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ABSTRACT  
 

Using a fracture mechanics framework, we present a finite element 

method to simulate the break-up of 2D ice accreted on the wings of 

aircraft and the shedding of 3D ice accreted on blades of helicopter. The 

fully automated ice break-up module is integrated in FENSAP-ICE [1-2], 

which is an in-flight ice accretion simulation code that solves flow, droplet 

impingement and ice accretion, in sequence. The 2D and 3D crack 

propagation packages are developed and validated by comparing with 

published results for a single edge cracked plate test case and a single 

edge-notched specimen with three points bending load, respectively. 

Numerous complicated ice-shapes are analyzed and comparisons are 

performed with a contemporary fracture mechanics code. Under typical 

icing and flow conditions, linear elasticity is found to be adequate for ice 

break-up analysis. For ice accreted on wings, an important finding of this 

study is that the breaking of ice has a strong dependence on its shape, i.e. 

under similar aerodynamic loading, some ice shapes fail while others do 

not. For ice accreted on helicopters, the finding is that the rotational speed 

of the blade and interface strength between ice and blade material are the 

major factors governing the ice break-up. The main objective of this work 

is to analyze complex multi-physics phenomenon and provide a simplified 

ice break-up model for the industrial users and aerodynamic designers. 

The potential use of this tool, however, is not limited to aerodynamics; it 

can be applied in areas of environmental science, material science, 

glaciology, earthquake and rupture analysis.  

 

 
KEY WORDS: Ice break-up, ice shedding, in-flight icing, finite element 

methods, fracture mechanics, multi-physics phenomenon 
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RÉSUMÉ 
Dans le cadre de la mécanique des fractures, nous présentons une méthode 

d’éléments finis qui simule le bris de la glace accumulée sur les ailes d’avions, 

en deux dimensions, ainsi que le délestage du givre accumulé sur les pales de 

l’hélicoptère, en trois dimensions. Le module de bris de glace, entièrement 

automatisé, est intégré en FENSAP-ICE [1-2], un logiciel de simulation qui résout 

séquenciellement le flux, l’impact des gouttelettes et le cumul de glace. Les 

modules bidimensionnels et tridimensionnels de propagation de fissures sont 

développés et validés par comparaison avec des résultats expérimentaux sur 

une plaque fissurée d’un seul côté, ainsi que pour un spécimen entaillé d’un seul 

côté avec une charge de flexion en trois points. Plusieurs formes de glace sont 

analysées et des comparaisons faites avec un autre code traitant la mécanique 

des fractures. Dans des conditions typiques de givrage et d’écoulement, 

l’élasticité linéaire s’est avérée adéquate pour une analyse du bris de glace. Pour 

la glace accumulée sur les ailes, une conclusion importante de cette étude est 

que le bris de glace dépend fortement de sa forme, c’est-à-dire que pour des 

charges aérodynamiques similaires, certaines formes de glace briseront, tandis 

que d’autres ne le feront pas. En ce qui concerne la glace accumulée sur les 

hélicoptères, il a été conclu que les facteurs les plus importants pour le bris de 

glace sont la vitesse rotationnelle de la pale et la force d’adhésion entre la glace 

et la pale. L’objectif principal de cet ouvrage est d’analyser des phénomènes 

multi-physiques complexes et de fournir un modèle simplifié du bris de la glace 

pour les utilisateurs industriels et les concepteurs en aéronautique. L’utilisation 

de cet outil n’est toutefois pas limitée à l’aérodynamique, puisqu’il peut être 

employé dans des domaines tels que les sciences environnementales, les 

sciences des matériaux, la glaciologie et l’analyse des tremblements de terre et 

de rupture.  

 

MOTS CLÉS : Givrage en vol, bris de glace, délestage de glace, éléments finis, 

mécanique des fractures, phénomènes multi-physiques  
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Chapter 1  

INTRODUCTION 
 

When an aircraft traverses a cloud containing supercooled water droplets, ice 

may accrete on its surface and depending on flight conditions, ice can 

accumulate at different locations and form a wide variety of shapes. Figure 1 

shows in-flight ice phenomenology and typical ice shapes for long-term in-flight 

ice accretion.  

    
Figure 1. In-flight icing: Phenomenology (left) and typical ice shapes (right) 

 
Commercial airplane and helicopter manufacturers have to demonstrate, through 

a rigorous and lengthy certification process, that their airplanes can fly safely into 

known-icing conditions. The accurate simulation of ice accretion over wings and 

other surfaces of an aircraft is a key issue in the growing acceptance of 

computational fluid dynamics (CFD) as an aid to in-flight icing certification. In 

recent years, several aircraft accidents have been caused by ice accretion on 

aircraft structural components. One of many examples is the American Eagle 

Flight 4184 crash on 31 October 1994 near Roselawn, Indiana, as a 

consequence of ice buildup on its wings. The formation of ice over the wings and 

other part of aircraft deteriorates aerodynamic performance and can result in 

shedding chunks of ice that could strike the aircraft or, worse, find their way into 

the engine, particularly for aircraft with aft-mounted engines. Figure 2 shows a 

business jet with aft-mounted engines, it can be seen that chances could be very 
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high that ice shed from the nose of fuselage or root of wings flies into the aft-

mounted engine of the aircraft.  

 

 
Figure 2. A business jet with aft-mounted engines 

 

A famous example of ice break-up and ingestion is the air crash of Scandinavian 

Airlines Flight 751 in 1991. The McDonnell Douglas MD-81, with an aft-mounted 

engine, crashed in a field near Gottrora, Sweden, and is shown in figure 3.  

 
Figure 3. Air crash due to ice ingestion 

 

Some modern aircraft designs have engine inlets in close proximity to the 

fuselage or wings with a purpose to reduce boundary layer separation and hence 

increase efficiency, however, these designs are potentially prone to ice ingestion 

into the engines. 
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Interest for ice break-up and shedding could date back to 1983 by DeWolfe since 

the concern was first seriously investigated for the Space Shuttle program. Shed 

ice, being a relatively low-density material, decelerates rapidly in the atmosphere 

thus introducing high relative velocity between itself and the impact point on the 

aircraft [3].  

 

Ice shedding is also a concern for rotorcraft. For helicopters, in-flight icing has 

become a more important issue with a greatly expanded concept of operations 

and an ever-increasing range of tasks [4]. There are many scenarios that the 

pilot cannot fly until ice is removed from the blades, for example emergency 

rescue. The shedding ice from helicopter blades due to centrifugal forces not 

only poses a ballistics danger to the fuselage, but also creates extremely severe 

vibrations due to imbalanced rotors. The severity of these vibrations has been 

documented [4] by test pilots engaged in conducting natural icing studies with 

helicopters. Their reports identify numerous occasions where in-flight icing tests 

have been aborted because of main rotor blade icing and the subsequent 

asymmetrical shedding which caused vibrations so severe that it became 

impossible to read the instrument panel [4]. 

 

In addition, for both aircraft and rotorcraft, a great potential threat from shed ice 

originates at engine intake. Fig 4 shows ice accretion at the spinner of a jet 

engine. Fig 5 shows ice accretion on an S-76 engine air inlet. When the engines 

are running, a strong suction force develops at the intake and ice accreted there 

can be sucked in. As a result, the fan blades and interior parts of the engine can 

be damaged. Even a small amount of ice can cause very serious damage.  
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Figure 4. Ice accumulation on the spinner of a jet engine 

 

 
Figure 5. Ice accretion on S-76D engine air inlet 

 
Interest in ice shedding involves its three phases: ice detachment from the 

surface, tracking of the piece of ice as it is carried through the flow field and the 

subsequent impact forces if it hits a solid surface [5]. The first phase actually 

provides initial conditions for the tracking phase. The impact phase obviously 

results from the terminal conditions of the tracking phase [6]. However, each 

phase can be treated separately. This study is aimed at modeling ice break-up 

and metal-ice bond separation under the influence of various kinds of forces, 

using a fracture mechanics approach.  
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Stresses that develop in the accreted ice and at the metal-ice bond during normal 

operation are caused by the following sources: 1) direct loading of aerodynamic 

forces acting on the ice; 2) inertia forces in the case of rotating propellers or 

blades; 3) thermal stresses developed due to expansion and shrinkage of ice due 

to temperature variation in the accreted ice; 4) flexing of the aerodynamic surface 

caused by structural vibration and aerodynamic forces [7]. In the present ice 

break-up study, only the direct loading of aerodynamic pressure and inertia 

forces are considered. In future studies, the thermal stresses and flexing of the 

aerodynamic surface could also be included.  

 

Advances of finite element methods (FEM) and computational fracture 

mechanics now allow analyzing crack generation and growth. While the 

fundamental rules for crack propagation come from the fracture mechanics 

approach [8,9], FEM makes it possible to apply these rules to complicated 

geometries. In this study, a 2D and 3D crack propagation package is developed 

based on linear elastic fracture mechanics (LEFM).  

 

The research and development of linear elastic fracture mechanics (LEFM) date 

back to World War I [10]. With advances in computers and computational 

methods, a lot of efforts have been made in LEFM, with currently the two most 

important algorithmic approaches being boundary element (BEM) and finite 

element (FEM) methods. Due to its wider use in industrial applications, the FEM , 

has been adopted in this study for the calculation of stresses and for crack 

propagation.  

