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ABSTRACT

The crossover transport regime between the quantum Hall effect and the Aharonov-
Bohm effect is studied in terms of Biittiker’s approach of electrical conduction. Quan-
tum Hall effect and Aharcnov-Bohm effect are very important effects in mesoscopic
physics and both demonstrate unambiguously that quantum mechanies is the dom-
inant factor in nanoscale electrical transport problems. However, they belong to
situations of different dimensionality and different strength of magnetic fields. Our
goal is to reveal the physics at the crossover regime between the two and find the
transport properties of this transition regime.

We have computed Hall resistance of a four-probe box-shaped quantum dot with an
artificial impurity confined inside. As the size of the impurity is increased, transport
behavior changes from the usual quantum Hall regime to a regime dominated by
strong Aharonov-Bohm (AB) oscillations. We observe directly the formation and
coupling of the edge states and their effects on the Hall resistance, by varying a
magnetic field. For a range of the impurity size, transport enters the crossover regime
where quantum Hall and AB effects compete, and a peculiar approximate symmetry
between various transmission coefficients lead to a Hall plateau before the quantum
Hall regime is reached. This symmetry can be explained based on scattering matrix
theory and a topological equivalence of the dominating transmission patterns where
well defined edge states are formed. Finally we investigate the universality of the
observed symmetry property in several other structures and find that within the
scope of our calculation the symmetry is universal.



RESUME

Le régime intermédiaire de transport entre 'effet Hall quantique et I’effet d’Aharonov-
Bohm est étudié en utilisant la conduction électrique de Biittiker. L'effet Hall quan-
tique et I’effet d’Aharonov-Bohm sont des effets trés importants en physique mésoscop-
ique et ils démontrent tous les deux clairement que la mécanique quantique est le fac-
teur dominant dans les problémes de transport électrique & 1’échelle du nanométre.
Toutefois, ils appartiennent & des situations d’autres dimensions et a différentes forces
du champ magnétique. Notre objectif est d’étudier la physique reliée au régime in-
termédiaire entre les deux et de trouver les propriétés de ce régime de transition.

Nous avons calculé la résistance de Hall d’un point quantique cubique muni de qua-
tre sondes et d’une impureté artificielle logée & I'intérieur dn point. En augmentant
la dimension de 'impureté, le transport passe du régime de Hall, que nous retrouvons
habituellement, & un régime qui est dominé par de fortes oscillations d’Aharonov-
Bohm (AB). Nous observons directement la formation et le couplage des états limites
et leur influence sur la résistance de Hall, en variant le champ magnétique. Pour
une gamme de dimension d’impuretés, le transport passe au régime intermédiaire ou
I’effet Hall quantique et I'effet AB sont en compétition. Une symétrie approxima-
tive particuliaire entre plusieurs coefficients de transmission méne a un plateau de
Hall avant que le régime de Hall quantique soit atteint., Cette symétrie peut étre ex-
pliquée en se basant sur la théorie de la matrice de rétrodiffusion et sur I'équivalence
topologique des patrons de transmission dominants oi des états limites bien définis
sont formés. Finalement, nous avons étudié 'universalité de la propriété de symétrie
dans plusieurs autres structures et nous avons trouvé que la symétrie est universelle
a l'intérieur de I’étendue de nos calculs.

vil
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Quantum Hall Effect in the Presence of
an Antidot Potential




1

INTRODUCTION

Due to the advancement of nanofabrication techniques, in the last several years a
host of very interesting low dimensional electronic devices have been produced which
present opportunities for understanding quantum transport in nanoscale systems|l].
Well known examples of these systems include the quantum point contact(2, 3], quan-
tum wires or electron waveguides(4], quantum dots or artificial atoms[4, 5], and com-
binations of these. The sizes of these systems can be so small such that charge carriers
traverse them without on average feeling any impurity scattering. At the very low
temperatures where most experiments were carried out, one may also neglect such
inelastic effects as electron-phonon scattering. In this regime of transport, the current
limiting factor is largely provided by the boundary of the device and the transport
is phase coherent throughout[4]. Today, we have reached at a level of solid-statce
structural sophistication where we commonly design and fabricate devices based pri-
marily on quantum mechanical principles. This “designer capability” has opened up
a fascinating new realm of fundamental physics to be explored.

Semiconductor material of high purity and crystalline perfection can be structured
to contain a thin layer of highly mobile electrons. Motion perpendicular to this layer is
quantized, so that electrons are constrained to movein a plane. This two dimensional
electron gas (2DEG) combines a number of desirable properties not shared by thin
metal films. It has a low electron density, which may be readily varied by means of
an electric field. The low density implies a large Fermi wavelength, typically 40nm,
comparable to typical dimensions of the smallest structures (nanostructures) that can
be fabricated today. The electron mean free path can be quite large, usually exceeding
10pm. The interface where the 2DEG is confined can be controlled to be atomically

flat, reducing the interfacial roughness scattering of the charge carrier. The quantum
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mechanical phase coherence characteristic of a microscopic object can be maintained
at low temperature (below 1K) over a distance of the order of a micron. Finally, the
reduced dimensionality of the motion and the circular Fermi surface form simplifying
factors for theoretical analysis. These are ideal features for applications as well as
investigations of quantum transport.

Semiconductor nanostructures are unique in offering the possibility of studying
quantum transport in an artificial potential landscape. This is the regime of ballistic
transport, in which scattering with impurities can be neglected and one observes
the effect of quantum fluctuations. Indeed, various experiments conducted on such
devices observed novel phenomena directly determined by quantum interference, such
as Aharonov-Bohm (AB) effect [6], quantum Hall effect! [7, 8] , etc. The transport
properties can then be tailored by varying the geometry of the conductor, in much
the same way as one would tailor the transmission properties of a waveguide. The
physics of this transport regime could be called eleciron optics in the solid state [9].
The formal relation between conduction and transmission, known as the Landauer
formula {10, 11, 12], has demonstrated is real power in this context. For example, the
quantization of the conductance of 2 quantum point contact [2, 3](a short and narrow
constriction in the 2DEG) can be understood using the Landauer formula as resulting
[rom the discreteness of the number of propagating modes in the construction.

The discovery of the quantum Hall effect by von Klitzing, Dorda, and Pepper is
one of the most important recent discoveries in condensed matter physics and has
led the research of low dimensional electronic system into a brand-new era. The
quantum Hall effect provides an unparalleled opportunity to study and utilize the
physical properties of macroscopic, 2DEG systems in the presence of strong magnetic
fields. These studies are revealing surprising results that are of particular interest
to the disciplines of condensed matter physics and electrical metrology. The Hall
resistance at these quantized values is given by the fundamental unit of resistance
h/e? = 25812.8 ohm divided by an integer. The development preceding this discovery
is reviewed by Ando et al. [13]. The accuracy of the quantization is so high that the

quantum Hall effect recently was adopted as a resistance standard. The general nature

'In this thesis, quanium Hall effect means integer quantum Hall effect.
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of this effect has given rise to the belief that it must have a fundamental explanation
that is independent of the geometrical shape of the conductor and microscope details.
A particularly interesting nanostructure which has been used in a number of cxper-
iments is the antidot[14). An antidot is essentially a reflecting potential peak inside an
otherwise “flat” potential landscape of a two-dimensional electron gas (2DEG). In this
sense an antidot could be viewed as an “artificial impurity”. Single as well as multiple
antidots can be fabricated by etching holes into the 2DEG[15, 16]. Anomalous quan-
tum transport features such as chaotic scattering of the electrons[17] were observed
in these systems. When the antidots form a periodic array, experiments found[15, 16)
that some of the magneto-transport features could be correlated with the behavior of
classical orbits. A simple physical picture showed[15, 16] that certain predominant
magneto-resistance peaks were from commensurate classical orbits impaled upon a
small number of nearest-neighbor antidots in the array. On the other hand, when one
antidot is confined inside a quantum wire[18], quantization of the classical orbits at
reasonably large magnetic field B leads to the formation of magnetic edge states|19).
The important role played by edge states was clearly shown when the quantum Hall
effect was explained(20, 21, 22 from the point of view of these states on the basis of
the Landauer theory of one-dimensional transport[11]. Essentially, the quantum Hall
regime is reached when perfectly transmitting channels are formed along the edges
of the sample, and according to Landauer theory, N such channels or edge states
contribute N factors of e?/h to the Hall conductance, ie. G = N % where e is the
electron charge and h the Planck constant. Thus the Hall resistance is step-like:

h 1

Ri = % - (1.1)

Similar to the case of the array of antidots, here some edge states do not carry electric
current, i.e. they are localized, such as those “circulating around” the antidot. Others
carry current, such as those “skipping” along the quantum wire boundaries. It was
shown theoretically that coupling of the magnetic edge states leads to resonances in
the quantum Hall resistances[21, 23], and many phenomena in ballistic transport could
be understood using this physical picture. In a more complex situation such as a 4-
probe Hall junction, it has been well established[24] that edge state coupling gives rise

to anomalous conductance fluctuations even without an antidot. In this case[24, 25]
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the localized edge states presumably are formed around impurities. Similarly, the
coupling of the extended and localized edge states gives rise to resonances in the
magneto-conductance.

There are many important discoveries in nanostructures. Several useful reviews

are listed in Refs. [1, 2, 4, 5, 8, 26).

1.1 OQutline

Our work in this thesis aims to study the electronic properties when the perfect
quantum Hall regime is not reached. It is well known that quantum Hall effect is
operated on a 2DEG system whereas Aharonov-Bohm effect generally takes place on
a ring geometry, t.e., a one dimensional sample. We will discuss these two effects
and the relation between them more explicitly later on. It is the physics between
them which has motivated this work. By doping an antidot in the middle of the Hall
junction and varying the size of it, we can clearly demonstrate the crossover regime
between the two limiting cases (quantum Hall effect and Aharonov-Bohm effect).

The contents of this thesis are as follow. Chapter 2 gives a review of quantum Hall
effect and AB effect. We shall recall some basic concepts of Hall effect. The discovery
of quantum Hall effect and its theoretical explanations (Laughlin’s and Halperin’s)
shall be given, and then Aharonov-Bohm efiect will be discussed. In the last part of
Chapter 2, we shall inspect the relation between these two effects.

In Chapter 3, Biittiker’s approach [22, 27] to electrical conduction is introduced
in detail. This theory is the basic tool which we use in this thesis.

In Chapter 4, a study of quantum Hall effect with the presence of an antidot poten-
tial for a box-shaped Hall-bar structure is made. A finite element scheme [28] to solve
the single particle Schrodinger equation is extended to the case including a magnetic
field [29]. By considering the cases without an antidot and with a very big antidot,
the two limiting cases (quantum Hall effect and AB effect) are revealed clearly in our
calculations. However the most interesting phenomenon is the “symmetry property”
when the size of the antidot is in the middle regime [30]. A topological explanation
is proposed which is based on Biittiker’s topological equivalence argument [24] and

S-matrix theory [31]. Last part of Chapter 4 is devoted to the investigation of the
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universality of the “symmetry property” observed. We study this problem from two
angles. First, do we still have that symmetry when the geometric shape of the Hall
junction is changed? Second, what will happen if the antidot is not located at the
center of the structure? Several cases are studied and the conclusion is positive. The
main results of this chapter have recently been published in Physical Review B [30].

Finally a short summary and outlook on further research is given in Chapter 5.



2

QUANTUM HALL EFFECT AND AHARONOV-BOHM EFFECT

2.1 Introduction

The quantum Hall effect was discovered at about the hundredth anniversary of Hall’s
original work, and the finding was announced in 1980 by von Klitzing, Dorda and
Pepper [7]. Klaus von Klitzing was awarded the 1985 Nobel prize in physics for this
discovery. In brief, it is found that under suitable conditions, the Hall conductivity
of an inversion layer is quantized t« better than cone part in 10° to integral multiples
of e?/h. Since the discovery of quantum Hall effect, it has spurned a considerable
effort to understand this phenomenon [32]. An elegant explanation of quantum Hall
effect was put forth by Laughlin [33]. Laughlin discusses the response of a cylinder
to an Aharonov-Bohm flux along the axis of the cylinder and explains the quantum
Hall effect in terms of a supercurrent due to the long-range phase rigidity of the wave
functions around the loop. Halperin [19] supplemented this picture by discussing
edge states which form at the boundary of the sample. The long-range phase rigidity
has led Imry [34] to propose several flux-sensitive effects. Such purely topological
considerations have attracted considerable attention (35, 36, 26].

In mesoscopic physics, there is another important effect, Aharonov-Bohm effect [6],
which illustrates that in a field-free multiply-connected region of space, the physical
properties of the system depend on the vector potential A. Aharonov-Bohm effect
actually is about quantum interference effect of a one-dimensional electronic system
in the presence of a magnetic field. On the contrary, quantum Hall effect is associated
with two-dimensional electronic states in strong magnetic fields. In the semi-classical
picture these states correspond to the “whispering gallery” trajectories (edge states

in quantum mechanics), grazing the sample’s boundary, so that in some geometries
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(e.g. a disk with a hole threading through the middle), this resuits in an effective
ring topology which may lead to an Aharonov-Bohm type of oscillations in multiply-
connected samples. From another point of view to investigate these two effects,
Aharonov-Bohm effect is a weak-field effect while quantum Hall effect is a strong-
field one.

In this chapter, we discuss the physics of quantum Hall effect, to which more
attention is paid, and Aharonov-Bohm effect. We first recall the basic physical con-
cepts of Hall effect, classical and quantum definitions of Hall resistance are then
introduced. The materials given next are the discovery of quantum Hall effect and
different theoretical explanations of it. This is followed by a detailed discussion of
Aharonov-Bohm effect. Finally, to illustrate the relation between them, we discuss a

multiply-connected conduction problem.

