
.' ABSTRACT 

The approximate projection'method of Das Gupta and 

Van Ginneken is .extended to include the,calculation of 

the decoupling parameter for K='k band. The method is 

tested on thefirst positive and negative parity bands 

of F
19 

and is found to give good results even when the 

strong coupling model seems to fail: The validity of the, 

formula for the decoupling,parameter given by the strong 

coupling ~odel is explored. 
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La methode de projection approximative de Das Gupta 

1 l , 
et de Van Ginneken est genera1isee afin de permettre le 

, 1 
calcul du parametre de decouplage des bandes rotatione11es 

avec K= t . L'application de cette methode aux premi~res 
~anaes rotatione11es de parite/positive et negative du 

19 ( 
noyau F" donne des resu1tats en bon accord avec les 

/ 1 ,.. .... 
resu1tats experimentaux meme quand le mode1e de Bohr et 

Motte1son est en erreur. La validite' de la formule de Bohr 
.... . , " 

et Motte1son pour le parametre de .decoup1age est etudiee. 
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INTRODUCTION 

It' is we11 known that the intrinsic state of a nucleus 

can be approximated by considering 5U(3)1), Ni1sson2), or 

deformed Hartree-Fock3 ,4,5) mode1 (B.F). 

The deformation in nuc1ei is usua11y interpretted as 

the effect of long-range correlations among the nuc1eons. 
-

In 5U(3) mode1 of the nucleus one takes a long-range 

specia1ised quadrupole-quadrupo1e two-body interaction 

between the nuc1eons. On the other hand, in Ni1sson mode1 

a more phenomeno1ogica1 point of view is adopted. It is 

assumed that nuc1ear deformations can be exp1ained by 

taking a non-spherica1 single-body potentia1 a10ng with 

a spin orbit terme A partial, justification of such a 

potentia1 comes from the fact that the long-range two-body 

forces can be supposed to average out to a deformed potentia1 

field in which mutua11y non-intexacting partic1es move. 

A more genera1 way of generating an intrinsic state 

of a deformed nucleus is to use deformed H. F. 'mode1 

which takes into account both single and two-body forces 

in its scheme through a self-consistent procedure. This 

method has been,discussed by Ke1son4) and will be fo11owed 

in the present work. 

The total angu1ar momentum J of the intrinsic wave 

function tKis not a good quantum number. Because of the 

assumed axial symmetry, on1y' the z- projection of J (denoted 

here by K) is a good quantum number. 5ince the actua1 
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states are those of adefinite angular momentum, the 

wave functions~ .. are not physical. The physical states 

are obtained by projecting ( by exact projection or 

approximate projection technique ) out of~ the states 

of good angular-momentum and normalising them. corresponding 

energies are the expectation values of the Hamiltonian 

-with these projected states. 

6) 
It may be remarked that the method of shell model 

becomes unduly complex as the number of particles outside 
- 20 

a closed shell increases. For example, in Ne , the 

number of J=2 states is 56. 

The exact projection from the intrinsic state7) becomes 

complicated as the number of particles increases. Das gupta 

and Van Ginneken
8) have developed an approximate ~ethcd 

for calculating the energies of states in a rotational 

band. The method assumes a rotational structure, but 

departures from J(J+l) rule were also studied and, in 

particular, the possibili ty of decoupling in K=-i bands 

was included in the formalisme In this case the decoupling 

parameter was calculated using -Bohr-Mottelson Prescription9 ). 

The purpose of the present work is to fully incorporate 

the calculation of the decoupling parameter into the 

formalism of the method of approximate projection. The 

nucleus that has been treated is F19 . The positive parity 

states correspond to three particles outside (p)sh~Ül and 

negative parity states are obtained by assuming a hole in 

( p) shell and Four paL"ticles outside it. It is found that 

the decoupling parameter for the negative parity states 
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agrees with that obtained from Bohr-Motte1son strong coupling 

formula ( eqn. 4.1 ) but no such agreement is attained for 

the positive parity states. A possible exp1anation is 

given in Chapter IV. 

The next three chapters dea1 with a brief description 

of deformed H. F. mode1, exact projection and approximate 

projection methods • 
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CHAPTER ! 

