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This document is dedicated to ambulance dispatchers around the world

whose timely decisions have saved (and continue to save) countless lives.
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ABSTRACT

A major challenge for tra�c management systems is the inference of traf-

�c �ow in regions of the network for which there is little data. In this thesis,

GPS-based vehicle locator data from a �eet of 40-60 roving ambulances are

used to estimate tra�c congestion along a network of 20,000 streets in the city

of Ottawa, Canada. Essentially, the road network is represented as a directed

graph and a belief propagation algorithm is used to interpolate measurements

from the �eet. The system incorporates a number of novel features. It makes

no distinctions between freeways and surface streets, incorporates both histor-

ical and live sensor data, handles user inputs such as road closures and manual

speed overrides, and is computationally e�cient - providing updates every 5

to 6 minutes on commodity hardware. Experimental results are presented

which address the key issue of validating the performance and reliability of

the system.

iv



ABRÉGÉ

Un dé� important en lien avec les systèmes de gestion de la circulation

routière est de dé�nir la situation actuelle du réseau routier dans les régions

où peu de données sont disponibles. Les données provenant d'une �otte de 40-

60 ambulances munies d'un GPS ont été utilisées a�n d'estimer la congestion

routière sur un réseau de plus de 20 000 rues dans la ville d'Ottawa, au Canada.

Essentiellement, le réseau routier est représenté par un graphe orienté et un

algorithme de propagation de con�ance est utilisé pour interpoler les données

provenant de la �otte d'ambulances. Ce système comprend des caractéristiques

innovatives. Le système ne fait aucune distinction entre les autoroutes et

les rues, il intègre les données archivées et actuelles, il gère les informations

entrées par l'utilisateur au central concernant les fermeture des routes et les

changements de vitesse sur le réseau routier et il est e�cace dans ses calculs

puisqu'il fournit des mises à jour de l'état du réseau routier toutes les 5-6

minutes sur un ordinateur standard. Les résultats de l'expérience, la validation

de la performance ainsi que la �abilité du système sont présentés.
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CHAPTER 1
Introduction

Maintaining the state of a complex road network given limited sensor

input is a key challenge to the design of modern tra�c control systems. In this

paper we address the speci�c problem of inferring tra�c density along each of

20,000 streets in the greater city of Ottawa, Canada, from GPS-based vehicle

locator data supplied by a �eet of 40-60 roving ambulances. The context for

this work is a system for managing the redeployment of a �eet of ambulances

operated by the Ottawa Paramedic Service (OPS).

1.1 Project Overview

Typically, when an emergency call is received that requires the services

of an ambulance, the OPS dispatcher must �rst decide which available am-

bulance to deploy. This task is not particularly di�cult as the number of

ambulances to take into consideration is limited by the maximum allowable

response time of 8 minutes. After an ambulance has been deployed however,

a gap in the coverage may occur in which case the remaining available ambu-

lances need to be redeployed in order to maintain coverage. The redeployment

task is much more di�cult because now all the ambulances must be taken into

consideration in addition to operating constraints such as load balancing, crew

scheduling, and minimizing movement. The goal of the project, RISER1 , is

1 Rapid Intelligent Scheduling for Emergency Responders, a joint project led
by CAE Inc. under the Precarn Inc. CORE program, with the participation
of Actenum Inc., McGill University, Simon Fraser University, and the Ottawa
Paramedic Service.
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Figure 1�1: Proposed Ambulance Dispatch System

to develop a system capable of dynamically positioning the �eet so as to guar-

antee response time while respecting operating constraints. As can be seen in

Fig. 1�1, the system relies on a tra�c server module to provide an estimate

of the tra�c congestion along each of the approximately 20,000 streets in the

city road network. These data are used to estimate time of arrival (ETA) for

any path through the network, which in turn is used for determining optimal

redeployment of the �eet by the scheduling engine.

1.2 The Tra�c Server

The focus of this thesis is the tra�c server, which uses a combination of

sparse measurements, historical tra�c data, and a GIS database to determine

the likely tra�c �ow state at any location in the network. The key idea of

the thesis is that given prior information in the form of date/time indexed

historical data, one can reliably interpolate a set of sparse, real-time measure-

ments, and obtain reasonable estimates over the extent of the network. This

is achieved by means of a belief propagation algorithm which operates on a

representation of the tra�c network as a directed graph and serves to integrate

information from di�erent sources. Here we consider only vehicle locator data

2



and user inputted speeds, but the algorithm is su�ciently general to incorpo-

rate any available source of information provided that i) it is geo-referenced to

a particular location in the network, and ii) that it can be expressed in terms

of relative congestion (described shortly). The particular belief propagation

algorithm we use is Relaxation Labelling (RL), which has been widely used in

the computer vision �eld [1, 2, 3].

1.3 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 formally de�nes

the problem and outlines the contributions of this work. Chapter 3 reviews

the current state of the art. Chapter 4 describes the solution we propose.

Chapter 5 details the experimental methodology and the validation results.

The thesis ends with a discussion in Chapter 6 and suggestions for future

work in Chapter 7.
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CHAPTER 2
Contributions

There are a number of contributions that, when put together, make the

work accomplished in this thesis unique.

2.1 Interpolating Sparse and Noisy Sensor Data

The main contribution of this work is the interpolation of sparse and lo-

cally inconsistent sensor data. In the city of Ottawa, a central computer tracks

the positions in 11 second intervals of a �eet of 40-60 ambulances equipped

with GPS devices. Their positions are converted to travel speeds which in turn

are used to infer local road congestions. As there are at least 20,000 streets in

Ottawa, one problem is that the number of probes supplying road congestion

information is orders of magnitude lower than the number of streets in the

city. Although a user may add data by manually inputting road speeds into

the system, the user is not expected to do so often which does not alleviate the

sparsity of the data. Another problem is that because the sensor data are noisy

and have large variance, local road congestions are bound to be inconsistent.

For example, a given road may appear to be free �owing according to its his-

torical data but could in fact be congested according to the historical data of

its neighbouring roads. Dense locally consistent speed estimates are obtained

from sparse and locally inconsistent speeds via the Relation Labelling (RL)

algorithm using local constraints as de�ned by the road network topology (i.e.

linkages, number of lanes and speed limits).

2.2 Accommodating Arbitrary Data Sources

The tra�c server is su�ciently general that it can accommodate arbitrary

sensor information provided that sensor data satisfy two conditions. First, it
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must be geo-referenced to a particular road segment. Second, it must be

expressed in terms of relative congestion.

2.3 Incorporating Measures of Con�dence

In contrast to the other methods, we take care to incorporate measures of

con�dence to represent uncertainties in the sensor data and in the estimates

that we provide. For the sensor data, this is achieved by means of a Gaussian

distribution where the shape of the Gaussian determines the con�dence in the

data. For predicting the potential ambulance speed of every road segment in

the network, we obtain a distribution of likely speeds where the maximum

likelihood estimate corresponds to the most likely ambulance speed and the

shape of the distribution indicates con�dence in the estimate. Such informa-

tion may be desirable for advanced route planning systems where, given two

routes with similar travel times but di�erent certainties, the route with the

higher certainty should be favoured.

2.4 Scale and Performance

The tra�c server is able the model the road congestion for the entire city

of Ottawa, Canada, including both freeways and surface streets in under 5-10

minutes depending on the model parameters. During the main execution loop,

almost all of the computation time is dedicated to the interpolation step. On

commodity hardware, we are able to update the road congestion for Ottawa

every 5-10 minutes depending on the model parameters which are determined

by the needs of the ambulance dispatchers. For larger cities, we can take

advantage of the parallel nature of RL algorithm and split the processing

over multiple cores using readily available multi-core processors in order to

minimize processing time.

5



2.5 Validation

We developed a thorough and automated process to validate the model

using K-folds cross-validation. Challenges due to the size of the road network

and the quantity of the historical data had to be overcome. As explained

later, it takes 10 days or 240 hours of processing time to perform 5-fold cross-

validation for each set of parameters.

2.6 Easily Portable to Other Cities

The tra�c server is su�ciently �exible that it can be ported to any ar-

bitrary city with little user modi�cations. All that is required is for the road

network database of the new city to follow the same widely used ESRI Shape-

�le format and to contain the same key attributes.

2.7 Locally Adaptable

The tra�c server can allow a user to modify the road network without

rendering the model useless. For instance, the user may close a road o� from

circulation or temporarily override historical data by manually inputting live

speeds. Examples of when a road closure may be necessary are during parades

or road work while examples of speed overrides are in the case of accidents

or stalled vehicles. The advantage of supporting such modi�cations is that

the system is more dynamic and can be adjusted to closely model actual

conditions.

