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ABSTRACT: Background: There is only partial
overlap in the genetic background of isolated rapid-
eye-movement sleep behavior disorder (iRBD) and
Parkinson’s disease (PD).
Objective: To examine the role of autosomal domi-
nant and recessive PD or atypical parkinsonism genes
in the risk of iRBD.
Methods: Ten genes, comprising the recessive genes
PRKN, DJ-1 (PARK7), PINK1, VPS13C, ATP13A2,
FBXO7, and PLA2G6 and the dominant genes LRRK2,
GCH1, and VPS35, were fully sequenced in 1039
iRBD patients and 1852 controls of European ances-
try, followed by association tests.
Results: We found no association between rare het-
erozygous variants in the tested genes and risk of
iRBD. Several homozygous and compound heterozy-
gous carriers were identified, yet there was no over-
representation in iRBD patients versus controls.
Conclusion: Our results do not support a major role
for variants in these genes in the risk of iRBD. © 2020
International Parkinson and Movement Disorder
Society

Key Words: REM sleep behavior disorder; genetic
analysis; Parkinson’s disease

Isolated rapid-eye-movement sleep behavior disorder
(iRBD) is a prodromal neurodegenerative disease. More
than 80% of iRBD patients will eventually convert to
an overt α-synucleinopathy,1 either Parkinson’s disease
(PD), dementia with Lewy bodies (DLB), or multiple
system atrophy.2

Currently, 90 independent risk factors of PD are
known through genome-wide association studies
(GWAS).3 Other, rarer genetic variants have been
implicated in familial forms of PD, including autosomal
dominant (AD) inherited variants in genes such as
SNCA, LRRK2, GCH1, and VPS354,5 and autosomal
recessive (AR) inherited variants in PRKN, PINK1, and
PARK7.6 Biallelic mutations in other genes, including
ATP13A2, VPS13C, FBXO7, and PLA2G6, may cause
AR atypical syndromes with parkinsonism,4,7 in some
of which α-synucleinopathy has also been reported.8-10
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The genetic background of iRBD has been only
recently studied, with studies showing that there is no
full genetic overlap between the genetic background of
iRBD and that of PD or DLB. GBA mutations are asso-
ciated with risk of iRBD, PD, and DLB,11-15 but patho-
genic LRRK2 mutations seem to be involved only in
PD and not in iRBD and DLB.7,16,17 MAPT and APOE
variants are important risk factors of PD and DLB,
respectively,18,19 but both genes are not associated with
iRBD.20,21 In the SNCA locus, there are independent
risk variants of PD, DLB, and iRBD.22 Within the
TMEM175 locus, there are two independent risk fac-
tors of PD, but only one of them, the coding polymor-
phism p.M393T, has been associated with iRBD.23

Here, because GBA and SNCA have been studied
previously,12,22 we aimed at thoroughly examining the
roles of PRKN, PINK1, PARK7 (DJ-1), VPS13C,
ATP13A2, FBXO7, PLA2G6, LRRK2, GCH1, and
VPS35 in iRBD.

Methods
Population

This study comprised 1039 unrelated iRBD patients
and 1852 unrelated controls, all of European ancestry
(confirmed by principal component analysis of GWAS
data). Additional information about the study popula-
tion can be found in the Supplementary Data. All
patients signed an informed consent form before partic-
ipating in the study, and the study protocol was
approved by the institutional review boards.

Genetic Analysis
Complete details on the genetic analysis and quality

control can be found in the Supplementary Data. The
coding sequences and 50 and 30 untranslated regions of
PRKN, PINK1, DJ-1, VPS13C, ATP13A2, FBXO7,
PLA2G6, LRRK2, GCH1, and VPS35 were captured
using molecular inversion probes designed as previously
described,24 and the full protocol is available at https://
github.com/gan-orlab/MIP_protocol.