HARTREE-FOCK THEORY FOR DEFORMED NTJCLEI 

We can write the Hamiltonian H of the nucleus as 

H = L.(e(ITI~> ~+c,. + ~ r. (o(pIV/ rA ) ~+c.~+ c.s c.'( (1.1) 

Here T is the single-body part of the force which 

includes kinetic energy of all particles and their average 

interaction with all the other nucleons in closed shells. 

<a~IVI~d) is the antisymmetrised matrix element of V. 
'a) , ~~), etc. is a complete set of orthonormal ··rave 

functions. For example, we can choose single particle 

shell model wave functions in the )jm) basis to be the 

desired representation. 

have 

1 \ iV , 

The intrinsic nuclear wave functionq, is assumed to 

the form of a determinant of single particle orbitaIs 

\i
Jo

) , .••••••• \ i A). In the second quantised notation 

... +. +, 1\ ( ) l~) = bit b,J. ......... b~1\ 0/ 1.2 

16 
where\O) is the vacuum. One can define 0 core to 

be the vacuum. Thus F19 ( +p~rity ) states can be written 

as 
(1.2a) 

fi) canbe expanded in the known single particle basis 

10;) , l~) , ...... . 
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(1.3) 

the choice of coefficients C .. ,. being determined by 

minimisation of H. F. energy.lt is easy to seethat 

E = <;IHlcp) =L.(i.\TI~> +i ?-<.:j/V/':j> 
NF ~ ".J 

(1.4) 

The summation runs over all occupied orbits occuring 

in eqn.(1.2). Define e i as the Lagrange Multiplier associated 

with fixed solution. condition of minimisa~ion is 

~ .. ( E\\F - ej (?-I Cj~/.:L_J) = 0 (1.5) 
~CL). i' 
using eqns.(1.3) and (1.4), we get 

[ l (>'1 T 1JA.> -t- 4- <" i.1 vi ,iI.'''> Jq.c..= e\. cc:" (1.6) 

JI- " 

This is equivalent to an eigenvalue problem: 

h \ ~ ) ~ e.~ \ i. > 

(x\ h\JA-) = <"1 7 1)4> + ~ <"~Iv,p.',,) 

In our case, the summation in eqn.(1.3) is limited 

only to the (2s-ld) shell in case of particlès and to 

(lp) shell in case of holes. Further, assuming axial 

symmetry of H. F. field, summation will be over j's,and 

not m's. 

To give an exarnple, 

(1.7) 

(1.8l 

I~= ~) == \+> == C, s J eL&".!) + Cl.! tri!!.) + C.!..! l~ii> 
N il 'i:Jo 2,,, a, 2. ;:a. a 



(1: 

-6-

An iteration method is employed to determine these 

coefficients and the corresponding energies. 

(a) Take H.F. orbitals' 1 iO> to be sorne starting wave 

functions and use these to calculate matrix elements 

of h, eqn. (1.8) 

(b) Diagonalise this matrix to obtain orbits 'i(l» and 

energies e~l) • 
l. 

(c) with these wave functions, calculate again matrix 

elements of h: diagonalise these to'get 'i(2» , e12). 

(d) Repeat the above cycle until convergence is obtained. 

, At this stage the wave functions fed in are the saroe 

as come out after diagonalisation procedure. 

EHF is given by 

EHF = i ~ [<i.JT/l.) + e,,] 
" 

(1.9) 

Remarks about Hamiltonian 

In the Hamiltonian (1.1), Ja) can be taken to be the 

spherical harmonie oscillator potential wave functions 

and the energies e are determined from the known experimental 
a 

positions ( see TABLE l ) of the lp~ , lPl hole orbitals 
:L ~ 

lds , 2s. and ld1 particle orbitals listed in Ref.13. 
't 'i :a. 

