy weII-formed. In any event, covariance would 

have been a viable requirement even in the absence of the 

tensor caIcuIus; and it is a fact that when more 

elementary mathematical tools are employed, the fundamental 

laws of physics fail to satisfy the requirement of 

general covariance. As we have already noted, coordinate 
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transformations, per ~, are normally employed from the 

relatively trivial motive of computational facility. While 

this matter deserves more discussion, we shall, for 

reasons which will emerge later, utilize the term 

• covariance' to deslgnate the formaI requlrement that the 

fundamental laws be lndependent of their coordlnatization. 

The more specialized requirement that fundamental laws be 

independent of the frame of reference to whi.ch they are 

referred, which has nothing directly to do with the 

'lang1lage' in 1'lhich they are expressed, we shall call the 

principle of relativity, which 1s discussed in section 7 

of this chapter. It is obvious that while frame 

transformations are compl1cated by the1r time-dependent 

nature, they need not involve a transition to a different' 

kind of coordinate system, e.g. Cartesian to spherical. 

However, even when we agree to restrict the' 

requirement of covariance te the area of phys1cally 

sign1ficant frame transformations, elements of ambiguity 

persiste Suppose that we take the requirement to mean 

simply that the form of a law be the same in every frame 

of reference. In Classical Mechanics as weIl as in 

Special Relativity Mechanics, covariance is supposed to 

pertain only to inertial frames of reference~ Thus, if 

a fundamental law holds in a given frame of reference, it 

may not hold in a frame wh1ch is rotating with respect to 

the original frame. However, even in such cases, it will 

. .f 
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always be possible to preserve the form invariance of 

the law of interest in a formaI or vacuous fashion. For 

example, if we consider a laboratory frame K and a centre 

-
of mass frame K, the expression for the total angular 

momentum of a system of particles is given in K by: 

(2.10) 

where the first term on the right is the angular momentum 

of the centre of mass and the ith. term in the summation 

is the angular momentum of the ith. particle about the 

centre of masse In terms of K, the first term will vanish, 

and the angular momentum will be given by: 
-:::;;:9 _ ~ 

L = ~ r. J( Pi. ( 2.11 ) 
i ~ 

However, if we so choose, we may retain the first term 

and claim that (2.10) is covariant under this particular 

transformation. Obviously, this would not have any effect 

on the results of our computations, since the first term 

would be identically zero in the centre of mass frame. 

But there is nothing to prevent our adding any number of 

such terms to the expression of a physical law, so long 

as we are concerned only with the results of computations. 

Consider, for example, the general case of the equation 

of motion of a point-particle with respect to a frame 

which has both linear and angular acceleration with 

respect to an inertial frame. Let the position vector of 

~ -the particle be R in the inertial frame and r in the 

non-inertial frame. Accelerations and velocities with 
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respect to the non-inertlal frame are enclosed in 

square brackets. A tedious but elementary calculation 

yields the following general equation of motion: 
_.,...., -".:. ( .!., ]....., -II) ( _ -) 

",t~J: F-'" Ao-l.MfI),,(rJ- '" (.t) "c-- 1n"')C la))t r (2.12) 
..., 

where Ao is the acceleration of the origin of the moving - ::., frame with respect to the lnertial frame, and F = mR. 

The second term on the right hand side is due to the 

linear acceleration, while the succeeding terms are 

respectively the Coriolis, the transverse, and the 

centrifugaI terms. Now, (2.12) is the law of motion of a 

particle in Newtonian Mechanics, expressed ln vectorial 

form, which is covariant under arbitrary frame transform-

ations. In the more specialized cases, the various terms 

simply become zero. 

Now the procedure that we have followed might 

be ruled out by the simple declaration that every term 

in a meaningful physical law must be non-vanishing under 

a coordinate transformation. But such a stratagem would 

be without any foundation. For example, continuity 

equations may be written in a form in which they assert 

that a certain quantity vanishes identically. A more 

tenable position would be to hold that (2.12) is not a 

fundamental law. The reader will recall that we stipulated 

that a fundamental law must not contain individual names, 

even covertly. But, clearly, every term on the right hand 

side of (2.12), with the exception of the first, refers 
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specifically to the particular non-inertial frame. For 

this reason, we are obliged to discount (2.12) as an 

example of a covariant law of nature, since it describes 

the state of affairs in a particular frame of reference 

rather than a pattern of global significance. Accordingly, 

we shall keep in mind throughout this dissertation 

that aIl references to covariant and relativistic laws 

are to be understood as applicable to fundamental laws 

only(Cf. Bunge, 1967a$ pp. 86f.). As we have amply 

illustrated, in the absence of such a restriction, the 

entire discussion would be trivialized. 

6. Inertial Frames of Reference: 

In aIl space-time physical theories, with the 

possible exception of General Relativity, a certain class 

of reference frames plays a fundamental role. We refer, 

of course, to inertial frames of reference. The concept 

of inertial frame is familiar to every student of physics. 

It exemplifies those concepts which are intuitively 

clear yet often difficult to define with adequacy. 

Bergmann describes them as "frames in which the 

laws of nature are fundamentally simple, that is, in 

which the laws of nature contain fewer elements than they 

would otherwise."(1942, p. xiv) According to N~ller, an 

inertial frame is one in which Newton's first law is 

valid(1952, p. 1). Fock seems to say the same thing in 

holding that it is a frame "in which the motion of a body 
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is uniform and rectilinear, provided no forces act on 
. , 

it. tt (1964, p. 15) Anderson offers a more sophisticated .. . j",} ..... ,.,~:::..!\A 
~. ',' ... ~ \''"- ~.~; ;~'~ .. '-' Jo 

vers ion of this, in defining an inertial frame as one '\ 11.< {~~~(Jt'-V" 
: c;:O:'--ft. .,.';..;-::i •• ,.,. ~ 

in which the components of the affinity in the equation " '\I~" .',': "s.:'''' 
~. ....... :')'1' 
.~ "'.... ~ 

of motion of a free particle vanish( 1967, p. 11)). Bunge \,)~ ~~,v. 

takes a rather different tack in defining an inertial 

frame with respect to a given theory as one that satisfies 

aIl of the axioms of that theory(1967a, p. 136). Thus, 

he would make a systematic distinction between a mechanical 

inertial frame, an electromagnetic inertial frame, and 

a gravitational inertial frame. 

In the first place, we are bound to agree 

with Bunge, who appears to maintain tacitly that it is 

unsatisfactory to define an inertial frame in terms of a 

single law. It is clearly more realistic to define it in 

terms of the complete set of basic laws of a theory. In 

this way, for example, even the geocentric frame is not 

deprived of its local, quasi-inertial character by the 

presence of a gravitational field. Strictly, on the other 

definitions, an inertial frame would be infinitely 

distant from aIl matter and would, itself, be non-material -

in short, a pure abstraction~ 

Nevertheless, Bunge's treatment of the concept 

of inertial frame is lacking in one important respect. 
1\. 

Bunge treats of mechanical, electromagnetic and gravlt-

ational inertial frames but fails to deal wlth the general 
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concept of lnertial frame in which, clearly, neither a 

single law nor even a complete set of basic laws may occur 

essentially. To form an adequate appreciation of the role 

of inertial frames in various theories, it is first 

necessary to have a clear idea of the general concept, 

itself. In fact, this presents no great difficulty. 

Intultively, an inertial frame ls one which has no influence 

on the physical processes whlch occur ln it or with 

respect to it. In more precise language, lt is any frame 

of reference in respect of which the fundamental laws of 

a given theory contain no terms which depend essentially 

on it. To take the simplest of examples, by way of 

illustration, Newton's second law has the well-known form, 

- -F = ma, in any inertial frame. If we refer the same 

mechanical process to a frame which has the linear 
~ acceleration ao with respect to the first frame, the 

description of that process must be reformulated as: - ...., -F=ma-ma o (2.1)) 

Clearly, the second term on the right hand side of (2.1)) 

depends essentlally on the motion of that particular 

frame of reference, whence that frame is non-inertial. 

In the second place, the reader should be 

reminded that, consonant with what was said about frames 

of reference ln general, the concept of lnertial frame 

1s not a mathematical notion but a physical one. Given 

a frame of reference in which the basic laws of a theory 
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have been corroborated, any other frame which is in 

motion with respect to the original one and with respect 

to which the basic laws continue to hold is to be regarded 

as a member of the equivalence class of inertial frames 

of that theory. That each member of such an equivalenee 

class, with the exceptlon of the inertial frames of 

General Relativity, is unaccelerating with respect to 

every other member is to be regarded as a fact of nature 

and not as a mathematical necessity. Furthermore, in 

pre-relativistic physics, it was assumed that the physical 

coordinates of an inertial frame were related to those 

of any other such frame by a Galilean transformation. The 

nature of this transformation made such an assumption 

appear to be purely arithmetic. We shall contend, however, 

that its physical character was revealed by the mere 

fact of its being rejected in the light of physical theory. 

In other words, by the same token, we shall argue for 

the physical character of the Lorentz frame transformations. 

7. Principles of Relativity: 

It is a curiosity, if not a disgrace, that so 

much confusion should reign in popular philosophy over 

the meaning of the concept of relativity in physics. We 

have in mind, for the present, not the particular 

principles of relativity, e.g. Classical, Special, etc., 

but the connotation of the general concept of relativity. 

In fact, it is possible to distinguish diametrically 
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opposite accounts of the meaning of relativity - those 

which occur in several works of philosophy as against 

those which occur, albeit rather sparsely, in works of 

physical theory. It is no futile task merely to place 

the two accounts side by side in order to clarify the 

situation somewhat. 

A popular philosophical conception of relativity 

princlples is that they are assertions to the effect 

that the statement of a physical law or the asslgnment of 

a number to a physlcal magnitude is meaningless unless 

the context of that law or magnitude is simultaneously 

specifled. Thus, it would be polnted out that Newton's 

first law is devoid of content unless a frame of reference 

be specified, since it refers to rectilinear motion, a 

concept which has no significance in the absence of a 

frame of reference. For example, we May take the edge of 

a room as a reference line and propose that any body whlch 

moves in such a way that the perpendicular distance 

between it and the edge of the room is constant throughout 

the motion is undergoing a rectilinear translation. 

However, if the room is, ltself, rotating with respect 

to some other frame of reference, say the sun, then the 

motion of the object will be curvilinear with respect to 

the second frame. Hence, lt is meaningless to assert that 

an object is in a state of rectiJ.inear translation, tout 

court. One must specify the frame relative to wRich the 
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motlon ls referred. This would be taken as an instance 

of the relatlv1ty of motlon. Sim1lar examples abound 

anent relativity of position, velocity, weight, etc. Thus, 

ln summary, the phllosophico-popular conception of a 

princlple of relat1vity is that it asserts that some 

speclfled concept ls one whose 'meaning' may be given only 

relat1ve to a frame of reference. In embarrassingly many 

cases, this polnt of vlew is speciously extended to a 

form of subjective idealism (Eddingtonianism) in which 

'frame of reference' is replaced by 'observer'. Then it 

is declared that the physical world which we perceive 

does not exist objectively but only in the min~ of the 

beholder, or that there are as many worlds as there are 

observers. However, it is not our purpose to criticize 

thls mlsgulded brand of idealism but merely to contrast 

the conceptlon of relatlvlty princlples on which it is 

puportedly based wlth that connotation of relatlvlty 

prlnciples whlch 1s normally accepted by the physiclst. 

Whereas the amateur philosopher assoclates 

'relatlvlty' wlth the changes that propertles of a 

physlcal system undergo when referred to different frames 

of reference, the physlcist, interestingly, stresses 

the very opposite, namely that a pattern of phenomena 

(not necessarlly the phenomena themselves) ls duplicated 

ln dlfferent frames of reference. The larger the class 

of phenomena whose laws are unchanged when referred to 
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d1fferent frames, the broader the correspond1ng princ1ple 

of relativ1ty. Thus, the Principle of Special Relativity 

of Einstein is broader than the Principle of Classical 

Relativ1ty of Newton, since it encompasses both mechanical 

and eleotrodynam1cal laws. Similarly, the wider the class 

of frames to wh1ch a princ1ple of relativity refers, the 

deeper the principle is taken to be. Thus, the Principle 

of General Relativ1ty 1s regarded as having deeper 

significance than elther of the restricted principles 

s1nce it perta1ns to all frames of reference as distinct 

from the very restricted class of inertial frames. In fine, 

to the physlcist, a princlple of relativity ls the 

expression of a common objective reallty, independent of 

its context, to a greater or lesser degree, and certainly 

independent of any minds that happen to be in the vicinity. 

Apart from the dlscrepancy which exists between 

the common philosophical conception of the princlples of 

relativity and that of the physicists, a more significant 

confusion exists in physics itself between a principle 

of relativity and a principle of covariance. A covariance 

principle asserts that the form of an equation remains 

the same under a specified group of transformations. A 

relativlty principle asserts that the content of a 

physical law is unchsnged with respect to a specifie class 

of ref erence frames. Ivhat is the relation between the 

two? Too often, it ls made to appear that if they are not 
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identical, then the covariance principle entaiis the 

corresponding relativity principle. But this cannot be 

the case since, as we have already remarked, covariance 

is a formal condition, while a relativity principle has 

factual content. 

The justification for the acceptance of the 

aforementioned entailment 1s that if a law L is covariant 

under a group of transformations G, it must retain its 

form under the subgroup of G corresponding to possible 

frame transformations. But while L, as stated, may have 

the covariance property Gand, therefore, suggest the 

existence of a corresponding relativity principle, it may 

actually turn out that the elements which compose the 

formal statement of L have been endOloved wi th the incorrect 

geometrical properties. Thus, a quantity which has been 

treated as a scalar in pre-relativist1c physics may 

turn out to be a component of a four-vector in relativity 

physics. Such mistaken ascription of geometr1cal 

properties is certa1nly possible. Renee, we are not 

l1censed to claim that given a law with certain covariance 

properties, it must conform, a pr1ori, to a certain 

relativ1ty principle. The latter 1s physical and testable, 

while the former is formaI and, at most, a consistency 

requ1rement. A relativity pr1nciple could only be entailed 

by a covariance principle if, per 1mpossibile, the law 

of interest were absolutely 1ncorrigible. We shall now 
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attempt a general definition of a principle of relativity. 

However. we stress that we are now defining only the 

general concept. The formaI statements of the various 

particular principles of relativity will be substantially 

d1fferent from the following. 

If (i) Ll •••• ,Ln are the basic laws of a theory T. 

(ii) A set of permissible frame transformations is the 
realization of a group G. 

Then: T is G-relativistic if and only if the content of 
Ll, •• 7,Ln is unaltered by any transformation which 
is an element of G. 

By the 'content' of a law, we intend to signify 

the objective state of affairs which is conveyed by its 

statement. In the present context, that of basic laws, 

such states of affairs are global patterns. In the case 

of low level laws, they would be frame-dependent states 

of affa1rs, and in the case of the substitution instances 

of the latter, they would be particular facts. 

It should be noted that neither the concept 

of inertial frame nor that of covariance occurs in this 

definition of a pr1neiple of relativity. The concept of 

inertial frame is exeluded for the following reasons. 

Firstly, if the concept were understood in the commonly 

accepted sense, then the definition would be too restrictive, 

since G would be llmited to a group of linear transform­

ations, wh1eh pertain only to restricted principles of 

relativity. Secondly, if the concept were understood in 



the more general sense, which we advocated in the prevlous 

sec~ion, ln whlch llnearlty ls taken to be a factual _ 

rather than a mathematlcal aspect, then partlcularization 

to inertial frames would be redundant. On the other hand, 

1t would have been possible to include the concept of 

covar1ance 1n our definition. However, thls would have 

enta11ed a mach length1er and more cumbersome statement 

than 1s sultable for a definit1on, s1nce covariance, as 

we understand lt 1n th1s d1ssertat1on, tends to be tled 

to a part1cular mathemat1cal forma11sm; and as we have 

seen, the mathemat1cs 1s apt to be confused w1th the phySics. 
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LAWS AND METALAWS 
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As we noted in the introductory chapter, the 

t 
fundamental issue of this dissertation hinges o~ the 

distinction between laws and metalaws. Actually, the 
"-_ •• ~_. __ ..... .-...-AI 

distinction between object statements and metastatements 

has long been common coin in mathematical logic and 

philosophy. In the technical vocabulary of logic, the 

distinction between metastatement and object statement is 

a relatlve one. We express a statement S in a language 

L. When we wish to make a statement about S or about L 

as a whole, we must resort to a second language Lm whlch 

ls the metalanguage with respect to which L is the object 

language. But, in turn, a statement about Lm would belong 

to a different metalanguage, with respect to which Lm 

would be the object language. In what follows, we depart 

somewhat from this usage in treating the two levels of 

discourse as absolute. That is to say, the language of 

science which refers to the world of objective facts 

will be called the object language not only in the 

technical sense but also in respect of the function which 

lt performs. Thus, the metalanguage wll1 slgnify the 

language we employ to talk about the sclentiflc language, 

or that part of the latter in which Bunge's laws2 are 

expressed. 
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This distinction has been explo1ted by Bunge 

in 1ts application to the subject of laws and metalaws. 

In fact, Bunge d1st1ngu1shes several k1nds of metalaw 

statements, and 1t would be advisable to spend a little 

time in explor1ng some of these refinements, since an 

adequate explication of the nature and role of metalaws 

in science is the most crucial ph11os'opn1eal :'pro1sgo:menon 

to a sat1sfactory resolution of the problem before us. 

S1nce Bunge has been tilling v1rtually v1rgin soil, we 

shall begin w1th an exposition of h1s v1ews wh1ch adheres 

very closely to his own wr1t1ngs(1959, Ch. 4; 1961; 196), 

Ch. 12; 1967b, v. l, Ch. 6, Sec. 7). 

The class of metalaw statements 1s obviously 

of extremely w1de extension. It comprises any statement 

whose referent 1s a law or set of laws. Two of Bunge's 

examples serve to exh1b1t their divers1ty: "Maxwell's 

equations are invariant under space invers1on."(1961, p. 

519} and "Electr1c1ans employ Kirchhoff's laws."(Ib1d.) 

However, the subclass of metalaws wh1ch 1s of part1cular 

concern to ph1losophers and phys1c1sts cons1sts of 

lawl1ke metalaw statements, i.e. laws of sc1entific laws, 

for wh1ch Bunge has coined the expression metanomological 

statement. It 1s Bunge's contention that s1nce 

metanomological statements have as the1r referents laws 

rather than objective patterns of nature or, in h1s own 

1d1om, laws2 rather than laws 1 , they ~e not to be regar<!·èd 
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as statements with factual content in the obvious sense. 

They refer not to the world but to our modes of representin~ 

the world. 

Bunge distinguishes three principal kinds of 

metanomol6gical statements, which he calls factual, 

normative and methodological. Additionally, factual 

metanomolog1cal statements are grouped into two varieties 

according to whether their truth value is mathematically 

demonstrable - the anal y tic variety, or decidable, a 

posteriori, on the basis of the actual features of the 

laws of the theory to which they are applied - the synthetic 

variety. The following diagram schematizes Bunge's 

classification of metalaw statements. 

NETALAW STATEMENTS 
1 

\ t 
metanomological casual 

statement~ metalaws 
\ 1 \ 

factual normative methodological , 
analytic 

1 , 
synthetic 

While Bunge admits a class of 'factual' 

metanomological statements into his scheme, he cautions 

us not to be misled by such terminology. The facts to 

which such statements refer are not the physical facts to 

which scientific theories ultimately allude. For example, 

"One of the possible descriptions of the 
positron happens to be the time-and-charge 
mirror image of our usual description of 
the electron; this, far from pointing to 
a symmetry in nature, shows that our 
equations are ambivalent. And it cautions 
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us not to mistake properties of signs 
for properties of their referents. 
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"As can be seen, the mere awareness 
of the existence of metanomological 
statements constitutes an effective 
reminder that not every scientific statement 
refers to facts."(1961, p. 521) 

"Although we control our pictures of 
reality by means of experiment, the 
statements about statements occurring 
in those pictures are not themselves 
descriptive of fact; in particular, 
metanomological statements, whether 
factual or not, are definitely not 
descriptive."(Ibid., p. 523) 

Let us now consider the distinction between 

factual metanomological statements that are analytic and 

those that are synthetic. As an example of the analytic 

variety, Bunge cites the principle of CTP invariance. This, 

he argues, is nothing but a truth of mathematics. It is 

not by laboratory experiment but with the aid of paper 

and pencil that one determines that the equations of ./ 

field theories are invariant under combined charge, time l 

and space sign reversaI. It tells us nothing about the 

nature of the fundamental particles to which the theory 

refers. Hence, one would not subject the CTP theorem to 

experimental test but only the law statements to which it 

happens to apply. Thus, while the theorem is anal y tic , per 

~, it is justifiable to regard it as factual insofar as 

it stands or falls with the laws 2 which are its referents. 

The factual metanomological statements of the 
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synthetic variety may be similar in mathematical kind to 

those of the anal y tic variety. However, whereas one of 

the anal y tic variety refers to a definite theory or law2 , 

those of the synthetic variety are inductive generalizations 

from the properties of a more or less determinate body 

of laws to laws in general. Thus, the simple parity 

principle is similar in mathematical kind to the CTP 

theorem. However, its use in science was as a synthetic 

law (or metalaw), since it is expressible in the form, 

'AlI physlcal laws are invariant under space inversion.' 

Clearly, the hand of God would be of greater utility than 

that of paper and pencil in demonstrating the truth of 

the latter. At this point, we shall leave Bunge's analysis 

with a final quotation which expresses the heart of his 

distinction in a nutshell: he sums it up succinctly to 

the effect that, " ••• metanomologlcal statements, ••• while 

complying with aIl the requisites of lawfulness do not 

reproduce real patterns at the conceptual level but 

rather describe or prescribe basic traits of law formulas." 

(1967b, v. 1, p. 364. Our italics) 

We heartily agree with the last declaration. 

However, Bunge tends to blur its application in allowing 

that some metalaws may be stated linguistically as object 

laws and conversely. Significantly for our purposes, one 

of the examples wh1ch he offers 1s that of the Principle 

of Classical Helativity. In the form of an object statement 
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it is, 'All 1nert1al systems are equ1valent.' In the form 

of a metastatement it is, 'Newton's laws of mot1on hold 

in all lnertial systems.' By the same token, he admits 

that a postulate of a theory may be dropped from the 

theory proper 1f, after appropriate rephras1ng, it is 

1ntroduced into the correspond1ng metatheory. 

It 1s at this point that we must part company 

with Bunge. It is not that we disagree w1th his division 

of scientific statements into the two fundamental varieties -

object statement and metastatement. It is rather that we 

contend that the distinction needs to be sufficiently 

sharpened to preclude the possibility of linguistic 

games which permit the expression of equ1pollent 

propositions in e1ther metastatement or object statement 

form, ad libitum. As Bunge would doubtless agree, the 

referents of object statements are utterly distinct from 

those of metastatements. The possible referents of object 

laws are all of the knowable properties of the objective 

patterns in physical reality, whereas the referents of 

metalaws are all of the knowable propert1es of laws. The 

latter would include their physical shape, the language 

in which they are expressed and, more significantly, the 

status which they occupy in a theory, e.g. postulate or 

derived theorem, and their mathematical properties, e.g. 

derivable from a variational principle, invariant under 

a certain group of transformations, etc. The point we wish 
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to stress is that, speaking metaphorically, the world to 

which object statements refer is utterly distinct froID 

the t'lorld to which metastatements refer; wi th the trivial 

exception that aIl statements,as physical entities, must 

obey the laws of physics. 

The apparent equipollence of object statement 

and metastatement occurs in certain contexts where the 

meaning of the object statement happens to be weIl 

understood. The prototypical metastatement is of the 

form, "'S' is true," where S is any object statement. 

However, in a given context an individual will either 

understand or fail to understand S. Clearly, if the former, 

then the metastatement conveys much more than if the 

latter be the case, but rather by association than by 

what is actually asserted in the metastatement. Consider 

the following metastatement: n'The electromagnetic field 

is representable by an antisymmetric tensor of the second 

rank' is true." This is admittedly not a particularly 

rewarding example, per ~, but serves admirably to 

illustrate our point. The metastatement is composed of 

everythin~ between the double quotes. It asserts that the 

statement enclosed by single Quotes is true, but nothin~ - -- ,;...~-.;----~ 

more. In other words, it is a very simple metastatement, 

which everyone should be capable of understanding. 

However, the statement enclosed by single quotes, the 

object statement, is fairly sophisticated. Only someone 
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with a certain background of mathematical physics could 

be expected to understand it. 

In a.ctuel fact, of course, the partieular 

example of a oetastatement which we chose would seldom 

oceur. The object statement which is its referent, on 

the other hand, might very weIl be asserted during a 

lecture on electromagnetic the ory • This example vias 

deliberately chosen, ho~ever, to convey the point that 

the layman could understand the meanin~ of the metastatement, 

namely that the object statement has the property of 

being faithful to reality, just as weIl as the physicist. 

On the other hand, it is quite foreign to our intention 

to su~gest that aIl metastatements are trivial. In a more 

serious vein, the metastatement that Ne'toJ'ton's laws are 

Galilei covariant is definitely not trivial, sinee it 

conveys the information that there is a well-defined 

non-denumerably infinite class of spatial coordinates 

with respect to which the equations of motion May be 

formulated in a covariant manner. Notice that this ls not! 
\ 

a statement about physical reality but about the \ 
i 

technical language which we employ to describe it. It is \ 
! 

not equipollent to the Principle of Classical Relativity, 

since, among other thlngs, the latter requires the 

existence of at least two frames of reference to be 

testable, whereas the metastatement is true independently 

of the existence of reference frames or anything else 



which is outside of the realm of mathematics. 

Since the semantical status of the object 

language is so different from that of i ts metalaruz;uaR;e, 

it would probably be of sorne technical value to employ 

entirely different symbols to distin~uish laws from 

metalaws. An examination of many of the treatises of 

theoretical physics would surely reveal numerous examples 

of the constant confounding of the two levels of discourse. 

For this reason, the student of physics is sometimes apt 

to be confused, not feeling certain at a particular point 

in the course of a theoretical demonstration whether he 

is doing physics or mathematics. However, it will suffice, 

for our purposes, to keep the distinction constantly in 

mind, and to resort to the familiar device of quotation 

marks whenever it appears necessary. 

\-Je should perhaps add a few elementary remarks. 

When a law statement is enclosed by single quotes, 'L', 

the complete symbol including the quotation marks belon~s 

to the metalanguage. It is not to be interpreted as a 

metalaw but as the name of a law of the object lanR;uage. 

Secondly, a metalaw must contain the name of at least one 

law or class of laws, e.g. 'Newton's first law', 'the 

laws of physics', etc. Any statement which contains the 

name of a law or class of laws is a metalaw statement. 

Consequently, no statement may belong to both the object 

language and the metalanguage. It would be easy to prove, 
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although we omit to do sa, that no object statement rnay 

be derived in the metalanguage. However, it 1s indeed 

possible to derive logical truths at each level of 

discourse wh1ch are isomorphic. 

We have seen that it is always possible to 

frame an object statement S in the metala~guage, the 

classic example bein~ "'S' is true." We have also seen, 

however, that such a stratagem is specious, since it is 

context dependent. In particular, it depends on the 

knowledge of the individual to whom it is addressed. The 

technical language of science, however, must be context 

free. The meaning of a sc1entific statement, at any level 

of discourse, should have nothing to do with the politics, 

psychological constitution, or even the scientific 

training of the person to whom it is addressed. This is 

r 
not a fact but the stipulation of an ideal for which th~ 

framers of scientific theories should strive. 

On the basis of the foregoing considerations, 

we reject Bunge's claim, which on occasion he seems, 

himself, to reject, that an object statement may be 

equipollent to a metastatement, at least so far as such 

statements occur in scientific discourse. How, then, are 

we to handle the apparent instances which Bunge mentions? 

Since the primary function of scientific theory is the 

description of reality, we suggest that on methodological 

grounds alone it would be desirable to formulate a given 



law in the object language whenever possible. However, 

such a methodological rule is not, in fact, necessary 

if we are correct in our claim that the purported cases 

of equipollence are really specious. 'rherefore, we 1ns1st 

that 1f a statement may be formulated in the object 

language of science, then it 1s an object statement of 

science, tout court. It will still be useful, however, 

when considering the doubtful cases to investigate 

whether the law of interest is required as a postulate or 

is derivable as a theorem. Furthermore, it is important 

to consider whether it 1s deductively fertile, leadin~ 

to further theorems or predictions of particular facts, 

or whether it may be dispensed w1th entirely. 

So far, to make a point, we have stressed the 

gulf between laws and metalaws. However, the reader should 

not take this as an indication of the s11ghtest disda1n 

on the part of the wri ter for metalaws-. On the contrary, 

they serve an extremely useful role in science, both 

heuristically and cognitively. The principle of covariance 

is possibly the outstanding example of the use to which 

metanomological statements may be put in the construction 

of physical theories. The role of metatheoretical analysis 

will be revealed to be of particular value in the field 

of General Relativity, which, despite its contentious 

status, appears to have the most richly developed 

rnetatheory of all physical science. ln this case, we shall 
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find the metatheory to be of the utmost heuristic value 

insofar as it yields theorems that are almost the 

analogues, formally speaking, of theorems or postulates 

of the object theory. Furthermore, the philosopher of 

physics, who takes physics, itself, as the object of 

study, is bound to be occupied with and learn much frorn 

the analysis of the metatheoretical structure of theories. 

