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Results on nonparametric kernel estimators of density differ according

to the assumed degree of density smoothness; it is often assumed that the

density function is at least twice differentiable. However, there are cases

where non-smooth density functions may be of interest. We provide asymp-

totic results for kernel estimation of a continuous density for an arbitrary

bandwidth/kernel pair. We also derive the limit joint distribution of kernel

density estimators corresponding to different bandwidths and kernel func-

tions. Using these results, we construct an estimator that combines several

estimators for different bandwidth/kernel pairs to protect against the nega-

tive consequences of errors in assumptions about order of smoothness. The

results of a Monte Carlo experiment confirm the usefulness of the combined

estimator. We demonstrate that while in the standard normal case the com-

bined estimator has a relatively higher mean squared error than the standard

kernel estimator, both estimators are highly accurate. On the other hand,

for a non-smooth density where the MSE gets very large, the combined

estimator provides uniformly better results than the standard estimator.

Keywords: Kernel density estimation; Bandwidth selection; Combined

estimator
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1 Introduction

Investigation of the asymptotic and finite-sample behaviour of kernel density estimators

in the literature focused largely on the search for appropriate values of the bandwidth,

assuming that the underlying model was sufficiently smooth. While it enabled re-

searchers to obtain very precise expressions for the optimal bandwidth, it undermined

the primary characteristic feature of such estimators, their robustness. If second order
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or higher order derivatives of the density exist, a bandwidth that ensures an opti-

mal convergence rate can be found for a kernel of sufficiently high order. If, however,

there is no certainty that the smoothness assumptions hold, under- and especially over-

smoothing are likely. Oversmoothing leads to asymptotic bias and makes the estimator

concentrate around the wrong value; it occurs when the bandwidth is too large and too

many irrelevant observations are used to determine the density at a particular point,

which leads to elimination of peaks and troughs. Undersmoothing yields a consistent

estimator but increases the mean squared error (MSE) as the estimate becomes very

volatile. If there are no grounds on which to assume smoothness of the density, the

chosen rate for the bandwidth may be in error and the estimator will suffer from the

problems associated with under- or oversmoothing.

In this paper we consider the asymptotic properties of kernel estimators for a con-

tinuous (but not necessarily differentiable) density based on different bandwidth/kernel

pairs and investigate ways of improving efficiency that do no rely on smoothness as-

sumptions. Because of the nonparametric rates of convergence, each bandwidth/kernel

pair may provide additional information. We derive the joint limit process for such

estimators (similar to the joint distribution of smoothed least median of squares esti-

mators (Zinde-Walsh 2002) and smoothed maximum score estimators (Kotlyarova and

Zinde-Walsh 2004)) that demonstrates that some estimators of density at a point may

be asymptotically independent, thus a linear combination of several such estimators

may improve the accuracy relative to each individual estimator. The weights in the lin-

ear combination can be chosen to minimize an estimate of the mean squared error; the

resulting estimator is what we call a “combined estimator”. The combined estimator

can protect against the negative consequences of errors in assumptions about the order

of smoothness.

The results of a Monte Carlo experiment confirm the usefulness of the combined

estimator in finite samples. We demonstrate that while in the standard normal case
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the combined estimator has a relatively larger MSE than the standard kernel estima-

tor, both estimators are highly accurate. On the other hand, for a multimodal smooth

density and a non-smooth density where the MSE gets very large, the combined esti-

mator provides uniformly better results than the standard estimator that incorrectly

assumes smoothness. Moreover, the combined estimator is less sensitive to the choice

of smoothing functions.

The paper is organized as follows. Section 2 contains the definitions, assumptions

and known results for the kernel density estimator. Section 3 provides asymptotic

results under weak (only continuity, no smoothness) assumptions for the kernel density

estimator, as well as for the joint limit process for several estimators. The new combined

estimator is defined in Section 4, where we also discuss how to compute it (selection

of bandwidths, smoothing kernels, estimation of the MSE of a linear combination).

Performance of combined estimators is evaluated in aMonte Carlo experiment in Section

5. Appendices A and B provide the proofs of the results in Section 3 and contain

additional information on how to construct polynomial kernel functions.

2 Definitions, notation, assumptions, known results

Consider a univariate random variable X and the corresponding density function f().

We are interested in estimating the value of the density function at x.

Assumption 1.

(a) (Xi), i = 1, ..., n, is a random sample of X;

(b) the density function f(x) exists and is continuous at x.

To estimate the density we utilize kernel functions but do not restrict kernels to

symmetric or nonnegative density functions; as will be clear later, this may give us

some extra flexibility.

