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Abstract

If agents negotiate openly and form coalitions, can they reach e¢ cient

agreements? We address this issue within a class of coalition formation games

with externalities where agents� preferences depend solely on the coalition

structure they are associated with. We derive Ray and Vohra�s (1997) notion

of equilibrium binding agreements using von Neumann and Morgenstern ab-

stract stable set and then extend it to allow for arbitrary coalitional deviations

(as opposed to nested deviations assumed originally). We show that, while the

extended notion facilitates the attainment of e¢ cient agreements, ine¢ cient

agreements can nevertheless arise, even if utility transfers are possible.
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1 Introduction

If agents negotiate openly and are able to form coalitions, can they reach e¢ cient

agreements? We address this issue within a class of simple coalition formation games

with externalities where each agent�s preferences depend only on the coalition struc-

ture or partition of the agents. Arguably, if binding agreements can be written

without any informational imperfections, then all the gains from cooperation should

be extracted. The resulting agreement must be Pareto-optimal; moreover, if utility

is transferable, aggregate surplus must be maximized. Such an assertion encapsu-

lates the Coase (1960) theorem. However, in Ray and Vohra (1997), it is shown

that when coalitions can form, e¢ ciency can no longer be guaranteed. Indeed, the

authors de�ne the notion of equilibrium binding agreements (henceforth EBA) for

strategic form games, a more general framework than ours, and construct examples

where the only agreements that can be reached are ine¢ cient, even when utility is

transferrable. This negative result1 casts a shadow on the validity of Coase theorem

in environments where coalitions can form.

What is even more puzzling is that in Ray and Vohra�s notion agents are sophisti-

cated. In particular, they are assumed to be farsighted in that when contemplating a

deviation, a coalition takes into consideration that further deviations may occur and

that other deviating coalitions also apply similar reasoning. For farsighted agents,

it is the �nal agreement their deviations lead to that matters. Moreover, agents

examine the credibility of the �nal outcome, thus, the notion is de�ned consistently.

One feature of EBA is the assumption of internal deviations, that is, only a subset

of an existing coalition can deviate. The negotiation process underlining EBA is as

follows: Starting with the grand coalition a subset of agents can break away antic-

ipating that other coalitions (subsets) may further break apart. While this feature

makes a recursive de�nition possible, it precludes the possibility of coalition merging

and renegotiation. As Ray and Vohra (1997) wrote,

We must state at the outset that our treatment is limited by the

assumption that agreements can be written only between members of an

existing coalition; once a coalition breaks away from a larger coalition it

cannot forge an agreement with any member of its complement. Thus,

deviations can only serve to make an existing coalition structure �ner

never coarser. This is also the assumption in the de�nition of a coalition

proof Nash equilibrium. It must be emphasized that an extension of

1Similar negative results also appear in Bloch (1996) and Ray and Vohra (1999) among others.
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these notions to the case of arbitrary blocking is far from trivial. (p.33)

It remains an interesting question whether ine¢ ciency arises due to the restric-

tion of internal deviations. Within our framework, we extend the de�nition of EBA

to allow for arbitrary coalitional deviations and, hence, an open and unrestricted

negotiation process. Starting with any coalition structure (including the grand coali-

tion), any coalition, not necessarily a subset of an existing one, can deviate and bring

about a new coalition structure. Put di¤erently, even if agents temporarily belong to

some coalition they are not prevented from being in contact with members of other

coalitions and orchestrating a joint objection/deviation. With open negotiations it

is no longer necessary to start with the grand coalition as a coalition structure is

reachable from any other structure.

In order to formalize our extension we �rst reformulate Ray and Vohra�s de�ni-

tion using von Neumann and Morgenstern (1944) stable set. Such a reformulation is

akin to that of coalition proof Nash equilibrium2 (Bernheim, Peleg, and Whinston,

1987) by Greenberg (1989) and it o¤ers a simple de�nition of EBA in our frame-

work. More importantly, the use of stable set enables us to deal with the circularity

that results from allowing arbitrary coalitional deviations while maintaining consis-

tency as in the original de�nition of EBA. Can ine¢ cient outcomes emerge from

an open, unrestricted negotiation as entailed by the new de�nition? We show that

while the assumption of internal deviations hinders e¢ ciency to some extent, ine¢ -

cient agreements can still arise in open unrestricted negotiations. In particular, we

identify a class of games where e¢ ciency can be attained and construct a counter

example where no agreement is e¢ cient. We also analyze the consequence of trans-

fers. Although transfers further facilitate the attainment of e¢ cient agreements, we

construct a robust example where only ine¢ cient agreements can emerge from open

negotiations. The negative results reinforce the ine¢ ciency puzzle posed by Ray

and Vohra (1997).

In the negotiation process underlining our extension of EBA, it is feasible for any

coalition to form and object to/deviate from any coalition structure. However, being

farsighted, a coalition engages in a deviation if and only if it can ultimately bene�t

from doing so. Therefore, a coalition structure is �stable�if no coalition wishes to

deviate, anticipating the �nal outcome its deviation may lead to and a coalition

2Note that the di¤erence between EBA and coalition proof Nash equilibrium (CPNE) lies

beyond the fact that the former considers binding agreements. In the de�nition of EBA, agents

are farsighted in that each coalition considers the �nal outcome its deviation leads to, while in the

de�nition of CPNE, a deviating coalition takes its complement�s choice as given.
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structure is �unstable�as long as one coalition wishes to deviate, again anticipating

the �nal outcome of its deviation. While our approach captures the foresight of

sel�sh agents, it di¤ers from the sequential �non-cooperative�approach of coalition

formation (at least) in that we do not specify the exact order with which individual

agents act. Moreover, in the latter approach additional restrictions are often placed

on the coalition formation process. For instance, Bloch (1996) studies the same class

of games as ours in a noncooperative framework of sequential coalition formation,

while Ray and Vohra (1999)3 study a more general framework with endogenized

payo¤ division. A common feature of their models is that once a coalition forms,

the game is only played among the remaining players and established coalitions may

not seek to attract new members nor break apart. The requirement for coalitions to

commit plays an important role in determining the equilibrium coalition structures4.

However, ine¢ cient coalition structures can arise in their equilibria as well.

The organization of the paper is as follows: After the presentation of the prelim-

inaries in the next Section we reformulate EBA in Section 3 and extend the notion

in Section 4. Section 5 presents su¢ cient conditions for a game to admit e¢ cient

coalition structures and a counter example where no agreement is e¢ cient. In Sec-

tion 6 we discuss the impact of transfers. Section 7 concludes the paper. Detailed

analysis of the �rst counter example is delineated in the appendix.

2 Preliminaries

We start with some basic notations:

� Let N be a �nite set of players.