 

Early efforts made in FEM of fracture mechanics date back to 1970 [11], and with 

over 4 decades of development, LEFM based on FEM has achieved 

considerable maturity for crack propagation in both 2-D and 3-D [12]. For crack 

propagation based on FEM, there are currently two approaches, one approach is 

using the quarter-point element method, like Franc2d [12] developed by the 

Cornell Fracture Research group; another direction is using the extended finite 
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element method first developed by Owen and Hinton in the 1980's. Due to its 

easy implementation and high accuracy, quarter-point element method is used in 

this study.  

 

Most research on ice and its mechanical properties are in civil engineering or 

naval engineering departments. Recent research on ice has focused on the 

effect of sea ice on floating structures, like well-drilling platforms. The brittle 

behavior of ice was studied by Schulson, and the tensile strength of ice and its 

relationship with the environment was investigated [14]. In ductile behaviour, the 

strain rate hardening in ice is studied by Sinha [15], and the ice failure envelope 

is presented by Schulson et al [16]. For the mechanical properties of ice accreted 

on aircraft, there are few research studies. The only research that could be found 

on the mechanical properties of impact ice is by Scavuzzo [17], the ice is 

obtained in the NASA Lewis Icing Research Tunnel. However, in his research 

there is no detailed information about the aluminum used, as the surface 

properties, like roughness and aluminum composition could significantly affect 

the metal-ice interface strength. Nowadays, more and more new carbon fiber 

composite materials are used on wings of aircraft and blades of helicopters, and 

there seems to be no open literature information about the interface strength of 

impact ice with these materials. However, for ice frozen on to a substrate, the 

interface strengths of ice with different materials have been investigated by 

Raraty [18].  

 

In the realm of ice break-up and shedding, most research activities focus on 

electrical transmission lines [19]. Recently, there have been few experimental 

investigations on ice shedding from aircraft. Mazzawy worked on ice accretion 

and shedding in Turbofan Engines [20], while Brouwers and coworkers [21] 

performed experiments to study ice-shedding from the rotor of a helicopter. An 

experimental investigation on aerodynamically-induced fracture of ice from the 

space shuttle was carried out by Hardy and coworkers [22]. In addition, the 

influence of aerodynamic forces in ice-shedding was studied by Scavuzzo and 
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coworkers [7]. A parametric investigation of ice shedding from aircraft is carried 

out by Michael and coworkers [23]. In recent years, quite a few numerical studies 

have been performed on ice-shedding from wings of aircraft and helicopter 

blades for long-term in-flight ice accretion. Brouwers with coworkers [21] and 

Scavuzzo [24] have developed an ice shedding model for helicopter blades. 

However, their shedding models are based on simplified 2D or 3D-extended ice 

shapes, and the boundary conditions are also greatly simplified. To the best of 

the author’s knowledge, no one has developed a truly 2D and 3D ice shedding 

model and published it in the open literature. Thus, the main objective of this 

study is to develop a fully-automatic simulation model based on fracture 

mechanics to predict the mechanical shedding of impact ice adhering to airfoil 

surfaces or to propellers and helicopter blades, and integrate the model in an in-

flight icing simulation framework. 

 

An outline of the thesis is as follows: Chapter 2 presents the mechanical 

properties of ice and mathematical model of ice under fluid forces. The 

theoretical framework of the ice break study is detailed in chapter 3, and 

numerical results are presented in Chapter 4. Chapter 5 covers the 3D ice break-

up and shedding from helicopter blades. Finally, conclusions are drawn in 

Chapter 6.  
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Chapter 2 MECHANICAL PROPERTIES OF ICE AND 

MATHEMATICAL MODEL 
 

This chapter discusses the basic knowledge and background for ice break-up 

analysis. The mechanical properties of ice are reviewed in details, and the 

mathematical description of ice under flow forces is introduced. The 

mathematical model of fluid mechanics and solid mechanics are briefly reviewed. 

The description of fluid structure interaction and the framework of ice break-up 

are also introduced in this chapter.  

 

2.1 Mechanical Properties of Ice 
Ice is a complex anisotropic material and its mechanical behavior strongly 

depends on two factors: temperature and strain rate. Temperature determines 

the mechanical properties of ice, such as the elastic modulus and Poisson’s ratio, 

while strain rate determines whether the ice will exhibit ductile or brittle behavior. 

Generally, the strength of ice increases with decreasing temperature in both 

tension and compression. However, this effect is more prominent in compression 

than in tension [25]. Elastic properties of homogeneous polycrystalline isotropic 

ice at -16°C are shown in Table 1. 

 

Property Units Value 

Young’s modulus, E N m-2 9.33×109 

Compressibility, K N-1 m-2 112.4×10-12 

Bulk modulus, B N m-2 8.90×109 

Shear Modulus, G N m-2 3.52×109 

Poisson’s ratio, υ n/a 0.325 

Table 1. Elastic properties of homogeneous polycrystalline isotropic ice at -16°C [26] 

 
For a different temperature these values will change since ice properties are 

highly dependent on temperature. The most accurate values to date have been 

obtained by Gammon [26] and Gold [27]. For randomly oriented polycrystals, 
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typical values of the modulus of elasticity and Poisson’s ratio are 9.0 GPa and 

0.33 at -5°C. Hobbs [28] gives a more complete account and lists both the elastic 

stiffness and the elastic compliance tensors versus temperature. Depending on 

the measurement method of the elastic properties, one may obtain an 

underestimate of the stiffness [29]. Values of modulus of elasticity obtained from 

experiments may be two to seven times lower than the true elastic modulus. At 

temperatures of -10°C the Young’s modulus of ice was reported in the range of 

9.7-11.2 GPa, and Poisson’s ratio ranged from 0.29-0.32 [30]. These are the 

ranges that will be used later in the analysis. The density of ice is 917 kg m-3 

between 0 and -10°C [31]. The tensile strength of ice varies from 0.7-3.1 MPa, 

and its compressive strength varies from 5-25 MPa over the temperature range -

10°C to -20°C [26]. The ice compressive strength increases with decreasing 

temperature, but ice tensile strength is relatively insensitive to temperature. 

Schematic stress-strain curves are shown in figure 6, where I, II and III denote 

low-, intermediate- and high-strain rates. The arrows indicate either ductile 

(horizontal) or brittle (vertical) behavior [31]. Under compressive loading, ice 

exhibits either ductile or brittle behavior, depending on the loading conditions. At 

low strain rates, ice is ductile, with brittle behavior setting in at higher strain rates. 

The strain rate that marks the transition is around 10-4 to 10-3 s-1 at temperatures 

from -5 to -40°C [32]. In the present study, we assume low strain rate and linear 

stress-strain relationship. The linear elasticity assumption is justified in Chapter 3. 

 

 
Figure 6. Schematic stress-strain curves are shown for various strain-rates [33] 
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Except for cohesive strength within the ice itself, another property of concern for 

ice shedding is the interface bonding strength between ice and airfoil. 

Traditionally, most airfoils have been made of aluminum, but more and more 

airfoils are now made from carbon fiber composite material. For aluminum-ice 

interface, the adhesive strength at -11° varies from 0.3 to 1.6MPa [17]. For 

polymeric materials or carbon fiber composite material, according to reference 

[18], their adhesive strength with ice is much lower than Aluminum. 

 
2.2 Mathematical Model of Ice under Flow Forces 
The multi-physics process of ice break-up is governed by multiple simultaneous 

balance laws that are represented via sets of independent state variables. Fluid–

structure interaction (FSI) is a classical example of this class of problems. A 

comprehensive FSI capability requires fluid analysis [34,35], solid analysis [36], 

modeling of coupling effects at the common interfaces [37], and a method of 

dealing with the changing and evolving fluid boundaries [37] that are dictated by 

the motion of the adjoining structures. However, for the problem at hand, we 

assume that deformation in the solid (ice) domain is small and hence arbitrary 

Lagrangian-Eulerian formulation and mesh motion schemes are not required. 

The small deformation assumption is justified in Chapter 3. Figure 7 shows the 

fluid and solid domains that are represented as fΩ and sΩ , respectively, and the 

interface that is represented as iΓ . Flow pressure and the induced stress in ice 

are also shown in figure 7. 
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Figure 7. Fluid pressure and the resulting induced stress in ice 

The mathematical model for the analysis of ice under the influence of 

aerodynamic forces, with the small deformation assumption, is described below. 

 
2.2.1 Fluid mechanics 

Let sdn
f RΩ ⊂ and (0, T) be the spatial and temporal domains, respectively, where 

sdn  is the number of space dimensions, and let fΓ  denote the boundary of fΩ . 

