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Abstract  

Several homogenization schemes exist in literature to characterize the mechanics of cellular materials. 

Each one has its own assumptions, advantages, and limitations that control the level of accuracy a 

method can provide. There is often the need in heavy multiscale analyses of lattice materials to find the 

method that can provide the best trade-off between accuracy and computational cost.  

In this paper, asymptotic homogenization (AH) is used as a benchmark to test the accuracy of alternative 

schemes of homogenization applied to lattice materials. AH is first applied to determine the effective 

elastic moduli and yield strength of six lattice topologies for the whole range of relative density. Yield 

surfaces are also obtained under multiaxial loading for square, hexagonal, and Kagome lattices, and 

closed-form expressions of the yield loci are provided for a convenient use in multiscale material 

problems. With respect to the relative density, the results are then compared to those obtained with other 

methods available in literature. The analysis shows that the latter can predict the elastic constants with 
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an error below 10% for 25.0 , whereas for the yield strength the discrepancy is above 20% for 

1.0  due to the model assumptions. The results of this work on the effective properties of lattice 

materials provide not only handy expressions of prompt use in multiscale design problems, but also 

insight into the level of accuracy that alternative homogenization techniques can attain. 

 

Keywords: lattice materials, periodic cellular materials, multiscale mechanics, asymptotic 

homogenization, stiffness and strength properties 

 

1- Introduction 

Cellular solids are widely used in applications where weight savings and multifunctional properties 

are critical. Aerospace sandwich panels, vibration and sound insulators, compact heat exchangers, and 

biomedical implants are only a few examples of applications. A periodic cellular material can be 

considered as a microtruss obtained by tessellating a unit cell along independent periodic vectors. 

Periodic cellular materials with high nodal connectivity have a much higher stiffness and strength per 

unit mass compared to their counterparts, which have low nodal connectivity with cells arranged in 

either a regular or disordered pattern, such as in foams [1, 2].  

In a cellular material, the characteristic length of the unit cell is generally considered several orders of 

magnitude below the characteristic length of the component. Yet, the study of the unit cell is essential to 

understand the mechanical response of the material at the macroscale. Several analytical and numerical 

approaches, as well as experimental investigations, have been proposed in the literature to determine the 

mechanical properties of cellular materials [3-24]. Their main goal is to obtain the properties of the 

macromaterial in terms of the effective properties of its unit cell, which is a process of homogenization 

set to circumvent a detailed – often impractical - analysis of the entire cellular microstructure. 

Noteworthy contributions in the area of cellular materials are those of Gibson and Ashby [3], Masters 
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and Evans [4], Christensen [5], and Wang and McDowell [6, 25], which provide closed-form 

expressions of the effective mechanical properties. These methods rely on certain premises. They 

generally assume the cell walls behave like Euler-Bernoulli beams, examine the individual cell wall and 

determine the elastic constants of the cell by solving deformation and equilibrium problems. They work 

well for topologies that have a simple arrangement of the cell members, but present limitations if the 

geometry of the unit cell has a complex topology.  

More recently, matrix-based techniques using the Bloch’s theorem and the Cauchy–Born hypothesis 

have been used to homogenize the properties of planar lattice materials [26, 27]. Hutchinson and Fleck 

[26] first formulated the microscopic nodal deformations of a lattice in terms of the macroscopic strain 

field, from which the material macroscopic stiffness properties are derived. A methodology was 

proposed to characterize cell topologies with a certain level of symmetry, e.g. the Kagome lattice and 

the Triangular-Triangular lattice. Elsayed and Pasini [27] and Elsayed [28] extended this method to deal 

with planar topologies that can possess any arbitrary geometry of the cell. Vigliotti and Pasini [29, 30] 

presented a more general matrix-based procedure for the analysis of arbitrary bidimensional and 

tridimensional cell topologies with open and closed cells.  

Other models have been proposed to model the cellular microstructure as an equivalent micropolar 

medium [8-13]. In micropolar elasticity, in addition to the translational deformation, an independent 

microscopic rotational field is usually introduced [31, 32]. For a given cell topology, the micropolar 

elastic constants of the stiffness matrix are obtained through either an explicit structural analysis of the 

representative unit cell [11, 12] or an energy approach [7-10]. 

Discrete homogenization techniques have been also developed and successfully applied to the 

characterization of cellular materials [33-37]. With these approaches, the lattice cell walls are modeled 

with discrete elements such as beam or rod elements. Taylor’s expansion of nodal displacement and 

internal forces are derived and inserted into the equilibrium equations. The discrete sum of equilibrium 
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equations is finally converted into a continuous relation of stress and strain from which the homogenized 

properties are obtained. 

Among numerical approaches, asymptotic homogenization (AH) theory has been successfully applied 

to predict the effective mechanical properties of materials with a periodic microstructure [14-16, 38]. 