2.8 Publication

The design and results presented in this thesis are summarized in [4]:

A. Phan and F.P. Ferrie. Obtaining Dense Road Speed
Estimates from Sparse GPS Measurements. IEEE Intel-

ligent Transportation Systems Conference, pages 157-162,
2008.
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CHAPTER 3
Related Work

In the literature, tra�c models are generally classi�ed as either micro-

scopic or macroscopic. A microscopic model tracks the movement of individ-

ual vehicles and generally includes a model for the driver, the vehicle and

how the vehicle interacts with its surroundings. A macroscopic model, on the

other hand, tends to treat congestion as a �uid and represents the dynamics

of tra�c �ow as a group rather than as individual vehicles. Below are several

systems that we believe are representative of the current state of the art in

tra�c modelling.

3.1 FreeSim (2007)

FreeSim [5, 6] shown in Fig. 3�1 is a framework that o�ers both macro-

scopic and microscopic tra�c modelling of freeways. It requires that a large

number of vehicles in the road network have a GPS device that transmits their

current speed and location to a central server. The central server then uses

this information to update the travel speed of every road segment in the road

network database. At any time during the simulation, a user may request the

quickest route to get from one location to another and the system responds

by using one of the six routing algorithms implemented to compute quickest

travel times. Only live data are used or necessary because it is assumed that

a large enough number of vehicles are transmitting and updating the cen-

tral server regularly. FreeSim has been tested on Los Angeles' freeways using

user-generated data and live data from the California Department of Trans-

portation. We found FreeSim to be special because few systems allow for both

macroscopic and microscopic modelling. Their main limitations are that they
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do not interpolate sparse sensor data, do not incorporate historical data and

do not consider surface streets.

Figure 3�1: FreeSim Graphical User Interface

3.2 Corsim (2007)

Corsim [7, 8] is a microscopic tra�c simulator sponsored by the United

States Federal Highway Administration and consists primarily of two tra�c

models: Netsim for modelling surface streets and Fresim for modelling free-

ways. It can model control devices (e.g tra�c signals, ramp metering etc.),

8



vehicles and driver behaviour, and includes the ability to accommodate com-

plicated road geometries. Unlike other systems, it has undergone extensive

validation and has perhaps the largest pool of developers. However, as is gen-

erally the case with microscopic models, there is a limit on both the maximum

number of sensors and the maximum size of the road network. Furthermore,

it is unclear from the literature if they handle the interpolation problem or if

they use any historical data.

3.3 Li (2006)

A method for short-term tra�c forecasting using type-2 fuzzy logic is

presented in [9]. The authors propose a rule-based system that generates a

range of values that allows the user to gauge the uncertainty of tra�c estimates

where a large range is more unreliable than a small range. Historical and

live data are used to construct the fuzzy rules. Their approach is interesting

because there is no �tting process and, as a result, no risk of over-�tting the

model. For validation, the authors collected data for a 7-mile freeway stretch

of Interstate 880 in Alameda County, California. A total of 24 data sets

was obtained where each data set corresponds to one day from 5AM-10AM

and 2PM-8PM. A total of 30 runs were performed and each run consisted of

randomly selecting a test data set and randomly selecting 15 of the remaining

data sets in order to construct the fuzzy rules. Their system's main strength

is in the handling of uncertainty but the downside is that there remains much

work to be done in terms of scaling it to 1) work for an entire city and 2)

handle months if not years of data.

3.4 Chrobok (2001)

A variant of the classical cellular automaton model [10] (2001) is presented

in [11] for modelling freeways. It is a microscopic tra�c model that divides

roads into cells such that each cell may contain no more than one vehicle.
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Vehicles are modelled according to rules while lane changes are a function

of the speed of the vehicle ahead and on the number of empty cells around.

For validation, the authors used three years of inductive loop data of the

North Rhine-Westphalia freeway network for which they simulated 14,000,000

cells on 2,500 kilometres of freeway. The system uses both historical and live

inductive loop counts. When the historical data indicates insu�cient vehicle

counts on a given segment, it �lls up the available (empty) cells in the vicinity

of the inductive loop with vehicles until the number of counts matches the

number of counts in the historical data or until there are no available cells

left. Unlike other systems mentioned in this literature review, their model

can extrapolate estimates into areas with little or no sensors and considers 4

classes of tra�c patterns: Monday-Thursday (except holidays and days before

holidays), Friday and days before holidays, Saturday except holidays, and

Sunday and holidays. Their main drawback is their microscopic model that

limits their scope to only freeways.

3.5 Adaptive Routing (2000)

Adaptive Routing [12] shown in Fig. 3�2 is the only system in this litera-

ture review that integrates both historical and live road congestion information

for both freeways and surface streets. Their system is centred around estimat-

ing the travel speed of every road segment using a geometrically weighted

average according to the time of day. This is accomplished by �rst discretiz-

ing a 24-hour day into 15 minute intervals and then computing, for each time

interval, a running average using live speeds. When no new data are available

due to the sparseness of the sensor data, they generate synthetic speed data

in order to prevent the average speed from decreasing monotonically. They

explore many di�erent routing algorithms and, for validation, use the Tra�c-

master [13] service which provides them with road speed data of the United
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Kingdom. Their system is perhaps the most similar to the one we propose be-

cause they also average speed data. However we take their design to the next

level by interpolating the sparse sensor data rather than generating synthetic

data.

Figure 3�2: Adaptive Routing Graphical User Interface

3.6 Dicaf (1998)

Dicaf [14] is designed to model the tra�c �ow of freeways. Unlike the other

systems in this literature review, they alone employ a distributed scalable

architecture. Contrary to the conventional central tra�c server design, the

authors propose installing many inexpensive distributed tra�c management

centres (DMTCs). Each DMTC is responsible for collecting and processing

congestion data in its region, computing a congestion measure based on density

and average speed, and sending this value to neighbouring DMTCs who in turn
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send it to their neighbours until every DMTC has been updated with the latest

congestion information. The coverage area of each DMTC is determined by

its processing power which is dependent not on a coverage distance but on

the number of vehicles and the number of segments that it must monitor.

When a vehicle needs to �nd the fastest path to its destination, its on board

computer communicates with the nearest available DMTC, obtains congestion

measures (CMs) for all the relevant segments and computes the quickest route.

Because it takes a while for new CMs to transmit through the entire network,

the most accurate CMs are the ones being controlled by the same DMTC

and the accuracy drops o� progressively as more and more distant CMs are

accessed. As a result, the quickest route may change several times as the

vehicle approaches its destination and accesses more up-to-date CMs. The

advantage of their system is that each DMTC is simple and inexpensive, the

overall system will continue to work even though individual DMTCs break

down, and most importantly it scales well with increasing number of vehicles

and road segments. Dicaf was tested in a virtual environment composed of

65 computers where the authors introduced a maximum of 45,000 vehicles

and ran 400 simulations. Their system's main attraction is in the idea of a

scalable, robust and fast architecture although it is currently not a real-world

operational system. Furthermore, it is unclear from the literature whether or

not the authors interpolate the sparse sensor data in computing the CMs of

each DMTC.

3.7 Other works

There are other systems not covered in the preceding literature review but

worth mentioning. If interested, the reader is invited to refer to the following

list of related works:
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• Vatsim [15, 16] - A vehicle and tra�c simulator that facilitates developing

intelligent transportation system control strategies involving multiple

vehicles.

• Mitsim [17] - A microscopic tra�c simulator for the evaluation of dy-

namic tra�c management systems.

• Transims [18] - A transportation analysis and simulation system that

helps transportation planners or engineers develop roadways by trying

to predict displacements of individual households and travelers.

• Paramics [19] - A parallel microscopic tra�c simulator that aims to pro-

vide road network planners with a range of tools.

• Vissim [20] - A simulation tool for the design of tra�c actuated control

systems.

Each system presented above has its strengths and weaknesses. Unfortu-

nately, too few attempt to interpolate sparse tra�c data. Given the current

limited availability of road congestion data and the numerous sensor modali-

ties that exist, we consider the ability of a tra�c system to interpolate sparse

and arbitrary tra�c data to be of utmost importance. In the next chapter, we

describe a system whose strength lies in its ability to interpolate sparse tra�c

measurements coming from any number of sensors or sensor modalities.
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CHAPTER 4
Proposed Solution

In the literature, microscopic models are mostly used because they are

better able to handle complicated road geometries and features such as tra�c

lights or on-ramp metering [7]. However, a macroscopic tra�c model has the

advantage when it comes to large scale designs thanks to the reduced number

of variables [21]. Because we hope to estimate potential ambulance speeds for

every road segment in a city, we use a macroscopic model to keep the large

scale implementation as simple as possible. As such, the system we propose can

handle the entire city of Ottawa including both freeways and surface streets,

is not limited by the number of sensors and is updated every 5 to 6 minutes

which is acceptable for the needs of the ambulance dispatchers.

Before delving into the innards of the tra�c server, we o�er the following

high level description as depicted in Fig. 4�1. Given a road network, the

tra�c server takes whatever road data is available and outputs a potential

ambulance speed for every road segment in the network. To accomplish this

task, we begin by representing the road network as a directed graph where

road segments in the road network correspond to nodes in the directed graph.

