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 

 

Abstract: A new adaptive impedance, augmented with backstepping, control, combined with time-delay estimation, and a disturbance 

observer was designed to perform passive-assistive rehabilitation motion. This was done using a rehabilitation robot whereby humans’ 

musculoskeletal conditions were considered. This control scheme aims to mimic the movement behavior of the user and to provide an 

accurate compensation of uncertainties and torque disturbances. Such disturbances were excited by constraints of input saturation of 

the robot's actuators, friction forces and backlash, several payloads of the attached upper- limb of each patient, and time delay errors. 

The designed impedance control algorithm would transfer the stiffness of the human upper limb to the developed impedance model via 

the measured user force. In the proposed control scheme, active rejection of disturbances would be achieved by the direct connection of 

such disturbances from the observer’s output with the control input via the feedforward loop of the system. Furthermore, the computed 

control input does not require any precise knowledge of the robot’s dynamic model or any knowledge of built-in torque-sensing units to 

provide the desirable physiotherapy treatment. Experimental investigations performed by two subjects were exhibited to support the 

benefits of the designed approach. 

 
Index Terms—Rehabilitation robot, Impedance control, approximation-based control, time-delay estimation (TDE), disturbances 

observer. 

 

 

I. INTRODUCTION 

ecently, the implementation of exoskeleton robots in the rehabilitation medical field has proven to reduce musculoskeletal 

impairments, enhancing patients’ range of motion and enabling them to perform more frequent activities [1-4]. Due to the 

complex mechanical configuration of the humans exoskeleton robots, and the high sensitivity of the human-robot interaction, 

maneuvering such robots presents additional intricacy compared to controlling conventional manipulators [5, 6]. For instance, an 

indirect force-control based on Electromyography (EMG) signals [7] allows the subject to maneuver an exoskeleton robot to 

accomplish the desired physiotherapy exercise. Further, on the other hand, dynamic model-based control has been applied to an 

exoskeleton robot through a computed torque controller [8]. To resolve such issues, a sliding-mode controller, integrated with an 

exponential reaching law, has been used [9]. Clearly, the referenced investigations used model-based control strategies, for which 

the exoskeleton dynamic model should be explicitly formulated. 

Security and comfort during human use are critical criteria to consider upon the interaction with the exoskeleton robot during 

rehabilitation sessions. To achieve this, the control system requires manifold measured data from the exoskeleton robot, such as 

joint torques. Joint torques based control strategies have been widely implemented to maintain safety of rehabilitation robots. Such 

proposals included a built-in torque measuring strategy based on an estimated gain [10] and a joint torques sensors-based 
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measurements strategy [11] for lightweight exoskeleton robots. Besides their complicated features, these approaches suffer from 

the imprecise calibration and thus errors spanning from joint torque sensors. On the other hand, disturbance observers based 

approaches are also abundant [12-16]. The primary role of the disturbance observer is to consider all unknown uncertainties and 

disturbances, whether internal or external, as an unknown function in order to approximate them. The compensation of this 

unknown function is obtained directly by combining disturbance observer’s output with the control input. In this case, rapid, high-

quality tracking performance and smooth control inputs can be achieved without choosing significant feedback gains due to the 

nature of this type of feedforward compensation. 

The estimation of the dynamic parameters of exoskeleton robots is one of the common challenging endeavors in robotic 

rehabilitation systems, particularly if the exoskeleton robot has a high degree of freedom (DOF). In fact, the stiffness and varying 

musculoskeletal models of the human upper limb during motion can also affect the robustness of the control system. As such, the 

adaptation of the human upper limb behavior plays a significant role in providing suitable rehabilitation treatment. Approximation-

based control methods, such as linearization of the dynamic model, were previously employed to estimate the unknown dynamic 

parameters of the robot [17-19]. Mostly, these methods utilize the linear parameterization properties of the robot's dynamic model 

to obtain the associated regressor matrix, which the control law is commonly based on. Nonetheless, these approaches suffer from 

two major problems. Firstly, it is arduous to get the robot dynamic parameters when the system has high number of DOFs. For 

example,  the dynamic parameters’ vector of the exoskeleton can exceed one hundred if the DOFs of the exoskeleton is more than 

four [20]. Secondly, the integral action of the updated law might produce instabilities, even under small disturbances. On the other 

hand, fuzzy logic and neural network are recently widely used in efforts of approximating the unknown dynamic parameters of 

rehabilitation robots [21-23]. Yet, such methods are influenced by the size of the input-output variables of the system, in addition 

to the approximation rules that makes the convergence of the estimated weight to its actual state during the operation of weight 

training becoming time-consuming. Such limitations make the real-time application of rehabilitation robots challenging.  

To resolve the aforementioned limitations, Time Delay Estimation (TDE)  [24, 25] presents itself as a plausible solution. Due 

to the fact that it has shown distinct performance when implemented in numerous physical systems [26, 27], it has been decided to 

employ it in the present paper to approximate the unknown values of the exoskeleton dynamic model. Another factor behind the 

selection of TDE is due to its ease of implementation in real-time applications. Besides, TDE is one of the approaches that are not 

influenced by the dimension of the input-output of dynamic systems in the case of high DOFs. It is sufficient to delay the input-

output of the system by only one step to estimate the unknown dynamical system. Nonetheless, the Time Delay Error (TDR) 

remains a challenge when using TDE strategy. This error is generated by loud nonlinearity of the unknown dynamical system 

during the delay constant, which would diminish the estimation's precision. Accordingly, the purpose of the present research is to 

incorporate Time Delay Estimation with disturbance observer to estimate the unknown functions as well as compensating for the 

TDR, constraints of input saturation, and unexpected disturbances. Furthermore, such advantages of incorporating the Time Delay 

Estimation with the disturbance observer for exoskeleton robots are exploited to analyze the performance achieved by this 

theoretical and practical system integration. 

In addition, input saturation constraint is one of the nonlinear components that can decrease robot's performances. 

Consequently, the performance of the exoskeleton robot would decrease where the control system becomes incapable of producing 

the required effort to permit human-exoskeleton robots to achieve desired physical therapy movements. Eliminating this constraint 

makes the rehabilitation robot system dangerous to the exoskeleton's user. As such, many techniques are proposed to overcome 

the limitations of the input saturation, such as the saturated PID controller for industrial robots [28], and nonlinear disturbance 

observers based on fuzzy logic and neural network intelligent control systems [29, 30]. As previously mentioned, such techniques 

require computationally expensive in real time, making their implementation questionable. This motivates researchers to design 

exoskeleton robot controllers able to reduce the influence of the actuators saturation constraints and ensure system’s stability. 