The spatial and temporal conditions are denoted by x  and t . The Navier-Stokes 

equations governing the fluid flow, in conservation form, are:  

( ) 0
f

t
ρ ρ∂

+ ∇ ⋅ =
∂

u on fΩ for (0, T)                                                   (1.1) 

( ) ( )
f

f p
t

ρ
ρ

∂
+ ∇ ⋅ + ∇ − ∇ ⋅ =

∂
0

u
uu T  on fΩ  for (0, T)       (1.2) 

( ) ( ) ( ) ( ) 0
f

f
e

e p
t

ρ
ρ

∂
+ ∇ ⋅ + ∇ ⋅ − ∇ ⋅ + ∇ ⋅ =

∂
u u Tu q  on fΩ  for (0, T)    (1.3) 

Here ρ f, u , p ,T , e  and q are the fluid density, velocity, pressure, viscous stress 

tensor, total energy per unit mass, and heat flux vector, respectively. The viscous 

stress tensor is defined as: 

( ) ( )( ) ( )Tμ λ= ∇ + ∇ + ∇ ⋅T u u u I                                (1.4) 

where μ and λ are the viscosity coefficients. It is assumed that μ and λ are 

related by 
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       2
3

λ μ= −                                                                     (1.5) 

Pressure is related to the other variables via the equation of state. For ideal 

gases, the equation of state assumes the special form: 

( )1p iγ ρ= −                                                (1.6) 

where γ  is the ratio of specific heats, and i  is the internal energy per unit mass 

which is related to the total energy per unit mass and kinetic energy as 

21 || ||
2

i e= − u                                                    (1.7) 

The heat flux vector is defined as 

κ θ= − ∇q                                                (1.8) 

where κ is the heat conductivity and θ  is the temperature, the temperature is 

related to the internal energy by the following relation: 

v

i
C

θ =                                                            (1.9) 

where vC  is the specific heat of the fluid at constant volume. For an ideal gas 

1v
RC

γ
=

−
                                                         (2.0) 

where R is the ideal gas constant. Prandtl number ( rP ), assumed to be specific, 

relates the heat conductivity of the fluid to its viscosity according to the following 

relation: 

p

r

C
P

μ
κ =                                                          (2.1) 

where pC  is the specific heat of the fluid at constant pressure. For an ideal gas 

1p
RC γ

γ
=

−
                                                         (2.2) 

 
2.2.2 Solid mechanics 



 

22 

Let sdn
s RΩ ⊂ be the spatial solid mechanics domain with boundary sΓ . ( )s g

Γ and 

( )s h
Γ  are the parts of sΓ corresponding to the Dirichlet and Neumann boundary 

conditions, respectively. The equations of motion for the structure are written as:  
2

2 0s s sd f
dt

ρ
⎛ ⎞

− − ∇ ⋅ =⎜ ⎟
⎝ ⎠

y σ  on sΩ for (0, T)                  (2.3) 

where sρ , y , sf and sσ are the material density, structural displacement, external 

force and the Cauchy stress tensor, respectively.  

 
2.2.3 Interface conditions 

We consider a coupled FSI model, which consists of a fluid domain fΩ , a solid 

domain sΩ , and a common interface boundary iΓ . At each FSI cycle, two 

interface boundary conditions corresponding to the continuity of tractions and 

velocities must be satisfied along iΓ . Let ft and fu denote the fluid traction vector 

and displacement fields along the fluid interface fΓ , while st and su denote the 

solid traction vector and displacement fields along the solid interface sΓ , 

respectively. The equilibrium of tractions and compatibility of velocity field can be 

expressed as:  

,s f=t t fs

t t
∂∂

=
∂ ∂

uu  on iΓ ,      (2.4) 

where ft = f f f fp −n nσ and s s s=t nσ . Here, fp is the fluid pressure along the 

interface; fσ and sσ are the fluid viscous tensor and solid stress tensor, 

respectively; fn and sn are the unit outward normals along the fluid interface fΓ  

and solid interface sΓ , respectively.  

 
2.2.4 Justification of uncoupled analysis 
Due to prohibitive computational costs, even in 2D, a quasi-steady approach is 

adopted in FENSAP-ICE for simulating ice accretion. Figure 8 describes the 

overall solution procedure that requires solving the Navier-Stokes equations for 
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flow around the desired shape. Then, employing this flow solution, FENSAP-ICE 

determines water collection efficiency over the surface exposed to the flow. 

Based on the flow and water solutions, the equations for ice accretion are solved 

providing the mass and shape of ice that accretes on the surface. The fluid mesh 

is deformed next, using a mesh motion algorithm, and then ice break-up analysis 

is performed. Since the flow and droplet analyses employ steady-state 

simulations and only ice accretion analysis is time accurate, the stress analysis 

of ice can be uncoupled from the flow/droplet analyses. This approach is adopted 

in the present study and the fluid forces are applied to the ice shapes that are 

formed in each step of the ice accretion analysis. The simplified mathematical 

model is shown in Chapter 3.  

 
Figure 8. Ice break-up analysis in the in-flight icing framework of FENSAP-ICE 
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Chapter 3 THEORETICAL FRAMEWORK OF ICE BREAK-UP 

MODELING 
   

2D ice break-up analysis is integrated as a module in FENSAP-ICE framework 

and the fully automatic module takes in two grids, one on the clean airfoil and the 

other on the iced airfoil, and the flow solution on the iced airfoil. The output of this 

module is the broken ice shape, provided the induced stress in ice and ice 

geometry satisfy the conditions for ice break-up. This analysis involves 

identification of the ice boundaries, generating a mesh inside the ice, performing 

stress analysis and crack propagation simulation. The entire cycle has to be 

repeated for each step of crack propagation. Figure 9 shows the block diagram of 

this process and each step is described in detail thereafter. 

 
Figure 9. Block diagram of ice break-up analysis  

 

3.1 Identification of Ice Shape and Boundary Conditions 
 

This step requires input from the flow solution, namely: grid on the clean airfoil 

(figure 10a), grid on the iced airfoil (figure 10b), and the flow solution on the iced 

airfoil (figure 10c). The shape of ice is determined by comparing the distances of 

each node on the wall of the clean airfoil, to each node on the wall of the iced 

airfoil. In this process, a closed polygon of the nodes, as shown in figure 11, is 

obtained that describes the shape of ice. These nodes are the boundary nodes of 

the computational domain of solid (ice) mesh and are separated into Dirichlet and 

Neumann nodes. Pressure is extracted from the flow solution and associated 

with the Neumann boundary nodes. Note that only pressure is applied as a force 
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and the much smaller contribution of the shear stress of the fluid will be 

considered in future work.  

 

  
grid clean                      grid iced                           solution iced 

Figure 10. Input information from the flow solution required for ice break-up analysis 

 

 
Figure 11. Closed polygon of nodes describing the shape of ice 

 

3.2 Meshing 
The meshing in the ice is done by using an open source code named Triangle 

[38]. The closed polygon consisting of the boundary nodes are input to the code 

and a mesh of unstructured linear triangular elements is produced based on 

Delaunay triangulation. The constraint mesh is generated such that the boundary 

nodes and their numbering are not altered. Figure 12 shows the computational 

mesh generated by Triangle.  
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Figure 12. The solid’s (ice) computational mesh  

 

3.3 Stress Analysis 
Stress analysis is performed via linear elasticity equations, along with the 

appropriate boundary conditions. A formal statement of the strong form of the 

boundary-value problem goes as follows: 

Given ( ) ( ): , : ,  and :  such thatst st stn n n
s s sg h

R R RΩ → Γ → Γ →f g h  

∇ ⋅ + = 0fσ  in sΩ        (3.1) 

= 0u  on ( )s g
Γ         (3.2) 

f fp =n h  on ( )s h
Γ        (3.3) 

where u is the displacement field and f is the body force. h is the Neumann 

boundary conditions on ( )s h
Γ , which comes from the fluid solution. Zero-

displacement Dirichlet boundary condition is imposed on ( )s g
Γ i.e. the nodes on 

airfoil. fp is the fluid pressure along the fluid-solid interface, which is same as 

( )s h
Γ . Figure 13 is a pictorial representation of this mathematical model. σ is the 

Cauchy stress tensor which, for isotropic case, is related to displacement by the 

relation:  

( ), , ,ij k k ij i j j iu u uσ λ δ μ= + +       (3.4) 
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where ijδ is the Kronecker delta and Lame’s constants μ and λ are related to 

material properties by the relation: 

( )2 1
E

v
μ =

+
        (3.5) 

2
1 2

v
v

μλ =
−

         (3.6) 

where E is the Young’s modulus and v is the Poisson’s ratio. 

 

 
Figure 13. Pictorial representation of uncoupled stress analysis in ice 

 

The Neumann boundary condition comes from the fluid solution, and a zero-

displacement Dirichlet boundary condition is imposed on the nodes on the airfoil. 

We used standard Galerkin formulation with isoparametric Lagrange interpolation. 

Linear triangular elements and three quadrature points for numerical integration 

are used for the numerical experiments shown in chapter 4. Figure 14 shows the 

stress distribution in ice under aerodynamic force. 
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(a) 11σ                                   (b) 11σ  

 
(c) 11σ  

Figure 14. Stress distribution in ice under aerodynamic force 

 

Justification of linear constitutive relation 
Literature review [32] reveals that, for low strain rate, ice deforms linearly up to 

stress values of 0.8MPa. The stresses obtained in ice under typical aerodynamic 

loads and with typical material properties do not exceed 0.8MPa. The maximum 

stress shown is figure 14 is 0.12Mpa. Hence, a linear stress-strain relationship is 

used throughout the study.  

 
Justification of small deformation approximation 
The simulation shown in figure 14 is repeated with a finite deformation 

formulation, and Newton-Raphson iterations are performed for convergence of 

the non-linear system of equations, arising from geometric nonlinearity. Figure 15 

shows the comparison of displacement fields obtained by the small and finite 

deformation formulations. The displacement fields are identical, hence from 

hereon, small deformation analysis is performed. It is interesting to note that the 
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solution converged to machine zero in two iterations for the finite deformation 

analysis.  