In conclusion, we cannot resist the temptation 

to express the utterly extraneous wish that the 

practitioners of the various social sciences take heed of 

Bunge's distinction, which would, we strongly suspect, 

help them to find out what they are actually doing when 

they pretend to construct theories of social behaviour. 
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CHAPTER IV 

THE PRINCIPLE OF CLASSICAL RELATIVITY 

The Pr1nciple of Classical Relat1v1ty 1s 

applicable to several mechan1cal theories such as statics, 

rigid body dynamics, continuum mechanics, etc. However, 

it will suffice for our limited purposes to use only the 

elementary theory of point mechanics by way of illustration. 

Furthermore, we shall not attempt a rigorous axiomatization 

of this theory which, again, is not necessary for our 

limited objectives. However, the reader is advised to 

consult Bunge(1967a) for such an axiomatization. The 

reader should keep in mind that our purpose is neither 

to provide a compendium of physical theories nor, still 

less, to provide an axiomatization of the basic theories 

of physics, but merely to discuss one crucial problem 

which is connected with the foundations of aIl relativistic 

theories, in the broadest sense of the term relativity. 

From the standpoint of the worker in the axiomatic 

foundations of physical theories, we hope, this work of 

ours should be a useful prolegomenon. 

We propose to begin with a straightforward 

and elementary discussion of the covariance properties of 

the physical theory of interest and then to deal with the 

Principle of Classical Relativity. We shall then proceed 

to take up the elementary theory of point mechanics once 
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more but for the purpose of reaching one non-elementary 

result, namely of showing that the usual geometrical 

background may be dispensed with in favour of the less 

restrictive presuppositions of affine geometry. But let 

us now begin at kindergarten which, in this case, is 

simply to state Newton's three laws of motion for a 

system of point mechanics. 

l In the absence of external forces, the equations of 
motion of a particle are: 

.. .. .. 
mX = 0, mY = 0, mZ = 0, 

··i 
or more succinctly, mX = ° (i = 1,2,3) (4.1) 

II The motion of the ith. particle due to external and 
internaI forces is given by: 

..., (e) ··i ~ 
~Fji + Fi = mX = ma (4.2) 
J 

III The internaI force between the ith. and jth. particle 
is such that: 

(4.3) 

These three postulates were regarded by Newton 

as the axiomatic basis of the object theory of elementary 

point mechanics. However, as has so often been pointed 

out, they lack physical content as they stand, quite 

apart from the fact that the actual differential 

equations of motion of a system of point mechanlcs could 

not be set up and solved wlthout an expllclt formulation 

i . i ·'1 of the force functions, viz. F(X , X , t, ••• ) = mX • We 

refer, of course, to the lack of a frame of reference 

wlth respect to whlch these Iaws are supposed to hold. 
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Accordingly, we add the additional axiom that there 

exists a frame of reference K su ch that l, II, III hold 

i 
with respect to it. It should be noted that the X refer 

to the physical coordinates of the point particles, which 

automatically puts the above axioms in the object language. 

We now turn immediately to the covariance 

properties of the fundamental laws: 1, II, III. The 

elementary treatments of Newtonian IVIechanics generally 

limit the discussion of the latter's covariance properties 

to the special, homogeneous Galilean group of 

transformations. That is to say, given a system S of 

Cartesian coordinates xi and a time scale for t with 

respect to whicn Newton's laws have the standard form, 

they will retain that form when expressed in terms of a 

second system S with coordinate variables xi, so chosen 

that the origin of S has the coordinate values xi = ~i = 0 

at t = to = to' and are undergoing a change given by 

~ -1 ch.' - ~ -2 di.z, j ('-3 "\-l' 
d X = - = V = const., d X = _. ()Ll(: = 0, d x =~. JxJ = o. 

al t ~"X.J ():XJ 

In words, at an arbitrary initial time, the ori~ins of 

-1 -the two systems coincide while the variable x of 3 is 

undergoing a constant and continuous change of value with 

respect to xl, and the variables xi have fixed values 

relative to x 2 and x 3 . The values of the ii are given 

i 
in terms of the x by the set of transformations: 
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1 -1 1 ~ 

x --~ x = x - vt 

x2~ -2 x = x 2 

x 3 ~ x3= x3 
(4.4) 

t ~ t = t 

It is obvious that the mappings (4.4) form a group; the 

special, homogeneous Galilean group, which we shall 

In the more general case, however, each of 

-i the x will be undergoing a change of value with respect 

to all of the xi. Nevertheless, any such relationship 

between two coordinate systems which preserves the form 

of Newton's laws may be made equivalent to the special 

Galilean relationship by a suitable transformation g ~ § 

in the form of a rotation combined with a change of origine 

We calI the latter transformation the inhomogeneous 

rotation group in three dimensions and use the label Ri3 : 

That Ri] is a group is as obvious as the case of Gs . It 

is easily shown that the direct product Ri3 X Gs is also 

a group of transformations. 

Let us now apply these considerations to 

Newton's laws of motion. To signify that we are in the 

realm of metatheory, we shall employ the two notational 

devices of enclosing the statement of laws in Single Quotes 

and the more elegant one of employing lower case letters 

for coordinate variables as distinct from upper case 

letters for the physical coordinates of point particles. 
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We be~in by noting that since the special 

Galilean transformation amounts to the addition or 

subtraction of a factor which is the product of a constant 

first derivative and the first power of the independent 

variable, any second or higher order derivatives will be 

unaffected by a transformation which is an element of Gs . 

The simplest general expressions which are covariant with 

il. i 
respect to Gs are, therefore, k ~= 0, where k is any 

.,.ltt. 

constant. Thus, a necessary condition for the covariance 

of 'Newton l' is that mass be a scalar quantity. 

Although the content of the preceding para~raph 

is almost childishly simple, it serves to convey the 

following useful philosophical message. The metatheoretical 

analysis of the Galilean group of transformations was 

devoid of physical content. It dealt only with the 

mathematical relationships holding between the coordinate 

variables of an infinite set of Cartesian coordinate 

systems under the condition of the covariance of a class 

of lawlike formulae. Nevertheless, these considerations 

gave rise to a result which, while not qualifying as a 

'fact of nature', had definite implications concernin~ 

the formulation of an object law, namely that if 'Newton l' 

is correct then the rnass of a particle must be B. scalar 

quanti ty. 'L'hus, we are obI j p;ed to add the further axiom 

to the effect that mass 1s a constant function from po1nt 

particles into the real l j ne. In other words, thl s frap;mr-mt 
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of metatheory decreed that whatever form our physical laws 

happen to take, the quantities which we employ to 

represent them must be ~ell-behaved' geometrical objects; 

and it is the rnetatheory which yields the appropriate 

rules of behaviour. In this sense, it may be regarded as 

a type of syntax, which, like the syntax of ordinary 

English, at Ieast until recently, cannot single out true 

sentences but can certainly reject non-sentences. However, 

as we proceed, we shall find that such an analo~y is not 

the strongest possible one, sinee it tends to unnerplay 

the remarkable heuristie power of metatheoretical a.nalysis. 

'rurn ing nON" to Newton' s second I aw, l et us 

tentatively combine the internaI and external forces 

acting on the· ith. particle and rewrite it i.n the simple 

form: 

~ 1". = ~ m xi (IL 5) . J . j 
J J. 

We have already determined that m is a scalar and that 

··i !!1 ··1 x ~ x = x under Gs . Consequently, the magnitude of F 

must be preserved under Gs in order that the equali t,Y 

expressed by 'Newton II' be preserved. Sut since F cannot 

be a scaIar, the only object at our disposaI is the 

three-vector. We conclude that a necessary condition for 

'Newton II' ls that force be represented by the type of 

geometrical object that we have called a vector. Since we 

have restricted the treatment to Carteslan coordinate 

systems, the distinction between contravariant and 
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covariant vectors is superfluous. 

To determine whether 'Newton II' is covariant 

under the general group of Galilean transformations Ri3 ~ Gs ' 

we must now 1nvestigate the ~roup Ri3 or s1mply 8
3

, the 

group of homogeneous proper rotations. It 1s an elementary 

theorem of mathematics that the principal invariant of 

R3 is that of coordinate distance. Thus, under the group 

R3' we may write the equa11ty: 

(4.6) 

More generally, if c ik is the rotation matrix, then: 

(4. ?) 

It 1s assumed that the interparticle forces 

are a function of the straight line distance between the 

point particles. Consequently, they will not be affected 

in magnitude by a coordinate rotation. Furthermore, since 

the c ik may be interpreted as the direction cosines 

between the coordinate axes, and the cosine is an ev en 

function, we are assured of the covariance of 'Newton III' 

under the group of spatial rotations R3 and, 1ntu1tively 

without proof, under Ri3' Hence, 'Newton III' is covariant 

under the general Galilean group of transformations. 

So far, our main achievement has been to d1scuss 

informally the covariance properties of Newton's equations 

of motion without any reference to the Principle of 

Classical Relativity. This has served to illustrate Bun~e's 

point that the determination of the covariance properties 



of a given theory is, indeed, a paper and pencil 

operation. But it has served the additional purpose of 

showing that the concepts of relativity and covariance 

are not synonymous but, in fact, belong to different 

levels of scientific discourse. 

Let us now turn to a consideration of the 

Principle of Class1cal Relativity. At the risk of seemin~ 

otiose, we wish, as a preliminary, to impress on the 

reader the distinction, which we have already laid bare 

in Chapter II, between coordinate transformations and 

frame transformations. Further, in elucidating the concept 

of relativity, we alluded to the phys1ca~ content of law 

statements as distinct from their mere formaI appearance. 

A peru~al of the literature of physics has convinced us 

that the distinction is ambiguous and fails to be grasped 

by many physicists. We may bring out this distinction 

more forcibly by remarking that it 1s by no means 

inconceivable that the physical content of a law could 

only be preserved under a given frame transformation by 

an alteration of its form ~'lhile, conversely, its form 

could only be preserved by an alteration of its content. 

Whether this will actually occur will depend, in most 

cases, on the geometrical objects which are at our disposal 

for the formulation of such laws. We shall support this 

crucial point with a straightforward example from 

elementary point mechanics with its standard mathemat1cal 
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apparatus. 

We cons1der the motion of a system of point 

particles with respect to an arbitrary frame of reference 

with origin O. The total angular momentum about ° is 

given by: 

(4.8) 

Now we signify the radius vector of the centre of mass 
-'!1 ~ 

of the system of particles by il and let ri be the radius 

vector from the centre of mass to the ith. particle. :.Je 

then form the obvious frame transformation equations 

between the arbitrary system and the centre of mass system: 

ri = ~ + Fi '2 
-, -» ~ J 
vi = vi + v 

We then rewrite (4.8) as: 

L = ~ (fZ + R) ,,~~ [M .. (F.' ... R)) 
l c.. cit: ~ 

~ ~ (-;?'>~) ,( d "=' ~) 
or, L::. t r-\. -+ R )C t cit 1V\"\. r" -t "'"" V 

(4.9) 

(4.10) 

(4.11) 

Expanding and rearranging the terms of (4.11) we get: 

~ ~ -., - -" ...., --, 
L :: ~ ft. )C "'. \ii. + ?- 1W\i ft ~ v + R.)C ~ ~ ~i. fi. + R x ~ Mo\. V ( 4. 12 ) 

L L ~t i. \. 
~ 

But mir i is the radius vector of the centre of mass in 

the centre of mass frame of reference and must, therefore, 

vanish. Hence, (4.12) becomes: 
-==' -=> _ c;;9 ~ 

L :: ~ "J. Mv .... ~ r. x p" 
"L L L. 

(4.1) 

(4.1) is the expression for the angular momentum of the 

system of particles about the original origin 0, when 

referred to the centre of mass coordinates. The second 

term on the right hand side of (4.1) is ident1cal in 
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form to the right hand side of the original expression 

(4.8). The first term on the ri~ht hand side of (4.12) 

is the angular momentum of the centre of mass with respect 

to the origin of the original coordinate system. F1nally, 
-'J 

since R is arb1trary, we may set it equal to zero and 

take the centre of mass as our new origine Our new 

expression is then: 
......., -, -::"> 

r, =t i \ 'j.. Pi (4.14) 

Now we wish to draw the reader's attention to the 

comparison of both (4.13) and (4.14) with (4.8). (4.13) 

is a more complex expression than (4.8) which results frOID 

a new coordinatization of the numerically identical frame 

of reference. It has the same physical content as (4.8) 

but a different forme On the other hand, (4.14) has 

precisely the same form as (4.8) but a different physical 

content. Whereas (4.8) expresses the angular momentum of 

a system of point particles about an arbitrary point, 

(4.14) expresses the angular momentum of the sarne system 

of point particles about a particular point, namely the 

centre of mass of the system of particles. By now, the 

point has been sufficiently laboured, and we turn directly 

to the Principle of Classical Relat1vity. 

In studying our formulation of the Principle of 

Classical Relativity, the reader should first refer to 

the schema of Chapter II, Sec. 7. Accordingly, we 

formulate the principle as follows: 
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~Ln1 = fIni, In2' In3~ is the set ofaxioms of Newtonian 
Point lYJechanics. 

lKl is the set of possible frames of reference. 

~Tl is the set of possible frame transformations modelled 
by elements of the transformation group Gs ' 

For any ln ~ fLn! and any t ~ ~Tl, there exist at least 

two distinct ki,kj ~ tK~, such that: ln w.r.t. k i é l.K! 

~ t(ln) =s. Ïn w.r.t. kj é tK1. 
When we interpret tK~ as the set of possible 

frames of reference, we intend to imply only technical 

feasibllity. Thus, it is feasible to use a laboratory or 

a galaxy as a frame of reference but not a leaf falling 

from a tree. On the other hand, when we interpret tT1 as 

IIthe set of possible frame transformations •.• II , we rule 

out aIl those elements of the Galilean group whlch 

correspond to mere coordinate transformations. 

l''lost of the standard formulations of the 

Principle of Classical Relativity are high level theorems 

which follow from our own formulation. For example, it 

is sometimes stated in the form of a so-called 'principle 

of impotence', viz. 'It is impossible to detect an 
.> 

a~solute velocity by mechanical means.' This is true but /~ 

not especially enlightening, particularly for the mathem-
-------,-----_._----

atician. Possibly the worst version of aIl is, 'AlI inertial 
""" 
frames are equivalent.' The latter is not only vague but 

also viciously circular. 

'rhe reader has doubtlessly already noted that 

'. ,-: ~ .~' ... l . . : ... : 

. " ......... -



our formulation omits any explicit reference to the set 

iI~ of inertial frames. In fact, the concept is implicit 

in the above formulation, since the set of inertial frames 

lI~ c tK~ is precisely the subset of frames of reference 

for which the Classical Principle holds. The advantage 

of our avoiding explicit reference to the set of inertial 

frames is that it precludes the possibility of misjudging 

the nature of the concept. Furthermore, it is an 

experimental fact that every ij é ilS differs from every 

distinct ik ~ lI~ by a constant velocity. However, it 

would be possible, albeit redundant, to replace the kj of 

our principle by ij é lI~, if the reader should experience 

any discomfort in contemplating a formulation of a 

restricted principle of relativity which contains no 

explicit reference to an inertial frame. Our own particular 

stratagem does, however, have the virtue of achieving the 

maximum of logical generality. 

An important point vis à vis the Classical 

Principle, whose significance will emerge in later 

chapters, is the following. The Galilei covariant theories 

are, in general, those which are broadly called mechanical. 

Crudely ~peaking, they pertain to the kinematics and 

dynamics of bits of matter in its various forms. Nowa 

reference frame is preeminently a chunk of matter and, 

therefore, subject to the laws which descr1be the behavlour 

of such chunks. Consequently, the kinematical relat10nshjps 
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between frames of reference and, in particular, inertial 

frames must be Galilei covariant. We may contrast this 

situation with that of the theory of electrodynamics. On 

the one hand, we are interested in the transformation 

properties of the field equations when referred to 

different frames of reference. But changing fields cannot 

serve as reference frames. Thus, there is a fundamental 

diversity between the principal subject matter of the 

theory and the frames of reference such as radar stations 

which are necessary to describe and to test its laws. The 

absence of such diversity in the case of elementary 

mechanics, including 'action at a distance' gravitational 

·theory, is an obvious ground for the confusion which 

has existed between the covariance properties of the formaI 

laws and the appropriate relativity principle. 

We have frequently alluded to the formaI 

character of covariance principles in contrast to the 

factuality of relativity principles. However, apart from 

making the rather obvious point that frames of reference 

belong to the physical world, we have said little in 

justification of the second part of our thesis which will, 

however, gradually emerge in the course of this dissertation. 

Nevertheless, a simple example should serve temporarily 

to overcome this ommision. On the basis of the argument 

of the preceding par~graph, let us imagine two frames of 

reference which are in uniform parallel motion with respect 
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to each other. At an arbitrary initial time t o ' a 

molecule of one frame located on the X-axis coincides 

with a molecule located on the X-axis of the second frame. 

On the basis of the first of the equations (4.4), assuming 

a molecule to be a point particle, the kinematical 

relationship between the physical 'coordinates of the two 

molecules is given by: 
-1 1 -'> 
X = X - vt 

From (4.15), by differentiation, we obtain: 
cJj.1 _ J~I _ V - --cl t cl t: 

(4.15) 

(4.16) 

which is the well-known Galilean law of the composition 

of velocities. (4.16) is an immediate consequence of the 

Principle of Classical Relativity and is, moreover, factual. 

It is tempting to regard (4.16) as a law of arithmetic 

but this, again, we suspect is due to the special character 

of Newtonian Mechanics. Should the reader doubt the 

physical content of the law of the composition of velocities, 

let him consider the case of a bull et which leaves a rifle 
- --» -~ with a muzzle velocity V and travels with a velocity V + W 

.-
with respect to the earth, where W is the velocity of the 

rifle with respect to the earth. The latter certainly 

satisfies a sufficient condition of factuality, viz. it 

is both logically consistent and false, i.e. an 

approximation of the purportedly true law of velocity 

composition of Special Relativity physics. In fine, it 

is a claim about the physical union of two velocities, 
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which is quite different from a formaI proposition about 

the addition of two numbers(Cf. Bunge, 1967a, p. 110f.). 

In accordance with the position which we upheld in 

Chapter III, since the Principle of Classical Relativity 

entails an object law of physics, it must belong to the 

object theory. l~lany other examples abound of the factual 

consequences of Classical Relativity. We merely selected 

the simplest and most direct for the sake of brevity. 

('l'he philosophical reader is advised to gloss 

over the following part of this chapter and to return 

to it after he has read Chapter VIII.) In the preceding 

discussion of Newtonian Nechanics, we took for granted 

the usual geometrical background of that theory as 

presented in the various classical treatises, namely that 

the Euclidean metric is globally applicable to physical 

space and that physical time has the metric of a Euclidean 

straight line. For both cognitive and pedagogical 

reasons, it is instructive to develop the theory on the 

basis of the less restricted background of affine geometry. 

Among other things, this will serve to bring into 

sharper relief the distinction between the formalism and 

the physical content of a theory. However, since this is 

primarily a philosophical dissertation, it will suffice 

to treat a tiny fragment of Newtonian Nechanics, namely 

Newton's first law of motion for a point particle. The 

mathematical justification for the following development 
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is to be found in SChr6dinger(1950, Ch. 5, 6 & 7, passim). 

Our primitive background will be the usuel 

simply-connected, differentiable space-time manifold, V4. 

We shall endeavour to show how such a manifold may be 

coordinatized independently of the standard Euclidean 

metric. We first consider a non-denumerably infinite family 

of non-intersecting hypersQrfaces of V4 which are 

characterized by a single parameter t = t(x~). (~= 0,1,2,3) 

Intuitively, for any t = const. hypersurface, we have 

a subspace in which every point is connected to every other 

point by the relationship of simultaneity. Thus, the 

parameter t corresponds to the absolute time of Newton. 

VIe nON introduce a three-parameter congruence of curves 

with the single restriction that each curve of the congruence 

will intersect a given hypersurface of simultaneity at 

one and only one point. It follows that no two points on 

a given curve may be simultaneous. Thus, t may serve as 

a path parameter for the curves of the congruence. 

Intuitively, each curve represents a spatial point which 

endures through time. The entire congruence is the 

counterpart of Newton's absolute space. Any spatial point 

will be given by the equation: 

si = si(xl') (4.17) 

Ne may now coordinatize the manifold by choosing coordinates 
o i i such that t = x and s = x • Thus, we may write: 

(4.18) 
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We now construct a field of normals to"the hypersurfaces 

given by: 

(4.19) 

and a field of tangents to the curves of the congruence 

given by: 

U,. ~ (4.20) 

It is obvious that at any point of the manifold, the 

relationship between the normal field and the tangent 

field will be given by: 

N,.U'" = 1 (1-1-.21 ) 

In particular, with the appropriate coordinstization, 

there would always be possible a mapping such that at any 

point: 

Nr = (1,0,0,0) 

Ut' = (1,0,0,0) 
(4.22) 

We shall now, merely as an aid to intuition, 

make a brief mathematical detour by introducing a metric 

form as a temporary·scaffolding. We define a temporal 

interval between the neighbouring points x~ and x~ + dx~ 

by: 

(4.23) 

It may be shown by standard mathematical means thst the 

field of normals N pl must be the gradient of a scalar 

field. Consequently, the above interval is integrable, and 

a flnite tlme 1nterval may be glven by the dlfference 

between the two numbers characterizing the values of the 
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parameter t associated with two distinct hypersurfaces. 

In the same way, we introduce a spatial metric for two 

neighbouring curves of the congruence, si and si + ds i 

(or xi + dxi ). We then introduce the quadratlc form 

whlch is equivalent to a locally Euclidean metric: 

(4.24) 

This, again, can be shown to be integrable by standard 

mathematics. Given two neighbouring pOints of the manifold, 

we have: 

Now we introduce by definition: 

5 ~ ~ !. i. ~!)j 
t'v ::. .!~. ë.j - -_~ 

o~ ~:Y-" 

(4.25) 

(4.26) 

(4.25) and (4.26) enable us to write (4.24) in the form: 

(4.27) 

\o1i th the appropriate coordinatization, S,..II = diag( 0,1,1,1) , 

a result which we shall use in Chapter VIII. 

'l'1e now return to our main argument. In place 

of (4.27), which is a disguised Newtonian space-time metric, 

we are able to introduce its equivalent without reference 

to the familiar parameters t and si. We impose on the 

manifold a fIat, symmetric aff1.ni ty which is, in general, 

almost arbitrary, su ch that under the conditions in which 

Nf4 and Ut' would have components (1,0,0,0), the affinity 

vanishes identically. The reader should note that an 

affinity behaves like a tensor under linear or affine 

transformations. That is to say, its transformation law 
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is Iinear and homogeneous. On our affine manifold, the 

constancy of the U~ and the N~ is a covariant property. 

That is to say, their covariant derivatives vanish 

identically. On the bas1s of the choice of a four-

dimensional Cartesian coordinate system, we have at our 

disposaI the following geometrical objects: Nf4 = Uf4 = (1,0,0,0) 

and r ~v = o. We now proceed to reconstruct Newton' s first 

law. This will be followed by a further discussion of the 

Principle of Classical Relativity. 

The physical coordinates of a particle may be 

represented by means of the path parameter s, namely: 

xt' = ft- (s) (4.28) 

(4.28) are the equations for aIl of the trajector1es of 

a part1cle that are kinematically conceivable. However, 

1t is kinematically impossible for two points on the 

trajectory of a particle to be simultaneous, so that the 

path parameter could be time as measured by a standard 

clock. The veloc1ty of the particle would be given by dt~ 
J~ 

and would satisfy: 

Nt'- ~'f = \ 
~t" 

(4.29 ) 

In our sy~tem, s, or we may say t, 1s the 

path parameter of an affine geodesic on the manifold given 

by r~v= O. It should be noted that without recourse to 

metr1cal geometry 1t 1s possible to compare distances so 

long as they are on the same geodes1c curve. The aff1n1ty 

is only def1ned up to a linear transformat10n w1th 
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constant coefficients, so that one could not compare 

distances along two distinct geodesic curves. Tt should 

also be noted, for future reference, that the condition 

for the vanishing of the flat affinity is the vanishlng . 

of the Riemann-Christoffel tensor R~vf. Furthermore, it 

is shown in MOSt of the standard texts that the Riemann-

Christoffel tensor is deflned wholly in terms of aff~ne 

symbols. The metric term g~v is only required for the 

formation of the completely covariant form of the Riemann-

Christoffel tensor. We merely mention thls to preclude 

the reader's supposing that we have smuggled metrical 

geometry through the back door. This is a reasonable 

suspicion on the part of the reader who has been exposed 

to less rigorous treatments of manifold geometry or tensor 

analysis in which the affine basis is often disregarded 

and the Riemann-Christoffel tensor is defined in terms 

of the metric coefficients and their derivatives, i.e. the 

Christoffel symbols. 

We are now prepared· to write the equations of 

motion of a free particle in generally covariant forme 

The equations of motion of a pOint particle under the 

influence of no forces, corresponding to 'Newton r' are: 

S 1. f ft _ o\z~" r ft "'~, Ji6" = 0 Tt"" - lt "" + f <S" ~ t" ol r ( 4. 30 ) 

The MOSt significant property of an affinity is that 1t 

is al ways possible to find a permissible mapping in which 

the components of the aff1n1ty vanish identically. We May 
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single out the equivalence class of coordinate systems 

in which the affinity vanishes, and in terms of such 

coordinates rewrite (4.30) in the form: 
$2.-t"::: Jt-5"::. 0 
& t't. clt~ 

Integrating twice, we get: 

f'" = c~ t + k tt 

(4.31) 

(4.32) 

We may relate (4.32) to the equations of motion of a free 

particle in an inertial frame of reference by choosing 

a real clock with a time scale such that cO = 1 and 

o i k = O. Then the c are the familiar components of the 

velocity of the point particle. 

Once again, we note that even following the 

choice of an equivalence class of coordinate systems in 

which the affinity vanishes, wh1ch are quite properly 

described as geodesic systems, there does not result a 

set of coordinate systems wh1ch is coextensive w1th the 

set of inertial frames of reference. When we speak of a 

reference frame in the context of four-dimensional space-

time, we refer not only to a physical scaffolding of some 

sort but also to a standard clock. 

Conversely, we may choose coordinate systems in 

which the components of the affinity do not vanish 

identically. The particle trajectory would continue to 

be classifiable as free in accordance with (4.30), and 

certain of these coordinate systems would again serve as 

models of reference frames. However, one would now have 
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to take account of inertial forces. In fine, we come to 

the same conclusion that we reached in dealing with 

Newtonian Mechanics from a completely elementary 

standpoint. The inertial forces are characteristic of 

theories that are associated with restricted principles 

of relativity. However, we have learned a new feature 

of the metatheoretical background of Newtonian Mechanics, 

namely that the standard Euclidean metric has no intrinsic 

significance for Newtonian Mechanics since it may be 

replaced by the less restrictive affine geometry. This, 

in itself, is an example of a significant proposition of 

the metatheory of Newtonian Mechanics. We refrain from 

following this development any further since it would 

involve the use of advanced mathematical techniques which 

we prefer to introduce gradually. 

Insofar as the covariance group of a set of 

space-time equations is determined in part by the 

background geometry of the theory, it is clear that the 

covariance properties of a theory, per ~, have no physical 

content. The covariance group of (4.)0) is the most 

general real llnear group in four dimensions. However, 

while the Gall1ean group ls a subgroup of the four­

dimenslonal affine group, it would be a logical mlstake 

to modify the Princlple of Classical Relativity on account 

of the preceding considerations. We suggest, therefore, 
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that it would be useful to make a methodological 

distinction between the covariance group of a physical 

theory and the relativity group of the same theory. On 

this basis, instead of declaring Newtonian Mechanics to 

be Galilei covariant, which is an understatement, we 

would more aptly describe it as Galilei relativistic. 

The covariance group of elementary point 

mechanics is actually the direct product of three groups, 

namely the inhomogeneous, proper rotation group, the 

special Galilean group and the group of time translations: 

Ri3 X Gs XT. From the time of Newton until that of 

Einstein, Ri3 ~ T was regarded as expressing the universal 

symmetries of aIl physical theories. That is to say, space 

and tlme were regarded as absolutes. On the other hand, 

Gs was regarded as the expression of the particular 

properties of Newton's laws of motion. Since Ri3 ~ T was 

the covariance group of aIl theories, it did not play 

any role in the formulation of the Principle of Classical 

Relativity. In semi-popular expositions, the interpretation 

of Ri3 ~ T is to the effect that if an experiment be 

performed at a certain place and at a particular time with 

apparatus which has a specifie spatial orientation, then, 

ceteris paribus, the 'identical' experiment performed at 

a different place, a different time, and with a different 

spatial orientation would yield the identical result, i.e., 

from a physical standpoint, space 1s homogeneous and 
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isotropie and time is homogeneous. While the foregoing 

is an example of a pedagogical fiction, 1t serves to 

illustrate the outlook of the Newtonian era. On the other 

hand, the general Galilean group was obviously regarded 

as a specifie property of Newtonian i'lechan1cs. In fact, 

it is this group alone that is singled out in most textbooks 

as the covariance group of the theory; and the corresponding 

relativity principle is formulated in connection with 

the latter group alone. 1.J'hile the thinking is often 

confused, we are now in a position to offer sorne rational 

justification for the distinction. 

