ABSTRACT

The approximate projection method of Das Gupta and
Van Ginneken is extended to include the calculation of

the decoupling parameter for K=*% band, The method is

. tested on the first positive and negative parity bands

of F and is found to give good results even when the
strong coupling model seems to fail, The validity of the .

formula for the decoupling parameter given by the stroxig
coupling model is explored,
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La mé%hode de projection approximative de Das Gupta
et de Van Ginneken est géhé}élise; afin de permettre le
calcul du paramétre de déEouplage des bandes rotationelles
avec K=-%-.L'application de cette methode aux prémiéres
bandes rotationelles de parite,positive et ne@ative du
noyau F]"g donne des ré;ultats en bon accord avec les
rééultats expérimentaux méme quand le modéle de Bohr et
Mottelson est en erreur. La validite/de la formule de Bohr

-, ,
et Mottelson pour le paraﬁbtre de -decouplage est etudie%.
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INTRODUCTION

It is well known that the intrinsic state of a nucleus
can be approximated by considering SU(3) ), Nllssonz), or

3,4,5)

deformed Hartree-Fock model (H.F).

The deformation in nuclei is usually interpretted as
the effect of long-range correlations among the nucleons,
In SU(3) model of the nucleus one takes a loﬁg—range
specialised quadrupole-quadrupole two—body interaction
between the nucleons. On the other hand, in Nilsson model
a more phenomenological point of view is adopted., It is
assumed that nuclear deformations can be explained by
taking a non-spherical single-body potential along with
a spin orbit term., A partial justification of such a
potential comes from the fact that the long-range two-body
forces can be supposed to average out to a deformed potential

field in which mutually non-interacting particles move,.

A more general way of generating an intrinsic state
of a deformed nucleus is to use deformed H,. ﬁ.'model
which takes into account both single and two-body forces
in its scheme through a self-consistent procedure, This
method has been discussed by Kelsonu) and will be followed

in the present work,

The total angular momentum J of the intrinsic wave
function.?kis not a good gquantum number, Because of the
assumed axial symmetry, only the Z- projection of J (denoted

here by K) is a good quantum number, Since the actual
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states are those of a definite angular momentum, the

wave functions Qkare not physical. The physical states

are obtained by proiecting ( by exact projection or
approximate projection technique ) out ofﬁ& the states

of good angular momentum and normalising them, Corresponding

energies are the expectation values of the Hamiltonian

-with these projected states,

. : 6)
It may be remarked that the method of shell model
becomes unduly complex as the number of particles outside

20

a closed shell increases. For example, in Ne , the

number of J=2 states is 56,

The exact projection from the intrinsic state7) becomes
complicated as the number of particles increases, Das gupta
and van Ginnekens) have developed an approximate method
for calculating the energies of states in a rotational
band. The method assumes a rotational structure, but
departures from J(J+l) rule were also studied and, in
particular, the possibility of decoupling in K=-é:bands
was included in the formalism, In this case the decoupling

parameter was calculated using'Bdhr-Mottelson Prescriptiong),

The purpose of the present work is to fully incorporate

the calculation of the decoupling parameter into the

formalism of the method of approximate projection, The

nucleus that has been treated is F19. The positive parity
states correspond to three particles outside ( p)shell and
negative parity states are obtained by assuming a hole in

( p) shell and Four particles outside it., It is found that

tiie decoupling parameter for the negative parity states



agrees with that obtained from Bohr-Mottelson strong coupling
formula ( egn. 4.1 ) but no such agreement is attained for
the positive parity states, A possible explanation is

given in Chapter 1IV.

The next three chapters deal with a brief description
of deformed H. F. model, exact projection and approximate

projection methods,



@ . CHAPTER I
HARTREE-FOCK THEORY FOR DEFORMED NUCLEI

We can write the Hamiltonian H of the nucleus as
+

He Z4UTIBY € G *+ 3 S (pIvI¥sy CFeg e ¢ (1.1)

Here T is the single-body part of the force which
includes kinetic energy of all particles and their average
interaction with all the other nucleons in closed shells,
{aplV]lyd) is the antisymmetrised matrix element of V.

o) ,‘B), etc, is a complete set of orthonormal vave
functions, For example, we can cﬁoose single particle
‘%9 shell model wave functions in the ]jn> basis to be the

desired representation,

The intrinsic nuclear wave function4> is assumed to
have the form of a determinant of single particle orbitals

iy, ﬁ1> ,'.......‘iA>. iIn the second quantised notation
4+ + : + 1.2
16) = by by «oeeee b, (O | (1.2)

1
Where|q> is the vacuum. One can define O 6 core to

19

be the vacuum, Thus F ( +parity ) states can be written

as

14 = b, bi, biy 19 | (1.2a)

(i) can be expanded in the known single particle basis

{@2' [ 5B sevnnnn.