Motivated by the aforementioned problems related to uncertainty dynamics caused by constraints of robots actuators input 

saturation, Time Delay Errors (TDR), friction forces, patients’ physiological variabilities including mass of the upper-limb, and  

previous work [31, 32], an adaptive impedance control augmented with backstepping controller has been implemented for wearable 

exoskeleton robots with unknown uncertainty dynamics using the user’s force feedback. This was achieved by developing an in-

silico human musculoskeletal model to match user’s motion behavior. That is, the proposed impedance control was designed to 

transfer the stiffness of the human upper limb to the impedance model scheme. This permits to compensate for human muscles 

activity (considered as un-matched disturbances) during rehabilitation tasks directly via regulator variables of the backstepping 

controller.  Backstepping control allows only for the compensation of uncertainties solely decreasing together with the state 

variables, which are matched disturbances. Following this, a combined disturbance approximation based on Time Delay Estimation 

(TDE) was developed, for which the disturbance variable constituted of joint couplings, variable masses, and nonlinear dynamic 

uncertainty. Sources of torque perturbation can potentially be the constraints of saturation, Time Delay Errors (TDR), friction 

forces, and payload. The disturbance observer output, directly connected to the proposed control scheme via a feedforward loop, 

allows the control algorithm to be robust and productive to reduce the impact of disturbances. The integration of an adaptive 

impedance model, backstepping controller, TDE, all together with a disturbance observer, generates a robust control scheme. This 

would eliminate matched and unmatched disturbances in the absence of the entire exoskeleton dynamic model.  The proposed 

control scheme was lastly validated against a real test subject using fundamental passive rehabilitation therapy. A comparative 

study with conventional approaches highlighted the superior performance of the proposed control scheme in real time - a key 

requirement of rehabilitation robots. The contributions can be summarized as follows: 
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1) A human musculoskeletal model of the upper limb was designed to match user’s kinematic and dynamic behavior directly via 

regular variables of backstepping controller. 

2) A new impedance algorithm was implemented to transfer stiffness from the human operator through by measuring user’s force. 

This was then used to create the exoskeleton system’s impedance model, which helps to compensate for human muscle force 

activities during rehabilitation tasks. 

3) A new disturbance observer was developed, taking into consideration the absence of the accurate knowledge of exoskeleton’s 
dynamics and the unknown saturation effects in robot’s actuators. 

 

The structure of this paper is organized as follows:  The kinematics and dynamics model of the rehabilitation robot is given in 

section II. The approach design of the control is described in section III, which also involves many vital remarks. Section IV 

presents the illustrative experimental results confirming the proposed strategy. Finally, the conclusion as future work is given in 

section V. 

II. SPECIFICATION OF EXOSKELETON ROBOT 

A. ETS-MARSE Design  

Rehabilitation robots have human-like anatomy to rehabilitate and ease human upper limb movement. The proposed ETS-
MARSE (École de Technologie Supérieure - Motion Assistive Robotic-exoskeleton for Superior Extremity) robot can be worn by 
the human body and has synchronized movements with human motion. It is worth noting that the structural idea of the ETS-
MARSE was inspired from the human arm anatomy and was designed to be in accordance with exoskeleton wearers undergoing 
physiotherapy. 

Fig 1 shows the structure of the redundant ETS-MARSE with 7-DOFs. The scapulohumeral portion (shoulder portion) 
responsible for performing a variety of upper-limb movements is shown in Table I along with forearm movements. The vertical 
and horizontal extension/flexion movement of the scapulohumeral is ensured by the first two joints, while the third joint is designed 
to assist the internal and external rotation of the shoulder. The elbow portion is designed as a single joint used to complete the 
flexion/extension motion of the elbow. The wrist , last part of the upper limb, is composed of three joints: The first is dedicated to 
perform pronation and supination motion of the forearm, while the second and third joints are used to accomplish two movements 
respectively: ulnar/radial deviation and flexion/extension motion. 

Compared to existing exoskeleton robots, ETS-MARSE has beneficial characteristics including excellent power/weight ratio, 
ease of usage, comparatively low weight, as well as being able to adequately compensate for gravity [33, 34].  

TABLE~I 

WORKSPACE~ETS-MARSE 

Joints Motion~ Workspace 

1 Shoulder joint horizontal flexion/extension 0°/140° 

2 Shoulder joint vertical flexion/extension 140°/0° 

3 Shoulder joint internal/external rotation -85°/75° 

4 Elbow joint flexion/extension 120°/0° 

5 Forearm joint pronation/supination -85°/85° 

6 Wrist joint Ulnar/Radial deviation -30°/20° 

7 Wristtjointtflexion/extension -50°/60° 

 

A high 6-axis force sensor (NANO17-R-1.8-M2-M1PCI, ATI industrial Automation) is selected to collect precise real-time force 

measurements. This sensor provides important feedback to reliably manage the exoskeleton robot in different modes of the 

rehabilitation protocol (passive, active and active-assisted). It is positioned on the tip of the exoskeleton robot. Table II presents 

the modified Denavit-Hartenberg (DH) parameters [35]. The reference frames for the settings are given in Fig.  1. Details of the 

physical parameters of ETS-MARSE can be found in the investigations done [9, 33].  

 

 
TABLE II 

MODIFIED DENAVIT-HARTENBERG PARAMETERS 

Joint (i) αi-1 ai-1 di θi 

1 0 0 ds θ1 

2 -/2 0 0 θ2 

3 /2 0 de θ3 

4 -/2 0 0 θ4 
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5 /2 0 dw θ5 

6 -/2 0 0 θ6 - /2 

7 -/2 0 0 θ7 

 

B. ETS-MARSE Dynamics Model 

The dynamic of ETS-MARSE under saturation constraints is presented as follows: 

 

𝑀(𝜃(𝑡))𝜃̈(𝑡) + 𝐶 (𝜃(𝑡), 𝜃̇(𝑡)) 𝜃̇(𝑡) + 𝐺(𝜃(𝑡)) − 𝑓𝑒𝑥(𝑡) = 𝛽(𝜏(𝑡))  (1) 

where 𝜃(𝑡) denotes a 7-vector of generalized coordinates; 𝑀(𝜃(𝑡)) ∈ 𝑅7×7 , 𝐶 (𝜃(𝑡), 𝜃̇(𝑡)) 𝜃̇(𝑡) ∈ 𝑅7, and 𝐺(𝜃(𝑡)) ∈ 𝑅7 are 

respectively inertia matrix, which is symmetric and bounded, Coriolis and centrifugal torques, and the gravitational torques. 𝜏 ∈
𝑅7 is the torque input vector,  𝑓𝑒𝑥(𝑡) = 𝐽

𝑇𝑓ℎ(𝑡) ∈ 𝑅
7 is the external force vector, with 𝑓ℎ(𝑡) ∈ 𝑅

6 being the measured force and 

𝐽𝑇 ∈ 𝑅6×7 being the Jacobian matrix. The saturation restriction is expressed as follows: 

 

𝛽(𝜏(𝑡)) = {
𝛽𝑚𝑎𝑥𝑠𝑖𝑔𝑛(𝜏), |𝜏| ≥ 𝛽𝑚𝑎𝑥
𝜏,                               |𝜏| < 𝛽𝑚𝑎𝑥

 (2) 

where 𝛽𝑚𝑎𝑥 is the~upper bound~of torque for~the control~input~𝜏 ∈ 𝑅7, ~with 𝛽(𝜏) = [𝛽(𝜏1)⋯𝛽(𝜏7)]
𝑇.  