Ri3 ~ T, while a covariance group of Newtonian 

l'lechanics, is interpretable only in terms of al ternati ve 

coordinatizations of the physical system of interest. On 

the other hand, Gs is interpretable as the symmetry group 

of the equivalence class of inertial frames of reference. 

In our exposition of the metatheoretical background of 

Newtonian IVlechanics, we introduced the vector U". This, 

of course, is directly related to the velocity ~IC of the 

object theory. Experiment revealed that ~~ = V~ is not 

an observable property, i.e. it is not an absolute like 

spatial distance. Since U~ is not, in the foregoing sense, 

an absolute, it follows that there must be a relativity 

pr1nciple, namely that the velocity of a material object 

(any object under the purview of Classical Hechan1cs, which 

includes frames of reference) cannot be ascertained. 
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In conclusion, we may summarize our argument 

that the covariance group of Newtonian r-iechanics, in its 

elementary form is Ri3 X Gs ~ T. On the assumption of an 

affine as distinct from a metrlc manifold, the covariance 

group of Newtonian i'1echanics is the affine group in four 

dimensions. It is clear that both of these declaratlons 

pertain to the mathematical formalism of the theory. The 

Principle of Classical Relativity, to the effect that the 

inertial frames of Newtonian Mechanics are defined up to 

a Galilean transformation is an experi:nentally conflrmed 

hypothesis which could, we suspect, be shown to serve as 

part of an alternative axiomatic basis for Newtonian 

('/jechanics. 

In passing, it may be mentioned that a rather 

conclusive piece of intuitive support for the essentlal 

distinction between the covariance group and the relativity 

group of Newtonian I1echanics is that T, the group of time 

translations, is a subgroup of the covariance group • .But 

that is to say that the laws of Newtonlan Hechanics have 

a formaI structure which is invariant under time reversaI, 

slnce every element of a group must have an inverse. But 

it does not follow from this that it ls possible to find 

a frame of reference ln which the order of physical events 

1s reversed. Hence, T cannot be a subgroup of the 

relativity group of New-tonian Mechanics. 
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CHAPTER V 

SPECIAL RELATIVITY !<INEI1ATICS 

It is customary to develop introductory 

expositions of Special Relativity on the basis of the 

well-knovm kinematics of that theory. The shortcomings of 

this tradition are: (i) that it gives a mislead1ng flavour 

to the theory by depriving it of most of its physical 

content; (ii) that it gives a superficial appearance of 

arbitrariness to the theory in the eyes of the student; 

(iii) that it leads the amateur, who often reads only 

the introductory chapters of textbooks on physics, to 

suppose that Special Relativity is nothing but a theory 

of kinematics; (iv) that, in particular, it suggests to 

the philosopher that the Lorentz transformation 1s of 

purely kinematical significance, which has led many 

philosophers and, curiously, even eminent physicists 

such as Eddington, to suppose that it is a theory about 

the way in which we observe the world and, hence, 

subjectivistic. Experts in the foundations of physics, 

such as Bunge, argue, accordingly, that the theory shoùld 

be developed on the basis of the structure of electrodynamics, 

which, logically speaking, is its legitimate parent. 

However, keeping such shortcomings in mind, we shall 

follow the traditional procedure of beginning with the 

l<inematical part of the theory in virtue of its relative 
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simplicity, which enables us to clarify its logical 

structure and, in particular, to distinguish the object 

theory from the metatheory, which is a rather subtle 

problem in this context, while avoiding the additional 

mathematical and physical burdens of the rather complex 

theory of electrodynamics. Nevertheless, in deference 

to the demands of logical rigour, we shall refrain from 

making a formal statement of the Principle of Special 

Relativity until we come to the chapter of this 

dissertation which is devoted to electrodynamics. We 

should also add that what fol10WS does not pretend to 

be an exhaustive treatment of Special Relativity Kinematics. 

For example, the reader will find no reference to the 

relativistic Doppler effect, while the Lorentz-Fitzgerald 

contraction will simply be taken for granted. There are 

many excellent textbooks on the sUbject(e.g. M~ller, 1952), 

and the interested lay reader should consult one of these 

for further information or read the appropriate section 

of Bunge(1967a). 

The fundamental postulate of Special Relativity 

Kinematics is the law of the constancy of the velocity of 

light. There is an abundance of experimentàl evidence in 

support of the factual hypothesis which asserts that, in 

en inertial frame of reference, in vacuo, the ratio between 

the distance traversed by a light ray travelling along 

a given path and the total time elapsed is equal to a 
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universal constant c. However, we prefer to say that an 

inertial frame of Special Relativity is one in which c 

is a univers al constant. In other words, we treat the law 

of light propagation as the fundamentai law which is the 

basis for the selection of the equivalence class of 

inertial frames of that theory. For the time being, at 

least, we may define an inertial frame of Special Relativity 

physics as one in which the form of the law of light 

propagation contains no terms which depend essentially on 

the state of motion of the given frame. Our primary 

purpose in this chapter is to show that the principle of 

relativity which emerges from this physical hypothesis is, 

indeed, an object statement of the theory. In other words, 

in the sense of the preceding chapter, we shall argue 

that one is fUlly justified in speaking of Lorentz 

relativistic as distinct from Lorentz covariant theories. 

We also intend to shed some much needed light on the 

distinction between a so-called Galilean frame of reference 

and what we shall calI a Lorentz frame of reference. 

Were we to follow the procedure of the previous 

chapter, we would begin with the equations of a relativisttc 

theory and proceed to determine their covariance properties. 

However, since we have elected to follow a pedagogical 

route rather than a logical one, we shall begin by 

deriving the Lorentz transformation from a simple example. 

Our procedure is deliberately calculated to reveal the 
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assumptlons on whlch such a derlvatlon may be based. 

We conslder two inertial frames of reference, 

K and K, modelled by Cartesian coordinate systems,S and S, 

which are so oriented that their axes are parallel and 

their respective origins, 0 and 0, coincide at t = t = o. 

In other words, we shall begin with the situation which 

corresponds to the restricted, homogeneous transformation 

of Newtonian Mechanics. Incidentally, we shall now use 

the term restricted in a different sense from that in which 

it is usually employed in the theory of groups of 

transformations. In that theory, restricted is taken to 

mean the exclusion of improper rotations, i.e. with a 

determinant equal to -1. Such inversions, while interesting, 

play no significant role in any of the theories which we 

discuss in this dissertation. While the group of spatial 

inversions may be a covariance group of these theories, 

it is definitely not a relativity group of any of them 

since, apart from obvious grounds of intuition, it is 

non-continuous. Accordingly, we shall use the useful term 

restricted to apply to the case where the motion of one 

frame of reference with respect to a 'stationary' frame 

may be represented by a vector of which only one component 

differs from zero. Where aIl three components are 

generally non-vanishing, we shall employ the term general. 

From the principle of constancy of light 

propagation, it follows that the equation for a spherical 



wave front in K emitted from 0 has the form: 

x2 + y2 + z2 = c 2t 2 

-
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( 5.1) 

K is, ~ hypothesi, also an inertial frame. Accordingly, 

the form of the wave front equation must, with respect 

-to K, be: 

-2 -2 -2 2r2 
x + y + z = c v ( 5.2) 

We first assure ourselves that the mapping between Sand 

S is not given by the restricted, homogeneous Galilean 

transformation (4.4). Performing the mapping (4.4) on 

(5.1) yields: 

x2 _ 2xvt + v 2t 2 + y2 + z2 = c 2t 2 (5.) 

It is obvious that (5.) is inconsistent with (5.1). 

Consequently, we make our f1rst metatheoretical declarat1on, 

albeit negative, that 'the wave front equation' 1s not 

Galilei covariant. 

To determ1ne the appropr1ate transformation, we 

shall forsake mathemat1cal r1gour in favour of certain 

s1mplifying assumptions which happen, nevertheless, to be 

correct. Firstly, considerations of symmetry and relativity 

will require for the restricted case the mappings: 

y -"Y = Y ( 5. 4 ) 

z-J'z=z 

In the second place, considerations of relativity require 

that the uniformity of expansion of the wave front in 

one inertial frame must entail the uniformity of its 

expansion in every inertial frame. The alternative would 
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be to abandon the concept of inertial frame. This implies 

the valuable clue that the transformation be linear in 

x and t. This, in turn, entails that the dimensional 

homogeneity of the transformation equations can be 

preserved only if the relative acceleration between the 

two frames vanishes. Combining these considerations with 

(5.4), it follows that the required transformation must 

be of the form: 

-x ~ x = f ( x) - g ( vt ) 

(5.5) 
z ~ z = z 

t ~ t = jet) + h(x/v) 

where f,g,j,h are constant functions of their arguments. 

Performing the mappings (5°.5) on (5. 1) y1elds: 

2 2 2 2 f (x) - 2g(vt)f(x) + g (vt) + y + z 

= C2 j2(t) + 2c2 j(t)h(x/v) + c 2h 2 (X/V) 
(5.6) 

We have now simply to determine f,g,j,h such that (5.6) 

reduces identically to the form of (5.1). Immediate 

inspection suggests: 

f(x) = x; jet) = t; g(vt) = vt 

Substituting equations (5.7) into (5.6) yields: 

x 2 _ 2xvt + v 2 t 2 + y2 + z2 

= c
2

t
2 

+ 2c
2
th(X/V) + c

2
h

2
(x/v) 

If we now set h(x/v) = -vx/c2 , (5.8) reduces to: 

(5.8) 

x 2 (1 _ v 2/c 2 ) + y2 + z2 = c 2t 2 (1 _ v 2/c 2 ) (5.9) 

We now finel that x and t d1ffer from the1r required values 
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by a factor which 1s constant for any g1ven mapp1ng. 

Accord1ngly, we may d1vide by the constant factor 

(1 - v 2/c2)i to ach1eve the desired result. The mappings 

wh1ch transform un1forrn wave front equations 1nto uniform 

wave front equat10ns must, therefore~ave the form: 

x ~ x = (x - vt)/(l _ v 2/c2)i 

- (5.10) 
z ~ z = z 

t ~ t = (t _ vx/c2)/(l _ v 2/c2)i 

(5.10) constitute the restricted, homogeneous Lorentz 

transformation. 

We immediately note that the preced1ng 

derivation of the Lorentz transformation did not make 

use of the standard heuristic devices, namely that they 

reduce to the Galilean transformation when vic ~ 0 or, 

in partfcular, that an 1nert1al frame of Special Relativ1ty 

Kinematics have precisely the same s1gnificance as an 

inertial frame of Newtonian Mechan1cs. Indeed, it did 

emerge that the required transformation be linear, but 

th1s followed not from an analogy with Newtonian Mechanics 

but from the pr1nc1ple of relativ1ty coupled w1th the 

formaI structure of the wave front equation. 

30 far, as our conventional use of lower case 

letters indicated, we have been concerned w1th the 

establishment of a metatheorem, namely that 'the wave 

front equat10n' 1s Lorentz covariant. Indeed, we began 
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by referring to moving frames of reference, but had we 

regarded the situation from the four-dimensional or 

space-time standpoint, with t as the fourth coordinate, 

we could have conducted the discussion solely in terms 

of coordinate transformations. We now turn to the level 

i 
of the object theory where X ,t will refer to the physical 

coordinates of events. The results turn out to be 

rather interesting. 

Recently a book was published on Special 

Relativity which dealt in very large part with the twin 

paradox and the other so-called paradoxes of Special 

Relativity(Prokhovnik, 1967). The author did not appear 

to reach any definitive resolution of the problems which 

he discussed. In fact, this topic would require at least 

one doctoral dissertation to itself. In what follows, 

however, we shall deal with one aspect of these problems 

and, we hope, resolve it to the reader's satisfaction 

on the basis of our general theme regarding the 

distinction between coordinate and frame transformations 

or covariance and relativity principles. We refer to the 

spherical ~ front paradoxe But first, we must prepare 

the ground with some comments about the relativistic 

phenomenon of time dilatation. 

Firstly, we note that the restricted Lorentz 

transformations are the realization of a group, a subgroup 

of the complete Lorentz group, which entails that every 
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element has an inverse, which, in this case, is obtained 

simply by the interchange of barred and unbarred variables 

and the replacement of +v by -v in aIl of its occurrences. 

When we deal with the object the ory of Special Relativity 

Kinematics, the implication of the relationship between 

the transformations and their inverses carries an obvious 

but counterintuitive message. In fact, it is largely in 

virtue of its counterintuitive character that Special 

Relativity aroused the interest of certain philosophers 

from the time of its inception, and led to so many 

counterrational interpretations. 

In the realm of the object theory, the Lorentz 

transformation equations relate the physical coordinates 

of the wave front in one frame of reference to the 

physical coordinates of the same wave front in a second 

or 'moving' frame of reference, assuming both frames to 

be inertial. However, the latter is not quite so clear as 

many physicists who specialize in other areas are inclined 

to assume. In particular, there is a certain ambiguity 

in the expression 'same wave front'. 

We have already intimated that a significant 

part of the philosophical literature on Special Relativity 

has been based on misconceptions. Such philosophical 

misconceptions frequently aid and abet the scientific 

popularists, the modern day sophists, in endowing the 

theory with as great an air of paradox as possible in order 
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to make i t 'good reading'. l"1any of these paradoxes depend 

on the aforementioned nature of the relat10nship between 

a Lorentz mapping and 1ts inverse. 

\ole now turn, as prom1ssed,to a pre11m1nary 

discussion of time di.latation and the so-called clock 

paradox, which is, lncidentally, not to be confused with 

the twin paradox, the latter opening a veritable Pandora's 

30x of problems. \'/e are given two inertial frames, K and K, 

each having a clock, C and C. With respect to K, ë is 
-running SlON' in comparison wi th C. l,n th respect to Y, C 

is running slow in comparison with C. But that is to say 

that each clock is running slow with respect to the other, 

which is logically impossible. A facile philosophical 

tactic ls to point out that, ln fact, there ls no formaI 

contradlctlon s1nce each clalm pertains to a different 

frame of reference. So far so good. But then it 1s argued 

that this indicates that time dilatation is not 'real' 

but merely the outcome of a coordinate transformation. 

This is to trivialize the phenomenon by maklng it appear 

to be of no greater signlficance than, for example, a 

change of scale. It ls also to make nonsense of the 

abllndance of experlmental evidence concerning the duration 

of high speed particles. 

Let us nOl'l indulge in one of the 'thought-

experlments' of theoretlcal physlcs. Conslder an lnertial 

frame in the form of a rigid platform on whlch is mounted 
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a clock a~d a light source st one end and a mirror at 

the other. We assume the round trip constancy of the 

velocity of light. Let the distance between the light 

source and the mirror be L. A light signal is sent out 

and reflected back to its source. The clock will measure 

the time interval between the two events as: 

t2 - tl = b t = 2L/c (5.11) 

We calI this the proper time interval between the events. 

By this is meant, in this simple context, the time 

interval between two events at the same location. 

We now consider the 'same physical process' 

referred to a different reference frame which is moving -uniformly with velocity V in the transverse direction. 

The length of the time interval between the beginning and 

end of the round trip passage of the light ray is ~. 

The distance travelled by the light ray is 2[L2 + (V~/2)2]i. 
But, ~ hypothesi, the velocity of light is constant. Hence: 

- [ 2 - 2]i c~t = 2 L + (Vat/2) 

At =(2L/~1 - v2
/c

2 )-i = 6t(l _ v2
/c

2 )-t. (5.12) 

In words, the proper time interval between two events is 

less than any improper time interval between them. It may 

appear that this result is incompatible with the principle 

of relativity, since it distinguishes a unique frame of 

reference, namely that in which a time interval is a 

minimum. We shall shortly dispell this. 

Wh st we have just presented is the case of s 
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single physical process referred to two distinct frames 

of reference. We now consider a different state of affairs. 

A similar apparatus is attached to the second or 'moving' 

frame, and the experiment is repeated. It will now turn 

out that the time interval is less in the second frame 

than in the first. As the twentieth century sophists 

would say, clocks in the second frame run both slower and 

faster than clocks in the first frame. This does preserve 

the symmetry between the two frames as required by the 

principle of relativity but at the apparent cost of 

logical consistency. In fact, the difficulty is easily 

resolved. 

A proper frame is distinguished for a particular 

pair of events. In that frame, the time interval between 

such events will be a minimum. However, the principle of 

relativity is not violated, since no particular pair of 

events is uniquely determined or preferred. Secondly, 

there is no logical contradiction. A given clock which 

measures a proper time interval appears to 'run slow' 

with respect to another frame. But in the second frame a 

clock measures a proper time interval and appears to 

'run slow' with respect to the first frame. But different 

pairs of events are involved in the two cases. 

The confusion would doubtless be alleviated if 

it were kept in .mind that clocks do not measure the flow 

of a temporal substance but always and only the intervals 
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between events. In this sense, time is relational rather 

than absolute. Of course, the same could have been said 

vis à vis the universal time of Newtonian Mechanics. 

However, the fiction of absolute time could be consistently 

maintained therein simply because there is no quantitative 

difference between a proper and an improper time interval 

in Newtonian Mechanics. 

We are now in a position to resolve the paradox 

of the light spheres. What we have just related in regard 

to the clock paradox will be common coin to most 

physicists who have had even passing acquaintance with 

Special Relativity. We thank such readers for their 

forbearance. What we are about to show is possibly more 

original and, we hope, of greater interest to the scientif1c 

reader. Consider two distinct frames of reference whose 

origins, 0 and 5, coincide at the moment that a spherical 

light pulse is radiated from the point of coincidence. At 

any later time, in accordance with the principle of 

relativity, the light wave will be a uniformly expanding 

sphere centred at 0 but also a uniformly expanding sphere 

centred at ë ~ O. This, in brief, is the paradox of the 

uniformly expanding wave front. 

At the outset, let us remark that we deplore 

the attitude of those teachers who tell their students 

that this is simply an unanalyzable fact of nature, like 

gravitational attraction, which s1mply cannot be quest1oned. 



This is to lower science to the level of dogmatic 

theology. We shall make use of a greatly simplified 

argument, since the generalization is obvi'Jus. We consider 

the case in which not only do the or1gins of the two 

frames coincide at the time of emission of the light pulse 

but also in which the frames are so coordinatized that 

the motion of K 1s restricted to the +x-direction with 

respect to K. A necessary kinematical condition for a 

wave front to be expanding radially from a point 0 is that 

for every point on the wave front with the position 

vector 1(tl ), there i~ a corresponding point on the same 

wave front whose position vector is -~(tl). We shall restrict 

our analysis, however, to those points which lie on the 

x-axis. In what follows, we employ the term event to 

signify a point on a wave front at a fixed time. 

Accordingly, we may think of a wave front as an event 

surface. 

In the 'stationary' frame of reference K, a 

light pulse is emitted from the origin at t = to. At a 

later time t, an event El occurs with coordinates (X,t) 

and its simultaneous mate E2 with coordinates (-X,t). The 

phys1cal coordinates of El and E2 sat1sfy the equat10n, 
222 

x = ct. At t = t = t , the origin 0 of the 'moving' o 

frame coincides with O. Therefore, the same 11ght pulse 

must expand radially from 6 in the 'moving' frame. The 

event El 1s recorded in the moving frame, where it has the 



97 

coordinates (X,t). Since K is moving in the +x-direction, 
- -it is obvious that x < x, t < t. We may refer to the 

event in K as Ë1 , but it is clear that the barred 

coordinates are nothing but a different label for the same 

event. In the language of space-time relativity kinematics, 

-El and El are simply two representations of the numerically 

identical point on the world line of a light ray. The 

relationship is given by: 

-x ~ x = (x 
(5.13) 

t ....., t = (t 

Just as E1 (X,t) has the simultaneous mate E2 (-X,t), so 

to Ë1 (X,t) = E1 (X,t) there must correspond the simultaneous 

event Ë2 (-x,t). The physical coordinates of E2 are given 

in K by: 

-x ~ -X 
.. = (-X + Vt)/(l 

(5.14) 

It is obvious by inspection that the coordinates 

- -of El given by (5.13) and those of E2 given by (5.14) 
-2 2-2 

both satisfy the wave front equat1on, x = c t .. However, 

-whereas El and El were deliberately chosen to be the 

self-identical event, E2 and EZ are distinct events. The 

event Ë; which is identical to E2 in K has the coordinates 

(-X,t) given by: 

-x ~ -x = (-x - vt)/(l - v2/c2 )l 7 
- . 2 2 i 5 

t ~ t = (t + vx/ c ) / (1 - v / c ) 
(5.15) 

Comparing equations (5.15) w1th (5.14), we 
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-* conclude that E2 is both farther from the origin and 

later than Ë2 • (The reader will note that we have used 

inverse transformations whenever necessary to give all 

coordinate values in terms of K and S for purposes of 

comparison.) We are now able to resolve the paradox of 

the light spheres, not for its own intrinsic interest, but 

to deepen our understanding of the Lorentz transformation. 

The effect of the Lorentz transformation is to 'carry' 

light spheres into light spheres. In other words, the 

wave front is a symmetry or invariant of the Lorentz 

group. However, we are able to have a spherically 

symmetrical wave front in the two frames of reference, 

K and K, only because the transformation 'selects' 

different sets of events to constitute the event surfaces 

of the light pulse. 

It is at this juncture that we find ourself in 

disagreement with Bunge who speaks of the Lorentz 

transformation as "just the relation between two different 

representations of events."(1967a, p. 189) In one sense 

he is correct, insofar as the Lorentz covariant character 

of the wave front equation can be determined by pure 

computation. However, he is wrong in supposing that the 

transformation is merely a formal device for representing 

the same physical process in different frames of reference. 

Î'loreover, since the frames of reference in question are 

inertial frames of Special Relativity Kinematics, i.e. not 
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affecting the laws of that theory, Bunge's view virtually 

entails that such a frame transformation is essentially 

the same as a coordinate transformation, but with time 

dependent coefficients. In fairness, we are obliged to 

reiterate that it depends on the meaning that one attaches 

to 'same physical process'. If this means the history 

of a certain light pulse, then Bunge's claim is essentially 

correct. However, a deeper view of the Lorentz transfor­

mation is that it results in representations of distinct 

physical processes, e.g. event surfaces, taking place 

in distinct frames of reference but in accordance with 

the same physical laws of optics as required by the 

principle of relativity. Since the transformation singles 

out different sets of events instead of representing 

the same events in different frames of reference, it can 

hardly be regarded as purely formaI. Admittedly, the 

situation is extremely subtle as attested to by the 

necessity for our constant switching from lower case to 

upper case variables. The subtlety of this particular 

case arises from the fact that the specific covariance 

group of Special Relativity Kinematics which we have 

studied, namely the restricted, homogeneous Lorentz group 

also happens to be a relativity group of that theory. 

While the former is a calculable metatheorem, the latter 

is a testable physical hypothesis whose falsification 

would require a modification of the laws of optics. 
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. In concluding this part of our treatment of 

Special Relativity Kinematics, we should remark that the 

foregoing serves as the best possible illustration of 

the distinction between a pure coordinate transformation 

which simply applies new labels to the same physical 

events, and a frame transformation which, in this case, 

leads to the selection of different physical events in 

different frames of reference, but obeying the same 

fundamental laws. We believe that the apparent 'queerness' 

of the Lorentz transformation is fully accounted for by 

the foregoing considerations. Finally, we think it 

relevant to reiterate that even in the highly delimited 

context of Special Relativity Kinematics, there is a sharp 

distinction to be drawn between the metatheory and the 

object theory. 

So far, we have restricted our treatment of 

the Lorentz transformation to the simple case in which 

the origins of two coordinate systems coincide at an 

arbitrary initial time, the spatial axes are parallel, 

and the motion of the barred frame is restricted to the 

+x-direction. The resulting transformation equations (5.10) 

constitute the restricterl, homogeneous Lorentz group 

of transformations. We now proceed to make certain 

generalizations. 

Firstly, in place of the wave front equation, 

we consider the more general expression: 
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(5.16) 

We define this quantity as the space-time distance, which 

can be shown to be the principal invariant of the 

homogeneous Lorentz group. In other words, a homogeneous 

Lorentz mapping preserves the equality: 

2 -2 s = s (5.17) 

Secondly, we consider the case in which the coordinatization 

of the two inertial frames is such that their relative 

velocity has three non-vanishing components. Since the 

latter may be reduced to the restricted case by an 

appropriate spatial rotation,under which s2 remains 

invariant, it is obvious that the general, homogeneous 

Lorentz transformation is the realization of a group. 

However, contrary to intuition, the latter group may not 

be decomposed into the direct product, R3 X Ls. We shall 

shortly explain this peculiarity of the general Lorentz 

transformation, although its full significance will only 

appear in Chapter VII, in which we formalize the Principle 

of Special Relativity. Finally, we consider the case in 

which the origins of the coordinate systems do not 

coincide. The quantity s2 is no longer invariant in this, 

the inhomogeneous case. We may settle th1s matter easily 

by rewriting the principal invariant in differential form: 

(ds)2 = (dx)2 + (dy)2 + (dz)2 _ c 2 (dt)2 (5.18) 

which is invariant under a general, inhomogenous Lorentz 

mapping. It is known as the space-time interval. However, 
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from the standpoint of the relativity group, (5.18) which 

is the differential form of (5.16) is irrelevant, since 

the inhomogeneous term is independent of time and therefore 

eliminable by a pure coordinate transformation. 

We remarked in Chapter II, Sec. 1 that the 

group property of a set of permissible mappings ls by no 

means trlvial. In the context of Classical Relativity and 

Special Relativity, it is posslble to restrict the models 

of reference frames to Cartesian coordlnate systems, in 

which case the coordinate transformations are such that 

their Jacobian is non-vanishing throughout aIl space, 

and it 1s not necessary to restr1ct the application to 

a flnite region of the V . Renee, lt ls obvlous that for 
n 

any mapplng there ls an lnverse, and for any succession 

of mappings there is a single mapp1ng whlch will transform 

a given quantity into the original quantlty. 

In the case of mappings whlch model f.rame 

transformations, there are obvious eplstemological 

reasons for the relatlvity mappings, whatever they happen 

to be, to possess the group property. Very simply, since, 

ex hypothesl, a relativlty principle applies, it must be 

the case that if a relativistic process ls referred 

successively to several distinct inertial frames and 

ultimately to the original frame, no change should be 

induced 'along the way' in the fundamental law of interest. 

To speak ln terms of subjective observations, which ls 
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justifiable in an epistemological context, an objective 

process cannot be affected by the viewpoint of the 

observer. An objective process is characterized in 

relativity physics, including Newtonian, by the fact that 

whatever point of view, i.e. frame of reference, the 

observer happens to adopt, it is always possible to change 

that point of view back to the original one without 

inducing a change in the nature of the observed process. 

Thus, the projection of a cube on a two-dimensional 

surface may be a square for a particular observer. The 

projection will undergo a series of changes as the observer 

moves with respect to the cube; but whatever the 

situation of observer and cube at a given time, there is 

always possible, in principle, a single movement of the 

observer which will restore his original orientation with 

respect to the cube and such that the projection of the 

latter on the same two-dimensional surface will once more 

be a square. This reveals the objectivity of the projective 

properties of the cube. Clearly there is, in general, an 

intimate link between the objective reality of a physical 

pattern and its appropriate relativity group. Accordingly, 

since the group property of physical frame transformations 

is non-trivial, we should not expect to find that any 

set of frame transformations which happens to be 

mathematically representable is the realization of a 

group. 
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The foregoing remarks apply to an 1nterest1ng 

property of the Lorentz group wh1ch distinguishes it from 

the Galilean group. We have noted that the restr1cted 

Lorentz mappings are the realization of a group which 

is a subgroup of the complete Lorentz group. Similarly, 

the 1nhomogeneous spatial rotation group is a subgroup 

of the Lorentz group. However, in Newtonian Mechanics, 

the general Galilean transformation without rotation is 

the realizat10n of a group, whereas its counterpart, the 

general Lorentz transformation without rotat1on 1s note 

That is to say, the comb1nat1on of two successive 

general Lorentz transformations without rotation is not 

necessarily equ1valent to a s1ngle general Lorentz 

transformation without rotation. This 1s probably why the 

majority of textbooks limit their exposition to the 

restr1cted Lorentz group. The proof is rather lengthy, 

although not advanced, but since it is part of standard 

mathematics we leave it to the interested reader to try 

it out for himself. 