Then we turn to almost a year's worth of historical sensor data to initialize the

graph according the current or simulation date and time. Nodes with noisy or

sparse historical data in time are initialized with less con�dence. Conversely,

nodes with abundant historical samples and less variance are initialized with

higher con�dence. While nodes without any historical data are initialized to

a neutral state. Next, we turn to the live sensor data and the user entered

data to complete the initialization of the graph. Speci�cally, if a node has
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access to both historical and live data, then the node is initialized by means

of a weighted average between the two with more weight given to the live

data. Additionally, the con�dence of the initialization is also higher assuming

that the live data are more reliable than the historical data. If a node has

been manually initialized by the user, then whatever historical or live data

is typically ignored and the con�dence of the initialization is maximal unless

speci�ed otherwise by the user. Finally, we use a belief propagation algorithm

to interpolate the sparse data and obtain dense locally consistent road speed

estimates.

Figure 4�1: Simpli�ed Block Diagram

4.1 Represent the Road Network as a Directed Graph

The �rst step is to represent the road network as a graph representa-

tion that will serve as the basis for subsequent computations. The tra�c

server accepts any road network database as long as it is given in the widely

used geospatial vector data Environmental Systems Research Institute (ERSI)

shape�le format. To extract the street geometry and attributes, we use the

Shape�le C Library available online [22]. As indicated by their name, shape-

�les contain shapes such as roads, rivers, power lines and railroads. Each shape

has a set of vertices which are typically connected to form line segments. In

general, a shape starts or stops at an intersection. As such, a long boulevard
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Figure 4�2: Simple Road Network (left) and Corresponding Graph Repre-
sentation from the Perspective of Node i (right). Nodes j1 through j5 are
neighbours of i and e1 through e5 are the corresponding edges.

may consist of many shapes if it spans many intersections. Each shape also

has any number of unique attributes. 7 attributes are currently used and are

described below.

1 TYPE: Attribute indicating the type of the shape. Possible types are
roads, rivers, power lines and railroads.

2 ONEWAY: Attribute indicating the direction of the road assuming that
the shape is of type road. If the attribute is empty or null, then the shape
is bidirectional otherwise the shape is unidirectional. If the attribute
contains �FT�, then the shape originates from the road whose name is
indicated in the �FROM_STREET� attribute and points to the road
whose name is indicated in the �TO_STREET� attribute. Conversely,
if the attribute contains �TF�, then the shape originates from the road
whose name is indicated in the �TO_STREET� and points to the road
whose name is indicated in the �FROM_STREET� attribute.

3 FROM_STREET: Assuming the shape is a road, this attribute contains
a road name and is only used if the �ONEWAY� attribute is �FT� or �TF�.

4 TO_STREET: Assuming the shape is a road, this attribute contains a
road name and is only used if the �ONEWAY� attribute is �FT� or �TF�.

5 LANES: Assuming the shape is a road, this attribute contains the road's
number of lanes.

6 ROAD_NAME: Assuming the shape is a road, this attribute contains
the road's name.

7 SPD_LIMIT: Assuming the shape is a road, this attribute contains the
road's speed limit.

We use the Boost Graph C++ library available online [23] to represent

the road network as a graph composed of nodes and edges, described next, as

in Fig. 4�2.
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4.1.1 Nodes

Each node in the graph corresponds to a single road segment with a unique

direction. As such, a two-way street gives rise to two nodes or road segments

whose directions are 180 ◦ apart while a one-way street results in a single road

segment. In Fig. 4�2, nodes j1 through j5 are considered to be neighbours of

node i. To indicate the direction of vehicle �ow, we may add a pre�x `in' or

`out' as quali�ers and refer to neighbours as in-neighbours or out-neighbours.

In Fig. 4�2, nodes j1 through j3 are considered to be out-neighbours of node

i while nodes j4 and j5 are considered to be its in-neighbours.

4.1.2 Edges

Nodes are linked to each other via edges. Since we have a directed graph,

each edge has a particular orientation. To indicate the origin and destination

of an edge, we refer to the originating node as a source and the destination

node as a target. In Fig. 4�2, node i is the source of edges e1 through e3 and

is also the target of edges e4 through e5. To indicate the position of an edge

relative to a node i, we may add a pre�x `in' or `out' as quali�ers and refer

to edges as in-edges or out-edges of i. In Fig. 4�2, node i has 3 out-edges, e1

through e3, and 2 in-edges, e4 through e5.

Each edge has a weight bound between 0 and 1 that de�nes the likelihood

of vehicle trajectories. In Fig. 4�2, we may refer to the edge weight of e1 as

one of two interchangeable notations: EWe1 or EWi→j1 , where i is the source

of e1 and j1 its target.

In principle, edge weights should vary according to the time of day and the

date, and be computed using historical and live turn ratios. As we do not have

access to such information, we compute static edge weights using a generalized

assumption about the behaviour of vehicles at each intersection. Explicitly,

we assume that vehicles like to travel in the path with the least resistance or,
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conversely, the path with the most conductivity, where the conductivity of an

out-edge is a function of the deviation angle, the number of lanes and the speed

limit between a node and its out-neighbours. The out-edge with the greatest

conductivity has the smallest deviation angle, the target road segment with the

greatest number of lanes and highest speed limit. Note that this assumption

does not always hold because, at times, on-ramps or o�-ramps are favoured

over main arteries, but doing so allows us to form a baseline estimate that will

serve to evaluate the model's performance as more data is eventually included.

Note that the static edge weights are generally only computed once during the

initialization process unless the road network is altered due, for instance, to a

road closure in which case they must be re-computed.

Numerically, if a node i has out-edges {e1, . . . , en} whose targets are out-

neighbours {j 1
out, . . . , j

n
out} respectively, then the edge weight of ek, EWek , is

de�ned as:

EWek =
Conductivityek

n∑
m=1

Conductivityem

. (4.1)

where Conductivityek , the conductivity of edge ek, is

Conductivityek = RCapj k
out
· e−β·Deviation Angle

ek , (4.2)

RCapj k
out
, the road segment capacity of j kout, is

RCapj k
out

= Number of Lanesj k
out
· (Speed Limitj k

out
+ 10) (4.3)

and β, the decay term, is

β =
− ln 0.1

90
. (4.4)

Note that (4.3) is a virtual road segment capacity and not the actual road

segment capacity since the latter is not known. Note also that the Deviation

Anglee is the angle formed between road segment i and the target of e and
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that β is a constant obtained empirically such that a greater bend in the

road results in a smaller conductivity value. In this case, we make it so that

a deviation angle of 90 degrees results in a conductivity of 10% of the road

capacity. Note also that the �+ 10� in the calculation of Road Capacityt is due

to the nominal travel speed in Canada which we decided, based on personal

driving experience, is often 10 to 20 km/h above the posted speed limit. Also,

if a node has only one out-edge, then we assume that vehicles have only one

trajectory choice in which case the sole out-edge has a weight of 1. If a node has

E out-edges, where E is often greater than 1 in a typical road network, then

the sum of the node's out-edge weights should equal 1 such that
E∑
k=1

EWk = 1.

An exception to this rule would be in the case of a vehicle sink, for instance

due to a stadium parking lot, in which case the sum may be allowed to be less

than 1. Out-edges whose targets are dead ends have a weight of 0 because

we assume that there is little or no relationship between road congestion and

dead end streets. That is, the amount of vehicles entering a dead end road

segment is too few to impact the congestion of neighbouring roads.

4.2 Estimate the Local Congestion at Each Node

The second step is to determine the most likely travel speed for each road

segment or node based on the available sensor and user data. To accomplish

this task, we construct a speed pro�le for each road segment which is essen-

tially a trend in ambulance speeds over time. Note that the tra�c server can

make use of any sensor data as long as the data can be geo-referenced to a

particular location in the road network and can be expressed in terms of a

relative congestion term, described below.

4.2.1 Register the Data

The only road congestion data that we currently consider in this work

is the AVL data, graciously provided by OPS. Speci�cally, we have access to
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almost a year's worth (February 1 2007 to December 20 2007) of historical

ambulance AVL data which results in approximately 18 million records in the

form of the following comma separated values:

4150,2/1/2007 12:00:25 AM,45.37018,-75.7697,

4261,2/1/2007 12:00:26 AM,45.0977,-75.2085,

4388,2/1/2007 12:00:27 AM,45.41693,-75.68886,

4172,2/1/2007 12:00:29 AM,45.37,-75.68277,

4409,2/1/2007 12:00:30 AM,45.56376,-74.62932,

4242,2/1/2007 12:00:32 AM,45.2902,-75.2289,

4347,2/1/2007 12:00:35 AM,45.37945,-75.65529,

4261,2/1/2007 12:00:37 AM,45.0988,-75.2057,

4285,2/1/2007 12:00:39 AM,45.38595,-75.68026,

4409,2/1/2007 12:00:41 AM,45.56128,-74.63054,

4388,2/1/2007 12:00:39 AM,45.41708,-75.68887,

4242,2/1/2007 12:00:43 AM,45.2895,-75.2303,

4347,2/1/2007 12:00:46 AM,45.37967,-75.65216,

...