= T Gl (1.3)

A=.“P.m

the choice of coefficients Cklbeing determined by

minimisation of H. F, energy.It is easy to see that
Eye = SHHIO) = Z LTI +5 ;}aﬂvlcj) (1.4)
v X

The summation runs over all occupied orbits occuring
in eqn.(l.2). Define e, as the Lagrange Multiplier associated

with fixed solution, Condition of minimisation is

| } ( EHF - e}(%lca»)’x")> = 0 . (1'5)‘

LN
Using eqgns.(1l.3) and (1.4), we get

Pty + L OUV[AY = e @0
m v

This is equivalent to an eigenvalue problem:

D = el &

OV hin) = OITIw)y + 2;_ {Ab|v]ai) (1.8}

In our case, the summation in egn.(1.3) is limited
only to the (2s-1d) shell in case of particles and to
(1p) shell in case of holes. Further, assuming axial

symmetry of H, F. field, summation will be over j's.and

not m's.

To give an example,

ety = |4y = Cugde sy + Galdashy + Gualhy)

@



An iteration method is employed to determine these
coefficients and the corresponding energies,

(a) Take H.F. orbitals'li°> to be some starting wave
functions and use these to calculate matrix elements
of h, egn.(1.8)

(b) Diagonalise this matrix to obtain orbits li(l)> and
energies e§l) .

(c) with these wave functions, calculate again matrix
elements of h; diagonalise these to get Ii(2)> s e§2).

(d) Repeat the above cycle until convergence is obtained.

"At this stage the wave functions fed in are the same

as come out after diagonalisation procedure,

E._ is given b
g 1S given by

Ewe = £ 2 [(é!T!L} + ee;\ (1.9)

Remarks about Hamiltonian

In the Hamiltonian (1.1), jq) can be taken to be the
spherical harmonic oscillator potential wave functions
and the energies ea are determined from the known experimental
positions ( see TABLE I ) of the lpi R lp% hole orbitals
14

s 28 and 1d, particle orbitals listed in Ref.13.
3

vl
wi-

The potential V can be split into p-p, h-h and p-h

parts., It is assumed to be central and therefore

Vir) = V, 9t» [W+ BP. +HE. Pk + M P,.J (1.10)

g(x) being the radial dependence of the force and

vo the strength function. B.,

Px_are spin exchange and

space exchange operators respectively, W, B, H, and M

represent components of Wigner, Bartlet, Heisenberg and



Majorana type of forces:
W+B +H+M = | (1.11)
The p-h interaction is calculated using the potential

of Gillet and Vinh—Mauln), while the p-p interaction is
taken from the work of Inoue et, al.l5)

The parameters for Gillet and Inoue forces are given
in TABLE II.
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Name

Gillet

Inoue

g(x)

2.2
exp(-a r )

exp(—ar>'

TABLE II

v (Mev) ¢ in W
o\Mer
£

-40.0 0.5682 0.35

-35.0 0.6026  0.25

-0.136

0.40

0.25

0.35

" 0.636
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€HAPTER II
EXACT PROJECTION

It is found that the H.F. wave functions ¢, consist
of a mixture of angular momentum eigenstates of the ground
state rotational band, Definite orientation of the nucleus
has been paid by an appropriate uncertainty in angular
momentum, Physically meaningful states are obtained by

projecting out of ¢Kthe components with angular momentum J,.

It can be seen very easily that H.F. wave functions
with K#0 can give projected states with J=K, K+l, K+2,...
Of course, higher J components may be negligible, If KéO

however, only even J values are allowed,
A simple proof follows, For a more rigorous treatment

of this standard result see Ref. 16.

Consider the ground state (K=0) band in an even-

even nucleus.

&)y = 2 %3 |3°> (2.1)
3 .

| J
exp(—tr\'J})H%) —— 3.2;—‘ 0-3_ Amo (7") IJ-M>

= 2% (7 17 0)
T
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Now we prove that hﬁ>5hduld remain unchanged under
application of the time reversal operator e.\qa(-énJ;) .