AH has been widely used not only for the analysis of composite materials and topology optimization of 

structures [39-42], but also for the characterization of porous materials, such as tissue scaffolds [17, 43-

45]. AH assumes that any field quantity, such as the displacement, can be described as an asymptotic 

expansion, which replaced in the governing equations of equilibrium allows to derive the effective 

properties of the material [14, 16]. Validation of AH results with experiments has shown that AH is a 

reliable and accurate method to predict the effective mechanical properties of heterogeneous periodic 

materials [46-51]. Takano et al. [46] applied AH to analyze micro-macro coupled behaviour of the 

knitted fabric composite materials under large deformation conditions. The predicted largely deformed 

microstructures were compared with the experimental results, and a very good agreement was observed. 

In another study, to validate the accuracy of AH results, the predicted value of the effective elastic 

modulus of a porous alumina with 3.1% porosity was compared with the elastic constant measured from 

experiments [47], and a relative error of 1% was found. Guinovart-Díaz et al. [48, 49] computed the 

thermoelastic effective coefficients of a two-phase fibrous composite using AH. The results were 

compared with experimental data, and a good agreement was found. In a more recent study, AH has 

been applied to predict the failure behaviour of three-dimensional weaved composites [51]. The stress-

strain response and failure modes of the composite was modeled and shown to match with experimental 

results. Compared to other homogenization schemes, a noteworthy advantage of AH is that the stress 

distribution in the unit cell can be determined accurately and thus be used for a detailed analysis of the 

strength and damage of the heterogeneous periodic materials [38, 52, 53]. Furthermore, AH has neither 

limitation on the cell topology nor on the range of relative density; essentially, AH can handle any lattice 
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regardless of its relative density. Here for the first time, AH is applied for the characterization of lattice 

structures. The results are then considered as a benchmark for the comparison with other 

homogenization methods. 

As briefly described above, several methods exist in literature to model the mechanics of cellular 

materials. Each one has its own assumptions, advantages, and limitations. One central issue to the 

process of solving a given problem is the careful selection of the homogenization technique that is most 

effective in terms of accuracy and the most convenient as far the computational cost is concerned. This 

task, however, presents often trade-offs, which are not always properly defined. For example, closed-

form expressions, such as those in [3, 6, 28, 29], can be conveniently used to fast compute the effective 

properties of a lattice material, problems of accuracy might emerge if the microstructure does not respect 

the model assumptions. The hypothesis that cell walls behave like beam/rod elements ceases to provide 

reliable results for increasing values of relative density. Moreover, the Euler-Bernoulli beams and rod 

elements cannot capture the deformation of the solid material at the cell joints, a problem that might 

affect the estimation of the yield strength of the material. Other techniques, on the other hand, have been 

proved to be accurate over the whole range of relative densities, but for certain problems they might 

have the drawback to require longer time of computation [53]. This represents a curb in large multiscale 

optimization problems of lattice materials [54], because the material properties must be iteratively 

evaluated several times. In this case, the trade-off solution would be to prefer a method which is 

computationally faster, as long as it is used in a range of relative density where the results are considered 

satisfactory within an acceptable range of error. It is thus essential to be able to contrast the validity of 

alternative homogenization schemes so as to select the most effective method to solve a given problem.  

The main goal of this work is to provide a comparative study on the accuracy of classical and more 

recent homogenization techniques [3, 6, 28, 29] with respect to the governing variable of the lattice, the 

relative density. Due to its proved superiority, we chose AH as a benchmark method and review its 
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fundamentals in the next section. Six lattice topologies (Figure 1), representative of either bending or 

stretching dominated behaviour, are selected to test the methods in characterizing their effective elastic 

constants and mechanical strength. For three common cell topologies, square, hexagonal, and Kagome, 

AH is used to obtain yield surfaces under multiaxial loading condition. As part of the analysis, 

approximated closed-form expressions of the results are also given in section 3 for a practical use in 

multiscale analysis and design problems of cellular materials [55-57]; in particular, they might serve for 

i) rapid calculation of the effective mechanical properties of lattice materials, ii) validation purposes of 

experimental data [21, 49], and iii) topology optimization problems, as described in the work of Hassani 

and Hinton [39], and Liu et. al [58]. In section 4, the comparative analysis on the accuracy of methods is 

presented; for given ranges of density, the relative error of the properties predicted by each technique is 

discussed with respect to those obtained with AH.  

