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Abstract 
We present theoretical scaling and computational analysis of nano-structured free surfaces formed in chiral 

liquid crystals (LC) and plant-based twisted plywoods. A nemato-capillary model is used to derive a 

generalized equation that governs the shape of cholesteric free surfaces. It is shown that the shape equation 

includes three distinct contributions to the capillary pressure: area dilation, area rotation, and director 

curvature. To analyse the periodic relief in plywood surfaces, these three pressure contributions and 

corresponding surface energies are systematically investigated. It is found that for weak homeotropic 

surface anchoring the nano-wrinkling is driven by the director curvature pressure mechanism. 

Consequently, the model predicts that for a planar surface with a uniform tangential helix vector no surface 

wrinkling can be observed since the director curvature pressure is zero. Scaling is used to derive the explicit 

relation between the wrinkling’s amplitude to the wave-length ratio as a function of the anisotropic surface 

tension, which is then validated with experimental values. These new findings can be used to characterize 

plant-based twisted plywoods as well as to inspire the design of biomimetic chiro-optical devices.  

1. Introduction 

Biological liquid crystals (BLCs) are anisotropic viscoelastic 

materials exhibiting long range orientational order and partial 

positional order.1 The liquid crystalline phase and topological defects 

in biological analogues are usually those of chiral nematics 

(cholesteric) and hence they are referred to as biological helicoidal 

plywoods2,3, also known as the Bouligand architecture.4 Helicoidal 

plywoods are found in many biological materials, such as DNA in 

human cells,5 cellulose in plant cell walls,6 chitin in arthropods 

cuticles,2 and collagen in human compact bones.7 BLCs are functional 

materials that display several unique properties8 such as nano-scale 

surface wrinkling observed in LC DNA,9 cellulose,10 and collagen.11 

Cholesteric films of concentrated collagen solutions exhibit periodic 

undulations at the free surface with an amplitude of the order of 150 

nm, and a periodicity of the order of 3.5 μm.11 Undulations of similar 

scales are also observed in silk gland ducts of golden orb-web spider 

Nephilaclavipes,12 the exoskeleton of the beetle Chrysinagloriosa,13 

and cellulosic materials.10 These nano-scale structures that formed 

spontaneously on the free surface of BLC are responsible for their 

particular optical responses resulting in structural colors, observed  in 

beetles,13 mollusk shells,14 and some plants.15 The study of the 

formation of these surface undulations is fundamental in 

understanding structural color in nature and can inspire the design of 

optical devices with novel functionalities.16 

Photonic structures in many floral plants are associated with the 

shape and the anatomy of the plant surface topography. It has been 

reported that certain floral plant species, such as Hibiscus trionum and 

Tulipakaufmanniana petals, use ordered striation or ridges to obtain 

iridescence with a striking metallic appearance.17 Although the 

formation of these micro- and nanostructures during the development 

of the petals is not well-understood yet, it is believed that cellulosic 

CLCs are responsible for plant surface undulations and iridescent 

colors. In the preparation of a lyotropic cholesteric mesophase, 

Werbowyi and Gray discovered that concentrated aqueous solutions 

of (hydroxypropyl) cellulose (HPC) displayed iridescent colors that 

changed with concentration and viewing angle.18 Efforts have been 

made to trap the CLC structure in solid films to create colored 

iridescent films.19 Fernandes et al. fabricated iridescent solid 

cellulosic films with tunable mechanical and structural color 

properties, which mimic the structures found in the surface of the 

“Queen of the Night” tulip petals, which display periodic striation of 

about 1.5 μm, responsible for petal iridescence.20 They indicated that 

the formation and periodicity of the surface structure are governed by 

the CLC structure. 

Although, the chiral surface structures are extensively studied by 

microscopy methods including atomic force microscopy (AFM),21 the 

complementary theoretical analysis of CLC surface wrinkling is rarely 

studied. The formation of surface nanostructures in CLC interfaces is 

a complex phenomenon involving interfacial tension, surface 

anchoring energy, and LC Frank elasticity8 that requires integrated 

multi-scale modelling of bulk and surface.22 In a study of cholesteric 

liquid crystal free surface, Meister et al described the periodic relief 

of a cholesteric liquid crystal interface by minimisation of surface free 

energy composed of the anchoring energy and the surface tension.23 

They found that for relatively strong and finite anchoring, the surface 

deformation energy arises due to director surface gradient and elastic 

constants.23a The director distributions in the distorted region coupled 

with anchoring energy create nano-scale undulations in the free 

surface. 