The potential V can be split into p-p, h-h and p-h 

parts. It is assumed to be central and therefore 

g(r) being the radial dependence of the force and 

V 0 the strength function. Pr" Px' are spin exchange and 

space exchange operators respectively. W, B, H, and M 

represent components of Wigner, Bartlet, Heisenberg and 

(1.10) 
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Majorana type of forces: 

W+S + H-t-M =- 1 (1.11) 

The p-h interaction is calculated using the potential 

of Gillet and Virih-Mau14), ~hile the p-p interaction is 

taken from the work of Inoue et. al. 15) 

The parameters for Gillet and Inoue forces are given 

in TABLE II. 
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TABLE II 

Name g(r) Vo(Mev) a in W B H M 

f-l 
~ ".,.~ 

Gillet 
2 2 -40.0 0.5682 0.40 exp ( -a r ) 0.35 -.10 0.35 

1 
\0 

Inoue exp(-ar) -35°. 0 0.6026 0.25 -0.136 0.636 0.25 1 

r 
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CHA'Pl'ER II 

EXACT PROJECTION 

It is found that the H.F. wave functions ;Kconsist 

of a mixture of angular momentum eigenstates of the ground 

state rotational band. Definite orientation of the nucleus 

has been paid by an appropriate uncertainty in angular 

mornentum. Physically meaningful states are obtained by 

projecting out of ~kthe components with angular momentum J. 

It can be seen very easily that H.F. wave functions 

with K~ can give projected states with J=K, K+l, K+2, ••. 

Of course, higher J components may be negligible. If K=O 

however, only even J values are allowed. 

A simple proof follows. For a 'more rigorous treatment 

of this standard result see Ref. 16. 

consider the ground state (K=O) band in an even­

even nucleus. 

-- L.. o.:r d~o ('TT) 1 J" M> 
:TM 

--

(2.1) 
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Now we prove that ICPo)Sho'Uld remain unchanged under 

application of the time reversal operator -e.'IC~(-c:.7rJ~) . 
A • '" Since J,= L (J,)&: ,exH-i.rr~) r 'ro) is itself a determinant. 
':1 

Thus we can write 

-- + + ) b ,'" . (- titi ...... . . .... .. 
l'III 

_______ . __ . ____ .. \ 0> 
--

Thus 

r: a. l-{ \JO)= L lL:r 1 J'O> 
:I :r :r 

(2.2) 

whiCh gives only even J values. 

For non-zero K values, the H.F. wave function is not 

. unchanged by the time-reversal operator and there is no 

reason why odd J values should not be allowed. 

M Define PJ to be the angular momentum projection 

operator. 

P~ = L. IJ"M) (J'MI 
J"M 

(2.3b ) . 
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where IJM) are a complete set of orthonormal eigen-
2 

states of J and Jz. . 

To project states of good J out of fI<' note 

Assuming lJM) to be normalised, 

P~ 1 <t>} 

J <~\?~ 1 +> 

where d~ (e) is the reduc.ed rotation matrix 

(J"M 1 Ur(-c:eJ"y) 1 J"M)" 

(2.4) 

(2.5) 

(2.6) 

The integrals (2.7) ~~d (2.8) can be solved numerically. 

There are other m~thods of writing (2.7) and (2.8)( See 

Ref.lO) and, each is suited to a specifie purpose. , 

The defect of this method lies in its increasing 

complexity as the number of particles increases. 

A few features of this method are listed below: 

~ (1) Energy levels are determined by occupied orbits only. 
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(2) Abso1ute value of the energy is obtained and it does 

not depend on the calculation of the moment of inertia 

for wh~ch a model has to be introduced. 

(3) Deviations from a pure J(J+I) spectrum may be obtained. 

In particu1ar, decoup1ing of K=f band is contained 

in the expression (2.6). 
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CHAPTER III 

APPROXIMATE PROJECTION 

The chief disadvantage of the exact projection described 

earlier is that it becomes very complex as the number.of 

particles increases. If it is known a priori that the nucleus 

under consideration ha~ rotational spectra, approximate 

projection teChnique proves very helpful. The present work 

is an extention ( to K=±band ) of the work done by Das Gupta 

and Van Ginneken8). 