2- Asymptotic homogenization (AH) method 

A full scale simulation of heterogeneous material with explicit modeling of microstructural features 

can be very lengthy and time-consuming. Methods of mechanical analysis have therefore sought to 

obtain the effective mechanical properties of the material by analyzing a representative region of the 

material, commonly called the representative volume element (RVE). The material is then replaced by 

an equivalent homogeneous solid with effective properties obtained from the RVE analysis. The 

distribution of field quantities within the material can then be computed by the analysis of the 

homogenous structure. This procedure is schematically depicted in Figure 2. A body 
  with a periodic 

microstructure subjected to the traction t  at the traction boundary t , a displacement d at the 

displacement boundary d , and a body force f is replaced by a homogenized body   with prescribed 

external and traction boundaries applied to 
 , as well as with no geometrical details and voids of the 

local coordinate system. There are a number of RVE approaches for the analysis of heterogeneous 
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materials [59, 60]; here, AH is applied to determine the effective mechanical properties of the cell 

topologies under investigation [38]. AH is a well-developed theory, with a sound mathematical 

foundation. It has been experimentally tested and proved to provide results that are consistent with those 

obtained from experiments. 

The underlying assumption of AH is that each field quantity depends on two different scales: one on 

the macroscopic level x, and the other on the microscopic level, y=x/ε. ε is a magnification factor that 

scales the dimensions of the unit cell to the dimensions of the material at the macroscale. It also assumes 

that field quantities, such as displacement, stress, and strain, vary smoothly at the macroscopic level, and 

are periodic at the microscale [14, 59]. Based on AH, each physical field, such as the displacement field, 

u, in a porous elastic body, can be expanded into a power series with respect to ε: 

2

0 1 2( ) ( , ) ( , ) ( , )u x u x y u x y u x y       (1) 

where the functions 0u , 1u , 2u  … are Y-periodic with respect to the local coordinate y, which means 

they yield identical values on the opposing sides of the unit cell. 1u  and 2u  are perturbations in the 

displacement field due to the microstructure. 0u  can be shown to depend only on the macroscopic scale 

and to be the average value of the displacement field [14]. Taking the derivative of the asymptotic 

expansion of displacement field with respect to x and using the chain rule allows the small deformation 

strain tensor to be written as: 

     0 0 1 1

1
( ) ( )

2

T T

x y
u u u u u O        

  
 (2) 

Where ( )x  and ( ) y  are gradients of the field quantity with respect to the global and local coordinate 

systems, respectively. Neglecting terms of ( )O   and higher, the following strain tensors can be defined: 

             * *

0 0 1 1

1 1
( ) ( ) ( ) ,  ( ) ,  ( )

2 2

T T

x y
u u u u u u u u u              

    
 (3) 
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where  ε( )u  is the average or macroscopic strain, and  *ε ( )u  is the fluctuating strain varying 

periodically at the microscale level. Substituting the strain tensor into the standard weak form of the 

equilibrium equations for a cellular body   with the pertinent geometrical details of voids and cell 

wall, yields the following equation [59]: 

        0 1 *ε ( ) ε ( ) E ε( ) ε ( )  t v  
t

T T
v v u u d d





 
       (4) 

where  E is the local elasticity tensor that depends on the position within the RVE,  0ε ( )v  and  1ε ( )v

are the virtual macroscopic and microscopic strains, respectively, and  t  is the traction at the traction 

boundary t . Being the virtual displacement,  v  may be chosen to vary only on the microscopic level 

and be constant on the macroscopic level. Based on this assumption, the microscopic equilibrium 

equation can be obtained as: 

    1 *ε ( ) E ε( ) ε ( )  0
T

v u u d





    (5) 

Taking the integral over the RVE volume (VRVE), equation (5) may be rewritten as: 

         1 * 1ε ( ) E ε ( )  ε ( ) E ε( )  
RVE RVE

T T

RVE RVE
V V

v u dV v u dV    (6) 

The above equation represents a local problem defined on the RVE. For a given applied macroscopic 

strain, the material can be characterized if the fluctuating strain,  *ε ( )u , is known. The periodicity of 

the strain field is ensured by imposing periodic boundary conditions on the RVE edges (Figure 3); the 

nodal displacements on the opposite edges are set to be equal [59, 61]. 

Equation (6) can be discretized and solved via finite element analysis as described in [15, 16, 52, 59]. 

For this purpose, equation (6) can be simplified to obtain a relation between the microscopic 

displacement field  D  and the force vector  f
 
as: 
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    K D f
 

(7) 

where  K  is the global stiffness matrix defined as: 

 
1

K k
m

e

e

    ,     k B E B
e

T
e e

Y
dY    

 

(8 a,b) 

with 



m

1e

)(  the finite element assembly operator, m the number of elements,  B  the strain-displacement 

matrix, and eY  the element volume. The force vector  f  in equation (7) is expressed as: 

   
1

f f
m

e

e

 ,      f B E ε( )  
e

e e

Y
u dY 

 
(9) 

Equation (9) can be either used for the linear elastic analysis of the microstructure or to model the effect 

of material nonlinearity as a result of elastoplasticity deformation of the unit cell. The material yield 

strength and the effective elastic modulus can be characterized by the linear analysis of the 

microstructure, while the ultimate strength of the material can be obtained through elastoplasticity 

analysis. A detailed discussion on elastoplasticity analysis of lattice microstructures using AH is 

provided in a previous study [62]. 