2.2 Basic Concepts of Hall Effect

The discovery of quantum Hall effect is based on the following two basic conditions:
first, low temperature and high magnetic field; second, two dimensional elecironic
system. The magnetic field which is perpendicular to the 2DEG system quantizes
the motion of electrons in the plane so that the system is actually pseudo-zero di-
mensional [37]. In this situation the spectrum of a single particle turns into a series
of highly degenerate Landau levels. However, disorder and interaction between elec-
trons can decrease the degeneracy and expand the Landau energy levels into energy
sub-bands. All of above have been well known before the discovery of quantum Hall
effect.

Before further discussion, it is necessary to recall the basic concepts of Hall effect.
Hall resistance is one of the physical quantities which are usually mecasured in solid
state physics. When a magnetic field is applied the conductivity o and resistivity p

become tensors,

Ozz Ozy _ Pzz  Pzy
Oyz Oyy Pyz  Pwy

Defining J and E as current density and electrical field strength respectively, then

J=c¢c-E, E=,p.J. (2.1)
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Considering the relaxation time 7 that results from impurity scatiering and Lorentz

force, the “Langevin equation” of average electronic motion is

v =i(E+ vxB
m

) - -Z- : (2.2)

For a steady-state, the relation of current density J and average electron velocity v
is known as

J = —nev . (2.3)

For simplicity, magnetic field is assumed along the z-axis, and therefore the equation

of motion of electrons in the zy plane becomes

O'OE::: = wcij + jz )

ooBy = —weTi: + gy, (2.4)
where )
ne’r

% = —— (2.5)

is just the classical conductivity in the absence of a magnetic field and w,., known as

the cyclotron frequency, is given by
eB

We = — . (2.6)

From Egs. (2.1), (2.2), (2.3) and (2.4), it is easy to obtain

Pzz = Py = 1/0'0 v Py T —Pyz = wcT/ao )
oo —OoWeT
zz — = 3 zy — ~—Oyp = ————— . 2.9
G Tyy 1+(wc1_)2 s Ozy Ty 1_*_(%1_)2 (2.7)
On the other hand, Egs. (2.5), (2.6) and (2.7) give us
nec Oz

O'xy = -? + oeT . (2.8)

When 0., = 0, we have j, = 0,,F, and 0, is given by the first term of Eq. (2.8),
i.e., the Hall conductivity is

O = Omy = ——e . (2.9)
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Eq. (2.9) is still valid when we consider a quantum mechanical case. If we use

Landau gauge, vector potential A is of the form, 4 = (By,0). The Hamiltonian of

this system is then

1 )
H = 7= [(p= + 1oeBy)® + p¥] + eBy , (2.10)

where the electrical field E is along the y direction. Writing the form of wave function

0 [ l ! i
8 0
(]
2D
JB=EOL
0 i i 3 5 K 9
O—Z—ﬁm 771(9 ?ﬁm "i'ﬁm 7ﬁm

Figure 2.1: Density of states of 2DEG and 3DEG in magnetic field.

as YP(z,y) = e **¢(y), the Schrédinger equation becomes

2
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he
Ipg = \f <5 (2.12)

is the magnetic length. Making use of the formulae for a harmonic-oscillator, we will

where

get the energy eigenvalue ¢; and the wave function ¥;(z,y) of the 7th Landau level,
1
e(E) = (i + 5 Viw, + eE(l%k — eE/2muw?) (2.13)

Pi(z,y) = e ™ exp[—(y — yo)? /2B Hil(y — o) /L] (2.14)

wherei = 0,1,2,3,---;and yo = 4k—eE/muw?. The effect of electrical field E does
not change the structural features of energy spectrum, but only lets the eigenvalues
have a shift.

Here we can see that the perfectly separated energy spectrum of 2DEG system
in the presence of a magnetic field is very important for the occurrence of quantum
Hall effect. On the contrary, electrons can freely move along the magnetic field if we
consider the three dimensional case. So the density of state (DOS) will be a band in
3D (see Fig. (2.1)). Using the properties of harmonic-oscillator wave function we can

obtain the average velocity
vy > = & [#iGo + Zudr = -Ee/B . (2.15)
i m Y0z ¢

It is easy to get electrical current density j = necE/B, which is the same as the

classical counterpart (using Eq. (2.9)).

2.3 Discovery of Quantum Hall Effect

The states of an electron are continuous in the zy planre when there is no magnetic
field. It is easy to find the density of states per unit area g(E) = m/2xk%. Once a
magnetic field is present, the energy spectrum shrinks into equally separated Landau
levels. Due to the conservation of the sum of states, every Landau level is degenerate
which includes fw.g(E) = eB/hc sates. We can obtain this degeneracy through
another more direct picture: an electron has a cyclotron radius r. within a magnetic
field, therefore for a 2DEG system of unit area, it acquires a degeneracy for every
Landau level, which is 1/2x72 = eB/he.
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We can prove that the current along the electrical field is zero by the similar
method for getting Eq. (2.15). It is worth noting that the above conclusions have
nothing to do with the energy level index 7. If electrons fill up to the ith Landau level

and electron demnsity is n = ieB/hc, then

e e?

o = N— = =1— . .
H 5 i (2.16)
2 4 6 8
I T T T
2 6454
- e < —
12 |- <) Ryy 20 a8
£ 6453 9,
o\Re
10 1= ‘ o &
6452)-
= | [/l N\ 3¢ \
a W3e e ] R.rx | J
~ 8B L 1.5 120
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R 6 |- R.r.\'
Re' N=0
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Figure 2.2: Quantum Hall effect observed on the inversion layer of Si-MOSFET. From Ref. [7].

Here we must emphasize that even though 7 is an integer, Hall conductivity is actually
proportional to n, the electron density. The second equal sign of Eq (2.16) is only valid
for special n. For the inversion layer of Si-MOSFET, electron density n is proportional
to the grid voltage V,, i.e., there is a linear relation between Hall conductivity and V.
However von Klitzing et al. discovered an amazing phenomenon in 1980 that under the
conditions of low temperature(1.5K) and high magnetic field(18T), Hall conductivity
0z, has quantized plateaus and longitudinal conductivity o, vanishes (7, 38). This is

so-called quantum Hall effect. Fig. (2.2) is the typical experimental result of quantum
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Hall effect. The appearance of Hall plateaus depends on the fiiling factor of the

Landau levels,
n ne

n
= hwg(E) ~ eBjk ~ Blgo '
where ¢y = hc/e is the flux quantum. Eq. (2.17) clearly shows that the filling factor

(2.17)

v = electron density/fluz quantum.
Quantum Hall effect is quite universal for 2DEG system, i.e., it only depends on
several conditions such as magnetic field B, suitable disorder and is independent of

materials,

2.4 Theoretical Explanations of Quantum Hall Effect

DOS

m

B A e et £ 7]

€

Figure 2.3: Density of states without (top) and with (bottom) disorder. Regions of dislocalized
states are shaded. The dashed line indicates the Fermi level.

Experimental results showed that every ::cak of longitudinal resistivity p.. is in the

middle of a Landau level (see Fig. (2.2)). That the appearance of plateaus of pgy or
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ozy and the vanish of p.. or o, take place between two adjacent Landau levels means
that electrons are in localized states (hence they do not contribute to conduction o.;).
On the other hand, when o, increases, electrons are mobile, i.e., they are in extended
states. Localization is necessary for quantum Hall effect. In §. 2.2, Eq. (2.11) is valid
only for a perfect 2DEG system. However, in a real 2DEG system, disorder which
comes from impurities and roughness of surfaces is present. Hence there must be a
term of disorder potential V() in the Hamiltonian, which brings a decrease to the
degeneracy of Landau levels. In other words, density of state is no longer a sequence
of § functions. Every Landau level expands into a Landau sub-band with finite width
T', and its property depends on the disordered potential. In Fig. (2.3), we can sce
that extended states are located near Landau levels whereas the localized state is
in the middle of adjacent Landau levels. The existence of localized state is helpful
for explaining quantum Hall effect. When electronic density increases or magnetic
field decreases, localized state is gradually filled. However the occupation number of
extended states is a constant and consequently Hall conductivity is a constant. The
longitudinal conductivity tends to vanish at low temperature, nevertheless when Fermi
energy goes through the center of the extended region, longitudinal conductivity is

obviously nonzero and Hall conductivity jumps from one plateau to another.

2.4.1 Laughlin’s Explanation
An elegant theory for quantum Hall effect was put forth by Laughlin [33], who demon-

strated that it is in fact due to the long-range phase rigidity characteristic of a super-
current, and that quantization can be derived from gauge invariance and the existence
of a mobility gap.

We consider the situation illustrated in Fig. (2.4) where a ribbon of two-dimensional
metal is bent into a loop of width L and pierced everywhere by a magnetic field By
normal to its plane. The density of states of this system, shown in Fig. (2.3), consists,
in the absence of disorder, of a sequence of § functions, one for each Landau level and
they broaden in the presence of disorder into bands of extended states separated by
tails of the localized ones.

It will simplify our problem if we make use of Corbino plate (Fig. (2.4)) instead of

the loop. These two models are of equivalence and coordinates z and y belong to a
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r'ght-angle coordinate system when radius R is large enough. Consider the disordered
case with Fermi level in a mobility gap. Hence there is a Hall current along the y
direction of the electrical field, and no current along the z direction. If a state is
extended, the magnetic flux ¢ penetrating through the closed orbit of an electron

must be quantized (see next section)

ﬂ'RzBo = mdo , (2-18)

where m, is an integer and ¢ = he/e in the flux quantum.

< AV

(a) (b)

Figure 2.4: Left: Diagram of metallic loop. Right: Corbino plate.

In order to generate a Hall current, we set a solenoid threading through the middle
of the plate with a magnetic flux @ confined within it. Since there is no magnetic
ficld out of the solenoid, it has no effect on a classical electron. However from the
quantum mechanics point of view, the magnetic flux ¢ plays an important role in
affecting electrons through the vector potential A. This is Aharonov-Bohm effect
(we will discuss this effect in § 2.5). Although Schrédinger equation will include A,

we can get rid off it by choosing the following gauge transformation,

P(8) ~— $(6)expli(E/d0)d] . (2.19)
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Whenever an electron goes back to the starting point after twinning the plate, ¥
becomes
P — Pexp[2ni®/ ). (2.20)

That the wave function should be single-valued requires

® = magy , (2.21)

where m; is another integer. Thus the quantization condition is given by
7R2By + ® = m¢p, m=my +mg . (2.22)

It is obvious that, in Eq. (2.22), if ® increases with a fixed m, the radius R will
definitely decrease, i.e., the electrons move inwards. Particularly, if magnetic flux $
increases by a flux quantum ¢, electronic state will switch to the (m; — 1)th state.
The distance L, over which an electron moves from the outer side to the inner side of
the plate, will results in a erergy shift Ae = eEL, provided that an electrical field E
is along the = direction.

We wish to relate the total current density j, carried around the loop to the
potential drop V from one edge to another. This current is equal to the adiabatic
derivative of the total electronic energy € of the system with respect to the magnetic

flux & through the loop (this can easily be shown by writing explicitly e =< H >),

, c O¢
Jy = Eg‘i’- . (2.23)
Replacing 0¢/3% by Ae/do, we find
¢?
= —E . (2.24)

h
Since each of the n energy levels contributes a current as Eq. (2.24), the total current
density becomes
Jy = n—L . (2.25)
It is easy to obtain

oH = —n— . (2.26)
h

To explain quantum Hall effect, it is very important to assume that both localized and
extended states exit, where extended states mean that clectrons moving around the

Corbino plate whereas localized states represent electrons coiling around impurities.
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2.4.2 Halperin’s Explanation

Following the method of Laughlin [33], Halperin discussed some curious properties of
electronic states in a magnetic field which were implied by Laughlin’s analysis. He
found that states at the perimeter of the sample are quasi-one dimensional states
which carry a current, and which do not become localized in the presence of a disor-
dered potential of moderate strength. These so-called edge states play an important
role in the Hall measurement, if the Fermi levels are different at two edge of the

sample.

Figure 2.5: Geometry of sample. Annular film, region 7, < r < 7, is placed in uniform magnetic
ficld Bg, pointing out of the page. Additional magnetic flux & is confined to region » < »y. Curved
arrows show direction of currents I; and I, at the boundaries of film.

Let us consider a collection of noninteracting electrons, confined in an ideal uniform
film of annular geometry, with 2 uniform magnetic field By perpendicular to the plane
of the sample (See Fig. (2.5)). We assume in addition that there is a magnetic flux &,
confined to the interior of a solenoid magnet threading the hole in the annulus, and
we shall be able to vary the flux & without changing the magnetic field in the region
where the electrons are confined. We shall assume that no electric field is present so
that electrons feel a constant electrostatic potential in the interior of the film, and we

assume that the dimensions of the annulus are very large compared to the cyclotron
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radius 7. for electrons in the magnetic field. We adopt the gauge where the vector
potential A points in the azimuthal () direction, and the magnitude of A depends

only on the distance from the center of the annulus:
i
IA|= 5]30]7“{"‘1’/27!‘1‘. (2.27)

Away from the edges of the film, the electronic states in this geometry have the
form
b)) ~ O fr = 1m) (2.28)

where m and v are integers with v > 0, f, is the (v + 1)th cigenstate of a one-

dimensional harmonic oscillator, and the radius r,, is determined by

Borrl = me¢p — @ . (2.29)

Here ¢ is the flux quantum, hc/e. The width of f is of order 7., where r. is the
cyclotron radius. Eq. (2.28) is only applicable in the interior of the annulus, i.e., if
Tm 1s in the range r < rp, < 73, with 7, — 71 and 7, — 7y large compared to r.. We
shall assume throughout that r. is small compared to r; and r; — r1. The energies of

the states (2.28) are given by the following formula

1
Emy = fiwc(u-}-:-i) ’ (2.30)

where w, is the cyclotron frequency determined by Eq. (2.6).
The electron density | ¢¥m,(r) |* associated with Eq. (2.28) is symmetric about the
radius 7, and decays rapidly for | » — | /7c 3> 1. The current carried by the state

is given by

o 2 oo
g = o [ 1) P = 2N o S50 [ ) P )

(2.31)
where, m* is the carrier effective mass. The integral may be taken over the radial
coordinate r at any fixed value of 4. From Eq. (2.31) the net current vanishes for
states in the interior of the annulus, since the probability densities of the harmonic

oscillator states are symmetric about the point r = 7.
The situation is very different when r,, is closer than a few times 7, to an edge

of the sample. Then the condition that the wave function vanishes at the edges of
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the sample will shift the energies of the eigenstates away from the Landau energies
Eq. (2.30).