 

 
(a) X-displacement (linear) (b) X-displacement (non-linear) 

 
(c) Y-displacement (linear) (d) Y-displacement (non-linear) 

Figure 15. Comparison of the displacement field for small deformation (left) and finite 
deformation (right) analysis  

 

3.4 Crack Propagation  
 
Earlier efforts in applying FEM to linear elastic fracture mechanics date back to 

1970’s. Over 40 years of development, the FEM has achieved great success in 

fracture analysis. Employing linear elastic fracture mechanics, a 2D crack 

propagation package described below was developed based on FEM.  

 
3.4.1 Stress field near the crack tip  
The stress field near the crack tip is described by a series, called Williams 

expansion as shown below [39]:  

 

For mode I:  
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 ( )
1 12

1
2 1 cos 1 1 cos 3

2 2 2 2 2

n
n

x n
n

n n n n nr aσ θ θ
∞ −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑                    (3.7) 

( )
1 12

1
2 1 cos 1 1 cos 3

2 2 2 2 2

n
n

y n
n

n n n n nr aσ θ θ
∞ −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑                     (3.8) 

( )
1 12

1
1 sin 3 1 sin 1

2 2 2 2 2

n
n

y n
n

n n n n nr aτ θ θ
∞ −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑                            (3.9) 

For mode II:  

( )
1 22

1
2 1 sin 1 1 sin 3

2 2 2 2 2

n
n

x n
n

n n n n nr aσ θ θ
∞ −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ (3.10)  

( )
1 22

1
2 1 sin 1 1 sin 3

2 2 2 2 2

n
n

y n
n

n n n n nr aσ θ θ
∞ −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − + − − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ (3.11)   

( )
1 22

1
1 cos 3 1 cos 1

2 2 2 2 2

n
n

y n
n

n n n n nr aτ θ θ
∞ −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑                          (3.12) 

 
Where σ and τ are normal stress and shear stress respectively. r is the radius to 

the crack tip.  

 
Example of expansion along the crack line  

 

3/21
2 3 4 54 3 8 5x

a a a r a r a r
r

σ = + + + + + ⋅⋅⋅⋅ ⋅                                                      (3.13) 

3/21
3 53 5y

a a r a r
r

σ = + + + ⋅⋅⋅⋅ ⋅                                                                        (3.14) 

In the above expansions, the first term is the singular term, with the square root 

of r , and a1 is the stress intensity factor. The second term a2 represents T-stress, 

and the third term a3 is the leading higher order term.  
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3.4.2 Quarter-point element 
In the early times of modeling fracture problems using FEM, the fundamental 

difficulty had been that the polynomial basis functions used for most conventional 

elements cannot represent the singular crack tip stress and strain fields predicted 

by the theory as discussed in the previous part. This means that as the mesh is 

refined the finite element solutions will initially begin to converge to the 

theoretical solution, but will eventually diverge. This difficulty was recognized and 

demonstrated relatively early in the development of the finite element method 

[40]. A number of researchers investigated special finite element formulations 

that incorporate singular basis functions or stress intensity factors as nodal 

variables. While successful, these special purpose elements are not available in 

most general-purpose finite element programs and thus are used very 

infrequently [40]. 

 

A significant advancement in the use of the finite element method for linear 

elastic fracture mechanics problems was the simultaneous, and independent, 

development of “quarter-point” elements by Henshell and Shaw (1975) and 

Barsoum (1976) [40]. These researchers showed that the proper crack-tip 

displacement, stress, and strain fields are modeled by standard quadratic order 

isoparametric finite elements if one simply moves the element’s mid-side node to 

the position one quarter of the way from the crack tip to the far end of the 

element. This procedure introduces a singularity into the mapping between the 

element’s parametric coordinate space and Cartesian space.  

 

Figure 16 shows a quadrilateral quarter-point element and a triangle quarter-

point element. The discovery of quarter-point element was a significant milestone 

in the development of finite element procedures for linear elastic fracture 

mechanics. With these elements standard and widely available, finite element 

programs can be used to model crack tip fields accurately with only minimal pre-

processing required. 
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Figure 16 Quadrilateral (left) and triangle (right) quarter-point elements 

 

The effect of moving the side node of a quadratic element to the quarter-point 

position can be best illustrated with a one-dimensional element. Though one-

dimensional element is not practically useful, the algebra is much simpler than 

with two- and three dimensional elements, and is same in principle for the higher 

dimensionality elements. A 1-D quadratic order element is illustrated in Fig. 17. 

Figure 17a shows the parametric space of the element. Fig. 17b shows the 

element in Cartesian space with the location of the center node controlled by the 

value of the parameterα . The crack tip is located at 0r = . The displacement u at 

any point within the element is determined by interpolating the nodal 

displacements using the standard Lagrange second order shape functions.  

 
Figure 17. A 1-D quadratic element, (a) the parametric space of the element, (b) the 

Cartesian space of the element [40]. 

The standard Lagrange second order shape functions of 1D quadratic element 

are as follows:  

( )1
1 1
2

N ξ ξ= −                                                                          (3.15) 

( )2
2 1N ξ= −                                                                             (3.16) 
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( )3
1 1
2

N ξ ξ= +                                                                         (3.17) 

Hence, the displacement u could be written as:  

1 1 2 2 3 3u u N u N u N= + +                                                               (3.18) 

Substituting those shape functions, we can get:  

( ) ( ) ( )2
1 2 3

1 11 1 1
2 2

u u u uξ ξ ξ ξ ξ= ⋅ − + ⋅ − + ⋅ +                             (3.19) 

Regrouping in powers ofξ ,  

( ) ( )2
2 3 1 1 3 2

1 1
2 2

u u u u u u uξ ξ ⎡ ⎤= + − + + −⎢ ⎥⎣ ⎦
                                 (3.20) 

Using the same shape functions to interpolate the geometry of the element, 

( ) ( )2
2 3 1 1 3 2

1

1 1
2 2

n

i i
i

r N r r r r r r rξ ξ
=

⎡ ⎤= ⋅ = + − + + −⎢ ⎥⎣ ⎦
∑                      (3.21) 

As 1 0r = , 2r lα= , 3r l= , the above equation can be written as: 

21 1
2 2

r l l lα ξ ξ α⎡ ⎤= + + −⎢ ⎥⎣ ⎦
                                                        (3.22) 

First consider the center node is located at the middle of the element. That 

is 1
2

α = , from equation (3.22), we can get,  

1 1
2 2

r l lξ= +                                                                          (3.23) 

Using r to denoteξ , we can write  

2 2 1r l r
l l

ξ −
= = −                                                                  (3.24) 

Equation (3.24) links the Cartesian space and parametric coordinate system.  

Substituting equation (3.24) into (3.20), we can get  

( ) ( )
2

1 1 2 3 1 2 3 23 4 2 2r ru u u u u u u u
l l

= + − + − ⋅ + − +                       (3.25) 

Differentiating the displacement field in (3.25), strain in the element could be 

obtained, 

( ) ( )1 2 3 1 2 3 2

1 23 4 2 2du ru u u u u u
dr l l

ε = = − + − ⋅ + − +                     (3.26) 
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Under linear elastic conditions, the stresses are linearly related to the strains, so 

from equation (3.26), the stress distribution in the element will be linear with r .  

 

Now consider the case where the middle node is moved to the quarter-point 

position. For this case, 1
4

α = , and from equation (3.22), we can get, 

21 1 1
4 2 4

r l l lξ ξ= + +                                                                  (3.27) 

From (3.27), denote ξ  in r , we get, 

2 1r
l

ξ = −                                                                              (3.28) 

Substituting (3.28) into (3.20), we get 

( ) ( )1 1 2 3 1 2 32 2 3 4r rlu u u u u u u u
l l

= + − + ⋅ + − + + ⋅                      (3.29) 

In the same way, differentiating (3.29) by r will give us the strain in the element,  

( ) ( )1 2 3 1 2 3
1 1 12 2 3 4

2
du u u u u u u
dr l rl

ε = = − + ⋅ + − + + ⋅                  (3.30) 

we can see clearly from (3.29) that the three terms in the displacement 

expression model a constant value, a linear variation in r , and the square root 

variation in r . This corresponds to the leading terms in the LEFM expressions for 

the near crack-tip displacement. From (3.30), the expression for the strains 

contains a constant term and a singular term that varies as 1/2r− , which is the 

form of lead term in the LEFM stress and strain expansions. The theoretical 

displacement and stress field, the normal displacement field (middle point 

displacement field) and quarter-point displacement field are listed as:  

Theoretical displacement field, 

( )
2

1

1
1 cos cos 2

2 2 2 2 2

n

n
n

n

r n n n nu a κ θ θ
μ

∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑                (3.31) 

Middle node displacement field, 

( ) ( )
2

1 1 2 3 1 2 3 23 4 2 2r ru u u u u u u u
l l

= + − + − ⋅ + − +                           (3.32) 



 

35 

Quarter-point displacement field, 

( ) ( )1 1 2 3 1 2 32 2 3 4r rlu u u u u u u u
l l

= + − + ⋅ + − + + ⋅                             (3.33) 

Theoretical field, 

( )
1 12

1
2 1 cos 1 1 cos 3

2 2 2 2 2

n
n

x n
n

n n n n nr aσ θ θ
∞ −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑   (3.34) 

Middle node strain field, 

( ) ( )1 2 3 1 2 3 2

1 23 4 2 2du ru u u u u u
dr l l

ε = = − + − ⋅ + − +                                (3.35) 

Quarter-point strain field, 

( ) ( )1 2 3 1 2 3
1 1 12 2 3 4

2
du u u u u u u
dr l rl

ε = = − + ⋅ + − + + ⋅                          (3.36) 

From the above listing, one can observe easily that the quarter-point quadratic 

element produces the correct leading displacement and strain terms. Figure 18 

shows distribution of stress xσ  in a crack tip quarter-point element. It can be 

observed that the stress grows to singular towards one side of the element.  