Data and Statistical Analysis
Complete details on data and statistical analysis can

be found in the Supplementary Data. We used different
approaches to examine the effect of multiple variants
on iRBD risk. To examine whether there is a burden of
rare (MAF < 0.01) heterozygous variants in each of our
targeted genes, we used optimized sequence Kernel
association test (SKAT-O, R package)25 and burden
tests for different types of variants: all rare variants,
potentially functional rare variants (nonsynonymous,
frame-shift, stop-gain, and splicing), rare loss-of-
function variants (frame-shift, stop-gain, and splicing),
and rare nonsynonymous variants only. We then

examined the association between variants predicted to
be pathogenic based on the combined annotation-
dependent depletion (CADD) score of ≥12.37 (rep-
resenting the top 2% of potentially deleterious variants)
and iRBD. Because copy number variants (CNVs) are
frequent in the PRKN gene,26 we included CNVs when
we analyzed the association of PRKN variants with
iRBD, identified as recently described.27

Availability of Data and Materials
Data used for the analysis are available in the supple-

mentary tables. Anonymized raw data can be shared on
request from any qualified investigator.

Results
Quality of Coverage

The average coverage of the 10 genes analyzed was
>144X for all genes, and the coverage of 8 of the genes
was >900X. The per-gene coverage for all 10 genes,
although not perfect, is better than the coverage of
these specific genes in gnomAD. Supplementary
Table S2 presents the average coverage and the percent-
age of nucleotides covered at 20X and 50X for
each gene.

Rare Homozygous and Compound
Heterozygous Variants Are Not Enriched in

iRBD Patients
To examine whether homozygous or compound het-

erozygous variants in our genes of interest may cause
iRBD, we compared the carrier frequencies of very rare
(MAF < 0.001) biallelic variants between iRBD patients
and controls. Only three carriers (one patient and two
controls) were identified with homozygous variants
across all genes. All three carried homozygous noncod-
ing variants that are not likely to cause a disease.
For the analysis of compound heterozygous carriers,

because phasing could not be performed, we considered
carriers of two rare variants as compound heterozygous
carriers, with two exceptions: (1) when variants were
physically close, we could determine their phase based
on the sequence reads, and (2) if the same combination
of very rare variants appeared more than once, we
assumed that the variants are likely on the same allele.
We found 9 patients and controls, presumably com-
pound heterozygous carriers, in the studied genes
(Table 1). Three affected and three unaffected carriers
of compound heterozygous variants in VPS13C were
identified, with no overrepresentation in iRBD patients
(Fisher’s test, P = 1).
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Rare Heterozygous Variants Are Not Enriched
in Any of the Studied Genes

To further study the role of rare (MAF < 0.01) het-
erozygous variants, we performed SKAT-O and burden
tests, repeated twice for variants detected at a coverage
depth of >30X and variants detected at >50X (see Sup-
plementary Data). All rare heterozygous variants identi-
fied in each gene are detailed in Supplementary
Table S3. We performed SKAT-O and burden tests at
five different levels: all rare variants, all potentially
functional variants (nonsynonymous, splice-site, frame-
shift, and stop-gain), loss-of-function variants (frame-
shift, stop-gain, and splicing), nonsynonymous variants
only, and variants with CADD score ≥ 12.37 (Table 2).
The Bonferroni corrected P-value for statistical signifi-
cance was set at P < 0.001. We found no statistically
significant association between iRBD and any of the
variant types in any of the genes, suggesting that these
genes either have no role in iRBD or have a minor role
that we could not detect with this sample size. We did
not identify any iRBD patient with known biallelic
pathogenic variants in PARK7, PINK1, VPS13C, and
ATP13A2 or heterozygous pathogenic variants in
LRRK2, GCH1, and VPS35. Two controls were found
with the pathogenic LRRK2 p.G2019S variant.

Analysis of CNVs in PRKN
We further examined the association between dele-

tions and duplications in PRKN and risk for iRBD.
Using ExomeDepth, 7 patients (0.7%) and 17 controls
(0.9%, P = 0.53) were found to carry CNVs in PRKN,
and none of the patients were found to have an

additional nonsynonymous variant. Therefore, there
were no homozygous or compound heterozygous car-
riers of rare PRKN variants among the iRBD patients.
Supplementary Table S4 lists all the CNVs found in our
cohort.