8[-" -
&)
3
=
=
B
~ 4
03 3
2
I !
0 i r

m

r,

Figure 2.6; Quantum channels in high magnetic field for a perfect conductor. »p, is the center of the
wave function m, provided that r, is not too close to the boundary r{ or ;. Each bulk Landau
level (flat portion of the dispersion in the center of the strip) gives rise to a branch of edge states
near the sample boundary.

Let us focus our attention on the behavior near the outer edge of the annulus, and
let us continue to use the index v to label the number of nodes in the radial wave

function. We may then write the electronic wave functions as
'ﬁbm,u(r) ~ e“mGQV(r = TmyT2 — Tm) y (2.32)

where g,(z,s) is a wave function which is defined in the region —co < # < s and has
v nodes, which vanishes for ¢ — s and £ — —oo, and which obeys the eigenvalue

equation
Rt d2 Blez?

[_2m‘ﬁ Ime ol lon = eg . 2.33)
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From this equation it is clear that the eigenvalue ¢,,, will approach the value ¢, =

hwe(v + 1), for 73 — 7y > r.. The energy €n, will increase monotonically as r,,
increases, passing through the value e¢p, = hw (v + %), when r,, = 72, and increasing
eventually as (r,, — r;)’e?BZ/2m*¢? for 7, — 72 > 7,. The energy curve is sketched
in Fig. (2.6).

Since the density | Ym,.(r) |* is no longer symmetric about + = r,,, near the edges,

we no longer expect that I,, = 0. In fact, making use of Eq. (2.29), it is readily
established that

Bem . efemy
Im b = — = = ! . 2.3
' ‘9% " % om (2:34)
For By > 0, we find that I, > 0, for 7, > »;, while I,,, < 0, near the inner edge

T & 1.

Note that the quantity | 8¢y, /dm | is just the energy separation between adjacent
energy levels for a given quantum number v. Thus the total current carried by states
of a given v in a small energy interval §¢ is equal to (e/h)de at the outer edge of the
sample, and —(e/k)de at the inner edge.

Let us suppose that the Fermi level lies in between the energies ¢, of two Landau
levels ¥ = n — 1 and v = n, in the interior of the sample. Suppose also that near
(2)
F

7 and r, there are Fermi levels ez’ and 5(1}), respectively, which differ from each

other, but still lie in the interval between ¢,_; and ¢,. If we denote the Fermi level

difference, eﬁ,f) - sg), by e/, then the total current carried by the edge states between

(2)

€p’ and E(Fl-) is clearly given by

I = ne®A/h (2.35)

which is just the expression of quantum Hall effect.

The electronic states in the interior correspond to carriers describing a cyclotron
motion with a guiding center that is stationary. Near the perimeter of the sample,
each Landau level is associated with a state that is a strong function of position.
These states correspond to carriers skipping along the boundary of the sample and
are called edge states. Essentially, Halperin’s explanation of the quantum Hall effect

is based on this notion of edge states.
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2.5 Abharonov-Bohm Effect

The wave function of an electron comprises two parts: amplitude ¢(») and phase
¢; i.e., ¥ = c(r)exp(ig). The quantum interference among electrons which have
traveled through the sample via all the conduction paths available in a device has
been observed directly in recent experiment at very low temperature. Electron wave
enter the device in phase, but upon reaching the other end, have been phase-shifted
relative to each other because of collisions with defects along the way. If phase
memory is maintained {11, 39] along each path, then the current exiting the device is
a superposition of the wave function in all the paths.

A magnetic field can be used to tune the phase of the electronic wave function. An
intriguing result of the relation between the wave function and the magnetic vector
potential A (the relationship, loosely speaking, is the quantum-mechanical analogue
of the Lorentz force) was pointed out by Aharonov and Bohm in 1959 [6].

Figure 2.7: Schematic illustration of the geometry which results in periodic Aharonov-Bohm oscil-
lations. A coherent beam enters from the left, splits around a magnetic flux & and recombines. The
intensity of the current exiting to the right oscillates with period ¢g = he/e.

Let us consider the case in Fig. (2.7). Using a very closely wound cylindrical
solenoid of radius R centered at the origin and with its axis in the z direction, we
create a magnetic field B which is essentially confined within the solenoid. However,

the vector potential, A, evidently, cannot be zero everywhere outside the solenoid,
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because the total flux through every circuit containing the origin is equal to constant

& = j{B-ds = jJA.dl . (2.36)

To demonstrate the effects of the total fiux, we begin with a coherent beam of clec-
trons. The beam is split into two parts, each going on opposite sides of the solenoid
but avoiding it. The beam is recombined together at point F (Fig. (2.7)). The

Hamiltonian for this case is

H

_ [P - (oAl

2m

(2.37)

In singly connected regions, where B = V x A = 0, we can always obtain a
solution for the above Hamiltonian by taking ¥ = 1oe~*5/", where i is the solution
when A = 0 and where VS/k = (e/c)A. But in the imagined experiment discussed
above, in which we have a multiply-connected region (the region outside the solenoid),
Poe~*5/* is a non-single-valued function® and therefore in general not a permissible
solution of Schrodinger’s equation. Nevertheless in our problem it is still possible to
use such solutions because the wave function splits into two parts ¥ = 1b; 4+ 1;, where
3 represents the beam on one side of the solenoid and 1, the beam on the opposite

side. Each of these beams stays in a simply connected region. We therefore can write
T L S (2.38)

where S; and S; are equal to (e/c) [ A-dl along the paths of the first and the recond

beam, respectively. Hence the total wave function at F' will be
P = Pl 4 gpeminh (2.39)
and we can find the intensity,
|91 = 198" + |98 |° + Re(¥{92) cos(AS/R) + Im(y343)sin(AS/R) , (2.40)

where,

AS/E = (S — Sk = (e/he) f A-dl = (e/hc)d (2.41)

1Unless & = nhc/e, where n is an integer.
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is the phase difference of the two beams. The interference between the two beams
will thus depend on this phase difference. The resulting current would be modulated

periodically by the amount of flux and thus imposes a fundamental periodicity
R(®) = R(® + n(hcfe)) , n=123,, (2.42)

on the resistance R(®) as a function of the perpendicular magnetic field B. This
effect will exist, even if the magretic field is completely confined to the interior of
the path so that the electron always travels in a magnetic-field-free region. The
existence of a vector potential A is all that is required to produce the phase shift.
In a real experiment, however, the magnetic field penetrates the arms of the ring
as well as its interior so that deviations from Eq. (2.42) can occur. Since in many
situations such deviations are small at least at a limited field range, one still refers to
magnetoresistance oscillation as an Aharonov — Bohm ef fect.

It is worthwhile to note that in the geometry of Fig. (2.7), the magnetic field B
is physically separated from the wave function. This spatial separation of the wave
function and the field implies, in the framework of classical physics, that there can
be no effect on the particle represented by the wave function. From this argument,
the Aharonov-Bohm effect is said to demonstrate that the magnetic vector potential

is a real physical potential, not simply a mathematical convenience.

2.6 Relation of Two Effects

So far the quantum Hall effect and Aharonov-Bohm effect have been discussed sep-
arately. However, using one conductor, we actually can observe both the quantum
Hall effect and AB effect by varying magnetic field or the size of the conductor.

To illustrate the dramatic change in current distribution and the backscattering
that develops in an intense magnetic field, we examine the magnetoresistance of a
prototypical scatterer — an annulus (see Fig. (2.8)) [40, 41, 42]. Following the
analysis given by Jain (48] and Biittiker [27, 44|, we assume that the magnetic field
penetrates both the wire comprising the annulus and the annulus itself. Technically,
the *hard core” in annulus can be realized by an “antidot” (see below). In Fig. (2.8)

the shaded area is the antidot. If BeW?/kic < 1, i.e., lp 3> W, (g is the magnetic
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length), the magnetoresistance is periodic in the flux hc/e through the average area
of the annulus due to the AB effect. As represented in Fig. (2.8a), the AB effect
occurs because two electron trajectories which encizcle a magnetic flux acquire a
relative phase shift proportional to the flux. As the flux changes, the transmission
probability of an electron through the annulus oscillates with a periodicity of he/e.
In contrast, in the quantum Hall regime, the current is carried around the annulus

by edge states, as shown in Fig. (2.8b). The AB effect is suppressed in the quantum
Hall regime because:

&V.

()

(b)

Figure 2.8: A schematic representation of transport through an annulus in the AB effect regime
(a), and in the quantum Hall regime (b). The arrows indicate the direction of current, In the
quantized Hall regime, a net current results from the difference between two oppositely directed
currents associated with the edge states.
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1. The outer edge states, which are connected to the probes and determine the
resistance, do not enclose a flux.

2. The inner edge states that do enclose a flux are not coupled to the outer
edge states.

3. Ideally, the edge states do not backscatter.

Since the magnetoresistance of the annulus oscillates periodically with magnetic
field in the AB transport regime, the magnetoresistance provides an unambiguous
periodic signature of the backscattering as a function of the field. The observation of
oscillations due to AB effect has been reported before [40, 41, 42] in the magnetore-
sistance of annuli fabricated in high-mobility Al1GaAs/GaAs heterojunctions. Under
the conditions of experiments, the magnetic field penetrated both the annulus and
the 1D constrictions comprising the annulus. For magnetic field where BeW?2/hc > 1
(the quantum Hall regime), the oscillation amplitude was suppressed [41, 45]. The
oscillations, with a periodicity near zero field corresponding to a flux of kc/e through
the average area of the annulus, decrease exponentially in intensity and shift to a
lower frequency as the magnetic field increases [40, 46]. The frequency of oscillation
observed in a high magnetic field corresponds to a flux of hc/e through the area
circumscribed by the inside diameter of the annulus, and the exponential decrease
in the amplitude is indicative of the exponential decrease in the overlap between the
outside and inside edges of the annulus. These observations show that the net current
is carried by edge states in the quantum Hall regime, and that the suppression of the
AB effect is due to the suppression of backscattering.

The above discussion is for two extreme cases. It is natural to ask what would
happen if B and W, both are suitable values so that BeW?/hc ~ 1?7 Answering
this question is the subject of this thesis which is presented in Chapter 4.
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BUTTIKER’S THEORY OF ELECTRICAL CONDUCTION

3.1 Introductory Remarks

Over the past several years, a different picture of quantum Hall effect has emerged [22].
Instead of the closed conductors implicit in the topological explanations [33, 19] of the
quantum Hall effect, which we discussed in Chapter 2, Biittiker considered another
physical picture, shown in Fig. (3.1) . Consider a system where a number of probes

are connected to the conductor that serve as carrier source, carrier sink, and serve

detectors

injector "] [\ receplor

2
detectors

Figure 3.1: Conductor with a number of probes permitting carriers to enter and leave.

to attach voltmeters. The source plays a role as an injector of carriers and the sink
as a receptor. The voltage probes are carrier detectors. Do we observe a quantum

Hall effect quite independent of the properties of the injector and the detectors?

25



3: BUTTIKER'S THEORY oF ELECTRICAL CONDUQTION 26

The answer to this question is: No. The distribution of incident carriers into states
of 2DEG depends on the properties of the source probe [22]. The memory of this
initial distribution can be lost only through the action of inelastic events. Elastic
scattering alone can lead to a modification of the incident distribution but not to an
equilibration, i.e., it can only change the direction of the incident carriers. Therefore,
if the injector and detector are close enough, the Hall resistance is not quantized
unless the injection and detection proceeds according to very stringent conditions.
This effect has been demonstrated in a clear manner in experiments by van Wees
et al [47]. and Komiyama et al {48].

In this chapter, we discuss Biittiker’s approach [22, 27] to electrical conduction
that we employ later on in this thesis. We assume that the dimension of conductor,
shown in Fig, (3.1), is less than the mean free path of the carrier thus we enter the
quantum ballistic transport regime. In this regime it is the electron scattering at
the conductor boundaries which limits the current, rather than the impurities scat-
tering. So we assume that the motion of carriers from the entrance to the exit can
be treated as a purely elastic scattering problem. Dissipation is assumed to hap-
pen only in the electron reservoirs which are connected to the probes. An electron
wave incident in probe j typically is associated with waves transmitted into all the
other probes i # j and a reflected wave in probe j. The conduction process is thus
viewed as a transmission and reflection problem. The description of wave motion in
terms of reflection and transmission coefficients is familiar from the propagation of
clectromagnetic waves in waveguides and has found wide application in this fields.
It is also familiar in tunneling theory which calculates the resistance of tunneling
devices in terms of tunneling matrix elements. Yet both of these stimuli did not lead
to a transport theory of electric conduction in terms of transmission and reflection
coefficients in the 1930s and 1940s. Papers that treat the conductor not only of a
single scatterer but of an entire sample in terms of transmission and reflection prob-
abilities seem to have appeared only with the work of Landauer in 1957 and in a
more explicit way in 1970. Landauer’s discussion of the resistance {11, 39] emphasizes
the local electrostatic potential that arises due to charge accumulation and depletion

at the scattering centers of the sample. More precisely, the voltage across a scat-
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terer is determined in portions of the sample a few screening lengths away from the
scatterer. This leads to an electrostatic potential difference that is determined by a
charge neutrality condition. Bilittiker, together with Imry and Landauer, reestab-
lished in 1985 a generalized resistance formula [49] that had been derived earlier by
Azbel [50]. But none of these papers addressed the role of probes. The distinction
between open and closed systems was emphasized in the early discussion of sample-
specific interference effects in normal loops (51, 52, 53, 54]. However, only the probes
connected to the current source and the sink were treated explicitly. Eventually, it
was recognized that a voltage probe, which permit no net carrier flux [55), neverthe-
less allows carrier exchange into and out of the conductor. The consequence is that a
voltage probe permits phase randomization and, in the presence of transport, dissipa-
tion of energy [54]. Thus, voltage probes provide a model of a dissipative scatiering
for electrical conduction [49, 56, 57, 58, 59, 60, 61, 62). These notions, amplified by
a set of experiments by Benoit et al.[63], led to a formulation of resistances on an
equivalent footing of all the probes {12, 27].