 
Figure 18. Stress sig-xx distribution within a quarter-point element 

 

Except for producing the correct solution, another big advantage of the quarter-

point element is that no special software coding is needed, only perturbed nodal 
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geometry. Therefore, any FEM code supporting quadratic order elements 

supports this singular element.  

 

In the present 2D crack propagation approach, triangular quadratic elements are 

used, hence, for convenience, triangular quarter-point elements are adopted 

around the crack tip. For generating the quarter-point elements around the crack 

tip, a special arrangement of the mesh is needed. Figure 19 shows the rosette 

around the crack tip, and then quarter-point elements are inserted in the rosette.  

 
Figure 19. Rosette around crack tip (left) and quarter-point element around crack tip (right) 

 
3.4.3 Comparison between quarter-point element and normal quadratic 
element 
In this section, a comparison between the quarter-point element and the normal 

quadratic element is made. Figure 20 shows the principal stress I distribution of a 

benchmark case. The plate is fixed at the bottom edge and is subjected to a far-

field shear stress τ  = 1 unit along the top edge. The plate has an initial crack 

length a = 3.5 units. The modulus of elasticity and the Poisson ratio are 30×106 

units and 0.25, respectively. A plane strain condition is assumed in the analysis. 

The figure on the left shows the result of quarter-point elements, the figure on the 

right shows the result of the normal quadratic element. From these results, there 

is almost no difference in trend of the principal stress distribution. However, when 

one plots the principal stress I (P1) in 3D form, i.e. take the P1 value as the Z-

axis value, a significant difference can be observed. The P1 distribution in 3D 
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plot is shown in figures 21 and 22 of quarter-point element and normal quadratic 

element, respectively. One can see that at the crack tip, the principal stress I 

increases sharply towards the crack tip in figure 21, which exactly represents the 

singularity according to theory. However, for the normal quadratic element (Fig. 

22), stress concentrates around the crack tip, but no sharp peak is observed.  

 
Figure 20. Quarter-point element (left) and normal quadratic element (right) 
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Figure 21. Principal stress I distribution in 3D of quart-point element  

 
Figure 22. Principal stress I distribution in 3D of normal quadratic element 
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Fig. 23 and Fig. 24 give a more detailed view of stress distribution near the crack 

tip. From the quarter-point element in Fig. 23, it can be seen that stress is highly 

concentrated at the crack tip. However, for the normal quadratic element in 

Fig.24, the stress at the vicinity of crack tip is not as concentrated as compared 

with Fig. 23. 

 

 
Figure 23. P1 distribution in the vicinity of crack tip for quart-point element 

 
Figure 24. P1 distribution in the vicinity of crack tip for normal quadratic element  
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3.4.4 Crack initiation 
From literature review, the tensile strength of ice is much lower than compressive 

strength. Hence the region with the highest principal tensile stress is most 

vulnerable to crack initiation [27]. Based on the tensile strength of ice, whether a 

crack will occur or not could be determined. In this study, the initial crack is 

placed in the element having maximum first principal stress. In case the first 

principal stress is negative throughout the computational domain (i.e. 

compressive stress only), then no initial crack is placed.  

 
3.4.5 Evaluation of the stress intensity factor (SIF) 
Stress intensity factor is one of the most important parameters in predicting the 

direction of crack propagation, and the calculation of precise SIF plays a key part 

in fracture mechanics.  

 

There are several methods for extracting SIF from local field information. In the 

present study the displacement correlation method is used, due to its simplicity 

and high accuracy. The idea of displacement correlation method is simple, that is 

correlate computed FEM local displacements with their theoretical values, with 

SIF as scaling parameter.  

 

The form of the theoretical asymptotic displacement field near the crack tip for 

plain strain in mode I, is 
1/2

2cos 1 2 sin
2 2 2

IK ru vθ θ
μ π

⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
                                         (3.37) 

1/2
2sin 2 2 cos

2 2 2
IK rv vθ θ

μ π
⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                         (3.38) 
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Figure 25. Triangle elements and nodes around the crack tip 

From figure 25, if one sets 180θ = and abr r= , then, 

( )
1/2

2 2
2
a bI

b a
rKv v v

μ π
−⎡ ⎤− = −⎢ ⎥⎣ ⎦

                                                         (3.39) 

 
Figure 26. Quarter-point elements and nodes around the crack tip [41] 

For a quarter-point element, from equation (3.33),  

( ) ( )3 4 2 4 2upper a a b c a b c
r rv v v v v v v v
l l

= + − + − + − +                        (3.40) 

( ) ( )3 4 2 4 2lower a a d e a d e
r rv v v v v v v v
l l

= + − + − + − +                       (3.41) 

Then evaluating (3.38) along 180oθ = + , a b cr − − and 180o− , a d er − − , and find the 

theoretical upper lowerv v− , and equate it to the approximate value in (3.42) 

( ) ( ) ( )4 4 2upper lower b d e c b d e c
r rv v v v v v v v v v
l l

− = − + − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦    (3.42) 

Then evaluate IK , 
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( )
( )2 4

2 2I b d e c
a b c

K v v v v
r v

μ π

− −

= − + −⎡ ⎤⎣ ⎦−
                                         (3.43) 

In the same way, IIK could be evaluated,  

( )
( )2 4

2 2II b d e c
a b c

K u u u u
r v

μ π

− −

= − + −⎡ ⎤⎣ ⎦−
                                       (3.44) 

where μ  is the shear modulus, v is Poisson’s ratio, ,u v  is the local displacement 

along and normal to crack tip as depicted in figure 26 The same expressions can 

be used for plane stress assumptions if v is replaced with ( )/ 1v v v= + . 

 

3.4.6 Calculating the direction of crack propagation 
The direction of crack is based on the Maximum Hoop Stress Criterion [12]. The 

shear stress in cylindrical coordinates:  
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            (3.45) 

The value of Hoop Stress is maximum when shear stress in cylindrical 

coordinates equals to zero. According to the theory, a crack will kink into the 

direction normal to the maximum hoop stress. So the crack-tip propagates in the 

direction where rθσ  is zero. Substituting 0rθσ =  into Eq. 3.45 we get: 
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                  (3.46) 

 
3.4.7 Mesh refinement and mesh splitting  
Techniques for mesh refinement around the crack tip can be found in the 

literature [42,43], but in the present analysis, we adopt a simple approach where 

we identify a node very close to the crack tip and regenerate a new mesh. Since 

our mesh generation procedure ensures that the nodes specified in the input file 

remain unaltered, we automatically get a refined mesh around the crack tip. The 

numerical results shown in Section 5 demonstrate that this simple approach is 

sufficient for accurately predicting the crack shape. 
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Mesh splitting is achieved by creating new nodes that are geometrically 

coincident with nodes on the crack’s edge. New nodes are then used to form the 

connectivity of elements on one side of the crack, while the original nodes are 

used for the elements on the other side. By calculating the cross-product of the 

crack propagation vector a  and the vector b  directed from the crack tip to the 

centroid of the element, as shown in figure 27, the side of the element could be 

determined according to the direction of the cross-product.  

    

Figure 27. The crack tip vectors (left) and cross-product of a and b  (right) 

 
3.5 Summary 
This chapter described the framework of ice break-up from wings of aircraft in 

detail. Ice shape determination, meshing and stress analysis in solid ice are 

introduced in the first part of the chapter. The 2D crack propagation package is 

then described in detail, including the stress field at the crack tip by theory, 

quarter-point element, evaluation of stress intensity factor (SIF) and 

determination of crack propagation direction, as well as mesh refinement and 

splitting. 
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Chapter 4 NUMERICAL RESULTS OF 2D ICE BREAK-UP FROM 

AIRCRAFT WINGS 
 

Using the framework described in chapter 3, a benchmark study for validation of 

the crack propagation package is done in this chapter. Then a series of different 

ice shapes are simulated to see whether and how ice will break.  