 

Without loss of generality, the human-robot interaction dynamics (1) can be rewritten as follows:  
 

 

{
 
 

 
 𝑀(𝜃(𝑡)) = 𝑀0(𝜃(𝑡)) + ∆𝑀(𝜃(𝑡))         

𝐶(𝜃(𝑡), 𝜃̇(𝑡)) = 𝐶0(𝜃(𝑡), 𝜃̇(𝑡)) + ∆𝐶(𝜃(𝑡), 𝜃̇(𝑡))

  
𝐺(𝜃(𝑡)) = 𝐺0(𝜃(𝑡)) + ∆𝐺(𝜃(𝑡))           

𝛽(𝜏(𝑡)) = 𝜏(𝑡) + ∆𝜏 (𝑡)                         
   

 (3) 

where 𝑀0(𝜃(𝑡)), 𝐶0(𝜃(𝑡), 𝜃̇(𝑡)), and 𝐺0(𝜃(𝑡)) are the known parts of the inertia matrix, the Coriolis/centrifugal matrix, and the 

gravity vector respectively; while ∆𝑀(𝜃(𝑡)), ∆𝐶(𝜃(𝑡), 𝜃̇(𝑡)), and ∆𝐺(𝜃(𝑡)) are the uncertain parts. 𝛽(𝜏(𝑡)) is the nominal input, 

𝜏(𝑡) is the torque input under saturation constraints, and ∆𝜏(𝑡) is the torque disturbance. 

 

 
Fig. 1. ETS-MARSE exoskeleton robot. 
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By defining : 𝜂1 = 𝜃(𝑡) and 𝜂2 = 𝜃̇(𝑡) , the exoskeleton dynamic model represented by (1) can be rewritten such that:: 

 

{
𝜂̇1 = 𝜂2                                                                                   

𝜂̇2 = 𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) + 𝐷(𝑡) + 𝑓𝑒𝑥 (𝑡)                  
 (4) 

where, 𝑈(t) = 𝑀0
−1(𝜃)𝜏(𝑡) 

 𝐻(t) = 𝑀0
−1(𝜃)(−∆𝑀(𝜃)𝜃̈ − ∆𝐶(𝜃, 𝜃̇)𝜃̇ − ∆𝐺(𝜃)), and 

 𝑓(t) = 𝑀0
−1(𝜃)(−𝐶0(𝜃, 𝜃̇)𝜃̇ − 𝐺0(𝜃)) 

 𝐷(𝑡) = 𝑀0
−1(𝜃)(∆τ) + 𝑓𝑒𝑥 (𝑡)) 

 

C. Dynamics Model of the Human Upper Limb 

This section is dedicated to designing an impedance control able to match the dynamic behavior of the user and the exoskeleton 

robot. The dynamic model of the human upper-limb is firstly defined as a second-order system (a desired mass-damper-spring 

system) as follows [36]: 

𝑀ℎ𝜂̇2 + 𝐶ℎ𝜂2 + 𝐺ℎ𝜂1 = 𝐽
𝑇𝑓ℎ (5) 

where 𝑀ℎ, 𝐶ℎ and 𝐺ℎ ∈ 𝑅
7×7  are the inertia, damping and spring matrices of the human end-effector, respectively. In such a case, 

the dynamics (5) are considered as an impedance model.  

 

Remark 1: The position, velocity, and acceleration feedbacks of the human upper-limb are not available.  It is acceptable to use 

the exoskeleton feedback since it can be worn by the human upper-limb and has synchronized movements with human motion. 

 

By defining the error tracking of the position as 𝑒 = 𝜂1 − 𝜂
𝑑 with 𝜂𝑑 ∈ 𝑅7 being the desired trajectory, the reference model 

(5) can be rewritten as follows: 

 

𝑀ℎ𝑒̈ + 𝐶ℎ𝑒̇ + 𝐺ℎ𝑒 = −𝜁 (6) 

with 𝜁 = (𝑀ℎ𝜂̈
𝑑 + 𝐶ℎ𝜂̇

𝑑 + 𝐺ℎ𝜂
𝑑 − 𝐽𝑇𝑓ℎ). The goal here is to design a suitable control input torque 𝜏  where the exoskeleton 

dynamics can overlap with the reference impedance model given by Eq. 5. Taking into consideration the deviation between the 

exoskeleton dynamics and the reference impedance model, the matching error can be introduced such that: 

 𝜙(𝑡) = 𝑀ℎ𝑒̈ + 𝐶ℎ𝑒̇ + 𝐺ℎ𝑒 + 𝜁 (7) 

So, when lim
𝑡⟶∞

𝜙(𝑡) = 0, the exoskeleton dynamic model (4) will able to perfectly match the reference impedance model (5)”. To 

facilitate the presented analysis, the augmented matching error (7) can be defined as: 

 𝜙̅(𝑡) = 𝐾𝜁𝜙(𝑡) = 𝑒̈ + 𝐾𝑑𝑒̇ + 𝐾𝑝𝑒 + 𝐾𝜁𝜁 (8) 

where 𝐾𝜁 = 𝑀ℎ
−1, 𝐾𝑑 = 𝑀ℎ

−1𝐶ℎ and 𝐾𝑝 = 𝑀ℎ
−1𝐺ℎ. Choosing two positive definite matrices Λ(𝑒) and Π fulfilling (𝛬(𝑒)  + Π) =

𝐾𝑑 and  (𝛬(𝑒) Π + 𝛬̇(𝑒) ) = 𝐾𝑝, the augmented matching error (8) can be rewritten as follows: 

 𝜙̅(𝑡) = 𝑒̈ + (𝛬(𝑒)  + 𝛱)𝑒̇ + (𝛬(𝑒) 𝛱 + 𝛬̇(𝑒) )𝑒 + 𝜉𝜄̇ + 𝛱𝜁𝜄   (9) 

where 𝜁𝜄 satisfies 𝐾𝜁𝜁 = 𝜉𝜄̇ + 𝛱𝜁𝜄; and 𝛬(𝑒) = 𝑑𝑖𝑎𝑔 [𝐾𝑖𝑖(1 − 𝑒
−|𝑒𝑖|

𝜖𝑖 )], with 𝑖 = 1,… ,7; where 𝐾𝑖𝑖 > 0 and 𝜖𝑖 > 0. The variation of 

Λ(𝑒) is based on the variation of the error (𝑒) for which Λ(𝑒) should always be strictly positive. If the error (𝑒) increases,𝛬(𝑒) will 

also increase, forcing the error (𝑒) to converge to zero. Consequently, as (𝑒) decreases, 𝛬(𝑒) will converge to zero. Introducing a 

new variable s as filtered matching error: 