The plant cell wall is a multifunctional viscoelastic structure made 

of cellulose microfibrills (CMFs) coated with hemicelluloses and 

embedded in a matrix of lignin/pectin.24 Plant cell wall includes a 

primary cell wall (p) laid down during growth on the outside and three 

secondary cell walls (S1, S2, S3) that formed when the cell has reached 

its final size and shape.25 Although the primary and secondary wall 

layers differ in the specific chemical composition (cellulose and 

hemicellulose contents are greater in secondary walls than primary 

walls) and structural organization (CMFs in primary layers are 

organized in a loose interwoven texture, while are well-oriented in 

secondary layers). Overall, CMFs in the polysaccharide matrix are 

oriented in strategic directions to form twisted plywood architecture 

for optimal mechanical efficiency. The proof that plant cell wall are 

formed through a liquid crystalline self-assembly process is the 

presence of the microstructure, textures and defect patterns observed 

in secondary cell wall of some plan species.8, 26 The plant cell wall 

helicoidal plywoods can be characterized by the helix axis H, the pitch 

length p0, which is the distance through which the fibers undergo a 2π 
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rotation and handedness (sign of p0), and the average fiber orientation 

n which is normal to H (see Fig.1).  

In a recent communication27 we briefly presented the main 

mechanism that operate in chiral capillarity using a plant-based 

plywood as a model material system. In this paper, we present a 

comprehensively analysis of the nano-scale structures observed in 

chiral surfaces in full detail and predict the response of the surface 

structure to chirality and anisotropic tension changes. We restrict our 

attention to the case in which the helix axis remains at all times 

parallel to the surface; other complex structures arising when the helix 

axis is tilted are beyond the scope of this paper. Focusing on the 

cellulosic CLCs material model, we use the generalized shape 

equation for anisotropic interfaces using the Cahn-Hoffman 

capillarity vector developed for LCs28 and the well-known Rapini-

Papoular anchoring energy29 for the anisotropic part of the interfacial 

tension, to analyze periodic nano-wrinkling in plant-based plywood 

free surfaces. The objective of this paper is to identify the key 

mechanisms that induce and resist nano-wrinkling in CLC, and to 

formulate nano-wrinkling scaling laws of biomimetic utility for the 

design of optical gratings and as a tool to characterize plant-based 

plywoods.  

The organization of this paper is as follows. Section 2 presents the 

governing nemato-capillary shape equation expressing the coupling 

mechanism between the surface geometry and cellulose fiber 

orientation for CLC/air interface in rectangular (x,y,z) coordinates. 

The capillary shape equation is derived and described in terms of three 

capillary pressures. Appendix A presents the details of the derivation 

of the Cahn-Hoffman capillary vector thermodynamics for CLC 

interfaces. Appendix B derives the generic conditions under which the 

director curvature pressure is zero. Appendix C formulates the 

capillay shape equation for the splay-bend director field relevant to 

nao-wrinkling. Section 3 analyses the effect of model parameters on 

the surface profile. The leading mechanism controlling chiral 

wrinkling is determined and the generic sufficient condition that 

results in flat and non-flat surfaces is derived. Furthermore, the 

surface energies associated with the CLC interface are presented and 

discussed. Finally, based on a standard order of magnitude analysis, a 

scaling formula expressing surface profile amplitude as a function of 

model parameters is presented and validated with a number of 

experimental biological CLC surface undulations and with numerical 

results. Section 5 presents the conclusions. 

2. Capillary shape equation 

We assume that the surface undulations in plant cell walls are formed 

through modulation in surface energy at the anisotropic-air interface 

and are influenced by the macroscopic chirality of the cellulose fibers. 

The coupling mechanism between the surface geometry and cellulose 

fiber orientation can be demonstrated through the shape equation. In 

this section, the capillarity shape equation using the capillary vector 

ξ30 is presented for the CLC free interfaces in rectangular (x,y,z) 

coordinates and the resulting surface pressures are formulated.  

For isotropic interfaces, the capillary pressure, pc, based on the 

well-known Young-Laplace equation, is proportional to the surface 

tension γ and vanishes for plane surfaces ( . 0s k ): 31 

p .c s k  (1) 

where s s  k is the surface gradient, Is=I-kk is the 2×2 unit surface 

dyadic, and k is the surface unit normal. For a cholesteric liquid 

crystal (CLC) surface, however, the anisotropic surface tension 

contributes additional modes to the capillary pressure. The interfacial 

surface tension γ for anisotropic surfaces is a function of the surface 

unit normal k and the director n: γ (k, n) and is given by Rapini and 

Papoular: 29 

2
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W
( , ) ( , ); ( , ) ( . )
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where γ0 is the isotropic contribution, γaniso is the anisotropic  