Each line corresponds to a single record indicating the ambulance's id, the

measurement date and time, and the GPS latitude and longitude coordinates.

Since the AVL data only gives the positions of ambulances every 10 to

12 seconds on average, we use 3 consecutive positions in time to reliably es-

timate the ambulance's direction and register it to a speci�c road segment.

Explicitly, if we know where the ambulance was at time tt−1 and where it

will be at time tt+1, then we can determine with a high degree of con�dence

on which road segment the ambulance is travelling at time tt. We estimate

the ambulance travel speed using a straight line approximation by computing

the distance travelled and dividing this value by the time interval. For time

intervals on the order of 10 to 12 seconds, the straight line approximation pro-

vides a satisfactory baseline though there is room for improvement by using a

more sophisticated road following algorithm. Any invalid speeds due to GPS

tracking error are �ltered in this process such that, from the original 18 million
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raw AVL samples, we obtain approximately 13 million useful ambulance speed

samples that we refer to as the processed AVL data.

Unfortunately, the AVL data does not distinguish deployment speeds with

lights or sirens on from redeployment speeds with lights and sirens o�. Hope-

fully, the information will eventually be made available so that we can consider

the two classes of data. For now, we simply assume that all AVL speeds are

redeployment speeds.

4.2.2 Construct Historical Trends for Each Node

Before analyzing trends in ambulance speeds, we must segment the data.

Currently, we split the processed AVL data into two classes, weekdays and

weekends, so that the model can be trained to give appropriate speed estimates

given the day of the week and the time of day. In the future more sophisticated

data clustering could be used to improve the estimates such as splitting the

data according to weather, holidays or special events such as festivals.

Next we construct two speed pro�les (one for each data class) and inves-

tigate two di�erent methods for constructing the trend in ambulance speeds.

The �rst method uses linear regression to estimate the coe�cients of a poly-

nomial �t to the sample data,

Speed(t) = w0t
0 + w1t

1 + w2t
2 + ...+ wpt

p. (4.5)

The second method, bin averaging, does not attempt to �t a curve to the

data. Rather, we divide a day into 15 minute bins and simply take the mean

of each bin to obtain the local speed estimate. Fig. 4�3 shows the weekday

speed pro�les of 4 di�erent road segments with abundant AVL samples using

both methods.
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Figure 4�3: Weekday Speed Pro�les for 4 Di�erent Road Segments With Many
Samples. Light grey points show the processed AVL speed samples. The black
dashed lines is the �t due to bin averaging while the dark grey continuous line
is the polynomial �t.
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4.2.3 Express Measurements in Terms of Relative Congestion

Armed now with speed pro�les, we address the problem of merging dif-

ferent sensors by converting arbitrary sensor measurements to a relative con-

gestion term bound between 0 and 1 using an equation that may be unique

for each sensor. For the AVL data, we use

Relative Congestion(t) = 1− Speed(t)

Speed Limit
, (4.6)

but for other sensors such as inductive loops the Relative Congestion(t) might

be obtained directly from counts rather than from vehicle speeds.

4.2.4 Determine the Local Congestion of Each Node

Typically, the local congestion of each node is dependent on the available

sensor data. If a node has access to no sensor data, then its local congestion

is unknown. If there is only historical sensor but no live data, then we obtain

the local congestion by referring to the node's speed pro�le. If there is both

historical and live sensor data, then the local congestion is a weighted average

of the two relative congestions with less weight given to the more uncertain

of the two. Note that the live AVL feed is not yet available, but that it will

not be di�cult to accommodate in terms of implementation because it only

involves choosing a weight.

Note also that the relative congestions that serve as local estimates are

sparse and noisy. Since ambulances drive over some roads more often than

others, some road segments may have tens of thousands of AVL samples while

others have none. Indeed, as can be seen in Fig. 4�3, there is a great deal

of variance in the AVL data. Both the sparsity and the variance of the data

contribute to the likelihood that relative congestions of neighbouring road

segments are locally inconsistent.
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4.2.5 Handle User Overrides

Although the tra�c server is designed to require as little user data or

intervention as possible, it may be necessary for the user to input changes

when the current state starts to di�er greatly from the historical data. For-

tunately, the tra�c server is locally adaptable and two types of user overrides

are currently supported.

We refer to the �rst type as road closures. As such, a user may close o�

entire road segments such that a�ected vehicles are forced to �nd alternate

routes along neighbouring roads. Road work, festivals or parades are examples

of typical road closures. The e�ect on the model is that edge weights must

be updated to account for the change in vehicle trajectory likelihoods. Note

however that any change to linkages in the road network puts into question the

usefulness of the historical data. Minor road closures that a�ect few vehicles

have little or no e�ect on the model whereas major road closures that a�ect

many vehicles should be accompanied by speed overrides, explained next, in

the vicinity of the road closure to compensate for invalid historical data.

We refer to the second type as speed overrides. As such, a user may

manually set a �xed local speed for a given road segment instead of using the

one from its speed pro�le. Perhaps an accident or a stalled vehicle has caused

a major tra�c jam. By default, we assume that the user entered speed has

100% certainty though it is possible to specify a lower certainty value and

compute a weighted average with sensor data, if available.

4.3 Interpolate Local Congestions

The last step is to interpolate the sparse local estimates and resolve any

local inconsistencies that may arise from the previous step. To accomplish this

interpolation task, we use a belief propagation network implemented using

a Relaxation Labelling algorithm (RL) [24]. The underlying goal is to use
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the road network topology (number of lanes, speeds limits and linkages) to

determine how likely each road segment is congested based on how likely its

neighbouring road segments are congested. We chose the RL algorithm for

interpolation because it is relatively simple to implement and o�ers a baseline

to which we can compare eventual more complex strategies. Furthermore,

it allows us to split a complex computation into many simple and parallel

computations, uses context to compensate for noise and ambiguity, and is

deterministic.

4.3.1 Setting Up the Relaxation Labelling Problem

Before describing the algorithm, we begin by detailing the basic RL com-

ponents as applied to the road network.

Labels

In RL, each node has a set of m labels {λ1, . . . , λm} where each label

corresponds to a range of relative congestion. For example, if m is 5, then

labels {λ1, λ2, λ3, λ4, λ5} correspond to relative congestions {[0-0.2], (0.2-0.4],

(0.4-0.6], (0.6-0.8], (0.8-1.0]}, respectively. In turn, each label has a weight

bound between 0 and 1 that de�nes the likelihood of the label. The label with

the greatest weight indicates the most likely relative congestion. The notation

we use is pi(λk) which corresponds to the weight of node i's label λk. Note

that pi(λk) corresponds to probability measures, but are closer to normalized

likelihoods. As such, the sum of each node's weights should be 1 such that
m∑
k=1

pi(λ
k) = 1. Initial label weights depend on the historical and live speed

data and are assigned at the beginning of the RL algorithm's iterative process.

During the RL iterations, the label weights are incrementally changed until

convergence is reached. According to [24], convergence is extremely likely as

long as we use a �proper updating rule and reasonable compatibility values�.
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The Compatibility Matrix

A compatibility matrix contains elements that de�ne the relationship be-

tween labels of neighbouring nodes. For example, if each node in the network

has m labels, λ is the label of node i, λ′ is the label of node j, and i and j are

neighbours, then rij(λ, λ′) is an element in an m×m compatibility matrix that

de�nes the relationship between the labels of i and the labels of its neighbour

j. If the two labels greatly support each other, then rij(λ, λ′) should be large

and positive. If the labels greatly inhibit each other, then rij(λ, λ′) should be

large and negative. Otherwise, if there is no relation between the two labels,

then rij(λ, λ′) should be 0.

In practice, node i with label λ has multiple neighbours j1, j2, . . . , jn

with labels λ1, λ2, . . . , λn, respectively, where the number of neighbours is

typically 2-6. In this case, the compatibility matrix is a multidimensional array

with elements rij1···jn(λ, λ1, · · · , λn). The same rules as before apply. Namely,

if labels λ, λ1, . . . , λn greatly support each other, then rij1···jn(λ, λ1, · · · , λn)

should be large and positive. If the labels greatly inhibit each other, then

rij1···jn(λ, λ1, · · · , λn) should be large and negative. If there is no relation

between the labels, then rij1···jn(λ, λ1, · · · , λn) is 0. Note also that because few

intersections in a road network are exactly alike, it is necessary to construct a

unique compatibility matrix for each road segment in the road network.