In physical terms, suppose that a particle has 
~ 

a velocity V in an inert1al frame K. Under a Lorentz 

transformation without rotation, we calculate that its 
~ 

image in K is given by k 1V (k1 = const.). We then make 

a sim1lar Lorentz transformation to a third frame but 
-

find that the mapping from K to K does not 1nduce the 

-"'> ... -
mapping, V ~k2V (k2 = const.). That is to say, V will not 
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.... 
generally be parallel to V but will have undergone a 

rotation. In general, a vector in K will only be 

parallel to its image in K when the velocity vector 

between K and K is parallel to the velocity vector between 

K and K. This case, however, is always reducible to the 

restricted Lorentz transformation by the appropriate 

choice of Cartesian coordinate system •. The rotation of 

the image vector is known as the Thomas precessioil(Thomas, 

1927). In short, the counterparts of what are sometimes 

called velocity mappings in Newtonian Mechanics are not 

the realization of a group in Special Relativity physlcs.::-

That, of course, is not to say that velocity mappings 

cannot be performed in Special Relativity physics. There 

1s a well-known set of formulae for the composition of 

velocities in Special Relativity, whlch are easily 

obtained by differentiation of the general Lorentz 

transformation and a little algebra. It is merely that 

the composition of velocities in Special Relativity not 

only obeys a different law from the classical one but also 

has a different significance. As we have already remarked, 

we shall have occasion to refer to this matter once 

more in a later chapter. 

Iole mention the Thomas precession not for the 

sake of completeness in our treatment of Special Relatlvlty 

Kinematics, for which we are obviously not endeavouring, 

but to bring out the difference, alluded to elsewhere, 
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between an inertial frame of Newtonian Mechanics and 

an inertial frame of Special Relativity Kinematics. Several 

writers including Einstein and Fock identify them. Einstein 

frequently alluded to Galilean frames when referring to 

the inertial frames of Special Relativity. In fact, the 

most that can be said is that the total set of Galilean 

frames {KgS 1s coextensive with the total set of Lorentz 

frames îK11. This will be the case if there is at least 

one frame which is rigorously inertial for both 

electrodynamics and Newtonian Mechanics. This would not, 

however, be a useful subject of investigation for the 

experimental physicists. Such an investigation would 

be pointless since it would presuppose that an accuracy 

of measurement of the second order in vic could be 

attained not only in electrodynamical experiments but also 

in purely mechanical ones. In the second place, however, 

Newtonian Mechanics is regarded only as an approximatlion. 

Consequently, a sufficientIy accurate experiment would 

be influenced by the effects of Special Relativity 

r1echanics. However, ev en if one allowed that there exist 

in the universe a frame which is both Galilean, in the 

sense of Newtonian physics, and inertial, in the sense of 

3pecial Relativity, so that in virtue of the linearity 

of both Galilean and Lorentz mappings, we could assert 

the equality ~g~ = ~K11, there would still be no element 

to element equivalence between them. n very s1mple 



107 

argument which does not depend on the Thomas precession 

may serve to illustrate this. 

\.J'e choose an example in which aIl velocity 

vectors are parallel so that the Thomas precession cannot 

enter. Let us suppose that we have a 'stat10nary' 

-laboratory frame K with respect to which a second frame K -is moving in the +x-direction with velocity U. A particle 

-has the velocity V with respect to K. According to 

Newtonian Kinematics, the magnitude of the velocity of 

the particle with respect to K must be \Û + ~I = lût + I~I. 
According to Special Relativity Kinematics, the particle 

-'" -= - 2 will have the velocity (U + V)/(l + UV/c ) with respect 

to K. Bridgman(1962) expressed serious doubts concerning 

the relativisti~ law for the composition of velocities 

on the ground that it involves two distinct differential 

operators d/dt and d/dt. However, what follows would 

depend only on direct observation. Specifically, we 

-introduce a third frame K which is the rest frame of the 

particle.Whether or not a particle 1s at rest in a 

part1cular frame is, of course, determined by direct 

observation. By simple logic, the velocity of the rest 

~ ~ - 2 
frame with respect to K must be (U + V)/(l + UV/c ). 

However, if we use the formula of Newtonian Kinematics, 

the rest frame of the particle will have the velocity 

U + V with respect to K. In short, while the equality 

(Kg~ = tKI~ conceivably holds, the corresponding transformation 
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laws relate different elements of the set of inertlal 

frames. In more formal language: 

fK! is the baslc set of reference frames. 

g(=df. kinematically equivalent up to a Galllean 
transformation) is a relation which is reflexive, symmetric 
and transitive in tKl. 
l(=df. klnematically equivalent up to a Lorentz 
transformation) is a relation which is reflexive, symmetric 
and transitive in t~~. 

iKg~ =df. g[K~ ls the equivalence class of inertial frames 
of Newtonian Mechanics. 

iKl~ =df. lfI<l ls the equlvalence class of inertial frames 
of Special Relativity Kinematics. 

tKg\ ~ ~KJ is an equivalence class of tK!. 
(Kl~ ~ lK~ is an equivalence class of [K~. 

The elements of ~Kg~ are a,b,c, •.. 

The elements of ~Kll are rx..'P'l'·· . 
,... is a binary operation on tI< g\ • >J 

L is a binary operation on tKi~ . 
= is a binary relation which is reflexive, symmetric and 
transitive in tKl. 

<fKg\ ,G, -1, I) is a group ~ . 
(tKl{ ,L, -1, r) is a group~. 

a' = Q(. 

b' = P 
aGb ~ c; «L p--="o 
(aGb) , f; l' 

The foregoing merely proves that in spite of 

the putative identity of the set of Galileen frames and 
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the set of Lorentz frames, the structures ~ and dt are of 

different types. Accordingly, one may not speak 

indiscriminately of a Galilean frame to denote either an 

element of the first member of the structure 1 or an 

element of the first member of the structurect. At most, 

one would be entitled to speak indiscriminately of inertial 

reference frames, but even this is a practice which we 

would strongly discourage. In fine, to speak, in the 

manner of Einstein, of Galilean frames is to treat the 

relatively complex structure of a group as though it were 

that of a mere set. 

If it had been the case that the relativity 

group of electrodynamics were realized by non-linear 

transformations, the confusion between a Galilean frame 

and a Lorentz frame would never have arisen. In fact, 

however, we have already noted that frames of reference 

belong to the category of mechanical objects. Insofar as 

electrodynamics requires inertial frames, the latter must 

be regarded as objects which belong to the theory of 

electrodynamics. Thus, the foregoing discussion ceases to 

be of such great importance for physics, albeit of 

considerable methodological significance, since the 

mappings between mechanical inertial frames and electro­

dynamic inertial frames must be of the same kind. This 

is the rational basis for the development of the program 

of Special Relativity Mechanics, which we treat in the 
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following chapter. This program is not based on the 

fixity of meaning of inertial frame, namely a frame that 

moves uniformly (relative to what?). It is quite conceivable 

that an accelerating frame could serve as an inertial 

frame if only the laws of nature were different. Having 

perused several introductory treatments of relativity 

physics, we are surprised that the student is not generally 

more confused than he actually is, since, almost without 

exception, there is a serious lacuna in the logical 

development. We quote from one of the more highly respected 

textbooks: 

ItHaving obtained the Lorentz transformation 
to replace the incorrect Galilean 
transformation, we can now proceed to 
the second stage and require that the 
laws of mechanics, in common with aIl of 
physics, shall have the same form ln aIl 
uniformly moving systems."(Goldstein, 1950) 

But the Galilean transformation is correct! 

That ls to say, it is a realization of the relativity 

group of Newtonian Mechanics. Can the Lorentz covariance 

of Maxwell's laws serve to falsify the laws of Newtonian 

Mechanics? This is an absurdity. There is no apparent 

reason why different theories should not have different 

transformation properties. The point ls that electrodynamlcs 

includes mechanical objects within its purview. Hence, 

Newtonian Mechanics which ls inconsistent with 

electrod~namics must be modified. Otherwise, the theory 

of electrodynamics would be inconsistent. Conversely, one 
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could argue that Maxwell's laws should be modified to 

make them Galilei covariant. In fact, both paths were 

pursued but only one proved fruitful. However, we shall 

show in Chapter VIII that from the deeper standpoint of 

General Relativity, the coexistence of a Galilei 

covariant mechanics and a Lorentz covariant electrodynamics 

is not only a physical but also a mathematical impossibility. 
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CHAPTER V 

SPECIAL RELATIVITY MECHANTCS 

At the close of the preceding chapter, we 

briefly indicated the rationale for the general program 

of Special Relativity physics. In the case of electro-

dynamics, this program had, in a sense, been carried out 

prior to the formulation of the Principle of Special 

Relativity, insofar as the basic laws of that theory 

are covertly Lorentz covariant as the y stand. However, 

Newtonian îYIechanics is not a Lorentz covariant theory. 

Hence, in executing the program of Special Relativity 

physics, it is natural to anticipate a modification of 

Newton's laws. 

Fortuna tely, i t was shown by fll1nkows kt( 1908) 

that a formalism could be employed in which properly 

constructed equations are automatically Lorentz covariant. 

This formalism plays a similar role vis à vis the Lorentz 

group of coordinate transformations to that played by 

the elementary three-vector formalism vis à vis the 

Galilean group of transformations. The particular version 

of this formalism which we shall adopt for the time 

being involves the replacing of the ordinary time 

parameter by a fourth coordinate iet = X4(i = J:l). This 

partieular version of the so-called ~-veetor formalism 

is beginning to go out of fashion. Today, many writers, 
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e.g. Bunge, Fock, et al., favour the use of the real time 

coordinate ct. The principal objections to the original 

Minkowski version are that it treats of rotations through 

imaginary angles and, in general, involves reference to 

imaginary quantities, which tends to obscure the physical 

content of theoretical laws. Furthermore, it is of no 

value in the Theory of General Relativity. The principal 

advantages of the imaginary coordinate are that it enables 

one to treat the space-time manifold as though it were 

formally Euclidean, which leads to some notational 

simplification, and, moreover allows one to continue to 

ignore the distinction between the covariant and 

contravariant components of a vector. On balance, we have 

decided that the imaginary coordinate is weIl suited to 

our purposes. There 1s no danger in adopt1ng the most 

convenient formalism for a particular purpose, provided 

only that one does not confuse the special properties of 

the formalism with those of physical reality. 

The purpose of this chapter is quite straight­

forward, namely to provide supporting evidence for the 

thesis that the Principle of Special Relativity has 

physical content, i.e. that, as distinct from Lorentz 

covariance, per ~, it belongs to the object language of 

physics. Our general procedure will be the rather 

workaday one of taking Newtonian laws and, with the aid 

of the four-vector formalism, of rewriting them in 
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manifestly Lorentz covariant forme The point will be to 

show thBt the laws which are obtained in this way differ 

in physical content from those of Newtonian Mechanics. 

For the benefit of the reader who is unfamiliar 

with the four-vector formalism, we shall begin with a 

very brief sketch of the manner of its working. We employ 

a four-dimensional orthogonal coordinate system with the 

i x having their usual significance and with the fourth 

coordinate x4 = ict. It is then clear that the space-time 

interval: (dS)2 = (dX)2 + (dy)2 + (dz)2 _ c 2 (dt)2 may be 

represented by the homogeneous quadratic form: 

(cAs)'l..:: G,.vJ)(!'Jx.'II (f.v: \,1.,3,4-) (6.1) 

Since our purpose is to construct geometrical objects 

which are analogous to three-vectors, we require that 

the linear, homogeneous transformation: 

(6.2) 

be such that the space-time interval be an invariant. 

That is to say, under the transformation (6.2), we must 

have: 

(6.3) 

Employing the transformation (6.2) in (6.3), we have: 

otp~tlJC.Y t(.(3$Jx& = cf,." J~"cfxv (6.4) 

or, ~P1r~Pcr ~X"'J:x.4 = e>,...voCx"c:lx'" (6.5) 

Clearly, (6.5) can only be satisfied identically when: 

(6.6) 

The superficial appearance of (6.6) is that of 
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one of the orthogonality conditions under a rotation in 

three dimensions; the only difference is that the indices 

run from 1 to 4 instead of from 1 to 3. Thus, we may 

formally treat a homogeneous Lorentz transformation as a 

rotation of a four-dimensional Cartesian coordinate 

system. However, it should be abundantly clear to the 

reader that we are in the mathematical universe of 

discourse. To forget this would be profoundly misleading. 

The Minkowski coordinates are useful precisely in virtue 

of their formaI analogy with Cartesian coordinates. 

4 
However, we must not forget the imaginary character of x • 

If we were using real coordinates, (6.1) could not be 

expressed in its present form. In particular, if real 

coordinat es were employed, the metric quadratic form 

could not possibly be transformed to positive definite 

form by any real transformation. This is but one reason 

why Minkowski coordinates would be nothing but a handicap 

in the more complex arena of General Relativity. But at 

that point, in any case, we need a Riemannian as distinct 

from a Euclidean or pseudo-Euclidean metric. 

We now define a four-vector in Minkowski space 

as any quantity that transforms like the dx~. It follows 

from this condition that the square of the magnitude of 

a four-vector must be a Lorentz invariant. It is called 

the norm of the four-vector. In spite of the formaI 

analogy with Euclidean geometry, differences appear as 
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soon as we consider the invariant norme As a consequence 

of the imaginary character of x4 , it is possible for the 

norm of a four-vector to be zero even though it have 

non-vanishing components. In general, we have: 

(ds)2 = (dx~)2 = (dxi)2 _ c 2 (dt)2 (6.7) 

If the norm of the four-vector is greater than zero, 

i.e. dxi is the dominant quantity, we have a space-like 

vector. If it 1s less than zero, i.e. dx4 is the dominant 

quantity, we have a time-like vector. (Employing real 

coordinates, we may interchange these relations.) If it 

is equal to zero, we have a null-vector, which is most 

important in Special Relativity physics, since it obviously 

corresponds to the condition of light propagation, i.e. 

i 2 2 2 (dx) = c (dt) • In this four-dimensional context, it 

is customary to speak of the light-~ as defined by 

(ds)2 = O. This concept is intuitively useful in the 

following way. Suppose that we have two neighbouring 

events: El(X f ) and E2(X~ + dX~). The light-cone with El 

as centre is given by (ds)2 = O. Now, 1f E2 lies on the 

light-cone, El and E2 may be connected by a light signal. 

If E2 1s inside the region defined by the light-cone, then 

dX~ is a t1me-like vector. If E2 lies outside of this 

region, then dX~is space-like. Furthermore, it 1s easy 

to show that if a vector is t1me-like, there is always a 

perm1ss1ble transformation which makes the spatial 'part' 

of the vector van1sh; whereas, if a vector 1s space-like, 
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there is always a permissible transformation which makes 

the temporal 'part' of the vector vanish. Intuitively, 

if the norm of the space-time distance is non-positive, 

the two events may be regarded as simultaneous, whereas 

if the norm of the space-time separation 1s greater than 

zero, the two events are absolutely successive. 

We now define the time-track on our mathematical 

manifold by the definite linear funct1ons: . 
<S" -: x.i.(xlt-) (6.8) . 

Next, we choose a coordinate system such that the curve ~(.. 

lies along the x 4-axis. With respect to such a coordinate 

system, we have: 

i x = 0, (6.9) 

for the spatial coordinates of the time-track. Clearly, 

4 the values of x correspond to the path length sand also 

to the proper t1me of which we spoke in the preced1ng 

4 chapter. By a suitable choice of scale, we make dx = ds. 

It 1s obvious that the displacement ds is a time-like 

vector with the components (O,O,O,icdt). Let us replace 

the parameter x4 of (6.8) by the space-time distance s. 

Then we represent the curve by: 

(6.10) 

\fe define the real auxiliary variable '\ by: 

(6.11) 

From (6.7), (6.9) and (6.11) we deduce the equality: 

c1~ = Jt (6.12) 
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We have just demonstrated that it is always 

possible to choose a coordinate system such that the real 

coordinate time t corresponds to the proper time~. 

Furthermore, we have shown that in such a system the 

proper time interval must be orthogonal to the spatial 

axes. In general, however, the spatial components of the 

displacement ds will be non-vanishing. We now determine 

the rel&ionship between d~ and dt for the general case. 

Inserting (6.11) in (6.7), we have: 

_c2(d~)2 = (dxi)2 _ c 2 (dt)2, 

from which there immediately follows: 

d~ = (1 - v 2jc2 )tdt, 

which is Lorentz invariant. 

(6.13) 

(6.14) 

We now have the necessary tools at our disposal 

to deal with Special Relativity Mechanics. We wish to 

underline the important point that all of the preceding 

discussion, although aimed at a physical application, 

strictly belongs to the realm of mathematics. We have 

lapsed into the language of physics with such terms as 

'event', 'time-track', 'light propagation', etc., only 

as an aid te intuition. None of these terms were essential 

to the mathematical development. In short, nothing so far 

said has had anything to do with the physical world. We 

have simply constructed a formalism which may be so 

interpreted as to lend itself to the expression of physical 

laws. The laws of that formalism belong to the mathemat1cal 



119 

framework of physics. We now turn to the object theory 

of Special Relativity Mechanics. ~e stress, once again, 

that our treatment of physical principles is not intended 

to be exhaustive but merely, we hope, instructive. In 

particular, to keep matters fairly simple, we limit our 

discussion to point mechanics. 

As mentioned at the beginning of the chapter, 

we shall employ the simple (and probably simple-minded) 

stratagem of modifying Newton's equations in such a way 

that the resulting equations are Lorentz covariant. 

Naturally, we do not imply by this procedure that a Lorentz 

covariant formula must, ~ fortiori, correspond to a 

physically true law of nature. This would be just as 

unfounded as to argue that a Galilei covariant formula 

is necessarily the expression of a true law of nature. 

We do, however, intend to show that such a procedure 

leads to testable physical consequences. For information 

on the actual confirmation of such consequences, the 

reader should turn to any standard textbook on the subject. 

It is natural to begin our account with the 

concept of the velocity of a point particle. The classical 

velocity dxi;dt is not a vector in four-space. Obviously, 

since time is not universal in Special Relativity physics, 

it would be difficult to construct a four-vector with 

its aide We turn, therefore, to the Lorentz invariant 

proper time ~. We interpret ~very crudely and strictly 
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as an atd to intuition in operationalistic terms as the 

time measured by a clock which is attached to the moving 

particle. A change of reference frame obviously cannot 

al ter the value of"'(, s ince i t does not invol ve the 

transmission of a signal but depends on the direct 

coincidence of events. We may express the four-velocity 

ut'- by: 

By (6.14), we may express (6.15) as: 

Ut' ~ cA ",t' :. (1 - "Yc.'t )-{ (1~i) \ c..) 
tA 'Y 

The norm of U~ is easily obtained: 

(6.15) 

(6.16) 

(~t = hrv UttUV ;:: (l- V/c1.)-1 (v"\.-c"l.)::. -C' (6.17) 

In short, we reach the rather interesting 

result that the norm of the four-velocity is a universal 

invariant. Noreover, we note for future reference that U"" 

is a time-like vector. The universal invariance of the 

norm of U~ should not be regarded as too surprising, since 

differentiation was with respect to~ which is invariant, 

and the frame of reference is the rest frame of the 

particle in which time has been coordinatized by ict. 

Intuitively, the measurement of the four-velocity of the 

particle is relative to the velocity of light, which must 

be the same for aIl inertial frames. (Essentially the same 

result would have been obtained uSing the real coordinate 

ct. ) 

Instead of working out the components of the 
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four-acceleration of a particle, which involves some 

tedious mathematics, we shall follow the time-honoured 

and easier path of deriving a Lorentz covariant formulation 

of the conservation of momentum for the collision of 

two particles. This will, in turn, lead us to the definition 

of the four-force, often called the Minkowski force. 

Incidentally, this type of example is one of the few 

physical cases in point mechanics for which a Lorentz 

covariant counterpart is possible, since the nature of 

Special Relativity rules out instantaneous action at a 

distance. Special Relativity fully cornes into its own 

only in the case of field theories. The conservation of 

momentum in elementary point mechanics is given by the 

well-known formula: 

-" - .....;:, -
mlU1 + m2U2 = m1V1 + m2V2 ( 6. 18) 

We naturally assume that the velocities must be replaced 

by four-velocities and the masses by some quantities 

which are Lorentz invariant. Consequently, we rewrite 

(6.18) as: 

More generally, we may write: 

~U~ = const. 

Inserting (6.16) in (6.20), we obtain: 

2 2 -i i 
~(1 - v je) (dx jdt,ic)n = const. 

We now define the quantity: 

m =df. M(l _ v 2jc2 )-i 

(6.19) 

(6.20) 

(6.21) 

(6.22) 
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We calI m the relativist1c ~. Clearly, 1n an inertial 

frame in which m 1s at rest, we have m = M. Consequently, 

M is an invar1ant wh1ch we henceforth denote by mo and 

calI the rest-~ or proper ~. It has the same value 

1n aIl 1nertial frames and may, therefore, be employed to 

define a Lorentz covariant momentum given by: 

p~ =df. moU~ = (mdxi /dt,1mc) (6.23) 

The direct signif1cance of the foregoing for 

this dissertation is that the imposit1on of Lorentz 

covariance on the law of conservation of momentum led to 

a phys1cal consequence, namely that the Newton1an or 

classical concept of mass must be abandoned in Spec1al 

Relativ1ty Mechan1cs. Many writers w1th a s1m11ar mot1vation 

to our own prefer to say that a factual consequence of 

Special Relativity Mechanics is that the mass increases 

with the velocity, contrary to the doctr1ne of Newtonian 

Mechanics. However, while this 1s true, 1t refers to the 

relativistic mass, wh1ch does not occur in Newtonian 

Mechan1cs. Another frequent declaration 1s that the 

classical mass 1s equivalent to the proper mass of Spec1al 

Relat1v1ty Mechan1cs. But since the proper mass 1s always 

measured in 1ts rest frame, it clearly has a d1fferent 

meaning from that wh1ch Newton attached to the concept 

of masse The proponents of the latter view are, 1n effect, 

uSing a 'correspondence pr1nc1ple', accord1ng to wh1ch 

Special Relat1v1ty Mechan1cs reduces to Newtonian Mechan1cs 
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as vic ~ 0, as a constitutive law of Special Relativity 

physics instead of as an occasional heuristic guide. We 

have just employed the classicle principle of the 

conservation of momentum as a guide to the construction 

of a four-vector; but the classical principle of momentum 

conservation certainly does not belong to the Theory of 

Special Relativity. In short, it appears that when we 

speak either of relativistic mass or of proper mass, we 

are guilty of semantic confusion in identifying either 

one with the Newtonian quantity of matter. We prefer, 

therefore, the more cautious statement that the four-

momentum of a particle, defined as the product of its 

rest-mass and its four-velocity, is conserved. We shall 

shortly see that it is semantically admissible to compare 

Newtonian and Special Relativity Mechanics at certain 

points, but this is not one of them. It is philosophically 

more profitable to regard Special Relativity Mechanics 

as a distinct theory from Newtonian Mechanics than as a 

modification of it. 

By the same token, writers who state that 

'P~ 
~ 

= (p,imc)' signifies that the spatial components of 

the four-momentum vector are identical with the classical 

momentum are guilty of a similar, if not worse, error. 

This error is probably bolstered by the true but physically 

irrelevant statement that the three spatial components of 

a four-vector constitute a geometrical object which 
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transforms like a three-vector. In fact, of course, such 

a transformation simply represents a new coordinatization 

a.nd has no bear1ng on the principle of relat1v1ty. Nore 

significantly, the spatial components pi of the four-

momentum vector are given in the restr1cted case by: 
i ~ 2 2-! P = moV(l - V /c ) (6.24) 

Clearly, (6.24) behaves quite differently under a Galilean 

frame tr~lsformat1on from the Newtonian momentum. In 

particular, if (6.24) 1s subjected to a Ga111ean 

transformation under which c, of course, would no longer 

be an invar1ant, it would be found that the momentum 

relative to the second frame would not be in the same 

proportion to the momentum in the first frame as the 

velocity of the second frame relative to the first - a 

result which is at complete variance with Newtonian 

Hechanics. 

In fact, we may consider two possibilities for 

the Newtonian physicist, when confronted by (6.24). In the 

first case, he might know, although failing to understand 

why, c is a un1versal constant in all inertial frames of 

reference, so that he would leave it untouched in 

subjecting (6.24) to a Galilean transformation. Suppose 

a transformation is made with respect to an inertial 
.... 

frame moving with velocity U in the +x-direction with 

respect to the original frame. Then: 

pi_-=> pi = mo(V _ U) [1 _ (V _ U)2/c 2]-i (6.25) 
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In accordance with Newtonian Mechanics, dividing (6.25) 

by (6.24) we should get the identity: - -[ mo(V - U) 1 - (V - U)2jc2]-t.(1 _ v2/c2)f;/mov 
..., -

= \ UI / 'VI (6.26) 

But, in fact, (6.26) is not satisf1ed identically, although 

-it naturally approaches an identity as U ~ o. 

In the second case, we suppose that the Newtonian 

physicist is unaware of the invariance of c but has 

measured it in a stationary frame. He wil] then include 

in the Galilean transformation the mapping: 

(6.27) 

We leave it to any reader who has time to waste to verify 

that the 1nsertion of (6.27) in (6.26) would still be 

inconsistent with Newtonian Mechanics. 

The most we can say of the symbol on the left 

hand side of (6.24) is that 1t represents the same kind 

of geometrical object as the momentum of classical physics. 

But the two are, on no account, to be ident1fied, as is 

the practice in many textbooks on the subject. The writers 

of such books would not, of course, represent the spatial 

components of the four momentum by (6.24) but rather by: 

(pl, p2, p3) = p = mV (6.28) 

This has exactly the same appearance as the Newtonian 

definition of momentum and, moreover, the same covariance 

properties under a rotation of coordinates. However, the 

physic1st carelessly overlooks the point that 'm'in (6.28) 
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denotes the relativistic mass not the Newtonian mass of 

the particle. 

So long as we are working with Newtonian 

Ivlechanics, the meaning of 'm' must be made explicitas 

in (6.24). In fine, we have exposed a compound confusion, 

namely between covariance and relativity principles and 

between two distinct theories. An incidental but important 

moral of this is that one should not take correspondence 

principles too seriously. They emphatically do not belong 

to physical theories, and their heuristic value is 

explained not on a physical basis but on an epistemological 

one. The difference in magnitude between the spatial 

components of the four-momentum vector and the Newtonian 

momentum is very small for low velocities and vanishes in 

the trivial case of the rest frame of the particle. This, 

plus the fact that pre-Einsteinian physicists were not 

completely blind in the making of measurements, explains 

why correspondence principles seem to work. 

However, we have shown that the two theories 

of Newtonian Mechanics and Special Relativity Nechanics 

are quite distinct. The concepts which occur in them, 

while often bearing the same name and entering analogous 

logical relationships, denote different entities. Moreover, 

the difference in the two theories which we have discussed 

has been exposed on the basis of their satisfying different 

relativity groups! To indulge in a slogan, the comparison 
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of (6.24) and (6.28) entitles us to assert that 'Covariance 

is not enough ~ , 

We have already mentioned that Newtonian 

(instantaneous, action-at-a-distance) forces cannot be 

incorporated into Special Relativity physics. In particular, 

there is no Lorentz covariant generalization of 'Newton III'. 

However, there is a natural counterpart to 'Newton II': 

F~ = cl ~tt = ~o cUL" (6.29) 
.:\1" cl 'Y 

It has already been noted(6.17) that the norm of the 

four-velocity is equal to a universal constant. Rewriting 

(6.17) as: 
2 -c , 

and differentiating wi th respect to l, we get: 

V M.. ~" :: V .... Ft" == 0 
c.l'Y 

(6.30) 

(6.31) 

Let us now ascertain the components of the 

four-force. From (6.23) and (6.29), we have: 

F '"'" J C"-'p· ) clt cl (""'. ) .:. ~ ,l~C. = fi olt P ,u\,-

or, F t'l = (1 _ v 2/ c 2 ) -~ (f, iroc) 

From (6.16), (6.31) and (6.33), we have: 

'\ 1 2/ 2) -1 ( -") ) (~ • ) - v c v,ic • f,imc = 0 

Rence, 

-'> -") c 2m- -- 0 V.F = 
and, -- . (i/c)V.F = imc 

Inserting (6.36) in (6.33), we have: 

Ft' = (1 _ v 2/ c 2 ) -i (Ft ( i/ c) V.F) 
which must be a four-vector by virtue of (6.29). 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 
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It is apparent from (6.37) that the 'direction' 

of F~ will depend on the ordinary velocity of the particle 

on which it is acting. Consequently, two four-forces which 

are parallel with respect to an inertial frame of reference 

will not, in general, be parallel in a second frame 

which differs from the former by a Lorentz transformation. 

This is one reason why there is no Lorentz covariant 

counterpart of 'Newton III'. However, this very fact will 

give us a deeper understanding of the force law of 

electrodynamics, which we consider in the next chapter. 