A,
since Jy= ) (), expl-im3) | ) is itself a determinant,

(<]
Thus we can write

-
exb (=i RH) |¢y = (expt-imd) L,:) (expl-indy) Lf.‘;)m--‘ o>

b, by -1

i

\

[$o)

Thus
T (2.2)
o Iy= £ % 170

which gives only even J values,

For non-zero K values, the H.F. wave function is not

. unchanged by the time-reversal operator and there is no

reason why odd J values should not be allowed,

Define P? to be the angular momentum projection
operator,

Py = r |3 m)y {am) | (2.32)

()= F (2.57)
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where |JM> are a complete set of orthonormal eigen-
states of J2 and Jye

To project states of good J out of <P,< , note

14y = 2 P 14) = Z:'-“a‘:rm l7m) | (2.4)

Assuming [JM) to be normalised,

lTM) = P 14D (2.5)
SRR

By = niniamy = _SHHRI) (2.6)

<¢) PR 1>

When N’)has axial symmetry it can be shown that
-180%y

(3l pm [$) = (3-+_>J/sme 48 cl,.m (8)<¢l e |¢> (2.7)

-i0ly
<¢IHP;'¢> (J‘.,--—)j,jm& 40 Amm (B) <¢lH l¢>(2 8)

where d;M (®) is the reduced rotation matrix
{In | expl-tody) [ TMy
The integrals (2.7) =2nd (2.8) can be solved numerically.

There are other methods of writing (2.7) and (2.8)( see

Ref,10) and each is suited to a specific purpose,

The defect of this method lies in its increasing

complexity as the number of particles increases.

A few féatures of this method are listed below:

(1) Energy levels are determined by occupied orbits only.



(2)

(3)

-13-

Absolute value of the energy is obtained and it does
not'depend on the calculation of the moment of inertia
for which a model has to be introduced.

Deviations from a pure J(J+l) spectrum may be obtained,

In particular, decoupling of K=é band is contained

- in the expression (2.6).
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CHAPTER III

APPROXIMATE PROJECTION

The chief disadvantage of the exact projection described
éarlier is that it becomes very complex as the number .of
particles increases., If it is known a priori that the nucleus
under consideration has rotational spectra, approximate
projection technique proves very helpful, The present work
is an extention ( to K=%:band ) of the work done by Das Gupta

and Van Ginneken ).

To start with, let us assume that for K=% band, the
energy E
by

I for a state of total angular momentum J is given

£, = (THAITEY = Egr ATEH) + Aa (377 (344) (3.1)
4> = Z % 19%) | | (3.2)

. ' 4t .
Here Eo is the band head, A=f§_ where ) is moment
of inertia and ‘a’ is the decoupling parameter. To determine
these three parameters Eo’ A, and\ai let us define a pseudo-

hamiltonian:

H

which is required to have the same intra-band matrix

E, + F\r:'l)‘k-i- Ao 4T (3.3)

elements as the true Hamiltonian H, In eqn.(3.3), J is

angular momentum operator with components J+, J , JZ
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-
@ and T= ‘e B is essentially the time-reversal operator. Following

conditions can be imposed now.

(bylH- ]y = 0 (3.4)
(ol (H-H) LT 141) = © (3.5)
Corf(H-H) BTl = o (3.6)

Basically, these equations are the three simplest,
differently weighted, sum rules that involve only intra-
band matrix elements. The three equations (3.4), (3.5),
and (3.6) are then solved for the parameters E, A and a,

It is easy to see that

(Pzlnlde) = Eo +A<¢;Tl'5>'zl¢_;,_>+Aﬂ'<¢{llTHg> (3.7)

Chugummli)y=EQ) T4 + A TIT (1)
Ao (] BTTHTI9L) (3.8)

(B4IHE T )= Eobe 13 182 +A <y TTT )
FhAa (oLITHT T 4 (3.9)

"Note that

(43 \HT T, gy = <du/ T H 14)
SR CEAALIHIC LT Y
F 3L TR G DRI HIGLY  (3.10)

and
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A AR CATIENTCHEUL S |
+3 (s HW-';.”)("’%:II T (3.11)

In equations (3.10) and (3.11) the summation runs over
two particles two holes (2p-2h) only. There is no summation

over lp-lh because of H.F. condition for minimum energy. Let

Ene = <®L1HIdL)

Following equations ensue by equatiné (3.9) with (3.10)
and (3.8) with (3.11) and making use of (3.7).