Assumption 2.
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(a) The kernel smoothing function K is a continuous real-valued function;

(b)
R
K(z)dz = 1;

(c) (Parzen 1962)
R
|K(z)|dz <∞, |z||K(z)|→ 0 as |z|→∞, sup |K(z)| <∞;R

K(z)2+δdz <∞ for some δ > 0.

Assumption 3.

(a) The bandwidth parameter hn → 0 as n→∞;

(b) hnn→∞ as n→∞.

The kernel density estimator (Rosenblatt 1956, Parzen 1962) is defined as

f̂(x) =
1

nhn

nX
i=1

K

µ
Xi − x

hn

¶
. (1)

Assumptions 1-3 are sufficient to prove that the kernel density estimator is MSE-

consistent and has a normal limiting distribution (Parzen (1962) applies Liapunov’s

central limit theorem for triangular arrays to prove normality):

E(f̂(x)− f(x))2 → 0 as n→∞, (2)

(nhn)
1
2

³
f̂(x)− Ef̂(x)

´
d→ N

µ
0, f(x)

Z
K2(z)dz

¶
. (3)

Assumption 3a ensures that the estimator is asymptotically unbiased; Assumptions

3b and 2c guarantee that the variance of the estimator will tend to zero.

If the existence of continuous second order derivatives of the density function is

assumed then the sharp rate of bandwidth hn = cn−
1
5 will be optimal for a second-

order kernel and the convergence rate of the density estimator is n−2/5 (see Pagan

and Ullah (1999) for discussion). If higher order derivatives of density exist, further

improvements in efficiency can be obtained by using a higher order kernel to reduce the

bias (Cleveland and Loader 1996, Marron and Wand 1992).

The assumption of continuity of the second derivative of the density function can not
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be easily verified although it is routinely made when determining the optimal bandwidth

using Silverman’s (1986) “rule of thumb”, or plug-in methods by Park and Marron

(1990) and Sheather and Jones (1991). However, the bandwidth selection methods

that are based on this assumption may behave very poorly when it is violated (Loader

1999a,b). There exist other, data-driven methods of bandwidth selection such as the

least squares cross validation (Rudemo 1982, Bowman 1984) and the likelihood cross

validation (Duin 1976). These methods do not assume differentiability of the density

function and may be asymptotically optimal under weak underlying assumptions (Hall

1983 and Stone 1984). The general consensus is that plug-in methods perform well

when the density is relatively smooth and that cross-validation methods identify very

well steep peaks and other irregularities of the density but tend to undersmooth in more

conventional settings (Park and Turlach 1992, Loader 1999a,b). However, when the

dataset is large, cross validation will take a long time to compute since the computation

time is a quadratic function of the sample size. And it is precisely in the large samples

where suboptimality of plug-in methods, applied to the density which is not at least

twice differentiable or sufficiently well-behaved, becomes obvious.

In this paper we develop a method to circumvent the choice-of-bandwidth problem

using asymptotic results in Section 3, where the assumption of the existence of the

second derivative of the density function is replaced with a much weaker requirement

of continuity of density.
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3 Asymptotic properties of kernel estimators

3.1 Distribution of a single univariate density estimator when

density is continuous

To express the conditions under which we can state asymptotic results without neces-

sarily requiring differentiability of the density, we define the bias of the kernel density

estimator

B(K,hn, x) = E(f̂(x)− f(x)) =

Z
K(z) [f(x+ zhn)− f(x)] dz. (4)

Under Assumption 3a, B(K,hn, x) converges to 0. Under more stringent differentiabil-

ity assumptions, a sharp rate for B(K,hn, x) could be determined but we do not make

such assumptions. To simplify notation, the subscript n will be omitted in hn.

Theorem 1. Under Assumptions 1 - 3, if h is such that as n→∞

(a) n1/2h1/2B(K,h, x)→ 0

then n1/2h1/2(f̂(x)− f(x))
d→ N(0, f(x)

R
K2(w)dw);

(b) n1/2h1/2B(K,h, x)→ B(K), where 0 < |B(K)| <∞,

then n1/2h1/2(f̂(x)− f(x))
d→ N(B(K), f(x)

R
K2(w)dw);

(c) n1/2h1/2 |B(K,h, x)|→∞

then |B(K,h, x)|−1
h
f̂(x)− f(x)−B(K,h, x)

i
= op(1).

The proof is given in Appendix A.

Thus for case (a) (undersmoothing) we obtain a limiting normal distribution and for

(b) and (c) the estimator is asymptotically biased. Without making assumptions about

the degree of smoothness of density all that is known is that for some rate of h → 0

there is undersmoothing (no asymptotic bias and a limiting Gaussian distribution), and

for some slower convergence rate of h there is oversmoothing. Existence of an optimal

rate depends on convergence properties of B(K,h, x) that cannot be asserted without
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strengthening the assumptions.