To start with, let us assume that for K=i band, the 

energy EJ for ,a state of total angular momentum J is given 

by 

(3. 2 ) 

4-1. A 
Here E is the band head, A=.!!.- where.:J is moment 

o l~ 
of inertia and ' a 1 is the decoupling parameter. To determine , , 
these three parameters E , A, and a, let us define a pseudo­

o 
hamiltonian: 

-)oJ. Eo + Pt J + AOJ J'+ T (3.3) 

which is required to have the same intra-band matrix 

elements as the true Hamiltonian H. In eqn.(3.3), J is 

angular rnomentum operator with components J+, J , Jz 
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-,:rrJ; 
and T=e is essentia11y tne time-reversa1 operator. Fo11owing 

conditions can be imposed now. 

(3.4) 

(3.5) 

(3. 6 ) 

Basica11y, these equations are the threesimp1est, 

different1y weighted, sum ru1es that invo1ve on1y intra­

band matrix e1ements. The three equations (3.4), (3.5), 
and (3.6) are then solved for the parameters E , A and a. 

o 
It is easy to see that 

<CPflH\q~>= ~o +A<<\>-4:)t1Jcp~>+Aa.<cf-iJi4T/<P~> (3.7) 

< ;îi 'iJ"+Tl+i}= Eo~."J ;r,. T}cf>i) t- A<4'fl if+:TT 1 <Pi) 
+ À 0.. (cpfl J+TJ+ Tlcri> 

( 4>~1 ft ~ J+ lq,-4:Î== [o<q,-i: l~Jr 14'-4:) tA (0/t..1 g:fJ"+ lep·;) 
+ A Q, < <t>-i 1 r .:r+ 3""+ T 1 ~i> 

and 

(3. 8) 

(3.9) 

(3. 1°) 
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(3. 11) 

In equations (3.10) and (3.11) the summation runs over 

two partic1es two ho1es (2p-2h) on1y. There is no summation 

over Ip-1h because of H.F. condition for minimum energy. Let 

[HF ""= < <Pi \ H 1 cf»i) 

F0110wing equations ensue by equating (3.9) with (3.10) 

and (3.8) with (3.11) and making use of (3.7). 

A = 

CI C. - C~ CS" _. 

C:!> c., - Cet Cl.. 

where 
'1 Il 'r 

CI = LI <q,~l \[.J"+ Icp~><4>;=,'J"+""CP~)+L<ct'i.ltj+ 1",~)<~,;ri-TI~l;> 

c . 
~ 

--
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Thus the prob1em reduces to ca1culation of matrix 
'/" elements (fil.:[J+ leP i ) , '+f,/ ~~ 1 +-4, > ' etc. For this, 

refer to APPENDIX l 
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CHAPTER IV 

APPLICATION OF APPROXlMATE PROJECTION METHOD 

The method of approximate projection can be tested on 

the three particle·(3p). K=±+band and ,the four particle one 

hole (4p-lh) K=t - band of F19 which are known to have a good 

rotational structure17 ) 

The values of E , A and 'a 1 obt,ained from the ca1culat-ion , o. 
are shawn in TABLE III and the resulting spectrum is compared 

to the experimental spectrum17 , 18)in Fig. 1. The agreement 

with experiment is satisfactory. 

,-
The intrinsic states which give rise to the K=~ and 

K=t+bands of F19 are very well approximated by removing a 

proton front the last occupied K= ~ and K= t .... orbitals of Ne20 • 

The strong coupling model (S.C. M.)19) predicts that the 

decoupling ~ar~ete1~ïe g~ve~)bYl C ;2 
a, == - 4- (-) z. (J""~ j~ 

J 
where c. , are the expansion coefficients of the .deformed K=+ 

J1: .... 
orbital in spher,ical shell model states. The values of 'al 

obtained from eqn. (4.1) are list~d in TABLE III along with 

the experimental values of wa', A3 E 3 which are obtained by , a 
1east square fit on the experimental energies given in Fig. 1. 

Although for K=f-hand the strong coupling model formula 

(eqn. 4.1) is reasonably accurate s this i8 not the case for 
r-h K q~ b -'" e = _ ana. 

1, -



e Ci) .. 
TABLE III 

K- .!.+ 
-~ K- 1--ï: 

E A a E A a 1 
0 0 .... 