Considering the assumption of small deformation and elastic material behavior, the solution of equation 

(7) leads to a linear relation between the macroscopic  ε( )u  and microscopic  ε( )u  strain through the 

local structural tensor  M : 

    ( ) M ( )u u   (10) 

For a two-dimensional case, three independent unit strains are required to construct the  M  matrix. 

 T00111  ,  T01022  ,  T10012   (11) 

The macroscopic strains are applied to equation (9) to obtain the force vector for the computation of 

microscopic displacements through equation (7). Using the strain-displacement matrix  B , the 
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fluctuating strain tensor  *ε ( )u  is determined and used to calculate the microscopic strain tensor  ε( )u  

through equation (3). The local structural tensor  M  can then be obtained at the element centroid by 

solving three sets of matrix equations (for 2D) once  ε( )u  and  ε( )u  are known. Here, since three 

independent unit strains are considered, each column of the matrix  M  represents the microscopic strain 

tensor  ε( )u . The effective stiffness matrix can be simply derived by taking the integral of the 

microscopic stress over the RVE and dividing by the RVE volume: 

    
1

E M  
RVE

RVE
V

RVE

dV
V

    (12) 

from which the effective stiffness matrix 
HE    can be defined as  

  H 1
E E M  

RVE
RVE

V
RVE

dV
V

      (13) 

The homogenized stiffness matrix relates the macroscopic strains to the macroscopic stresses of the 

homogenized material. AH also allows obtaining the macroscopic stresses that lead to the microscopic 

yield, or the endurance limit, as well as fracture. To calculate the yield strength of the unit cells, the 

microscopic stress distribution    corresponding to the multiaxial macroscopic stress    can be 

obtained via the following equation: 

      
1

HE M E 


     (14) 

The von Mises stress distribution at the microstructure can then be used to capture the yield surface of 

the unit cell expressed as: 

 
 

 
vMmax ( )

ysy


 
 

  (15) 
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where  y  is the yield surface of the unit cell, ys  is the yield strength of the bulk material, and 

vM ( )   is the von Mises stress at the microstructure corresponding to the applied macroscopic stress. To 

calculate the yield strength of the unit cells under uni-axial tension in x and y directions, and pure shear, 

macroscopic unit stresses can be applied to equation (15). y

xx , y

yy , and y

xy  can be denoted, 

respectively, as the macroscopic yield strength of the unit cell under uniaxial tension in x, and y 

direction, and under pure shear. To generate the yield surface of the unit cell under multiaxial loadings, 

the procedure summarized above is repeated for alternative combinations of multiaxial stresses. 

It should be noted that the results presented here are based on the analysis of RVE under periodic 

boundary conditions. Therefore, it is assumed the RVE is far from the domain boundary, where local 

effects, including local stress heterogeneities, and size and edge effects, do not occur. The effective 

mechanical properties obtained here can, therefore, be used to capture the average of macroscopic field 

quantities over the lattice components, and not local stress heterogeneities. To capture these local 

effects, AH can be integrated with the finite element mesh superposition method [63-65] or an adaptive 

multiscale methodology [66].  

3- Effective mechanical properties of cellular structures by AH 

For the representative lattices in Figure 1, we apply AH to obtain the effective stiffness and yield 

strength as a function of the relative density. To capture the effective characteristic of each cell 

topology, regardless of the solid material, the properties are normalized with respect to the base material. 

A parametric geometry of the unit cell is created assuming cell walls with uniform thickness, which – in 

turn - is varied at discrete values to span the whole range of relative density. ANSYS (Canonsburg, 

Pennsylvania, U.S.A) is used to build, mesh, and solve the 2D problem of the lattice material, which is 

modelled with planar eight-node elements (Plane 82).  
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Figure 4 illustrates the homogenized elastic constants of the cell topologies as a function of relative 

density. As can be seen, the effective Young’s modulus, shear modulus, and Poisson’s ratios converge to 

the elastic constants of the base solid material as the relative density reaches one. Figure 4 shows that 

Young’s modulus of hexagonal, triangular, and Kagome lattice are equal in both x and y direction. 

These materials have in-plane elastic isotropy due to three-fold symmetry of their lattice microstructure 

[1, 12, 26, 28, 67]. On the other hand, Square, mixed triangle A and B, are orthotropic, and their 

Young’s modulus are only equal in x and y direction. More detail about the connectivity, symmetries, 

and anisotropy of equivalent continua of considered lattice topologies can be found in literature [1, 12, 

26, 28, 67]. 