3.2 The joint limit process for univariate density estimators

for continuous densities

Assume that f̂(K,h, x) represents the estimator when the function K and bandwidth

h(n) are utilized. Consider a number of bandwidths h: {hi(n)}mi=1. Assume that hi(n)

for i ≤ m0 corresponds to undersmoothing (part (a) of Theorem 1) while hi(n) for i

such that m0 ≤ m00 < i ≤ m corresponds to oversmoothing (part (c) of Theorem 1).

If an optimal rate exists then one could have m00 ≥ m0 + 1 and hi(n) for i = m0 +

1, ...,m00 corresponding to the optimal rate. For example, for an s times continuously

differentiable density and using some s order kernel, the optimal bandwidth isO(n−
1

2s+1 )̇

(see, e.g., Pagan and Ullah (1999), p. 30).

We combine each hi with each smoothing function Kj from some set of functions

that satisfy Assumption 2, j = 1, ..., l. Define

η(hi,Kj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1/2h
1/2
i (f̂(Kj, hi, x)− f(x)) for i = 1, ...,m0

n1/2h
1/2
i (f̂(Kj, hi, x)− f(x)−B(Kj, hi, x))

for i = m0 + 1, ...,m00

|B(Kj , hi, x)|−1
h
f̂(Kj, hi, x)− f(x)−B(Kj, hi, x)

i
for i = m00 + 1, ...,m.

Theorem 2. Suppose that Assumptions 1-3 hold for each bandwidth hi, 1 ≤ i ≤ m,

and for each kernel Kj, 1 ≤ j ≤ l, and that the functions {Kj}lj=1 form a linearly

independent set1.

1If some linear combination of smoothing kernels Kj is zero then the joint distribution at each
bandwidth is degenerate.
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(a) If each h1, ..., hm00 (m00 ≤ m) satisfies condition (a) or (b) of Theorem 1 then

ηa = (η(h1, K1)
0, ..., η(h1,Kl)

0, ..., η(hm00 ,K1)
0, ..., η(hm00 ,Kl)

0)
0

d→ N(0, f(x)Ψ),

where the lm00 × lm00 matrix Ψ has elements

{Ψ}ij =

⎧⎪⎨⎪⎩
√
q
R
Ki (w)Kj (qw) dw if hi/hj = q <∞,

0 if hi/hj → 0 or hi/hj →∞;
(b) If each hm00+1, ..., hm (m

00 ≤ m) satisfies condition (c) of Theorem 1 then

(η(hm00+1, K1)
0, ..., η(hm00+1,Kl)

0, ..., η(hm,K1)
0, ..., η(hm, Kl)

0)
0 p→ 0;

(c) Cov(η(hi1, Kj1), η(hi2, Kj2)) → 0 for 1 ≤ i1 ≤ m00 and m00 + 1 ≤ i2 ≤ m, and

any j1, j2.

The proof is provided in Appendix A.

Thus, if the bandwidths approach 0 at different rates or
R
Ki(w)Kj(w)dw = 0, the

corresponding estimators f̂(K,h, x) are asymptotically independent. This is a conse-

quence of the fact that only a small fraction of observations have any effect on the

estimator, therefore reweighting observations with different kernel functions can pro-

duce estimators with independent limit processes.

Theorems 1 and 2 can be easily extended to the case of multivariate density func-

tions. Consider the simplest estimator that uses a multivariate density function Kd

as kernel and applies the same bandwidth to every coordinate 1, ..., d of the random

vector: bfd(x) = 1

nhd

nX
i=1

Kd

µ
Xi1 − x1

h
, ...,

Xid − xd
h

¶
.

The asymptotic results for a single density estimator and joint distribution of esti-

mators can be obtained by using h such that nhd → ∞ and replacing normalization
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n1/2h1/2 with d-dimensional normalization n1/2hd/2. If the variation of some components

of the random vector x is greater than in the others, the use of the same bandwidths

for all dimensions may be inappropriate. Pagan and Ullah (1999) suggest to linearly

transform the data to have a unit covariance matrix, and then to apply a single band-

width.

4 The combined estimator

As the results in Section 3 show, finding an optimal rate for a density estimator may be

problematic. Here we use the results of Theorem 2 to construct a new combined estima-

tor that optimally combines several standard kernel estimators with various bandwidths

and smoothing functions instead of focusing on a single bandwidth/kernel combination.

Although efficiency may suffer in straightforward cases when an optimal rate can be

found, the Monte Carlo experiments show that the combined estimator provides re-

markably robust performance over a variety of cases. Section 4.1 defines the combined

estimator. Section 4.2 addresses practical issues of construction of the combined esti-

mator. Performance in a Monte Carlo experiment is discussed in Section 5.