\0 
1 

èxpt. -23.34 0.151 2.59 -23.44 0.192 1.02 

S. c. M -23.88 0.177 1.58 -23.06 0.177 0.88 

Approx. -23.55 0.162 2.69 -23.00 0.175 1.16 
proj. 
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-19.68 7/2- -'19.70 , 9/2-.' ' 
-19.77' 3/2 
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EXP'T. CALC. 

Fig.l: Energy Level Diagram For Fl9 
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Validity of the strong coupling formula for the decoupling 
parame ter 

Let us now introduce the following assumptions: 

.(1) The intrinsic state can be written as 

I;-$:) = b; l'Xo) 

where \ "'/..0) is an intrinsic core wave function with 

K=O and b; adds a deformed particle (or a hole) to 
i: , + 

this core. The operator bol has the usual expansion 
:a. 

in spherical shell model operators with coefficients 

C . 1 and i ts H. F. energy is ~.!.. . 
J~ ~ 

(2) The Hamiltonian can be'written as 

1 (,I) h(Z,) 
H = Ho+h -= Ho +n + 

where H acts only on the core, and h contains aIl 
o 

the terms that involve the extra particle (hole). 

Clear~y, h can be written as a sum of one-body (h(l» 

and two-body (h(2» parts. A similar expansion is 

possible for the angular momentum operator 
4 -t ~ 

J = R + j 

(3) The core wave function \'Xo/defines a sharp orientation 

iu space, i. e. FCf);: <-xol -~,~ J-xo) is sharply peaked 

about ~=O and ~=~ . This is the usual condition for 

the val id ity of the Bohr-Mottelson model for even­

even nuclei
lO

) and leads to a rotational spectrum 

of the projected core states16), i.e. H can be 
o 

replaced by a pseudo-hamiltonian E +AR2. 
o 

(4) The single particle (hole) wave function varies with 
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orie~tation rouch.more slowly than the core wave function 

i. e.;<') = (01 bi-t'· bt 1 0> decreases near f3=ü much 

more slowly than F(f3). Furthermore f(f3) is very small 

at back angles.We can thus write: 

z 0 

in the forward peak of F(f3) 

in the backward peak of F(f3) 

It is very easy to show (see APPENDIX II) that with the 

above approximations the energies EJ are given by: 

Er ~ €o + E.! +A[ ~ j(j ... ,;) Cj! 12.-1.J 
z. J :a. ~ • 1 ~l 

+ Â [~(J"+~ - (-)J+~(J"+i) (~(-~ ... ~ U+i,) !Cji.;}J 
J (4.2) 

Fig. 2 shows a plot of f(f3) for the positive parity 

and negative parity orbitals of the missing proton compared 
20 .-to F(p) calculated for the Ne core. Clearly, the K= ~ 

band satisfies all the criteria listed above and acceptable 

agreement is both expected and observed between the result 

of the approximate projection method and the strong coupling ... 
model. In the K=i band, however, the fourth assumption 

fails badly. Although the derivation shown in the APPENDIX 

II only proves that the above assumptions are sufficient 

to obtain the strong coupling result (eqn.4.2), it seems 

very unlikely that an alternative approach might be able 

to dispense with the fourth assumption, whose failure in 

the ca:se of the K=..!. + band can therefore be taken as the :a. 

reason for the failure of eqn.(4.l) to give an accurate 

result for the decoupling parameter. 

It is worth pointing out that if the core defines a 

sharp spatial orientation, and if all the single particle 

wave functions(both for the particles in the core and the 

extra particle ) vary with orientation much more slowly 
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than the total core wave function, then, due to the orthogonality 

of the intrinsic single particle orbitals, Which is effective 

near ~=Û, one can to a good approximation separate J and H 

into core and extraparticle parts. It is a1so clear that 

the Bohr-Mottelson result should improve rapidly as the number 

N of the nucleons involved in the collective motion increases, 
N 

since one expects that F(~)~f(~), neglecting exChange 

effects, which in turn becomes an increasing1y good approximation 

for increasing N. 
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Conclusion 

The method of approximate projection for caiculating 

moment of inertia, band head and decoupiing parameter has 

been tested on the F19 nucleus. It is found that there is 

agreement with the ·strong coupling model only for K= ~-band 
19 1+ 19 of F • The lack of agreement for K=~ band of F has been 

attributed te the breakdown of one of the important assumptions 

employed in deriving the strong coupling model. The various 

assumptions for thé strong coupling model can be summarised 

as follows: 

(1) The nucleus can be regarded as a core and an extra particle 

(hole) 

(2) The total Hamiltonian and angular momentum can be 

separated. into core and extra particle (hole) parts. 