Eo = Enr —[3 + <42lT T (4D +a (bylayTisd |A

Cy
A = c
Cs + a i

CyCi— G s

C = Tl T I 14y YT ) T ITT DG

/ 2 d h 2
5 (T Ty + L ol TTIE)

o
U

C = T LBl ><E I TTIY
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IS AT LR R ALY
CS' = Z{«)‘;:,II.,H7£>2+Z(d’i'-h:.:[..H’é”)z |

Thus the problem reduces to calculation of matrix
/ /4
elements(é.é’l\)}ld’.;._) s <¢.§_|IJ¥I¢.§_> , etc, For this,
refer to APPENDIX I
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CHAPTER 1V

APPLICATION OF APPROXIMATE PROJECTION METHOD

The method of éppfoximate projection can be tested on
+
the three particle . (3p). K=% band and the four particle one

hole (l4p-1h) K=%;'band of Flg which are known to have a good
rotational structure17)

The values of Eo’ A and fa' obtained from the calculation

are shown in TABLE III and the resulting spectrum is compared

to the experimental spectrum17’ 8)1n Fig. 1, The agreement

with experiment is satisfactory.

The intrinsic states which give rise to the K=‘ and

'+bands of Flg are very well approximated by removing a

- +
proton from the last occupied K=-%'and K=‘% orbitals of Nego

The strong coupling model (S.cC. M.)19) predicts that the
decoupling parameter, be given by

a,——Z(—> (J+d) )C,

where Cja are the expansion coefficients of the deformed K=o
2

orbital in spherical shell model states. The values of f'a!

2.

obtained from eqgn., (4.1) are listed in TABLE III along with
the experimental values of ‘af’, A, Eo, which are obtained by
least square fit on the experimental energies given in Fig.I.
Although for K= -;:‘ bané the strong coupling model formula
(eqn. 4{1) is reasonably accurate, this is not the case for

the K= .;__J* band,

b



proj.

TABLE III
k=4t -
% K-’:%

E A a E A a 1
(o] (o] =
O
i

expt, -23,34 0.151 2.59 -23, 44 0.192 1.02

's. c. M -23,88 0.177 1.58 -23,06 0.177 0.88

Approx. -23.55 0.162 2.69 -23.00 | 0.175 1,16
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©19.04=

-19.29

-19.64
-19.68

-2090

-22.13
-2222
—-22.34

-23.48
-2357
-23.68

Fig.l: Energy Level Diagram For F

.EXP'T.

—13/2" ..

-18.70 —
(1372 . o
. -10.25 :
raY a4 =702
772~ - =19.70 -9/27
3/2 -
-(5/2,9/2)*
. =21.72 or2*
. =2194 3/2
3/2- -22.08 5/2-
5/2
1 -23.08 - 172"
5/2° -2344 5/2*
1/2]
172"  _-2386 1/2°
CALC,
19




-21_

validity of the strong coupling formula for the decoupling

(1)

(3)

(&)

Earameter

Let us now introduce the following assumptions:

The intrinsic state can be written as

193y = bl 1%

where |y ) is an intrinsic core wave function with
K=0 and \,_.T adds a deformed particle (or a hole) to
this core?'The operatateg has the usual expansion
in spherical shell model operators with coefficients
le and its H.F. enexrgy iséé .

2
The Hamiltonian can be written as

H = Hoth = Hoth +h™

where Ho acts only on the core, and h contains all
the terms that involve the extra particle (hole).
Clearly, h can be written as a sum of one-body (h(l))
and two-body (h(g)) parts. A similar expansion is

possible for the angular momentum operator
- = 2 '
J= R+

The core wave function l’xgdefines a sharp orientation
ii space, i.e. F(F)g {%o) 'éPR’]')g> is sharply peaked
about B=0 and B=7¢ . This is the usual condition for
the wvalidity of the Bohr-Mottelson model for even-
even nUCleilO) and leads to a rotational spectrum

of the projected core statesl6), i.e. Ho can be
replaced by a pseudo-hamiltonian EO+AR2.