anchoring energy contribution, and W is the anchoring energy 

coefficient. The anisotropic surface tension appears as the property 

that renormalizes the isotropic component of the interfacial tension 

and promotes the rotation of the interface. The anchoring energy 

contribution is associated with the director deviations from its 

preferred orientation due to bulk distortions or external fields. The 

preferred orientation or easy axis corresponding to eqn (2) can be 

parallel to the unit normal k (homeotropic), perpendicular to the unit 

normal k (planar). In the present paper, we restrict the discussion to 

homeotropic anchoring (W<0), because for planar surface anchoring 

(W>0, n.k=0) the helicoidal structure, in which helix axis is 

perpendicular to the surface, will remain undistorted as it is the most 

stable and lowest energy state;32 the undistorted helix results in a flat 

surface.23a 

As the nematic director in CLCs continuously rotates along the 

helical axis, the helix structures (helixes perpendicular (H.k=0) and 

parallel (H.k=1) to the surface) for strong homeotropic anchoring 

(W<0) is not fully compatible with any uniform aligning surface.33 As 

the result, the average orientational order is disrupted due the 

frustration that leads to sub-surface defect nucleation, which can be 

resolved by changing the interface shape. The appearance of 

inclusions and formation of defects in the bulk can change the director 

orientation in the CLC and results in a periodicity at the free surface 

whose wave length can vary from half helical pitch p0/2 to p0 or even 

greater.21b, 34 Here we assume that the pitch of the distorted region is 

equal to the bulk p0. The effect of n(x) on surface relief of two CLC 

structures is shown in Fig.1. The distorted surface layer can be 

generated by either vertical or tangential helixes in the bulk (note that 

only a horizontal helix alignment H is presented in Fig.1). 

 
Figure.1 Schematic of a cholesteric liquid crystal (plywood architecture) and 

surface structures. H is the helix unit vector, and p0 is the pitch. (a) The surface 

director has an ideal cholesteric twist and the surface is flat. (b) Bend and splay 

orientation distortions for W<0 create surface undulations. Adapted from ref 

23a.  

 

The Cahn-Hoffman capillary vector ξ30 is the fundamental 

quantity that provides a direct and clear way to explain the role of 

anisotropy in capillary pressure and its role in surface shape 

determination. The capillary vector ξ takes into account the changes 

in surface energy due to surface dilation (change in area) and surface 

rotation (change in unit normal k) in one single vectorial quantity. In 

this section, the key formulations of the capillary vector 

thermodynamics are presented. Appendix A gives the details of the 

derivation of the Cahn-Hoffman capillary vector thermodynamics for 

anisotropic interfaces.28 The capillary vector ξ for nematic surfaces 

and interfaces has two components: 
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The normal component 𝝃⊥describes the increase in surface energy 

through dilation and the tangential component 𝝃∥ is the change in 

surface energy through rotation of the unit normal. For isotropic 

surfaces, 𝝃∥ = 0 and no rotational effects appear since W=0. It is 

important to note that at the free surface we have two independent 

fields: the director n and the unit normal k. A soft surface describe the 

case when its shape adapts to a given director orientation, as 

considered in this paper.  

The total capillary pressure pc is defined by 𝑝𝑐 = 𝛻𝑠 . 𝝃, the 

divergence of the capillary vector is decomposed naturally as:35 
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Where Pdilation is the contribution from the normal component 𝝃⊥  

which is the usual Laplace pressure and Protation is the contribution 

from the tangential component  𝝃∥ which is the anisotropic pressure 

due to preferred orientation and is known as Herring’s pressure.   The 

additional contribution to the capillary pressure, Pdirector appears from 

director curvature due to orientation gradients. The capillary pressure 

in CLC free interfaces includes a number of novel interfacial effects: 

i) capillary pressure even for flat surfaces, ii) Laplace-type capillary 

pressure due to director orientation curvature (i.e. gradients), iii) 

orientation-dependent renormalization of the surface tension 

coefficients due to anchoring energy.28 

Using eqns (2-4) we obtain the total scaled capillary pressure: 36 
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(5) 

 

where B = W/γ
0
 is the scaled anchoring coefficient and κ = dφ/ds is 

the surface curvature. The equation shows that the surface shape is the 

balance between surface tension and anchoring. The anchoring term 

is the driving force for surface undulations and it originates from the 

fact that this anisotropic surface energy is minimized when the 

director n is aligned along the preferred “easy axis”. For a fixed 

cholesteric helical orientation, the only way to minimize this energy 

is to deform the interface to avoid energetically costly mismatch 

between the director and the easy axis. Since the director of a 

cholesteric is periodic, then the surface undulations are also periodic. 

When the director orientation deviates from the easy axis and the 

deviation generates gradients in surface tension, which are 

comparable to the characteristic kinetic energy density, the 

orientational-driven Marangoni flow may appear.37 In this paper we 

neglect this Marangoni effect and consider the shape instability as 

driven by elastic effects. One mechanism that may eliminate or reduce 

viscous effects when the helix is tangential to the surface is the high 

viscosity associated with permeation flow.38 

For flat planar interfaces (κ=0) the capillary pressure is driven only by 

director curvature: 
 

c s sp W(( . )( . ) . : )   k n n k n n  (6) 