� A coalition S is a non-empty subset of N:

� A partition of S � N is P = fS1; S2; :::; Skg such that
Sk
j=1 Sj = S and for all

i 6= j; Si
T
Sj = ; and P(S) is the set of partitions of S: A partition of N is

called a coalition structure and P � P(N) is the set of all coalition structures:

In the simple coalition formation games with externalities we study here, each

player�s preferences depend on the entire coalition structure. Formally, a simple

3See also Ray and Vohra (2001).
4Macho-Stadler, Pérez-Castrillo and Porteiro (2002) analyze a Cournot oligopoly, a special case

of the class of games we study here. They assume that coalitions form by merging bilaterally,

thereby relaxing the commitment of a formed coalition. They show that if the number of �rms is

su¢ ciently large then the monopoly (grand coalition) is the equilibrium outcome.
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coalition formation game with externalities G is (N; f�igi2N) or (N; fuigi2N) where

� N is the �nite set of players;

� for all i 2 N , �i is a complete, re�exive, and transitive binary relation on
P ; the set of coalition structures, �i denotes the asymmetric part of �i (i.e.,
strict preferences) and �i the indi¤erence relation;

� for all i 2 N; ui : P ! < is i�s payo¤ function.

Throughout this paper we write P �S Q for P;Q 2 P and S � N; if P �i Q or
ui(P ) > ui(Q) for all i 2 S:
The simple class of games we study here extends the class of �hedonic games�

[see, e.g., Banerjee, Konishi and Sönmez (2001), Bogomolnaia and Jackson (2002),

Barberà and Gerber (2003), and Diamantoudi and Xue (2003)], where each agent�s

preferences depend only on the coalition he belongs to. The class of games studied

in this paper can also be viewed as a special class (with �xed payo¤ division) of

partition function games introduced by Thrall and Lucas (1963), which, in turn, is

a special case of normal form TU games studied by Zhao (1992). Yi (1997) studies a

more restricted class of games than ours; in particular, he studies symmetric games

and examines three models of coalition formation: simultaneous coalition formation

model of Yi and Shin (1995), sequential coalition formation model of Bloch (1996),

and EBA of Ray and Vohra (1997). Moreover, Yi classi�es symmetric games into

two categories, one with positive externalities (e.g., Cournot oligopoly, a class of

public good economies) and one with negative externalities (e.g., customs unions).

3 EBA and Ine¢ ciency

As discussed in the introduction, Ray and Vohra�s (1997) notion of EBA is de�ned

for strategic form games, a more general framework than ours. We shall �rst adapt

their de�nition to our setting. The negotiation process underlying EBA is as follows.

Suppose the grand coalition N is under consideration. A coalition S ( N can break

away from N and in doing so, it induces the coalition structure fS;N n Sg. This
coalition structure is likely to be a temporary one since S or N nS may further break
apart. More generally, given a coalition structure P 2 P, any coalition T ( S, for
some S 2 P; can break away from S. In addition, once T breaks away from S, it

cannot forge an agreement with any member of N n S; thus, deviations can only
lead to �ner coalition structures. Such an �internal�or �nested�deviation can be

formalized as follows.
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Internal Coalitional Deviation Given a coalition structure P 2 P and some

S 2 P; coalition T ( S; by breaking away from S; induces a temporary

coalition structure given by P 0 = P nfSg [ fT; S n Tg: We write P
T� P 0 in

this case. Call Q a re�nement of P if Q can be reached from P through a

sequence of nested coalitional deviations.

Agents are assumed to be farsighted: Each deviating coalition or perpetrator,

following Ray and Vohra (1997), is aware that further deviations may occur; thus,

in contemplating a deviation, a coalition considers the ultimate consequence of its

deviation. Given the nature of the negotiation process, EBA can be de�ned recur-

sively.

� Start with the �nest coalition structure, �P , of singleton coalitions. Since no
further deviations are possible, �P is the �nest EBA.

� Now consider a coalition structure P such that P
T� �P ; thus, P comprises all

singleton coalitions but one coalition of size 2. Let fijg 2 P: Then P is an

EBA if and only if neither i nor j has an incentive to break away from the

coalition and induce �P :

...

� Consider Q 2 P. Suppose EBAs have been de�ned for all re�nements of Q:
Then Q is an EBA if and only if it is not �blocked�by another EBA Q0: Q is

blocked by Q0 if Q0 is an EBA and it can be can reached from Q via a sequence

of internal coalitional deviations (i.e., Q0 is a re�nement of Q) such that

� each deviating coalition/perpetrator5 belongs to Q0,

� one of the deviating coalitions (the leading perpetrator) prefers Q0 to Q;
and

� any coalition structure attained by re-merging of the other perpetrators
with their corresponding residual coalitions (new coalitions in Q0 other

than the perpetrators) is blocked by Q0 with one of these perpetrators as

a leading perpetrator.

Given that deviations can only make a coalition structure �ner, never coarser

it is necessary that the negotiation process starts from the grand coalition. The

5If a coalition in Q breaks into k coalitions in Q0 then k� 1 of these coalitions can be identi�ed
as deviating coalitions or perpetrators while the remaining coalition is labeled as residual coalition.
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solution of a game is, therefore, de�ned to be the set of coarsest EBAs. Note that in

the above recursive de�nition of EBA, the notion of �blocking�itself is also de�ned

recursively. To formalize this notion of blocking, we �rst introduce the following

de�nition.

De�nition 1 P 0 is RV-reachable from P via coalitions/perpetrators T 0; T 1; � � � ; T k�1

if T j 2 P 0 for all j = 0; � � � ; k � 1 and P 0
T 0� P 1

T 1� P 2
T 2� P 3

T 3� P 4:::P k�1
Tk�1� P k

where P 0 = P and P k = P 0: If, in addition, P j �T j P 0, for all j = 0; � � � k� 1; P 0 is
said to sequentially dominate6 P; or P 0 �Seq P; through coalitions T 0; T 1; � � � ; T k�1:

Given that all perpetrators T 0; T 1; � � � ; T k�1 are in the �nal coalition struc-
ture P 0, if P 0 is RV-reachable from P via T 0; T 1; � � � ; T k�1 then P 0 is also RV-
reachable via any re-ordering of T 0; T 1; � � � ; T k�1: Moreover, given the set of per-
petrators T 0; T 1; � � � ; T k�1 in P 0 one can uniquely identify the set of residual coali-
tions, P 0 n

�
P [

�
T 0; T 1; � � � ; T k�1

	�
, which are new coalitions in P 0 but not ac-

tive deviators. Therefore, any re-merging of perpetrators and their correspond-

ing residuals generates an intermediate coalition structure that is RV-reachable

from P via a subcollection of
�
T 0; T 1; � � � ; T k�1

	
: Ray and Vohra�s (1997) de-

�nition of EBA does not simply employ sequential dominance as de�ned above

for the following consideration: Suppose that P 0 sequentially dominates P via

P 0
T 0� P 1

T 1� P 2
T 2� P 3

T 3� P 4:::P k�1
Tk�1� P k where P 0 = P and P k = P 0; and

P 0 is an EBA. To rule out P as an EBA on the basis that P 0 sequentially dominates

P implies that T 0; in contemplating its deviation, is certain/optimistic about the

exact order of other coalitional deviations. To circumvent this optimism, Ray and

Vohra (1997) de�ne the following dominance relation (RV-dominance, henceforth):

De�nition 2 P 0 RV-dominates P; or P 0 �R&V P; if there exist T 0; T 1; � � � ; T k�1 2
P 0 such that