(3) The core defines a sharp spatial orientation. 

(4) The spatial orientation of the wave iunction of the 

particle (hole) varies much more slewly than the core. 

In the K= band the fourth asslli'llption fails badly. 

The method of approximate projection in the presence 

of decoupling is éxpected to be pa~ticularly usefui in the 

study of light nuclei where the assumptions underlying the 

validity of the stL'ong coupling model are more questionable 

than in the heavier nuclei where a large number of particles 

participate in the collective motion. 
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APPENDIX l 

calculation of Matrix Elements 

Notation 

Greek indices denote arbitrary states 

Small Roman denote particles 

capital Roman denote holes 

Basis 

(a) Spherical Basis 

It is denoted by az ,el( or b: ,bot where a summarises 

ail the quantum numbers n , l , ja' m ,m . a's and b's are 
a a a ta 

related. 

(b) 

+ 
Q, 

QI 

Q,~ 
A 

Deformed Basis + 
It is denoted by'-t 

cC. 

.fr+ = L Coty b; 
ct. 

or 
= I:. (é' )y~ -&: b~ 

0 
,~ 

--

.0., 

-A 

~ Co(t t.: 
(A. la) 

(A. lb) 
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Hamiltonian ( spherical basis ) 
+ + ~ ,'''''' l'V 'o,o,Q,Q,(" H = l- ~ • ~ '""" .... • + 'ii L- ;,cp'" • tJ. pro 

0( 

--

similarly 

where 

LL - Vo.\accA. o.b~.L -

lL .... u :: V1),s1l 

• + ~ • 
• ~ ca,' 

:=" 

Oo!+~ • A ~ • 

where 

jA+je+jc.+j'O 
'1..'0 -c.-8-1\ == (-) 

::::. - Vo-ëScl. 

We have made use of the fact tha t mA +mB =me +mD and 

(A.2) 
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therefore 

( )
m +m +m +m 

- ABC D=l 

(A.2b) 

Operators J J J J J J in spherieal basis' 
+ - - + 

J"± = L (a«( jt.I~> : a,:o,s ~ 
~,fj 

(A.3) 

where 

t: (Dl chi A) == 
!::/ 

j"+l'nA ... j,, ... '!1'D T'" 'm-t" -+ m,'D 
(-) • (-~ , j;t: l-.; A> 

sinee 

jA = jo , 

Using eqns.(A.3) 



(A.4) 

Hamiltonian (deformed basis ) 

H = L. 6", b;, b.cl + -Ir L ~'"Y'f' b:, b~r bl , b6"' 
(A.5) 

tJ(.' 

using eqn. (A. lb) 

li = LE.(," f,.: &f + * L.\LO(Plr& t; f,.: f,.t ~6 (A.5a ) 

where 

(A.6) 

(A.6a) 

where 

(A.8a) 
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NOW we ~re in a position to ealeulate the various 

matrix elements. For example, 

...Binee 
"..., 

(j..)cJ..J.. =- 0 

Also 

-n ~ = (<t>WF 1 t-; frol. '~"F > 

n = 1 if a is oeeupied 
a 
= 0 if a is not oeeupied 

, 

other matrix elements are given in APPENDIX III.A 

(A.8b) 

(A.8e) 

(A.8d) 
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Matrix Elements Involving T 

Such matrix elenlents are dependent on a particular 

nuclear configuration. T unlike J+ is a many particle operator. 

This means that while J is a sum-of single particle operators . +. 
{î (j+)1) T is a product (~i T

1). 

