
CMP-722 1

A Parallel Finite-Element Time-Domain Method for Nonlinear
Dispersive Media

David S. Abraham1, Student Member, IEEE, Dennis D. Giannacopoulos1, Senior Member, IEEE
1Department of Electrical & Computer Engineering, McGill University, Montréal, Québec H3A 0E9 Canada

In this paper, a novel use of Graphics Processing Units (GPUs) is presented for the acceleration of Finite-Element Time-Domain
(FETD) methods containing electrically complex media. By leveraging the massively parallel architecture of the GPU via NVIDIA’s
Compute Unified Device Architecture (CUDA) language, the immense computational burden imposed by these materials can be
largely alleviated, facilitating their modeling and incorporation into electromagnetic devices and systems. To that end, an analysis
of both mixed and vector wave equation-based nonlinear dispersive FETD algorithms is presented in order to both identify
computational bottlenecks and determine their amenability to parallelization. Based on this analysis, a parallel elemental matrix
evaluation procedure is proposed, which when coupled to the recently derived Gaussian Belief Propagation Method for matrix
assembly and solution, demonstrates up to a 200 times performance increase as compared to a traditionally serial implementation.

Index Terms—Dispersion, Finite-Element Analysis, Nonlinear Optics, Parallel Processing.

I. INTRODUCTION

W ITH an ever increasing number of connected devices in
today’s world, the ubiquity and importance of telecom-

munications infrastructure cannot be overstated. Indeed, now
more than ever, the need for fast, reliable, and efficient means
of communication are spurring research and development of
electromagnetic devices for the transmission and reception
of data. In particular, developments in the field of nonlinear
optics, propelled by advances in fabrication techniques and
material sciences, have resulted in large-scale improvements
in speed, capacity, and reliability. With an increasing reliance
of these optical devices on complex electromagnetic material
interactions, such as dispersion and nonlinearity, it is unsur-
prising that demand for design tools capable of accurately
modeling these effects has also increased, as cost-effective
alternatives to expensive empirical study.

To that end, two numerical techniques based upon the
Finite-Element Time-Domain (FETD) method have recently
been proposed for the treatment of electrically complex media
[1], [2]. These full-wave methods have proven capable of
solving the dispersive and nonlinear Maxwell’s Equations
without simplification or assumptions about the underlying
wave solutions. The first method does so within the context of
a mixed FETD framework, using both edge and face elements,
whereas the second adopts the more familiar vector wave
equation (VWE) approach, using only edge elements. Both
methods have to date demonstrated remarkable success, and
are capable of modeling very general permittivity functions in
an accurate, stable, and versatile way.

Despite the successes of these methods, however, their main
drawback undoubtedly lies in the immense computational
burden they pose. Thus, despite their many desirable properties
these simulations often lay outside the realm of feasibility

Manuscript received December 1, 2012; revised August 26, 2015; ac-
cepted July 16, 2019. Corresponding author: D. S. Abraham (email:
david.abraham@mail.mcgill.ca).

for even modestly sized problems. Under these circumstances,
any attempt to improve the speed and efficiency of these
dispersive nonlinear FETD methods, and thus alleviate the
principle burden they pose, could pave the way for fast and
accurate solutions to problems containing electrically complex
media. This is the principle goal of this paper.

While many approaches are possible to decrease the ex-
ecution time of these algorithms, the focus of this paper is
on the use of parallelization via Graphics Processing Units
(GPUs). In the following sections, these algorithms will be
analyzed to both qualify and quantify performance bottlenecks,
as well as determine their amenability to parallelization. These
findings are then used to devise a parallel implementation
on an NVIDIA GPU, leveraging several novel and existing
techniques. The algorithm is then benchmarked against a serial
implementation and demonstrates substantial speedups.

II. FETD FOR ELECTRICALLY COMPLEX MEDIA

For many electrically complex materials an adequate per-
mittivity model which incorporates linear dispersion, instan-
taneous nonlinearity, and dispersive nonlinearity, is given by
the following constitutive equation:

~D = ε0

[
1 + χ(1)(t) ∗ ~E

+ χ(3)
(
αE2 + (1− α)g(t) ∗ E2

)
~E
]

(1)

where χ(1) models linear dispersion, χ(3) an instantaneous
Kerr and/or dispersive stimulated Raman nonlinearity, E =
| ~E|, and ∗ denotes convolution [3].