(1) P 0 is RV-reachable from P via T 0; T 1; � � � ; T k�1,

(2) P �T P 0 for some leading perpetrator T 2
�
T 0; T 1; � � � ; T k�1

	
; and

(3) if Q = P̂ or Q is RV-reachable from P̂ via a subcollection of
�
T 0; � � � ; T k�1

	
n

fTg; where P
T� P̂ ; then Q is RV-dominated by P 0 with some S 2 fT 0; � � � ;

T k�1g n fTg as the leading perpetrator.
6In the orginal de�nition of sequential dominance in Ray and Vohra (1997), the condition that

T j 2 P 0 for all j is not imposed.
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Note that the above de�nition is recursive. In particular, condition (3) implies

that no matter in which order coalitions in
�
T 0; T 1; : : : ; T k�1

	
nfTg deviate, every

intermediate coalition structure generated as a result is RV-dominated by P 0: Once

RV-dominance is formulated, EBA can now be de�ned: The �nest coalition struc-

ture, �P , of singleton coalitions is an EBA since no further deviations are possible.

P is an EBA if and only if it is not RV-dominated by another EBA. The fact that

a coalition structure is an equilibrium binding agreement if and only if it is not

�defeated�by another equilibrium binding agreement signi�es the consistency em-

bedded in the de�nition of EBA. Such consistency is precisely what is captured by

�von Neumann and Morgenstern (vN-M) stable set�. A vN-M stable set is a set of

agreements, called a solution set, that is free of inner contradictions and accounts for

every elements it excludes; in particular, no agreement in the solution set is defeated

by another agreement in the same solution set and if an agreement is excluded from

the solution set, it must be defeated by an agreement in the solution set. More

formally,

vN-M stable set of (P ; >): Let > be a binary relation on P and R � P. Then,

� R is vN-M internally stable for (P ; >) if there do not exist P; P 0 2 R
such that P 0 > P ;

� R is vN-M externally stable for (P ; >) if for all P 2 P n R; there exists
P 0 2 R such that P 0 > P .

� R is a vN-M stable set for (P ; >) if it is both internally and externally
stable.

Within our framework, Ray and Vohra�s (1997) EBA can be reformulated as a

vN-M stable set7.

EBA (A Reformulation) Let 
 be the vN-M stable set of (P ;�R&V ): Then P

is an EBA if and only if P 2 
: The coarsest coalition structures in 
 are
referred to as the solution of the game8.

7This reformulation of EBA using a vN-M stable set cannot be directly generalized to strategic

form games.
8The uniqueness of the vN-M stable set for (P;�R&V ) follows from the acyclicity of �R&V :

Moreover, the vN-M stable set of (P;�R&V ) is di¤erent from the core of (P;�R&V ) because of

the presence of externalities. In the context of cooperative games, when only internal deviations

are allowed, the stable set and the core are closely related [see Ray (1989) and Greenberg (1990)].
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Ray and Vohra (1997) show that if P 0 �R&V P then P 0 �Seq P: The following

lemma characterizes RV-dominance using sequential dominance.

Proposition 1 P 0 RV-dominates P if and only if there exists T 0; T 1; � � � ; T k�1 2 P 0

(with T 0 being the leading perpetrator) such that

(a) P 0 sequentially dominates P via T 0; T 1; � � � ; T k�1 and

(b) if Q = P̂ or Q is RV-reachable from P̂ via a subcollection of
�
T 1; � � � ; T k�1

	
;

where P
T 0� P̂ ; then P 0 sequentially dominates Q via a subcollection of fT 1; : : : ;

T k�1g:

Proof. Only if: Suppose P 0 RV-dominates P via a collection of perpetrators�
E0; � � � ; Ek�1

	
: We �rst show part (a). Let T 0 be the leading perpetrator and Q1

be such that P 0
T 0� Q1: Then, by de�nition, P �T 0 P 0 and Q1 is RV-dominated via�

E0; � � � ; Ek�1
	
nfT 0g: Let T 1 be the leading perpetrator and Q1

T 1� Q2: Then by

de�nition, Q1 �T 1 P 0 and Q2 is RV-dominated via
�
E0; � � � ; Ek�1

	
nfT 0; T 1g : Con-

tinuing in this fashion, we obtain T 0; � � � ; T k�1 such that P 0 sequentially dominates
P via T 0; � � � ; T k�1: Part (b) can be proved by similar constructions.
If: The proof is by induction on `; the number of coalitions via which P 0 can be

reached from P: If ` = 1; (3) in De�nition 2 and (b) in Proposition 1 are super�uous

and (a) in Proposition 1 implies (1) and (2) in De�nition 2. Now, assume that (a)

and (b) imply (1), (2), and (3) for all ` < k: To show that (a) and (b) imply (1),

(2), and (3) for ` = k; note that (a) implies (1) and (2) with T = T 0 as the leading

perpetrator. Let P
T� P̂ : Then by the induction hypothesis, P 0 �R&V P̂ via a

subcollection of
�
T 1; : : : ; T k�1

	
with some T̂ 2

�
T 1; : : : ; T k�1

	
as the leading per-

petrator; moreover, for all Q such that Q is RV-reachable from P̂ via a subcollection

of
�
T 1; : : : ; T k�1

	
; we have P 0 �R&V Q via a subcollection of

�
T 1; : : : ; T k�1

	
with

some ~T 2
�
T 1; : : : ; T k�1

	
as the leading perpetrator. Therefore, P 0 �R&V P:

The following Corollary points to another alternative de�nition of RV-dominance

that is not explicitly recursive.

Corollary 1 P 0 RV-dominates P if and only if there exist perpetrators T 0; � � � ;
T k�1 such that

(1) P 0 is RV-reachable from P via T 0; � � � ; T k�1,

(2) P �T 0 P 0 and
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(3�) if Q = P̂ or Q is RV-reachable from P̂ via a subcollection of
�
T 1; � � � ; T k�1

	
;

where P
T 0� P̂ ; then there exists S 2

�
T 1; T 2; : : : ; T k�1

	
nQ such that Q �S P 0:

Proof. Only if: Following from Proposition 1 and the de�nition of sequential

dominance.

If: From any Q as de�ned in (3�) we can construct a sequence of coalitions

such that P 0 sequentially dominates Q via this sequence of coalitions. Also, P 0

sequentially dominates P given that P 0 sequentially dominates P̂ and P �T 0 P 0:
Thus, by Proposition 1 P 0 �R&V P:

The reformulation of EBA with vN-M stable set does not only o¤er a simple

de�nition of EBA but also enables us to extend it in various directions. One of the

motivations for extending it was the ine¢ ciency puzzle presented in Ray and Vohra

(1997): although binding agreements are possible, ine¢ cient outcomes can, never-

theless, emerge. The following example illustrates the inability of players to reach

e¢ cient binding agreements9. In the table below are the payo¤ vectors associated

with ten partitions and all other partitions are assumed to yield 0 payo¤ vectors.

a b c d e

f123; 45g f234; 51g f345; 12g f451; 23g f512; 34g
5; 5; 5; 9; 9 5; 5; 5; 9; 9 5; 5; 5; 9; 9 5; 5; 5; 9; 9 5; 5; 5; 9; 9

f g h i j

f12; 34; 5g f23; 45; 1g f34; 51; 2g f45; 12; 3g f51; 23; 4g
4; 4; 4; 8; 8 4; 4; 4; 8; 8 4; 4; 4; 8; 8 4; 4; 4; 8; 8 4; 4; 4; 8; 8

Table 1

It is easy to see that f; g; h; i; and j are all EBAs. So are those for which f; g; h; i;

or j is not a re�nement (for example, f135; 24g). On the other hand, a; b; c; d and e
are not EBAs. Take a, for example. a is not an EBA because a

1� g and a �1 g or
a�R&V g: Therefore, all the EBAs of this game are ine¢ cient. Indeed, f; g; h; i; and

j are Pareto dominated by a; b; c; d and e, respectively and so are all other EBAs.