Discussion

The present study provides the first large-scale, full-
sequencing analysis to examine the role of the domi-
nant and recessive parkinsonism genes PRKN, PARK7,
PINK1, VPS13C, ATP13A2, FBXO7, PLA2G6,
LRRK2, GCH1, and VPS35 in iRBD. We did not find
evidence for association of any of these genes with
iRBD. In the recessive genes, there was no overrepre-
sentation of carriers of homozygous or compound het-
erozygous variants in iRBD patients and no single
patient with biallelic pathogenic variants. In the domi-
nant genes, we did not find any known pathogenic vari-
ants in these genes, and SKAT-O and burden analyses
did not identify burden of rare heterozygous variants in
any of these 10 genes. Overall, these results suggest that
iRBD is more likely to be associated with the sporadic,
multifactorial forms of PD rather than with the mono-
genic forms of parkinsonism.
Whether heterozygous carriage of mutations in reces-

sive PD or atypical parkinsonism-related genes is a risk
factor for PD is still controversial.28 PRKN-associated
PD is characterized by pure nigral degeneration
without α-synuclein accumulation,29 and reports on
synucleinopathy and Lewy bodies in PINK1-associated
PD are inconclusive, as some studies identified Lewy

TABLE 1. Summary of all samples carrying two nonsynonymous variants detected in the present study

Gene Sample Sex AAS dbSNP Allele* Substitution F_A F_C gnomAD ALL gnomAD NFE

PRKN C M 46 rs137853054 G/A p.T212M 0 0.0005504 0.0004 0.0003
rs9456735 T/G p.M192L 0 0.001101 0.0043 0.0003

PINK1 C M 57 rs370906995 C/T p.T257I 0 0.0002756 7.02E-05 0.0001
rs372280083 C/G p.L268V 0 0.0002756 9.34E-05 0.0001

VPS13C A M 75 15:62165489 C/A p.D3469Y 0.0005092 0 – –

15:62204039 C/A p.E2862D 0.0005139 0 – –

VPS13C C F 60 rs746819519 C/T p.G3172D 0 0.001096 1.76E-05 0.00003753
rs202056315 A/C p.V2235G 0 0.0002744 4.06E-05 0.00001793

VPS13C C M 30 rs780081183 C/G p.A2368P 0 0.0002738 1.24E-05 0.00002724
15:62302740 C/G p.E271D 0 0.0002738 – –

VPS13C C M 52 rs767080349 A/G p.M2344T 0 0.0002738 1.87E-05 0.0000187
rs370832130 T/C p.M1416V 0 0.0002738 0.0001 0.0001

VPS13C A M 64 rs760460320 C/G p.D1496H 0.0005081 0 1.75E-05 0.00002803
rs765303583 G/C p.Q660E 0.0005081 0 0 0

VPS13C A M 59 rs141515062 A/T p.S522T 0.001016 0 0.0002 0.0004
rs376219715 T/C p.Y365C 0.001016 0 1.63E-05 0.00003598

LRRK2 C M 63 rs886344692 A/T p.R1282S 0 0.000275 1.63E-05 2.69E-05
rs202179802 A/G p.T2310A 0 0.000275 4.47E-05 7.17E-05

*Allele, reference allele/mutant allele.
A, affected; C, control; M, male; F, female; AAS, age at sampling; dbSNP, single nucleotide polymorphism database; F_A, frequency in affected patients; F_C, fre-
quency in controls; gnomAD ALL, exome allele frequency in all populations; gnomAD NFE, exome allele frequency in non-Finnish European.
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bodies, whereas others did not.30,31 Because iRBD is a
prodromal synucleinopathy, it is not surprising that we
did not identify biallelic mutations or burden of hetero-
zygous variants in any of these genes.
Recently, we have shown that the SNCA locus is

important in RBD, yet with different and distinct vari-
ants that are associated with risk of PD.22 In the same
study, SNCA was fully sequenced, and no known
PD-causing variants were found in iRBD patients. We
and others have previously reported that pathogenic
LRRK2 variants were not identified in smaller cohorts
of iRBD,17 which was further confirmed in the current
study. In addition, several studies of PD patients with
and without RBD have shown reduced prevalence of
RBD32-35 or reduced scores in RBD questionnaires among
LRRK2 mutation carriers. VPS35 mutations have not
been identified in iRBD in the current study, although
pathogenic VPS35 mutations are generally rare.36,37 Alto-
gether, these results provide no evidence that known,
well-validated familial gene mutations involved in PD
(including SNCA, LRRK2, VPS35, PRKN, PINK1, and
PARK7) are also involved in iRBD. GBA is the only gene
in which strong risk variants associated with PD are also
associated with iRBD.11 We did not exclude GBA