The director curvature pressure, Pdirector is zero when: 
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In a rectangular (x,y,z) coordinate system, to satisfy the zero director 

curvature pressure condition (6), we find that the director n must obey 

one of the following two conditions: 1) nx=0 and ny=0 or 2) 

nxny=constant (the generic conditions under which the director 

curvature pressure is zero are derived in Appendix B). We note that  

the surface director field describing a planar surface with a uniform 

tangential helix vector is given by 𝐧(x) = (0, cos qx, sin qx), and 

since nx=0, the director curvature pressure is zero and no surface 

wrinkling can be observed, as previosuly predcited using other 

approaches.23a 

To describe 1D surface undulation in a CLC, we use a rectangular 

coordinate frame (x,y,z), where x is the undulation direction, and y 

the vertical axis (see Fig.1). The amplitude of the vertical undulation 

is h(x). For a 1D texture, the surface relief is constant in the z 

direction. The arc-length measure of the undulating surface is “s”. The 

surface director field displaying planar splay-bend deformations 

is 𝐧(x) = (cos qx, sin qx, 0), where the wave-vector is q = 2π
p

0
⁄ ; we 

only consider a right-handed helix (q>0); the director angle is θ=qx. 

The surface unit normal is 𝐤(x) = (cos φ, sin φ, 0) where φ(x) is 

the unknown normal angle to the surface. Using standard formulas 

and re-expressing (k) as a function of x instead of s yields the capillary 

shape equation (see Appendix C): 
2 2

c
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(8) 

Setting pc=0 and using the above-specified splay-bend director n(x) 

and surface unit normal k(x) vectors gives the governing nonlinear 

first order ODE for the normal angle φ(x,B,p0), where -2<B<0, 

0<p0<100 μm, 0<x<L. This nonlinear ODE with periodic coefficients 

is solved using the well-known AUTO nonlinear software.39 The 

surface relief is then obtained from h(x) = ∫ cot φ dx
L

0
. The boundary 

condition at x=0, is φ|x=0 =
π

2
, consistent with the adopted sign of B. 

3. Results and Discussion 

In this section we: (1) establish and quantify the effect of anchoring 

(B) and chirality (p0) on the normal angle φ(x, B, p0) and on the 

amplitude profile h(x,B,p0), (2) use a pressure-energy analysis to 

characterize wrinkling, and (3) formulate and validate scaling 

relations for hmax as a function of B and p0 .   

3.1. Free surface profile  

The generic features of the amplitude profile h(x), its maximum value 

hmax, and its periodicity h(x)=h(x+λ) are the three relevant outputs of 

the model. The two significant parameters influencing h(x) are the 

scaled anchoring coefficient B and the micron scale length of the pitch 

p0. For the nematic-isotropic interface, the scaled anchoring 

coefficient B is of the order of magnitude of 0.01.40 The anchoring 

strength W at the nematic-air interface is about several orders of 

magnitude larger than the anchoring strength at the nematic-isotropic 

interface. However, as the surface tension at the nematic-air interface 

is higher than the surface tension at the nematic-isotropic 

interface,23a,41 the scaled anchoring coefficient B=W/γ is taken to be 

in the  range -0.1<B< -0.01.  

The plots of normal angle φ(x) and the corresponding surface 

reliefs h(x) as a function of the distance “x”, for different B and p0 are 

shown in Fig.2 and Fig.3, respectively. As expected, the periodicity 

of surface relief λ equals the pitch, p0 and the amplitude are in the 

nanometer range, consistent with experimental findings.21a, 42 

Increasing both parameters B and p0 results in higher amplitudes. 
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3.2. Pressure-Curvature Relations 

As at the nematic-air interface, the anchoring strength 

(W≈10-5 J/m2) is three orders of magnitudes smaller than the 

surface tension (γ≈10-2 J/m2),30 it would seem that there is no 

driving forces to deform the CLC free interfaces and a flat 

interface would minimize the free surface energy. However, the 

director pressure curvature is shown here to be a driving force 

that wrinkles the surface under weak anchoring (i.e. small B) and 

typical values of chirality (i.e p0 in the µm range). All pressures 

are scaled with the isotropic tension γ0 and have units of µm-1. 

Due to the orientational order of CLC interface, the capillary 

pressure contains three contributions: surface area reduction, surface 

area rotation, and director curvature (eqn (4)). The essential feature of 

chiral capillarity is the interaction of anisotropy (director n of fibers), 

micron-range chirality (p0), helix direction (H) and free surface 

topography. When the cholesteric helix is parallel to a flat surface, 

frustration driven by the unavoidable (due to periodic n) presence of 

high surface energy drives the surface uncoiling of the helix and the 

periodic tilting of the interface. This is another example of pattern 

formation by frustration, ubiquitous in mesophases.8, 43 

A unique feature of liquid crystal surfaces28 is the presence of 

Laplace pressure (area dilation), Herrings pressure (area rotation), and 

director orientation gradients pressure, as revealed succinctly by the 

surface gradient of the capillary vector ξ (eqn(5)). Herring’s pressure 

forms the basis of anisotropic crystal morphologies 28 and is included 

here as Protation. As the Herring’s pressure depends on curvature, it is 

only the orientation pressure Pdirector that wrinkles the surface with a 

wavelength that reflects the periodicity of the director field. Extracting 

the curvature in eqn(5) clearly shows that it is the ratio of a wrinkling 

driving force (-Pdirector) to a resistance to wrinkling (capillary tension 

coefficients): 
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where the capillary tension coefficients are the usual Laplace terms   