 

4.1 Benchmark Study 
A well-known geometry used in the evaluation of crack propagation procedure is 

the single edge cracked plate [42]. Figure 28 shows the problem statement and 

final mesh of the test case. This plate is fixed at the bottom edge and is 

subjected to far-field shear stress τ  = 1 unit along the top edge. The plate has an 

initial crack length a = 3.5 units. The modulus of elasticity and the Poisson ratio 

are 30×106 units and 0.25, respectively. The plane strain condition is assumed in 

the analysis. Figure 29 shows the comparison of the final crack shape, along with 

the reference result of Alshoaibi and co-workers [42]. In Alshoaibi’s paper, mesh 

adaptation based on adjoint error estimation around the crack tip is used, while in 

the present study, only mesh refinement with quarter-point element around the 

crack tip is adopted. The results are in good agreement. Figure 30 shows the 

comparison of stress intensity factor I at each step of crack propagation. One can 

see that the KI value of the present code is in good agreement with FRANC2D, 

an open source fracture mechanics code that is highly validated. 
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Figure 28. Problem description (left) and final mesh (right) of the single edge cracked plate 

      
Figure 29. Crack shape for reference result [42] (left) and in-house code (right) 

 
Figure 30. Stress Intensity factor I for reference (Franc2d) result and in-house code 
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4.2 Simulation of Ice Shapes  
The simulation of in-flight icing is performed using FENSAP-ICE [1-2]. The 

overall solution procedure requires solving the Navier-Stokes equations for flow 

around the desired shape. Then, employing this flow solution, FENSAP-ICE 

determines water collection efficiency. Finally, according to the flow and water 

solutions the equations for ice accretion are solved providing the mass of ice that 

accretes on the surface. This procedure is repeated for a variety of flow and icing 

conditions determined by varying parameters like Reynolds number, Mach 

number, liquid water content (LWC), and droplet median volume diameter (MVD). 

In the following sub-sections, five different cases are considered, based on the 

shape of ice resulting from different flow and icing conditions. The resulting ice 

shapes are then analyzed for break-up by using the procedure of chapter 3.  

 

4.2.1 Case I 
In the first test case, we consider an ice shape that appears to be prone to 

fracture. The ice shape is shown in figure 31, which also shows the fluid mesh 

and pressure field experienced by ice. The resulting principal stress 1 and 

cracked ice are shown in figure 32 and the crack evolution is shown in figure 33. 

The mesh refinement during the evolution of crack is shown in figure 34. 

 
Figure 31. Fluid domain: mesh (left) and pressure field (right) 
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Figure 32. Solid (ice) domain: principal stress 1 (left) and cracked ice (right) 

 

 

 

 

 
Figure 33. Evolution of crack (from top, right to left) and principal stress 1 distribution 
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Figure 34. Mesh refinement during the evolution of crack (from top, right to left) 

 

The crack prediction capability presented in this thesis is compared with an open 

source fracture mechanics code – FRANC2D [44], a state-of-the-art crack 

propagation software developed at Cornell University, which uses linear elastic 

fracture mechanics. In spite of similar approaches, there are some differences in 

the two codes such as: FRANC2D uses quadratic elements [45], whereas we 

propose in this case linear triangular elements. Figure 35 shows the meshes 

used for this comparative study. FRANC2D mesh consists of 7,746 quadratic 

elements, while the in-house code in this case employed only 4,560 linear 

triangular elements. The number of nodes for FRANC2D and in-house meshes 

are 16,207 and 2,627, respectively, a ratio of 6:1. This is done to demonstrate 

that low order elements and relatively coarse meshes are sufficient for this 

analysis, as long as mesh refinement is done at each step near the crack tip. 

Figure 36 shows the comparison of principal stress 1 obtained by the two codes. 

Both the maximum stress and its location are in good agreement. The crack 

shapes obtained by the two codes are shown in figure 37. Again, a good 

agreement is observed. Figure 38 shows a comparison of KI obtained by 

Franc2d and the present code. 
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Figure 35. FRANC2D mesh (left) and in-house code mesh (right) 

 

 
Figure 36. Principal stress 1 distribution for FRANC2D (left) and in-house code (right) 

 

 
 

Figure 37. Comparison of crack shape in ice between FRANC2D (left) and in-house code (right) 
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Figure 38. Stress Intensity factor I for reference (Franc2d) result and in-house code 
 

4.2.2 Case 2 
The accretion of ice on a NACA 0012 airfoil for 231 seconds is considered here. 

This test case is taken from the NASA CD-ROM [case AE1030336]. The multi-

shot computation is split into 15 steps of 15 seconds of ice accretion each, plus a 

final step of 6 seconds of ice accretion [46]. The freestream Mach and Reynolds 

numbers are, respectively, 0.316 and 4.376×106. The angle of attack of the airfoil 

is 4o. The conditions of the air in terms of LWC and MVD are, respectively, 1 

g/m3 and 20 μm. Figure 39 shows the comparison of principal stress obtained by 

the two codes. The results are in good agreement and the region of ice under 

tension can be seen in both simulations. The initial crack was placed in that 

region but the crack did not propagate. 

 
Figure 39. Principal stress 1 distribution for FRANC2D (left) and present code (right) 

 

4.2.3 Case 3 
This next multi-shot test case is also taken from the NASA CD-ROM [case 

AE1001836]. The freestream Mach and Reynolds numbers are, respectively, 

0.21 and 3.03×106. The angle of attack of the airfoil is 4o. The conditions of the 

air in terms of LWC and droplet MVD are, respectively, 1.0 g/m3 and 20 μm. The 

ice accretion time is 360 seconds and the multi-shot computation is split into 6 

equal steps of 60 seconds of ice accretion [47]. Figure 40 shows the principal 

stress 1 in ice and since the entire ice is under compression, no crack is initiated. 
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Figure 40. Principal stress 1 distribution obtained by the in-house code 

 

4.2.4 Case 4 
The next case is also taken from the NASA CD-ROM [case AE1033136. The free 

stream Mach and Reynolds numbers are, respectively, 0.207 and 2.88 × 106. The 

angle of attack of the airfoil is 0o. The conditions of the air in terms of LWC and 

MVD are, respectively, 1.3 g/m3 and 30 μm. The total ice accretion time is 336 

seconds and the multi-shot computation is split into 10 equal steps of 33.6 

seconds of ice accretion [47]. Figure 41 shows the principal stress 1 in ice and 

since the entire ice is under compression, no crack is initiated. 

 
Figure 41. Principal stress 1 distribution obtained by the in-house code 

 

4.2.5 Case 5 
The business jet main wing airfoil used in this test is based on a GLC-305 airfoil 

[48]. For ice accretion simulations, the freestream Mach and Reynolds numbers 
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are, respectively, 0.275 and 6.3×106. The angle of attack of the airfoil is 4o. The 

conditions of the air in terms of LWC and MVD are, respectively, 0.54 g/m3 and 

20 μm and the total ice accretion time is 22.5 minutes. The multi-shot 

computation is split into 90 equal steps of 15 seconds of ice accretion [47]. 

Figure 42 shows the principal stress 1 in ice and since the entire ice is under 

compression, no crack is initiated. 

 
Figure 42. Principal stress 1 distribution obtained by the present code 

 

4.3 Summary  
 

In this chapter, several complicated ice shapes are analyzed and comparison is 

performed with a contemporary fracture mechanics code-Franc2D. From these 

analysis and simulations, it can be seen that the breaking of ice has a strong 

dependence on its shape, i.e. under similar aerodynamic loadings, some ice 

shapes failed while others did not. One of the ice shapes cracked in two parts, 

while for another shape, a crack initiated but did not propagate. The rest of the 

ice shapes did not crack, indicating that the ice break-up highly depends on the 

shape of ice.  
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Chapter 5 3D ICE SHEDDING FROM HELICOPTER BLADES 
 

Traditionally, helicopter operating manuals have addressed the issue of in-flight 

icing and its effect on helicopter performance with a caution or a warning to the 

pilot to avoid an icing environment. Such restriction and limitations were 

acceptable when helicopters were viewed as aircraft operating primarily in visual 

meteorological conditions. Since early helicopters lacked the equipment and 

sophisticated systems normally employed for flight in instrument meteorological 

conditions, there was little justification for expending valuable time and resources 

on helicopter icing research and development [4]. However, modern helicopters 

have a greatly expanded concept of operations, in some scenarios, for example, 

emergency rescue, the icing environment is unavoidable. Hence, it is this 

expansion of the helicopter’s operating envelope that compels a more thorough 

understanding of the hazards associated with in-flight icing.  

 

Beside the effect on lift, drag, weight and thrust, another key hazard of in-flight 

icing for helicopters is ice shedding. The shedding of rotor blade ice is welcomed 

from the view of removing the ice from the blades. Unfortunately, it is as likely to 

create a problem as it is to relieve one. The most dangerous among them are the 

severe blade vibration, shedding ice ingestion and ballistic impact.  

 

Ice shedding can create severe vibrations. The severity of the vibration has been 

documented by test pilots engaged in conducting natural icing studies with 

helicopters. Their reports identify numerous occasions where in-flight icing tests 

were aborted due to main rotor blade icing and subsequent asymmetrical 

shedding which caused vibrations so severe that it became all but impossible to 

read the instrument panel [4].  

 

Due to a series of hazards caused by ice shedding from rotor blades, it is 

important to investigate and analyze the process of in-flight ice shedding.  
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5.1 Ice Accretion on Helicopter Blades 
 

The simulation of in-flight 3D icing is performed using FENSAP-ICE [1-2]. 

Caradonna hover test case 8 [57] has been used for the flow solution. The rotor 

has two untwisted and untapered blades which have a rectangular platform, 

comprised of a NACA 0012 airfoil section with a rotor radius of 1.143 m and an 

aspect ratio of 6. The flow and droplet solutions are computed in rotational 

reference for the rotor speed of 400 rpm and collective pitch angle of 8 degrees. 