As described in [1] and [2], the constitutive equation in (1)
can be substituted into Maxwell’s Equations, and a standard
variational approach applied to obtain a semi-discrete system.
In the case of the method in [1], the equations are treated
directly as a coupled first-order system and discretized using
both edge and face elements. In contrast, the method in [2]

0000–0000/00$00.00 c© 2019 IEEE

Please cite as:
D. S. Abraham and D. D. Giannacopoulos, "A Parallel Finite-Element Time-Domain Method for Nonlinear Dispersive Media," in IEEE Transactions on Magnetics, vol. 56, no. 2, pp.
1-4, Feb. 2020, Art no. 7507604, doi: 10.1109/TMAG.2019.2952528.

CMP-722 2

operates on the second-order vector wave equation, requiring
the use of edge elements only.

While the methods in question do have several notable
differences, it has been noted on multiple occasions that
the two formulations produce remarkably similar final update
equations and procedures [2], [4]. Due to this striking resem-
blance, any analysis carried out on one of these algorithms is
likely to be immediately applicable to other, with very minor,
if any, modification. As a result, for the remainder of this paper
focus will be placed on the mixed formulation, though again
the VWE equations may easily be substituted in the ensuing
discussion.

Following through with the mixed formulation, including
a temporal discretization via Crank-Nicolson, results in the
following update equation for the electric field:(

[K]n+1 +
∆t2

4
[C]T [Mf][C]

)
{e}n+1 =(

[K]n − ∆t2

4
[C]T [Mf][C]

)
{e}n + ∆[C]T [Mf]{b}n

−
(
{W1}n − {W1}n−1

)
+

∆t

2
({g}n+1 + {g}n) (2)

in which {e} are the electric field weights, {b} the magnetic
field weights, ∆t the discrete time step size, {g} a volume
current source term, {W1} an auxiliary variable used in the
modeling of linear dispersion (see [4]), [C] a connectivity ma-
trix composed of ones and zeros, and the remaining elemental
matrices given by:

[K]nij =

∫
Ω

(
a0 + αε0χ

(3)(E2)n + (1− α)ε0χ
(3)·

[h0(E2)n + Gn1]
)
~W

(1)
i · ~W (1)

j dΩ

(3)

[Mf]ij =

∫
Ω

1

µ
~W

(2)
i · ~W (2)

j dΩ (4)

where a0 is associated with the linear dispersion, h0 and G1

with the nonlinear dispersion, µ is the permeability, and ~W (n)

represents a vector n-form basis function.
Since the [K] matrix depends on the field strength E via the

permittivity, equation (2) is inherently nonlinear. As a result,
[1] and [2] implement a nonlinear Newton-Raphson iteration
in order to update the electric field at each time step:

{e}n+1
(k+1) = {e}n+1

(k) − [J]−1
(k){f}(k) (5)

where {f} represents equation (2) with all terms collected
on the left-hand side, and which also requires the derivation
and implementation of the following Jacobian matrix at each
iteration:

[J]nij = [K]ij +
∆t2

4
[C]T [Mf][C]ij

+

∫
Ω

2ε0χ
(3)(~W

(1)
i · ~En)(~W

(1)
j · ~En)dΩ. (6)

When combined with suitable update equations for the
convolution variables and magnetic field, equations (2), (5),
and (6) provide the necessary framework for updating the
electric field within complex media.

III. ALGORITHM ANALYSIS

The main overhead associated with the above algorithms
naturally comes from the introduction of both dispersion and
nonlinearity into the formulations. As originally detailed in
[4], and implemented in [1] and [2], dispersion is principally
handled via the z-transform, which introduces a series of
auxiliary variables which must be updated at each time step.
However, the overhead imposed by these auxiliary variables,
as well as possible parallelization strategies, has already been
discussed in [5]. As a result, here the focus will primarily
be on the nonlinearity, which likely dwarfs the dispersion in
terms of computational effort.