plus the Herring’s coefficient28 given by the second derivative  
∂2γ

∂𝐤𝟐
=

𝐭𝐭: (∂(𝐭𝐭.
∂γ

∂𝐤
) ∂𝐤); the last ratio is obtained by scaling with γ0. Clearly 

as Pdirector = 0 → κ = 0 (see also Appendix C). This is illustrated in 

Fig.4 through 3-D representation of surface curvature, κ, and 

associated pressure directors, Pdirector, and normal angle, φ, for two 

anchoring coefficients and three chirality values. Fig.4 shows that for 

all values of the anchoring coefficients and chiralities, the zero 

pressure director results in a flat surface (zero curvature). The 

horizontal diameter corresponds to the zero pressure director 

(Pdirector=0). Using scaling arguments, the Pdirector scales as: 

 

direct
0

or orderP
B

p


 
  
 

 (10) 

Therefore from eqns (9, 10) we see that the maximum curvature will 

increase with B and decrease with p0, in agreement with computations. 

This dependence is manifested in the 3-D plots of the surface 

curvature for different anchoring coefficients (B=-0.05, and -0.1) and 

chirality (p0=0.5, 1, and 5 µm), as shown in Fig.4(a) and Fig.4(b) 

respectively. 

Fig.5 shows the three scaled surface pressures as a function of “x” 

for two anchoring coefficients and p0=0.5µm. The ellipsoids 

correspond to the director orientation. Pressure extrema (and surface 

relief extrema as in Figs.(2,3)) occur at planar and homeotropic 

orientation. The Herring’s pressure Protation is always positive and 

alternates its phase along each cycle, such that when the director angle 

is /4< dilation and rotation are in-phase and when 

<rotation and director curvature are in-phase. Dilation and 

director curvature pressures are always out-of-phase. In addition its 

amplitude also oscillates. Increasing the anchoring strength increases 

the magnitude of all pressures.  

 

 
Figure.2 The numerical solutions φ(x) and h(x) for p0=0.5 μm  and 

different values of B=-0.04, -0.08, -0.16, and-0.2 

 
Figure.3 The numerical solutions φ(x) and h(x) for B=-0.05 and different 

values of p0=0.5,1 and 5 μm  
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Figure.4 3-D representation of the surface curvature and associated pressure directors Pdirector and normal angle φ. (a) p0=0.5 μm, B=-0.05,-0.1 and 
(b) B=-0.05, p0=0.5, 1, and 5 μm. The diameter corresponds to the zero pressure director (Pdirector=0). 

 

 

The polar plots of the three scaled capillary pressures as a 

function of anchoring B and chirality p0, are shown in Fig.6 and Fig.7 

respectively. The angular coordinate is the director field θ.  The 

fourfold symmetry reflects the facts that the pressure extrema are at 

0, n/2; n={ 1,2,…} and that all pressures vanish at n/4; n={
1,3…}. The figure shows that pressure asymmetry is strongest for the 

chiral component Protation, but is essentially zero for the other two. 

Fig.7 shows polar plots of pressure as a function of p0. Decreasing 

chirality decreases all pressures as the wave-length of the undulation 

increases. Changing p0 does not affect the degree of asymmetry 

between the lobes of these pressures. 
 

 
 
Figure 5.  Pressure profiles for  Pdilation, Protation, and Pdirector as a function 

of distance “x”. (a) B=-0.05 and p0=0.5 μm and (b) B=-0.1 and p0=0.5 

μm. The ellipsoid corresponds to the director orientation. 
 

3.3. CLC Surface Energies 

The total surface energy is defined by Fs = ∫ γ. dA,44 and for an 

initially flat surface of area L2, the total scaled surface energy 

εT/γ0L2is: 
L L L L

2T

2 2 2

0 0 0 0 0

isotropic surface tension anchoring energy

1 1 B 1
 dxdz ( . )  dxdz

L L sin L sin




      n k

144444442 44444443 14444444442 4444444443

  
(11) 

 

Fig.8 shows the variations of the total surface energy with the two 

surface energy contributions for various B in comparison with the flat 

surface energy contributions. Fig.8a shows the total scaled surface 

energy of the wrinkled and flat surfaces as a function of anchoring B. 

Increasing the magnitude of B increases the energy difference 

between the flat and undulating surfaces. The figure demonstrates that 

the total energy monotonically decreases by increasing the magnitude 

of B. Fig.8b shows the different contributions of the profiles shown 

in Fig.8a. The undulation is driven by the anisotropic surface energy 

despite the increase in the isotropic energy. Also the decrease in 

anisotropic energy is significantly augmented by the undulations. 