4.1 Definition of the combined estimator.

Suppose that bandwidths h1 < h2 < ... < hm correspond to various convergence rates,

where h1 corresponds to undersmoothing and hm to oversmoothing; the optimal rate

may or may not exist. For a set of smoothing functions K1, ..., Kl, Theorem 2 indicates

the structure of the joint limit distribution of f̂(Kj, hi, x).

Construct a linear combination f̂({aij}) =
P
i,j

aij f̂(Kj, hi, x),
P
i,j

aij = 1. Assume

that the biases, variances and covariances for all f̂(Kj, hi, x) are known. Then one

could find weights {aij} that minimize the mean squared error MSE(f̂({aij})):

MSE(f̂({aij})) =
P

ai1j1ai2j2{bias(f̂(Kj1, hi1 , x))bias(f̂(Kj2, hi2 , x))
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+Cov(f̂(Kj1 , hi1 , x), f̂(Kj2, hi2 , x))}.

The MSE of this combined estimator will not be larger than the smallest MSE of in-

dividual estimators f̂(Kj, hi, x) that are included in the combination. It may be possible

to improve upon the best individual estimator in the set by using its combinations with

other kernel estimators. If individual estimators are uncorrelated, their combination

reduces the variance. The robust method of the least squares cross validation (LSCV)

is considered to be appropriate under very weak assumptions, but it produces just one

bandwidth (chosen on a grid) for a prespecified kernel. Therefore, if the kernel is not

appropriate or the grid of bandwidths not fine enough, the results may be suboptimal

and the combined estimator may outperform the LSCV. It should be emphasized that

the proposed combined estimator is local and the weights change from point to point,

allowing for additional flexibility in fitting the data.

To determine the weights in practice we need to estimate the biases and covariances

of all f̂(Kj, hi, x).

Denote estimated biases and covariances by “hats”.

Then ,

\MSE(f̂({aij})) =
P

ai1j1ai2j2{dbias(f̂(Kj1, hi1 , x))
dbias(f̂(Kj2, hi2 , x))

+dCov(f̂(Kj1 , hi1 , x), f̂(Kj2, hi2 , x))}.

Define the combined density estimator bfc by
bfc = f̂({baij}), where {baij} = argmin\MSE(f̂({aij})),

X
i,j

aij = 1. (5)

4.2 Construction of the combined estimator

4.2.1 Estimation of variances and biases

Consistent estimators for biases and covariances can be obtained by various procedures;

we require that these estimators do not rely on information about density smoothness.
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Consider first the covariance matrix. For large sample sizes, one can rely on the

joint asymptotic distribution (Theorem 2):

for the diagonal elements, V ar(Kj , hi, x), use
df(x) R Kj(w)

2dw

hin
, where the estimate

of the density, df(x), has to be specified. Since the smallest bandwidth corresponds to
asymptotically unbiased estimator, the candidates for the estimate are f̂(Kj, h1, x) or

a weighted average of individual estimators evaluated at h1 using kernels K1, ..,Kl;

for all off-diagonal elements, covariances Cov(f̂(Kj1 , hi1 , x), f̂(Kj2, hi2, x)) can be

approximated by

s
qi1i2V ar(f̂(Kj1 , hi1, x))V ar(f̂(Kj2 , hi2 , x))

δj1δj2
·
R
Kj1(w)Kj2(qi1i2w)dw,

where qi1i2 = hi1/hi2 , δj =
R
K2

j (w)dw.

For small sample sizes, it would be more appropriate to apply the bootstrap (see

Hall (1992) for a discussion of the bootstrap for nonparametric estimators):

Cov(f̂(Kj1 , hi1, x), f̂(Kj2 , hi2 , x))

= B−1
BX
s=1

Ã
f̂s(Kj1 , hi1, x)−B−1

BX
t=1

f̂t(Kj1, hi1 , x)

!

×
Ã
f̂s(Kj2, hi2, x)−B−1

BX
t=1

f̂t(Kj2 , hi2 , x)

!
,

where B is the number of bootstrap replications.

In our Monte Carlo experiment we used the first, asymptotic, method.

The estimation of the bias is more complicated. Without assumptions regarding

smoothness of the density function, we do not know the precise convergence rate of

the bias. Existing methods of bias correction and approximation (e.g., Schucany and

Sommers 1977, Gerard and Schucany 1999) are based on the assumption that the

density is several times differentiable.

In our Monte Carlo study, we will use the fact that the estimators with the smallest

bandwidth (undersmoothing) are asymptotically unbiased. To find individual biases,

we can subtract the average of estimators with the smallest bandwidth from actual
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estimators:

Biasf̂(Kj, hi, x) = f̂(Kj, h1, x)− f̂(K·, h1, x).