Ice accretion is also modeled in rotational reference at ambient temperature of -

19°C, liquid water content (LWC) of 1 g/m3 and droplet mean value diameter 

(MVD) of 20 microns. The turbulence model is the one-equation Spalart-Allmaras 

model and the total ice accretion time is 120 seconds. Figure 43 shows the ice 

accumulation on the blades. 

  
Figure 43. Ice accretion on helicopter blades 

 

5.2 Identification of Ice Shape and Boundary Conditions 
 

3D ice shape determination requires the input from ice accretion solution. Figure 

44 shows the grids on clean and iced blade. Since the mesh motion during the 

ice accretion is performed by employing ALE-based mesh motion scheme, there 

is one-to-one correspondence between the nodes in the clean and iced grids. 

The shape of ice, as shown in Figure 45-left, is determined by comparing the 

distances of each node on the wall of the clean airfoil to each node on the wall of 

the iced airfoil. A facet-bounded surface mesh of the 3D ice (Figure 45-right) is 
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obtained from the nodes on the clean blade and the iced surface. The surface 

mesh is also the boundary of the computational domain of the solid (ice) mesh 

and is thus divided into Dirichlet and Neumann nodes.  

 

  
Figure 44. Grid on the clean airfoil (left), grid on the iced airfoil (right) 

 

 
Figure 45. 3D ice shape obtained from blade (left) surface mesh of the ice (right) 

 

5.3 Meshing  
 

The meshing in the ice is done by using an open source code named TetGen 

[49]. The completely facet-bounded surface mesh consisting of the boundary 

nodes is the input to the code and a mesh of unstructured linear tetrahedral 

elements is produced based on Delaunay tetrahedralization.  
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Figure 46. Tetrahedral volume mesh of ice generated by TetGen 

 

5.4 Stress Analysis 
 

For the ice on helicopter blades, the net aerodynamic force is considered to be 

negligible compared to the centrifugal force [51]. Hence centrifugal force is the 

only driving force for ice shedding in this analysis. The centrifugal force [21] is 

given by: 

fcf = ρVrω2                                                                         (5.1) 

where fcf is the centrifugal force, ρ is the density of ice, V is ice volume in the 

element, r is the radius of the element from the root of the blade, and ω  is the 

rotational speed. In the present study, the density of ice is considered as 920 

kg/m3, the volume is calculated from the tetrahedral element, and r is calculated 

from the centroid of the element. Total span of the blades is 1.143 meters but in 

order to save the computational cost, only a section of blade that is 0.3 meter 

from the tip, is considered. The rotational speed used here is 400 rpm, which is 

typical for helicopter blades. Figure 47 shows the stress distribution inside the ice.  

 



 

57 

 
Figure 47. Stress distribution at the ice-airfoil interface shear stress (left) and principal stress 

(right) 
 

5.5 Interface Bond Breaking 
 

From literature review, the cohesive strength (tensile strength) of ice is about 1 to 

2MPa [17], the adhesive strength (shear strength) of ice with Aluminum at -11° 

varies from 0.3 to 1.6MPa [50]. For polymeric or carbon fiber composite materials, 

the adhesive strength with ice is much lower than Aluminum [18]. The surface 

roughness also affects adhesive strength at the interface according to reference 

[51]. From the earlier experiment on the adhesion properties of ice with different 

materials [18] and numerical analysis of ice shedding on helicopter blade [21], ice 

will start to break or yield at the interface between airfoil and ice, and when the 

principal stress in the ice reaches the critical value of cohesive strength, a tensile 

crack will start to propagate inside the ice. Figure 48 shows a cut section of 

principal stress distribution within the ice, and the stress concentration at the 

interface is clearly visible.  
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Figure 48. Cut section stress distribution of principal stress 1 

 

In the present study, shear stress, principal stress as well as Von-Mises stresses 

are checked at each crack propagation step. If either the shear stress or Von-

Mises stresses reaches the critical value, the interface bond between ice and 

airfoil breaks. Figure 49 shows the interface bond breaking process. In the mean 

time, the maximum principal stress has to be checked at each step, since once 

the maximum cohesion stress is reached a crack inside the ice will initiate. Figure 

50 shows the maximum principal stress evolution.  
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Figure 49. Interface bonding breaking process (red represent the bonding area) 
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Figure 50. Principal stress during interface bonding breaking process  

 

5.5.1 Mesh adaptation for interface bond breaking process 
For the interface bond breaking process, the interface bond breaking transition 

region is of critical importance. Hence, the mesh around the bond breaking 

transition area should be refined. From Fig. 49 and Fig. 50, it can be seen that 

the bond breaking transition zone is the one with relatively high first derivative of 

maximum principal stress over the length of edge. The basic idea here for mesh 
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refinement is adding new nodes to the edge whose first derivative of principal 

stress over the length of edge has reached a critical value, as shown in (5.2).  

1 2| |i i

i

a a c
l

−
≥

Δ
                                                           (5.2) 

Where 1ia and 2ia are the values of interest, like principal stress I or shear stress, 

on node 1 and node 2 of the edge. ilΔ  is the length of the edge. c  is the critical 

value setting by the user.  

 

Fig. 51 shows the mesh adaptation along with the interface bond breaking 

process. It can be seen that the mesh refinement successfully captured the 

process of interface bond breaking process, i.e. the mesh refinement is in the 

region of bond breaking transition.    
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Figure 51. Mesh adaptation in the process of interface bond breaking 
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5.6 3D Crack Propagation 
 

Crack propagation inside the ice is using the present 3D crack propagation 

method. This method is developed for the evaluation of 3D crack growth 

processes under general mixed mode loading conditions. Based on the finite 

element method, the method predicts quasi-static crack growth in 3D 

components. Through out the simulation of crack propagation, automatic mesh 

manipulation and refinement are carried out in the vicinity of the crack front 

nodes. Figure 52 shows the overall structure of the 3D crack propagation method. 

It is established modularly and it is divided into three parts. During the simulation 

sequence, these three independent modules are invoked successively.  

 

 
Figure 52. Structure of in-house 3D simulation package 

 

The first module contains all the necessary algorithms for mesh generation and 

mesh manipulation. It reads data from three input files, i.e. a file containing the 

parameters of simulation, like maximum crack growth increment and materials 

properties; a second file containing initial crack information and a file containing 

surface mesh which describes the geometry of the object. For the file of initial 

Module 1: 3D mesh generation and mesh manipulation 

Module 2: Stress analysis by FEM 

Module 3: 3D crack evaluation and propagation 

New crack front and 3D crack geometry Fracture mechanical analysis 

Parameters of simulation Surface mesh of 3D model  Initial crack 
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crack, after the first crack propagation step, it will be injected with new crack front 

information. The mesh generation step employs the open source tetrahedral 

element mesh generator - TetGen, to generate high quality volume mesh. In the 

crack propagation process, a new crack is inserted into the ice at each step. The 

insertion of a crack into the mesh of a model needs efficient mesh manipulation, 

considering the geometric complexity of 3D crack and the demand of high quality 

mesh in the vicinity of the crack front.  

 

There are two different methods to insert a crack into the model. One approach is 

to insert a crack face into the meshed model, and then splitting the mesh [52]. 

This method is straight forward but can lead to a very complex mesh splitting 

process and lead to a bad quality mesh, requiring a mesh improvement algorithm. 

In the present package, however, another mesh insertion method is implemented. 

Instead of inserting a 3D crack face into the model directly, we first create a 

duplicate surface of the crack face where all of the nodes and connectivity are 

duplicated except for the crack front nodes and edges as shown in figure 53. 

Consequently, the duplicated surface and the original crack face are connected 

at the crack front, which forms a single surface. The next step is to insert this 

connected surface into the previous surface mesh of the model. Then a 

completely facet-bonded or waterproof model containing the crack described by 

surface mesh is obtained, as shown in figure 54. Using this surface mesh, it is 

very easy to obtain a volume mesh of the domain with high quality in the vicinity 

of the crack front. The main advantage of this method is that the mesh splitting 

process is greatly reduced, as we only need to split a very small part of the 

surface mesh. Another advantage of the present method is mesh refinement. 

This can be achieved conveniently by just inserting more nodes at the crack face 

near the front, as the Constrained Delaunay Tetrahedralization will automatically 

generate a refined mesh with high quality based on these nodes [53].  
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Figure 53. Duplicated crack surface  

 

     
Figure 54. Crack inserted model 

 

The second module is the stress analysis. Employing the FEM and the 

appropriate boundary conditions, the displacements and stresses can be 

calculated. The advantage of using FEM for stress analysis is that the crack 

propagation simulation package can be compatible with several other 

commercial stress analysis packages, where FEM is widely used.  

 

The third module comprises the algorithms for 3D crack evaluation and 

propagation, which is the key component of the package, as the calculation of 

crack growth is the main task of the 3D crack propagation simulation package. 

The inputs of this module consist of the stress analysis result, current step crack 
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geometry and crack front nodes information. The outputs are a new crack 

geometry and a new crack front.  

 

5.6.1 Tracking 3D crack propagation 
There are many criteria for tracking a propagating crack. Considering the 

simplicity and ease of implementation, the maximum principal stress criterion is 

adopted. The basic assumption is that the crack propagation direction is 

perpendicular to the maximum principal stress direction. Hence, the calculation of 

maximum principal stress and its direction are the prerequisites for predicting 

crack propagation.  