Fig.9 shows the corresponding energy contributions and 

behaviour as a function of chirality. The Figure shows that the 

isotropic surface tension energy and the anchoring energy for a 

particular value of anchoring (B=-0.05) are almost independent of 

chirality. Although the undulating surface has a higher isotropic 

energy compared to the flat, the lower anisotropic energy yields the 

undulating surface to a lower total surface energy compared to the flat 

surface reference line (Fig.9(a)). 

3.4. Undulation Scaling Law and Validation 

Using a standard order of magnitude analysis based on eqn (4), we 

find a revealing close form expression for the maximum amplitude 

hmax as a function of B and p0: 

0
max

Bp
h

1 B


 
 (12) 

The numerical results indicate that 𝛿 = 10.71𝐵−1.02. The 

prediction is that the ratio of amplitude/periodicity is essentially 

a linear function of the scaled anchoring B:
 ℎ𝑚𝑎𝑥

𝑝0
= 0.085𝐵. 

Since the value of B for the interface between the chiral nematic 

and the isotropic phase/air usually is in the range -0.1<B<-0.01, 

the estimated amplitude of surface undulation is about one 

percent of the undulation wavelength. 
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The theoretical estimate, based on the shape equation, of the 

depth-to-period ratio is consistent with the nano-scale surface 

structures have been experimentally observed in a variety of 

polymeric and biological CLC. Periodic surface structure with 

amplitude of the order of hundred nanometers and a periodicity 

of the order of few micrometers spontaneously appeared from 

evaporating droplets of collagen solutions on glass substrates 

were detected by Maeda using an atomic force microscope 

(AFM). 45 The periodic surface relief found in his work is very 

similar to the periodic undulations observed by Kirkwood and 

Fuller in a collagen film with twisted plywood architecture.11 

Besides, the AFM images of sheared nano crystalline cellulose 

thin films showed two different scale periodical gratings: the 

primary periodic structure perpendicular to the shear direction 

and a smoother texture characterized by a secondary periodic 

structure which is very similar to the surface modulation found 

in Tulip “Queen of the Night” petals.20 The estimated values of 

the parameter B for several surface nano-undulations of CLC 

(refs.11, 20-21, 23a, 42, 45) are shown in Table.1. The results 

show that the predicted values of the parameter B using the 

scaling law are consistent with the anchoring energy coefficients 

for the CLC/air interface. 
Table.1 Validation of the scaling law (eqn(10) with experimentally 

observed nano-scale surface undulations in CLCs and biological 

plywoods. 

Experiments h  
(nm) 

λ(µm) B 
fitted

 

Chiral polymer 21a 2.5 0.63 0.028 

Cholesteric oligomer 42 2-6 0.16 0.071 

Cyclic siloxane oligomer 23a 1 0.145 0.041 

Collagen solution 45 100 7.5 0.079 

Liquid crystalline collagen 11 150 8 0.110 

Cellulosic cholesteric film 20 5 0.5 0.059 

5. Conclusions 
This paper has used a non-linear nemato-capillarity shape 

equation to describe the main mechanisms driving nano-scale 

surface undulations in chiral nematic liquid crystals as shown in 

plant-based plywoods and various cholesteric liquid crystals. 

The generalized Laplace equation based on the Cahn-Hoffman 

capillarity vector formalism was formulated and used as an 

efficient tool to analyse surface reliefs in plant-based plywoods. 

The resulting chiral capillary equation admits stable spatially 

periodic solutions describing surface wrinkling, where the 

amplitude is in the order of few nms and the wave-length is in 

order of µms. The role of three capillary pressure contributions 

(surface area change, surface area rotation, and director 

curvature) have been elucidated and the influence of chirality 

and surface anchoring has been characterized. The director 

pressure has been identified as the fundamental driving force 

that generates the surface nano-scale undulations. The model 

predictions show that the director pressure vanishes for a planar 

surface with a uniform tangential helix vector and results in a 

flat surface. A scaling law for the chirality-driven surface 

wrinkling shows that the ratio of amplitude-to-period is a linear 

function of the ratio of anchoring strength to isotropic surface 

tension (0.085 × 𝑊/𝛾0). The scaling law is validated with 

experimental values available in literature for surface 

undulations observed in CLCs and biological plywoods. Since 

the pitch p0 of cholesteric liquid crystals and plywoods is 

sensitive to temperature, water content, pH, and external fields 

we expect new functional material surfaces that operate through 

the chiral capillarity mechanism described here. Further work is 

currently in progress to characterize water-based surface 

actuation mechanism through interaction of anisotropic 

interfacial tension and chirality changes through hydration. 

 

 

 

   

 

Figure.6  Polar plots of the three scaled capillary pressures a) Pdilation(μm-1)  b) Protation (μm-1)  c) Pdirector(μm-1)  for B=-0.05 and  -0.1 , and p0=0.5 μm. 
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Figure.7 Polar plots of the three scaled capillary pressures a) Pdilation(μm-1)  b) Protation(μm-1)  c) Pdirector(μm-1)  for p0=0.5& 1 μm  and B=-0.5 

 

 

Appendix A 

Cahn-Hoffman capillarity vector thermodynamics for CLC 

interfaces 

The purpose of this Appendix is to derive the Cahn-Hoffman 

capillarity vector formulations for CLC interfaces. The nematic 

capillarity vector is defined by the gradient of the scalar field 

rγ:35 

 

( , ) [r ( )] ξ n k k  (A1) 

Where r is the magnitude of surface position vector r: r=rk. 