In contrast to the electrostatic potential at points inside a conductor, which cssen-
tially is determined by a charge neutrality condition, the consideration of a conductor
including the probes leads to a formulation of resistances in terms of the chemical
potentials of the electron reservoir. The measurement of a chemical potential is
conveniently expressed in terms of a zero — current condition. Hall resistances and
longitudinal resistances are measured in a four-terminal set-up: a carrier flux [ is
driven from the current source probe k to the current sink probe [ and the measured
voltage is determined by connecting a pair of probes m and n to a voltmeter, The
resistance measured in the configuration mnkl is

Vo — Wa

Ry mn = Ji

(3.1)

If an imagination line is drawn from the carrier source to the carrier sink probe, the
measured resistance is called a Hall resistance if the two probes are on opposite sides
of this line and is called a longitudinal resistance if the probes are on the same side
of this line. In Eq. (3.1), the potentials eV}, characterize chemical potentials (Fermi

energies) of the electron reservoirs connected to probes.
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3.2 The Scattering Problem

Consider a conductor, shown in Fig. (3.2), with several probes that permit the en-

trance or exit of carriers. To provide a mathematical formulation of a scattering

Figure 3.2: Conductor with probes connected to electron reservoirs at chemical potentials y;, i =
1,2,3,4 and an Aharonov-Bohm flux &.

problem, we use the notion of asymptotic regions which that permit the definition
of incident and outgoing waves. This is achieved by assuming that each probe of
the conductor in Fig. (3.2) eventually widens into a perfect probe. For mathemat-
ical purposes, it is assumed that such a perfect probe to extend uniformly for an
infinite distance away from the conductor. This mathematical device clearly has no
counterpart in the real physical world. Perfect wires do not exist. Therefore, this
mathematical device makes sense only if our final result is largely independent of
these assumptions. As we will show, this indeed is the case.

In perfect wires, the Hamiltonian is separable into a part that describes motion
along the perfect wire and a part that describes motion transverse to the perfect wire.

Therefore, in an infinitely extended perfect wire, the wave functions are of the form,

+ikx

Yixe = € Tan(y) . (3.2)

The factor e2¥** is due to translational invariance along the wire, f; 14 is the transverse
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wave function. For fixed %, the spectrum consists of a ladder of discrete states with
energy E;(k). The specific k dependence of the dispersion E;(k) depends on the type
of perfect conductor considered and depends on whether or not a magnetic field is
present. The specific form of the dispersion is irrelevant, however, and our discussion
in this section is completely general.

Suppose now that we have defined the properties of the asymptotic regions in all
the probes connected to the conductor. Consider a wave of unit amplitude of the
form given by Eq. (3.2), which is incident in probe n and channel j. A solution of the
scattering problem consists of this incident wave and of outgoing waves in (typically)
all the other probes. The outgoing waves in the asymptotic region again are of the
form given by Eq. (3.2) multiplied by a factor S;;mn, which accounts for the fact that
current is conserved. The outgoing wave in channel 1 in probe m due to a wave of

unit amplitude incident in probe n in channel j is

v‘ﬂ H S T

()" Simne™ " fin(y) - (3.3)
Here, 4B (8)
1., dEn(k

Vjn = (E)("‘—;'lr) lEp » (3.4)

is the velocity of carriers in probe n and quantum channel j at the Fermi energy
Ep. The velocity factors in Eq. (3.3) are chosen such that the absolute square of the
amplitude Sijmn is the transmission probability Tijmn (or the reflection probability
Rijnn) of a carrier incident in probe n and channel j to exit in probe m and channel

i, (or incident in probe n in channel j and reflected into probe n into channel i),
2 2
Tij.mn = | Sij,mn l 3 Rij.nn = | St'j,nn | . (3'5)

The incident wave function has an amplitude that is normalized to one and thus gives
rise to an incident current I, = vjn. The outgoing wave in probe m and channel i is
associated with a current Lim = Vim(Vjn/Vim)| Sijmn [* = vjnTijmn. Alternatively, if
the incident current is I;n = | @jn |?, then the outgoing currents are determined by the
square of the amplitudes Sijmncjn. The scattering matrix S with the elements Sijmn
thus provides a linear relationship between the current amplitudes of the incident

waves and the out going waves. Because current is conserved, § must be a unitary



3: BUTTIKER'S THEORY OF ELECTRICAL CONDUCTION 30

matrix. Denoting the Hermite conjugation by f, we must have st = s1, Since
the Hamiltonian describing the scattering at the sample is also invariant if we reverse
the momenta and the magnetic field simultaneously, the scattering matrix must then
have the property S§*(—B) = 57(B). Here, the asterisk denotes complex conju-
gation. Taken together, these two conditions imply that the scatiering matrix has
the symmetry S7T(B) = §(—B). Hence the amplitudes of the § matrix obey a mi-
croreversibility condition, Si;mn{B) = Sjinm(—B). The transmission (or reflection)
amplitude of a carrier incident in probe n in channel j to exit in probe m in channel
in the presence of a magnetic field is equal to the amplitude of reciprocal process of a
carrier incident in probe m in channel i to exit in probe n in channel j if the magnetic
field is reversed. Thus, as a consequence of microreversibility, the transmission and

reflection probabilities also obey the relations,
Lijmn(B) = Tjinm(—B), Rijnn(B) = Rjian(—B) . (3.6)

The microreversibility properties, Eq. (3.6), of the transmissior and reflection proba-
bilities are necessary to provide the reciprocity of resistances, but the microreversibil-
ity of the transmission probabilities is not a sufficient condition to arrive at the
reciprocity of resistances. The reciprocity of resistances is a consequence of both mi-
croreversibility and equilibration provided by the electron reservoirs connected to the

conductor.

3.3 The Current Response due to Differing Chemical Po-
tentials

The mathematical formulation of the scattering problem given earlier needs to be
augmented by physical considerations that specify the role of the reservoirs attached
to the probes of the conductor. First, it is assumed that a carrier that approaches a
reservoir from inside the conductor will enter the reservoir with probability one once
it has reached the asymplotic regions discussed before. Scattering that the carrier
suffers in the reservoir completely randomizes the energy and phase of the carrier
such that a carrier entering the conductor bears no phase and energy relationship to

an exiting carrier. Entering and leaving the reservoir are treated as irreversible events.
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Since the reservoirs connected to the probes are a source of irreversibility, it follows
that waves incident from differing reservoirs cannot exhibit quantum interference
effects. This allows us to treat waves incident from differing probes as incoherent.
Second, we must specify how a reservoir attached to a probe populates the quantum
channels (edge states). In part of the theory of electric conduction, sometimes it is
assumed that the incident carrier stream is populated according to a shifted Fermi
distribution. The result is that the quantum channels with low threshold energy,
which have a total momentum parallel to the probe, are populated up to higher
energies than quantum channels with high threshold energies, which have a smalil
longitudinal momentum component. Such a non-equilibrium distribution of incident
carriers does not give rise to the reciprocity of resistances. Rather, we assume that the
reservoirs are at equilibrium and fill all the quantum channels of probe m according
to the Fermi function of reservoir m. The reservoir populates all quantum channels
equivalently [49]. Next, we shall assume, for simplicity, that the temperature is
so small that the Fermi function of reservoir m can be described in terms of the
chemical potential (the Fermi energy) pm of reservoir m. The equilibrium population
of incident quantum channels simplifies the calculation considerably, and together
with the microreversibility of the scattering matrix, ensures the reciprocity of the
resistances.

Since the reservoirs feed all channels equally and up to their chemical potential, it
is only the total transmission probabilities that are relevant. If each incident chan-
nel in probe n supports a unit current | a;, |> = 1, the total current in probe = is
Bl Sismn 7] @in [° = Zij| Sijmn |*. Here, the sum is over all M, incident channcls
in probe n and over all outgoing channels M,, in probe m. Hence, transmission from

probe n into probe m can be characterized by a total transmission probability [12],

i=Mmj=Mn
Tan = 9, 9. Tijmn - (3.7)
=1 j=1

Similarly, the total reflected current in probe n due to carriers incident in probe n

can be characterized by a total probability for reflection,

i:Mu J.=Mn

Run = 3. Y. Rijnn - (3.8)

i=1 j=1
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Egs. (3.7) and (3.8) are the relevant transport coefficients as we now will demonstrate.

Next, we have to evaluate the currents driven through a sample in the presence of
small differences between the chemical potentials. To find the relation betwera the
currents and the chemical potentials, we proceed as follows. Denote the lowest of the
chemical potentials ., by jo. At energies smaller than pg all states are fully occupied.
These states cannot contributes to a net current flow. Thus, the considerations can
be limited to energies larger than py. Reservoir n feeds all quantum channels in the
energy range ft, — pg. Lhe current incident from this reservoir in channel j in this
energy interval is I = evjn(dn;n/dE)(itn — po). For each of these quantum channels,
the appropriate density of states is dn/dk = 1/27, thus density of states with respect
to energy is

dn;, dn dk 1

dE = dkdE;, = hvjy,
Hence, the density of states is inversely proportional to the velocity of the carriers.

(3.9)

Using (3.9), the reservoir j feeds a current,

e

I'= +(n —po) > (3.10)

into each of the M, incident quantum channels. Note that this current is quite
independent of any particular properties of the system (magnetic field, effective mass,
density of states-.-). The universality expressed by Eq. (3.10) is essential for the
occurrence of quantized resistances.

It now is a simple matter to calculate the net currents flowing into the probes
of a conductor. The total incident carrier flux in probe m is Mu(pm — po)/h. Of
this flux, a portion Rmm(gtm — po)/h is reflected. The incident flux is diminished
further by carriers that are incident from the other probes and are transmitted into
probe m(because they flow in opposite directions). These fluxes are proportional to
Toun(ftm — o)/ k. Thus, the net current in probe m is [27]

In = 7{(Mm = Roun)tim = 3 Tounpin] - (3.11)
n#Em
The reference chemical potential drops out as expected. Due to current conservation,

we must have

Mm = -Rmm + Z Tmn. . (3-12)

n#¥m
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Hence we can also express Eq. (3.11) in the form,

I, = %Z Tmn(.u'm - F'n) . (3.13)

nEm

Egs. (3.12) and (3.13) are the important equations of this section. They represent
a quantum mechanical version of the Kirchoff laws. These equations provide a linear
relationship between chemical potentials of electron reservoirs and currents in the
probes. It is a linear response relation. The transmission and reflection coefficients in
Eqgs. (3.12) and (3.13) are evaluated at equilibrium at the Fermi energy. The lincar
response coefficients T, and R, have the symmetry that, according to Onsager
and Casimir [64], is required. The diagonal coefficients Rmm are symmetric under

flux reversal and the off-diagonal coefficients obey a reciprocity relation,
Rpum(B) = Rum(—B) , Tun(B) = Tam(—B) . (3.14)

The symmetry of the total transmission and reflection coefficients is a consequence

of the symmetry of the individual transmission and reflection probabilities as stated
by Eq. (3.6).

3.4 Resistance and Transmission

Using the relations between currents and chemical potentials, Eq. (3.11), we can now
determine the resistance for a given configuration of current sources, sinks, and voltage
probes. We discuss here two cases explicitly: the case of a two-probe conductor and
the case of a resistance measurement in a four-probe setup.

If the conductor is connected only to two reservoirs with M; and M, quantum
channels, current conservation as stated by Eq. (3.12) requires M; = Ry (B) -+ T12(B)
and M, = R;5(B) + Tz (B). Since the total reflection coefficients are symmetric
under field reversal, it follows that M; = Ry1(B) + Ti2(—B) and M, = Ran(B) +
T3(—B). Consequently, the two-terminal transmission probability Ty = The = T
is also symmetric under field reversal. Thus, Eqs. (3.11) and (3.13) yield a two-probe
resistance,

Riz12 = =
' el e?

ot oyl - (3.15)
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Eq. (3.15) has been obtained by Fisher and Lee [65] in a linear response calculation
that did not appeal to reservoirs and is contained in a number of papers as a limiting
result [49, 66]. The physical content of Eq. (3.15), which gives the resistance for
current flow between two equilibrium reservoirs, was comprehended by Imry [10]. The
comparison of the two-probe resistance expression, Eq. (3.15), with the resistances of
multi-probe conductors [12] further helped to clarify this equation.