In addition, an important physical consequence 

arises. Since the norm of F~ is invariant, it follows that 

the Newtonian force ~'lhich acts on a particle must vary 

'\ITi th the veloci ty of the particle. It is possible to 

demonstrate this result by means of a simple computation 

which avoids the usual complexities of subjecting Newtonian 

forces to Lorentz transformations. The norm of F~ is 

given by: 
(f~)' ::: (\F1"l._ ,V"'I1.I~ll.c.o~ e)(I-V"t./c"t.)-1 

C~ 

- 1 FI1. 5'''1. 8 =- il (6.38) 

Since F '" is a space-like vector, i t 1s perm1ssible to 

transform to the rest frame of the part1cle in which the 

time component of F fol van1shes. Physically, this simply 

amounts to the force's acting on a particle whose 

instantaneous velocity is zero. The norm of F~ is given by: 

(Ftl)2 = \F1 2 = k (6.39) 
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Equating ( 6.38) and (6.39) , we have: 

111 2 
= ~ 2 2 e 

IF 1 sin (6.40) 
-~ -Hence, F > F (6.41) 

The Newtonian case would hold rigorously only in the - -highly restricted circumstance in which V and Fare 

parallel so that cos 9 = 1. In this case, we would have: 
-'> -"> 

F = F, ( 6.42) 

which is consistent wi th Newtonian l'lechanics. 

It may be objected that (6.41), on our own 

argument, has no meaning since it pertains to Newtonian 

forces but was deduced from the laws of Special Relativity 

Mechanics. Are we not gu1lty of the very error which we 

have ascribed to others? While it is true that one must 

avoid the 'semantic mixing' of two distinct theories, 1t 

is still possible to establish 'contacts' between them. 

Hith due semantic care, it is possible to demonstrate 

that one theory is incompatible with another. Thus, while 

(6.41) is expressed in the language of Newtonian Mechan1cs, 

it is not a theorem of Newtonian r1echanics but is a 

theorem of Special Relativity Mechanies. 110reover, it 

shows a physical hypothesis of Newtonian Mechanics to be 

false. There is nothing in this case which is comparable 

with the identification of the proper mass of Special 

Relativity Hechanics with the Newtonian mass. 

We wish to stress that the transformation: 

F Fol ~ FI', which was employed in our computation, belongs 
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to the relativ1ty group of point mechanics and not merely 

to the covariance group. That 1s to say, it did not 

correspond to a rotation of spatial coordinates but to 

a change of reference frame, since 1t involved the 

x4-coordinate of the Ninkowski system. A velocity may be 

transformed away by a change of reference frame but not 

by a new coordinatization of the same frame. 

In summary, we have shown that by imposing 

the condition that a theory of point mechanics be Lorentz 

relativistic rather than Galilei relativistic, we are 

led to definite physical consequences. It follows that 

the Pr1~ciple of Special Relativ1ty must belong to the 

object language of physics, even though its more general 

metatheoretical counterpart, the Principle of Lorentz 

Covariance, does note 
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CHAPTER VII 
) 

ELECTRODYNAr.ncs 

The modifications of the laws of mechanics which 

were brought about by rnaking those laws Lorentz covariant 

may strike the newcomer to relativistic physics as rather 

Procrustean, and the activity of writing the new laws in 

the four-vector formalism as a rnere mathematical exercise. 

In the case of Classical Electrodynamics, however, the 

situation is quite different. No fundamental change 1s 

brought about by writing its laws in manifestly Lorentz 

covariant form, although, as we shall see, greater insight 

is thereby achieved. In fact, the Lorentz covariant 

formalism turns out to be more natural than the classical 

formalisme In its classical form, the most unsatisfactory 

aspect of electromagnetic theory is the distinction 

between the electric and magnetic fields. What appears in 

one frame of reference as the manifestation of a magnetic 

field will appear in another as an effect of the electric 

field. While this does not contravene the princlple of 

relatlvity, it is epistemologically unsatlsfying. For 

example, the magnetic force acting on a particle which 
-'l> ~ ->_ 

moves with velocity V is given by F = (q/c)(V ~ B). This 

doesn't even have the form of a fundamental law, since 

the right hand side depends on the state of motion of 

the frame of reference. In particular, the magnetic force 
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could be 'transformed out of existence' simply by referring 

it to another inertial frame, which may make one wonder 

whether it was really there in the first place. 

Despite the naturalness of the four-dimensional 

formalism in the case of Electrodynamics, the least 

fruitful approach to a genuine appreciation of the Lorentz 

covariance of l'-laxwell's laws of Electrodynamics would be 

to write them in their classical form and then to perform 

the purely formaI task of rewriting thern in faur-dimensional, 

i.e. rnanifestly Lorentz covariant, forme In this way, the 

physics which underlies the Lorentz covariance of Maxwell's 

laws would be entirely lost, especially to a philosopher. 

The situation is not analogous to that of Newtonian 

Mechanics in which the introduction of four-dimensional 

formalism forces a modification of the physical content 

of the la1'ls of interest. 

Accordingly, before making use of the four­

dimensional formalism, we shall examine sorne simple 

situations which serve ta bring out the relationship 

between the electric and magnetic fields from the stand­

point of the Principle of Special Relativity. The 

simplicity of the basic physical situations which we intend 

to examine is quite justified as a basis for generalization 

provided that one pays more than lip-service to the 

concept of the field. If the field descr1ption of electro­

magnetic phenomena 1s correct, then 1t 1s possible ta 
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transform a field point from one frame of reference to 

another regardless of the simplicity or complexity of the 

sources of that field. In fact, as Bunge has shown(1967a, 

p. 164), the field concepts are logically independent 

of the source concepts, so that one cannot say that the 

one is more fundamental than the other. 

Thus, we come to the apex of our discussion of 

the Principle of Special Relativity. The the ory of 

Electrodynamics is the true physical basis of Special 

Relativity physics. It was Poincaré who noted in 1904 

that Maxwell's equations are covariant under Lorentz 

transformations. Shortly thereafter, Einstein published 

his epochal paper: On the Electrodynamics of Moving 

Bodies(1905) which heralded the beginning of the Theory 

of Special Relativity. 

There are many ways in which this chapter could 

be presented. Throughout this dissertation we have 

attempted to steer a course which would be of interest 

both to the physicist and to the philosopher who has sorne 

knowledge of physics. We shall continue to adhere to 

this course in the present chapter, which is the justification 

for the particular mode of presentation that we now adopt. 

In brief, we shall begin with a presentation of the 

classical version of the theory which we hope will be 

comprehensible to the majori ty of phft))s.c:phical readers. 

However, in presenting the classical theory, we will not 
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attempt to hide our knowledge of Special Relativity but 

shall emphasize those aspects of the physics which 

illuminate the basis of the Lorentz transformation, our 

purpose being to show that the latter is not simply a 

formaI device but the representation of a fundamental 

aspect of physical reality. 

Our treatment thereafter will be more formaI 

and, for the first time, we shall utilize tensors of the 

second rank. This will help to prepare the philosophical 

reader for the ev'em.~al confrontation wi th General Relativity 

in Chapter VIII. However, to take as small a step as 

possible at each stage, we shall continue to employ the 

Cartesian coordinates of Minkowski, so that no distinction 

will be made between the covariant and contravariant 

indices. While objectionable, on some grounds, it will, 

at least, help to clarify the distinction between a fIat 

Euclidean or pseudo-Euclidean manifold and a Riemannian 

manifold in which the aforementioned distinction is 

inescapable. Finally, since this 1s not a treatise on 

physics, as the reader by now knows, we shall limit 

the treatment to the behaviour of the electromagnet1c 

field in a vacuum(but Cf. Bunge, 1967a, pp. 160f.). That 

is to say, there will be little or no talk, except 

heuristically, of dielectrics and conductors. In our 

sparse universe, we shall admit electrically neutral frames 

of reference, the electromagnetic field, and point charges. 
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The scientifically trained reader may omit or skim over 

the early parts of this chapter. In the Appendix to the 

present chapter, we shall make up for one of our omissions 

by endowing our point charges with mass. This, again, 

will prepare the ground for the chapter on General 

Relativity. 

There are two kinds of electric charge which 

are nominally designated as positive and negative. Two 

charged particles at rest and bearing the same kind of 

charge exert a mutually repulsive force, whereas two 

particles at rest but with opposite charge exert a mutually 

attractive force. With charges qi and qj separated by the 

distance r ij , the foregoing is summarized in Coulomb's law, 

which for the vacuum and in ESU units is given by: 

(7.1) 

where ~ij is the unit vector in the direction of rij. If 

we consider a static distribution of charges, we are able 

to calculate the force that they would exert on a given 

test charge qo in a fixed location. 

We 

-7 

fo=~ 
J 

--:. 
calI Fo the 

q.o q,.j ~ ( 7 • 2 ) 
(ro~)'L 0':; 

electric field intensity or simply the 

electric field arising frOID the sources qj and denote it 
..." 

by E. Incidentally, this is not an operational definition 
~ 

of E, since qo would, in fact, disturb the static 

configuration of qj. Some physicists, in a self-stultifying 

attempt to be operationalistic, produce the non-physical, 
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-J> ..;) 

E = H"", L 
t....,o t-
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Our appraisal of this is indicated by our not bothering 

to number it. In general, if the system of point charges 

is sufficiently dense, we conventionally treat it as a 

continuous charge distribution and replace the sum of (7.2) 

by an integral. Then we have the electric field intensity 

at (x,y,z) produced by a charge distribution over the 

region 5 dx'dy'dz' given by: 
v ..... S ( l , ')'" , 1 l '1 , E.::. f:x.. l "J .1s r O'I~ 0",:\ O"à ) 

., r L 

where y is the charge density. We now define the flux of 

-E through an arbitrary closed surface in terms of the 

total charge enclosed by that surface as: 

SÊ.J~ = \t.1rffolV, (7.4) 
s v 

which is known as Gauss's law. Then by the divergence 

theorem, we have: 

which is one of Maxwell's equations. 

It is easily shown that the nature of the 

electrostatic field i5 such that it may be expressed 

as the gradient of a scalar field; that is: 

Ê= -"Ç~ (7.6) 

Inserting (7.6) in (7.5), we have: 

(7.7) 

which i5 known as Poisson's equation. It should be noted 

that whereas (7.5) holds for aIl electric fields, in vacuo, 
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(7.7) is only applicable in the case of an electrostatic 

field. That is to say, if a frame of reference can be 

found relative to which aIl of the charges are at rest, 

then (7.7) may be applied. 

'rhere is a mass of experimental evidence, 

including the very existence of matter as we know it, 

that the charge q is a relativistic invariant. Rence, 

(7.4) may be evaluated in any inertial frame. That is: 

SÊ.cler = (7.8) 
S~) 

A fortiori, (7.5) must be relativistically covariant. In 

fact, we must bear in mind a certain restriction on (7.8), 

namely that the Gaussian surface S at time t encloses the 

same charge as S at t ~ t. On the other hand, (7.5) is a 

local relationship in which such a consideration could 

not arise. 

Let us pause to consider ~he implications of 

charge invariance. Since charges produce fields, the 

invariance of charge must have an effect on the trans-

formation properties of the electric field. Suppose that 

we have two parallel sheets of charge of density +1 and -f, 

in the frame K, which are of negligible thickness and 

whose surface areas are very large relative to the 

distance between them, so that the field between them may 

be regarded as effectively uniforme Let us coordinatize 

K so that both sheets are parallel to the xy-plane. Now 

the magnitude of such a field is simply 4~J. A second 
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frame K is moving in the -x-direction with respect to K. 

The length of the sheet must undergo a relativistic 

contraction 't'li th respect to the 'moving' frame. However, 

the total charge must remain constant. Hence, the charge . 
density must be increased by: 

- 1. )_I/z. f ~ f = (, - " /cl. f -The only component of E between the sheets of charge is 

in the z-direction. Hence, by applying Gauss's law(7.4) 

-in K, we have: 

f2s ::. (7.10) 

On the other hand, if the sheets of charge were oriented 

parallel to the yz-plane of K, the surface would not have 

been subject to relativistic contraction. In this case, 

there would be a uniform field with one non-vanishing 

component Ex' and with respect to K we would have: 

(7.11) 

The example that we have employed is that of 

an extremely simple charge configuration. However, as we 

intimated earlier, if the field is of objective signif-

icance it must be independent of its sources. Hence, under 

any circumstances, regardless of sources, the principle 

of relativity should enable us to de termine the nature of 

the field in any inertial frame, given its description in 

a particular frame. 

Let us, once more, take a 'stat1onary' frame K, 

coordinatized by the system S such that ~ point charge Q 



139 

is stationary at the origin of S. Let 1 be a radius vector 

in S. It follows as an elementary consequence of (7.4) 

that the field of Q is given by: 

Ê = Q/r2 (7.12) 

Let us restrict our considerations to the field in the 
..." 

xz-plane of S. Resolving E into its components in this 

plane, we have: 

E;It. = Q. c..o ~ e = 
r'L 

(7.13) 

....." 

Now consider a 'moving' frame K having the velocity V in 

the -x-direction with respect to K and coordinatized by 

-§ such that x = i = 0 at t = t = O. We now express the 

components Ex and Ez in K at t = O. From (5. 10), (7.10), 

(7.11) and (7.13), we have: 

E ~ -? Ex. : E~c.. = (1- vl.lc1.) Q. 5(. J3h . (7.14) 
[{ ,_vVCt)-1 X t..l-l. 

E -E = (1-"~c.'1.)-'/~E~ - (I_vYC.t)-t. Q} ~ ( 1) 
and, }- -::;, ~ 0 - r, ,,-a../ )_1 - l.. =i.:~J.3!4 7. .5 

L( ,- ICt. ~ 1 (J 

Dividing (7.15) by (7.14), we have: 

Ëz/Ëx = Z/X (7.16) 
-::!> 

Thus, the direction of the field vector E must be in the 
-"') 

direction of f, which is the radius vector from Q at 

-
t = t = O. 

It follows from the above considerations that 

at an ~bservation point' in K, say ten miles from the 
-origin of S, the field will 'appear' to be emanating from 

- -o at t = O. Since we cannot have instantaneous action at 
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a distance, it follows that the field at the observation 

point in Kwas determined by its source at a time prior 

to t = o. ilTe shall refer to the s ignificance of this 

shortly. 

Continuing to workin two dimensions, we now 

make a purely notational change by suppressing the bars 

of the K variables. In effect, we are now treating K as 

a 'stationary' frame in which a point charge is moving in 

-"> 
the +x-direction with velocity V. However, since the 

change is purely notational, the form of (7.14) and 

(7.15) is unmodified. He now compute the strength of the 

-field in the ne~'l 'stationary' frame K, our former K. From 

(7.14) and (7.15), we have in the new notation: 
1./ )-I/'Z. f\ ( "L '1..."1.)'1,. '-1 = [(Ex.)'~ (E )"1.]"1.; (,_V/~1. \IC..~x. ~o - (7.17) 

E. }- (j.l_'''YC'Z.)-Ix."1--+!''LJ3h. 

By (7.16), we know that the direction of the field is 

given by the radius vector frOID the instantaneous position 

of the point charge to the observation point. Since the 

origin 0 1s arbitrary, this result is general. However, 
-, 

there is a significant difference between the new field E 

and that of (7.6). Taking the curl of (7.6), we have: 

(7.18) 

This is a necessary consequence of the radial symmetry 

of the field of a stationary charge. We calI su ch fields 

conservative, and it is this that permits us to express 

them as the gradient of a scalar. In general, for any 
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electrostatic field: 

§-Ê.dS = 0 (7.19) 

However, inspection of (7.17) reveals that the values of 

the physical coordinates X and Z are no longer formally 

interchangeable. In short, our new field, while still 

radial, is no longer radially symmetrical. In particular, 

the field at right angles to the x-axis, the direction of 
-7 -.., 

V, will be stronger than the field parallel to v. (7.19) 

will no longer hold and, accordingly, no static charge 

configuration could produce it. In differential form: 

or, 

(7.20) 

(7.21) 

At first sight, the principle of relativity 

seems to have been violated. We arrived at the condition 

(7.20) via a transformation from one inertial frame to 

another. Surely, the field equations should be covariant 

under such a transformation. For the moment, we shall 

content ourselves with a partial resolution of this 

problem. Firstly, the situation is somewhat analogous to 

the issue of the proper time interval which was discussed 

in Chapter V. The non-covariance of (7.19) is based on 

the selection of a privileged point charge, namely one 

that is at rest in the 'stationary' frame. If we considered 

a similarly distinguished point charge in the 'moving' 

frame, we would find that the effect 1s completely 

reciprocal between the two frames. Thus, the discrepancy 
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between (7.19) and (7.21) does not provide a basis for 

distinguishing one inertial frame from another or, in 

particular, for distinguishing a privileged frame. On the 

other hand, it is true that we have contrived a velocity 

dependent force field. The velocity dependent factor 

must be worked into the field equations to make them 

covariant. The study of the covariance properties of the 

electrostatic field does not reveal a direct violation 

of the principle of relativity, which would falsify our 

thesis since the one is formal while the other is physical, 

but does reveal that electrostatics is an incomplete 

theory. Ultimately, we shall find that a complete 

relativistic theory must have as its primary object the 

electromagnetic field, of which the electrostatic field 

is a very special case. However, we must first return to 

a piece of unfinished business. 

We noted in our last physical example that at 

an observation point ten miles from the point charge, 

the field vector will be in the radial direction. This 

implied that the source had produced a field prior to its 

reaching 0 at t = t = O. Suppose, now, that we have a 

frame of re~erence K in which the point charge 1s in 

uniform motion in the +x-direction. When it reaches the 

arbitrary origin 0 it is brought instantaneously to rest 

at t = O. At the observation pOint(x,z) at t = 0, the 

f1eld must be given by (7.17), i.e. the field of a moving 
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charge at the origin. However, at any other observation 

point, at a distance s < ct from 0, the field will be 

that of a motionless charge. Hence, there must be a 

sudden change in both the magnitude and direction of the 

field. Let us take two observation points: Pl(xl,zl) in 

the field of the stationary charge and P 2 (x2 ,z2) in the 

-field of the moving charge. The direction of E at Pl is 

-measured at the same time as the direction of E at P2 • If 

... 
e is the angle which E(l) makes with the x-axis and ~ is 

~ 

the angle which ~(2) makes with the x-axis, then a shrewd 

application of Gauss's law, which we need not explain, 

will yield the relation: 

tan ~ = (tan ex 1 _ v 2 / c 2 ) -t (7.22) 

Thus, to conform to the principle of relativity, it is 

necessary that the direction of the electric field undergo 

a precession determined by a change of velocity relative 

to an inertial frame. At a later point in this chapter, 

we shall find that such effects have profound significance 

in the formulation of the Principle of Special Relativity. 

'VIe have, so far, considered the force field 

generated by a uniformly moving charge. We now consider 

the case of the force exerted on a charge wh1ch moves 

uniformly in the field of an existing charge configuration. 

In the case of an electrostatic field, the answer 1s -v1rtually at hand. Given a point charge with veloc1ty V 

with respect to K, transform to the rest frame. of the 
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charge K. The force on the point charge will be given by: 

-=' -:9 
F = qE (7.23) 

We th en find the transformation law for the force. We 

shall omit the mathematical computation, since we have 

not yet introduced the convenient four:vector formalism 

in this chapter. However, we state the result: 
-::> 
F -") F = qÊ (7.24) 

In words, the force of an electrostatic field on a moving 

charge is independent of the velocity of the charge. 

Relativistic factors enter the computation of the 
-? -":> 

components of F and E, but they cancel out to give (7.24). 

To consider the force on a charge which is 

moving in the field of a non-static configuration, it is 

necessary to turn at last to the magnetic field. We shall 

begin by considering the idealization of the magnetic 

field which is produced by steady currents and constant 

charge densities. This aspect of electrodynamics is often, 

in analogy with electrostatics, given the unfortunate 

title of magnetostatics which, at least from the ~perian 

point of view, is actually a contradiction in terms. 

It is a well-established empirical fact that 

moving charges exert forces on each other whose magnitude 

is velocity dependent and whose direction is at right angles 

to the velocity and a unique spatial direction. It is 

possible to represent this relatively complicated force 

-" 
by utilizing a vector field B given by: 
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-" -::> -4 

F = (q/ c) (V y. B) (7.25) 

For example, current-carrying parallel wires will attract 

or repel each other depending on whether the currents are 

respectively in the same or opposite directions. When a 

charge density J is in motion it constitutes a flow of 

charge. We define the flow density or current density by: 

-'" --, 
J = JV (7.26) 

The total charge passing through a surface per unit of 

time is the electric current, given by: 

S..., -'> 

l = J.da 
5 

(7.27) 

Consider an inertial frame K with a current-

carrying wire Nhich is aligned with the x-axis of S. The 

positive charges are fixed in the wire while some of the 

negative charges are moving in the +x-direction with 

->:> 

veloci ty V. Let us suppose that.f... = - f-, so that the 

wire is electrically neutral and generates no electric 

field. At a distance r from the wire, a negative point 
~ 

charge q is moving parallel ta the wire with a velocity Vo 

in the +x-direction. Consequently, the moving charge must 

be deflected towards the wire under the action of the 

-
magnetic force given by (7.25). We now transform to K in 

which q is at reste The charge can no longer experience 

a magnetic force since its velocity is now zero. However, 

the principle of relativity requires that the charge still 

be deflected towards the wire. We assume that there must 

be an electrlc force acting on the charge. With respect 
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-
to K, the wire is now moving in the -x-direction, with -the velocity Vo. By (7.9), the charge densities f~ and f-

must undergo a relativistic change. The positive charges 
~ 

are now moving with velocity Vo in the -x-direction, while 
~ -") -':> 

the negative charges are moving with velocity V - Vo = V1 

in the -x-direction. Hence, the new charge densities with 

-respect to K are given by: 

- 2./ )-Ih .. ~ .f 't ::. f't ( ,- \/0/ C 1.. 
- )_Ih. f- =- f- (J - V, 1../,1.. 

(7.28) 

Clearly, the wire is now positively charged and produces 
-3> 

an electric field E which exerts a force on the stationary 

charge towards the wire. The scientific reader may be 

disturbed by the qualitative nature of the foregoing 

account. However, we merely wish to interpret in an 

intuitive way the interrelationship between the electric 

and magnetic fields from the standpoint of the principle 

of relativity. 

We now state the general relationship between 

--> -the magnetic field B and the current density J. The total 
--, 

current enclosed by a curve C is equal to the flux of J 

through a surface which spans C. Thus: 

S 6 . J s = ~'t ~ f. J a: 
s ~ 

3y Stokes' theorem, we have: 

J€ . .1~ - ~SlQ~€).Jcr 
c s 

(7.30) 

vlhence: 

(7.)1) 
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Finally, the magnetic field 1s determined by the further 

condition: 

(7.32) 

That is to say, unlike the electric field, the magnetic 

field has no sources, i.e. there are no magnetic charges. 

we may now summarize the basic equations of 

electrostatics and magnetostatics: 
...., 

4-\rf " • E -..., 
"c~ :: 0 

'\J 
.-

Y-C: 0 (7.33) 
-") 

\.t \'r ~ '3 )(oB = - .j c. 

Ho't..rever, when there are changes in the currents and char):Çes, 

the time derivatives of the fields must be included. Then 

the general equations of the electromagnetic field are 

given by Haxwell's equations: 
~ 

\). ~. -

(7.34) 

The field equations are, of course, to be supplemented by 

the force law: 

F' = qÊ + (q/c) (V y.. B) (7.35) 

We conclude this part of the presentation with 

two further elementary points. Just as the electrostatic 

field could be expressed in terms of the gradient of a 

scalar potential, so the magnetic field may be expressed 
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in terms of the curl of a vector which is called the 

vector potential: 

(7.36) 

Secondly, we wish to comment on the significance of the 

first term on the right hand side of the last of the 

equations (7.34). 

Since charge is invariant, the amount of charge 

leavi!1g an enc1.o,sed volume must precisely equal the 

decrease in charge in that volume. This appears to be a 

tautology but actually has physical significance. Accordin~ly, 

we may express the relationship between current density 

and char~e density by a so-called equation of continuity. 

Incidentally, 'i'1hile charge invariance is El. sufficient 

condition, it is not necessary for charge conservation. 

(7.37) 

But in the case of a 'stationary' current, we have: 

(7.33) 

In the case of a varying charge distribution, by (7.37): 

(7.38) 

However, the divergence of the curl of an arbitrary vector 

vanishes identically. Renee, by (7.33), we have: 

'1 . L "Q ~ ~ ):= ~ "'. f:::. 0 ( 7 . 39 ) 
Co. 

Obviously, (7.39) is incompatible with (7.37) and, 

since we cannot doubt the truth of (7.37), it follows that 

(7.33) cannot hold for varying currents. In fact, even 

'~.~:O· is a gross idealization in magnetostatics. In any 
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event, it is clear that another term must be added to 

(7.33) in the physically real case of varying currents.. 

According to Faraday's law, a changing magnetic field is 

accompanied by an electric field. 

(7.34) 

It is natural ta assume, and this is strictly heùristic, 

that a changing electric field 'induces' a magnetic field. 

Thus, by analogy with (7.34), we 

J... ~ê ..... 4-""-1 
rewrite (7.33) as: 

- c... oC c. (7.40) 

This is not necessarily a physically true law, but by 

virtue of (7.37) it does satisfy the identity (7.39), so 
..., 

that the contradiction is resolved. The new term.l ~ E is 
c..~ 

called the displacement current. Faraday failed to discover 

the displacement current, since for relatively slow changes 

in the field, the convection (and conduction) currents 

alone suffice to account for observed magnetic effects. 

After a lengthy discussion, which was trying 

for the philosopher and excruciatingly boring for the 

physicist, we are now ready for the payoff which begins 

with the rewriting of Classical Electrodynamics in 

manifestly Lorentz covariant forme It is weIl known to 

the student of elementary vector analysis that when one 

performs a coordinate transformation, for example from 

Cartesian to polar coordinates, it is not only the vectors 

but also the vector operators that must be appropriately 

modified. Similarly, in the four-vector formalism, it is 
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normal to expect the four-vector operators to differ from 

their three-vector counterparts. Rowever, so long as we 

continue to use I1inkowski coordinates, the modification 

is the most simple and natural one possible. We simply 

replace "Y by 0 given by: 

o =- cH· l -+ ~ +- l + ~ 
}::x.' ~x." 0)(.' ~x\t 

(7.41) 

Similarly, the four-vector counterpart of the Laplacian, 

known as the d'Alembertian, is given by: 

0 '2. -cio{ ~1. .... ~"I. + L 2 (7.42) - . ~x ~:x.~~:xt. ~x'l ..... ox .. ~x.'t 
He shall, however, make use of the comma notation to 

signify four-dimensional differential operations. Thus, 

the four-divergence of an arbi trary vector V t" is gi ven by: 

o V'" :: cl,. V"') t" ( 7 • 4 3 ) 

The equation of continuity (7.37) may be 

re'trri tten as: 

'J .:S 1" )f :; O:lM = :r~ lI"' 
"bt 

(7.44) 

(7.44) is Lorentz covariant provided that J'" 1s a four-

vector. Now J~ may be written as: 

J"":; (-J=') i.. cf) :; (f V, l. C. f) = f CI - "Y,'1) 'h V~ (7.45) 

u~ is the already familiar four-velocity, and we gather 

from (7.9) that: 
1../ )I/-z. () 

f(l~v/cl. = JO ( 7.46) 

is the proper charge dens1ty. Renee, J~ is the four-current 

density given by: 

J't' :; fo U~) (7.47) 

wh1ch is rnan1fp.stl.v Lorentz covariant. Jt" is a useful 
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theoretical quantity, since Ji gives the current density 

4 
while J gives the charge density. 

It is weIl known in Classical Electrodynamics 
~ . -"") 

that whereas the vector potential A de termines the fleld 5, 

the converse does not hold. Since the curl of a gradient 

i8 identically zero, it is always permissible to add such 
-"? -"? 

a quantity to A without affecting B. However, to preserve 

the consistency of the equations, it is necessary to make 

a corresponding. c.lilange in the scalar potential. Thus, 

we have the so-called 5auge transformation: 

(7.48) 

~is known as the gauge function. If it is made to satisfy 

the condition: 

::. o 

which is called the Lorentz gauge, there follows: 
-"> ,"l. iO.~ 

","l..~ _ .Lc.'\. 0 n 
~ t'l. 

and, "Q 1. <t - 1-'1. ~"l. <\l _ - 4. n- f 
C t> t"l.. 

Defining the four-vector potential A~ by: 

(7.50) 

(7.51) 

RM ~ol-5. (~) l. ~) (7.52) 

we may combine (7.50) and (7.51) in the form: 

A ,.. - 4- n- , ..... 
) vV - - -c::- " (7.53) 

-Given the values of A and ~ in an inertial frame K, the 
-P.O ...., 

corresponding values of E and B are given by: 
-- Il ~Â t: =- -~'t'--t ~ 

~ - "~Â 
(7.54) 

(7.55) 
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Let us now see how (7.54) and (7.55) may be 

combined by way of the four-vector potential. By (7.52), 

(7.54) and (7.55), we may work out a semple component 
-"'> -"> 

of E and one of B. 

-i.E, =- p\4)\ 

~\ = A'!,2. (7.5ô) 

In general, we define the electromagnetic field tensor: 

(7.57) 

where F'"'v is given by the matrix: 

(-~3 P.>? - B 2- - ~ El 

Ff"\\1 - 0 ~, - l. E 1-- (7.57a) \).. - l>, 0 . -
- 1,. t3 

LEI \. E '1. t. E3 () 

Naxwell's two sets of equations may now be written as 

a single 'source' equation and a single 'internaI' 

equation. 