Other possible estimators of bias could be based on twicing kernels (Newey, Hsieh,

and Robins 2004, Kauerman, Mueller, and Carroll 1998) or on Hall’s (1992) interpreta-

tion of the expected value of f̂(Kj, hi, x). Hall (1992) observes that the usual bootstrap

estimates the expected value of a smooth functional of the empirical distribution func-

tion, while Ef̂(Kj , hi, x) is a smooth functional of the estimated density. Therefore, its

expected value can be estimated by

Ef̂(f̂
bootstrapped) =

Z
K(w) bf(x− hw)dw

and the estimate of the bias will be

[Biasf̂(Kj, hi, x) =

Z
K(w) bf(Kj, hi, x− hiw)dw − f̂(Kj, hi, x).

4.2.2 Procedure for computing the combined estimator

To determine the set of bandwiths we start with the largest bandwidth in the set that is

Silverman’s (1986) rule-of-thumb bandwidth. It is optimal when the underlying density

is normal. Several studies (Park and Turlach 1992, Loader 1999a) indicate that this

bandwidth is usually larger than other methods. If this bandwidth belongs to a truly

optimal function/bandwidth combination then as the sample size increases it should

yield the fastest convergence rate. Otherwise, it will correspond to oversmoothing.

Other bandwidths represent various degrees of undersmoothing and are determined as

2i−mhm, for i = 1, ...,m− 1. If we work with several different kernels, it is desirable to

adjust their scale in such a way as for them to have the same rule of thumb bandwidth.

13



This can be done by considering a transformation Kδ(w) = δ−1K(w/δ), and estimating

for both K(w) and Kδ(w) their rule-of-thumb bandwidths.

We recommend using smoothing functions of order two and above. In theory, one

can utilize even lower order kernels since if the density is not differentiable there is

nothing to be gained from using kernels of order 2; on the other hand, if the density

is sufficiently smooth, a second order kernel would provide an advantage. Symmetric

kernels are appropriate when dealing with smooth densities while asymmetric functions

may pick up some irregularities of the density that will be discarded by symmetric

densities. There may be some advantage in using orthogonal kernels since then the

corresponding covariance matrix is zero and they may provide complementary infor-

mation. To construct several orthogonal polynomial kernels of a given order, we will

follow the procedure described in Appendix B.

The entire procedure for a combined estimator includes the following steps: (i)

compute the rule-of-thumb bandwidth and otherm−1 bandwidths; (ii) find the density

estimators for all smoothing functions and bandwidths; (iii) estimate the biases and

the covariance matrix; and (iv) find the optimal weights for the linear combination and

compute (5).

5 Performance of the combined estimator

5.1 The DGP and combined estimator of density

We consider three different density functions.

For the first model we use the standard normal distribution: f1(x) = φ(x). Its

density is infinitely differentiable and very smooth; thus, the density estimator evalu-

ated at the rule-of-thumb bandwidth should be the optimal choice. The properties of

kernel density estimators for this case are well established and it is important to see

14



how the combined estimator will perform. The combined estimator is not expected to

outperform the standard kernel density estimator. The question is, how much worse

it will fare. The extra noise in the combined estimator relative to the optimal one is

introduced by estimators of biases and the covariance matrix.

In the second model we consider the normal mean mixture f2(x) = 0.5φ(x) +

3φ(10(x − 0.8)) + 2φ(10(x − 1.2)) analyzed by Hardle et al (1998). This density is

also infinitely differentiable; however, it is trimodal and much more wiggly than the

standard normal density. Theoretically, its rate of convergence can be made very close

to the square root of n and is determined in practice, as well as for the standard normal

distribution, by the order of the smoothing function. The rule of thumb, designed for

bell-shaped symmetric functions, will not be optimal in this case but should produce

an estimator converging at the rate n−2/5.

The third model contains a non-smooth density that satisfies the Lipschitz condition

everywhere except x = −2, where it is discontinuous. The rule of thumb bandwidth

will converge to zero too slowly, while the combined estimator is expected to perform

well everywhere outside of a small neighbourhood of −2, where the density does not

satisfy Assumption 1b.

f3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5.25− 5x if x ∈ [0.95, 1.05],

0.5 if x ∈ [0, 0.95),

0.5 + 5x if x ∈ [−0.1, 0),

− 1
38
− 10

38
x if x ∈ [−2;−0.1),

0 otherwise.
The sample sizes considered in the experiments are n = 1000, 2000, and 4000. 2000

replications per model were performed. The combined estimators are constructed using

three bandwidths: hopt = rule of thumb, hopt/2 and hopt/4.

The results for two different sets of kernels are reported. In both studies we estimate

MSEs at 121 points between -3 and 3, and compute simulated MISEs (integrated mean
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squared errors).