As mentioned earlier, nonlinear FETD methods tend to be
significantly more computationally intensive than their linear
counterparts. An initial overview of equations (2), (5), and (6)
easily shows that for each time step, the nonlinear algorithm
will require multiple solutions of the Jacobian matrix equation,
as compared to the single matrix solution required in linear
computations. Moreover, there is an additional complicating
factor: the dependence of the [K] and [J] matrices on the
unknown solution {e}n+1 causes equations (2), (5), and (6)
to change not only at each time step, but at each new iteration
of the Newton-Raphson algorithm within each time step.
Thus, every nonlinear elemental [K] and [J] matrix must
be recomputed and reassembled into their global counterparts
multiple times per time step, prior to each new matrix solve.

Further complicating matters is that, unlike in the linear
case, in general no closed-form expressions are available
for the elemental [K] and [J] matrices. As a result, each
one must be numerically evaluated via Gaussian quadrature,
significantly exacerbating the computational burden.

IV. PARALLELIZATION STRATEGY

Having potentially identified the main computational bottle-
necks in the previous section, here a number of strategies are
developed for their parallelization. While efficient implemen-
tations of nonlinear algorithms have previously been derived
which may address some of the above concerns, such as the
Jacobian-Free Newton-Krylov method [6], here a different
approach is adopted. More specifically, rather than avoiding
the overhead associated with the Newton-Raphson iteration
via approximation, here the full non-approximative implemen-
tation is undertaken and the overhead directly parallelized.

The first issue of elemental matrix evaluation is relatively
straightforward to address. Within the framework of the Finite-
Element method, the local elemental matrices are fundamen-
tally independent from one another, with elements only “shar-
ing” information once these are assembled into their global
counterparts. As a result, the evaluation of these elemental
matrices constitutes an embarassingly parallel problem, where
multiple workers can each compute an elemental matrix with
zero need to communicate. This type of problem is ideal
for implementation on a GPU, and is visually depicted in
Figure 1, where each GPU worker or thread has been assigned
an element. While relatively simple to implement, the impact
of parallelizing the matrix evaluation in this way cannot be
overstated. Indeed, due to the large computational burden

CMP-722 3

𝐾 (𝑒), 𝐽 (𝑒)Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

𝐾 (𝑒), 𝐽 (𝑒)

𝐾 (𝑒), 𝐽 (𝑒)

𝐾 (𝑒), 𝐽 (𝑒)

𝐾 (𝑒), 𝐽 (𝑒)

Fig. 1. Parallelization of elemental matrix evaluation.

imposed by millions of applications of Gaussian quadrature,
significant speedup is expected to come from this step alone.

The matters of global matrix assembly and solution, how-
ever, are not so simple. The parallel assembly of global
matrices from their local counterparts has been widely studied
within Finite-Elements [7], [8]. As mentioned earlier, it is dur-
ing assembly that elements share information, which can lead
to race conditions and undefined behaviour. To mitigate this, it
is often necessary for these methods to adopt additional layers
of processing, such as coloring algorithms. Moreover, parallel
algorithms for the solution of matrix equations constitutes a
massive area of study in its own right, with techniques such
as parallel preconditioned conjugate gradient achieving notable
success [9]. Rather than address these two issues individually,
here a different approach will be adopted wherein both will
be addressed simultaneously.

Recently, the Gaussian Belief Propagation (GaBP) algo-
rithm has been proposed for the treatment of time-dependent
problems within the FETD method [10], [11]. The GaBP
algorithm is remarkable in this application not only because it
solves the matrix equations in parallel, but because it does so
without ever assembling the global matrices. The ability of the
GaBP algorithm to work only with local matrices and solve
the equivalent global problem at the same time makes it an
ideal candidate for the dispersive nonlinear algorithms above.

In essence, the GaBP algorithm works by converting the
global matrix equation into a maximization problem of a mul-
tivariate Gaussian probability density function, which equates
to finding the mean. Moreover, due to the Gaussian nature
of the distribution, it is possible to factor it in such a way
as to maintain the mean value or solution. Thus, rather than
having one global distribution to maximize there are a series
of local factors, each associated with an individual element,
whose overall product should be as large as possible.

Naturally the shared nature of unknowns between elements
will require some communication between them to jointly
maximize their likelihoods. The Finite-Element GaBP algo-
rithm then proceeds roughly as follows:

1) Each element receives messages αi from their neighbors,
containing information about the likely values of its
unknowns

2) Each element uses these messages, as well as informa-
tion from its own local matrices, to update these values
and produce its own estimates

3) Each element then sends messages βi containing up-
dated estimates to each of its neighbors.