One might ask, why are matters not renegotiated at this stage to the dominating

outcome? The assumption of nested deviations rules out the possibility of such

renegotiation. As Ray and Vohra wrote,

9Ray and Vohra have a 3-player example of strategic form game where the only equilibrium

binding agreements are ine¢ cient. Because of the simpler framework we use, we need a 5-player

game to illustrate the ine¢ ciency of EBA.
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This is a serious issue that is neglected in our model, because we only

permit �internal�deviations. (p.51)

This is precisely the reason why we extend the de�nition of EBA to allow for

arbitrary coalitional deviations. Equipped with the notion of vN-M stable set, we can

de�ne a notion consistently (as the original de�nition) while allowing for arbitrary

coalitional deviations.

4 Extended EBA

In this section we extend the notion of EBA by relaxing the assumption of inter-

nal deviations and allowing arbitrary coalitions to deviate. Moreover, a deviating

coalition is not constrained to stay together; that is, we empower the deviating

coalition with the ability to restructure itself. These features (of open negotiation)

are introduced to facilitate the attainment of Pareto e¢ cient coalition structures10.

Given a coalition structure, when a coalition of players, T � N , deviates by

partitioning itself in a certain way, the new coalition structure is the one consisting of

the partition of T; all the una¤ected coalitions, as well as all the disrupted coalitions.

Formally, a coalitional deviation is de�ned as follows:

Coalitional Deviation Given a coalition structure P = fS1; � � � ; Skg 2 P, a coali-
tion T � N can reorganize itself to some partition fT1; � � � ; T`g 2 P(T ). The
resulting coalition structure, before any further regrouping and restructuring,

is P 0 2 P such that

(i) fT1; � � � ; T`g � P 0; that is, the new partitioning of T is included in the

new coalition structure.

(ii) 8j = 1; � � � ; k; Sj \ T 6= ; =) Sj n T 2 P 0; that is, the residuals of

all coalitions a¤ected by the deviation of T are also included in the new

coalition structure.

(iii) 8j = 1; � � � ; k; Sj \ T = ; =) Sj 2 P 0; that is, all those coalitions

that were una¤ected by the deviation of T remain members of the new

coalition structure.11

10Indeed, if we require the deviating coalition to stay together, the negative results remain while

some of our positive results (e.g., Proposition 2) can no longer hold.
11Note that points (ii) and (iii) can be written more concisely as follows: 8j = 1; :::; k; SjnT 6=

; =) SjnT 2 P 0:
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We write P T�! P 0 to denote that �T induces P 0 temporarily from P�.

Once it is precisely de�ned what a coalition can (directly) induce, we proceed

to de�ne our dominance relation. While myopic agents look only at the next step,

farsighted players consider the ultimate outcome of their actions. Thus, a coalition

may choose to �deviate�to a coalition structure, which does not necessarily make

its members better o¤, as long as its deviation leads to a �nal coalition structure

that bene�ts all its members; similarly, a coalition may choose not to deviate to a

coalition structure it prefers if its deviation eventually leads to coalition structures

that make its members worse o¤. Similar to the sequential dominance de�ned in

the previous section the following �indirect dominance12�captures foresight when

arbitrary coalitions can deviate.

Indirect dominance: P 0 indirectly dominates P; or P 0 � P; if there exist a se-

quence of coalition structures P 1; P 2; � � � ; P k 2 P, where P 1 = P and P k = P 0;
and a sequence of coalitions T 1; T 2; � � � ; T k�1 such that for all j = 1; � � � k � 1

(i) P j T j�! P j+1 and

(ii) P j �T j P 0:

An extended notion of EBA with unrestricted coalitional deviations can be de-

�ned consistently by using the vN-M stable set of (P ;�); where the RV-dominance,
�R&V ; is replaced with indirect dominance13, �.

Extended EBA (EEBA) Let Q � P be a vN-M stable set of (P ;�): P 2 P is

an extended EBA or EEBA if P 2 Q .

Given a vN-M stable set Q; if negotiation commences with some (stable) agree-
ment inQ, no coalition can ultimately bene�t from any deviation while starting with
any (unstable) agreement in P n Q, at least one coalition can bene�t ultimately by
initiating a deviation14. Although the vN-M stable set of (P ;�R&V ) has a similar

interpretation, �R&V stipulates that deviations can only be internal, and because

of this the solution of a game is considered to be coarsest partitions in the stable

set15.
12See also Harsanyi (1974), Chwe (1994) and Xue (1998).
13Note that with abritrary coalitional deviations we can no longer embed the conservative aspect

of RV-dominance.
14Thus, if all agents expect Q, Q will be �self-enforcing�. In fact, subgame perfect equilibrium

mapping (that speci�es the continuation equilibrium for each subgame) has a similar interpretation.
15For instance, the singleton partition is always in the stable set.
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Revisiting the example presented in the previous section we can see that e¢ ciency

can be restored. We will argue that a is an EEBA. Indeed, Q = fag is a vN-M stable

set of (P ;�): The following table summarizes how all other coalition structures are
indirectly dominated by a: Coalition structure p denotes any arbitrary coalition

structure that is not listed in Table 1.

a� b : b
4�! j

5�! f23; 1; 4; 5g N�! a a� g : g
5�! f23; 1; 4; 5g N�! a

a� c : c
5�! f

N�! a a� h : h
4�! f15; 2; 3; 4g N�! a

a� d : d
5�! f14; 23; 5g N�! a a� i: i

4�! f12; 3; 4; 5g N�! a

a� e : e
5�! f

N�! a a� j : j
5�! f23; 1; 4; 5g N�! a

a� f : f
N�! a a� p : p

N�! a

Table 2

Due to the symmetry of the game, b, c; d and e are also EEBAs: Moreover,

none of f; g; h; i and j is an EEBA. Assume in negation that there exists a vN-

M stable set Q of (P ;�) that supports an ine¢ cient coalition structure. Then,
given the indirect dominance relation depicted in Table 2, Q cannot contain any

of the e¢ cient outcomes due to internal stability. If, however, all a; b; c; d and

e are excluded, Q must contain more than one coalition structures to account for

their exclusion. For example, if j 2 Q; then j cannot dominate e: But, coalition
structures f; g; h; i and j dominate each other (and all of them dominate p) hence

they cannot coexist in Q: The following table illustrates how j indirectly dominates
every other ine¢ cient outcome. Similar arguments can be developed for the rest of

the outcomes due to the symmetry of the game.