} (7.58) 

So far we have shawn that Maxwell's equations 

assume a simple and elegant form in which their Lorentz 

covariance is manifest. f"loreover, we perceive that the 
-"> 

peculiarities of the field B, in particular its being 

a so-called axial vector, are simply consequences of its 

actually forming part of an antisymmetric tensor. 

Moreover, in the course of our presentation, we have 

attempted to show that the Lorentz covariance of (7-.. ·-58) 
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has a physical basis of which the tensor formalism is 

the mere expression. A mathematician confronted by (7.58) 

needs merely to be told that they are four-tensor 

equations to be able to assert their Lorentz covariance. 

However, that (7.58) represents a real field is another 

matter. To know this, one must understand the physical 

basis which justifies the claim that (7.58) are laws of 

nature. It is not the case that one can ascribe geometrical 

properties to the representatio~s of physical quantities 

ad libitum. That linear momentum is a polar vector, that 

angular momentum is an axial vector are not conventions 

of Classical Mechanics but the mathematical representation 

of physical reality. By the same token, that the electro­

magnetic field is an antisymmetric space-time tensor is 

not a formaI thesis of mathematics but an expression of 

'the way things are'. 

Our next step is to formulate the force law in 

terms of the electromagnetic field tensor. We shall find 

that this has particular philosophical significance. We 

remind the unmathematical reader that a four-tensor 

equation that holds in one inertial frame must hold in 

every inertial frame. (This will be generalized in 

Chapter VIII, where we introduce Riemannian tensors.) To 

construct a tensor equation, a common stratagem is to 

choose a frame of reference, in this context inertial, in 

which it acquires its simplest form. It is then guaranteed 
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to hold in any other inertial frame. Our task, now, is to 

de termine the force exerted on a moving charge in the 

electromagnetic field F~v. Following the aforementioned 

stratagem, we choose a frame K in which the charge is 

... 
instantaneously at reste Let E be the electric field 

intensity at the location of the charge in K. It follows 

froID (6.37) that the four-force exerted on the charge q 

must be: 

Ft' = (qÊ,O) ( 7. 59) 

The four-velocity of the charge in K is given by: 

Ull = (O,O,O,ic) (7.60) 

VIe n01;'; form the quanti ty: 

Ft'vU 1( = ? (7.61) 

4 
The only non-vanishing component of UV is U • Hence, 

(7.61) reduces to: 

(7.62) 

Referring to the matrix array (7.57a) of F~v, we may write: 

F~~U~ = -ic(iE1,iE2,iE3'0) = c(E1,E2,E3'0) (7.63) 

oy (7.59) and (7.63), we have: 

(q/ c) F~ItULt = Fv-t (7.64) 

In general, therefore: 

(7.65) 

The reader may verify that by letting the indices run 

from 1 to 3, the familiar Lorentz force equation is 

obtained. With ~ = v = 4, the equation vanishes identically. 

However, we are not interested in the classical 
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form of the Lorentz force, but directly in (7.65). The 

reader will recall that our definition of a fundamental 

law precluded it from containing terms which depend 

essentially on a particular frame of reference. It was 

for this reason that the laws of sound propagation could 

not possibly be regarded as fundamental. But, by the same 

token, we would be obliged to exclude the force equation 

of electrodynamics, since it contains a velocity dependent 

part which depends essentially on the frame of reference. 

One might even go so far as to say that the classical 

Lorentz force equation is only covariant under a pure 

coordinate transformation, in particular, a rotation of 

the spatial coordinates, since the magnetic force (although 

not the field) could be ~ransformed away' by a Lorentz 

frame transformation. On the other hand, the tensor 

equation (7.65) con tains the four-velocity U~ which has 

the same value, i.e. norm, in aIl inertial frames. It is, 

of course, true that the spatial components do not vanish 

in every frame, but the values of the components are merely 

incidental just as in the case of three-vectors. We 

conclude, therefore, that the four-dimensional formalism 

and, in particular, the combined electromagnetic field 

tensor is not merely a more elegant way of representing 

electrodynamics but the only philosophically acceptable 

way. 

Such consideration~,however, do not apply to aIl 



tensorial laws. One can learn 1ittle from an examination 

of the mathematica1 forma1ism of a theory, per ~. One 

must a1so understand the physics which it purports to 

~ -represent. The distinction between E and B in Maxwel1's 

equations is frame dependent and can, according1y, have 

little to do with the structure of the global patterns 

of nature. Such considerations add even further support 

to our distinction between a Ga1ilean frame and a Lorentz 

frame, namely that the latter must include sorne sort of 

clock, which, in the former is regarded as a test instrument, 

ancillary to the spatial frame of reference. 

Our treatment, to this point, has mere1y 

scratched the surface of the intriguingly rich the ory of 

electrodynarnics. In particu1ar, we have said nothing of 

the action of the e1ectromagnetic field on matter. In the 

Appendix l'le rapid1y cover certain more advanced topics, 

particularly by taking into account the mechanica1 mass 

of our point charges. However, we have exposed enough of 

the the ory to dea1 in a precise fashion with the Princip1e 

of Special Relativity and its connection with Lorentz 

covariance. 

In the first place, it is clear that the 

restricted Lorentz transformation Ls is a subgroup of the 

complete group and is, moreover, a relativity group of 

electrodynamics. The inhomogeneous spatial rotation 

group Ri3 is a subgroup but not a re1ativity subgroup. 
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When dealing with the Galilean group, we pointed out that 

the general Galilean transformations were the realization 

of the direct product Ri3 ~ Gs • One would expect that the 

general Lorentz transformation could be represented by 

the direct product Ri3 ~ Ls. Rowever, such is not the case. 

The proof, which is not difficult but too long to include 

here, is given by N~11er(1952, pp. 118ff.). Specifically, 

if the element of Ri3 is the identity element, then the 

resultant of two successive transformations: 

(7.66) 

which is given by: 
- .u - 'V V o{= XV -x..p.( --....., x..n = 0<.. ~ f CI. f V.A. = (" V (7.67) 

is not, in general, a Lorentz transformation without 

rotation. 

In simple terms, if Sand S are fixed systems .. 
of coordinates of K and K with parallel axes, and S is the 

coordinatization of K which differs from K by a restricted 

Lorentz transformation, then the image of an arbitrary 

- = ~ vector V in K will not, in general, be parallel to V. 

Th~s is nothing but a manifestation of the Thomas precession 

effect which we have already mentioned. Furthermore, it 

may be shown that this effect is independent of the 

coordinatization. That is to say, it is a time dependent 

effect. Renee, to preserve the content of the fundarnental 

equations of electrodynamics, it is necessary that the 

inertial frames undergo spatial rotations. Of course, these 
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need not be continuous rotations, in 'l'l'hich case the 

frames 'tvould not be inertial. If .we think of an abstract 

vector space in which inertial frames are moving uniformly 

in aIl directions, then the transformation (7.61) would 

not relate a K to a K according to the laws of vector 

addition. The angle of precession will depend on the 

relative velocities and directions of the inertial frames. 

We have already come across an example of s~ch an effect 

in (7.22) which revealed that the direction of the field 

->;1 

vector E depended on the velocity of its source with 

respect to an inertial frame. Other examples exist to 

confirm that this is a physical effect which is independent 

of the coordinatization of the frames of reference. Hence, 

it must be taken into account in determining the relativity 

gro~p of ~pecial rtelativity physics. 

Actually, this consideration sheds considerable 

lisht on the difference between a restricted, in our sense, 

Galilean transformation and a restricted Lorentz 

transformation. The extent to which this is ignored by 

the authors of textbooks on physics is as remarkable as 

it is deplorable. In elementary texts on Newtonian 

Hechanics, the restricted Galilean transformation is usually 

given with the correct, although often unstated, implication 

that the general Galilean transformation is physically 

the same as the restricted one but with a different 

coordinatization. It so happens that "t'1hen three Galilean 
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fra~es are in relative motion with non-parallel relative 

velocities, the relationship between the first and the 

third is representable by a restricted Galilean transform-

ation. But Nhen the analogous situation arises vis à. vis 

three Lorentz frames, the relationship between the first 

and the third ~ill generally involve a rotation of axes. 

The unsuspecting student who graduates to Special Belativity 

physics will be presented with the restricted Lorentz 

transformation, e.g. in Bergmann(1942), and presume that 

it is simply a particular way of representing the general 

Lorentz transformation, a perfectly natural but false 

supposition for which the author of the text is responsible. 

In fine, when we speak of the restricted Lorentz 

transformation as a subgroup, we imply that the relative 

velocities of aIl the elements of the subgroup are parallel, 

which is a real physical restriction. In the Galilean 

case, 'restricted' is simply a figure of speech and a 

formaI simplification attained by the most convenient choice 

of coordinates. 

The covariance group of Newtonian Mechanics is 

Gs ~ Ri) r T, while its relativity group is the subgroup Gs • 

The covariance group of Special Relativity physics is 

the complete Lorentz group Lc. The restricted Lorentz 

group, in its true meaning, is a relativity group but not 

the complete relativity group. We cannot represent the 

complete relativity group as Ls X R), since this would 
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entail that when Ls is the identity element, RJ is a 

relativi ty sUb,:sroup when, in fact, i t is only 8. covariance 

sub2;roup. 'rhus, we are forced to represent the relativi ty 

group of Special Relativity physics simply as Lr' the 

group of general Lorentz transformatioŒwith rotation. lts 

only relativity subgroup is Ls. He are now, at last, in 

a position to formulate the Principle of Special Relativity. 

[L1 is the set of fundamental laws of a given theory. 

[KJ is the set of possible frames or reference. 

tT1 is the set of possible frame transformations modelled 

by elements of the transformation group Lr . 

. for any l E:: tL1 and any t f: tTs, there exist at least 

two distinct ki,kj E: ~E1, such that l w.r.t. ki e-[KS 

~ t ( l) =s. l w. r . t. k j é- ù< 1. 

It is interesting to compare this with the 

formaI statement of the Principle of Classical Helativity. 

In the first place, it is more general since it is, in 

principle, applicable to any physical theory. In the 

second place, i t clearly ShOl-lS the necessi ty for distinguish-

ing between a Galilean frame and a Lorentz frame, since 

the distinguished subset tI~ c tK~ differs in the two 

principles by virtue of the profound difference between 

the signification of LT~ in the two cases. As to the 

greater generality of the Principle of Special Relativity, 

it could be objected that Classical Relativity could have 

been endowed with the same degree of generality had tL~ 
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been interpreted with the same degree of freedom in the 

two cases. In fact, in his original paper, Einstein(1905) 

seems to have been motivated partly by philosophical 

considerations in applying the Principle of Special 

Relativity to the laws of nature in general. vIe have already 

remarked, however, that attempts to broaden the application 

of Classical Relativity, for example in extending it to 

electrodynamics, failed to withstand experimental testing. 

It is true that in virtue of its generality, Special 

Relativity may play a heuristic role in the construction 

of new theories and the modification of existing ones, but 

this in no way supports its conventionalistic interpretation. 

The Principle of Special Relativity may be of heuristic 

value in virtue of its generality, but the basis of its 

generality is its factuality. 

Finally, we should mention the so-called reality 

conditions on the transformation matrix ~~y, since they 

must equally be kept in mind in the context of General 

Relativity. In the form in which we now state them, they 

depend on the Minkowski coordinates, but a corresponding 

set exists for real coordinates. It is obvious that ~~j 

must be real since they are the coefficients of a pure 

spatial rotation. Similarly, ~~~ must be real. It is 

equal to (1 - v 2/c2 )-i, and the square root must be taken 

as positive. This is the necessary condition for: 

~ ~ :> cU> 0 (7.68) 
~t ) ';)~ 
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In words, it is impossible to go backwards in 

time, which is why the one-parameter group of time 

translations cannot be part of the relativity group of 

any theory. We refer to the condition (7.68) as restrictin~ 

the Lorentz group to the orthochronous subgroup. The 

reader should be clear concerning the distinction between 

so-called time reversibility in which time is treated as 

an independent parameter, and the ~roup of tirne translations 

in which time plays the role of a coordinate variable. Time 

reversibility sirnply means that it is possible to change 

the sign of the time parameter throughout an entire the ory 

without altering the significance of that theory. It is 

a purely mathematical peculiarity which has nothing to do 

with science fiction. On the other hand, the time translation 

group entails the possibility of going both ways which 1s 

why it isexcluded from the relativity group of every 

theory.(Cf. Bunge, 1959, Ch. 10.) 

To return to the Lorentz matrix, oI..ilt and Gl.lti. must 

be irnaginary. These conditions entail that there is no 

permissible Ninkowski rotation isomorphic to a Lorentz 

transformation wh1ch transforms a spatial axis into a 

temporal one or vice versa. Moreover, it follows that a 

time-11ke vector cannot be transformed into a space-like 

vector or vice versa by a Lorentz transformation. 
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CHAPTER VIII 

'rHE PRINCIPLE Or' GENERAL RELNI'IVITY* 

3efore dealing specifically with thoee aspects 

of General Relativity which pertain to this dissertation, 

namely the significance of ~eneral covariance and its 

relationship to the Principle of General Relativity, we 

shall permit ourself the luxury of setting the scene in 

that rather discursive manner that few philosophers are 

able to resist. Since fe'\lJ authorities appear to agree on 

even the very meaning of the theory; on whether, for 

example, i t is primarily 8. theory of gravitation or 

sornething rnuch broader, we indicate what the theory signifies 

to the present wri ter - a time .Z"or considerable temeri ty. 

Let us first review sorne of our principal points 

so far. il/e have shown that both the Princlple of Galilei 

Covariance and the Principle of Lorentz Covariance are 

strictly formaI. It is sheer nonsense to regard them as 

rival hypotheses or even as rival metatheoretical theorems. 

From a formaI standpoint, each is correct vis à vis its 

particular referent. The metastatement:"'The laws of 

Newtonian T>1echanics' are Galilei covariant," happens to 

be true. 3y the same token, the metastatement: n'The laws 

of electrodynamics' are Lorentz covariant," also happens 

* The non-mathematical reader should turn to the Appendix 
before reading the present chapter. 
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to be true. 'rhere is abso1ute1y no contradiction, imp1ied 

or explicit, between these metastatements. 

On the other hand, we distinguished two principles 

of re1ativity: Classical and Special. These have been 

interpreted to be incompatible physica1 hypotheses. However, 

contrary to vlidespread opinion, their incompatibi1i ty is 

not prima facie. The one asserts ths.t the fundamenta1 

1aws of mechanics have the same content with respect to 

a distinguished c1ass of reference frames which are 

ca11ed Gali1ean frames, whi1e the other asserts that the 

content of the fundamenta1 laws of electrodynamics have 

the same content in a distinguished class of reference 

frames which we have chosen to calI Lorentz frames. 

Superficia11y, the two claims appear to be compatible as, 

indeed, logica11y they are. However, the Lorentz frame 

is a mechanica1 object and, as such, is subject to the 

lal"lS of mechanics. The physical coordinates that occur 

in e1ectrodynamics refer not only to the position of charges, 

wave fronts, etc. but a1so to the material particles 

which compose the frames of reference. Ultimately, 

therefore, either the laws of mechanics would have to be 

modified to satisfy the Principle of Special Relativity 

or those of e1ectrodynamics made to satisfy the Principle 

of C1assical Relativity. As it happened, the former course 

led to confirmable consequences while the latter did not. 

'rhe outcome of the clash between the two hypotheses s.nd 
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the consequent overthrow of one was the birth of Special 

rlelativity Mechanics. That is to say, the Principle of 

Special Relativity led to new physics, confirming our 

contention that its status is that of a physical hypothesis, 

i.e. an object staternent. (Later we shall find a deeper 

but more formaI reason for the necessity of subsuming 

both mechanics and electrodynamics under a single principle 

of relativity.) 

As originally expounded by Einstein, the Theory 

of General aelativity is a natural extension of the Theory 

of Special Relativity, which was dictated by epistemolo~ical 

considerations. Very simply, since physical processes are 

indifferent to the method of coordinatizing the space-tirne 

manifold, the fundamental laws of physics should be 

indifferent to an arbitrary choice of coordinates, subject 

only to sorne obvious formaI restrictions, the most 

important of which were mentioned in Chapter II. In 

particular, this entails that the time dependent 

transformations which model frame transformations need 

not be restricted to the linear transformations of Special 

Relativity but may be chosen arbitrarily. Hence, the 

Theory of General Relativity would not distinguish a 

privileged class of inertial frames. A frame of reference 

which is accelerating with respect to a Lorentz frame 

would be just as 'inertial', from the standpoint of 

General ~elativity, as the Lorentz frame, itself. 
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~Jhile the present wri ter admi ts to 8. stron~ 

prejudice against any attempt to derive matters of fact 

from epistemic premises (Kantianisl:J.), there is no doubt 

that such reasoning may be suggestjve, albeit the same 

could be said of dreams and visions. However, Einstein 

might have provided an equally heuristic but philosophically 

more palatable introduction to his new theory on 

methodoloP,:'ical grounds rather tha.~ episternological ones. 

From a methodological standpoint, the most unsatisfactory 

aspect of any restricted principle of relativity is the 

occurrence of so-called inertial forces. They are 

frequently referred to as 'fictitious' forces, with the 

implication that they have arisen simply from en incorrect 

choice of reference frame. They provide considerable 

grist for the mill of the conventionalists, who picture 

them as mere book-keeping entries which enable us to 

retain the simple but otherwise valueless 'F = mâ'. 

In fact, in this modern age, very few of us 

have the opportunity to occupy ev en a quasi-inertial frame 

for very long and, consequently, have had aIl too 

intimate an acquaintance with such 'fictions', which we 

know to be only too real. Accordingly, Einstein might 

just as well have satisfied his philosophical comtemporaries 

by arguing that the recognition in the Theory of Special 

Relativity of a privileged class of inertial frames was 

unsatisfactory on the ground of its requiring the relegation 
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of a large class of physical phenornena to the status of 

quasi-occult entities. That is to say, in a methodologically 

(and ontolo~ically?) sound theory, all phenomena within 

the scope of that theory should have the sarne status of 

reality . .2ven if "l'le could, unlike the present writer, 

comprehend the concept of degrees of reality (as in 

neo-.ilatonism, Scholasticisrn ~nd EXistentialisrn), one must 

at least accord the same reality status to entities or 

phenomena of a similar kind. That is to say, it is 

uninteIli3ible, at Ieast to the present vrrjter, to sneak 

of sorne forces' having a greater degree of reality than that 

of others. ~hus, Einstein might have argued that a 'complete' 

la~l of nature should incorporate the so-callerl inertial 

forces. Accordingly, such a Iaw would hold with respect 

to frames of reference in which inertial forces occur 

as weIl as with respect to those in which they do not occur. 

Admittedly, many of the subsequent remarks of 

Einstein amounted to a recognition of precisely what we 

have been saying, although often on the basis of the 

unclear and unnecessary l'·lach· s Principle. The point we llJ"ish 

to ~ake is not that Einstein was ignorant of the foregoing 

considerations but merely that they constitute a more 

'physical' philosophical motivation than the Principle of 

General Covariance, which Einstein, himself, subsequently 

came to regard as purely formaI. The argument based on 

the Principle of General Covariance is possibly more 
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appropriate to the doctrine of kinematical relativity 

which was a more or less crude intuitive precursor to the 

Theory of General Relativity. 

Such considerations lead us naturally to the 

celebrated Principle of Equivalence. Actually, there are 

three so-called principles of equivalence connected with 

~eneral Relativity: viz. the equivalence of gravitational 

and inertial mass, which has at last been 'committed to 

the flames' by Bunge(1967a, pp. 207ff.), and the two 

theorems of General Relativity to the effect that there 

is at least one coordinate system with respect to which 

a static homogeneous gravitational field vanishes and 

that there is at least one reference frame in which the 

four-acceleration of a test particle vanishes. (Cf. Bunge, 

2E. cit., pp. 231-232.) The last two may be combined in 

the more familiar statement of the equivalence of 

gravitational and inertial fields of force. It is to the 

latter that we now refer. In popular treatments, this 

principle is usually misrepresented as asserting that a 

gravitational field may be transformed away by the selection 

of a sUitably accelerating frame of reference which is 

attached to a particle which is moving under the influence 

of such a field, just as inertial forces may be transformed 

away by the selection of a Lorentz frame. Hence, it is 

held to follow that gravitational forces must have the 

very same status as 'fictitious' forces, since all frames 
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of reference are equivalent. In fact, of course, this 

is not true. While it would be possible to attach a 

reference frame to a single particle whose trajectory is 

a free-fall, it would not be possible to attach a single 

frame to two such particles in different regions of space. 

To be more precise, such a transformation could only hold 

locally in the case of real, non-uniform gravitational 

fields. 

Even in reputable treatises on the subject of 

relativity physics, the analogy is often made between 

the transforming away of a magnetic field and that of a 

gravitatio~al field. The analogy is extremely weak on 

two grounds. In the first place, it only works for 

electrostatic configurations and, in the second place, 

ev en in theele~rostatic case, the electric field will 

persiste From the deeper standpoint which postulates the 

existence of a single electromagnetic field, F~~ nothing 

is transformed away in any case but certain components 

of a tensor. In short, we transform away nothing, but 

merely give a different representation of the self-identical 

persisting field. 

However, the Principle of Equivalence is a very 

valuable, albeit qualitative, guide to the approach to 

the Theory of General Relativity, so long as it is 

interpreted to mean only that inertial forces are similar 

in kind to gravitational forces, insofar as both produce 
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accelerations which are independent of the mass of the 

accelerating body. As such, the principle is strictly true, 

and this is how we interpret it. Since this is the case, 

it would seem plausible to attempt to construct laws in 

which the 'fictitious' terms may be assimilated as special 

cases of gravitational terms, Just as the electrostatic 

field, with its magically disappearing magnetic aspects, 

is a special case of the electromagnetic field. Accordingly, 

a theory of general relativity could be realized in the 

form of a generally relativistic set of gravitational 

field equations. 

To anticipate the mathematical apparatus which 

we shall shortly introduce, it is fairly easy to show that 

if the kinetic energy of a mechanical system be identified 

i h 
~ ·i·k 

w th t e quadratic form: T = 2gikx x , the covariant 

Lagrange equation of motion may be written in the form: 

(8.1) 

where the [~~$' known as the Christoffel symbol, constitute 

a system of differential coefficients whose significance 

will be expla1ned later. The class1cal approach to 1nert1al 

forces would be to ident1fy them w1th _~:Kjikxl wh1ch 1s 

a term arising from the use of the wrong frame of reference. 

Alternatively, we may treat aIl forces as equivalent and 

wr1te Newton's law as: 

1 .. 1 (8.2) 
Fc = x 

1 1 ~ i. ~. 'Q 
i 

where Fc = F - K t x."x;. However, the combined force Fc 
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would obviously depend on the frame of reference. The 

relativistic approach is, in a sense, the diametric 

opposite of the latter, insofar as it endeavours to 

incorporate the external forces in the Christoffel symbole 

By virtue of the Principle of Equivalence, such an approach 

should be successful, at least in the case in which the 

external forces are exclusively gravitational. Thus, the 

relativistic approach would be to reduce (8.1) to the form: 

•• t 
X (8.3) 

which is the equation of motion in the configuration space 

of the system of interest. 

Unfortunately, the program of General Relativity 

is not realizable by the simple expedient of generalizing 

the classical equations of motion in this way. Specifically, 

(8.3) could not possibly serve as a generally covariant 

law of gravitation, since it would entail that the 

acceleration of a particle under the influence of a 

gravitational field would depend quadratically on its 

velocity in the chosen frame of reference. Moreover, the 

principal referent of (8.3) is not the field but the 

point particle. We merely wish the reader to contrast (8.2) 

with (8.3) to illustrate the method of approach which is 

adopted in General Relativity, which does not seem to be 

generally understood. 

Two further points which we might have raised 

in this preamble pertain to the relationship between 
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General Relativity and Special Relativity, and the sense 

in which or the extent to which General Relativity 

constitutes a 'geometrization' of physics. Both of these 

are contentious issues, but we shall discuss them only 

in the context of the more precise preseptation which now 

follows. Again, in recognition that our audience is partly 

non-mathematical, we begin with a skeletal mathematical 

exposition which the physicist should skip over. The 

reader with no training in applied mathematics should 

begin by rereading Chapter II, Sec. J. For the moment, 

the only additional notational convention will be in 

the formaI recognition of the distinction between the 

covariant and contravariant components of a tensor, which 

will be indicated by the use of subscript and superscript 

indices, respectively. 

As most readers will know, A Euclidean manifold 

is defined by the global condition: 

(ds)2 = dxidxi (8.4) 

A general Riemannian manifold is one in which the theorem 

of Pythagoras(8.4) is replaced by the more general 

condition: 

2 i k (ds) = gikdx dx , (i,k = 1,2, ••• ,n) (8.5) 

In this case, the xi are arbitrary curvilinear coordinates, 

and the gik' known as the metric tensor, may be assigned 

arbitrarily, subject only to the condition that (8.5) be 

invariant. If a tensor is attached to every point of a 
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Riemannian manifold we have a tensor field, which is an 

obvious generalization of the vector field of elementary 

analysis. However, when we attempt to define the derivative 

of a Riemannian tensor field, we encounter difficulties. 

Specifically, one cannot compare a tensor(We shall now drop 

the specification Riemannian which will be taken for 

granted.) at one point of the manifold with the same tensor 

at another point. In elementary vector analysis, two 

vectors are equivalent at different points just in case 

they have the same Cartesian components. But in the more 

general Riemannian space, such a definition breaks down. 

To surmount this difficulty, it is necessary to 

introduce a specifie law of vector displacement which 

enables us to define the derivative of a tensor. Such a 

i i 
law will enable one to compare a vector V at x with the 

vector Vi + dVi at xi + dxi • The increment in the 

components of a vector under an infinitesimal displacement 

is a bilinear function of the components Vi and the 

displacement dxk tangent to the curve along which the 

displacement takes place. The law of displacement is 

determined by: 
~ k r t ~"t.~r ~~" )x..." 

rr~ : ~~ ~) ~~ J". ')x.l);."'*'~S.t" (8.6) 

Such an object is known as an affinity or affine connection. 

The reader will note that its law of transformation is 

linear but not homogeneous. However, since the inhomogeneous 

term is arbitrary, the difference between two affinities 
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is a tensor. Moreover, it is obvious that under a linear 

transformation (8.6) reduces to the transformation law 

of a tensor. Thus, the r l~ may be regarded as affine 

tensors. 

It may be shown that the necessary and sufficient 

condition for the existence of a coordinate system in 

which the components of a vector are unaltered by an 

infinitesimal displacement is that the affinity be symmetric 

in its subscripts. Under this condition, it is possible 

to choose a local coordinate system in which the affinity 

vanishes. Such a coordinate system is described as a 

geodesic system with respect to the given affinity. As in 

the case of Cartesian tensors, which we have already 

encountered, a tensor equation is greatly simplified when 

expressed in terms of geodesic coordinates and, moreover, 

will hold in any other system. 

So far, we have imposed conditions on the 

manifold similar to those imposed in the latter part of 

Chapter IV. We now impose the further requirement that 

the scalar product of two vectors and, ~ fortiori, the 

interval (ds)2 be invariant under displacement. This 

strong requirement renders the system of coefficients r'~~ 

far from arbitrary. It is now called the metric affinity. 

The condition of the invariance of the scalar product 

uniquely de termines the affine coefficients in terms of 

the metric tensor. That is to say: 
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) 
(8.7) 

leads after expansion and various algebraic manipulations 

to: 

r i. :: J. <titi. ( )~.)~ + d ~~I\. .. )~'-~) (8.8) 
j ~ 2.."" "~x...1 1> x..\. ~:x...l 

For ease of expression, we define the Christoffel symbol 

of the first kind by: 

D K ,~1 :.J-i. 1. ( ~~~~ + )~~ - ~~~\) (8.9) 

and the Christoffel symbol of the second kind is given by: 

~(.j",1 ::oH· ~llC\",stJ (8.10) 

Whence: 

(8.1.1.) 

It is important to note that, contrary to the practice 

of several elementary expositions, the symbol of affine 

connection is not simply a different notation for the 

Christoffel symbol of the second kind. 

We now adopt the comma notation to 1nd1cate 

ord1nary d1fferent1ation and the sem1c010n to 1nd1cate 

covar1ant d1fferentiat10n. It 1s eas11y shown that the 

covar1ant der1vat1ve of a contravar1ant vector 1s given by: 

(8.12) 

S1m1larly, the covar1ant der1vat1ve of a covar1ant vector 

1s given by: 

V, ~ j = V L)j - ~ \...t j ~ V.( (8.1) 

The generalization to tensors of arb1trary rank and type 

follows naturally from (8.12) and (S.l). We a1so note 

that in a geodesic system the covariant der1vat1ve 1s 
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identical with the ordinary derivative since the affinity 

and, therefore, the Christoffel symbols vanish in such 

a system. The covariant derivative of the metric tensor 

is zero. Unlike ordinary differentiation, covariant 

differentiation is not commutative, i.e., in general, 

T;lm ~ T;ml, where T is an arbitrary tensor. 