 As can be also seen in Figure 4, the square cell has a superior elastic stiffness due to the alignment of 

the cell walls in the loading direction, but it exhibits very low stiffness under shear loading as a result of 

cell wall bending. While the hexagon has also low Young’s and shear moduli, its Poisson’s ratio is high, 

as shown in Figure 2b. Mixed triangular A can be obtained by 45° rotation of its B variant. Due to the 

anisotropic property of the cell, its effective mechanical properties vary by the rotation of the unit cell. A 

comparison of effective mechanical properties for Mixed A and B in Figure 4 shows that the elastic 

modulus of Mixed A is about 30% lower than Mixed B. On the other hand, shear modulus of Mixed A is 

about 30% higher than Mixed B. 

Figure 5 shows the yield strength as a function of relative density. The results were obtained by 

applying three loading conditions (uniaxial load in x and y directions, and shear load) to determine the 

maximum von Mises stress in the cell walls and the initial yield strength of each lattice. For the relative 

density equal to one, the material is fully dense with yield strength equal to that of its solid material. A 

common feature in the plots of Figure 5 is a sudden decrease of the effective yield strength for 

decreasing values of relative density. The reason is the presence of stress concentration at the cell joints, 

which locally increases the level of stress. As illustrated in Figure 5, the material yield strength 
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decreases of about 60% at relative density of 99%. For the hexagonal, Kagome, and triangular lattice, 

the yield strength is dissimilar in the x and y direction, unlike the other in-plane elastic properties. The 

anisotropic behaviour of these cell topologies have been also shown in the literature by modeling cell 

walls with beam/rod elements [6, 25, 29]. The anisotropic behaviour of these lattices will be discussed in 

more detail in the next section.  

While the initial yield strength provided in Figure 5 is limited to the uniaxial and shear forces, many 

applications require the material to withstand multiaxial loadings. We thus obtain here the yield surfaces 

for alternative combinations of macroscopic stress. As described in the previous section, the 

corresponding macroscopic strain is computed and applied to the unit cells. Being in linear elasticity, the 

location of the yield point on the yield surface of each lattice is obtained by multiplying the macroscopic 

stress with the ratio of the material yield strength and the maximum von Mises stress. Figure 6-8 show 

the yield surfaces normalized with respect to the initial yield strength in the uniaxial and shear directions 

for the hexagonal, square, and Kagome lattices at given relative density. These plots and those in 

Figures 4 and 5, assist the selection of a cell topology for a given problem. In particular, Figures 6 and 7 

refer to the hexagonal and square lattice for the relative density of 50%, and Figure 8 pertains to the 

Kagome cell for the relative density of 30%. We selected 30% for the Kagome, because for a 0.5 

relative density the base material fills almost completely the triangular voids, and thus the Kagome 

structure cannot be realized.  

As can be seen in Figures 6-8, the yield surfaces are controlled by the shape of the unit cell. For 

example, the yield surface of the hexagonal cell (Figure 6a) resembles a parallelogram. For design 

purposes, it is often convenient to resort to closed-form expressions that can approximately describe the 

geometry of a yield surface. For the hexagonal, square, and Kagome unit cells, Table 1 lists the 

functions with relative fitting parameters of their yield surfaces. For the hexagonal cell (Figure 6a), 1m  

and 2m  are the slopes of the parallelogram lines expressed as a function of relative density. For the 
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Kagome cell, the approximated surfaces is also parallelogram, while for the square cell, a pyramid with 

an elliptical base has been used to resemble the yield surface.  

We note here that the results illustrated in Figures 4-8 and the expressions given in Table 1 can be 

conveniently used in multiscale design and topology optimization problems of cellular materials [39, 55-

58], where the effective mechanical properties are required as a function of relative density. They can 

also be used to generate an efficient data base for the validation of experimental results, as recently 

suggested in [21, 49].  

 

4- Comparative analysis of homogenization schemes and discussion 

Although AH has been proved to have no inherent limitation on the cell topology and to provide 

consistent results for the whole range of relative density, its main drawback is often considered to be the 

computational cost. This can be high if the problem at hand is complex and of multiscale nature, as well 

as if it contains a large number of variables [53]. In such instances, less precise but faster methods might 

be preferred. This section discusses the validity and compares the accuracy of classical and more recent 

homogenization techniques [3, 6, 28, 29], with respect to AH, chosen here as a benchmark. 

The closed-form expressions of the effective elastic modulus and yield strength obtained via 

alternative methods [3, 6, 28, 29] are given in Appendix and plotted in Figure 9 as a function of relative 

density. For the cell topologies shown in Figure 1, the properties are contrasted for relative density lower 

than 0.3 ( 3.0 ), where the assumption of Euler-Bernoulli beams considered by the selected methods 

holds. It should be noted that for the range of relative density lower than 0.3 only the linear part of 

relative density equation is considered, as the quadratic part does not have a significant influence on the 

relative density of the cell. This is consistent with results previously obtained [3, 6, 28, 29]. 