Noting thatd(rγ) = ∇(rγ). d𝐫 , the gradient of rγ yield: 

 

s

r d d
( , ) [r ( )] r .

d d

  
        


ξ n k k k I

r r k
 

(A2) 

Thus the normal and tangential components of capilarity vector 

for CLC interfaces are: 

 

s s

( , )

d d
( , ) . ( . ) '

d d( . )

  

 
   

ξ n k k

ξ n k I I n n
k n k

 

(A3) 

Where 𝛾′ =
𝑑𝛾

𝑑(𝒏.𝒌)
  and n|| = Is . 𝐧 is the tangential component of 

the surface director field. Noticing that Is is the 2×2 unit surface 

dyadic: Is=I-kk where I is the3×3 volumetric unit tensor, we 

have:  

 

 

|| s

d d d d
( , ) . ( ). . .

d d d d

   
    ξ n k I I kk I kk

k k k k
 (A4) 

Using the Rapini-Papoular surface free energy γ = γ0 +
W

2
(𝐧. 𝐤)2,29 we get: 

d
W( )

d


 n.k n

k
 (A5) 

Substituting eqn (A5), we obtain the tangential component of the 

capillarity vector: 

 

2
||( , ) W( ) W( ) W( )( ( ) )   ξ n k n.k n n.k k n.k n n.k k  (A6) 

Hence the total capillary pressure pc is defined by pc = ∇s. 𝛏 , the 

divergence of the capillary vector follows the rule:28 

 

 pc s s

     : .  : . :s s s

area size change area rotation director curvature





      

 
     

  
k k n

k k n

ξ ξ ξ

ξ ξξ

P

P P

144442 44443 14442 4443 14442 4443

 (A7) 

 

Using eqn(A3), the contribution from the normal component
ξ , the 

area size change contribution becomes: 

 

 

s s s: . : .
   



ξ
k I k

k
 (A8) 

According to eqn(A6), the area rotation contribution becomes: 

 

  2||

s s

2 2

: . W - .

W
                W( ) ( )

2


  



 
   
 

ξ
k nn n.k I : k

k

n.t n.k

 (A9) 

 

The director curvature contribution is found using eqn(A6), to obtain: 

 

   

||
(W( )( ( ) ))

W 2W W

 
 

 

   
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      kn kk n.k I

ξ
n

n n

k n

 

 

(A10 a) 
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 (A10 b) 
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Figure.8 a) The total surface energy and b) isotropic and 

anisotropic contributions in comparison with flat surface energies  

for p0=0.5 μm  

and different values of B=-0.5 to -0.05 

 
Figure.9 a) The total surface energy and b) isotropic and anisotropic 

contributions in comparison with flat surface energies  for B=-0.05 and 

different values of p0=0.5 μm to10μm 
 

Appendix B 

Director curvature pressure 
The purpose of this Appendix is : (i) to derive a  general expression 

of the director curvature pressure pN,  (ii) to determine generic 

sufficient condtions under which  pN=0, and (iii) to use (i) and (ii) to 

show that for a planar surface with a uniform tangential helix vector 

then pN=0 and no surface wrinkling can be observed as predcited by 

ref.23a using other approaches. 

(i) General expression for the director curvature pressure (pN). 

 Using eqn(4), the director curvature contribution to the capillary 

pressure, pN appears due to orientation gradients: 

 

||

N sp : .


 


ξ
n

n
 (B1a) 

  N s sp W ( ) :     k n n kn n  (B1b) 

To analyse this expression further we need the covariant surface 

gradient of the director field
s n (for details see ref.46): 

 

   

   

s , ; ,

; s

n b n n b n

                   n n n

    
       

 
   

     

     

n a n a a a k

a a b b n k

 (B2) 

where a semicolon denotes covariant differentiation, aα  are the two 

tangential  base vectors, aα are the two reciprocal base vectors , the 

director field is n n

  n a k , and the curvature tensor b is:  

 

s s s s

(*) (*)
,  (*) . (*)

u





  
        

  

k
b k I a

R R
 (B3) 

 

where R is the position vector given parametrically by 𝐑 =
𝐑(𝑢𝛼), 𝛼 = 1, 2and uα are the surface coordinates. The average 

curvature H and the Gaussian or total curvature κ are: 

s s 1 22H : . b (c c )
u

 



       



k
I b k a  (B4) 

s s 1 2

1 1
K : ( . . ) b b (c c )

2 2

 
        b b  (B5) 

where c1 and c2 are the radius of curvature and εs is the dyadic surface 

unit alternator: 

 

s s s

     
  