 

According to the theory of elasticity, the maximum principal stress and its 

direction are obtained by solving an eigenvalue problem with a given stress 

tensor. Given σ find v and λ with such that: 

     σ.v = λ v                                                                 (5.3) 

Where σ is the stress tensor obtained from stress analysis, v is the Eigenvector 

or principal stress direction vector, λ is the principal stress value. Solving this 

Eigenvalue problem is as follows:  

1). Check that σ is symmetric 

2). Calculate characteristic equation: det(σij- λδij)=0   

3). Solving characteristic equation to get the 3 Eigenvalues λ(1) , λ(2) , λ(3) 

4). For each Eigenvalue find its associated eigenvector, which is the principal 

stress direction by solving:  (σij- λ(m)δij)vj
(m) = 0, where ijσ is the index notation 

form of stress tensor, δij is the Kronecker delta, λ(m)and vj
(m)are the Eigenvalue 

and Eigenvector in index notation form.  
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Figure 55. Local coordinate system along the crack front 

 

After obtaining the principal stress and its direction, the crack propagation front is 

predicted by constructing a local coordinate system at each node on the crack 

front. Figure 55 shows the local coordinate system along the crack front. The 

local coordinate system consists of three vectors, i.e. tangential vector, Tvector, 

normal vector, Nvector, and propagation direction vector, Rvector. Among these 

three vectors, the normal vector is the direction of maximum principal stress, 

which could be calculated from the principal stress. The tangential vector is 

calculated from the crack front geometry, i.e. nodes’ coordinates. Then the 

propagation vector will be calculated from the cross product of tangential vector 

and the normal vector. Hence, through these local coordinate systems, the crack 

propagation of each node is obtained.  

 

5.6.2 Determination of crack growth increments 
For 2D problems, the increment for crack extension is adjusted in each step 

according to the stress intensity factor. With the same idea, the 3D crack growth 

increments are varied both in different steps and in different locations of the 

same step. In the present crack propagation package, the crack growth process 

is driven by a user-defined maximum crack growth increment. In the crack face 

generation process, it is formed by a series of accumulated crack fronts, and 

then forming the connectivity of the whole surface. Hence extremely small crack 

extensions (or even “zero extension”, if the maximum principal stress is below 
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the threshold) would cause enormous numerical problems, as the crack surface 

mesh would degenerate. Therefore, an algorithm is implemented that adjusts the 

crack growth increment iaΔ  of all crack front nodes i to a range 

of 0.33 o i oa a a⋅Δ ≤ Δ ≤ Δ , where oaΔ is the user defined maximum crack growth 

increment. This simple approach is motivated by the recognition that some nodes 

of crack front will always have maximum principal stress below the critical value 

and others permanently above. In fact, for any given initial crack configuration 

within a few steps, a steady state with a self-similar crack growth will be reached. 

Thus this simple approach produces reliable results after a few steps, in the 

numerical setting [52].  

 

5.6.3 Crack propagation algorithms validation (Benchmark study) 
Based on the crack propagation algorithms described above, a benchmark study 

of 3D out-of-plane crack propagation is taken here. In this numerical example, a 

three points bending test of the cracked specimen shown in Fig. 56 is simulated. 

The case is interesting because the crack is initially inclined with respect to the 

load direction, which causes a high kink angle at the beginning of the 

propagation. The crack is subjected to a mixed mode loading condition and a 

twisted propagation is obtained. The problem has been solved in [54] and the 

solution reported there is taken as reference.  
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Figure 56. Three-point bending test with the initial crack of an inclined plane ( 45oγ = ) [54] 

 
Figure 57. The model of three-point bending test 

 

The specimen length is 130 mm, its thickness is 10 mm and its width is 30 mm. 

The materials properties are as follows: Young Modulus: 9.8GPa; Poisson ratio: 

0.33. The mesh used in the calculations is composed of tetrahedral linear 

elements that are refined in the vicinity of the crack, as shown in figure 58  

 
Figure 58. Meshing of the model 

The simulation results are shown below, and one can see the good agreement 

with reference [54].  
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Figure 59. Crack fronts obtained for each propagation step (top view) 

 
Figure 60. Crack fronts of the solution reported in [54] (top view) 
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Figure 61. Crack propagation inside the specimen 

    
Figure 62. 3D geometry of crack inside the specimen 

 
Figure 63. Crack path on the surface and its principal stress distribution 

 

In figure 59, the propagation path obtained by applying the methodology 

presented in this study is shown. From Fig. 61 and 62, the twisted propagation is 

clearly visible. The crack path and the maximum principal stress on the surface 

of the specimen are shown in figure 63. The crack fronts calculated for each 

propagation step are shown in Fig. 59. For comparison, the crack fronts reported 

in [54] are shown in Fig. 60. Qualitatively, the solution obtained is in good 

agreement with the one of Ref. [54], showing that the methodology presented in 

this paper correctly simulates the mixed mode propagation of the crack.  
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5.7 Numerical Experiment of Ice Break-up from Helicopter Blade 
 

5.7.1 Crack initiation in ice  
During the interface bond breaking process, if the principal stress in the ice 

reaches the critical value of principal stress I, i.e. the cohesive strength of ice, a 

crack will start to initiate at the point where the principal stress I reaches the 

threshold value. From reference [17], the cohesive strength of ice is in the range 

of 1 to 2MPa. Once the critical value is reached, a tiny 3D crack whose direction 

is perpendicular to the principal stress I is inserted into the ice. Figure 64 shows 

the crack initiation process 

 

      
Figure 64. Crack initiation 

 
 
5.7.2 Crack propagation in ice 
Once the crack is initiated, employing the 3D crack propagation package 

developed in the previous section, the crack propagation process in the ice is 

simulated.  

 

Figure 65 shows the crack evolution process inside the ice. After the crack tip 

reaches the two sides of the ice, we can clearly get the ice shape that will shed 

away from the blade. Figure 66 shows the principal stress distribution during the 
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crack propagation process. The maximum principal stress is concentrated in the 

vicinity of the crack surface. Figure 67 shows the 3D crack shapes during the 

crack propagation process. It can be seen that the shape of the crack is out of 

one plane and is an arbitrary 3D shape.  
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Figure 65. Crack propagation process 
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Figure 66. Principal stress 1 during the crack propagation process 

 
Figure 67. 3D crack shape growth during the crack propagation process 

 

5.8 Summary  
 

In this chapter, the development of a complete 3D module for ice break-up and 

shedding from helicopter blades is described. The module includes ice shape 

determination, mesh generation and refinement, stress analysis, interface bond 

breaking, crack initiation and crack propagation. A 3D crack propagation package 

based on the maximum principal stress is developed, and its comparison with 

reference results validates the reliability of this method. Finally, using this 3D 

crack propagation package, the ice break-up process is fully simulated in 3D. 

The location of break-up is also predicted.  
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Chapter 6 CONCLUSIONS 
 

Ice break-up and shedding pose a threat to the in-flight safety of airplane and 

helicopter. In order to predict when and where the ice will break-up and shed 

away, a 2D ice break-up code for ice on wings of airplane and a 3D ice break-up 

code for ice accreted on blades of helicopter are developed. Using these 2D and 

3D ice break-up codes, the location and the mechanism of ice break-up are 

predicted.  

 

Through numerous simulations done in this thesis, a conclusion can be drawn 

that for ice break-up and shedding from the wing of an airplane, the possibility of 

break-up highly depends on the shape of ice, i.e. under the same icing condition, 

some ice shapes will break, while some will not. Generally speaking, ice shapes 

with sharp horns are prone to break-up, while smooth ice shape may not break 

for the same loading conditions. For break-up analysis of ice accreted on 

helicopter blades, the dominant factors are the blade rotational speed and 

interface strength between ice and airfoil material, which in turn has a strong 

dependence on the surface temperature of the blade. The rotational speed 

determines whether the ice will break-up and shed away or not, while the 

interface bond strength determines how much of the ice will be shedding away.  

 

The main work of this thesis research has been the development of a 2D and 3D 

ice break-up simulation packages and their integration with the in flight icing code 

– FENSAP ICE. The key parts of the break-up systems are the 2D and 3D crack 

propagation modules. In this study, the 2D crack propagation has employed the 

maximum circumferential stress method based on the quarter-point element to 

predict the crack propagation direction, while for 3D crack propagation package, 

the maximum principal stress criteria has been used. Through comparisons with 

contemporary crack propagation codes and published numerical results, the 

validity of these methods is established.  
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Future work includes broadening the application areas of the ice break-up 

system and improving the robustness and accuracy of the crack propagation 

system. In the present work, the interaction between air-flow and ice is analyzed 

in a decoupled way, considering the large deformation and displacement at the 

final break-up stage, a fully-coupled fluid structure interaction could be 

considered in the future if its utility is proven. 

  

In terms of broadening the applications, the ice break-up simulation package 

could be used to model ice shedding from wind turbines, as ice shedding is also 

a threat to wind turbine’s life span and safety [56]. Also, the crack propagation 

simulation package could be used in environmental science, material science, 

glaciology, and earthquake and rupture analysis.  

 

In addition, the ice break-up simulation system could be integrated in designing 

anti-icing or de-icing systems for airplanes and helicopters, making air travel 

safer. 
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