In the first study we use just one kernel of order two, the standard normal den-

sity K2. The largest bandwidth is estimated according to the “better rule of thumb”

0.9An−1/5, where A = min(sd,R/1.34), R is the interquartile range, and sd is the stan-

dard deviation. The results are obtained for (i) the standard kernel density estimator

with the “better rule of thumb” bandwidth hopt; (ii) the least squares cross validation

method; and (iii) the combined estimator. For cross validation we performed a grid

search over 75 bandwidths, starting with hopt/25 and the increment hopt/25.

The algorithm for the least squares cross validation is discussed in Silverman (1986).

Since the LSCV estimator is optimal under very weak conditions, it should have quite

small MSE and MISE (integrated mean squared error) in each case. The major problem

with the LSCV estimator is its long computational time. On the computer with proces-

sor AMD Athlon64 3000+, when the sample size is 4000 and the underlying density

is the standard normal, it takes 3 min per replication to calculate both the combined

estimator and the LSCV estimator at 121 points while only 0.007 min to compute the

combined estimator alone (although with the combined estimator we reestimate the co-

efficients at each point, and the LSCV bandwidth is determined just once); the results

for 8000 observations are 12 minutes versus 0.014 min.

In the second study the combined estimator is based on two orthogonal kernels of

order 3, defined on [-1,1]:

K3a(x) = 105
64
(1− 3x2)

¡
1 +
√
23x

¢
(1− x2)

2
I(|x| ≤ 1) and

K3b(x) = 105
64
(1− 3x2)

¡
1−
√
23x

¢
(1− x2)

2
I(|x| ≤ 1).

These kernels are asymmetric and may be more appropriate for modelling irreg-

ular densities. But if the density function is regular and is more than three times

differentiable, asymptotic biases for the two functions are opposite in sign and equal

in absolute value and a simple average of these two estimators may produce variance

reduction by a factor of 2 and a bias reduction equivalent to using some fourth-order
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kernel. We also analyze how sensitive the combined estimator is to the choice of kernels

when each kernel in the combination is far from the optimal. The rule of thumb corre-

sponds to 2.85sd × n−1/7. The MSE (Fig. 1, 2) and MISE (Table 1) are provided for

both individual kernel estimators at the rule-of-thumb bandwidth and for the combined

estimator.

The combined estimators are constructed as described in Section 4.2.

5.2 Summary of the results

Standard normal density.

When the true data-generating process is the standard normal density, simple ker-

nel density estimators perform uniformly better than the combined ones. This is not

surprising since the rule of thumb yields the optimal kernel when the density is nor-

mal. The combined estimator based on three simple kernel estimators with the same

Gaussian kernel and different bandwidths is noticeably more erratic and amplifies those

small deviations from the true density that we observe in the rule-of-thumb and cross-

validated estimates. Still, the combined estimator does not significantly distort the

shape of the density. It is interesting that the 3rd order kernels do not perform as well

as the second order kernel, the lack of symmetry being a more important factor than

the potential bias reduction due to the higher kernel order. On average, the MSE of

the combined estimator is 2.5 - 3 times larger than the MSE of the standard estimator.

Both MSEs, however, are very small in absolute terms. The cross-validated estimator

performs slightly worse than the standard kernel estimator of order 2 but is better

than the combined estimators. The combined estimator based on the two asymmetric

functions is somewhat less accurate than the combined estimator on the basis of the

symmetric kernel.

Mixture of normal densities (Fig. 1).
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The rule-of-thumb bandwidth strongly oversmoothes the mixture of normal densi-

ties, so that instead of two narrow and high peaks on the right we observe one peak

which is wide and low. In Fig. 1 we see that the standard estimator has a very definite

oscillating pattern of the MSE, and this oscillation becomes even more pronounced in

the case of the two asymmetric kernels. The peaks correspond to the points of local

extrema of the density function. The smallest values of the MSE of standard estimators

are achieved on the segments of the density function that can be well approximated by

a straight line. The combined estimators model very well the right half of the density

but are somewhat wiggly on the left, where the density is smooth and flat. Both com-

bined estimators have a very stable and low MSE everywhere, with maximum values

more than 10 times lower than MSE of standard estimators. The cross-validated esti-

mator behaves similarly to the combined estimators. With this irregular but infinitely

differentiable density, the combined estimator from the second study constructed from

asymmetric higher-order kernels achieves higher precision than the combined estimator

on the basis of the symmetric function. Individual asymmetric estimators do not detect

both peaks in the mixture of normal densities, while the combined estimator does it

very well.

Non-smooth density (Fig. 2).