            

   

k I I k k I I k

a a a a
 (B6) 

The surface director gradient s n  can then be decomposed into the 

2x2 symmetric surface   gradient tensor A, the 2x2 antisymmetric 

surface gradient tensor W, and the 2x1 surface gradient tensor R: 

 

s n A + W + R  
(B7a) 
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1
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(B7b) 
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1
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n n ,R ; R n b n 

   R a k


    
(B7d) 

In addition, the surface divergence of the director is found from 

eqn(B2) to be: 

 

 s , ;

s ;

n b n

      : n 2Hn

  
    

  

   
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n a n a a

I A
 (B8) 

Replacing eqns(B7a-B8) into eqn(B1b) we find a general and detailed 

expression for the director pressure in terms of director component 

(𝑛𝛼 , 𝑛𝛼:𝛼 , 𝑛⊥,𝑛∥) and curvatures (𝐻, 𝑏𝛼,𝛽): 

 

  

     
N s

,;

p W :

    W n 2n H n n b n n

      

   

   

n.k I A n R k

 (B9) 

(ii) Vanishing director curvature pressure (pN=0). 

Here we analyse some likely cases of pN=0 for: (a) 2D surfaces and 

then (b) 1D planar lines.  

(a) For flat surfaces, eqn(B9)  it simplifies to: 

 

    N ,;
p W n n n   

  b = 0 n a  (B10) 

If the director field is homeotropic, n(α;α) = 𝐧. 𝐚𝛂 = 0 and pN=0. If 

the director is tangential 
,n n 0     and pN=0. 

(b) For 1D planar lines, the director pressure is: 

 

   NP W W
s s

    
       

    
t n k t

n n
n.k  (B11) 

where t is the unit  tangent, k the unit normal and s the arc-length. For 

homeotropic and planar straight lines we find pN=0. For straight lines 

with line gradients, using rectangular (x,y,z) coordinates with unit 

vectors (𝛅x = t, 𝛅y = 𝐤, 𝛅z) and a director filed n=nx𝛅x + ny𝛅y +

nz𝛅z, the pressure equation (eqn (B11)) becomes: 

 

 N y x,x x y,xp W n n n n   (B12) 

which vanishes when nxny = 𝐂 = constant. Hence under planar or 

homeotropic orientation there is no director pressure. Using the unit 

length of the director n.n=1, no director pressure is generated for 

director field satisfying: 

 
4 2 2 2 2

y z y yn n n n c 0     (B13) 

(iii) Proof of zero director curvature pressure for planar surfaces 

(H=0) with tangential cholesteric helix (h=t). 

 When the cholesteric helix is tangential to the straight line then 

𝐬 = x, 𝐭 = 𝛅x = constant,  𝛅x. 𝐧 = 0,  𝛅x. (
𝑑𝑛

𝑑𝑥
) = 0.  

Using eqn(B10) we find: 
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d d
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dx dx
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 
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n n
n n  (B14) 

No director pressure is generated because the director gradients and 

the director components have no projection on the x-axis.  

Appendix C 

Derivation of shape and normal angle equations 

The purpose of this Appendix is to formulate the capillay shape 

equation for the splay-bend director.  

The geometry of the free interface is characterized by a cylindrical 

surface such that its curvature in the z-direction is zero and focus on 

the projection x(s) in the x-y plane (Fig.C1). The unit tangent t and 

the unit normal N to the surface are given by: 

 

2

2

(s) (s) (s)
(s)     ;     (s)

s s s

x t x
t k

  
   
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(C1) 

Where κ is the curvature, quantifying the deviation from linearity.   

 

 

 

 

 

 

 

 

 

 
 

 

Figure.C1 Geometry of the free surface, unit normal k, normal angle, 
unit tangent t, and (x,y,z) coordinate system.  

 

 

Since t is a unit vector it can be expressed with the normal 

angle: 𝒕(𝒙) = (sin φ(x), −cosφ(x), 0). In the normal angle 

parameterization the curvature is: 𝛋 =  
dφ

ds
. Using the 

definition: 
𝑑𝑥

𝑑𝑠
= sin 𝜑, the director curvature pressure is 

𝑑𝒏

𝑑𝑠
=

d𝐧

dx

dx

ds
=

d𝐧

dx
sin φ, and 𝛋 =  

dφ

dx
sin φ. By substituting κ and  

𝑑𝑛

𝑑𝑠
 in eqn 

(5), the shape equation becomes: 
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(C2) 

 

Setting pc=0 and using the splay-bend director distribution n(x): 

𝐧(x) = (cos qx, sin qx, 0) and surface unit normal k(x): 

k(x)= (cos φ(x), sinφ(x), 0), gives the governing nonlinear first 

order ODE for the normal angle φ(x, B, q): 

 

2 2

2 2

φ sin( ){sin ( ) cos ( )}

sin( ){1 cos ( ) sin ( )
2

  


   

d qB qx qx

Bdx
qx B qx

  
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(C3) 
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