𝑒3𝑒1

𝑒2

𝑒4

𝑒5

𝑒6

𝑒7

𝑒8

𝑒9

𝑒10 𝛼, 𝛽
𝛼, 𝛽

𝛼, 𝛽

1

4

7

8

9 10

2 6

5

3

Fig. 2. Schematic representation of the Finite-Element GaBP algorithm.

4) The process continues iteratively until convergence.
The algorithm is schematically depicted in Figure 2 above,
with more information available in [10] and [11]. By im-
plementing this GaBP technique for the nonlinear dispersive
FETD algorithms above, along with the parallelization de-
scribed in Figure 1, each of the major predicted bottlenecks
can hopefully be largely alleviated.

V. IMPLEMENTATION

Due to the nature of GPU architecture, a haphazard im-
plementation of a particular algorithm can easily result in
unwanted serialization of operations. Thus the performance
of any particular algorithm heavily depends on its implemen-
tation. To that end, the algorithms above were implemented on
an NVIDIA GPU using the Compute Unified Device Architec-
ture (CUDA) language, with particular emphasis on efficiency
and parallelism. Specifically, attention was given to two cri-
teria: coalesced global memory access and minimization of
memory transfers between the host and GPU [12]. Coalesced
memory accesses were obtained by re-ordering the problem’s
data structures to coincide with GPU access patterns. Lastly,
while matrix evaluation, assembly, and solution make up the
majority of the problem, in order to avoid costly memory
transfers between the host and GPU, every other intervening
operation was also implemented on the GPU as well. As a
result, after sending initial mesh and problem data to the GPU,
the remainder of the algorithm could proceed with minimal
host intervention. One drawback to this, however, is that the
entire computation must fit into GPU memory.

VI. RESULTS

To test the effectiveness of the above parallel algorithms,
a test problem was devised for which the novel GPU im-
plementation could be benchmarked against a standard serial
algorithm. The chosen problem is a classic demonstration of a
nonlinear phenomena known as a spatial soliton, in which the
diffraction of a beam propagating in a bulk medium is negated
by nonlinearity. The selected domain was a two-dimensional
rectangle measuring 30 cm wide by 1 m long with perfect
electric conductor boundaries, implemented with the mixed
FETD formulation. The domain was uniformly filled with

CMP-722 4

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 20000 40000 60000 80000 100000 120000

P
er

ce
n

t
o

f
To

ta
l C

o
m

p
u

ta
ti

o
n

 T
im

e

Degrees of Freedom

Double Precision

Single Precision

Fig. 3. Matrix evaluation and assembly as a function of degrees of freedom.

a bulk instantaneous nonlinear medium (α = 0) for which
χ(1) = 2.2 and χ(3) = 1.5 × 10−19 m2/V 2. While the choice
of a two dimensional problem was mostly for convenience,
it is worth noting that three dimensional performance should
be equal to or even exceed the results shown here, due to better
GPU utilization. However, as mentioned, the increased number
of variables in the 3D case must still fit within the global
memory of the GPU being used. The serial algorithm was
compiled in C++ and executed on a single core of an Intel
8700K CPU, clocked at 3.7 GHz. The CPU code was optimized
via the \O2 compiler flag, as well as by enabling intrinsic
functions. The GPU algorithm, in contrast, was compiled in
CUDA v9.2 and executed on an NVIDIA GTX 1070Ti with
2432 cores clocked at 1607 MHz and 8 GB of GDDR5
memory. This is roughly sufficient memory for the product of
the number of degrees of freedom and time steps to equal just
less than 109.

To test the hypothesized bottlenecks in Section III, the
serial algorithm was profiled to verify which subroutines
were most costly. These results are shown in Figure 3, in
which the proportion of computation time devoted to elemental
matrix calculation and global matrix assembly are plotted as a
function of degrees of freedom, for a series of refined meshes.
It is clear that together these postulated bottlenecks do
dominate the simulation, more so than matrix solving.