There are several possible ways of computing rij1j2···jn(λ, λ1, λ2, · · · , λn)

numerically. If su�cient data were acquired, then we could build the compat-

ibility matrices by analyzing the congestion patterns at di�erent times of the

day though such a scenario would also require that we shorten the title of this

thesis to �Obtaining Road Speed Estimates From GPS Measurements�. In-

stead, we use a vehicle �ow model (VFM) based on Kirchho�'s Current Law

(KCL) to estimate rij1j2···jn(λ, λ1, λ2, · · · , λn) using a compatibility function
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and whatever data are available. The VFM can be read as follows: �The sum

of vehicles entering a road segment is equal to the sum of vehicles exiting that

road segment�. Note that the VFM can cope with minor losses or additions

of vehicles which is to be expected given that vehicles unlike electrons have

a tendency to park or un-park. But when there are signi�cant losses or ad-

ditions a user must compensate by manually inputting a vehicle source or a

sink into the road network. The compatibility function, on the other hand,

generates a compatibility value based on the vehicle counts of neighbouring

road segments. In fact, we use two compatibility functions to generate the

desired compatibility values because, as will be shown shortly, road segments

are a�ected by the vehicle counts of their in-neighbours di�erently than by the

vehicle counts of their out-neighbours.

To be able to make use of the VFM, we need to express labels, which

correspond to relative congestions, in terms of vehicle counts to be summed at

the input and output of road segments. To accomplish this task, we assume

that the relationship between road congestion and vehicles counts is linear.

We recognize that this relationship needs to be re�ned but it will also serve as

a baseline for comparison to future improvements. If a node i has relative con-

gestion, RConi and road capacity, RCapi, then we express the vehicle counts

of i, VCi, as follows:

VCi = RConi × RCapi. (4.7)

Note that if the relative congestion is at its highest (i.e. 1), then we obtain the

maximum number of vehicles on any road segment which is the road segment's

capacity as was de�ned in (4.3). Note that these are not actual vehicle counts

but are in fact vehicle-like units that we may refer to as virtual vehicle counts

or simply vehicle counts for convenience. The VFM that we propose will hold

as long as do not mix actual with virtual vehicle counts. If we wish to express
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units in terms of actual vehicle counts, then we must replace the road segment

capacity in (4.3) by the actual maximum number of vehicles for each road

segment.

The two compatibility functions are obtained as follows. If node i with

label λ has in-neighbours j 1
in . . . j

n
in with labels λ 1

in . . . λ
n
in respectively and out-

neighbours j 1
out . . . j

n
out with labels λ 1

out . . . λ
n
out respectively, then the two com-

patibility functions are

rij 1
in
...j n

in
(λ, λ 1

in . . . λ
n
in) = f(|EVC-ini − VCi|) (4.8)

and

rij 1
out
...j n

out
(λ, λ 1

out . . . λ
n
out) = f(|EVC-outi − VCi|) (4.9)

where EVC-ini and EVC-outi are the expected vehicle counts from node i's

in-neighbours and out-neighbours respectively, de�ned as

EVC-ini =
n∑
k=1

VCj k
in

× EWj k
in
→i (4.10)

and

EVC-outi =
n∑
k=1

VCj k
out
×

RCapi × EWi→j k
out

maxEVC-inj k
out

. (4.11)

Note that maxEVC-inj k
out

is the maximum expected vehicle counts from node

j kout's in-neighbours and occurs when the vehicle counts of its in-neighbours are

equal to their road capacities. The function f takes as arguments the di�erence

between the expected and observed vehicle counts, and can be any linear or

non-linear function that monotonically decreases such as f(x) = α · e−β·x,

f(x) = m · x + b where α, β and m are constants or an empirically derived

lookup table (LUT). Finally, there is a boundary case that must be accounted

for: when the expected vehicle counts are greater than the road segment's

capacity, and the relative congestion of i is at its highest (i.e. 1). In such a
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case, rij 1
in
...j n

in
(λ, λ 1

in . . . λ
n
in) and rij 1

out
...j n

out
(λ, λ 1

out . . . λ
n
out) should increase rather

than decrease as the di�erence |EVC-ini − VCi| increases.

4.3.2 The Relaxation Labelling Algorithm

Detailed next are the 8 steps of the RL algorithm.

RL 1: Initialize the iteration counter k = 0 and the label weights
p̄ k according to the current time and day, tcurr.

For a given road segment at tcurr, we initialize the label weights using

a normal distribution N(µ, σ2), where the mean µ is the relative congestion

(computed in the Local Congestion Modeller Module). The variance σ2 of the

distribution is used to adjust the con�dence of the local congestion. If a node

has only historical data, then the variance of the distribution is a function of

the variance and the number of historical samples. If there are many samples

and the AVL variance is low, then we expect the label weights to have a more

peaked distribution. On the other hand, if there are few samples or the AVL

variance is high, then the label weights should have a �atter distribution.

In the extreme case that the road segment has no historical data, then we

initialize the label weights using a uniform distribution such that each label

is equally possible. If live sensor data are available or a user has manually

entered a speed override, then we initialize the label weights using a highly

peaked distribution. By default, user entered data has a variance of zero such

that the distribution resembles an impulse, but it is equally possible to specify

a lower certainty value.

RL 2: Compute the support for every label of every node in
the graph, q̄ k.

The support for a given label of a given node is dependent on the label

weights of neighbouring nodes and on the road network topology in the form of

the two aforementioned compatibility functions. Consider the following simple

example of calculating support before considering the more complex case. If
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each node has m labels such that node i with label λ has neighbour j with

labels λ′ and compatibility function rij(λ, λ′), then the support for λ can be

expressed as

qi(λ) =
∑
λ′

rij(λ, λ
′)pj(λ

′). (4.12)

Since node i can have multiple neighbours j1, j2, . . . , jn with labels λ1,

λ2, . . . , λn respectively, where n is often 2-6, then the equation for support

becomes

qi(λ) =
∑
λ1

∑
λ2

· · ·
∑
λn

rij1j2···jn(λ, λ1, λ2, · · · , λn) · pj1(λ1)·

pj2(λ
2) · . . . · pjn(λn). (4.13)

Also, since we use the VFM to estimate the compatibilities from two compati-

bility functions because road segments are a�ected by the vehicle counts of the

in-neighbours di�erently than by the vehicle counts of their out-neighbours,

then the equation for support becomes

qi(λ) = q-ini(λ)× q-outi(λ), (4.14)

where

q-ini(λ) =
∑
λ1
in

∑
λ2
in

· · ·
∑
λy
in

rij 1
in
j 2
in
···j y

in
(λ, λ1

in, λ
2
in, · · · , λ

y
in) · pj 1

in
(λ1

in)·

pj 2
in

(λ2
in) · . . . · pj y

in
(λyin), (4.15)

q-outi(λ) =
∑
λ1
out

∑
λ2
out

· · ·
∑
λz
out

rij 1
out
j 2
out
···j z

out
(λ, λ1

out, λ
2
out, · · · , λzout) · pj 1

out
(λ1

out)·

pj 2
out

(λ2
out) · . . . · pj z

out
(λzout) (4.16)

and y, z are the number of in-neighbours and out-neighbours respectively.
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RL 3: Compute the update direction for the label weights, ū k.
It is shown in [24] that ū is the normalized projection of the support

vector, q̄, onto the set of all tangent vectors at p̄, Tp̄, where p̄ is in the interior
of the assignment space. The algorithm to obtain ū is originally described
in [24] Appendix A and is reproduced in Algorithm 1 for convenience and
completeness. The inputs to the algorithm are the label weights of every
node, p, the support vector of every node, q, the number of nodes n and the
number of labels m.

Algorithm 1 Projection Operator to Obtain ū
1: procedure Projection Operator(p, q, n,m)
2: for i in [1 . . . n] do
3: D := {k in [1 . . .m] | pi(k) = 0}; . D is an array that contains

(discarded) labels whose weights are 0. If none of the label weights are 0,
then D remains empty.

4: S := { }; . S determines the stopping criterion of the loop in the
next step and is initialized to an empty array.

5: loop . Loop executes at most m+ 1 times and terminates when
QUIT is executed.

6: Ns := #S; . Set Ns to be the number of elements in array S.

7: t :=
1

m−Ns

m∑
k=1

k/∈S

qi(k) . t is a threshold term.

8: S := {k in D | qi(k) < t}; . S contains the discarded labels in
D whose support qi(k) is less than threshold t.

9: if #S = Ns then
10: QUIT . Break out of inde�nite loop.
11: end if
12: end loop
13: for k in [1 . . .m] do

14: ui(k) =

{
0 k ∈ S

qi(k)− t otherwise
. Compute vector ūi.

15: end for
16: ūi = ūi

‖ūi‖ ; . Normalize ūi.
17: end for
18: end procedure

RL 4: If ū k = 0̄ such that the projection computed previously
is zero then go to RL 8.

If the projection is zero then we have reached a consistent labelling and

can conclude the RL process.
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RL 5: Otherwise, update the label weights p̄ k+1 = p̄ k + hū k,
where 0 < h ≤ αk and αk is a small valued maximum step size
that may decrease as k increases to speed convergence.

Each iteration moves the label weights p̄ incrementally in the projection

direction.