The case of a non-smooth density demonstrates that the rule-of-thumb estimator

does not model well sharp features of the density. The LSCV and combined estimator

oscillate a lot but can identify abrupt changes in the pattern. It is worth noting that

steep increase and decrease of the density at x = 0 and x = 1 are modelled very well

whereas the jump at x = −2 is oversmoothed (since the density is not continuous at

this point, the asymptotic results from Section 3 are not applicable). In Fig. 2 (the

non-smooth density) the combined estimators clearly dominate the standard estimators

in precision. For both types of estimators, the points where the density is not smooth

(x = −2,−0.1, 0, 0.95, 1.05) cause substantial increases in the MSE but non-smoothness
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affects standard estimators over larger intervals. At x = −2 the density is discontinuous,

therefore the combined estimators are not expected to perform well either. The cross-

validated estimator has more uniform MSE than the combined estimators but their

MISEs are very close.

The values of MISE in Table 1 confirm that in the absence of information about the

smoothness of the density the combined estimators provide more reliable results than

the standard kernel estimators. The combined estimators do not outperform the least

squares cross validation method, which is shown to be optimal for bounded densities

(Stone 1984), however the combined estimators can be computed much faster for large

sample sizes since their computational time is of order n while for the cross validation

it is O(n2).

When using a combined estimator, we may lose some efficiency in cases of smooth

symmetric densities. Since such densities are usually estimated very precisely, the

difference in MSEs of standard and combined estimators is not large in absolute terms.

At the same time, when the density is not smooth or well behaved, standard estimators

can be seriously biased and the improvement offered by combined estimators is very

significant.
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Appendix A: Proofs of theorems

Proof of Theorem 1.

From definition (4) we have that

n1/2h1/2B(K,h, x) = n1/2h1/2(Ef̂(x)− f(x))

= n1/2h1/2
h
f̂(x)− f(x)

i
− n1/2h1/2

h
f̂(x)−Ef̂(x)

i
.

In condition (a) of the Theorem 1 the left-hand side is o(1), thus using (3) proves

(a).

Similarly, if condition (b) holds then

n1/2h1/2
h
f̂(x)− f(x)

i
− n1/2h1/2

h
f̂(x)−Ef̂(x)

i
−B(K) = o(1),

and (b) follows from (3).

For (c) we get from (3) that

(nh)
1
2

³
f̂(x)−Ef̂(x)

´
= Op(1) and therefore

n1/2h1/2
h
f̂(x)− f(x)

i
− n1/2h1/2B(K,h, x) = Op(1).

Since
¡
n1/2h1/2 |B(K,h, x)|

¢−1
= o(1), we can show that¡

n1/2h1/2 |B(K,h, x)|
¢−1 h

n1/2h1/2
h
f̂(x)− f(x)

i
− n1/2h1/2B(K,h, x)

i
= op(1)

and (c) obtains.¥

Proof of Theorem 2.

To prove Theorem 2 we need to consider covariances between the η(h,K).

For (a), consider first estimators that satisfy condition (a) of Theorem 1. Recall from

Theorem 1 (a) that Eη(hi, Kj) → 0, therefore the covariance matrix is determined by

the value of E(η(hi1, Kj1)η(hi2, Kj2)).

Since xs is independent of xt as long as s 6= t, their functions Kj1(
Xs−x
hi1

) and

Kj2(
Xt−x
hi2

) are also independent. We have that

E(η(hi1,Kj1)η(hi2,Kj2))

20



= n (hi1hi2)
1
2 E

h³
1

nhi1

P
Kj1(

Xs−x
hi1

)− f(x)
´³

1
nhi2

P
Kj2(

Xt−x
hi2

)− f(x)
´i

= n (hi1hi2)
1
2 1
n2hi1hi2

P
EKj1(

Xi−x
hi1
)Kj2(

Xi−x
hi2
)

+n (hi1hi2)
1
2 [ 1

n2hi1hi2

P
l 6=mEKj1(

Xl−x
hi1
)EKj2(

Xm−x
hi2

)

−f(x) 1
nhi1

P
EKj1(

Xl−x
hi1
)− f(x) 1

nhi2

P
EKj2(

Xl−x
hi2
) + f(x)2]

= n (hi1hi2)
1
2 1
n2hi1hi2

P
EKj1(

Xi−x
hi1
)Kj2(

Xi−x
hi2
)

+n (hi1hi2)
1
2

h³
1

nhi1

P
EKj1(

Xs−x
hi1

)− f(x)
´³

1
nhi2

P
EKj2(

Xt−x
hi2

)− f(x)
´i

−n−1 (hi1hi2)
−1
2
P

EKj1(
Xi−x
hi1
)EKj2(

Xi−x
hi2
)

= n (hi1hi2)
1
2 1
n2hi1hi2

P
EKj1(

Xi−x
hi1
)Kj2(

Xi−x
hi2
) + o(1)

The last equality follows from condition (a): n1/2h1/2B(K,h, x) → 0 for all K and

h, the relationship 1
h
EK(Xs−x

h
)− f(x) = B(K,h, x) and Assumption 3b.