j � f : f
3�! f12; 3; 4; 5g N�! j

j � g: g
4�! f23; 1; 4; 5g N�! j

j � h: h
3�! f15; 2; 3; 4g N�! j

j � i: i
4�! f12; 3; 4; 5g N�! j

j � p: p
N�! j

Table 3

Existence of vN-M stable set of (P ;�) is not guaranteed. Case in point is a
version of the roommate problem where fij; kg �i fik; jg �i fijkg �i fi; j; kg �i
fi; jkg and i prefers to have j as a roommate, while j prefers to have k as a roommate
and lastly k prefers to have i as a roommate. It is easy to see that no stable set

exists for this game since fij; kg � fjk; ig � fik; jg � fij; kg. While no two
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coalition structures can coexist in a stable set because of internal stability, a single

coalition structure is externally unstable. In contrast, all structures involving pairs

and the singletons structure are equilibrium binding agreements since the cyclicality

is assumed away through the assumption of internal deviations: once fijg are formed
j is not allowed to collude with k. Fortunately, the presence of cycles is not always

a problem as can be seen in the example in Table 1. In the following section we

identify classes of games where both existence and e¢ ciency problems are resolved.

Implicit in the de�nition of vN-M stable set is the optimism on the part of

deviating coalitions: a coalition engages in a deviation as long as its members bene�t

form one of the �nal outcomes its deviation may lead to. An alternative behavioral

assumption on deviating coalitions is caution: a coalition engages in a deviation if

its members bene�t form all the �nal outcomes its deviation may lead to. Under the

assumption of caution, a more inclusive notion (than vN-M stable set) can be de�ned

and existence is guaranteed in our framework. See Chwe (1994), Xue (1998) and

Diamantoudi and Xue (2003), among others, for notions that are built on cautious

behavior of deviating coalitions.

5 (In)E¢ ciency

5.1 Positive Results

To proceed with the study of e¢ ciency we need to distinguish between several no-

tions of e¢ ciency.

Pareto E¢ ciency P 2 P is Pareto e¢ cient if there does not exist P 0 2 P such

that P �N P 0:

Strong E¢ ciency P 2 P is strongly e¢ cient if there does not exist P 0 2 P such

that
P

i2N ui(P
0) >

P
i2N ui(P ):

When transfer payments within each coalition are possible, we need to consider

not only coalition structures but also payo¤allocations. Consider a partition P 2 P.
A payo¤ allocation x 2 <jN j is feasible for P if for all S 2 P;

P
i2S xi =

P
i2S ui(P ):

Pareto e¢ ciency is then de�ned as follows.

Pareto E¢ ciency (with transfers) (P; x); where P 2 P and x 2 <jN j is feasible
for P; is Pareto e¢ cient if there does not exist (P 0; x0) such that P 0 2 P,
x0 2 <jN j is feasible for P 0; and x0i > xi for all i 2 N:

14



The following simple example from Ray and Vohra (1997) illustrates the inability

of players to reach strongly e¢ cient binding agreements.

Ine¢ ciency Puzzle �A Cournot Oligopoly

The market demand is given by p = a � by; where p is the market price and
y is aggregate demand. We assume symmetric �rms with constant marginal cost

c: Consider a coalition structure P = fS1; S2; � � � ; Smg 2 P. Firms within the

same coalition cooperate by maximizing their joint pro�t, while coalitions behave

non-cooperatively across each other. Then, the pro�t of each �rm in Si is

�i =
1

si(m+ 1)2
(a� c)2
b

where si = jSij for all i = 1; :::;m:
The following table displays the per �rm pro�t for the simple case of n = 5

and (a�c)2
b

= 1: The last two columns indicate which coalition structures survive

the notion of Ray and Vohra (1997). In symmetric games, coalitions need to be

identi�ed only by their sizes. For example, h4; 1i denotes coalition structures with
a coalition of size 4 and a coalition of size 1.

Structure
size-wise

Perpetrator
size-wise

Per Firm Pro�t EBA

h5i � � 1
20

�
# 1

h4; 1i � � 1
36
; 1
9

�
# 2

h2; 2; 1i � � 1
32
; 1
32
; 1
16

X
# 1

h2; 1; 1; 1i � � 1
50
; 1
25
; 1
25
; 1
25

�
# 1

h1; 1; 1; 1; 1i � � 1
36

X

Table 4

h2; 2; 1i associated with per �rm pro�t of 1
32
; 1
32
and 1

16
is the coarsest EBA16.

h2; 1; 1; 1i ; on the other hand is not an equilibrium coalition structure because the

size-2 coalition will have incentive to break apart. h2; 2; 1i is an EBA because if a
coalition of size 2 breaks apart and induces h2; 1; 1; 1i, the other coalition of size
16To be more precise, all coalition structures with 2 size-2 coalitions and 1 singleton are EBAs.
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2 will also break apart as we already argued and they will end up at the �nest

structure h1; 1; 1; 1; 1i which makes the members of the �rst doubleton worse o¤.
Coalition structure h4; 1i is not an EBA since a coalition of size 2 will break away to
induce h2; 2; 1i which is an EBA and hence a credible deviation. Similarly, coalition
structure h5i is not an EBA since one member will break away to temporarily induce
h4; 1i and then a coalition of size 2 will break away to induce h2; 2; 1i : Observe that
the leading perpetrator 1 receives 1

16
under h2; 2; 1i and 1

20
under h5i : Similarly,

h3; 2i and h3; 1; 1i, that are omitted from the above table for simplicity, are not

EBAs.

Observe that none of the EBAs of the above game is strongly e¢ cient17. However,

there exists a strongly e¢ cient EEBA. Indeed, the grand coalition alone, with payo¤

of 1
20
per �rm, constitutes a vN-M stable set of (P ;�). Nevertheless, this example

admits other EEBAs that are not strongly e¢ cient: Each permutation of the h2; 2; 1i
coalition structure constitutes an EEBA as well, since h2; 2; 1i is a Pareto e¢ cient
partition that satis�es both conditions (a) and (b) of Proposition 1 below.

Proposition 2 Let P � 2 P be Pareto e¢ cient. P � is an EEBA if

(a) f1; 2; � � � ; ng �N P � and

(b) for all P 2 P such that P 6= P � and P 6= f1; 2; � � � ; ng; there is a coalition
S 2 P such that jSj > 1 and P �i P � for some i 2 S:

Proof. We shall show that fP �g is a vN-M stable set of (P ;�). Obviously, fP �g is
internally stable. We now need to show that P � P � for all P 2 P nP �: First, note
that f1; 2; � � � ; ng N�! P �: Since f1; 2; � � � ; ng �N P �, we have f1; 2; � � � ; ng � P �:

Let P 1 2 P be such that P 1 6= P � and P 1 6= f1; 2; � � � ; ng: By condition (b), there
is a coalition S1 2 P 1 such that jS1j > 1 and P 1 �i1 P � for some i1 2 S1: Thus,
P 1

i1�! P 2 � fi1; S1 n fi1g; P 1 n S1g: Again by condition (b), there is a coalition
S2 2 P 2 such that jS2j > 1 and P 2 �i2 P � for some i2 2 S2: Thus, P 2

i2�! P 3 �
fi2; S2nfi2g; P 2nS2g: Continuing in this fashion, we can identify a sequence of agents
i1; i2; : : : ; ik such that P 1

i1�! P 2
i2�! P 3

i3�! � � � ik�! f1; 2; � � � ; ng and P i` �i` P �

for all ` = 1; : : : ; k: Given that f1; 2; � � � ; ng N�! P � and f1; 2; � � � ; ng �N P �; we
have P 1 � P �:

In a symmetric game, the grand coalition constitutes an EEBA under similar

conditions.