 𝑠 = 𝑒̇ + Λ(𝑒)𝑒 + 𝜁𝜄 (10) 

Then the augmented error Eq. 9 can be reformulated as follows using Eq.10: 



© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

https://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

 

 𝜙̅(𝑡) = 𝑠̇ + 𝛱𝑠 (11) 

So, lim
𝑡⟶∞

𝑠 (𝑡) = 0 drives lim
𝑡⟶∞

𝑠̇ (𝑡) = 0;supposing that lim
𝑡⟶∞

𝑠̇ (𝑡) = 0 exists. Taking into consideration Eq. 8 and Eq. 9, 

lim
𝑡⟶∞

𝜙(𝑡) = 0 if lim
𝑡⟶∞

𝑠(𝑡) = 0. In this case, the goal of the control will be reached by achieving: 

  lim
𝑡⟶∞

𝑠(𝑡) = 0 (12) 

which means that objective (7) can be reduced to zero. The properties and assumptions employed in this research are described 

such that: 

Propertyt1: The known inertia matrix part 𝑀0(𝜃)  is symmetric, positive definite, and bounded for all 𝜃 ∈ 𝑅7. 
Assumptiont1: The function 𝐻(𝑡) is locally Lipschitz function. 
Assumptiont2: The reference trajectory is bounded. 

Assumption 3: The disturbance 𝑓𝑒𝑥 is assumed to bet continuous, bounded, and fulfils  ‖𝑓𝑒𝑥‖ ≤ 𝜀, with 𝜀 being an unknown 
positive boundary. 

Lemmat1: [37] Let Lyapunov function 𝑉(𝑦) be  continuous and positive definite, realizing 𝜆1(‖𝑦‖) ≤ 𝑉(𝑦) ≤ 𝜆2(‖𝑦‖) and 

its derivative 𝑉̇(𝑦) = 𝑑𝑉(𝑦) 𝑑𝑡⁄  and satisfying  𝑉̇(𝑦) ≤ −𝛼1𝑉(𝑦) + 𝛼2, where 𝛼1 and 𝛼2 are positive constants. Therefore the 
solution 𝑦(𝑡) is  bounded. 

Lemmat2: A function 𝜔(𝑡) is continuous and differentiable bounded, ∀𝑡 ∈ [𝑡0, 𝑡1], if 𝜔(𝑡) fulfills |𝜔(𝑡)| ≤ 𝛿, where 𝛿 is a 
positive constant, therefore 𝜔̇(𝑡) is bounded. See proof in Appendix-A 

Remark 2: The  𝜔(𝑡) in Lemma 2 is not a piecewise function. On the contrary, remarks 3 and 4 will give more clarification 
about the piecewise function that was given in Eq. 2. 

III. CONTROL DESIGN 

In this section, a control strategy capable of completing the passive rehabilitation movement is developed. In such a case, the 

exoskeleton carries the upper arm of the subject to perform the physical therapy task. This section will be divided into two 

subsections.  

A. Model-Based Control of the exoskeleton robot 

The goal of this subsection is to establish a tracking control that can reduce unexpected disturbances saturation effects, with 

the goal of achieving the desired performance. In this section 𝐻(𝑡) is assumed to be known while 𝐷 is unknown. The required 

velocity and acceleration are defined as follows: 

 

{
𝜂̇𝑟 = 𝜂̇

𝑑 − Λ(e)𝑒 − 𝜁𝜄                 

𝜂̈𝑟 = 𝜂̈𝑑 − 𝛬̇(e)𝑒 − Λ(e)𝑒̇ − 𝜁𝜄̇
 (13) 

Based on Eq. 10, the following can be obtained: 

 

{
𝜂̇1 = 𝜂̇𝑟 + 𝑠
𝜂̇2 = 𝜂̈𝑟 + 𝑠̇

 (14) 

Next, the regulated errors variables are chosen as follows: 

 
 𝑒1 = 𝑒 = 𝜂1 − 𝜂

𝑑                           (15) 

 𝑒2 = 𝜂2 − 𝜂̇𝑟                                   (16) 

Step 1: Differentiating Eq.15 results with: 

 

𝑒̇1 = 𝜂̇1 − 𝜂̇
𝑑 = 𝑒2 + 𝜂̇𝑟 − 𝜂̇

𝑑 = 𝑒2 − Λ(e)𝑒1 − 𝜁𝜄  (17) 

From the Eq. 16, the following can be found: 

 

𝑒2 = 𝑠 + 𝜂̇𝑟 − 𝜂̇𝑟 = 𝑠 (18) 

Consider the first Lyapunov function candidate as follows: 
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𝑉1 =
1

2
𝑒1
𝑇𝑒1  (19) 

Differentiating  𝑉1 results with: 

 

𝑉̇1 = 𝑒1
𝑇𝑒̇1 = 𝑒1

𝑇(𝑒2 − Λ(e)𝑒1 − 𝜁𝜄  )  (20) 

Step 2: Differentiating Eq. 18, results with: 

 

𝑒̇2 = 𝑠̇ = 𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) + 𝐷 + 𝑓𝑒𝑥 (𝑡)  − 𝜂̈𝑟 
    

(21) 

Due to the known terms ∆𝜏,  the disturbance 𝐷 is unknown term. Considering Lemmat2, Eq. 2, and property 1, the following 

inequality becomes true: 

 

‖𝐷̇‖ ≤ 𝜎  (22) 

where 𝜎 is an unknown positive constant.  

Remark 3: Using Lemma 2, the functions 𝛽𝑚𝑎𝑥𝑠𝑖𝑔𝑛(𝜏) and 𝜏 of saturation restrictions determined in Eq. t2 are piecewise 

functions. Two cases can be obtained: The first is that the control input 𝜏 reaches its bound 𝛽𝑚𝑎𝑥 based on the expressions  of 

saturation restrictions (Eq. 2), and 𝛽(𝜏) remains bounded and constant; then, ∆𝜏 = 𝛽(𝜏) − 𝜏 with the desired continuous control 

input 𝜏 is fulfilling the condition of tLemmat2. The second is that if the motor does not reach the saturation limit, its outputs are 

continuous and smooth with   ∆𝜏 = 0. So, the term 𝐷 is used to estimate the disturbances in this case. Incorporating both instances, 

the term ∆𝜏 can be obtained, which would always fulfill Lemma 2. 