Consider a four-probe conductor next. Let probe k be the carrier source and probe
[ be the carrier sink. Probes m and n are voltage probes. The voltmeter connected
to a probe is taken to have infinite impedance. Hence, the voltage measured at a
probe is obtained by adjusting the chemical potential of this probe such that the net
current through the voltage probe is zero. To find the measured resistance in such
a configuration, we have to solve Eq. (3.11) with the conditions I = I, = —1I; and
I, = I, = 0. We cannot directly invert Eq. (3.11) to find the chemical potentials
as a function of the current. If all chemical potentials are equal, all the resulting
currents are zero. Hence, the determinant of the matrix of transport coefficients in
Eq. (3.11) is zero. A simple way to proceed is to subtract from each chemical potential
in Eq. (3.11) the potential p,,. Writing the equations for I, Ij, and I, gives a system
of three equations with three unknown variables, y; — p,, ¢ = k,I,m. Solving for
fm =~ fin yield

h

kaTnl - TmITnk
Hm — fn = ;I( )

Dkn
Here, Dy, is a subdeterminant of the matrix of transport coefficients in Eq. (3.12) of

(3.16)

rank 3 (with row & and column n deleted from the full matrix). All subdeterminants
of rank 3 of the matrix of transport coeflicients are equal, Dy, = D. This is a
consequence of current conservation. To show this, let us denote the determinant of
the full matrix by “det”. It is zero. Now, expanding it in terms of subdeterminants
yields

0 = det = (Mm — Rmm)Dmin ~ ) TinDinn - (3.17)

nEm
This is just Eq. (3.11) with zero current in all the probes and with the subdeterminants
in place of the chemical potentials; but the only solution of Eq. (3.11) that yields zero
current in all the probes is the equilibrium solution consistiﬁg of identical chemical

potentials. Hence, all subdeterminants are equal, Dy, = D. With the voliage
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drop, Vian = (#m — ptn)/e as determined by Eq. (3.16), we find for the four-terminal
resistance, Rimn = Vinn/I [12],

L3

e

(kaTnl - TmlTnk)

Rkl,mn = ( D y

)

(3.18)

Eq. (3.18) has the property that the two resistances measured in two configurations
in which the current source and current sink are exchanged {exchange of & and [) are
equal in magnitude but differ in their sign. Similarly, two configurations that differ
only in the voltage probes (exchange of m and n) are equal up to a sign. The important
symmetry of the four-terminal resistance, Eq. (3.18) is the reciprocity relation which
states the following. The two resistances measured in the four-terminal configurations
in which exchange of the role of the current and voltage probes is accompanicd by a

reversal of the magnetic field, are identical. The reciprocity of resistances,

Rumn(B) = Rpnu(-B) , (3.19)

follows from Eq. (3.18) on account of the microreversibility property of the trans-
mission probabilities, Eq. (3.7), and the invariance of the subdeterminant D under
field reversal. D(B) = D(—B) follows from the fact that the subdeterminants also
obey a reciprocity relation, Dpn(B) = Dnm(—B), and that all subdeterminants are
equal.

The key result of this chapter is Eq. (3.18) and in all our subsequent calculations,
(3.18) will be used to find the transport properties of a system. The first step of
this whole calculation procedure is that to obtain all the transmission and reflection
probabilities, which is achieved by a finite element numerical method for solving the

Schrédinger equation.



4

EFFECT OF AN ANTIDOT POTENTIAL

4.1 Introduction

In Chapter 2, we have shown that whether it is the quantum Hall effect or the
Aharonov-Bohm effect which appears in a particular sample (see § 2.6) depends on
the relative magnitude of magnetic field B and “constriction length” W, of that
sample (Fig. (2.8)). If BeW? « 1, Aharonov-Bohm oscillation will be the major
effect, and on the other hand, if BeW?2 > 1, quantum Hall effect will be manifested.
It is the subject of this chapter to study the electronic transport properties in the
crossover regime, i.e., BeW? ~ 1.

A new and interesting development in the fabrication of antidot systems is due to
Feng et. al.[67]. A multilevel fabrication technique allowed electric contact with the
antidot, so that the size of the antidot could be varied by a potential. This experimen-
tal technique, in some sense, gives a controlled way to introduce artificial impurities
at known positions inside a nanostructure, and thus opens many possibilities for sys-
tematically measuring conductance anomalies resulting from different arrangements
of the artificial impurities. Among these, very interesting measurements were made on
the whole range of magnetic fields where transport characteristics change from classi-
cal to quantum[68)]. It was found, again, that coupling of the magnetic edge states[68]
determines certain magneto-transport features, especially beating and sharp period
changes in the resonant oscillations of the conductance.

Motivated by the experimental capability for controlling the size of an antidot[67,
68], in this chapter we present a theoretical study of the effects of antidot size on
the magneto-resistance of a two-dimensional Hall junction. It is well known[4] that

in mesoscopic physics many novel transport phenomena are related to the particular

36
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scattering potential landscape which confines the electron trajectory, and so we ex-
pect and indeed find several new features in various magneto-transport properties as
the size of the antidot is changed. We focus on the formation and coupling of the
magnetic edge states in this open system (see below), and classify quantum transport

characteristics in several regimes as the antidot size is increased.

4.2 Conductor with Ideal Propagation Channels

Before studying the case where an antidot potential is present, let us now discuss how
the quantum Hall effect is established in an open conductor with current probes in a
Hall junction [22, 69, 24]. Fig. (4.1) shows a conductor where the Hall junction has
twice the width as the probes connected to the current source and sink. Using the
Biittiker’s theory (see Chapter 3), edge states will be established along the sample
boundary. In the conductor of Fig. (4.1), IV edge states connect the four probes in a
cyclical fashion, We assume that all the probes are ideal; i.e., the probes populate all
edge states equally up to the chemical potential of the source. Furthermore, since all
probes are taken to be ideal, carriers that reach a probe leave the sample with proba-
bility of 1. We further assume that the conductor is so wide that scattering across the
sample from one edge to the other does not occur. Under these circumstances, the
edge states provide perfect transmission probabilities, T5; = N, Tsa = N, Tia = N
and Ty4 = N. All the other transmission probabilities are zero. The reflection prob-
abilities are determined by current conservation. If probe i is described by a (large)
number of states M; characterizing the metallic probe, current conservation requires
R;; = M; — N, With the transmission and reflection probabilities specified it is casy
to calculate the four-terminal resistance from Biittiker formula (Eq. (3.18)),

h (Tkmﬂn"TknT}m)
Bonpi = (;‘5) D )

(4.1)

where T, is the transmission coefficient from probe n to probe m, and the factor
D is a subdeterminant of rank three of the matrix formed by the equations for the

electric current (see § 3.4). For our structure (Fig. (4.1)), the Hall resistance is given
by
L3

TTaz — TaT.
Riszd = (ez)( T3 — T23T4)

D ?

(4.2)
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Figure 4.1: Conductor with Hall probes and perfect edge states.

Ry3,24 is determined by T3,Tys — T23T4, which is equal to N2, Evaluation of the
subdeterminant D in Eq. (4.1) yields D = N®. So, all Hall resistances of the conductor
of Fig. (4.1) are quantized and given by

Ru = (5)(5) - (43)
On the other hand longitudinal resistances, for example Rj; a4, are zero. This is
because in the products forming the expression for Ripaq, T41T23 —~ T43Ts, at least
one transmission probability is always zero.

In the previous discussion, we assumed probes without internal reflection and
assumed that backscattering is completely absent, ¢.e., the edge states provide perfect
transmission channels for the carriers. These assumptions obviously are sufficient
to obtain the quantum Hall effect. What the Hall resistance Ry will be if these
assumptions are no longer valid? To find out, we next consider the case when an

antidot potential is present in the middle of the Hall junction.
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4.3 Behavior of the Hall Resistance

We study the ballistic structure shown in Fig. (4.2). It consists of an antidot con-
fined inside a square quantum dot, with four probes connected to the quantum dot
forming 2 Hall junction. As mentioned before, experimentally this system may now
be fabricated using the multilevel fabrication technique[67, 70]. Without the probes
this system is a chaotic billiard (the Sinai Billiard), and the motion of a classical
particle inside it is chaotic[71]. With very narrow probes this structure may give rise
to chaotic scattering of charge carries[72], thus it provides an interesting test ground
for ideas and theories of the intriguing field of “quantum chaos”(71]. The study of
“quantum chaos” are made by calculating the energy spectrum of this system, but it
is not the subject of this thesis. What we study here is the physics between quantum
Hall effect and Aharonov-Bohm effect.

In the present work we study situations where the probe width, W, is reasonably
wide compared with the quantum dot size, D (see Fig. (4.2)), thus we nced not
consider the possibility of chaotic scattering(73]. In this chapter, we fix the antidot
in the center of the Hall junction and it is assumed to be circular with a radius =,
which we shall vary. The whole system, including the probes, is penetrated by a
uniform external magnetic field B. A full quantum mechanical calculation of the
electron scattering problem is very complicated even without the antidot[74] because
of the irregular shape of the Hall junction, and thus theoretical investigations(24, 25]
on junction scattering are usually based on physically motivated phenomenological
models where such parameters as the coupling constants between different states are
introduced. Here we solve the quantum scattering problem using a finite-element
numerical method[28, 29] which allows us to clearly and directly demonstrate the
formation and study the effects of magnetic edge states, and to obtain transport
characteristics.

Throughout this calculation, we have fixed the dimensions of the structure to be
W = 16504, and D = 2W. We consider electrons coming from probe I, which scatter
inside the junction, and then reflect back or transmit to other probes. The confining
potential at the boundaries of the structure, including the antidot, is assumed to be

infinity. The single electron Schrodinger equation with effective mass approximation is
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Figure 4.2: Schematic plot of the Hall junction. An antidot of radius r, is confined inside the square
quantum dot. Electrons incident from probe I.

solved using the finite-element numerical scheme of Ref. [29]. Essentially we discretize
the scattering region (the quantim dot) into a linear algebra problem, particularly
a fine grid of finite elements which reduces the problem of solving the Schrédinger
equation into a sparse matrix problem. The quantum propagation in the probes is
solved separately using the technique outlined in Ref. [75]. The wave functions and
their derivatives are then matched at the probe boundaries and this leads to the
transmission coefficients T,y (n = 1,2, 3,4). We discretize the scattering region using
5000 grid points and check by increasing grid points further that excellent convergence
is obtained. We note that extremely accurate solutions of the Schrodinger equation
must be found for the probes especially at large values of B, otherwise accurate
results of transmission cannot be obtained. As », is varied, we make sure that at
least two propagating modes are possible inside the junction even for the largest
value of »,. We fix the incoming electron energy by its momentum kW = 9.5 which
is just above the third subband when the magnetic field is absent. However, since the

third subband cannot propagate in the probes when B is larger than ~ 1000 Gauss,
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we only consider the first two subbands in our calculations. Finally, the Biittiker
formula (24, 27] Eq. (4.1) is used to compute various four-probe resistances. We need
not calculate all other Th.’s (n # 1) in Eq. (4.1), since our structure is four-fold

symmetric. Thus the following relations will automatically hold for this structure:
Ty, =Ty = Tyy = Ty,

T21 = Ts: = T43 = TM ]
Ty = Tss = Ty = Tha, (4.4)
Ty = Tyg =T =Ty

With these, the Hall resistance is given by

h (T2yT2y — Ty T.
Ry = Rya4 =§( A le ) . (4.5)

Generally speaking, Hall resistance is a function of both magnetic ficld B and
antidot radius r,, t.e., Ry = Ry(B,r,). In this section, we pay more attention to
the relation between Ry and B and in next section we will inspect the dependence
on 4.

Fig. (4.3) shows Hall resistance Ry as a function of magnetic field B, for scveral
different antidot sizes r,. Very different Ry’s are clearly obtained for r, = 0 (no
antidot, Fig. (4.3a)), small 7, (r, = 0.26W, Fig. (4.3b)), intermediate r, (r, = 0.5W,
Fig. (4.3c)), and large r, (7o = 0.75W, Fig. (4.3d)). We will discuss them separately
in the following.

When there is no artificial impurity, at low magnetic field B the transmission is
essentially dominated by quantum interference resulting in very complicated resis-
tance fluctuations. We found that the first Hall plateau (N = 2) is reached when the
magnetic field is such that the classical cyclotron radius equals W/2, i.c. when the
probes can exactly fit with a cyclotron orbit and all classical orbits originating from
probe I can reach probe II. For our system this happens at around B = 4380 Gauss,
see Fig. (4.3a). Above this field strength the usual integer quantum Hall effect takes
place[22], namely a further Ry plateau is reached each time a propagating channel
ceases to operate. In our case the second mode cannot propagate in the probes after

B = 7180 Gauss, aud thus the second Ry plateau is reached at this value of B. The
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Figute 4.3: Hall resistance Ry as a function of magnetic field B for different antidot sizes rq. (n)
For ro = 0, integer quantum Hall regime is reached when perfectly transmitting edge states are
established. (b) For rq = W/4. Coupling of the transmitting states to the localized states leads to
the dips in the Hall plateau. (c) For r, = W/2 which is in the crossover regime where quantum Hall
and AB effects compete. (d) For r, = 3W/4. The Hall junction behaves as a ring for large r, and
the transport is dominated by the Aharonov-Bohm oscillations.
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hehavior of Ry at low magnetic field is very complicated that is determined entirely
by quantum interference. From an inspection of wave function, we found that the dips
in Fig {4.3a), at low magnetic field correspond to localized states. From Fig. (4.3a), it
is also easy to find that there is no sharp dips (i.e., localized states) once the quantum
Hall regime has been reached and we shall demonstrate later in this chapter that this
results from no antidot potential in the middle.

For a small antidot, such as r, = W/4, we can see from Fig. (4.3b) that the behavior
of Ry is essentially the same as that of case », = 0. However the anitidot can easily
support localized edge states which “skip” around the antidot. The coupling of the
localized edge state and the extended ones leads to the resonant-like sharp dips in the
Hall plateau, as shown in Fig. (4.3b). Coupling to the localized edge state is clearly
seen when we plot the norm of the wave function, |¥(z,y)|%, at the dips of Ry, as
shown in Fig. (4.4a,4.4b) at B = 6320 Gauss. It turns out that for this structure
and at this value of B two localized edge states can be supported around the antidot,
as shown by the two “rings” of the wave function. The outer state couples to the
transmitting channels since it is closer to them, and causes this near periodic dips in
the first Hall plateau. Similar resonance patterns are also observed in the quasi-one
dimensional situation studied in the Ref. [23]. On the other hand, Figs. (4.4c, 4.4d)
show |¥(z,y)|* on the plateau rather than at a dip, and clearly there is no coupling
to the localized edge states. The antidot potential plays a crucial role for Ry entering
quantum Hall regime: scattering with antidot is helpful for electrons to transmit into
probe II much before the classical cyclotron radius reaches the value W/2. This can
be clearly seen by comparing Fig. (4.3a) and (4.3b).