Corollary 2 In a symmetric game fNg is an EEBA if
17They are, however, Pareto e¢ cient.
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(i) fNg is Pareto e¢ cient,

(ii) h1; 1; � � � ; 1i is not Pareto e¢ cient and

(iii) for all P 2 P such that P 6= fNg and P 6= h1; 1; � � � ; 1i there is a coalition
S 2 P such that jSj > 1 and P �i fNg for some i 2 S:

An alternative corollary applies when agents�payo¤s are comparable.

Corollary 3 Consider a symmetric game (N; fuigi2N) where agents� payo¤s are
comparable. fNg is an EEBA if

(i) for all P; P 0 2 P ; if jP j > jP 0j then
P

i2N ui(P ) <
P

i2N ui(P
0) and

(ii) for all P 2 P, if S; T 2 P and jSj > jT j ; then ui(P ) < uj(P ) for i 2 S and
j 2 T .

Condition (i) in Corollary 3 states that as coalition structures become coarser

aggregate payo¤ increases. Condition (ii) in Corollary 3 states that in a given

coalition structure smaller coalitions yield higher per member payo¤s, implying thus,

that coalition formation has positive externalities. Games with positive externalities

were de�ned in Yi (1997) and one property is that when any two coalitions merge,

others bene�t. Note that Yi�s de�nition of positive externalities is stronger than

conditions (i) and (ii) in Corollary 3.

The above results apply to the symmetric oligopoly model studied earlier in this

section as well as to a public good economy [see Ray and Vohra (1997) and Yi

(1997)].

5.2 A Counter Example

In the previous section, we identi�ed su¢ cient conditions for a game to admit an

e¢ cient EEBA. However, as the example in Table 5 illustrates, it is possible for a

game to have only ine¢ cient EEBAs. This result reinforces the ine¢ ciency puzzle

posed by Ray and Vohra (1997).

Observe that the �rst row is Pareto e¢ cient while every other cell is ine¢ cient.

In particular, the �rst entry in each column Pareto dominates all other entries in

the same column.

Table A in the appendix shows how A (indirectly) dominates all other outcomes

except D and d: Therefore, we cannot construct a stable set containing A alone since

it cannot account for the exclusion of D and d: If A is included in an stable set,
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according to internal stability none of the outcomes it dominates can be included in

the same stable set. Moreover, D and d cannot be included in the same stable set

either, since they (indirectly) dominate A as illustrated in Table A: By the symmetry

of the game the same arguments extend to all the other e¢ cient outcomes B;C;D

and E: Hence no stable set can support (contain) e¢ cient outcomes.

A B C D E

f512; 34g f123; 45g f234; 51g f345; 12g f451; 23g
19,27,32,17,22 19,27,32,17,22 19,27,32,17,22 19,27,32,17,22 19,27,32,17,22

a b c d e

f512; 3; 4g f123; 4; 5g f234; 5; 1g f345; 1; 2g f451; 2; 3g
18,26,31,16,21 18,26,31,16,21 18,26,31,16,21 18,26,31,16,21 18,26,31,16,21

f g h i j

f5; 12; 3; 4g f1; 23; 4; 5g f2; 34; 5; 1g f3; 45; 1; 2g f4; 51; 2; 3g
15,25,30,15,20 15,25,30,15,20 15,25,30,15,20 15,25,30,15,20 15,25,30,15,20

k ` m n o

f51; 23; 4g f12; 34; 5g f23; 45; 1g f34; 51; 2g f45; 12; 3g
15,25,30,15,20 15,25,30,15,20 15,25,30,15,20 15,25,30,15,20 15,25,30,15,20

p q r s t

f5; 14; 2; 3g f1; 25; 3; 4g f2; 31; 4; 5g f3; 42; 5; 1g f4; 53; 1; 2g
15,25,20,30,15 15,25,20,30,15 15,25,20,30,15 15,25,20,30,15 15,25,20,30,15

u v w x y

f5; 142; 3g f1; 253; 4g f2; 314; 5g f3; 425; 1g f4; 531; 2g
15,25,20,30,15 15,25,20,30,15 15,25,20,30,15 15,25,20,30,15 15,25,20,30,15

z

f1; 2; 3; 4; 5g
15,15,15,15,15

Table 5

Next we argue that Q = fk; `;m; n; o; zg is stable. For external stability we need
to show that all outcomes not in Q are (indirectly) dominated by some outcome in

Q: Table B in the appendix lists all such paths of dominance. To prove the internal
stability of Q we have to show that no element of Q indirectly dominates another

element of Q. We start with k and `: First we argue that k 6� `: Note that k �124 `
and from ` coalition 124 and its subsets can induce u; f; p; h; s and z: But, u; f and

p have the same payo¤s for all players as k does, thus, once at u; f or p; no sequence

will initiate with destination k: Note that although k �12 h from h coalition 12 can

only induce `. The following table summarizes the above information:
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`
124�! u �

N
k

`
124�! f �

N
k

`
124�! p �

N
k

`
12�! h �

12
k h

12�! `

Table 6

We still have to show that s and z will not lead to k: Observe that k �12 s and
from s coalition 12 can induce f and z: While f does not lead to k; z is still to be

checked. But k �124 z and from z coalition 124 can induce u; f; p and s which are

all examined already. The following table summarizes this information:

`
124�! s �

12
k s

12�! f �
N
k

12 .
`
124�! z �

124
k z

124�! u �
N
k

z
124�! f �

N
k

z
124�! p �

N
k

z
124�! s 6� k

Table 7

Next we show that ` 6� k in Table C in the appendix. Similarly, we show that k

does not dominate and is not dominated by o; m; and n; respectively, by outlining

the blocked paths in Tables D, E and F in the appendix. Moreover, it is already

shown, in Table 7 above, that k 6� z. It is also easy to see that z cannot indirectly

dominate k; `;m; n and o since no player strictly prefers z to any of them. The rest

of the proof of internal stability follows from symmetry.