Next, t the disturbances’ nonlinear observer can be established to approximate the term 𝐷. Firstly, the auxiliary error is defined 

such that:  

 

𝑒3 = 𝐷 − 𝑘3𝑒2  (23) 

where 𝑘3 = diag(𝑘3𝑖 …𝑘37) > 0 and 𝑖 = 1,… 7. The derivative of 𝑒3 from Eqs. 22 and 23 is: 

 

𝑒̇3 = 𝐷̇ − 𝑘3𝑒̇2                 

                                                                   = 𝐷̇ − 𝑘3[𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) + 𝑓𝑒𝑥  (𝑡) + 𝐷] + 𝑘3𝜂̈𝑟  

(24) 

Due to the unavailability of the term 𝐷, the variable  𝑒3 also vanishes. To estimate 𝑒3, a dynamical system of an estimator is 

proposed such: 

 

𝑒̇̂3 = −𝑘3[𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) + 𝑓𝑒𝑥  (𝑡) + 𝐷̂] + 𝑘3𝜂̈𝑟  (25) 

where 𝑒̂3 is the estimated value of 𝑒3. From Eq. 23, the value of the disturbance 𝐷 can be obtained such that: 

 

𝐷̂ = 𝑒̂3 + 𝑘3𝑒2  (26) 

The following can then be obtained:  

 

𝑒̃3 = 𝑒3 − 𝑒̂3 = 𝐷 − 𝐷̂ = 𝐷̃  (27) 

The time derivative of Eq. 27, taken into consideration Eqs. 24 and 25, gives: 

 

𝐷̇̃ = 𝑒̇̃3 = 𝑒̇3 − 𝑒̇̂3 = 𝐷̇ − 𝑘3𝐷̃  (28) 

 

The proposed model-based control input that stabilizes the system is given by:  

 

𝑈(𝑡) = −𝑘2𝑒2 − 𝑒1 − 𝑓(𝑡) − 𝐻(𝑡) − 𝑓𝑒𝑥  (𝑡) − 𝐷̂ + 𝜂̈𝑟 (29) 
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with, 𝜏 = 𝑀0(𝜃)𝑈(𝑡); and  𝑘2 ∈ 𝑅
7×7 is a diagonal positive-definite matrix. If the following conditions are satisfied: 

{
𝑘2 −

1

2
𝐼7×7 > 0

𝑘3 − 𝐼7×7 > 0 
 (30) 

  
Theorem 1: The designed model-based control (29) for the human-robot interaction dynamics (1), which satisfies Assumptions 

(3-4) and Lemmas (1-2), using the impedance model (6), renders the whole system including its bounded error signals 𝑒1, 𝑒2 and 

𝑒̃3 as asymptotically stable according to Lemma 1.  

 

Proof: The detailed proof of Theorem 1 is presented in Appendix B.  

B. Adaptive Time Delay Controller 

Evidently, it is challenging to obtain exoskeleton dynamic models due to the aforementioned uncertainties and disturbances, 

particularly, during exoskeleton motion. Since 𝐻(𝑡) is uncertain, it may affect the control scheme, in which the control input 

(29) is infeasible. To surmount this, the TDE approach [24] is used to estimate the uncertainties of the nonlinear robot dynamics. 

As such, if Assumption 1 holds, the term  𝐻(𝑡) can be estimated from Eq. 4 such that: 

 

𝐻̂(𝑡) ≈ 𝐻(𝑡 − 𝑡𝑑) = 𝜂̇2(𝑡 − 𝑡𝑑) − 𝑓(𝑡 − 𝑡𝑑) −   𝑓𝑒𝑥 (𝑡 − 𝑡𝑑) − 𝑈(𝑡 − 𝑡𝑑) − 𝐷̂(𝑡 − 𝑡𝑑)  (31) 

where 𝑡𝑑 is a very short time delay constant. In real time, the sampling time is the smallest constant that can be realized. Nevertheless, 
because of the complex nonlinearity of the human-robot interaction dynamics during delay constant, a TDR (𝜀 ) exists. Based on  
Lipschitz condition (Assumption 1), it can be defined as follows: 

 

𝐻𝑖(𝑡) = 𝜀𝑖 = 𝐻𝑖(𝑡) − 𝐻̂𝑖(𝑡) 

                         = 𝐻𝑖(𝑡) − 𝐻𝑖(𝑡 − 𝑡𝑑) ≤ 𝜚𝑖  𝑡𝑑 

(32) 

where 𝜚𝑖 > 0 is a Lipschitz constant with 𝑖 = 1⋯7. This TDR would degrade the approximation performance. Regrettably, the 
TDR is not obtainable. In this case, the TDR can be combined with the disturbances, which are both then used by the nonlinear 
observer to reduce such effects. As such, the new combined disturbance 𝐷 can be formulated as: 

 

𝐷 = 𝑀0
−1(𝜃)(∆τ − 𝜀) (33) 

According to the equation (32), the TDR  𝜀 is bounded and satisfies Lemma 2, which implies Eq. 22 (‖𝐷̇‖ ≤ 𝜎). 

 
Remark 4: In addition to both cases of Remark 3, it is essential to know that the Time Delay Error 𝜀 is always bounded. According 
to Lemma 2, ‖𝜀̇‖  is also bounded. 
 

Again, a nonlinear observer of the combined disturbances 𝐷 can be designed with the objective to estimate such disturbances; 

defining again the auxiliary error such that:  

 

𝑒3 = 𝐷 − 𝑘3𝑒2 (34) 

where 𝑘3 = 𝑑𝑖𝑎𝑔(𝑘31…𝑘37) > 0 𝑎𝑛𝑑 𝑖 = 1,…7. The time derivative of 𝑒3 from Eqs. 21 and 34 becomes: 

 

𝑒̇3 = 𝐷̇ − 𝑘3𝑒̇2                                                                    
 

              = 𝐷̇ − 𝑘3[𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) + 𝑓𝑒𝑥 (𝑡) + 𝐷] + 𝑘3𝜂̈𝑟 

(35) 

As in the previous subsection, 𝑒3 is unavailable because of the unknown variables 𝐻(𝑡) and 𝐷. The estimated value of  𝑒3 is given 

as follows: 

 

𝑒̇̂3 = −𝑘3[𝑈(𝑡) + 𝑓(𝑡) + 𝐻̂(𝑡) + 𝐷̂] + 𝑘3𝜂̈𝑟  (36) 
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where 𝑒̂3 is the estimated value of 𝑒3. From Eq. 34, the value of the disturbances 𝐷 can be obtained as: 

 

𝐷̂ = 𝑒̂3 + 𝑘3𝑒2  (37) 

From which, it clearly then follows that:  

 

𝑒̃3 = 𝑒3 − 𝑒̂3 = 𝐷 − 𝐷̂ = 𝐷̃  (38) 

The~time derivative~of Eq. 38, from~Eqs. 35 36 gives: 

 

𝐷̇̃ = 𝑒̇̃3 = 𝑒̇3 − 𝑒̇̂3 = 𝐷̇ − 𝑘3(𝐷̃ + 𝐻)  (39) 

 

The proposed adaptive time delay controller that can ensure the stability of the system becomes :  

 

𝑈(𝑡) = −𝑘2𝑒2 − 𝑒1 − 𝑓(𝑡) − 𝑓𝑒𝑥  (𝑡) − 𝐻̂(𝑡) −  𝐷̂ + 𝜂̈𝑟 (40) 

with, 𝜏 = 𝑀0(𝜃)𝑈(𝑡). If the following conditions are satisfied: 

{

𝑘2 − 𝐼7×7 > 0    

𝑘3 −
3

2
𝐼7×7 > 0 

 (41) 

 

Theorem 2: For human-robot interaction dynamics (1) characterized by impedance model (6), and satisfies Assumptions (3-4) 

and Lemmas (1-2), the implementation of a designed adaptive control scheme (40)  that is based on TDE and (31) augmented with 

the rejection observer of disturbances (37) ensures the stability of the system whereby all its error signals 𝑒1, 𝑒1, 𝐻 and  𝑒̃3 are 

bounded according to Lemma 1. 