AlI of the foregoing belongs to standard 

mathematics and has been stated without proof. We do not 

expect the philosophical reader who is not conversant 

with higher mathematics to have fully understood aIl of 

our exposition, due to its highly compressed character. 

However, it at least has the virtue of indicating what he 

needs to know as the barest minimum of mathematics to make 

sense of the Theory of General Relativity. For such a 

person, we highly recommenend the leisurely and readable, 

yet fairly rigorous, treatment of these matters by 

Schr8dinger(1950). 

We are now prepared to lay the foundation for 

the gravitational equations of General Relativity. The 

n-dimensional Riemannian manifold is now specialized to 

the four-dimensional space-time manifold. The use of the 

imaginary coordinate, which enabled us to treat space-time 

as formally Euclidean, ceases to be of any use and we 

now abandon it. We let Greek space-time indices run from 

o ~o 3 and Latin space indices from 1 to 3. Thus xO = ct. 
(L) 

We define the Lorentz metric ~ .. v:: ~"''' by diag(l,-l,-l,-l). 
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We spoke earlier of the disputatious question 

concerning the relationship between Special and General 

Relativity. While it is not the purpose of this 

dissertation to consider the finer details of this matter, 

it is obvious that the two theories are not unrelated. In 

previous chapters, we have examined the fundamental laws 

of physics under the assumption that gravitational forces 

could be neglected. And it is certainly the case that in 

comparison with electromagnetic forces they are very 

minute. Consider that a tiny magnet in picking up a piece 

of iron is able to overcome the gravitational force 

exerted on the iron by the massive earth. We would assume 

that in the complete absence of gravitational forces, the 

laws of Special Relativity physics would hold rigorously. 

Hence, the field equations of General Relativity must 

entail a global Lorentz metric for gravit y free space. 

This is not simply a heuristic correspondence principle 

but, in our opinion at least, a theoretical necessity. 

Since the Lorentz metric is intimately connected with the 

law of light propagation, in vacuo, a solution of the 

field equations for gravit y free space which did not 

admit the Lorentz metric globally would require a 

fundamental revision of the laws of optics and, mutatis 

mutandis, those of electrodynamics. For this reason, an 

axiomatization of a high leveltheory such as General 

Relativity must be treated with caution. Sometimes the 
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heuristic scaffolding may be thrown away when primitive 

concepts are introduced, but at 6ther times the scaffolding 

is not merely heuristic but also constitutive'. Bunge (1967a, 

p. 218) is not quite as incisive as we would have liked 

vis à vis his statement concerning the connection between 

the two theories, but appears to regard it largely, if 

not wholly, in terms of an heuristic correspondence 

principle. One thing, at least, is certain. General 

Relativity is not simply the generally covariant formulation 

of Special Relativity. That is to say, the casting of 

the laws of Special Relativity physics in generally 

covariant form does not yield the physical consequences 

of General Relativity. We shall say a little more on the 

subject shortly. 

An important property of a globally constant 

metric, Lorentz or otherwise, is that it may be reduced 

to canonical form throughout the entire manifold. Thus, 

one can always find a permissible mapping in which the 

affinity and, a fortiori, the Christoffel symbols are 

everywhere zero. As we know, in such a system covariant 

differentiation reduces to ordinary differentiation 

and is, therefore, commutative. This provides a basis for 

a sufficient condition for the manifold to admit a 

globally Lorentz metric. For an arbitrary covariant vector 

T"" we have: 

T,..jotp -Tt4;~d. o (8.14) 
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Although the consequence of (8.14) 1s standard, 

1t is of such great importance that we shall perform the 

ind1cated operat1on step by step for the benefit of the 

nonmathemat1cal reader. By follow1ng each step, he will 

cons1derably enhance h1s apprec1at1on of the tensor 

notat1on. We beg1n w1th the f1rst term on the left hand 

side of (8.14). 

T tt ) cl P ::: CT" ~; ri ); t3 = (T ~ j Dl) ) P - t; ~ s T d j c( - f.1p ~ T ~ j r 
- (T~'~-~~d.1))~ -~~p~ (Tl"~-~fo.~Tf)-î .. l~S(T~I~-l:1S)T<f" 

- T~,(3~ - t~d.\)(31~ - ~~,,~Ta-)p - ~~,,~ Tr'cl 

+ 1': ~ ~ l :ot~ Tf - t~d ~ \ T ~ \0 1- II p ~ t ~ a' \ T 6" 

(8.15) 

By interchang1ng ~ and p 1n (8.15) and subtracting, we 

get after relabelling dummy ind1ces: 

T~j~p-l~j~~=l:pS tf~\Ta'-~:4.~)p 11' -~t~1f;;~Ta-
Defining: + l.~,.,~)~ T ~ 

(8.16 ) 

,,~c(p : cH· t~flSt!,~ -[~ot.\)P- ~t4~{!i) +~/pSp'(8.17) 
(8.16) reduces to: 

T~j~~ -'~jpol = R'rf4 ... pT~ (8.18) 

S1nce the left hand side of (8.18) is a tensor, it follows 

that (8.17) is a tensor of the fourth rank. It is known 

as the Riemann-Christoffel tensor, and 1n the pure theory 

of tensor analysis plays the role of the commutator of 

covariant different1ation. We now have the follow1ng line 
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of reasoning. If the metric is constant throughout space, 

then covariant differentiation reduces to ordinary 

differentiation in which case the former must be commutative 

and the commutator must vanish. Rence, the condition (8.14) 

for a fIat manifold may be expressed as: 

o (8.19) 

It should be noted that although we have used 

Christoffel symbols, we have not exploited their metric 

properties. Consequently, they :·eould have been replaced 

throughout the preceding computation by symmetric affine 

symbols. Thus, our result applies to an affine as weIl 

as to the more specialized metric manifold. Furthermore, 

we have nowhere presupposed the Lorentz metric. Consequently, 

(8.19) must be regarded as purely mathematical. 

In spite of the notational simplicity of (8.19), 

as a four-dimensional tensor of the fourth rank, it 

corresponds to a system of 256 second order partial 

differential equations. Rowever, if we assume a metric 

connection, we may form the associated tensor of (8.17) by: 

9 ~'r" ~'a"" ~~p :: "~t-'\:k~ (8.20) 

which is still in the realm of pure mathematics. It is 

called the covariant Riemann-Christoffel tensor. By' 

exploiting the many symmetry properties of R~~~, it is 

pOSSible to show that of the 256 components, only 20 are 

independent and non-vanishi~g. 

Our original motivation for constructing the 
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Riemann-Christoffel tensor was to find a generally covariant 

field equation which admitted the Lorentz metric as a 

possible solution. In fact, (8.19) is sufficient but not 

neceSSarY for the latter. Two points should be noted. (8.19) 

is the condition for a flat metric of any signature. The 
Cl) 

Lorentz metrlc 5~v is a particular case which satisfies 
CL,) 

(8.19). However, as soon as we specify ~tA." as the particular 

solution of (8.19) we move from the level of mathematics 

to that of the interpreted object theory. The Lorentz 

metric is introduced for physical reasons. It is interesting 

to consider whether these reasons are simply to preserve 

the distinction between space and time or the stronger 

condition that the Lorentz metric is dictated by Spe~ial 

Relativity physics. Schr8dinger has shown(2E. cit., p. 85) 

that a global metric in which there is more than one 

time-like coordinate is analytically as weIl behaved as 

the standard () + 1) coordinatization. Hence, we suspect 

that the physically interpreted counterpart of (8.19) 

depends on the full factual content of electrodynamics in 

which the Lorentz metric, as distinct from any other 

canonical matrix, plays a special role. For this reason, 

we believe that foundation workers should tackle the 

difficult task ofaxiomatizing General Relativity in such 

a fashion that the laws of Spec1al Relat1vity would not 

be the basis of a correspondence pr1nciple to the effect 

that General Relativity must reduce to them in the degenerate 
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case of gravit y free space; but rather such that Special 

Relativity physics would be a constitutive part of the 

higher level Theory of General Relativity. 

It is clear that (8.19) is far too strong a 

restriction for a field equation in matter free space, 

since its interpreted counterpart is a law which holds 

globally for gravit y free space. It is the precise 

mathematical representation of the void of Democritus. It 

represents a 'world 'completely devoid of variety or 

content, a world of maximum uniformity. Nevertheless, it 

is important to us since we deliberately designed it to 

admit the Lorentz metric as a possible solution. Obviously, 

we must seek a generalization of (8.19) which satisfies 

our initial requirement but is sufficiently flexible to 

provide the basis for a covariant the ory of gravitation. 

The next step in the formation of the covariant 

gravitational field equations is well known to anyone 

who has a passing knowledge of the Theory of General 

Relativity, namely the contraction of the Riemann-Christoffel 

tensor. However, there is sorne room for disagreement in 

regard to the basis or motivation for this essential step. 

It could, of course, be argued that we may ignore the· 

matter since the heuristic criteria for the construction 

of a theory have no bearing on the ultimate success and 

acceptability of that the ory in terms of its providing 

a basis for correct predictions, etc. However, virtually 
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aIl writers base this step on some form of correspondence 

principle to the effect that the gravitational equation(s) 

must reduce to the Newton-Poisson equation for slow 

moving particles in weak fields, and since this may be 

achieved to a first approximation by a second order linear 

equation in joo, it is assumed that the exact covariant 

field equation would be of second order in 5~~. In other 

words, there would be ten equations in place of the single 

Newton-Poisson equation, corresponding to the ten 

independent components of the !~v. (In fact, there can be 

only six such components.) 

The present writer has already indicated his 

belief that correspondence pr1nciples are vacuous, and for 

th1s reason finds 1t interest1ng to explore metatheoretical 

indications for the contract10n of the R1emann-Christoffel 

tensor. So let us pretend that we know noth1ng of the 

class1cal law of gravitat10n and see, br1efly, how far 

metatheoretical considerations will take us. However, we 

emphas1ze that we are seek1ng indications and not an a priori 

derivation of Einstein's law of gravitation. 

In the first place, if (8.19) were an adequate 

description of the field (or lack of it), say before the 

Creation, then the entire spirit of General Relativ1ty 

would be violated, since (8.19) depends essentially on a 

fixed fundamental tensor j~~which would take over the 

role of Newton's absolute space and time. Crudely speaking, 
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if such a theory were possible, the 51lv would play the 

same role in the metrical quadratic form as Gi~ in the 

theory of Newton. The geometry of space-time would be 

absolute although hyperbol1c rather than Eucl1dean. In 

the second place, 1t has been shown by Hilbert(1915, Cf. 

also Bergmann, 1942, p. 178) that the field equations 

must satisfy four additional 1dent1ties over and above 

the symmetry conditions of the curvature tensor. These 

correspond to the arbitrary choice of eoordinates and 

are necessary for the attainment of a generally covariant 

metrie. Henee, we know on formaI grounds that the vanishing 

of the Riemann-Christoffel tensor is a neeessary and 

suffic1ent condition for the manifold to be globally 

fIat in gravit y free space and that the 20 independent 

equations must be reduced by at least four. Furthermore, 

we know that (8.19) eould not be a special case of the 

field equation in the sense, for example, in which Laplaee's 

equation is a special ease of Poisson's equat1on, since 

it is incompatible with the very idea of a principle of 

general relativity. It is natural, therefore, as a tentative 

step, to eontract the Riemann-Christoffel tensor. Fortunately, 

there 1s but one such contraction that does not vanish 

identically, namely: 

"do.. f'4 a-. p ::.. R. tt ~ (8.21) 

which is ealled the contracted curvature tensor. It is a 

symmetrie tensor w1th ten independent components. However, 
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contraction of (8.19): 
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\\~~ :: 0 (8.22) 

is a system of six second order differential equations 

which are quasi-linear in the g .... v. It may be shown, 

although actually it is obvious, that (8.22) admits a fIat 

space solution but does not require it. Thus, something 

like (8.22) would be a reasonable candidate for a system 

of gravitational equations in matter free space. 

We were able to arrive at (8.22) by formaI 

reasoning; but this is as far as we can go. There is no 

way in which metatheoretical considerations could lead us 

to the Lorentz metric, which must be postulated as the 

gravit y free solution of (8.22) on physical grounds. This 

may seem to be very little in the way of physics and a 

great deal in the way of mathematics, but we repeat our 

conviction that the privileged role of the Lorentz metric 

is based on the full weight of Special Relativity physics 

and, in particular, on electrodynamics. 

We now mention, without proof, the important 

mathematical result employed by Einstein. From the 

contracted curvature tensor, it is possible to construct 

another tensor of the same rank which has a vanishing 

divergence, which we know to be of particular significance 

in a space-time manifold. The Einstein or Ricci tensor 

is given by: 



186 

(8.23) 

It was shown by Cartan(1922) that the most general second 

rank tensor which may be constructed wholly from the metric 

tensor and its derivatives is given by: 

B~'O = (;~a--+.1'~ ..... a-- (8.24) 

However, at least for the non-cosmological form of 

General Relativity,~may be taken to be zero on physical 

grounds. Thus, the gravitational field equation in the 

absence of matter may be written as 

(8.25) 

Finally, the more general version of (8.25) may be 

constructed on the assumption that the complete energy­

momentum tensor(See Appendix) includes every form of 

matter and energy apart from gravitational energy, and we 

may write the general law of gravitation in the form: 

G-~v=KTt-'v (8.26) 

where k is a universal constant. The special significance 

of the divergenceless character of T '"'v is that if any 

quantity is omitted from it, it would be manifested as a 

force and T t'V could not, in that case, be di vergenceless. 

That is to say, the total energy and momentum in the 

universe as represented by T""vwould not be conserved even 

locally. 

To complete our exposition of the basic laws of 

General Relativ1ty, we may add a ponderomot1ve equat10n 

to the field equat1ons. The equat10n of motion of a mass 
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point moving in a gravitational field is weIl known to 

define a geodesic trajectory. This is the famous geodesic 

postulate which links the effects of the gravitational 

field to the geometry of the space-time manifold via the 

first and second derivatives of the metric tensor. In 

words, given the space-time geometry, the equation of 

motion may be derived from the variational principle: 

(8.27) 

In fact, however, the equation of motion may be derived 

as a theorem(Bunge, 1967a, p. 231; Fock, 1964, p. 240) 

from the condition: 

( 8.28) 

That is to say, the equation of motion may be derived 

from the field equations of which (8.28) is a direct 

consequence. If (8.28) is written out in explicit form 

and integrated over the volume at whose boundaries T~~ 

disappears, we are led by a straight computat1on to the 

ponderomotive equat10n of a mass point: 

a Z XV (V' '2 J:x..~ cl x. (3 - 0 
~l. 't- tcl\ pj w h- - (8.29) 

As Bunge has pointed OŒt, th1s does not constitute a 

geometrization of physics. In fact, it is neither more 

nor less geometrical than 'Newton l', wh1ch states that 

the trajectory of a free mass point 1s a geodesic in a 

Euclidean space-time manifold. This completes our brief 

exposition of the basic laws of General Relativity, and 

we are now prepared to consider its philosophl~al implioations. 
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The subject .')f tensor analysis or manifold 

geometry to which the reader was given a cursory introduction 

is a strictly formaI theory in which the variables xi have 

no physical slgnificance. For example, the lndices may 

run over any number n. A ten-dlmensional differentiable 

manifold has the same reality, for the mathematician, as, 

for example, a two-dimenslonal Euclldean plane. However, 

when manifold geometry is applled to physical space-time, 

the sltuation ls altogether different. In the flrst place, 

we are normally restricted to the conslderation of a 

four-dimensional dlfferentiable manifold. In the second 

place, there ls a dlstlnguished varlable, xO = ct. Thlrdly, 

the signature of the metric ls ±2, dependlng on convention. 

Fourthly, the mathematlcally allowable transformations 

must be restrlcted by the so-called reality condltions. 

From these considerations alone, lt should be obvious that 

when lt ls said that the basic laws of General Relatlvlty 

are generally covarlant ln vlrtue of their being expressible 

as tensor or pseudo-tensor equatlons, such a clalm is 

misleading. 

From the standpolnt of the pure mathematician, 

a permlsslble transformation in Rlemannian geometry ls of 

the form: 
x. ... ~ 5(."" :::: -f f4 lx l, )(. '2.) • • .) )( f' ) ('" = \, l, ... f\) 

(8.30) 

where f~ are arbltrary functions of class Cm, where m may 

be any lnteger subject to the whlm or design of the 
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mathematician. Confronted by a tensor equation of physics, 

the mathematician could transform it into a form which 

violates the most fundamental (protophysical) requirements 

of any physical theory. Since, in physics, the 5~ are not 

arbitrary functions, it is incorrect, under any circumstances, 

to speak of physical laws as generallY covariant, even 

though the geometrical objects which we employ to express 

those laws may, indeed, constitute a basis for the 

realization of a generally covariant group of transformations. 

Thus, at the outset, we declare that the 

general covariance of physical laws is a myth, one of the 

many engendered by the confounding of mathematical theories 

with the physical theories which they are employed to 

represent. To give a naive analogy, as every philosopher 

knows, there is an infinitude of sentences of English which 

are syntactically permissible but devoid of literaI 

significance. Nevertheless, English syntax is still a 

useful system for constructing meaningful sentences. A 

similar relationship holds between physical laws and the 

mathematical formalism which is employed to express them. 

It should be noted that the foregoing has nothing to do 

with our distinction between covariance groups and 

relativity groups. We do not forbid time independent 

transformations which serve many useful computational ends. 

We have merely declared them to be devoid of physical 

significance. To extend our analogy, they correspond to 
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the useful but vacuous laws of logic which enable us to 

deduce semantically equivalent sentences from each other. 

In fine, what we have been saying cuts across the 

distinction between coordinate transformations and frame 

transformations, with which we shall deal later in the 

chapter. 

The protophysical conditions, of which we have 

spoken, which the transformed variables must satisfy are 

-i ° that the x be spatial coordinates while x be temporal. 

Furthermore, for two points 

P2 (xi ) and Pl(XO) ~ P2(xO), 

the time order of Pl and P2 is fixed. If the time interval 

is infinitesimal, then the points will have temporal 

coordinates Pl(XO) and P2 (XO + dXo) and: 

o ° gOOdx dx > 0, (8.31) 

whence goo > o. 
o such that Pl(x ) 

Similarly, given Pl(xi ) and P2(xi + dxi ) 

° = P2(X ), then: 

gikdXidXk <.. ° ( 8.32) 

Therefore, (8.32) must be negative definite. These 

conditions entail that in any infinitesimal region of V4' 

there is always a permissible mapping such that g~~ = 
diag(l,-l,-l,-l) which we calI the canonical form of the 

Lorentz metric or simply the Lorentz metric. It is also 

called the hyperbolic metric, since under the condition 

that a permissible transformation carries the entire V4 

into diag(l,-l,-l,-l), the geometry of the manifold has 
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the so-called hyperbolic structure of Lobatchewski. (In 

fact, it is of some metatheoretical interest to note that 

by assuming a hyperbolic manifold, it is possible to 

express the laws of Special Relativity physics in Newtonian 

form - a point which is widely misinterpre~ed by the 

conventionalists)(Angel, 1961, 1962; Bougier, 1914) 

Within this delimited framework, there is no 

question that certain types of coordinate systems play an 

outstanding role in General Relativity. For example, the 

time independent, spherically symmetrical system of 

Schwarzschild has served as a basis for virtually aIl of 

the computations of testable consequences of General 

Belativity physics. However, such outstanding coordinate 

systems have no direct bearing on the Principle of 

General Relativity, per ~, but only on the confirmation 

of the field equations. They play a comparable role to 

that of spherical coordinates ln computlng the solutlon 

of Laplace's equatlon. 

In general, it ls impossible to dlscover a 

coordinate system for General Belatlvity which plays, 

for example, a slmilar role to the Carteslan system ln 

Newtonlan Mechanlcs; that is to say, a coordinate system 

whlch is preemlnently qualified to provlde a model of a 

frame of reference. In general, in an acceleratlng frame 

of reference, the spatial geometry, not to speak of the 

space-tlme geometry, is constantly changlng. Even on the 
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assumption that an acceleration, per ~, has no effect 

on geometrical measurements, a variable velocity must 

entail a time dependent Lorentz contraction. For these 

reasons, it is impossible to distinguish a privileged 

subset of inertial frames of reference in General Relativity. 

The s~-called Einstein boxes or lifts are mere heuristic 

metaphors which are suited only to the unacceptable 

the ory of kinematical relativity. In General Relativlty, 

an Einstein box would enclose an infinitesimal volume 

and could not, therefore, be realistically regarded as a 

frame of reference but merely as a particle in free-fall. 

Bunge(1967a, p. 231) provides a definition of an inertial 

frame of General Relativity which is indeed consistent 

with the postulates of the theory. However, such frames 

are only vacuously realised insofar as the definition 

refers to static gravitational fields which do not exist 

in the physical wo~ld. 

Nevertheless, it would be instructive to attempt 

to construct a privileged type of reference frame which 

has the appearance of being intuitively preferable to 

various alternatives. However, we warn the reader that 

our attempt will not succeed. However, the writer has 

discovered that in the exploration of the foundations of 

physics failure is often as instructive as success. 

We naturally take for granted the standard 

restrictions, already mentioned, on the four-dimenslonal 
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differentiable space-time manifold. Let us consider a 

three-dimensional hypersurface SJ of V4 such that any 

vector normal to SJ satisfies the condition: 

tf{trt > ° (8.JJ) 

In virtue of the conditions (8.Jl) and (8.J2), t~ ls a 

time-like vector and SJ is spatially oriented. Let P*(xi ) 

be a variable point in 5 J • By a well-known theorem, 

through any P*(xi ) there is one and only one geodesic 

wh1ch is orthogonal to 5J • In a finite reg10n of SJ' such 

geodesics will form a congruence of curves. It is clear 

that along any curve of the congruence, the coordinates xi 

will be fixed. The fourth coordinate of a fixed point P 

may be given by the arc length p*p = ~XO. The distance 

along a curve of the congruence will be given by: 

(dS)2 = (dXO)2, (8.J4) 

whence goo = 1. Furthermore, any vector wlth component$ (O,xl ) 

must be orthogonal to the unlt tangent vector (1,0,0,0) at 

the same point, whence gOi = g10 = O. The llne element 

on the hypersurface SJ must, therefore, have the form: 

2 ° 2 i k (ds) = (dx) + glkdx dx (8.J5) 

This is an intuitlvely satisfying metrlc, slnce 1t separates 

the spatlal geometry from the t1me. However, we have yet 

to determ1ne whether such a metric can be extended throughout 

the V4. In terms famlllar to the non-mathematic1an, lt 1s 

as though we had just dlscovered how to coordlnat1ze a 

Euc11dean plane and express distances by the theorem of 
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Pythagoras, and now desire to discover whether the 

technique may be extended to three-dimensional space. 

As we know, the equation of a geodesic is: 
(p.x.~ ç 0<.1 J~1't tJ..~" 
~CiZ. .... è,..v~ .,ls Ts =- 0 (8.36) 

The parameter s, in our case, 1s obviously xC. Since the 

dx i are constant along the geodesic, we must have: 

~oi.o~ = 0 J 
[0 0,,,] ;:! 0 

(8.37) 

Let us write the second of (8.37) explicitly: 

r '1 % 1. (~~ot.. + ~~,., _ ~~oo) 
LO 0, \. 2 ~ ~ )(.0 " Xl 

(8.38) 

Since goo is constant, ~~oo is identically zero. Hence, 
~ x.' 

we deduce that: 

~ ~ot.. = 0 (8.39) 

throughout at least a finite region of the V4" That is 

to say, any hypersurface must be orthogonal to the time-

like geodesics. Thus, their status is similar to that of 

the surfaces of simultaneity of Newtonian space-time. 

Moreover, since our manifold has a metric affinity, it 

follows that the time-like separations between two given 

hypersurfaces are comparable along aIl of the time-like 

geodesics. Thus, we have a universal, although not absolute, 

time parameter. We now construct a frame of reference in 

which the time coordinate lies along one of the time-like 

geodesics, which is to say that a standard clock will give 

a proper time reading, and the spatial axes will be 

oriented so that they are orthogonal to the t1me-like axis. 
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Thus, the coordinate system with the line element (8.35) 

would model such a frame of reference. The reader will 

note that we have done the reverse of the usual procedure 

by inventing a system of coordinates and then hypothesizing 

a frame of reference which they represent. 

So long as we continue to heed the requirement 

that gijdXidX
j 

be negative definite, we are free to 

perform any purely spatial coordinate transformations that 

we choose. However, we can no longer claim general 

covariance for the space-time metric g~vdx~dxV, even in 

the restricted sense. Moreover, since the proper time 

xO = c~is uniquely detlermined for different accelerating 

bodies, not only would the geometry of the hypersurface 

be relatively complex, but the transformation equations 

between distinct time orthogonal frames of reference 

would be a mathematical Chinese torture. Add to this the 

fact that every distinct accelerating body would require 

its own reference frame, and we see how fruitless our 

attempt has been to discover a system of coordinates 

which could play a preeminent role in General Relativity. 

Such coordinatizations, like that of Schwarzschild and 

the harmonie coordinates favoured by Fock, are useful 

for obtaining solutions of specially simplified physical 

problems such as that of planetary motion in the 

gravitational field of the sun, which is treated as a one 

body problem. These cases are invaluable for the important 



task of testing Einstein's field equations; but while they 

help us to confirm the theory of gravitation, they shed 

no light on the broader implications of the Principle of 

General Relativity. By the same tOken, it is possible to 

introduce new coordinatizations of accelerating frames of 

reference (Cf. 11~ller, 1952, pp. 250ff.) which are akin to 

the gauge transformations of electrodynamics, such that 

the gravltational potentials vanish over a finite region. 

However, such mathematical tricks only work in the case 

of non-permanent fields. 

Fock has argued that a privlleged system of 

coordinates exists in the context of General Relativity, 

the so-called harmonic coordinates, albeit, as we shall 

subsequently see, he rejects the Principle of General 

Relativity, itself. We shall first consider the harmonic 

coordinates from a mathematical standpoint and then discuss 

their physical and methodological significance. As we 

know, the covariant derivative of an arbitrary contravariant 

vector is given by: 

fl'\ v =: AH,)v + t:v1 li"" (8.40 ) 

Accordingly, the four-divergence of A~ is given by: 

A v j V = A v, v -+ t~ v V 1 A ~ ( 8.41 ) 

But (V? =..l. ~~" ~.~",,, (8.42) 
t~ V~ 2 ù ~x.0I. 

is a result of standard mathematics. Moreover, 1f g 1s the 

determinant of gf"v, then: 

l:Y~ = (~~)~)v = (8.4)) 



Inserting (8.4)) into (8.41), we have: 

il". . _ ..L '1 r(_.)'hAv],V 
1 J .J V - (-~) 1. \..! .) 
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(8.44) 

Suppose, now, that we have a vector A,.. which is 

the gradi en t of a s calar ~. Tha t is: 

Then, 

and 

fl~ = 4,t' 
AV = 9 .... "<t,H 
'\)iv AV = A v; v' :: ~)"'t. [t _~)J.z. Cj t\v ct, t\ J, v 

( 8.45) 

( 8.46) 

(8.47) 

which is the d' Alembertian of <f. It should be noted that 

if the x t' are four solutions of 

01. ~ = 0 (8.48 ) 

then <t:v1will vanish identically. Although this condition 

is seemingly trivial, the reader may verify that it leads 

to the non-trivial consequence that the covariant divergence 

will be equivalent to the ordinary divergence. In more 

robust terms, each axis of the coordinate system would 

represent a possible world line of a light raYe It is 

obvious that the Cartesian coordinates of Special Relativity 

are a special case of harmonie coordinates. The reader 

will recall that it i5 ~ecessary to supplement the g~v by 

four coordinate conditions to ensure the general covariance 

of the metric forme Fock's point is that instead of 

letting the coordinate conditions be arbitrary we make 

them unique by requiring them to satisfy (8.48). It could 

be argued that such a move would require our abandoning 

the requirement of general covariance. However, this would 

not be a fair criticism, since Fock does not argue for the 
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mathematical necessity of harmonie coordinates but for 

their privileged physical role. Naturally, if we restrict 

the expression of physical laws to special systems of 

coordinates, such expressions cease to be generally 

covariant; but this in no way precludes our returning to 

the use of arbitrary coordinates if we should so desire. 

It is weIl known to the stQdent of electrodynamics 

that the equation for the propagation of an~ectromagnetic 

wave front is a special case of electromagnetic 

propagation which corresponds to a discontinuity of the 

field. Obviously, the surfaces on which the field is 

discontinuous must coincide with the advancing wave fronts. 

Such surfaces, .in electrodynamlcs, are known as the 

characteristic surfaces of Maxwell's equatlons. Expresslng 

the wave front equation implicitly in the form: 

w (x,y,z,t) = 0 (8.49) 

we express the law of wave propagation in vacuo ln the form: 

( 8.50) 

which is the equation of a characteristic of Maxwell's laws. 