6 Transfers and (In)E¢ ciency

When intra-coalitional transfers are possible, there are two ways of specifying a game

with externalities. One is to start with our simple coalition formation game with

externalities (N; fuigi2N) and then allow for transfers, thereby treating ui(P ) as the
�primitive payo¤�of agent i for a given coalition structure P: For example, when

two �rms with convex cost functions collude and maximize their joint pro�ts, their

individual outputs and pro�ts are also determined. In this case, transfers enable
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them to reallocate their �primitive pro�t�. The second way of specifying a game is

to use the partition function game of Thrall and Lucas (1963) with the joint payo¤

of each coalition in a coalition structure as the primitive. The main example (Table

9) in this section can be speci�ed in either way and our main conclusion remains

valid. For convenience, however, we shall follow the �rst approach.

It is easy to construct examples where transfer payments within coalitions are

necessary to achieve strongly e¢ cient agreements. Consider a simple example with

N = f1; 2g and the following payo¤s.

f12g
10; 5

f1; 2g
6; 6

Table 8

f1; 2g is the only EBA and EEBA and it is Pareto e¢ cient but not strongly

e¢ cient. If transfers are possible, then there exist strongly e¢ cient EEBAs. For

example, f12g with (8; 7) payo¤ allocation constitutes an EEBA.
When intra-coalitional transfers are possible, each agreement comprises two com-

ponents: a coalition structure and a payo¤allocation feasible for this coalition struc-

ture as de�ned in Section 5.1. Let (P; x) be an agreement (i.e., P 2 P and x is fea-
sible for P ). If a coalition S deviates from this agreement, it can re-partition itself

as in Section 4 and at the same time agree on how to share the proceeds within each

of its coalitions, but it remains to be speci�ed how the payo¤s of agents in N nS are
a¤ected. One approach is to reset these payo¤s to their primitive levels as speci�ed

by (N; fuigi2N). The second approach is to allow each coalition to make conditional
statements with respect to transfers in the sense of Ray and Vohra (1999) �each

coalition, upon formation, speci�es transfers to be made for every coalition structure

that contains it. In other words, when a coalition forms, its members not only agree

on how to share their present payo¤ but also agree on a contingency plan in the

event their total payo¤ changes due to externalities imposed by the restructuring of

its complement. For simplicity, we shall follow the �rst approach here. Our main

conclusion regarding the example in Table 9 still holds even if we take the second

approach.

Transfers do facilitate the attainment of e¢ cient agreement. For the counter

example in Table 5, the following is a stable set for (P ;�):

f(f512; 34g ; 30; 30; 18; 21; 18) ; (f234; 51g ; 18; 30; 30; 18; 21)g :
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However, there is also a stable set with only ine¢ cient elements. In fact, fk; l;m; n; og
with the original payo¤s remains a stable set with transfers. Some alternative as-

sumptions as to what ensues a deviation also yield e¢ cient stable sets.

It is then natural to ask the following question: Does there exist at least one

e¢ cient agreement for every game when transfers are possible? Unfortunately, as the

next example illustrates, it is possible for a game to admit only ine¢ cient agreements

(i.e., no stable set contains e¢ cient elements).

Consider a game with 5 players, N = fi; j; k; l;mg: In the table below are the
payo¤ vectors associated with 21 partitions and all other partitions are assumed to

yield 0 payo¤ vectors.

f12345g fijk; lmg fijk; l;mg
10; 10; 10; 10; 10 15; 15; 15; 1; 1 15; 15; 15; 1; 1

Table 9

It is easy to see that Pareto e¢ ciency requires the formation of the grand coali-

tion. However, the example admits the following stable set:

f(fijk; lmg; 15; 15; 15; 1; 1) ; (fijk; l;mg; 15; 15; 15; 1; 1) jfor all distinct i; j; k; l;mg :

Note that all elements in the stable set are ine¢ cient. Moreover, as the follow-

ing Proposition establishes there does not exist a stable set that contains e¢ cient

agreements.

Proposition 3 The above example does not admit an e¢ cient EEBA if transfers

are possible.

Proof. The proof is conducted in several steps. Let � be a stable set for (P ;�):

Lemma 4 Let (P; x) 2 �: Then there does not exist an agent i 2 N such that

xi � 0:

First we show that if (P; x) is such that xi � 0 for some i 2 N; then there does
not exist (Q; y) such that yk � 0 for all k 2 N and (Q; y) � (P; x): There are

two cases. First, if P is a partition with 0 payo¤ vector (that is, P is not one of

the partitions in Table 9), there does not exist S � N such that (Q; y) �S (P; x)
and therefore no coalition will initiate a sequence from (Q; y) to (P; x). If P is a

partition in Table 9, i must have participated actively in the inducement of (P; x)
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from (Q; y) for otherwise, i gets a payo¤ of at least 1. Now, let S be the �rst

deviating coalition containing i in this process and suppose that (Q0; y0) was the

status quo when S deviated. Then y0i � 0 and (Q0; y0) �S (P; x); which imply that
xi > 0; a contradiction.

Now, we proceed to show that if (P; x) is such that xi � 0 for some i 2 N;

then (P; x) =2 �: To this end, let (Q; y) be such that (P; x) i! (Q; y) and assume in

negation that (P; x) 2 �. Then the payo¤ structure of the game implies that either
yj = 0 for all j 2 N or yi = 1: If yj = 0 for all j 2 N; then we claim (Q; y) =2 �:
Indeed, if (Q; y) 2 �; then by internal stability, � does not contain any (Q0; y0)

such that y0j > 0 for all j 2 N: Then by the result in the preceding paragraph,

� is not externally stable. Thus, (Q; y) =2 �: Then there exists (P 0; x0) 2 � such
that x0j > 0 for all j 2 N and (P 0; x0) � (Q; y): Since (P; x) i! (Q; y) and xi � 0

but x0i > 0; we have (P
0; x0)� (P; x); a contradiction. Now, consider the case that

yi = 1: By internal stability, (Q; y) =2 � since (P; x)� (Q; y): This leads to a similar

contradiction as the previous case.

Lemma 5 � cannot contain two elements that are e¢ cient and give strictly positive
payo¤ to each agent.

Let (N; x) and (N; y) be two elements in �: Then, there exists i such that xi 6= yi:
Without loss of generality, let yi > xi: Then, (N; y) � (N; x) by the following

sequence: (N; x) i! (P; z)
N! (N; y) where zj = 0 for j 2 N:

Lemma 6 A single e¢ cient element is not externally stable.