 Figure 9 shows that by decreasing the relative density, the effective mechanical properties converge 

to the values obtained with AH. The analytic expressions generally underestimate the effective elastic 
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constant, with the exception of the Poisson’s ratio of the hexagonal cell obtained by Gibson and Ashby 

[3]. We note that in the study by Wang and McDowell [6], the cell walls of stretching dominated cell 

were modelled as rod elements, while Elsayed [28] and Vigliotti and Pasini [29] considered cell wall as 

beam elements. As can be seen, whereas for stretching dominated lattices the contribution of bending 

moments on the effective elastic constants is almost negligible, this is not the case for bending 

dominated cells, such as the hexagon. Figure 9b shows that if the effect of axial deformation is modelled 

in the formulation, as in [29], lower values of the effective Young’s and shear modulus can be observed. 

Figure 10 shows the relative error of each effective property normalized with its respective one 

obtained via AH. As can be seen, the assumption of modelling cell walls as beams or rod elements yield 

error less than 10% for stretching dominated lattices. In contrast, for bending-dominated lattices the 

error can be much higher. For example, for the square cell the error of the effective shear modulus 

calculated by Wang and McDowell [6] at 15.0  can be as high as 24%.  

Figure 11 illustrates the initial yield strength of the cell topologies under uni-axial and pure shear 

stresses. The results obtained by asymptotic homogenization are also compared to the expressions listed 

in the Appendix [3, 6, 29]. As can be seen, the analytic expressions overestimate the AH results for high 

values of relative density, and the deviation increases with increasing relative density. On the other 

hand, for low range of relative density the results of the analytic expression converge to those of AH. 

Figure 11 also shows the anisotropic property of hexagonal, Kagome, and triangular lattice. As can be 

seen in Figure 11b for the hexagonal lattice, if cell walls are modeled with beam elements by 

considering bending moment as the only deformation mode in the element formulation, the lattice shows 

isotropic behaviour in terms of mechanical strength [3]. However, anisotropic behaviour can be 

observed if axial deformation mode is also added to the deformation mode of  the beam element 

formulation [29]. The value of axial forces in the cell walls varies with loading direction resulting in the 

anisotropic property of hexagonal cell. For Kagome and triangular lattices, both bending moments and 
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axial forces change by loading direction, thereby causing the anisotropy behaviour in the mechanical 

strength of the material. With AH theory, all deformation modes, including bending, axial, and 

significant shear deformation at cell edges and vertices can be captured. As a result, changes of stress 

distribution throughout the lattice with the loading direction can be captured with high accuracy, and 

anisotropic behaviour can be observed. 

Similarly to Figure 10, Figure 12 shows the relative errors between the initial yield strengths. In 

contrast to the range of error in Figure 10 and 12, we observe here that the assumption of beam/rod 

elements for the cell walls is more accurate for the effective elastic constants. For example, the effective 

elastic constants of stretching dominated can be estimated with an error less that 10% for 25.0 . For 

the yield strength, on the other hand, the analytic expressions are overpredictive, since the assumption of 

rod element for the cell walls cannot capture any stress localization. Rod elements can only describe 

uniaxial deformation mode, and significant deformation cannot be captured at the cell edges and vertices 

as a result of bending or shear deformation. The accuracy can be improved if model refinements are 

implemented. For example for Kagome and triangle cells (Figure 12(c, d)), the error considerably 

reduces if the cell walls are modeled with beam elements, as opposed to rods. For instance at 30% 

relative density, an error decrease of over 20% can be obtained. Furthermore, for the hexagonal cell 

(Figure 12(b)) the results of the yield strength at low relative density show that the analytic expressions 

can be more accurate if axial forces, besides bending moments, are modeled in the cell walls. Yet for 

higher relative density, the relative error rises since the deformation of the solid material at the cell joints 

cannot be captured. In particular for the hexagon, the relative error of the initial yield strength is above 

20% for 0.1  . This observation is critical and cannot be neglected if the lattice material is to be 

designed to withstand cyclic loading. On the other hand with AH, the lattice cell walls are modeled with 

continuum elements with sufficient mesh density; therefore, all deformation modes including significant 

deformations in the cell edges and vertices could be captured.  
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The results given in this section, therefore, provide insight into the accuracy of different 

homogenization techniques that can be used to predict the effective properties of lattice materials. The 

plots assist the selection of the best method to solve problems of analysis, design, and optimization of 

lattice materials. We recall the accuracy of AH has been demonstrated in literature via experimental 

testing of periodic composite materials [46-51]. In a future study, additional experiments on cellular 

materials can be conducted to further confirm that AH is a suitable benchmark method for the numerical 

characterization of periodic cellular materials. 