The above transport characteristics change qualitatively when the antidot size is
further increased. At very large sizes of r,, the structure behaves essentially like a
quasi-one dimensional ring since the corners of the confining quantum dot will not
be probed very much by the electrons. We found that this is indeed the case when
the shortest length I, of the structure (see Fig. (4.2), which is the shortest distance
from the surface of the antidot to the corner formed by the probe and the quantum
dot, I, plays a role as the constriction length) is less than twice the magnetic length
lp = W. For this antidot size (r, = 0.75W), we have [, = 588A4. Thus if this,
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(d)

Figure 4.4: The norm |¥(z, y)|? for r, = W/4 in the quantum Hall regime: (a) and (b) At B = 6320
Gauss where coupling to the localized state leads to a dip in the Hall plateau ((a) is for channel
1, (b) is for channel 2). Two localized states are clearly seen surrounding the antidot; (¢) (d) At
B = 8050 Gauss where no coupling is established and the norm is predominately located around the
path from probe I to probe II indicating the perfectly transmitting edge state ((c) is for channel 1,
(d) is for channel 2). Hall resistance at this B takes the quantized value,
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l, < 2lp, the magnetic field B must be less than 1.526 Tesla. Since the maximum value
for B in our calculation is 8000 Gauss, the structure with r, = 0.75W can indeed
be thought as a quasi-one dimensional structure. Thus for large r, we expect to see
typical AB effect oscillations. Fig. (4.3d) shows this regime where almost perfect AB
oscillations are observed with a period given precisely by the size of the effective ring.

For this antidot size, the effective ring radius is W. From the AB relation,

SB = n¢, (4.6)

where S is the ring area, B the magnetic field, ¢o = he/e the flux quantum, and = an
integer. Indeed, the period of the numerical data of Fig. (4.3d) is precisely given by
#o. Fig. (4.5) shows the norm of the wave functions for two different magnetic ficld.
It is obvious that the radius of maximum-probability circle does not depends on the
magnetic field B.

The most interesting regime as 7, is varied is in between the quantum Hall and AB
effect regimes. When 7, is not small enough to easily support formation of extended
current carrying edge states (Fig. (4.3b)), yet not large enough to cause perfect AB
oscillation (Fig. (4.3d}), there is a range of intermediate values of 7, where the Hall
resistance behaves as shown in Fig. (4.3c). Here, for small magnetic field B, well
established edge states are not formed and the transport is dominated by AB effect.
This is shown as the oscillations in Ry with rounded maxima, see Fig. (4.3¢). The
period of the oscillation increases as B is increased, because a larger B pushes the
electron closer to the antidot, so that the quantum path surrounding the antidot
becomes smaller, leading to a larger oscillation period. At higher magnetic fields, the
quantum Hall regime is reached with a flat Ry maximum and sharp dips reminiscent
of Fig. (4.3b). The critical magnetic field separating these two behaviors is such that
the shortest length I, equals twice the magnetic length lg. In the case of Fig. (4.3c),
this value is about 2600 Gauss. Indeed we can see from Fig. (4.3c) that the Hall
Resistance has a qualitative change in shape around this magnetic field value. The
first Hall plateau (with NV = 2) disappears in Fig. (4.3c), a result of the AB oscillation.
Although the true quantum Hall regime is reached only after B = 7180 Gauss when
the second propagating channel can not transmit but the first channel is perfectly

transmitting, we found that Ry = e?/h much before this value. In other words, there
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Figure 4.5: The Contour of norm of wave function for », = 3W/4 at two different magnetic fields:
(a) and (b) at B = 3304 Gauss with incoming carrier in channel 1 and 2 respectively; (¢) and (d)
at B = 6450 Gauss with incoming carrier in channel I and 2 respectively. Note the radius for
maximum-probability circle is almost the same for the two different magnetic fields.
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is a range of magnetic field where both incoming channels are partially transmitting,
but where there is an integer (N = 1) Hall resistance. We also found this to be the
case for a range of antidot sizes, and in the next section we will show our calculation
results of properties of Ry as a function of r; at a fixed magnetic field.

The above results give a very rich behavior of the Hall resistance as the antidot
size is increased. Essentially for the magnetic field range studied here, three transport
regimes are observed: with small r, there is a well defined quaninm Hall regime; at
large », AB oscillations dominate transport; and at intermediate values of r, there is
a crossover regime. In the next section we examine this last transport regime in more

detail, to reveal some peculiar properties.

4.4 Crossover Regime

As discussed in section 4.3, a peculiar property of the crossover regime is that ap-
parently a Hall plateau is obtained when the two incoming modes are both partially
transmitting. Similar behavior was observed in Ref. [75] in a cross-Hall-bar without
any artificial impurity, but no explanation was given. Obviously this phenomenon
is completely different from the so called “last plateau” problem|[76], since it only
happens in the crossover regime. In the particular system we studied (r, = 0.5W)),
Ryr takes the value 1 x e% for a quite large range of magnetic field (about 3500 Gauss,
we call it “crossover regime of B”)before B reaches 7180 Gauss, the value at which
the second incoming channel becomes evanescent while the first channel becomes
perfectly transmitting. There turns out to exist an approximate symmetry between
transmission coefficients of individual incoming channels which leads Ry to take this
quantized value before the quantum Hall regime is reached. The phenomenon occurs
for a range of the antidot size r,, and in Fig. (4.6a) and Fig. (4.6b) we plot various
transmission coefficients and Hall resistance respectively as a function of r, for a fixed
magnetic field value B = 5450 Gauss, which belongs to the “crossover regime of B”.
As shown in Fig. (4.6), when 7, is small, at this magnetic field there are two perfectly
transmitting modes hence Tp; = N = 2 while Ty = T5; = Tyy = 0, where Tip is
the total transmission coefficients from probe n to probe m including all propagating

modes. This gives the Hall plateau Ry = 3h/e?, as discussed in the section 4.2. But
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Figure 4.6: (a) Transmission coefficients Trnn as a function of the antidot size r4 at B = 5450 Gauss,
where subseript ma indicating transmission from probe » to probe m. Note in the crossover regime
Ty = T3 = 1 while T3t = Ty, = 0, Solid line is T},, dashed line is Ty, short-dashed line is T4,
and dot-dashed line is Tyy. (b) Hall resistance Ry as a function of the antidot size 7, at B = 5450

Gauss. It is obvious that there is a crossover regime where Hall resistance Ry takes a abnormal
integer value of h/e?ie., N =1
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Figure 4.7: (a) Transmission coefficients of individual incoming channels T3, ,, where i is the channel
number, as a function of r, at B = 5450 Gauss. Note in the crossover regime T}, = T3, T}, = T3.
(b) Transmission coefficients of individual incoming channels T%,, as a function of magnetic field B
at r, = W/2 which gives clear crossover regime. Noticc at higher B o peculiar symmetry exists:
T} = T} and T} = T3. In (a) and (b), solid line is T},, dashed line is T3},, short-dashed linc is
T3, and dot-dashed line is T3.
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at intermediate values of rg, 7.e. in the crossover regime when 0.50W < r, < 0.70W,
Fig. (4.6a) shows that T3y = Ty = 1 while T3 = T,; = 0, and these lead to the
abnormal plateau.

Because there are two incoming channels contributing to these values, Fig. (4.7)
shows the transmission coefficients for the individual channels. Inspecting Fig. (4.7)

in the crossover regime, the following relations are seen to hold:
TL(B,r.) + T4(B,ms) = Tu(B,ma) = 1,
Th(Byra) + T3 (Byra) = Ta(Byra) = 1,
T)(B,ra) + Ti(B,7s) = Tm(B,rs) = 0, (4.7)
Ti(B,ra) + T4y(Byra) = Tu(B,ra) = 0,

where T3 (B,7,) is the transmission coefficient from probe n to probe m when in-

coming electron is in channel . For simplicity we omit B and 7, and just use T%,

re =06 W

Tijmn | B=5204G B=5446G B=5688G B=5930G B=6172G
Ti1,1: | 0.03863 0.03242 0.04029 0.03236 0.02503
Thy0 | 0.04376 0.03203 0.05163 0.03682 0.02429
Ta231 | 0.58821 0.62563 0.57451 0.62607 0.68944
Ty | 0.58225 0.61535 0.58326 0.63434 0.70191
Ty | 0.18579 0.16969 0.19330 0.17205 0.14322
Ti22 | 0.17963 0.16924 0.17853 0.16467 0.14239
Tiz11 | 0.18434 0.16805 0.19173 0.17051 0.14203
Teia | 0.19253 0.18184 0.18246 0.16165 0.12967

Table 4.1: Transmission coefficients T}j mn, which is the probability of an electron incoming from
probe n at channel j and going into probe m at channel i, as a function of magnetic field at »,=0.6W.
- The data shows approximately the “micro-symmetry” of Eqs. (4.36).

to represent T (B,r,) later on. Furthermore, our data of Fig. (4.7) shows another
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B=6172Gauss
Tijmn | 7a=0.50W re=0.55W T,=0.60W r,=0.65 W
T 0.06948 0.04364 0.02503 0.02421
T22,21 0.08273 0.04385 0.02429 0.01124
T2231 | 047411 0.58414 0.68944 0.77547
Ty | 047757 0.59881 0.70191 0.77431
Ty | 0.22729 0.18791 0.14322 0.10185
Ti221 | 0.21284 0.17963 0.14239 0.10994
Ti201 | 0.22266 0.18434 0.14203 0.10156
Taz1 | 0.22669 0.18791 0.12967 0.09764

Table 4.2: Transmission coefficients T;; mn for different antidot size r, at B = 6172 Gauss. The data
shows approximately the “micro-symmetry” of Eqs. (4.36).

peculiar set of symmetry relations at the crossover regime (Since T3, and T, are

almost zero, we don’t show them in Fig. (4.7).):
Tlll = Tzzl ) T".’ll = T121 ? thl = T421 ) lel = Tszl ? (4'8)

which indicate that the reflection coefficient of channel 1, T}, equals the transmission
coefficient to probe II of channel 2, TZ; and that the transmission coefficient to probe
I1I of channel 1, T, equals the transmission coefficient to probe IV of channel 2, T3;.
These symmetry relations are nontrivial. Because of them, according to Eq. (3.18)
we obtain Ry =1 x ;’% which is twice the value in the absence of the antidot. This is
peculiar since transport is not in the quantized Hall regime as perfectly transmitting
channels have not been formed. Finally, if we denote T}jmn as the probability of an
electron incoming from probe n at channel j, and going into probe m at channel i,

then our calculation shows approximately the following “micro-symmetry”,

Tll.ll = T22,21 ) T22,11 = T11.21 ] (4'9)

as summarized in Tables (4.1) and (4.2). Although this “micro-symmetry” cannot be

measured experimentally, it is most interesting because it obviously gives rise to the
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relations (4.7) and (4.8), and thus leads to the peculiar transport properties of the

Crossover regime.

4.5 Topological Explanation of Crossover Regime

VWhy do we have these special “micro-symmetry” properties? To answer this question
‘ve extend the scattering matrix approach [22] to multiprobe conductors. Before
that, let us first generally investigate the electronic transport property of a four-
probe conductor (shown in Fig. (4.2)). From a semi-classical point of view, with
reasonably large magnetic field B we expect edge states to from inside the scattering
junction. A particular scenario is sketched in Fig. (4.8). For a small antidot as shown
in Fig. (4.8a), perfectly transmitting states can easily form, which may be coupled
with a localized state “skipping” around the antidot. On the other hand for a large
antidot, it is more difficult for an electron to enter the scattering region, and the
perfectly reflecting states may couple with the localized state which “skips” along
the walls of the quantum dot, as shown in Fig. (4.8b). We can also get the same
two propagation patterns as above through a pure topological consideration. For
the sake of discussion, suppose that only one quantum channel (edge state) in each
probe is opened and electrons coming from probe I. Once the magnetic field is strong
enough to form edge states, the scattering problem turns into a problem of finding
out how the Hall junction scatters the carrier into the outgoing channel of the four
probes. It is obvious that transmitting into probe II and reflecting back into probe I
have much larger probability than exiting from the other two probes. If we connect
the incoming channel with these two outgoing edge states and assume that carrier
would leave scattering region through probe I and II with probability 1 respectively
(provided no coupling between edge states and localized state), we shall obtain two
transport patterns as shown in Fig. (4.8).