The single particle (hole) wave function varies with
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orientation much more slowly than the core wave function
i.ef(p)= {o| B. e by ‘0> decreases near PB=0 much
more slowly than F(B). Furthermore £(B) is very small
at back angles,We can thus write:
f(B)= 1 in the forward peak of F(B)

%~ O in the backward peak of F(B)

It is very easy to show (see APPENDIX II) that with the

above approximations the energies EJ are given by:

Ey m €ot €y +A[ZJ(J+'))CJ |—1]
i+
+A[§1’(U‘+D-—(~) (3‘4——)(2(’) (Jh)! ‘)]

Fig, 2 shows a plot of £(p) for the positive parlty
and negative parity orbitals of the missing proton compared
to F(8) calculated for the Ne20 core, Clearly, the K= %
band satisfies all the criteria listed above and acceptable
agreement is both expected and observed between the result
of the approximate projection method and the strong coupling
model. In the K=é;-band, however, the fourth assumption
fails badly. Although the derivation shown in the APPENDIX
II only proves that the above assumptions are sufficient
to obtain the étrong coupling result (eqn.u.2), it seems
very unlikely that an alternative approach might be able
to dispense with the fourth assumption, whose failure in

the case of the K=;ﬁ'band can therefore be taken as the

~reason for the failure of egn.(4.l) to give an accurate

result for the decoupling parameter,

It is worth pointing out that if the core defines a
sharp spatial orientation, and if all the single particle

wave functions(both for the particles in the core and the

extra particle ) vary with Orientation much more slowly



@
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than‘the total core wave function, then, due to the orthogonality
of the intrinsic single particle orbitals, which is effective
near B=0, one can to a good approximation separate J and H

into core and extra particle parts. It is also clear that

the Bohr-Mottelson result should improve rapidly as the number

N of the nucleons involved in the collective motion increases,
since one expects that F(B)g;f?ﬁ), neglecting exchange

effects, which in turn becomes an increasingly good approximation

for increasing N,
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conclusion

The method of approximate projection for calculating
moment of inertia,'band head and decoupling parameter has
been tested on the F19 nucleus., It is found that there is
agreement with the strong coupling model only for K=-%-band
of F19. The lack of agreement for Fhr%*band of Flg has been
attributed tc the breakdown of one of the important assumptions
employed in deriving the strong coupling model. The various
assumptions for thé strong coupling model can be summarised
as follows:

(1) The nucleus can be regarded as a core and an extra particle
(hole)

(2) The total Hamiltonian and angular momentum can be

separated into core and extra particle (hole) parts.
(3) The core defines a sharp spatial orientation.

(4) The spatial orientation of the wave function of the
particle (hole) varies much more slowly than the core,

In the K= band the fourth assumption fails badly.

The method of approximate projection in the presence
of decoupling is expected to be particuiariy useful ia the
study of light nuclei where the assumptions underlying the
validity of the strong coupling model are more guestionable
than in the heavier nuciei where a large number of particles

participate in the collective motion.
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¢ = — —
Q0° 120° 150°
b/

Fig 2: Curve A represents F(B) for the ne 20 core, while curves

B and C represent £(B) for the K= - “and K= E"’orbltals of the
missing proton respect:.vely Curve D shows a typical off-diagonal
matrix element <x.l \ Yo ) as discussed in the APPENDIX IT
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@ APPENDIX 1

Calculation of Matrix Elements

Notation
Greek indices denote arbitrary states
Small Roman denote particles
Capital Roman denote holes

Basis

(a) sSpherical Basis

- +
It is denoted by @, , e or ‘)‘* R Bd_ where o summarises
all the guantum numbers n

related,

® b = @

o ? ]
s 1,3, m,m ., asand b s are
a a a a ta

bo. =
Jptm, +L +Mm
+ . AT T2 A
by = & =G -0,
4+

(b) Deformed Basis

R
It is denoted by'@k 3 61

‘6’+ =7 C,, [):' (a.1a)

o

or +

- .
b =2 @b, = 26,6 - e
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Hamiltonian ( spherical basis )

v ntn catal a o
+
cafa AN
Feiafe: = Taiamt X% A%
be by
+ L - A o
_ S e, b ba +2 €.t PR PR ¢
+
-‘-
— ¢ b b
""z“"" where €q = 6a
€r =€
similarly

ot by b
Z\/«pvs : a‘,:a,;a.ya,‘: = 2 l"'f‘va bu LP ¥ s

where

LLB“L = Va\u&

O

JasrJda+de+Jo. (a.2)
Weper = Vsega = (=) . \/-D-GfB—A
Jet Mg & Jet M+l +Meg+ My,
Usges = -Voedd = =D e Vo-c,-8,4