For the first term, introduce a new variable q = hi1/hi2 and compute the expectation

as hi1 → 0:

q
1
2

nhi1

P
EKj1(

Xi−x
hi1
)Kj2(

q(Xi−x)
hi1

) = q
1
2

hi1

R
Kj1(

w−x
hi1
)Kj2(

q(w−x)
hi1

)f(w)dw

z=w−x
hi1= q

1
2

R
Kj1(z)Kj2(qz)f(x+ hi1z)dz = q

1
2f(x)

R
Kj1(z)Kj2(qz)dz + o(1).

Thus,

E(η(hi1,Kj1)η(hi2,Kj2)) = q
1
2f(x)

R
Kj1(z)Kj2(qz)dz + o(1).

If q →∞ or q → 0, q
1
2f(x)

R
Kj1(z)Kj2(qz)dz → 0 under Assumption 2.

Then consider for λ : λ0λ = 1 variables zin = λ0Σ−1/2ηi, where Σ = V ar(ηa). Using

Assumption 2(c) that
R
K(z)2+δdz < ∞ for some δ > 0, it can be shown that some

higher moment of z2in exists (see Pagan and Ullah (1999, p. 40)) and so the Lyapunov

condition is satisfied. By Lyapunov’s central limit theorem we have zin
d→ N(0, 1). Part

(a) follows by Cramer-Wold theorem.

Part (a) for bandwidths corresponding to condition (b) of Theorem 1 is obtained

similarly by noting that it implies 0 < hi1/hi2 = q <∞ when m0 < i1,i2 ≤ m00.

Part (b) follows from (b) of Theorem 1. For (c) the covariances are zero because

the estimators have different convergence rates.¥
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Appendix B: Polynomial kernels

The smoothing functions are selected to be polynomials that satisfy these assumptions:

(a) The smoothing function K is a continuously differentiable function with support

in [−1, 1];

(b)
R
K(w)dw = 1;

(c) K is a kernel function of order s:
R
wiK(w)dw = 0 if 0 < i < s, s ≥ 2.

Consider an n-degree polynomial,
nP
i=0

aix
i.

If the following restrictions are imposed on the coefficients of the polynomial:

1. K(−1) = K(1) = 0 :
nP
i=0

ai(−1)i = 0;
nP
i=0

ai = 0;

2. K 0(−1) = K 0(1) = 0 :
nP
i=0

iai(−1)i−1 = 0;
nP
i=0

iai = 0;

3.
R
K(w)dw = 1 :

nP
i=0

ai
i+1
(1− (−1)i+1) = 1;

4.
R
wK(w)dw = 0 :

nP
i=0

ai
i+2
(1− (−1)i+2) = 0,

then the quartic second-order kernel can be obtained:

K = 15
16
(1− x2)

2
.

To construct orthogonal kernels, add the requirement

5.
R
Ki(x)Kj(x)dx = 0, for i 6= j.

It may be helpful to work with pairs of asymmetric kernels such as

6. Ki(x) = Kj(−x).

Finally, for the 3rd-order kernels

7.
R
w2K(w)dw = 0.

We construct two kernels of third order, K3a and K3b, that satisfy conditions 1-7:

K3a(x) = 105
64
(1− 3x2)

¡
1 +
√
23x

¢
(1− x2)

2 and

K3b(x) = 105
64
(1− 3x2)

¡
1−
√
23x

¢
(1− x2)

2
.
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Table 1. Integrated mean squared errors of kernel density estimators

kernel K2 K2 K2 K3a K3b K3ab

density method standard LSCV comb2 standard standard comb33

normal n = 1000 0.00112 0.00137 0.00307 0.00267 0.00269 0.00388

n = 2000 0.00066 0.00077 0.00178 0.00151 0.00150 0.00217

n = 4000 0.00039 0.00044 0.00104 0.00085 0.00085 0.00121

mixture n = 1000 0.0721 0.0087 0.0083 0.1483 0.1493 0.0065

n = 2000 0.0617 0.0050 0.0047 0.1340 0.1342 0.0036

n = 4000 0.0507 0.0029 0.0028 0.1237 0.1237 0.0020

non- n = 1000 0.0362 0.0117 0.0113 0.0816 0.0901 0.0118

smooth n = 2000 0.0306 0.0084 0.0084 0.0693 0.0776 0.0089

n = 4000 0.0259 0.0064 0.0066 0.0603 0.0686 0.0071
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List of Figures

Figure 1. Mean squared errors for the mixture of normal densities

Figure 2. Mean squared errors for the non-smooth density
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