The localized state mediates interaction of one edge state of the conductor with
another edge state on the other side of the conductor. The interaction of the localized
state and edge states in the probes for patterns of Figs. (4.8a) and (4.8b) can be

characterized by complex 3 x 3 scattering matrices §(*) and $®), which are of the



4: EFFECT OF AN ANTIDOT POTENTIAL 55

(b)
v

HI

Figure 4.8: Schematic plot of the two important transmission patterns in the quantum Hall regime.
(2) For small antidot sizes. Perfectly transmitting edge states (solid lines) with possible coupling
(broken line) to the localized state surrounding the antidot (the circulating line). (b) For large
antidot sizes. Perfectly reflecting edge states with possible coupling to the localized state “skipping”
along the walls of the quantum dot. The two transmission patterns are topologically equivalent by
exchanging transmission to reflection praobabilities.
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form|[22]
it ih ™ Tm i
a) _ b _ m
S = | m gm gm , §® =1 m .m i ) (4.10)

it u o

Here scattering amplitudes have the following meaning: 7} gives the probability of
an clectron transferring from the localized state labeled ! to reach the edge state
in channel { in probe m. (' is the probability that an electron transfers from edge
state ¢ in probe m to the localized state I. Micro-reversibility implies that ¢=t[’.
1y of §(%) is the transmission probability that an electron incidents in probe m in
channel j and exits in channel i (here we assume that carriers only incident in probe
I} while 7} of 5 is the reflection probability. r[" is the probability of a carrier
in the localized state to continue stay at the localized state past the most probable
tunneling path connecting it to probe m. For the symmetric system studied here, we
will drop the suparscript m 1n the scattering amplitude to simplify notation without

causing confusion. Probability (current) conservation requires

lbul® + tal® + [taf® = 1 (4.11)
tizl® + ftal® + [t® = 1 (4.12)
rul + lral® + = 1 (4.13)
ral” + Il + jtof® =1 (4.14)
tul* + [ta]® + |n)> = 1 (4.15)

Following the topological equivalence argument of Biittiker[24), from a scattering
point of view, the configurations in Fig. (4.8a) and (4.8b) are equivalent: in the ideal
situations of Fig. (4.8) the transmission and reflection matrix of the transmission
pattern shown in Pig. (4.8a) is obtained by a permutaiion of the transmission and
reflection matrix of Fig. (4.8b), i.e. the role of the reflection probabilities in pattern

Fig. (4.8b) is taken by the transmission probabilities of pattern Fig. (4.8a):

« b (8) b
551) tg(;) f'z(; ) "‘gz) "'gz) tg:)
{9 9 4o = PR S (4.16)

a b b b
4 dp £ P
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Let us denote the phase that is accumulated by a carrier on the localized state
during traversal from one possible escape path (a probe) to the next escape path. Let
us calculate the transmission probabilities from one probe to another. Consider the
complex amplitude t(ﬁ)'n. This amplitude comes from the following proccsses. First,

there is a direct transmission with probability,
eitigle) | (4.17)

Second, there is the possibility that a carrier completes n full turns on the localized

state before escaping, and the amplitude for that is

(9, = e [r?es(mmwaw.)]nd;) . (4.18)

Summing over all these amplitudes, we obtain a total transmission amplitude,

N - tip ey (4.19)
11,11 = 1 — r?ei(¢1+¢:+¢;+¢c) ) )

Next, we parameterize the reflection coefficients in terms of their amplitudes and

phases,

no= JRied? (4.20)

This gives a transmission probability,

{8)p(a)
(@) _ 4@ 2 _ Ty Ty, 1.21
Tll.ll - Itll.ll 1 + R? _ 2R12COS(X) ] ( i )
where T = | £ ° | (5,5 = 1,2,1, i # j). with a total phase,
=4
x = 2.(¢ + Ag) . (4.22)
i=1
Similarly, we can get
(8) igy 1(B)
L, e’
thin = 421i(¢ +;>:2+¢ +é) (4.23)
' 1 — rjett® Rt d]
and
(b)en(b)
2 15T,
Ty = | 5721 | = A (4.24)

+ R} — 2R} cos(x)
1

1
Making use of the permutation relation (4.16), we obtain

tg‘:)ﬁl = t(zbz),u ' (4-25)
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and
T = Ty - (4.26)

In light of the above procedure, it is straightforward to derive all the following

symmetry relations for transmission patterns in Figs. (4.8a) and (4.8b):

a b a b a
TEh =T s Toh =TG5, TSh =T,

b C e
Tih =Tk (i #34, 1,5 =1,2) (4.27)
a b a b b
Ti(i.l)l = T}j )21 ) T(: 2)1 = T}j.)n ) Ta(:agl = T;'(j,!u )

Tih =T (i #5 4i=12) (4.28)
here the superscript (a,b) indicates the transmission patterns of Fig. (4.8a) or (4.8b).
With these relations established, we can now investigate the size effect of the antidot.

In general when there is an antidot in the middle of the scattering region, both
the first and second incoming channels can probably transport with patterns (a) and
(b). When radius of the antidot is small erough, the two incoming channels almost
both have transmission patterr of Fig. {4.8a). On the other hand, they will both
propagate with pattern of Fig. (4.8b) if the antidot size is large. In the crossover
regime, both transmission patterns are possible, thus in general we may extrapolate
between the two propagating patterns. Assuming Tj;n.. is a linear combination of

T and T®  we find

1mn 17, mn?
T"‘J'.m“ = al(rﬂﬁB)Tl(:r}nn + ﬁl(ras )ﬂgfl;ﬂ ) (4.29)

where a,(r,, B) and §(r,, B) are the probabilities that the first incoming channel
propagates with pattern (a) and pattern (b) respectively; and a,(rq, B), f2(r4, B) are
those of the second incoming channel. These quantities are functions of the antidot

size 7, and the magnetic field B, Probability conservation requires
a(re, B) + Bi(ray,B) = 1, (4.30)

az(rayB) + Bao(re,B) =1 . (4.31)

Particularly, for T14,1; we have

Ty = al(ragB)Tl(;,)ll + ﬁl(rmB)Tl(??n ’ (4.32)
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Figure 4.9: Schematic plot of the extrapolation parameters ai(rg, B} and §;(r4, B) ns extracted from
the numerical date of Fig. (4.6a), where subscript { indicates the incoming channel. Solid line: for
channel 1; broken line: for channel 2. (a) For propagation pattern of Fig. (4.8a). (b) For propagation

pattern of Fig. (4.8b).
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Making use of symmetry properties Eqs. (4.27), (4.28), we obtain
Tun = ea(res BYTiTh + Bulre, BYTS3 (4:33)
We can also obtain
Top = asra, B)T'g;.}zl + Ba(ra, B)T#.)u (4.34)
Compare the above two relations, we find that if
ai(ra; B) = B2(ra, B) (4.35)

we then obtain the following symmetry property which is observed in our numerical
data as discussed above, e.g. Eq. (4.9): Ti111 = Ta21. Similarly a host of other

“micro-symmetries” are also obtained for the crossover regime:

To2ar = Tnar Tan = Tenm ,
Tiann = Tayzr Tuaa = T2
Toa1 = Tnnan Ty = Toar
Tz = T (4.36)

As discussed in § 4.3, these symmetry relations lead to the peculiar transport proper-
ties of the crossover regime. These relations can be directly tested from our numerical
data of Tables (4.1) and (4.2) and they are indeed quite well satisfied by the data for
the range of the magnetic field and the antidot size corresponding to the crossover
regime.

The scattering probabilities ¢;(rq, B), Bi(re, B} (i = 1,2) can be extracted from
our numerical data, and are shown in Fig. (4.9) for a fixed magnetic field B. Indeed,
in the intermediate range of values of r, where the crossover regime lies, Eq. (4.35) is

well satisfied. It is also easy to see the direct relation between Fig. (4.6) and Fig. (4.9).

4.6 Effect of Resonant State on the Quantum Hall Effect

In the last section, we have given a topological explanation for the “micro-symmetry”

in the crossover regime. In Fig. (4.9), especially the reciprocal property in the
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crossover regime, is the base of our findings. Since we can not directly compute
the values for pattern probabilities a and J explicitly in our calculation, in this sec-
tion we address the resonant behavior of the transport process analytically and make
use of that to justify our assumption (Fig. (4.9)). Resonant tunneling processes re-
quires phase coherence. Recent experiments in GeAs structures {77, 78, 79, 15, 40]
suggest that the phase-coherence length is of the order of a few um at low tempera-
ture. Here the structure we studied {Fig. (4.2)) has the dimension of ~ 3um, so that
phase-coherence requirement is satisfied. Our main interest is the effect of loculized
states on the Hall resistance (80, 81, 82, 83, 24].

Consider now the four-terminal conductor in Fig. (4.8) and for simplicity we con-
sider the case where only one edge state is present. As suggested already, there are
two major important transmission patterns in the quantum Hall regime (Fig. (4.8)),
and the effect of scattering region is characterized by scattering matrices, S5 and
s respectively. Matrix elements ¢;;, ti, &5, 71, and 7;; have the same meaning as
those defined bhefore (see § 4.5).

Let us first investigate the transmission pattern shown in Fig. (4.8a). In § 4.5, we
have derived the transmission probability Tl(;")u, Eq. (4.21). Since we have assumed
that there is only one quantum channel available for carrier propagation, we have

(@) _ pla) DTl T
b 11,21 1 + R} — 2R?cos(x) ’ i

where the definitions of x, R are the same as that in § 4.5. With the same method

discussed in § 4.4, we can calculate other transmission probabilities. For the trans-
mission probability T5;, we obtain

(a) _ TuTu R}

= 41.38
Ta 1 + R} — 2R?cos(x) ' (4.38)
and for T41, T
(@) _ ulnf 4.39
Ta 1 + R} — 2R?cos(x) ~ (1.39)
The transmission probability T%; is found by current conservation,
) =1 -1 - - 1P . (4.40)

In a similar fashion, we can determine all the other transmission and reflection prob-

abilitics.
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Figure 4.10: Hall resistance Ry of a four-fold symmetric conductor with a resonant state in the
center. (a) For transmission pattern as in Fig. (4.8a) with one edge state only. (b) For transmission
pattern as in Fig. (4.8b) with one edge state only. In (a) and (b), = is the transition probability
between edge state and localized state.
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Here we focus on the case where all the probes are identical, i.c., on the case of a
conductor that is fourfold-symmetric. The Hall resistance is calculated with the help
of Eq. (4.1) and transmission probabilities as determined above. We find the Hall

resistance

13 1 — F(1+ R)*

e 1 — 2FR(1+ R) + F}1+R)'(1+ R})
Where F is of the form

Ry =

(4.41)

r2

1 + R} — 2R?cos(x)’

¢ = Tls = 1- R, (4.4

which is the transition probability between edge state and localized state. Fig. (4.10a)

F = (4.42)

with

shows the Hall resistance as a function of the total phase y for different transition
probability 7. It is a periodic function of x. There is no interaction between the edge
states and localized state if + = 0. Even very small interactions (small transmission
probabilities T; and T;) lead to sharp deviations from the quantized value when
x = 0. Note that at these values of the phase, the Hall resistance is zero (completely
quenched). With increasing transmission probabilities, the interaction between the
edge states and the localized states increases and the Hall resistance for all x lics
below the quantized value. Finally, if the interaction of the edge states and the
localized states becomes strong (7 & 1), the Hall resistance becomes small over the
entire range of .

Next, consider the conductor in Fig. (4.8b). The pattern of current carrying edge
states at the Fermi energy of this conductor again can be mapped onto that of the
conductor in Fig. (4.8a). The scattering matrix for the conductor of Fig. (4.8b) can
be obtained by a permutation of the scattering matrix of the conductor in Fig. (4.8a)
using “topological equivalence”. In particular , for the transmission probabilities, we
find

T = 1, 9 = 1, o = 1%, 1R = 1) . (4.44)
We can get the Hall resistance for this case to be
R 1 (1= B)(1+ Bf = 2R] cos(x))

Fr = am  +RTR)

(4.45)
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Figure 4.11: Hall resistance Ry as a function of magnetic field B for small antidot size (r, = 0.26W).
((n) is for channel 1 and (b) is for channel 2). The behavior of Ry of both (a) and (b) are more like
that of Fig. (4.10a).
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Figure 4.12: Hall resistance Ry as a function of magnetic field B for intermediate antidot size
(ra = 0.5W). ((a) is for channel 1 and (b) is for channel 2). The behavior of Ry of (a) is more like

Fig. (4.10a) whereas that of (b) is more like Fig. (4.10b).
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The Hall resistance Eq. (4.45) is shown in Fig. (4.10b) as a function of . It is also,
of course, a periodic function of x. Let us discuss Fig. (4.10b) in more detail. In the
absence of backscattering in the probes, R; = 0, the conductor in Fig. (4.8b) exhibits
no localized state. We have direct transmission along the boundary of the conductor
connecting the probes in a cyclical fashion. The Hall resistance is quantized. For small
reflection probabilities, corresponding to a localized state that is strongly coupled to
the probes, weak oscillation develop around the quantized value (Hall plateau). With
increasing reflection probability Ry, the localized state becomes long-lived. The Hall
resistance depends strongly on the phase x and shows large excursions above the
quantized value. For x = 0, i.c., at resorance, the Hall resistance becomes very
small, and for reflection probabilities R; close to 1, Ry is zero. Thus, as Biittiker has
pointed out that it is possible to quench the Hall effect even at very high fields.

At this moment, based on the properties of Hall resistance in Fig. (4.10), we can
give a direct demonstration for the topological explanation of the crossover regime.
In Fig. (4.11) we show the calculation result of R}, and R% for different antidot
sizes 7 = W/4,W/2, where R, R% represent the Hall resistance when the incoming
clectron is in channel 1 and channel 2 respectively. For a small antidot (r, = 0.25W),
when we compare Fig. {4.10a) and Fig. (4.11a,b), we can conclude that at this size
the carrier transport are similar to pattern (a) of Fig. (4.8) no matter which channel
the incoming carrier belongs to. If we increase the radius of the antidot, for instance
to rqo = 0.5W, we find that the behavior of R}; (Fig. (4.12a)) is more Like Fig. (4.10a)
while that of R% (Fig. (4.12b)) prefers Fig. (4.10b); this just illustrates the following

relation which can be seen from Fig. (4.9).
al®) > gl gt 5 o) (4.46)

Thus we have given a direct although not stringent demonstration of our assumption
(Fig. (4.9)) with the help of resonant behavior of Hall resistance of two important

transport patterns.

4.7 Universality of Micro-symmetry in Crossover Regime

In this section, we investigate the universality of the “micro-symmetry” in the crossover

regime which is an exciting result we got in § 4.3. Our main task in this section is
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to answer the following question: is the micro-symmetry a universal property for a

general structure without the dependence on the particular geometrical shape of the

sample?

Figure 4.13: Schematic plot of the Hall junction. An antidot of radius ¢ is confined inside the
circular quantum dot. Electrons incident {rom probe 1.

First, let us consider the situation where the geometry shape of the quantum dot
is changed. Here the numerical calculation method of the previous section is applied
to compute the transmission coefficients as a function of the size of the antidot for a
circular-shaped structure at a fixed magnetic field, as shown in Fig. (4.13). The Hall
junction is now a circular quantum dot instead of a square one, a circular antidot
confined inside the quantum dot and four probes connected to the quantum dot
forming a Hall junction. The values of W and D are the same as those in section
§ 4.3. The incoming electron energy is still fixed by its momentum AW = 9.5 which
is just above the 3rd subband energy when B = 0. B is fixed at 6060 Gauss. That
means the reservoirs are populated by carriers up to the second quantum channel and
in the particular magnetic field we selected, only the first two modes can propagate.