Assume in negation that (N; x) is the only element in �: By external stability,

(N; x) � fijk; l;mg: Then, some player among i; j and k gets more than 15 in
(N; x). Without loss of generality, let xi > 15: Now consider fjkl;m; ig; it must
also be the case that (N; x) � fjkl;m; ig: Then some player among j; k and l gets
more than 15 in (N; x). Without loss of generality, let xj > 15: Finally consider

fklm; i; jg again it must be the case that (N; x) � fklm; i; jg and xk > 15: Thus,
xl + xm < 5: Now consider (fklm; i; jg; y) with yk > xk; yl > xl; and ym > xm: Such
an allocation is feasible because xi > 15 and xj > 15 (so xk < 20): It is easy to see

that (fklm; i; jg; y) 6� (N; x):

Now we conclude the proof of Proposition 3 by showing that � does not contain

any e¢ cient element. Assume otherwise that (N; x) 2 �: By Lemmata 4, 5 and 6,
we know that � contains (P; y) such that P 6= N and yj > 0 for all j 2 N and
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xj > 0 for all j 2 N: Obviously, P = fijk; lmg or P = fijk; l;mg: By internal
stability it must be the case that xi = yi; xj = yj; and xk = yk: Then xl + xm = 5:

Assume w.l.o.g. that xk = minfxi; xj; xkg and consider (fklm; i; jg; z) � (Q; z)

with zk > xk; zl > xl; and zm > xm: Then, (N; x) � (Q; z): By internal stability,

(Q; z) =2 �: By external stability, there exists (Q0; z0) 2 � such that (Q0; z0)� (Q; z):

Consequently, some agent, say i0; in fklmg strictly prefers (Q0; z0) to (Q; z); i.e.,
z0i0 > zi0. It follows that z

0
i0 > xi0 : Then (Q

0; z0)� (N; x) by the following sequence:

(N; x)
i0! (P 0; x0)

N! (Q0; z0) where x0j = 0 for all j 2 N:

Lastly, the following example, a perturbed roommate problem, illustrates how

transfers across coalitions may be necessary to achieve strong e¢ ciency.

Structure Per-person Payo¤ EEBA

h3i 4 �
h2; 1i 5; 11 �
h1; 1; 1i 6 X

Table 10

h1; 1; 1i is the only EBA and EEBA; it is Pareto e¢ cient but not strongly e¢ cient.
Inter-coalitional transfers are necessary to achieve strong e¢ ciency in this case. A

similar phenomenon was identi�ed as bene�cial altruism in Greenberg (1980) and

Dréze and Greenberg (1980).

7 Conclusion

In this paper we extend Ray and Vohra�s (1997) notion of EBA to allow for arbi-

trary coalitional deviations. We show that despite this extension, the new notion,

EEBA, while facilitating the attainment of e¢ cient agreements, does not guarantee

e¢ ciency. In particular, we identify su¢ cient conditions for a game to admit an

e¢ cient EEBA and construct a counter example where none of the EEBAs is e¢ -

cient. Moreover, we illustrate that the introduction of transfers does not guarantee

e¢ ciency either. A second counter example is provided where there is no e¢ cient

EEBA, despite the possibility of transfers. The negative results strengthen Ray and

Vohra�s (1997) ine¢ ciency puzzle. Therefore, this subject warrants further study

to explore solution concepts and negotiation processes, among agents who exercise

their decision power freely, that lead to e¢ cient agreements.
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9 Appendix

Table A

A� a : a
N�! A A� B : B 2�! �1

N�! A

A� f : f
N�! A A� b : b 12�! f

N�! A

A� k : k
N�! A A� g : g 12�! f

N�! A

A� p : p
N�! A A� ` : ` 4�! f

N�! A

A� u : u
N�! A A� q : q 12�! f

N�! A

A� z : z
N�! A A� v : v 124�! �2

N�! A

A� C : C 125�! A A� E : E 4�! k
N�! A

A� c : c
125�! A A� e : e 24�! �3

N�! A

A� h : h 125�! A A� j : j 24�! �3
N�! A

A� m : m 125�! a
N�! A A� o : o 4�! f

N�! A

A� r : r
125�! a

N�! A A� t : t 24�! �8
N�! A

A� w : w 125�! A A� y : y 24�! �4
N�! A

A� i : i 13�! �1
N�! A A 6� D while

A� n : n 123�! f
N�! A D � A : A 345�! D

A� s : s 12�! f
N�! A A 6� d while

A� x : x 13�! �5
N�! A d� A : A 45�! o 2�! i

N�! d

Table B

A� ` : A 5�! ` B � m : B 1�! m

a� ` : a 35�! �6
N�! ` b� m : b 14�! �9

N�! m

f � ` : f 35�! �6
N�! ` g � m : g 14�! �9

N�! m

p� ` : p 35�! �7
N�! ` q � m : q 14�! �10

N�! m

u� ` : u 35�! �2
N�! ` v � m : v 14�! �11

N�! m

C � n : C 2�! n D � o : D 3�! o

c� n : c 25�! �12
N�! n d� o : d 13�! �1

N�! o

h� n : h 25�! �12
N�! n i� o : i 13�! �1

N�! o

r � n : r 25�! �13
N�! n s� o : s 13�! �15

N�! o

w � n : w 25�! �14
N�! n x� o : x 13�! �5

N�! o

E � k : E 4�! k t� k : t 24�! �8
N�! k

e� k : e 24�! �3
N�! k y � k : y 24�! �4

N�! k

j � k : j 24�! �3
N�! k
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Let �i, where i = 1; :::; 15; represent coalition structures that do not appear in

Table 5 and whose payo¤ is 0 for all the players. Obviously all �i�s are directly

dominated by any element of Q: The �i�s are provided in the table below.
�1 ={13,45,2} �4 ={135,24} �7 ={14,35,2} �10 ={14,25,3} �13 ={13,25,4}

�2 ={124,53} �5 ={245,13} �8 ={24,35,1} �11 ={235,14} �14 ={134,25}

�3 ={24,51,3} �6 ={12,35,4} �9 ={14,23,5} �12 ={34,25,1} �15 ={13,24,5}

Table C

` 6� k while ` �35 k k
5�! g �

N
`

k
3�! j �

23
` j

23�! k

k
35�! t �

23
` t

23�! g �
N
`

23 .
k

35�! z �
235
` z

235�! g �
N
`

q �
N
`

v �
N
`

t 6� `

Table D

k 6� o while k �24 o o
4�! f �

N
k

o
24�! z 6� k see Table 7

o
24�! s 6� k see Table 7

o
2�! i �

12
k i

12�! o

o 6� k while o �135 k k
3�! j �

N
o

k
135�! y �

N
o

k
135�! t �

N
o

k
15�! g �

15
o g

15�! k

k
135�! r �

15
o r

15�! j �
N
o

15 .
k

135�! z �
135
o z

135�! y �
N
o

z
135�! j �

N
o

z
135�! t �

N
o

z
135�! r 6� o
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Table E

k 6� m m
12�! o �

24
k o 6� k see Table D

while k �12 m m
12�! i �

12
k i

12�! o

m 6� k k
34�! n �

134
m n

134�! w �
N
m

while m �34 k n
134�! r �

N
m

n
134�! h �

N
m

n
34�! j �

34
m j

34�! n

n
134�! p �

34
m p

34�! h �
N
m

34 .
n

134�! z �
134
m z

134�! w �
N
m

r �
N
m

h �
N
m

p 6� m

k
34�! j �

34
m j

34�! n 6� m

Table F

k 6� n n
12�! ` �

124
k ` 6� k Tables 6 & 7

while k �12 n n
12�! h �

12
k h

12�! ` 6� k Tables 6 & 7

n 6� k k
45�! m �

25
n m

25�! i �
N
n

while n �45 k m
25�! g �

45
n g

45�! m

m
25�! q �

45
n q

45�! i �
N
n

45 .
m

25�! z �
245
n z

245�! x �
N
n

z
245�! s �

N
n

z
245�! i �

N
n

z
245�! q 6� n

k
45�! g �

45
n g 6� n
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