mutation carriers in the current analysis, yet exclusion of
these carriers did not change the results.
Our study has some limitations. Although it is the

largest genetic study of iRBD to date, it may still be
underpowered to detect rare variants in familial PD-
related genes. Therefore, our study does not completely
rule out the possibility that variants in these genes may
lead to iRBD in very rare cases. Another potential limi-
tation of the study design is the earlier age, the different
sex distribution in the control population, and the fact
that they have not been tested for iRBD. However,
because iRBD is not common, found in about 1% of
the population,2 age would have a minimal or no effect
on the results. The differences in sex ratios are less
likely to have an effect, because in AD and AR Mende-
lian diseases, the risk is typically similar for men and
women.
To conclude, the lack of association between different

PD and parkinsonism genes may suggest either that
iRBD is an entity more affected by environmental fac-
tors or that there are other, yet-undetected genes that
may be involved in iRBD. Our study also suggests that
screening for variants in the tested genes in iRBD will
have a very low yield.

TABLE 2. Summary of results from burden analyses of rare heterozygous variants

DOC Gene

All rare (P-value) Rare functional (P-value) Rare LOF (P-value) Rare NS (P-value) Rare CADD (P-value)

SKAT-O
SKAT
Burden

SKAT-
O

SKAT
Burden

SKAT-
O

SKAT
Burden

SKAT-
O

SKAT
Burden

SKAT-
O

SKAT
Burden

30x Recessive genes
PRKN 0.4316 0.484 0.388 0.240 NV NV 0.508 0.331 1 0.889
PARK7 0.104 0.254 0.008 0.369 0.175 0.174 0.005 0.005 NV NV
PINK1 0.703 0.505 0.117 0.605 NV NV 0.117 0.605 0.124 0.494
Recessive (atypical) genes
ATP13A2 0.543 0.383 0.379 0.227 NV NV 0.379 0.227 0.201 0.121
FBXO7 0.525 0.562 0.266 0.140 0.163 0.252 0.327 0.160 0.228 0.279
PLA2G6 0.325 0.859 0.222 0.663 0.260 0.193 0.243 0.948 0.196 0.688
VPS13C 0.018 0.047 0.334 0.206 0.237 0.137 0.343 0.207 0.468 0.834
Dominant genes
GCH1 0.361 0.217 0.730 0.804 0.730 0.804 NV NV NV NV
LRRK2 0.601 0.827 0.578 0.888 0.134 0.199 0.590 0.966 0.610 0.871
VPS35 0.159 0.111 0.161 0.247 0.382 0.522 0.161 0.247 0.434 0.807

50x Recessive genes
PRKN 0.085 0.084 0.452 0.609 NV NV 0.452 0.609 0.771 0.564
PARK7 0.180 0.288 0.017 0.436 NV NV 0.010 0.010 NV NV
PINK1 0.572 0.546 0.050 0.133 NV NV 0.050 0.133 0.050 0.133
Recessive (atypical) genes
ATP13A2 NV NV NV NV NV NV NV NV NV NV
FBXO7 0.618 0.624 0.209 0.125 0.331 0.613 0.256 0.148 0.540 0.309
PLA2G6 0.528 0.853 0.360 0.680 0.680 0.452 0.360 0.680 0.680 0.452
VPS13C 0.101 0.055 0.073 0.038 0.777 0.971 0.149 0.082 0.332 0.227
Dominant genes
GCH1 0.901 0.817 0.734 0.760 0.734 0.760 NV NV NV NV
LRRK2 0.030 0.019 0.279 0.173 0.062 0.088 0.525 0.377 0.527 0.365
VPS35 0.453 0.549 NV NV NV NV NV NV NV NV

DOC, depth of coverage; CADD, combined annotation-dependent depletion; NS, nonsynonymous; LOF, loss of function; SKAT-O, optimized sequence kernel
association test; SKAT, Kernel association test; NV, no variants were found for this filter.
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