We have made use of the fact +m_=m_-H
s that m,+m,=m 0, ond



\
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therefore

+m_+
(_)mA motmLy g

He 26k + &5 Veors b7 b5 Loy (. 20)

Operators J+, J , J_J+ in spherical basis"

5, = 5 &llels) 10l
= «S

. + —_ . +
= %(wl:ﬂ» ba b +.Z; (B1de|R) by by (a.3)
a:, ]
where
o JptMardp 4+ Mp + 14+ WMin 4 My
since
!]A= \]D , ) mta=‘- mtp ? mA = m,_";‘

(J)sz = —~ (d£)o,-a

(J_’).‘S — S-n"hs S[‘ QS' Sj‘ :)‘ SWQ‘WQ‘STH‘:M‘*l J(Js—'m‘)(:)gq-m‘#\)

(3-).‘5 = numg SQJS 53*36 S"“ﬂ""‘ts%“‘.\j“:" st*‘"a)l(:l'a"’“x"")

Using eqns.(A,3)



CAIn) =2 (3-dada bo by, +2;_ (Jwd-)5 by by

+2 (Do U+)¢,°L be b b, +A2:(J-)_-(J+)-- B bbb,
obed aco

B Py LUTNE
. B¢

(o = Clomme){lasmas

(3+JO§ = (JN-NA)(jN+“M#0

Hamiltonian (deformed basis )

H=1 < B by b I g b, B b by (2.5)

USlng eqn. (A 1b)

H = fr b +v : Z_U'dp,; L {}+ b, b, (A.5a)

where

Co= T % S Gt | (2.6)
TL“F*S = 2_ C. Cppr Sy Cas Wgra's? (A.6a)

Operator J_J_ (deformed basis )

L% = Z_(J-J+) AN +Z(J—),,5(J+F, N P@% .,

where

— .

(J-J-}?r';‘:- Z; C:l'a.' Cal.a,' (J-J-l-)a,' (A.8a)
o
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— . e
(J-J8)yp = ZA: Cant Copr ()57 (a.8b)
(J‘.“.)a,g, = Z& CoSa (Sx)ar g (A.8¢c)
o/ ’
~ .
(J£)ap = —AZ;, Cane Coor (dE)5°3° (a.84)

Now we are in a position to calculate the various

matrix elements., For example,

i <¢x\ 13‘.‘.‘ ¢K> == z:g (J-J".)dS(#K‘g;:"frs ‘¢K>
£ 7 (s Op G EH B GI6

) =3 (k) — Zp‘ m‘? (3pa M (a.9)
< A °‘

ABince

e
(Hya =°

Also

‘YL* = <¢up‘q e"ec M’HF>

n=1 if ¢ is occupied

=0 if o is not occupied

}¢t>== & beldy l:V:)‘—‘ 3{&; by &5|¢“>

Other matrix elements are given in APPENDIX III.A
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Matrix Elements Involving T

Such matrix elements are dependent on a particular
nuclear configuration, T unlike J is a many particle operator

This means that while J ig a sum “of single particle operators
(3 (J+) YT is a product (7( Ty,

1
Positive parmty states of F 2

ey = n by b 10
STy = € !ta'; —Q_,i__é)l0">

SNy,

Y A T

l
S

pi-

Pl

where k stands for partlcle state with

mk A
(‘t'm 3+Tj¢up> Z (J"' ad aa' Cdd' <¢HF’ e- @—A_TICPRF>

o &'

~— %. (J+)'ﬁ A AA Cop’ <chu=l (j e’oTMHp>

Second term is Zzero, Also

o/d’

Y‘a:: %
WHQ'==() - . C
" . <‘i’upl3+Tt¢W> = > U*’)a'd,' C{Qa’ R’
|
|

% Otner matrix elements for this case are listed in
‘ APPENDIX III.B
v
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\
!b Negative parity states ongig

+
Tldey = bz & 14w
- : )
K stands for hole (unpaired ) state‘W1th M= ~Me= —
As before

e ) T ey = _A§7 (J9 57" Ckar Cop’ (a.11)

For other matrices of this case, see APPENDIX III.C
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APPENDIX II