 

5- Conclusion 

In the first part of the paper, asymptotic homogenization theory has been applied to a lattice with six 

cell topologies of either stretching or bending dominated behaviour. The effective elastic modulus and 

yield strength have been obtained for the whole range of relative density. The yield surfaces for 

multiaxial loading have been provided for three common cell topologies, i.e. square, hexagonal, and 

Kagome, and closed-form expressions approximating the geometry of the yield surfaces are given for 

handy use in applications involving multiscale analyses and design problems of cellular materials.  

In the second part, the relative density is used as criterion to compare AH results with those obtained 

with homogenization schemes available in literature. For stiffness and strength properties, the relative 

error of each method with respect to AH is also contrasted. The results have shown that the analytic 

expressions cannot capture material deformation and stress localization at the cell joints; thus they 

significantly overpredict the yield strength of a lattice material. For instance, the effective elastic 

constants of stretching dominated lattices can be estimated with an error below 10% for 25.0 , 

whereas the initial yield strength might yield relative errors above 20% for 1.0 . These and other 

results presented in this work can contribute to gain insight into the level of accuracy that a 
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homogenization scheme might offer, and help to select the most accurate and cost-effective technique 

for a given problem. 

 

6- Appendix  

The table below summarizes the expressions of the effective mechanical properties obtained in literature 

for various cell topologies.  
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Table Caption 

Table 1. Yield surfaces as a function of relative density for square, hexagonal, and Kagome unit cells 

Table 2. The expressions of the effective mechanical properties obtained in literature for various cell 

topologies 
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Figure Caption 

Figure 1. Cell topologies with the associated RVE considered in this study 

Figure 2. Homogenization concept of a cellular structure 

Figure 3. Periodic boundary conditions on the opposite edges of the RVE 

Figure 4. Effective elastic constants as a function of relative density for the cell topologies: (a) square, 

(b) hexagonal, (c) Kagome, (d) triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B 

Figure 5. Yield strength as a function of relative density for: (a) square, (b) hexagonal, (c) Kagome, (d) 

triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B cells 

Figure 6. Yield surface of an hexagonal cell honeycomb under combined in-plane stress state ( x , y  

and xy ) for a relative density %50  

Figure 7. Yield surface of a square cell honeycomb under combined in-plane stress state ( x , y  and 

xy ) for a relative density %50  

Figure 8. Yield surface of a Kagome cell honeycomb under combined in-plane stress state ( x , y  and 

xy ) for a relative density %30  

Figure 9. Effective elastic constants for (a) square, (b) hexagonal, (c) Kagome, (d) triangle, (e) mixed 

square/triangular A, and (f) mixed square/triangular B, for relative density below 0.3 ( 3.0 ). The 

closed-form expressions of the effective elastic constants obtained by Gibson and Ashby [3], Wang and 

McDowell [6], Elsayed [28], and Vigliotti and Pasini, [29] are plotted. 

Figure 10. Relative error between the effective elastic constants obtained via the closed-form 

expressions given in [3, 6, 28, 29] and those obtained by asymptotic homogenization for different cell 

topologies, (a) square, (b) hexagonal, (c) Kagome, (d) triangle, (e) mixed square/triangular A, and (f) 

mixed square/triangular B, for the range of relative density lower than 0.3 ( 3.0 ). 
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Figure 11. Yield strength as a function of relative density lower than 0.3 ( 3.0 ) for: (a) square, (b) 

hexagonal, (c) Kagome, (d) triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B. 

The closed-form expressions plotted in figure are those obtained by Gibson and Ashby [3], Wang and 

McDowell [6], and Vigliotti and Pasini [29]. 

Figure 12. Relative error between the initial yield strength obtained via the closed-form expressions 

given in [3, 6, 29] and those obtained by asymptotic homogenization for (a) square, (b) hexagonal, (c) 

Kagome, (d) triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B, at density lower 

than 0.3 ( 3.0 ). 
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Figure 2: Homogenization concept of a cellular structure 
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Figure 3: Periodic boundary conditions on the opposite edges of the RVE. 
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Figure 4: Effective elastic constants as a function of relative density for the cell topologies: (a) square, 

(b) hexagonal, (c) Kagome, (d) triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B 
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Figure 5: Yield strength as a function of relative density for: (a) square, (b) hexagonal, (c) Kagome, (d) 

triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B cells 
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Figure 6: Yield surface of an hexagonal cell honeycomb under combined in-plane stress state ( x ,
y  

and 
xy ) for a relative density 50%  . 
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Figure 7: Yield surface of a square cell topology under combined multiaxial macroscopic stress state (

xx ,
yy  and xy ) for a relative density 50%  . 
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Figure 8: Yield surface of a Kagome cell honeycomb under combined in-plane stress state ( x ,
y  and 

xy ) for a relative density 30%  . 
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Figure 9: Effective elastic constants for (a) square, (b) hexagonal, (c) Kagome, (d) triangle, (e) mixed 

square/triangular A, and (f) mixed square/triangular B, for relative density below 0.3 ( 3.0 ). The 

closed-form expressions of the effective elastic constants obtained by Gibson and Ashby [3], Wang and 

McDowell [6], Elsayed [28], and Vigliotti and Pasini [29] are plotted.  
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Figure 10: Relative error between the effective elastic constants obtained via the closed-form 

expressions given in [3, 6, 28, 29]  and those obtained by asymptotic homogenization for different cell 

topologies, (a) square, (b) hexagonal, (c) Kagome, (d) triangle, (e) mixed square/triangular A, and (f) 

mixed square/triangular B, for the range of relative density lower than 0.3 ( 3.0 ). 