Figure 4 shows the result of using the aforementioned par-
allel algorithms to alleviate these bottlenecks. As the problem
size grows, better utilization of GPU resources is achieved, and
performance steadily increases. In the case of double precision,
the highest speedup observed was about 141 times faster than
serial execution, whereas in the case of single precision, it was
an impressive 213 times faster. This represents a reduction in
computation time from roughly 1.5 hours down to 30 seconds.

VII. CONCLUSION

In conclusion, the suspected bottlenecks associated with
computationally intensive nonlinear dispersive Finite-Element
Time-Domain methods have been identified and characterized.
Moreover, it has been shown that by using a new mixture of a
parallel elemental matrix evaluation method as well as a novel
application of GaBP to nonlinear FETD problems, that these
computational burdens can be largely alleviated, via the use

0.00

50.00

100.00

150.00

200.00

250.00

0 20000 40000 60000 80000 100000 120000

Sp
ee

d
u

p

Degrees of Freedom

Double Precision

Single Precision

Fig. 4. GPU speedup as a function of degrees of freedom.

of Graphics Processing Units. With peak execution 213 times
faster than a traditional implementation, these results represent
a substantial improvement with potential consequences not
only for the study of electrically complex media, but any non-
linear numerical method with a similar formulation, such as
those for magnetic machines. Lastly, given the success of the
GPU algorithm, future work could also include investigation
of other implementations, such as parallel CPU algorithms.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC) for their
support.

REFERENCES

[1] D. S. Abraham and D. D. Giannacopoulos, “A convolution-free mixed
finite-element time-domain method for general nonlinear dispersive
media,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 1,
pp. 324 – 334, Jan. 2019.

[2] D. S. Abraham and D. D. Giannacopoulos, “A convolution-free finite-
element time-domain method for the nonlinear dispersive vector wave
equation,” IEEE Transactions on Magnetics, accepted for publication.

[3] R. M. Joseph and A. Taflove, “FDTD maxwell’s equations models for
nonlinear electrodynamics and optics,” IEEE Transactions on Antennas
and Propagation, vol. 45, no. 3, pp. 364–374, Mar. 1997.

[4] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos, “A stable and
efficient direct time integration of the vector wave equation in the finite-
element time-domain method for dispersive media,” IEEE Transactions
on Antennas and Propagation, vol. 63, no. 1, pp. 314–321, Jan. 2015.

[5] D. S. Abraham and D. D. Giannacopoulos, “Dispersive möbius trans-
form finite-element time-domain method on graphics processing units,”
IEEE Transactions on Magnetics, vol. 52, no. 3, Mar. 2016.

[6] D. A. Knoll and D. E. Keyes, “Jacobian-free newton-krylov mehotds:
A survey of approaches and applications,” Journal of Computational
Physics, vol. 193, no. 2, pp. 357–397, 2004.

[7] U. Kiran, D. Sharma, and S. S. Gautam, “Gpu-warp based finite element
matrices generation and assembly using coloring method,” Journal of
Computational Design and Engineering, Nov. 2018, in press, DOI:
10.1016/j.jcde.2018.11.001.

[8] Y. V. Khalevitsky, N. V. Burmasheva, and A. V. Konovalov, “An
approach to the parallel assembly of the stiffness matrix in elastoplastic
problems,” in AIP Conference Proceedings, 2016.

[9] R. Helfenstein and J. Koko, “Parallel preconditioned conjugate gradient
algorithm on gpu,” Journal of Computational and Applied Mathematics,
vol. 236, no. 15, pp. 3584 – 3590, Sept. 2012.

[10] D. Fernandez, A. Akbarzadeh-Sherbaf, and D. D. Giannacopoulos,
“Solving finite-element time-domain problems with gabp,” IEEE Trans-
actions on Magnetics, vol. 53, no. 6, Jun. 2017.

[11] Y. El-Kurdi, W. J. Gross, and D. D. Giannacopoulos, “Parallel multigrid
acceleration for the finite-element gaussian belief propagation algo-
rithm,” IEEE Transactions on Magnetics, vol. 50, no. 2, Feb. 2014.

[12] CUDA C Programming Guide, NVIDIA Corporation, Aug. 2019.

	Introduction
	FETD for Electrically Complex Media
	Algorithm Analysis
	Parallelization Strategy
	Implementation
	Results
	Conclusion
	References