+ 4-
~I 1 g 1 1 

i,-ï. -"i-;j 

wnere k stands for partic~e state with ~= - ~= 1r 
<<f1"t\J+TJ~~F) t: L {J+),:~ ~c.' (oIa' <4>HFI t:~c:L TI~HF> 

~,~ 

,_.tf. 1 (j+)l/A' tA,..' C \)1)' <%F 1 t: B-o Tt~HF> 
~',AO' 

Second term is zero. Aise 

i . ~ 

'n~ = , 

l'lt = 0 

< ~~f 1 J+ T \ 4lW ) 

otner matrix elements for this case are listed in 

APPENDIX III.B 
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Negative parity states of F19 

TIq,HF) = &~ ~k. \4>HF) 

K stands for hole (unpaired ) state with m = -m ... = 1-
K K 2. 

As before 

-=- _ 2:. (J'.t)o'-;' C"A' C'I('D' (A. 11) 

A'p' 

For other matrices of this ·case, see APPENDIX III.C 

e. 
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APPENDIX II 

We shall now derive eqn.(4.2) from the exact expression 

for the energies of the projected states (eqn. 2.6) 

E;r = <;i; 1 H (~ 1 +i:V<+,i;I ~i 1 +i> 
where P~~ is the angular momentum projection operator. 

&:1. 

with the assumptions listed in Chapter IV, we have for 

the Hamiltonian: 

-+2-

H ~ fo + A R. + h 

= lEo+ A1-:':1Aj-aJ"I) -Aj-~ ... -Aj+.J"_ +(h.f.AjJ.) 

o 

where f3 < ii is a value of f3 outside the peak of F(I3). max -;: 
The matrix elements of the Hamiltonian can be calculated 

term.by term. ~ 

< "'-l: \ (éo + A 1.1_.t.Ac j! ~I) ~~ f q,*> = (Ev -+ A ~c..J+')-;k A) <cf1t l ~~ I;i> 
. 'la. 'fT J' 

< <P~ \ A j- =4 P:, l<\>.!. > == A r (J"-i:)( ~ +~)] . ~ JJP~~~o\~i(~) 
~ . ",a: a. ~ CI • 

. ~'R~ -c:.p~'J + ~ 
· <~\ -è: )~> <°1 Li j- e. bi: I~ 

~o 
J 

since d 1. J. (f3) ~ 0 for small f3 
"'ll.. 
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The ~~r~ are antisymmetrised matrix elements of the two-
. + . d body potent1aland the operators a~, a~ are the creat10n an 

annihilation operators for a particle with quantum numbers· 

;(,L • we can thus write 

, 
where \"X) are excited intrinsic core states. The first 

term evidently gives the Hartree-Fock potential energy 

corresponding to b l , while the second. term contains the 
N < ' -LpRy off-diagonal matrix element ~ 1 e \ ~ > which is very 

small (see Ref. 16 and Fig. 2 ), and can be neglected. 
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We' can therefore write xhat 

where éL is the Hartree-Fock energy of the orbital 
;a. 

corresponding to b~ • Getting all these relevant terms 
:a. 

we obtain the eqn. 4.2 
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APPENDIX III. A 
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APPENDIX III.B 

If a, 0 are particles 

If a, ô are holes 

If a, ~, ~, ô are particles 

(.lt.** 1 J: T\.&... > = + L (j+)o!cI.,r_~ (1-",)~~/~'Il~ah. +1J,.(I-'\)~A'Se.'~It~(~ 
't"I1F +- ""'F tA! L' , L 

+ll
G 
(1-"'t.)~"'Cc.L' ~ .. " <;'Ak -.",( .. -n..)~e!("~~~I.~ 

If a, ~, ~, ô are holes 

If a, 0 are particles and ~, ~ are holes 

< ~:: 1 J" ... TI 'tiF) = - L <,1-')').)1'>" CSA' ~D,(~)l)'ii/(f.i.~ $d-:: 
. A'P' 
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APPENDIX III.C 

If a, 0 are particles 

If a, 0 are holes 

{":F\ J+TJ ~HF>= L. (j+)5 I A'[ CItA,C""V-YlA) ~D~I( -C ,e ;n,SAR'l 
A'»' kA'~ ~ 

If a, ~, ~, 0 are particles 

If a, ~, ~, 0 are holes 

< ,:; 1 \T+ ,\ q,HF) == L. (1-'71Q,) l1.a. C4A, '.u,{j+)",.l' ~G~ K ~&/Jè: 
a:J.' 
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