Fig (4.14a) shows the transmission coefficient T,,,, (m = 1,2,3,4) as a function
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Figure 4.14: (a) Transmission coefficients Tinq of circular-shaped Hall junction as a function of the
antidot size ry at B = 6060 Gauss, where subscript mn indicating transmission from probe n to
probe m. Note in the crossover regime Ti; & T3, & 1 while T3y = T4y = 0. Solid line is 7},, dashed
line is T3y, short-dashed line is T3, and dot-dashed line is T41. (b} Hall resistance Ry as a function
of the antidot size r, at B = 6060 Gauss. It is obvious that there is a crossover regime where Hall
resistance Ry takes a abnormal integer value of h/e? ie., N 2 1.
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of the radius r, of the antidot where T, is the total transmission coefficient from
probe I to probe m including all the two propagating modes. From Fig. (4.14a) we
can find that there is a regime with intermediate values of r, (0.45W < r, < 0.65W)

where the following relations approximately hold:
Tu%l, Tglzl,Tsz, T.u%(]. (4.47)

These can approximately give the unusual Hall platean Ry = /i/e* when transmission

edge states reciprocally propagate. Inspecting Fig. (4.15), we shall obtain similar
formula as Eq. (4.8)

TH =~ T3, Ty = T, Ty ~ T4, T = T3, , (4.48)

where 77 has the same meaning as that in § 4.4. Since T}, and T}, are almost zero
in the crossover regime, they are not shown in Fig. (4.15). So, in the crossover regime

of the structure shown in Fig. (4.13), our topological argument is still approximately

valid (Eq. (4.36)).

0871
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Ty (iin=1,2)
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0.2 0.4 0.6 0.8 {

Figure 4.15: Transmissicn coefficients of circular- shaped Hall junction of individual incoming chan-
nels T%,., where i is the channel number, as a function of rq at B = 6060 Gauss. Note in the
crossover regime T}, ~ T2. T} ~ T3 . Solid line is T},, dashed line is 7%, shortdashed line is T3,
and dot-dashed line is T3,
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The interesting thing about Fig. (4.14a) is that for a small antidot (r, < 0.45W),

we don’t have Ty, = 2 and Ty; = 0 as we expect. On the contrary, the transmissions

take the following values Ty, = 1.05, T}, = 0.77, T3, = 0.15, Ty, = 0.03.

So, it is rather clear that the transmission properties within crossover regime do

not strongly depend on the shape of the Hall junction whereas the properties in the

small-anticiot-size regime do.
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Figure 4.16: Schematic plot of the Hall junctions. An antidot of radius r, is confined inside the
square quantum dot. Electrons incident from probe I. The centers of the antidots of structure (a),
(b), (c) and (d) are located at points (—W/2, —W/2), (W/2, -W/2), (W/2,W/2) and (~W/2, W/2)
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e ——
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respectively. W is the width of the probes and point (0,0) is the center of the Hall junctions.
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The above numerical results shows that the appearance of crossover regime and
the correctness of Eqs. (4.7) and (4.8) are quite universal and almost do not depend
on the particular structure we choose. Furthermore, our topological explanation of
the micro-symmetry in the crossover regime (see § 4.5) does not rely on the exact
position where the antidot is. Hence it is quite natural to ask a further question: do
we still have that symmetry when the antidot is no longer located in the middle of
the Hall junction?

Consider the Hall junction illustrated in Fig. (4.16a). All are the same as be-
fore (see Fig. (4.2)) expect the center of the antidot is now located at the position
(—=W/10,~W/10) (assuming the center of the whole structure is at (0,0)). The mag-
netic field is fixed at B = 6060 Gauss which belongs to the “crossover regime of B”.
Our numerical calculation seems to provide a positive answer to the above question.
Fig. (4.17a) shows the transmission coefficient T}y, (m = 1,2,3,4) which unambigu-
ously demonstrates that Eq. (4.7) still holds here. To test our topological explanation,
the validness of Eq. (4.8) is required which is indeed the case (see Fig. (4.17b)). Since
the center of the antidot is a four-fold symmetric point, we need to calculate the
transmission coefficients of all the other three cases ( Fig. (4.16b,c,d)) to get the Hall
resistance Ry by making use of the Biittiker formula Eq. (4.1). Figs. (4.18), (4.19)
and (4.20) are the counterparts of Fig. (4.17) and show that Eqs. (4.7) and (41.8) arc
also valid for the other three cases.

Now let us calculate the Hall resistance Ry for the structure of Fig. (4.16a)
when an electron is incoming from probe I. Considering the topological symmetry
of the four structures in Fig. (4.16), the transmission probabilities of conductors in
Fig. (4.16b,c,d) can be obtained by a permutation of the transmission probabilities of

the conductor in Fig. (4.162). In particular, for the transmission coefficients we find
Tr(nor? = :S?ﬁgs—-_nrg y {myn=1,2,3,4; @=a,bcd) , (1.19)

where T2) is the transmission coefficient from probe = to probe m of structure () of
Fig. (4.16) and where the index of Tl2) is taken to be modulo 4. For the sake of discus-
sion here we employ another form of Biittiker formula (equivalent to Eq. (4.1)) [27],

2

Rupnpt =

(4.50)

Qg — a0y
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Figure 4.17: Transmission coefficients of the structure shown in Fig. (4.16a). (a) Transmission
coeflicients T\, ns o function of the antidot size r4 at B = 6060 Gauss, where subscript mn
indicating transmission from probe n to probe m. Note in the crossover regime Ty = Ty = 1 while
Ty = T51 = 0. Solid line is 71,, dashed line is T3, short-dashed line is T3; and dot-dashed line
is Tqs. (D) Transmission coefficients of individual incoming channels T;", where 1 is the channel
number, as a function of », at B = 6060 Gauss. Note in the crossover regime T} = T3, T = TA.
Solid line is TY,, dashed line is T3, shortdashed line is T3, and dot-dashed lLine is T3,.
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Figure 4.18: Transmission coefficients of the structure shown in Fig. (4.16b). (a) Transmission
coefficients Tinn as a function of the antidot size r, at B = 6060 Gouss, wherc subscript mn
indicating transmission from probe n to probe m. Note in the crossover regime Ty = T3, = 1 while
Tay = T4y = 0. Solid line is T},, dashed line is T3, short-dashed line is Ta; and dot-dushed line
is T41. (b) Transmission coefficients of individual incoming channels T}, where i is the channel
number, as a function of r, at B = 6060 Gauss. Note in the crossover regime T, = T, T3, = TH.
Solid line is T},, dashed line is T3,, shortdashed line is T and dot-dashed line is T3
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Figure 4,19: Transmission coefficients of the structure shown in Fig. (4.16c). (a) Transmission
coeflicients Tymn 8s a function of the antidot size r, at B = 6060 Gauss, where subscript mn
indicating transmission from probe n to probe m. Note in the crossover regime 7}, = T3; = 1 while
Ty = Ty =

: 0. Solid line is Ty, dashed line is T3y, short-dashed line is Ty; and dot-dashed line
is T41. (b) ‘Iransmission coefficients of individual incoming channels T7,,, where i is the channel

m
number, as a function of r, at B = 6060 Gauss. Note in the crossover regime T} = T3, 73, = T4.
Solid line is T}, dashed line is 73,, shortdashed line is 7, and dot-dashed line is 7.
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Figure 4.20: Transmission coefficients of the structure shown in Fig. (4.16d). (a) Transmission
coefficients Ti,, as & function of the antidot size r, at B = 6060 Gauss, where subscript mn
indicating trausmission from probe n to probe m. Note in the crossover regime T1y = Ty = 1 while
Ts1 = Ty = 0. Solid line is Ty;, dashed line is T3, short-dashed line is T3, and dot-dashed line
is T4;. (b) Transmission coefficients of individual incoming channeis T}, where i is the channel
number, as a function of r, at B = 6060 Gauss. Note in the crossover regime T} = T35, T4, = TH,.
Solid Line is TJ;, dashed line is T3;, shortdashed line is T3, and dot-dashed line is T3.
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where \
cr = N = Tum)S = (Tont + Tt} Tim + Tem)/S (4.51)
2
o = [Tkl = TmiTutl/S (4.52)
2
an = —{TinTin = TinTinl/S , (4.53)
2
Q= %[(N — T} = (Tem + Toen )Tk + T )1/ S (4.54)
and
S = ka + Tm! + Tnk + Tﬂl = Tkm + T‘lm + Tkn - Tlln . (4.55)

Here N is the number of quantum channel occupied by the incident electron.

Fig. (4.21) shows the dependence of Hall resistance Ry on the radius of antidot 7,
corresponding to the four Hall-bar structures shown in Fig. (4.16) respectively with
incoming electron approaching the Hall junction from probe I. It is obvious that the
“mysterious” crossover regime still exists in every situation which give us confidence
to say that the “micro-symmetry” we observed is universal within the scope of our
calculations. If we inspect Fig. (4.21) carefully, we shall find the behavior of Hall
resistance of structure (a) and (c) are quite similar and so are the ones of structures (b)
and (d). Since structures (a) and (c), (b) and (d) are center symmetric respectively,

we obtain an interesting property,
Ry(r) ~ Ru(-7), (4.56)

where 7 is the position of the center of the antidot. Of course, here we assume that
the antidot to be a center symmetric one. This feature is the natural result of the
permutation relation Eq. (4.49).

In summary the Hall resistance was studied for both a circular-shaped and square
quantum dots with a non-centered antidot. It is shown that, in both cases, we can
still find a crossover regime where the two incoming edge states are both reciprocally
transmitting which can lead to the abnormal Hall plateau before the perfect quan-
tum Hall regime is reached. However we emphasis that what we have done is a
numericel experiment for the appearance of the crossover regime over several par-

ticular structures and this is not a fundamental proof of this phenomenon. It will be
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interesting and challenging to analytically derive the formula for transmisston coefli-

cients in order to find the “micro-symmetry” which is the base of the appearance of

the crossover regime.
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Figure 4.21: Hall resistance Ry as & function of the antidot size », at B = 6060 Gauss. It is obvious

that there is a cro-sover regime where Hall resistance Ry takes & abnormal integer value of h/e?)i.e.,
N =1. (a), (b), {¢) and (d) are for Hall junctions shown in Fig. (4.16s, b, c and d) respectively.
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CONCLUSIONS

In this thesis, we have studied in detail the size effect of an artificial impurity or an
antidot confined in a quantum Hall junction in the ballistic transport regime [30]. It
was an unsolved problem regarding how a two dimensional electron gas transforms
from the quantum Hall regime (strong magnetic field) to the weak magnetic field
regime. Here we investigated this problem from another equivalent point of view by
varying the size of the antidot, i.e., the dimension of Hall junction structure instead
of varying the magnetic field. The reason this is equivalent is because whether a
magnetic field is strong or weak depends on the relative ratio of the constriction
length of the structure (see § 2.6) and the magnetic length ig (see § 2.2). In our
problem, no impurity means stro.ng magnetic field while very big impurity represents
weak field. Of course, suitable values of energy of the incoming electron and magnetic
field strength are required.

Our numerical calculation demonstrated that as the impurity size is increased,
transport characteristics change from the usual integer quantum Hall regime to a
regime dominated by Aharonov-Bohm oscillations. We have directly demonstrated
the formation and coupling of the magnetic edge states, and this lead to the sharp
dips in the Hall plateau. An interesting crossover regime is discovered as the antidot
size takes intermediate values. In this regime our numerical data shows a host of
unusual symmetries between various transmission coefficients, and these symmetries
lead to the appearance of a Hall plateau before the perfect quantum Hall regime is
reached. In light of the scattering matrix theory [31] and the topological equivalence
argument [24], we proposed a topological explanation for the above “strange” be-
havior of transmission coefficients in the crossover regime. Qur topological analysis,

based on the two intrinsic topological equivalence of the dominating transmission
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patterns, indeed produces the observed transmission symmetries, Of course, this
topological argument is not unique, but it fits quite well with the data of the numeri-
cal calculation and is very simple to use. Through the study of resonant behavior for
the two transmission patterns and comparing that with our calculation results of the
Hall resistance of different structures have also produced the same “micro-symmetry”
behavior.,

Since our analytical derivation of the relationships between the transmission co-
efficients is based on quite general assumptions, we expect the “micro-symmetry”
observed in the particular structure (Fig. (4.2)) to be quite general as well. The
universality of “micro-symmetry” of the crossover regime is studied from two direc-
tions. First, it is established numerically that for a circular Hall junction there is
also a crossover regime of antidot size where the symmetry behavior of transmission
coefficients approximately hold. But it seems that the general property of transmis-
sion coefficients as functions of the size of antidot depend on the geometrical shape
of the Hall junction. Second, the transmission probabilities as a function of antidot
size are investigated for a square Hall junction with an antidot not locating at the
center (the displacement of the center of the antidot is of the order of one tenth of
the width of the probes). The symmetry properties of crossover regime hold very well
although the shape of the Hall resistance By is not exactly the same as that of the
centered-antidot structure.

Magneto-conductance fluctuations in mesoscopic conductors have many interesting
behavior, and with the ability of controlling the location and size of an artificial im-
purity, further interesting physics will certainly be seen and understood. While the
“micro-symmetry” between the transmission coefficients observed in the numerical
calculation can not directly be measured since a measurement involves all transmit-
ting channels, the consequences of this symmetry, such as the behavior of the Hall
resistance in the crossover regime, can certainly be tested experimentally. Finally
it will be interesting to examine the situation where more than two incoming chan-
nels participate transport, and thus a more complicated symmetry pattern may be

observed.



APPENDIX

A.1 Definitions of Different Transmission Probabilities

In this thesis we have defined three different transmission probabilities — Ti;mn,
T?., and Tp,,. To provide convenience for a reader it will be worth listing all the

definitions of these transmission probabilities and showing the relations between them
in one place.

Definitions

Tijmn: transmission probability of a carrier incident in probe n and channel j to exit
in probe m and channel 1.

T3 _: transmission probability from probe n to probe m when the incoming carrier is
in channel j.

T @ total transmission probability from probe n to probe m.

Relations
N Mm
Tv?nn = Z Tl'j.mn (A.l)
=1
Mn My M
Tmn = ZT:nn = EZTij.mﬂ (Az)
=1 i=1 j=1
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