 Proof: The detailed proof of Theorem 1 is presented in Appendix C.  

 

The diagram of the designed control scheme is presented in Fig. 2. 

 
Fig. 2. The diagram of the proposed controller.  



© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

https://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

 

IV. EXPERIMENT AND COMPARATIVE STUDY 

A. Experiment Description 

ETS-MARSE real-time system is composed of three processing units: The first is the computer (PC) where the top-level control 

is sent to the robot using a human-machine interface through LabVIEW 2017. The other two processing units are parts of a National 

Instruments PXI unit: The second unit is NI-PXI 8081 controller board, where the top-level control is executed at a sampling time 

of 500 𝜇s. The last one is NI PXI-7813R remote input/output board with a Field Programmable Gate Array (FPGA) that executes 

the low-level control (PI) current control loop (sampling time of 50 𝜇s) to ensure that the necessary current, required by the top 

level controller, is fed to the motors. The joints of the robot are powered by Brushless DC motors (Maxon EC-45 and Maxon EC-

90) combined with harmonic drives (a gear ratio of 120:1 for motors 1 and 2; and a gear ratio of 100:1 for motors 3-7) [34, 38]. 

The components of the experiment platform are shown in Fig. 3. 

 

 

 
Fig. 3. Experimental platform.  

 

A passive rehabilitation therapy analysis, composed of four different scenarios, has been conducted by two healthy subjects to 

show the efficiency of the proposed controller.  The first scenario, elbow joint flexion/extension and forearm pronation/supination, 

was executed by the exoskeleton by subject-1 (age: 27 years; height: 170 cm; weight: 75 kg), using backstepping controller based 

on TDE [32]. In the second scenario, subject-1 repeated the same exercise using the designed controller (40). The third was 

dedicated to investigating the effect of a conventional PID controller, which does not require the dynamic mode of the exoskeleton 

robot. This was achieved by subject-1 repeating the same movement of the previous exercise. Lastly, the proposed approach in 

Cartesian space, performed by healthy subject-2 (age: 31 years; height: 178 cm; weight: 80 kg) was investigated. This was done 

to show how does the proposed controller reacts to different variabilities, such as other physiological situations of the exoskeleton's 

wearers and changing upper-limbs mass. A 90 degrees elbow joint position was assumed as an initial position of the exoskeleton 

robot. 

B. Experiment Results 

Scenariot1: The backstepping tracking control was implemented with Time Delay Estimation [32], where the dynamic model 

of the exoskeleton is not entirely known. Subject-1  (age: 27 years; height: 170 cm; weight: 75 kg) performed basic elbow joint 

flexion/extension and forearm pronation/supination using ETS-MARSE robot .The control~parameters were chosen manually, 

based on trial and error, such that: 𝐾𝑖𝑖 = 15, 𝜖𝑖 = 3 and 𝑘2 = 34.8𝐼7×7. Saturation boundaries were selected for the two motors as 

follows: β1max = 4.15 Nm , β2max = 4.15 Nm . 
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Fig. 4.  Tracking of elbow joint position. (First column), Tracking of forearm joint position (Second column) (The red line is the desired trajectory and the black 

line is the measured trajectory) performed by subject-1 (Age: 27 years; height: 170 cm; weight: 75 kg).  

 

Discussion 1: The experimental results of the exoskeleton robot, performed bysubject-1 (Age: 27 years; height: 170 cm; weight: 

75 kg), are presented in Fig. 4 using backstepping controller based on TDE. Fig. 4 shows that the reference trajectory (Red line) 

overlapped with the measured position (Black line). The last two sets of data (Fig. 4) present the tracking errors and the control 

input, respectively. In this test, the proposed controller provided the desired physical therapy even though the dynamical model of 

the robot was unknown. However, undesirable chattering, caused by uncertainties and subject behavior (Saturation, payload, and 

human muscle conditions), still appeared. 

Scenario 2: The designed backstepping control (40), augmented with human impedance model, and incorporating the designed 

disturbance observer was implemented. In this test, the same control parameters of the previous scenario were adopted. On the 

other hand, the designed observer control parameters have been tuned, based on trial and error, such that: 𝑘3 = 0.08𝐼7×7. Saturation 

boundaries were selected for the two actuators as follows: β1max = 4.15 Nm , β2max = 4.15 Nm . 

Discussion 2: The experimental results of the exoskeleton robot conducted by the same subject are shown in Fig. 5 using the 

proposed control strategy. It is obvious from Fig. 5 that the measured position (Black line) is also identical to the reference 

trajectory (Red line). Tracking errors and control inputs are shown respectively by the last two sets of data (Fig. 5). The evolution 

of the disturbance observer output is presented in Fig. 6. Two key observations can be made: Firstly, the control inputs (third set 

of data of Fig. 5) are relatively smaller and smoother (without chattering) than the control inputs of the first scenario (third set of 

data of Fig. 4). Furthermore, it is evident that the high frequency of the control inputs has been actively reduced, with an 

improvement in the tracking trajectory caused by the integration of the proposed disturbance observer output. These remarks prove 

the feasibility of the proposed control and the efficiency behind combining  the time delay estimation with the disturbance observer. 
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Fig. 5. Tracking of elbow joint position (First column). Tracking of forearm joint position (second column The red line represents the desired trajectory while the 

black one represents the measured trajectory.  

 
Fig. 6. The outputs of the disturbance observer. 

Scenario 3: A comparison with PID control strategy was made to further prove the feasibility of the proposed approach. The 

adopted PID control is given by 𝜏 = 𝜂̈𝑑 − 𝐾𝑝𝑒 − 𝐾𝑖 ∫ 𝑒 − 𝐾𝑑𝑒̇. The associated gains were manually chosen, based on trial and 

error, such that: 𝐾𝑝 = 150𝐼7×7, 𝐾𝑖 = 100𝐼7×7 and  𝐾𝑑 = 80𝐼7×7. Saturation limits for the two motors are given as follows: β1max =

4.15 Nm , β2max = 4.15 Nm . The experimental results are presented in Fig. 6. 

Discussion 3: Fig. 7 represents the performance of the exoskeleton robot, as performed by subject-1, using the PID controller. 