RL 6: If k = kmax such that the iteration counter has reached
the maximum iteration count then go to RL 8

We observed consistent labellings after 8-10 iterations. When the maxi-

mum number of iterations is reached, then conclude the RL process.

RL 7: Otherwise, increment the iteration counter k = k+ 1 and
go back to RL 2.

Perform another RL iteration until a stop condition is reached.

RL 8: Obtain the �nal labelling and go back to RL 1 to resume
the entire process for the new current date and time, t

curr
′ .

When the RL process ends for tcurr, each node has a distribution of label

weights that is locally consistent with its neighbouring nodes. The label with

the highest weight corresponds to the most likely relative congestion interval.

The centre of the interval is converted to a potential ambulance speed using

Speed = Speed Limit · (1− Relative Congestion) (4.17)

and the entire RL algorithm starts over again with the new date and time in

order to keep the road network up-to-date with the latest speeds.

The tra�c server outputs the most likely ambulance speed for every road

segment in the road network at any given day and time. Unlike the other

systems in the literature review, we do not implement any routing algorithm,

the reason being simply that it was not a requirement of the tra�c server

module. For a complete system overview, we provide a detailed �owchart in

Appendix A.
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CHAPTER 5
Experimental Methodology and Results

5.1 K-Fold Cross-Validation

To validate our system, we employ a common technique known as K-fold

cross-validation. First, we split the historical data randomly into k evenly

sized parts called folds. Then we choose one of the folds to act as the test set

and train the model on the remaining k-1 folds. We repeat this process k times

using each fold only once as the test set and always training on the remaining

folds. As such, each iteration randomly excludes a percentage of the data from

the dataset for initialization of the graph and then uses this excluded data to

test the resulting model. This way we can gauge the stability of the algorithm

with respect to variations in the input data. Typically 5 folds are enough to

conclude whether or not the model's performance is stable.

Due to the large number of data samples in the test set (approximately

13 million) and the time it takes to update the model (5 minutes per update),

we ran the tra�c server over a continuous span of 24 hours per fold per data

class and to obtain the simulated results. Then each sample in the test set

is matched to the nearest sample in the simulated results and the di�erence

between the simulated ambulance speed and the test set's speed is used as the

estimate error. Using this method of validation has the signi�cant advantage

that the simulation time is the same regardless of the size of the road network

or the size of the test set. Using 5 folds (k = 5), it takes 10 days (= 5 folds×

2 data classes) of continuous processing time to validate the system.
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Table 5�1: K-Fold Cross-Validation Simulation Results for Weekdays (top)
and Weekends (bottom) using Polynomial Regression, 9 RL Iterations, 7 RL
Labels. MAE: Mean Average Error; RMSE: Root Mean Squared Error; STD:
Standard Deviation.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.75 12.75 12.76 12.75 12.78 12.76
RMSE (km/h) 17.06 17.05 17.07 17.05 17.09 17.06
STD (km/h) 11.34 11.33 11.34 11.32 11.34 11.33
MAE (labels) 1.26 1.26 1.27 1.27 1.27 1.27
RMSE (labels) 1.82 1.82 1.82 1.82 1.82 1.82
STD (labels) 1.31 1.31 1.31 1.31 1.31 1.31

Fold k 1 2 3 4 5 Mean
MAE (km/h) 13.12 13.13 13.11 13.12 13.14 13.12
RMSE (km/h) 17.96 17.97 17.97 17.96 17.98 17.97
STD (km/h) 12.26 12.28 12.28 12.26 12.27 12.27
MAE (labels) 1.29 1.29 1.29 1.29 1.29 1.29
RMSE (labels) 1.93 1.93 1.93 1.93 1.93 1.93
STD (labels) 1.43 1.43 1.43 1.43 1.43 1.43

5.2 Test Cases

We ran 4 test cases totalling 40 days of processing time that was dis-

tributed over multiple commodity laptops. We were interested in tweaking

mainly two parameters: 1) the number of RL labels and 2) the choice of speed

pro�le building between polynomial regression and bin averaging. In every

test case below, we use 5 folds for cross-validation and express the error in

terms of both labels and speed (kilometres per hour).

5.2.1 7 RL Labels and Polynomial Regression

Using 9 RL iterations, 7 RL labels and polynomial regression for con-

structing local speed pro�les, we obtain the results shown in Table 5�1.

5.2.2 7 RL Labels and Bin Averaging

Using 9 RL iterations, 7 RL labels and bin averaging for constructing

local speed pro�les, we obtain the results shown in Table 5�2.
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Table 5�2: K-Fold Cross-Validation Simulation Results for Weekdays (top)
and Weekends (bottom) using Bin Averaging, 9 RL Iterations, 7 RL Labels.
MAE: Mean Average Error; RMSE: Root Mean Squared Error; STD: Standard
Deviation.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.18 12.17 12.18 12.18 12.19 12.18
RMSE (km/h) 16.25 16.24 16.26 16.24 16.26 16.25
STD (km/h) 10.76 10.75 10.76 10.75 10.76 10.76
MAE (labels) 1.22 1.22 1.22 1.22 1.22 1.22
RMSE (labels) 1.76 1.76 1.76 1.76 1.76 1.76
STD (labels) 1.27 1.27 1.27 1.27 1.27 1.27

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.24 12.25 12.22 12.23 12.27 12.24
RMSE (km/h) 16.69 16.69 16.66 16.67 16.71 16.68
STD (km/h) 11.35 11.35 11.32 11.33 11.35 11.34
MAE (labels) 1.23 1.23 1.22 1.22 1.23 1.23
RMSE (labels) 1.84 1.83 1.83 1.83 1.84 1.83
STD (labels) 1.37 1.37 1.36 1.36 1.37 1.37

5.2.3 9 RL Labels and Polynomial Regression

In the hopes of reducing our error, we tried relaxing the update time

interval constraint from 5-6 minutes to 10-11 minutes in order to increase the

number of RL labels from 7 to 9 thus reducing the coarseness or interval size of

our estimates. Using 9 RL iterations, 9 RL labels and polynomial regression,

we obtain the results shown in Table 5�3.

5.2.4 9 RL Labels and Bin Averaging

Finally, using 9 RL iterations, 9 RL labels and bin averaging, we obtain

the results shown in Table 5�4.

5.3 Key Results and Observations

For computing local estimates, we notice that bin averaging consistently

leads to better results compared to polynomial regression. The reason is not

evident for roads with a great number of AVL samples as in Fig. 4�3 but, for
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Table 5�3: K-Fold Cross-Validation Simulation Results for Weekdays (top)
and Weekends (bottom) using Polynomial Regression, 9 RL Iterations, 9 RL
Labels. MAE: Mean Average Error; RMSE: Root Mean Squared Error; STD:
Standard Deviation.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.63 12.62 12.64 12.62 12.63 12.63
RMSE (km/h) 17.00 16.99 17.01 16.99 17.00 17.00
STD (km/h) 11.37 11.37 11.39 11.37 11.38 11.38
MAE (labels) 1.58 1.58 1.59 1.58 1.59 1.58
RMSE (labels) 2.30 2.30 2.30 2.30 2.30 2.30
STD (labels) 1.66 1.66 1.67 1.66 1.66 1.66

Fold k 1 2 3 4 5 Mean
MAE (km/h) 13.03 13.04 13.02 13.02 13.05 13.03
RMSE (km/h) 17.92 17.94 17.91 17.90 17.94 17.92
STD (km/h) 12.30 12.31 12.30 12.29 12.31 12.30
MAE (labels) 1.63 1.63 1.63 1.62 1.63 1.63
RMSE (labels) 2.44 2.44 2.44 2.44 2.44 2.44
STD (labels) 1.82 1.82 1.82 1.82 1.82 1.82

Table 5�4: K-Fold Cross-Validation Simulation Results for Weekdays (top)
and Weekends (bottom) using Bin Averaging, 9 RL Iterations, 9 RL Labels.
MAE: Mean Average Error; RMSE: Root Mean Squared Error; STD: Standard
Deviation.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.21 12.21 12.09 12.09 12.09 12.14
RMSE (km/h) 16.41 16.40 16.28 16.27 16.27 16.33
STD (km/h) 10.97 10.95 10.90 10.89 10.89 10.92
MAE (labels) 1.54 1.54 1.53 1.53 1.53 1.53
RMSE (labels) 2.24 2.24 2.22 2.22 2.22 2.23
STD (labels) 1.63 1.62 1.61 1.61 1.61 1.62

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.40 12.40 12.29 12.30 12.32 12.34
RMSE (km/h) 16.99 17.01 16.88 16.88 16.90 16.93
STD (km/h) 11.61 11.63 11.57 11.56 11.57 11.59
MAE (labels) 1.56 1.56 1.54 1.54 1.55 1.55
RMSE (labels) 2.34 2.35 2.32 2.33 2.33 2.33
STD (labels) 1.75 1.75 1.74 1.74 1.74 1.74
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Figure 5�1: Weekday Speed Pro�les for 4 Di�erent Road Segments With Few
Samples. Light grey points show the processed AVL speed samples. The black
dashed lines is the �t due to bin averaging while the dark grey continuous line
is the polynomial �t. Circled are the regions where polynomial regression does
poorly.

roads with too few AVL samples as in Fig. 5�1, polynomial regression is too

sensitive to outliers and results in a poor �t.