By the same token, Fock(1964, p. 194) is able 

to show that employing harmonie coordinates and expresslng 

the equation of a gravitational wave front implic1tly as: 

~ (xO,x1 ,x2 ,x3 ) = const. (8.51) 

one is able to express the law of gravitatlonal propagatlon 

in the form: 

~""'V a <Al a ~ = 0 
ri.~ ê) x.'" 
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which is in conformity with the special relativistic 

requirement of the existence of a limiting velocity. 

It should be clear that Fock's introduction of 

harmonie coordinates as essentially privileged is quite 

contrary to the point of view of General Relativity, which 

is not to say that such systems have no practrical value. 

It is noteworthy that in the application of such coordinates 

to physical problems, one is restricted to the case of 

insular mass distributions (one body problems) and 

particular boundary conditions, the most important of which 

is that the gravitational waves die off at infinity, so 

that the metric must assume the Lorentz form over the 

boundary surface of the 'universe'. We may interpret this 

condition either as an example of physically untested, and 

probably untestable, cosmological speculation or as an 

artificial simplification designed for the purpose of 

achieving computational results, i.e. solutions of the 

field equations à la Schwarzschild. Physically, the 

harmonie coordinates are possible models of unaccelerating 

frames containing or constituting a very large insular masse 

Fock argues that one of the principal methodological 

advantages of such models is that they distinguish 

permanent from impermanent gravitational fields. From our 

point of view, this is a philosophical disadvantage since 

it forces the reintroduction of the concept of fictitious 

force which is unsuited to a satisfactory theory of the real, 
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i.e. non-fictitious, world. A methodologically sound 

theory should have no recourse to fictions of any kind, 

with the possible exception of purely mathematical ones. 

In fine, we regard Fock's viewpoint as a rather Procrustean 

one, which endeavours to squeeze the theory of gravitation 

into the restricted framework of Special Relativity, while 

missing the entire point of the Principle of General 

Relativity which does not require the conjuring up of a 

'universel which obviously does not correspond to reality. 

It is unfortunate that a man of Fock's intellectual 

stature, attested to by several important insights such 

as the rejection of operationalism, should fall prey to 

one of the common vices of the physicist, namely that of 

attempting to justify a set of special assumptions which 

facilitate the solving of equations by destroying an 

entire theory that honestly endeavours to represent the 

na~ure of physical reality. A position similar to our 

own, but less harsh, is taken by Bunge in his axiomatization 

of the Theory of General Relativity. Commenting on the 

harmonie coordinates, he writes: 

tt ••• though particular coordinate systems 
should be irrelevant at the level of 
principles, they become ëOnspicuouS-at the 
level of theorems, both for the latter's 
statement and for their physlcal interpretation. 
But lt does not show that Nature wears one 
kind of coordlnates preferably to others." 
(1967a, p. 2)0. The ltalics are ours.) 
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In fine, we conclude that it is 1mpossible to 

find a distinguished subset of physically realizable frames 

of reference which play the role analogous to that of the 

inertial frames associated with a restricted principle of 

relativity. In this regard, the adjective general is weIl 

chosen to describe Einstein's principle of relativity. 

But, of course, liberty is not to be confused with license, 

wh1ch, in this case, means that General Relativity is not 

to be interpreted as General Covariance. It 1s true that 

the field equations are generally covariant. But that does 

not imply that we may take advantage of that formaI property 

to introduce coordinate systems which model physically 

unrealizable frames of reference. We wish to underline, 

however, that such formaI manipulations are nevertheless 

permissible on the basis of the structure of the theory 

of tensors. Hence, while the Principle of General Relativity 

does not distinguish a subset of inertial frames of 

reference, it does distinguish a subset of phys1cally 

permissible space-time transformatio~s. Moreover, the 

frames of reference which are physically attainable do form 

an equivalence class of a kind, although, as one should 

expect, not of the same kind as that which we associate 

with restricted principles of relativity. 

We may define a phys1cally realizable spatial 

frame of reference as one wh1ch, whi!e not necessarily 

rigid, which is, strictly speaking, excluded even by the 
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Theory of Special Relativity, is such that no point of 

reference may have a velocity greater than the velocity 

of light with respect to any other point of reference 

belonging to the same frame. Thus, the tangential velocity 

of a distant star may exceed the velocity of light with 

respect to the rotating earth but the earth and the star 

do not belong to the same frame of reference. A second 

condition for a physically real1zable frame of reference, 

which may not be independent of the first, 1s that it is 

a frame with respect to which the time track of a light 

ray is a null geodesic. Since the time track is null in 

a Lorentz frame, a condition which may be expressed by: 

(8.56) 

and since (8.56) 1s a tensor equation, the time track 

must be null in every permissible frame of reference. 

These conditions may easily be shown to be equivalent 

to the following definition of a physically permissible 

frame of reference. 

A physically permissible frame of reference 

is·one which may be so coordinatized that for every 

infinitesimal region of the manifold, there exists a 

permissible mapping such that the metric coeffcients may 
(,\..) 

be transformed to ~~V = diag(l,-l,-l,-l). That the metric 

of any Riemannian manifold may be transformed to Sylvester 

canonical form by a non-singular transformation is a 

formaI condition that follows from the the ory of symmetrlcal 
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(~) 
matrices. Thst the canonical form in question be ~~J is 

not a peculiarity of Riemannian manifolds but of the 

physical space-time manifold. We shall calI the class of 

reference frames which satisfy this special property of 

the manifold Einstein frames. Any theory which can be 

expressed in a form, not necessarily by means of the 

tensor calculus, that is indifferent to the set of Einstein 

frames will be termed generally relativistic. 

En passant, we are now in the position to 

understand the deeper reason, to which we alluded earlier, 

for the incompatibility of Classical and Special Relativity. 

The canonical form of the ~~V in an infinitesimal region 

of the space-time manifold, i.e. the signature of the 

metric, is a peculiarity of the given manifold which is 

either imposed arbitrarily or on the basis on physical 

considerations. While the mapping which transforms the 

metric to canonical form is not unique, the canonical form, 

itself, is. The signature of the usual classical{Galileo­

Newton} space-time metric ls {0,1,1,1}. Thus, the 

lncontrovertlble reason for the lmpossiblllty of a Galllel 

covarlant N?wtonian Mechanlcs and a Lorentz covarlant 

electrodynamlcs 1s that it would entail that the space-

tlme manifold slmultaneously carry two different metrlc 

signatures, a mathematical lmposslbllity. The present 

wrlter has no idea whether thls has prevlously been polnted 

out but finds lt curlous that it ls not mentloned in any 
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of the standard treatises with which he is familiar. 

We may now speak more precisely of the relationship 

between General Relativity and Special Relativity. It 

would be simplistic to argue, as some writers do, that 

General Relativity is simply a generalization of Special 

Relativity, despite its being the probable motivation for 

Einstein's entertaining the idea of General Relativity in 

the first place. It is equally wrong to suggest that 

Lorentz frames in the form of so-called Einstein boxes 

constitute the equivalence class of inertial frames of 

General Relativity. Such frames only occur in the special, 

and non-existent, case of the field of an infinitely 

extended sheet of matter of uniform density. They belong 

to Einstein's speculations during the period between the 

Special and General theories in which he thought of a 

general theory of relativity as a kinematical generalization 

of Special Relativity on the basis of the Principle of 

Equivalence. It is weIl known that such heuristic 

reasoning led to qualitative predictions which were most 

remarkable but, nevertheless, inaccurate to the order of 

as much as 50%. 

Conversely, we should consider the status of 

Special Relativity physics in the light of the General 

Theory. Although Special Relativity supplied General 
(L.) 

Relativity with an essential ingredient, namely ~~, we 

are bound to admit that the laws of Special Relativity 
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physics must now be treated as approximations, although 

their approximate character may doubtless be ignored in 

the realm of strong interactions. To take the two basic 

theories which we have considered in earlier chapters, 

namely point mechanics and electrodynamics, their 

respective positions vis à vis General Relativity are not 

absolutely identical. \-Je would suggest that whereas 

Special Relati vi ty 11echanics is strongly incompatible wi th 

General Relativity, Special Relativity Electrodynam1cs 

is only weakly incompatible with it. A special relativistic 

theory rests on the assumption of a fIat metric in finite, 

if not global, regions of the space-time ma:rlifold. This, 

in turn, entails the absence of permanent gravitational 

fields. Now, since material bodies are sources of the 

gravitational field, Spectal Relativity Mechanics 1s 

rendered inconsistent in the light of General Relativity. 

In the case of electrodynamics the situation may be 

somewhat different. Bunge has argued(1967a, pp. 200ff.) 

that the celebrated 'E = mc 2 , is a theorem of Special 

Relativity Mechanics, and should not be interpreted as 

implying that radiant energy has inertia. In that case, 

it is conceivable that electromagnetic fields are not 

sources of gravitational fields, in which case the matterl 

tensor should be appropriately modified. In that case, 

one could conceive of a universe populated only by 

electromagnetic fields wh1ch produce no gravitational 
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effects, and which obey Maxwell's laws rigorously in the 

large. In that case, electrodynamics would be a logically 

consistent theory, rigorously compatible with the field 

equation: 

(8.57) 

Thus,special relativistic electrodynamics. could be the 

basis for a consistent description of a non-existent 

universe. Special relativistic mechanics, on the other 

hand, is strictly incompatible with General Helativity. 

We hope that our scientific readers will forgive the 

foregoing speculative remarks which, in any case, play no 

essential role in this dissertation. We made them only as 

a suggestion concerning one of the many matters to be 

taken into account in what we regard as the still open 

foundation problem concerning the relationship between 

Special Relativity and General Relativity. Horeover, it 

rests on the shoulders of the experimental physicist to 

determine definitively whether the electromagnetic field 

is indeed a gravitational source. 

Let us now deal with Fock's criticism of the 

Einsteinian interpretation of the Principle of General 

Relativity. Fock correctly argues that general covariance 

is a formaI principle which holds that any putative law 

of nature must be independent of the coordinatization. He 

treats it, therefore, as a correct consistency requirement 

on the basic laws of physics but as nothing more. 
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Furthermore, following Cartan(1927), he argues for the 

vacuity of the general covariance of the metrical quadratic 

form on the ground that one has complete freedom in the 

choice of the transformed coefficients ~~~. The reader 

will recall that given a function f of a certain argument A, 

the function is covariant under a given group of 

transformations if and only if the transformed function 

of the transformed argument f(A) is of the same form as 

the original. This is indeed the case for the laws of 

Newtonian Mechanics under the Galilean group and for the 

laws of electrodynamics under the Lorentz group. For 

example, when we employ the imaginary coordinate iet, the 

Lorentz metric has the form a,.,..v cl'X."\~~l~ which under an 

arbi trary Lorentz mapping goes to &f'vJ~MJx" • 

Moreover, Fock argues that the existence of an 

equivalence class of frames of reference, namely inertial 

frames, is directly related to the degree of uniformity 

of the manifold. Specifically, in an n-dimensional manifold, 

the maximum uniformity of a geometrical object is attained 

wh en that object is mapped onto itself under a group of 

~n(n + 1) independent parameters. For example, the surface 

of a sphere is a two-dimensional manifold, and the largest 

group of transformations which map every point of the 

spherical surface onto points of the same surface, i.e. 

map the sphere onto itself, is a three-parameter group. 

Similarly, the space-time manifold is four'-dimensional. 
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Therefore, the most general group which maps the manifold 

onto itself must be a ten-parameter group, which is 

precisely the order of the Lorentz group. Accordingly, 

Fock argues, it is impossible to generalize on the 

transformation theory of Special Relativity which employs 

a manifold of maximum uniformity. In particular, the 

expression 'General Relativity' is, according to Fock, 

a contradictio in adjecto. Einstein's second theory 

should not be called the Theory of General Relativity, but 

simply the theory of gravitation. (It is presumably for 

this reason that Fock sees so much significance in the 

harmonie coordinates.) 

Let us begin by pointing out that we are in 

accord with Fock on at least one point, namely that one 

should not be seduced by the highly compressed notation 

of the tensor formalisme The mapping: 

~ f4V ~ X. ~ cbl.v = ~ t-\.v cl x.fi'l~ x.V (8.58) 

certainly appears to be covariant. However, whether it is 

truly covariant can only be determined when the ten 

mappings represented by (8.58) have been expressed in 

explicit forme We have already remarked that the formaI 

notion of covariance -is ambiguous to the extent to which 

it depends on the notation which happens to be employed. 

The practical value of the tensor formalism is that it 

enables one to write equations which are independent of 

any particular system of coordinates. We have seen, infact, 

./ 
i . . 
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that even in the case of Galilean and Lorentz transformations, 

the question as to whether the covariantly transformed 

laws have the same physical content as the original 

expressions requires careful physical analysis. 

On the other hand, Fock's argument is really 

rather trivial. On the basis of Fock's premisses, Einstein 

is beaten before he begins. The requirement that the 

transformed function of its transformed argument be 

isomorphic with the original function of the original 

argument could only be satisfied under a group of linear 

transformations and, hence, only by a restricted principle 

of relativity. If we took Fock seriously, we would be 

taking undue liberties in carrying out so elementary a 

transformation as that from Cartesian to spherical 

coordinates, which is non-linear. We would violate physical 

principles in expressing the divergence and curl operators 

of elementary vector analysis in spherical coordinates. 

But, as every physicist surely knows, it would be possible 

to expound the entire compass of Special Relativ1ty physics 

in terms of curvilinear coordinates without altering the 

content of the theory in any way. In fact, we prefer 

Cartesian coordinates precisely because they permit the 

Lorentz transformation to be expressed as a linear 

transformation. 

Actually, Fock has fallen into the very trap 

which he set for Einstein, whom he accuses of fa1ling to 
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understand his own theory. On the one hand, he argues 

that the Principle of Ge~eral Covariance is a purely 

formaI requirement which any theory can be made to satisfy 

and indeed, for logical reasons, should satisfy, while 

a principle of relativity is a physical matter; but, on 

the other hand, he claims that there can be no principle 

of general relativity on the basis of a purely formaI 

criterion. In fact, whether or not there is a principle 

of general relativity, that is to say whether or not aIl 

physically realizable frames of reference are equivalent 

is a matter which can be settled only be experiment. This 

is the case for restricted and general principles al1ke. 

We are justif1ed in claiming that Maxwell's equations 

satisfy the Principle of Special Relativity not because 

it is possible to write them in manifestly Lorentz covariant 

form, but are justified in writing them in such a form 

because it has been experimentally determ1ned that they 

satisfy the Principle of Special Relativity. 

Crudely speaking~ if several scientists 

performed appropriate experiments in distinct Lorentz 

frames, the y would aIl agree that the results of their 

respective experiments were in conformity with the 

predictions of Maxwell's laws of electrodynamics. Then 

they would find 1t convenient to employ the four-vector 

formal1sm which 1s ind1fferent with respect to Lorentz 

frames. By the same token, if several scientists performed 
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appropriate experiments, either mechanical or optical, 

in distinct Einstein frames, i.e. physically realizable 

but otherwise arbitrary frames, and found that in aIl 

cases the gravitational effects were compatible with 

Einstein's field equations, they would be justified in 

claiming that Einstein's laws were in conformity with 

the Principle of General Relativity. Then they could claim 

a physical justification for writing those laws in 

generally covariant form which, among other things, is 

indifferent with respect to Einstein frames. It is 

unfortunate, of course, that the tensor formalism is 

indifferent to any frame including those which are physically 

unrealizable. 

Of course, the excessive latitude of the tensor 

formalism may be remedied simply by stating the necessary 

res trictions on the ~fol'" However,_5~_ 1'10.1119. be a ~se:t.ul 

task for the applied mathematician to attempt to axiomatize 

a restricted theory of space-time tensors whose formaI 

structure would be based on the local Lorentz character 

of the manifold. They would be geometrical objects whose 

covariance group corresponded to the general relativity 

group. We might calI such objects either steinors or 

framors. The first step would be to work out ·the theory 

of representations of the group which maps Einstein frames 

into Einstein frames. The rest should be easy. (Our 

assumption that such a group exists rests on physical 
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intuition and epistemological considerations.) Such a 

suggestion, incidentally, would have no significance for 

Newtonian Mechanics in which three-vectors are quite 

adequate geometrical objects. It is true that we make a 

distinction between the relativity group and the covariance 

group of Newtonian Hechanics. However, apart from time 

reversaI, the transformations which are excluded from the 

relativity (sub)group are only so excluded on the basis 

of their triviality. In the case of General Relativity, 

the situation is different. Transformations exist which 

are mathematically permissible, in terms of the formalism, 

but must be excluded from the relativity group on the 

ground of thelr physical impossibility. 

If we may be permitted briefly to psychologize, 

we would suggest that Fock, like many other physiclsts, 

has been seduced into regarding the llnear relationships 

between inertlal frames as given ~ priori, merely because 

the two known prlnciples of relativity, apart from the 

General Principle, happen to pertain to frames of reference 

that are linearly related. However, there ls nothing 

self-contradictory in the concept of an accelerating 

inertial frame unless, like Fock, one chooses to define 

sllch frames out of existence. We repeat our earlier 

implication that Fock's argument is specious because it 

is lrrefutable and no physlcal hypotheses are irrefutable. 

In a nutshell, Fock rejects the Prlnciple of General 
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Relativity on the ground that it contravenes a requirement 

that only a restricted principle of relativity could 

possibly satisfy. 

While we contend that the Principle of General 

Relativity is a genuine physical hypothesis, we are bound 

to admit that its experimental support is very slight 

and only indirect. We spoke hypothetically of performing 

experiments in distinct Einstein frames. Unfortunately, 

the only significant case of an Einstein frame in which 

we may perform experiments is the solar system. It would 

be pointless to attempt to test Einstein's field theory 

in a man-made Einstein frame such as an accelerating 

rocket, since aIl of the experimental results would be in 

conformity with the classical law of gravitation as well 

as wi th the Einsteinian law. It would seem that a satisfac.tory;. 

test of the Principle of General Relativity must await 

the journey by some future Astronomer Royal to another 

star system. 

On the other hand, there is considerable 

presumptive evidence in support of the Principle of 

General Relativity insofar as the generally covariant 

field equations, albeit in the special Schwarzschild case, 

have mett with remarkable predictive success. We refer, of 

course, to the red-shift, the precession of Mercury, and 

the deflection of starlight. It is worthwhile to remark 

at this point on the distinction between the experimental 
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confirmation of a theory and the experimental confirmation 

of a relativity principle which that theory putatively 

satisfies. This further supports our contention that a 

principle of relativity is not a metalaw but an independent 

physical hypothesis. No physical hypothesis is capable 

of absolute verification, but a principle of relativity 

is, in principle, as testable as any other object statement 

of science. 

It is interesting to compare the points of 

view of Bunge and Fock vis à vis General Relativity. 

According to Fock, such a principle is physically impossible 

since it necessarily fails to conform to certain formal 

requirements of the space-time manifold, In other words, 

he rejects what he regards as a physical hypothesis on 

certain formaI grounds, which we have held to be appropriate 

only to restricted principles of relativity. On the other 

hand, he accepts the gravitational field equations, while 

treating their general covariance as a mere consistency 

requirement that every fundamental law must satisfy. Bunge, 

in contrast, does not reject the Principle of General 

Relativity but incorrectly identifies it with the Principle 

of General Covariance, thus relegating it to the 

metatheoretical level. 

Let us now state our own position in capsule 

form to contrast it with those of Bunge and Fock. Firstly, 

we hold that it is essential to distinguish between the 
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relativity group of a theory and its covariance group. The 

Principle of General Relativity belongs to a different 

level of scientific discourse from that of the Principle 

of General Covariance. It is obvious that the verification 

of the general covariance of Einstein's field equations 

is, as Bunge would argue, a paper and pencil operation. 

The testing of the Principle of General Relativity, on 

the other hand, requires observation and exp~~iment in 

at least two distinct Einstein frames. Finally, in any 

case, no physical theory could strictly satisfy the 

Principle of General Covariance, even in the formaI sense, 

since every physical theory must satisfy the reality 

conditions which are imposed on the ~~V but which are not 

part of the formaI structure of tensor theory. For example, 

per impossibile, if the velocity of electromagnetic 

propagation were infinite, then the equations of electro­

dynamics would be Galilei covariant. But this would in no 

way preclude their being written in generally covariant 

form, i.e. as tensor equations. Equivalently, the 

demonstrations by Cartan and others that classical mechanics' 

may be written in generally covariant form should not be 

interpreted as trivializing the Princlple of General 

Relativity (à la Kretschmann) but as conflrming its 

status as an object law rather than as a metalaw. In fine, 

we must dlstinguish between the form of general covariance 

and the substance of general relativity. 
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As our grand finale, we offer our formaI 

statement of the Principle of General Relativity. 

lL3 is the set of fundamental laws of a given theory. 

tK3 is the set of physically realizable frames of 
reference, i.e. Einstein frames. 

tTj is the set of mathematically admissible coordinate 
transformations. 

For any l é ~L~, any t é i T5 and any ki,kj E tK~: 

l w. r • t. k i ~ t K 1 é-"> t ( l) =s. ï w. r . t. k j (; f K S. 
The reader is urged immediately to compare the 

foregoing with the formaI statement of the Principle of 

Special Relativity. He should note thefollow1ngfuridamentàl 

distinctions between the two. tT5 is here restricted 

only by the weakest formaI requirements on coordinate 

transformations in general. On the other hand: the 

denotation of iK~ places definite limits on the t i ~ fT! 

which would, in fact, be applicable. The generality of 

the above principle is reflected in its ranging over the 

entire tK~ as distinct from a distinguished subset of the 

latter, which was the case for both of the restricted 

principles. Finally, it should be noted that the latitude 

in the interpretation of [L~ reflects our view that the 

Theory of General Relativity 1s not merely a theory of 

gravitation but rather one in which gravitational laws 

necessarily play a fundamental role. 
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APPENDIX TC CHAPTER VII 

This appendix merely serves to add some physical 

information to Chapter VII. The mathematical machinery 

is simply that which is required for Special Relativity 

physics. However, our purpose is to construct a new 

tensorial quantity which plays an essential role in the 

Theory of General Relativity. The following treatment is 

purely physical, and absolutely no philosophical 

considerations will arise. For details, the reader should 

consult a textbook on relativity physics. What follows is 

simply a sketch which is adequate for the purposes of 

this dissertation. Its only virtue is its brevity. 

Given a continuous distribution of incoherent 

matter moving in a force field, let t:I~o be an element of 

the proper volume of the maSSe We write the defining 

equation: 

We call D~ the four-force density. In component form, it 

may be written as: 

\)~ = (d) "/c "J.v) 

Now we consider the case of a supposedly continuous 

charge distribution given by J ~ If c:l.iI>ois an element of 

proper volume of the charge distribution and 10 is the 

proper charge density, then by (7.46) and (7.65), we have: 

f t'\ = f'?k F f'\ V U v cl c.,) 0 ;: t F t\ v J v ~ <'>0 ( 9 • 3 ) 
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Hence, by (9.1), we may define the four-force density 

of the electromagnetic field by: 

(9.4) 

Substituting the first- of (7.58) in (9.4) gives: 

\) H -= i!-tt F'""v f ()V) <f' 

We now wish to show that (9.5) is the negative 

of the divergence of a particular symmetric tensor which 

we calI the energy-momentum tensor of the electromagnetic 

field. We define the latter tensor by: 

5 t-\\I _..l. f t-\c("F \10 -..!- (' FG'"'f fof 
- 1t-1\- , ,,'tt e) f'" \1 (9.6) 

Taking the divergence of (9.6). we have: 

S'"'v -...L ct"-· , F\l6" -+~ ~~.rFv6'"v -..1. ~ Ft:r(> .::<i"f' (9.7) 
)\1 - It- n- 1 H 1t-1t r ) ~ d t'V • J v-

By virtue of the antisymmetry of F~~ and the second 

equat10n of (7.58), a few algebraic manipulations will 

y1eld: 
... " l .... .- - v/" ~ M.cS"" c ot/ - \) ... S ....... , v :. t1l" f r-oQ t- 0 l t/ .: - It-Oo- r ,- ) v- - - (9.8) 

The reader may ascerta1n the physical s1gn1ficance of S~v 

by substitut1ng the values of F~v from the matr1x array 

(7.57a). We merely mention the more slgnificant results. 

S1j 1s the negat1ve of Maxwell's stress tensor, which by 

virtue of the suppression of S14 and S4i 1s only a tensor 

in an inertial frame with a f1xed coordinatization. 

SL~ = S~L is Poynting's vector S, multiplied by a factor i/c. 

Finally, 
S «t c,. = - ~n- (l ~I z. ~ \ 6:'~) = - u 

which is the energy density of the electromagnetic field. 
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In summary: 

(9.10) 

We have, thus far, ignored the mass of the point 

charges. However, if we assume a system of point charges 

which are not interacting mechanically, by vi~tue of the 

constancy of their proper mass, one may easily write an 

equation of continuity for proper masse That is to say, 

if S is a closed surface bounding a volume V, th en the 

rate at which proper mass is flowing through S must be 

equal to the decrease of proper mass in V. If J~ is an 

element of volume of the charge distribution with respect 

to K, we may wri te the proper mass of the element as ,",oJw. 

We know this quantity to be Lorentz invariant. But Jw is 

not an invariant, hence ,",0 cannot be an invariant. It is 

actually the density of proper mass with respect to K. We 

may write our equation of continuity in the form: 

-..4 SfoloJw :: St-'oV.o\! (9.11) 
ctt" " s 

By Gauss's theorem, the right hand side of (9.11) is 

given by: 

s~.v. c1s :: S~· t'if vcl~ 
1 v 

By (9.11) and (9.12), we have! 

S ( ~. -t- '1 • ( f4. v) ] J rü ;: 0 
~ t" 

But since V is arbitrary, the integral must be 

zero; whence: 

o tto ... 'J • r-t. V :: 0 
èt" 

(9.12) 

(9.13) 

1:.dentically 

(9.14) 
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Let ~oo be the proper density of the proper maSSe Then: 

Clearly, ~oo must be Lorentz invariant. Hence, by (9.15): 

1. / )'/z. LI t'oo = (\_V ICt. r'O (9.16) 

Therefore, the equation of continuity may be written in 

ma~ifestly covariant form as: 

t" 00 11 fol ) '" :::. 0 (9.17) 

The reader should compare (9.17) with (7.44). By (9.1), 

the equation of motion may be formed as: 

l)f'i = t'oo J~ (9.18) 
c.l'l' 

Furthermore, by virtue of (9.17) and an easy computation, 

it may be shown that: 

(f"\oolJvvtt)J~ = D'"' 

e t-Av 
We now define a symmetric tensor by: 

e f'(.V :J!. t"oo U.-( V" 

Whence: 

(9.20) 

(9.21) 

We may leave it to the reader to work out the significance 

of the components of e~~ known as the kinetic energy­

momentum tensor, on the basis of its be1ng the counterpart 

for matter of the energy-momentum tensor SK~. By (9.8) 

and (9.21), it is obvious that: 
c ",-v _ 

- ~ )V- 9t\v 
'v (9.22) 

It should be emphasized that (9.22) 1s not an 1dent1ty 

but a physical hypothes1s. F1nally, we construct the tensor: 
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-r 1'\" l V = 0 

221 

(9.23) 

(9.24) 

T~~ is the complete energy-momentum tensor which comprises 

the energy contributions of both the electromagnetic 

field and matter. 

We have crammed into a single quantity, albeit 

on the basis of several simplifications, every type of 

energy contribution except gravity. (We, of course, forget 

about nuclear forces.) (9.24) at least has the appearance 

of a continuity equation. Sometimes T fol'" is called the 

matter tensor. In a covariant theory of gravitation, we 

should expect T ~", or something analogous, to play the 

role of the source of the gravitational field. 

We apologize for the terseness of this appendix, 

which was really just an interlude between Special 

Relativity and General Relativity. At least, the lay 

reader will now have a limited conception of the physics 

of General Relativity which is treated in a limited way 

in Chapter VIII, which is of a far different order. froID, 

having the ability to follow its mathematical formalisme 
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Errata 

The author is indebted to Dr. David Salt of 
McGi11 University, whose careful reading of this 
dissertation uncovered the following errors and mental 
lapses. 

p. 19: In fact, the group operation is not defined for 
ev~ry pair of elements. Bence, the set of mathematically 
admissible coordinate transformations is the realization 
of agroupoid or.pseudo group but not of a group. 

p. 62: The status of mass as a scalar object is merely 
sufficient but not necessary for the covariance of 
Newton's first law. 

p. 62: Delete constant from the penultimate line. 

p. 79: (4.30) is generally covariant. It is the equation 
of an affine geodesic. 

p. 82: The second paragraph is incorrect. Time translations 
do not involve time reversaI. 

p. 88, line 13: f,g,j,h are, of course, linear functions 
not constant functions. 

pp. 161 & 190: The reality conditions imposed on the gik 
are only required on the assumption that a reference 
frame is of the standard type having three spatially 
oriented axes and one time-like axis. However, the 
utilisation of a different kind of reference frame would 
not have any effect on the metric signature of the 
manifold. 

p. 197: The sentence which begins on line 14 is incorrect 
and should be deleted. 