As depicted in the figure, in terms of error tracking for joint 5, the PID controller seemed to perform better than the proposed one. 

On the contrary, it is evident that the proposed approach was better and smoother than the PID in the case of controlling joint 5 

input (torque input). Based on the gains value of the PID and proposed control methods, it can be concluded that the proposed 

controller was able to achieve a higher performance, with smaller gains, compared to PID. Furthermore, the control input of the 

proposed strategy is relatively smoother than the results presented by the PID controller. Thus, the designed controller is highly 

efficient when considering the unknown dynamics, time delay error, and saturation point constraint. 
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Fig. 7. PID controller results: Tracking of elbow joint position(First column). Tracking of shoulder joint position (second column). The red line represents the 

desired trajectory while the black one represents the measured trajectory. . 
 

Scenario 4: The robot, as controlled by the proposed method, was tested by the second healthy subject-2 (age: 31 years; height: 

178 cm; weight: 80 kg). This was primarily done to show how does the proposed controller reacts to different variabilities, such 

as other physiological situations of the exoskeleton's wearers and changing upper-limbs mass . The task starts at the initial position 

mentioned earlier (90 degrees of elbow angle). Then, the end-effector follows a path until it reaches target ‘A’, another path from 

‘A’ to ‘B’, followed by the path from target ‘B’ to target ‘C’, until if finally returns to the initial position (Fig. 8). The same control 

parameters used in this scenario are the ones adopted in the second one.  

 

Discussion 4: The results of the task conducted by subject-2 (age: 31 years; height: 178 cm; weight: 80 kg) are illustrated in Figs. 

8-10. The desired rotation of the end-effector is considered zero. As depicted by Fig. 8, the path subject-2 followed, the achieved 

cartesian movement, denoted by the desired trajectory and represented by the red line, realistically overlaps with the measured 

trajectory, given by the black line. The excellent performance of the designed controller is highly noticeable for which it has kept 

stability along the whole duration of the desired trajectory with a very small margin of error(Fig. 9). Furthermore, the control inputs 

are acceptable as shown in Fig. 10. 
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Fig. 8. Tracking of the exoskeleton, with the task performed bysubject-2, in cartesian space (red line represents the desired trajectory while the black one represents 

the measured trajectory) using the proposed approach. 
 

 
Fig. 9. Evolution of the cartesian errors. 
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Fig. 10. Evolution of the control input. 

 

C. Comparison study  

 In order to evaluate the reliability of the proposed control scheme, the performance of the proposed controller was evaluated for 
different subjects (different arm weights, different physiological conditions, and altered states of mind). The sensitivity of the 
approch when removing the disturbance observer was also assessed by calculating the root mean square (RMS) of each error and 
the total energy consumed in joint space. 

Table. III Controller sensitivity parameters 

Subjects 

root mean square (RMS) of errors  

proposed Controller with the 

observer 

proposed Controller without 

the observer 

 
‖𝒆‖𝑹𝑴𝑺  𝒆𝒓𝒓𝒐𝒓 

 

‖𝝉‖𝑹𝑴𝑺 𝑻𝒐𝒓𝒒𝒖𝒆 ‖𝒆‖𝑹𝑴𝑺  𝒆𝒓𝒓𝒐𝒓 ‖𝝉‖𝑹𝑴𝑺 𝑻𝒐𝒓𝒒𝒖𝒆 

Subject-1 0.0018 1.3792 0.0395 2.2147 

Subject-2 0.0032 1.9756 0.0352 2.3827 

 

Clearly, from Table III, the proposed control scheme provides consistent performance with respect to different subjects. This was 
obvious as the RMS error and general torque input slightly changed when compared to the controller without the observer. 
Furthermore, in efforts of further validation, when comparing the results to similar literature investigations [34, 38], the proposed 
controller showed identical performance as the Virtual Decomposition Control [38], and a potentially better performance than the 
PID and Computed Torque Control [38]. These results are highly desirable since they are suitable to be used in the next phase of 
our project: Testing with stroke patients who could benefit from such assistive active and passive arm guidance rehabilitation. These 
results demonstrate the efficiency and suitability of the proposed controller scheme. 
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V. CONCLUSION 

In closing, a new adaptive impedance control approach augmented with backstepping control was implemented on  ETS-

MARSE, a rehabilitative exoskeleton robot, and has shown to perform accurately for passive rehabilitation motion applications 

The proposed control scheme used an impedance algorithm to transfer the stiffness of the human upper limb to the designed 

impedance model via measured user force from the exoskeleton system. As for the unknown dynamic parameters of the robot and 

unexpected disturbances, such as constraints of input saturation of the manipulator's motors, the notion of combining time delay 

estimation and a disturbance observer has been introduced in order to approximate and reject such disturbances. The disturbance 

observer output was directly connected to the adaptive Time Delay control using a feedforward loop, which permits the system to 

actively and quickly diminish these disturbances. Using this approach, the control input neither needs any precise knowledge of 

the exoskeleton dynamic model anymore, nor any necessary knowledge of built-in torque sensing units to achieve the desired 

performance. Experimental tests and results obtained using the ETS-MARSE and two healthy subjects demonstrated the 

advantages and benefits of the designed strategy of the present work. In future work, the authors are looking forward to 1) 

integrating an optimization approach to optimally select the control parameters of the proposed control; 2) incorporating other 

sensors of forces feedback such that Electromyography signals (EMGs) to detect the human muscles activities; and  finally, 3) 

applying  the proposed control  to achieve different rehabilitation protocols such as active and active-assisted rehabilitation 

protocols.  
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APPENDIX 

A. Proof of Lemma2 

Based on the mean value theorem, for any   [𝑎, 𝑏] ∈ [𝑡0, 𝑡1], we have 𝜔(𝑏) − 𝜔(𝑎) = 𝜔̇(𝜑)(𝑏 − 𝑎) given any   𝜑 ∈ [𝑎, 𝑏]. 
Since  |𝜔(𝜑)| ≤ 𝛿, −𝛿 ≤ 𝜔(𝑏) − 𝜔(𝑎) ≤ 𝛿, it is straightforward to find that the derivative 𝜔̇(𝜑) is bounded. While [𝑎, 𝑏] can be 

selected as any small interval on [𝑡0, 𝑡1], it can be found that 𝜔̇(𝑡) is bounded ∀𝑡 ∈ [𝑡0, 𝑡1]. 