Increasing the number of labels also did not produce the expected im-

provements in the MAE or the root mean squared error (RSME). One possible

explanation is the large variance in the AVL data as can be seen in Fig. 5�2.

In which case, it is better to use 7 RL labels rather than 9 since it takes half

the processing time.

The tra�c server has a mean absolute errors (MAEs) of 12-13 km/h with

a standard deviation (STD) of 10-12 km/h. We observe also that there is very

little variation in the tra�c server estimates across the di�erent folds. Finally,
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Figure 5�2: Standard Deviation of the Speed Data for 4 Di�erent Road Seg-
ments. Light grey points show the processed AVL speed samples. Black
vertical lines indicate the standard deviation σ of the data where the variance
is de�ned as the standard deviation squared, σ2.
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we want to point out that in all the experimental results obtained, we used

real AVL data samples and not synthetic data.
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CHAPTER 6
Discussion

6.1 Validation Results

The mean absolute errors (MAEs) we obtained of 12-13 km/h may seem

large but, at the same time, they are remarkably consistent. We o�er sev-

eral reasons to explain the magnitude of the MAEs. The �rst reason is the

great deal of variance in the AVL data. Though we compensated by using the

variance in the AVL data to initialize the distribution of label weights before

iterating through the RL algorithm, it remains one of the biggest sources of

error. Second is the inadequate road network database of Ottawa plagued with

errors and lacking critical information (more on this below). CAE is actively

working on obtaining a more complete and correct database, but in the mean-

time, the shortcomings in the road network database are a signi�cant source

of error. Lastly are the various assumptions that were made throughout this

work. Namely, the conversion from ambulance GPS coordinates to ambulance

speeds, the registration of ambulance speeds to road segment for speed pro-

�le building, the conversion from ambulance speeds to road congestion, the

linear assumption made when estimating vehicle counts from road congestion,

the computation of edge weights, the initialization of RL labels using a gaus-

sian distribution based on the mean and variance of the data, the vehicle �ow

model for estimating compatibilities between labels, the RL algorithm itself

for leading to an optimal real world solution, and the reverse process of going

back to ambulance speeds from RL labels after the RL algorithm is complete.

Anyone of these assumptions can contain errors which may propagate from

the beginning to the end of the system.

40



Despite these assumptions, the results we obtained are great and can only

get better using the current implementation as a baseline. Overall, given the

sparse nature of the measurements and the coarse quantization of speed ranges,

the results obtained were much better than expected - more than su�cient to

estimate travel times between any two nodes in the network.

6.2 Sources and Sinks

Sources and sinks are special cases. A user may enter a source or a sink to

account for a sudden and signi�cant appearance or disappearance of vehicles.

An example for both scenarios is a stadium parking lot before and after a

big game. When hundreds if not thousands of drivers and their passengers

arrive to park their vehicles, the user should input a sink. In general, the

edge weights that leave a given road segment sum up to 1. However, in the

case of a sink, the edge weights should sum up to a value less than 1. As

such, the overwhelming number of vehicles will not propagate as strongly on

to connecting road segments. At the end of the big game when it is time for

the spectators to leave, the user may enter a source by inputting a low speed

override for the a�ected road segments. We do not increase the edge weights

to allow their sum to be greater than 1 because this may lead to unpredictable

results during the RL algorithm.

6.3 Available Data Sources

For this project, we had access to a number of di�erent data sources that

we describe next.

6.3.1 Tra�c Cameras

The original goal was to use image sequences from the existing tra�c

camera network, but this proved unfeasible for many reasons. Most notably is

the lack of a uniform infrastructure for routing data to a central server. Also,
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lack of access to camera parameters such as pose and zoom makes the design

of robust estimation procedures problematic.

6.3.2 Inductive Loops

The inductive loop count data was more promising because we had access

to almost 200 loops spanning 5 years. Unfortunately, we had an issue with

the registration of the sensor data for although we were given the nearest

intersection and the road segment direction, we did not know in which lane or

where along the road segment the loops were located. Because di�erent lanes

do not necessarily receive the same number of vehicle counts despite having

approximately the same travel speed, there is a high probability that di�erent

loops of the same road segment contradict one another, especially if one of

the loops is located in a turning lane. Another issue is the lack of ground

truth that we would be required to convert vehicle counts into travel speeds.

Without the exact loop positions and the ground truth, we have no way of

reliably converting loop counts into average travel speeds unless we implement

a microscopic tra�c model which, as we explained at the beginning of Chapter

Section 4, is an approach we want to avoid if possible.

6.3.3 AVL GPS Data

In the end, we used readily available AVL data which turned out to be a

more practical solution. Unlike the inductive loops which are statically located

and potentially contradictory, we do not need to know the exact location of

the ambulance on the road segment because we assume that the ambulance

is travelling on whatever lane is available and that the average speed of the

ambulance for a given lane is the same for each lane. This technology can

also be expanded to other �eets such as municipal vehicles or taxis to produce

a denser initialization of the graph. Unfortunately, due to privacy concerns,
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we cannot make the data we used available to the research community for

standardized testing.

6.4 Shape�le Issues

As mentioned before, the tra�c server has a number of critical issues that

CAE is currently working on resolving.

6.4.1 Linkages

The tra�c server relies heavily on road linkage information which are

currently inferred from the geometric properties within the shape�les. Unfor-

tunately, we observed a number of streets that did not connect where they

were supposed to. The problem is that if there is a large enough drift - in

some cases, we observed drifts ranging from 1 to 10 metres - then the intersec-

tions become di�cult to discern and edge weights are computed erroneously.

For display purposes, such drifts may be acceptable because they are barely

perceptible when employing a bird's eye view of the city. But for the purposes

of tra�c modelling, this is unacceptable.

Supposing that the observed drift is unavoidable due to the inherent in-

accuracies in the sensor, we propose that the road linkages be included in the

shape�le attributes rather than be extracted from the shape�le geometric in-

formation. As such, each street or shape would contain the unique road ids

of its neighbours. Though this may increase both the size of the shape�les

and the loading time, we do not consider this to be an issue because we only

process the shape�les once during the initialization of the system.

6.4.2 One-way Streets

Another shape�le attribute that is crucial to modelling vehicle �ow is

the one-way street information. Unfortunately, at the time of completing this

work, we had to assume that all streets were bi-directional.
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At one point, Ottawa's Fire Department did provide shape�les with one-

way information. But they lacked speed limits which were already available in

the current shape�les. Note that CAE tried to merge the two shape�les but

were unsuccessful because they di�ered too much.

6.4.3 Number of Lanes

The number of lanes is essential in computing the edge weights. Unfor-

tunately, the way it is provided in the shape�les is ambiguous. Indeed, the

number of lanes of a given street is represented by a single attribute. When

this attribute is odd, for instance 5, which direction has 2 lanes and which has

3? Or is it 1 lane in one direction and 4 in the other? The obvious solution is

to use two attributes for number of lanes - one for each direction. In the mean

time, we assume that each direction has half the number of lanes rounded

downwards such that 5 lanes corresponds to 2 in each direction.

6.4.4 Speed Limits

Fortunately compared to the other shape�le attributes, the speed limit

attribute is perhaps the most reliable and complete one though it is not without

its shortcomings. For the 20,000 streets in Ottawa, approximately 1,000 streets

are without a speed limit. For these streets, we simply assume a speed limit

of 50 km/h and hope that we are correct for most of these streets. Eventually,

we hope that it will no longer be necessary to make such an assumption, in

which case, we expect the errors obtained during validation to decrease.

6.5 Scale and Performance

The tra�c server was designed with the issue of scale in mind. Indeed,

there is no limit on the number of AVL samples in the historical data since

the heavy number crunching is done o�ine and the runtime calculations are

neglible. On commodity hardware, the tra�c server is able to update the

state of the entire road network including both freeways and surface streets in
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5-6 minute intervals using 7 RL labels and 10-11 minute intervals using 9 RL

labels.

During runtime, the bulk of processing is dedicated to computing the

support of each node's labels (step 2 of the RL algorithm). Depending on the

number of in-edges and out-edges of each node in the graph, the processing

time may increase or decrease. In the shape�les of Ottawa we used, many

streets are composed of multiple short shapes or segments. As a result, there

is a large number of road segments with only one out-edge and in-edge. When

we compute the support for these road segments with only one out-edge or

in-edge, the computation is very quick. The lengthy calculations for support

are due mostly to road segments with multiple out-edges or multiple in-edges.