We shall now derive eqn. (4.2) from the exact expression

for the energies of the projected states (eqn 2. 6)
£y = <¢';.\H%-;l+-£>/<+é\l;iw§>

where Pf
E Y
With the assumptions listed in Chapter IV, we have for

is the angular momentum projection operator,

pi-

the Hamiltonian:
-2
Heo & +AR +h
-2 . . . a2
(6o + AT=2R02T2) —AJ-Tp —A JuT- +(k+AJ )
The overlap integral can be written:

T i X e A ‘
SALNTOE S"‘P o "if% (p<tyl e o>

® Bra
2U+]

B I T EHACTC TS

where B <X is a value of B outside the peak of F(B).
A
The matrix elements of the Hamiltonian can be calculated

term.by term,

(<\>__ | (& +A3-_1A,;,:rz> ﬁ_. {4y = (s.,-u\unn ..._A><4>.m.l<§>>

oyl AdT Py 192> = AE\T—-;)(:M—)] AT+ jdp«ampdan(za)
Ly el - SPT L1D

J
~ 0 since d%.%: (B) —> O for small B

.
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Ry
A A &. |61y A (T )jdpémpdl.(pxu PRI
| <o| by R ad Y1

e S
(T L
. (°"u Jr -ew'” B \9 '°>

1 A 1
SUPWRALIC N P <J+—,‘L—)\CJJ]@2‘§Q¢£>
~ i

~(p Ry
We have made use of the fact that <‘X | e P | Xe > is
symmetric about 7\' to change to B’=m -B.

pRs |
<d?— m T H’ > pvr'c (3-‘*’)[4?'6"’?&1'(?)(7'“‘“8‘ \‘&)

An’r‘t'
. olbota J"” by |0

The V,,.. are antisymmetrised matrix elements of the two-
_ + .
body potential and the operators a,, a, are the creation and
annihilation operators for a particle with quantum numbers-

AL , We can thus write
{x, la.o.. e |'x> ('x| o l'x.,)('xlep %oy
~fR
w3 el o x> <x’) € Iny

where \'X’> are excited intrinsic core states, The first
term evidently gives the Hartree-Fock potential energy
corresponding to b—:_ , while the second term contains the
off-diagonal matri; element <’x’l?pky } %> which is very
small (see Ref, 16 and Fig, 2 ), and can be neglected.
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We can therefore write that

AT ST AT CERS SR IEN CT D

where é& is the Hartree-Fock energy of the orbital

corresponding to bj_ Getting all these relevant terms
B

we obtain the eqn, 4.2



@ APPENDIX III.A

P s ’ ~ Kersd .
EIITTlby = O-moy | i), - %;np,{( Pupel J,)P.ﬂ
(W (Frpsd
EHLTNRY = My (1-10) (-mp) [ (Frus (S —(Dps Uar
Dy Wpst ) ¥ 0s |

(I HLb = () (-9 M s Tgas
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APPENDIX III.B

If a, O are particles
* : ~ (1
Ch | 5TV sy = = e CourGuar B — G S © ™) 3
o 4
If o, O are holes
(%:\T+T\¢up> = O
If a, B‘l, vs O are particles

L2 T\ ey = + I (e

[—n& (1-ng) GGy S,_“X;‘.;-;-Q(l-m)ﬁ“vgd. c,,su
1 (=10 G Ceu! SindaR ""c“""t):c’(d'%a usa'kl

If a, B, v, O are holes

Lo | TeT e = o

If a, O are particles and B, y are holes

<¢:F* ‘ 5T 4’m=> =—2_ (}-1),)1)6 Csa_' Ccp'('j"')'ﬁli'[ih Sol
. AlDI
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APPENDIX III.C

If o, O are particles

Chur | BT ey = 0

If g, 0 are holes

* (J.‘ Y c ,C~ ’(l‘n“_) SD.K - C tc I-nDSA?J
(q:HF\ J. T} 4’m=>= AZ- DA [ AR’ KD KA  ®P

'D'

If a, B, v, O are particles

éHF l I"'TI +HF>
If a, B, v, O are holes
<4’ NEAT > Z ()57 [’"D(""‘B)‘aa" Scusnx—"’n("'%)‘»",nseus”

+ H

-_Ne (I-'M)Cen CCD'SDKSQK + N¢ (f“”ﬂ)cﬂhrc ISDx85ﬂ

If o, O are particles and- 8,y are holes

< ‘F:.: ‘ T4 T ‘ #H F> = Z Q-na)NY Caar Cu'(J"’)&'J.' SC, K SB,‘)Z
ad’
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