B. Proof of Theorem 1 

Consider the second Lyapunov function candidate as: 

 

𝑉2 = 𝑉1 +
1

2
𝑒2
𝑇𝑒2 +

1

2
𝑒̃3
𝑇𝑒̃3  (42) 

where 𝑒̃3 = 𝐷̃. Differentiating 𝑉2 , the following can be obtained: 

 

𝑉̇2 = 𝑒1
𝑇(𝑒2 − 𝛬(𝑒)𝑒1 − 𝜁𝜄  ) +𝑒2

𝑇𝑒̇2 + 𝐷̃
𝑇𝐷̇̃  

     = 𝑒1
𝑇(𝑒2 − 𝛬(𝑒)𝑒1 − 𝜁𝜄  ) + 𝑒2

𝑇(𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) + 𝑓𝑒𝑥 (𝑡) + 𝐷 − 𝜂̈𝑟) + 𝐷̃
𝑇𝐷̇ − 𝐷̃𝑇𝑘3𝐷̃  

(43) 

Considering the control law (29), the above Eq. 43 becomes: 

 
𝑉̇2 = −𝑒1

𝑇𝛬(𝑒)𝑒1 − 𝑒1
𝑇𝜁𝜄 − 𝑒2

𝑇𝑘2𝑒2 + 𝑒2
𝑇𝐷̃ + 𝐷̃𝑇𝐷̇ − 𝐷̃𝑇𝑘3𝐷̃  (44) 

Using equation (22), and considering following inequalities: 

 

𝑒2
𝑇𝐷̃ ≤

𝑒2
𝑇𝑒2

2
+

𝐷̃𝑇𝐷̃

2
  

𝐷̃𝑇𝐷̇ ≤
𝐷̃𝑇𝐷̃

2
+

‖𝜎‖2

2
  

𝑒1
𝑇𝜁𝜄 ≤

𝑒1
𝑇𝑒1

2
+

𝜁𝜄
𝑇𝜁𝜄

2
  

(45) 

Eq. 44 becomes: 

 

𝑉̇2 ≤ −𝑒1
𝑇 (𝛬(𝑒) +

1

2
𝐼7×7) 𝑒1 − 𝑒2

𝑇 (𝑘2 − 
1

2
𝐼7×7) 𝑒2 −    𝐷̃

𝑇(𝑘3 − 𝐼7×7)𝐷̃ −
𝜁𝜄
𝑇𝜁𝜄

2
+

‖𝜎‖2

2
  

(46) 
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𝑉̇2 ≤ −𝛼1𝑉2 + 𝛼2   

Where,𝛼1 = min (𝛾𝑚𝑖𝑛 (𝛬(𝑒) +
1

2
𝐼7×7) , 𝛾𝑚𝑖𝑛 (𝑘2 −

1

2
𝐼7×7) , 𝛾𝑚𝑖𝑛(𝑘3 − 𝐼7×7)) and 𝛼2 = (1 2⁄ )𝜎2, under the condition: 𝑘2 −

1

2
𝐼7×7 > 0, and 𝑘3 − 𝐼7×7 > 0. Therefore 𝑉̇2 ≤ 0, whenever 𝑉2 >

𝛼2

𝛼1
; which indicates that the rehabilitation robot is stable. Based 

on Lemma 1 and Eq.46, the variables  𝑒1, 𝑒2 and 𝑒̃3 are bounded. 

C. Proof of Theorem 2 

Consider the following Lyapunov function candidate as: 

 

𝑉3 = 𝑉1 +
1

2
𝑒2
𝑇𝑒2 +

1

2
𝑒̃3
𝑇𝑒̃3  (47) 

where 𝑒̃3 = 𝐷̃. The time derivative of  𝑉3 is given by: 

 

𝑉̇3 = 𝑉̇1 + 𝑒2
𝑇𝑒̇2 + 𝐷̃

𝑇𝐷̇̃  

      = 𝑒1
𝑇(𝑒2 − 𝛬(𝑒)𝑒1 − 𝜁𝜄  ) + 𝑒2

𝑇(𝑈(𝑡) + 𝑓(𝑡) + 𝑓𝑒𝑥 (𝑡) + 𝐻(𝑡) − 𝜂̈𝑟) + 𝐷̃
𝑇𝐷̇ −          𝐷̃𝑇𝑘3𝐷̃ −

𝐷̃𝑇𝑘3𝐻  

(48) 

Considering the control law (40), 𝑉̇3 can be written as follows: 

 

𝑉̇3 = −𝑒1
𝑇𝛬(𝑒)𝑒1 − 𝑒1

𝑇𝜁𝜄 − 𝑒2
𝑇𝑘2𝑒2 + 𝑒2

𝑇𝐻 + 𝑒2
𝑇𝐷̃ + 𝐷̃𝑇𝐷̇ − 𝐷̃𝑇𝑘3𝐷̃ − 𝐷̃

𝑇𝑘3𝐻  (49) 

Using Eqs. 22,32, and the following inequalities: 

 

𝑒2
𝑇𝐷̃ ≤

𝑒2
𝑇𝑒2

2
+

𝐷̃𝑇𝐷̃

2
     

𝑒2
𝑇𝐻 ≤

𝑒2
𝑇𝑒2

2
+

|𝜚𝑡𝑑|
2

2
  

𝐷̃𝑇𝐷̇ ≤
𝐷̃𝑇𝐷̃

2
+

‖𝜎‖2

2
    

−𝐷̃𝑇𝑘3𝐻̃ ≤
𝐷̃𝑇𝐷̃

2
+

‖𝔅‖2

2
              

𝑒1
𝑇𝜁𝜄 ≤

𝑒1
𝑇𝑒1

2
+

𝜁𝜄
𝑇𝜁𝜄

2
  

(50) 

Where 𝔅 = 𝑘3𝜚𝑡𝑑. Then, Eq. 49 becomes: 

 

𝑉̇3 ≤ −𝑒1
𝑇 (𝛬(𝑒) +

1

2
𝐼7×7) 𝑒1 − 𝑒2

𝑇(𝑘2 − 𝐼7×7)𝑒2 − 𝐷̃
𝑇 (𝑘3 −

3

2
𝐼7×7) 𝐷̃ −

𝜁𝜄
𝑇𝜁𝜄

2
+

‖𝜎‖2

2
+

(𝜚𝑡𝑑)
2

2
+

‖𝔅‖2

2
  

𝑉̇3 ≤ −𝛼1𝑉3 + 𝛼2                                  
(51) 

Where,𝛼1 = min (𝛾𝑚𝑖𝑛 (𝛬(𝑒) +
1

2
𝐼7×7) , 𝛾𝑚𝑖𝑛(𝑘2 − 𝐼7×7), 𝛾𝑚𝑖𝑛 (𝑘3 −

3

2
𝐼7×7)), and 𝛼2 = (1 2⁄ )‖𝜎‖2 + (1 2⁄ )(𝜚𝑡𝑑)

2 +

(1 2⁄ )‖𝔅‖2; under the conditions: 𝑘2 − 𝐼7×7 > 0, and 𝑘3 −
3

2
𝐼7×7 > 0. This signifies that 𝑉̇3 ≤ 0, whenever 𝑉3 >

𝛼2

𝛼1
; which 

indicates that the robot system is stable. So, based on Lemma 1 and Eq.51, the variables  𝑒1, 𝑒2, 𝐻 and 𝑒̃3 are bounded.  
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