  

0 0.05 0.10 0.15 0.20 0.25 0.30
0

10

20

30
 E

*

x
/E

s
, E

*

y
/E

s

 G
*
/E

s

 



s

E
rr

o
r 

(%
)

  

{W
a
n

g
 a

n
d

 M
c
D

o
w

e
ll

 [
6

]

E
ls

a
y

e
d

 [
2

3
]

{

0 0.05 0.10 0.15 0.20 0.25 0.30
0

10

20

30

   

 E
*

x
/E

s
, E

*

y
/E

s

 G
*
/E

s

 



s

E
rr

o
r 

(%
)

{W
a
n

g
 a

n
d

 M
c
D

o
w

e
ll

 [
6

]

E
ls

a
y

e
d

 [
2

3
]

{

0 0.05 0.10 0.15 0.20 0.25 0.30
0

10

20

30

 E
rr

o
r 

(%
)

  

 E
*

x
/E

s
, E

*

y
/E

s

 G
*
/E

s

 



s

{W
a
n

g
 a

n
d

 M
c
D

o
w

e
ll

 [
6

]

E
ls

a
y

e
d

 [
2

3
],

 V
ig

li
o

tt
i 

a
n

d
 P

a
si

n
i 

[2
4

]

{

0 0.05 0.10 0.15 0.20 0.25 0.30
0

10

20

30

 

{W
a
n

g
 a

n
d

 M
c
D

o
w

e
ll

 [
6

]

E
ls

a
y

e
d

 [
2

3
],

 V
ig

li
o

tt
i 

a
n

d
 P

a
si

n
i 

[2
4

]

 E
*

x
/E

s
, E

*

y
/E

s

 G
*
/E

s

 



s

E
rr

o
r 

(%
)

{

0 0.05 0.10 0.15 0.20 0.25 0.30
0

10

20

30
 E

*

x
/E

s
, E

*

y
/E

s

 G
*
/E

s

 



s

E
rr

o
r 

(%
)



{G
ib

so
n

 e
t 

a
l.

 [
3

]

V
ig

li
o

tt
i 

a
n

d
 P

a
si

n
i 

[2
4

]

{
0 0.05 0.10 0.15 0.20 0.25 0.30

0

10

20

30

E
rr

o
r 

(%
)



 E
*

x
/E

s
, E

*

y
/E

s

 G
*
/E

s

 



s
W

a
n

g
 a

n
d

 M
c
D

o
w

e
ll

 [
6

]

{

(a) (b)

(c) (d)

(e) (f)

E
rr

o
r 

%





E
rr

o
r 

%

E
rr

o
r 

%

E
rr

o
r 

%



 

E
rr

o
r 

%

E
rr

o
r 

%



/ ,  /x s y sE E E E

/ sG E

/ s 

/ ,  /x s y sE E E E

/ sG E

/ s 

/ ,  /x s y sE E E E

/ sG E

/ s 

/ ,  /x s y sE E E E

/ sG E

/ s 

/ ,  /x s y sE E E E

/ sG E

/ s 

/ ,  /x s y sE E E E

/ sG E

/ s 

[2
9

]

[2
9

]
[2

8
]

[2
9

]
[2

8
]

[2
8

]

[2
8

]



11 

 

 
Figure 11: Yield strength as a function of relative density lower than 0.3 ( 3.0 ) for: (a) square, (b) 

hexagonal, (c) Kagome, (d) triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B. 

The closed-form expressions plotted in figure are those obtained by Gibson and Ashby [3], Wang and 

McDowell [6], and Vigliotti and Pasini [29]. 
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Figure 12: Relative error between the yield strength obtained via the closed-form expressions given in 

[3, 6, 29] and those obtained by asymptotic homogenization for (a) square, (b) hexagonal, (c) Kagome, 

(d) triangle, (e) mixed square/triangular A, and (f) mixed square/triangular B, at density lower than 0.3 (

3.0 ). 
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Table 1: Yield surfaces as a function of relative density for square, hexagonal, and Kagome unit cells 
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Table 2: The expressions of the effective mechanical properties obtained in literature for various cell 

topologies
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