To reduce the number of computations during runtime when a node has

more than 3 in-edges, we only consider the 3 in-edges with the greatest number

of vehicles and ignore the rest. Similarly, we impose the same constraint on

the number of out-edges. In essence, we assume that few roads, if any, have

more than 3 signi�cant sources of vehicles at its input or at its output and we

argue that the loss in model accuracy is negligible compared the the speedup.

The question that begs to be asked is: what happens if we double the size

of the city or, conversely, if we half it? The complexity of the tra�c server

is on average O(2n2) where n is the number of road segments. Note that the

multiplication by a factor of 2 is due to the two edge types (in- versus out-

edges) in the calculation of support whereas the exponent of 2 refers to the

average number of in- or out-edges per node. Accordingly, we observe that the

performance of the system is closely tied with the size of the city. For larger

cities, we can take advantage of the parallel nature of RL algorithm and split

the processing over multiple processing cores using readily available multi-core

processors in order to minimize processing time.
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CHAPTER 7
Future Work

There remains much to do in terms of improving the accuracy of the tra�c

server.

7.1 Model Sources and Sinks

Perhaps the most e�ective and easiest improvement is to explicitly model

sources and sinks by providing a source and sink edge incident on every node.

Doing so would allow certain neighbouring nodes to remain locally inconsistent

instead of erroneously interpolating road congestion across neighbours. Unlike

electrons, large number of vehicles may suddenly park or appear in the �ow

at the onset or conclusion of a typical work day or of a special event such as

a hockey game or concert.

7.2 Incorporate Statistics at Intersections

Perhaps the most important suggestion in terms of improving the results

we obtained would be to incorporate statistics at intersections. Using inter-

section data such as turn ratios, we could compute dynamic edge weights that

would vary according to the actual or simulation date and time.

7.3 Replace Linear Relationship Between Congestion and Number
of Vehicles

Another improvement would be to replace the relationship between road

congestion and number of vehicles by a non-linear one. The reason being that

the assumption of linearity between the two that we make may be too far

from reality and may consequently result in a poor performance of the VFM

to estimate the compatibility matrix.
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7.4 Incorporate Reserved Lanes

The estimates can be improved by including reserved lane information

because intersecting regions where reserved lanes begin or rejoin normal lanes

and during rush hour are problematic. The reason being that we expect am-

bulance speeds at these regions to be discontinuous during rush hour, when

normal lanes are much more heavily congested compared to reserved lanes.

In turn, the RL algorithm may erroneously smooth the ambulance speeds

rather than let them be discontinuous. Shoulders, on the other hand, are not

necessary because we are currently focused on redeployment rather than de-

ployment. During redeployment, we assume that ambulance do not drive on

the shoulder of the road.

7.5 De�ne Super Nodes

We have explained nodes and their place in the directed graph. Another

concept is that of a super node which is an aggregate of nodes corresponding to

portions of streets or neighbourhoods. Its main advantage lies in being more

robust to noise since each super node contains a greater number of historical

samples.

7.6 Determine an Optimal Compatibility Function

In this work, we proposed two possible compatibility functions. Although

both led to satisfactory results after 8-10 iterations, it would be interesting to

study and determine whether or not an optimal compatibility function exists

that would lead to a more accurate or more locally consistent result requiring

fewer iterations.

7.7 Segment the Data

Currently, we segment the data into weekdays and weekends. Other data

classes undoubtedly exist that can potentially lead to more reliable speed pro-

�les such as weather conditions, holidays and special events. Otherwise, more
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sophisticated data clustering techniques such as k-means can be employed to

help segment the data. Note however that doing so would only be useful if

there is su�cient historical data from which to construct the speed pro�les.

7.8 Improve Ambulance Speed Estimation

Another improvement would be to use a road following algorithm to es-

timate speeds from ambulance positions. Currently, we approximate the am-

bulance's path using straight lines. Since the resolution of the GPS data is

10-11 second intervals, this approximation works fairly well most of the time.

However, errors start accumulating every time the ambulance makes a turn.

Other factors that are related to the ambulance's speed are the ambulance's

lights and sirens. It would be wise to include this information in future imple-

mentations. As we are only interested in the redeployment problem, any data

with lights or sirens on should be thrown out because ambulances generally

drive with their lights and sirens o� during redeployment. Being able to dis-

cern deployment ambulance speeds with lights or sirens on from redeployment

speeds with lights and sirens o� would allow us to greatly reduce the variance

of the speed estimates obtained.

7.9 Understand Data Sparseness

As a practical system, more experiments are needed to verify that the

tra�c server can be ported to other cities successfully. Accordingly, it is

necessary to study the relationship between the sparseness of the data and

the accuracy of the estimates we obtained in order to answer the fundamental

question: how sparse is too sparse?

7.10 Include Other Data Sources

Although we only used AVL data to estimate the ambulances' speeds,

there exists a plethora other data sources such as tra�c cameras or inductive

loops that can provide useful information about the state of the road network.
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Then the focus would be to fuse the various sources of data together in order

to update the state of the road network. The main challenge is to be able

to geo-reference the data to a particular road segment and to incorporate the

sensor data into the existing framework, in this case, using relative congestion.

Perhaps the cheapest improvement would be to place additional GPS devices

on other �eets of vehicles such as taxis, delivery trucks or police cruisers.

7.11 Parallelize the RL Algorithm

We can take advantage of the parallel nature of RL algorithm and split the

required computations over multiple cores using readily available multi-core

processors in order to minimize processing time. The speedup would be sig-

ni�cant and cities signi�cantly larger than Ottawa could easily be supported.
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CHAPTER 8
Conclusion

We represented the road network as a directed graph and used a belief

propagation algorithm implemented as Relaxation Labelling to obtain dense

road speed estimates from sparse sensor data. We found that the algorithm

is surprisingly good at compensating for the sparse and noisy sensor data by

using context to resolve ambiguities. Indeed, we obtained a mean absolute

error of 12-13 km/h and a standard deviation of 10-12 km/h using real au-

tomatic vehicle location data. Furthermore, the validation results obtained

using K-folds cross-validation were remarkably consistent and appeared to be

very stable despite variations in the input sensor data.

There are a number of contributions that, when put together, make the

work accomplished in this thesis unique. The tra�c server we propose is

able to interpolate sparse and noisy sensor data using a belief propagation

network. It can accommodate arbitrary data sources as long as they can be

geo-referenced to a particular location in the road network and be represented

in terms of relative congestion. It incorporates measures of con�dence to rep-

resent uncertainties in the input data and in the output speed estimates. In

terms of scale, it is able to represent the entire city of Ottawa, Canada, includ-

ing both freeways and surface streets. It is currently able to update the entire

road network in intervals of 5-6 minutes running on a single processing core,

but can run in much less time if the processing is distributed across multiple

processing cores. It has been extensively validated and tested with real AVL

data using K-folds cross-validation. Finally, it can easily be ported to other

cities and is locally adaptable making it quite robust to user interventions.
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We believe that the work presented in this thesis is valuable because it

addresses the sparse and noisy sensor data problem and o�ers a baseline to

which we can compare eventual more complex strategies. There is much room

for improvement and we o�er many suggestions. Namely, the tra�c server

should model sources and sinks explicitly. It should incorporate statistics

at intersection to compute dynamic edge weights. It should replace the linear

approximation between road congestion and vehicle counts by a non-linear one.

It should incorporate reserved lanes information to account for discontinuities

in ambulance speeds. It should make use of super nodes that are more robust

to noisy and sparse data. It needs more experimentation in order to determine

an optimal compatibility function that would result in more accurate estimates

and require fewer iterations. It needs to segment the data further to account

for holidays, special events or particular weather conditions. It needs to use a

road following algorithm that can better estimate ambulance speeds. It needs

to understand the question of "`how sparse is too sparse?"'. It needs to include

other data sources to make use of all the data that are available. Finally, it

needs to be parallelized to make use of the multiple core processors that have

recently become widely available.

Currently, the tra�c server is being prototyped in Ottawa, Canada. CAE

aims to have the dispatching system serve other departments such as Police or

Fire as well as other cities across the world. Such a system is useful anywhere

there are dispatchers that must e�ectively manage a limited set of resources

given a number of operating constraints.
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Appendix A

Below is the �ow chart of the tra�c server.

Figure 8�1: Flowchart of the Tra�c Server
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LIST OF ABBREVIATIONS

AVL: Automatic Vehicle Location

CM: Congestion Measure

DMTC: Distributed Tra�c Management Centres

ERSI: Environmental Systems Research Institute

ETA: Estimated time of arrival

EVC-ini: Expected vehicle counts due to a node i's in-neighbours

EVC-outi: Expected vehicle counts due to a node i's out-neighbours

KCL: Kirchho�'s Current Law (KCL)

LUT: Lookup Table

MAE: Mean Absolute Error

OPS: Ottawa Paramedic Service

RCapi: Road capacity of a node i

RConi: Relative congestion of a node i

RL: Relaxation Labelling

VCi: Vehicle counts of a node i

VFM: Vehicle Flow Model
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