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Abstract
After Chernobyl and Fukushima Daï Chi, two major nuclear accidents, large amounts of ra-

dionuclides were released in the environment, mostly caesium 137 (137Cs). Populations liv-

ing in contaminated territories are chronically exposed to radionuclides by ingestion of

contaminated food. However, questions still remain regarding the effects of low dose ioniz-

ing radiation exposure on the development and progression of cardiovascular diseases.

We therefore investigated the effects of a chronic internal exposure to 137Cs on atheroscle-

rosis in predisposed ApoE-/- mice. Mice were exposed daily to 0, 4, 20 or 100 kBq/l 137Cs in

drinking water, corresponding to range of concentrations found in contaminated territories,

for 6 or 9 months. We evaluated plaque size and phenotype, inflammatory profile, and oxi-

dative stress status in different experimental groups. Results did not show any differences

in atherosclerosis progression between mice exposed to 137Cs and unexposed controls.

However, 137Cs exposed mice developed more stable plaques with decreased macrophage

content, associated with reduced aortic expression of pro-inflammatory factors (CRP,

TNFα, MCP-1, IFNγ) and adhesion molecules (ICAM-1, VCAM-1 and E-selectin). Lesions

of mice exposed to 137Cs were also characterized by enhanced collagen and smooth mus-

cle cell content, concurrent with reduced matrix metalloproteinase MMP8 and MMP13 ex-

pression. These results suggest that low dose chronic exposure of 137Cs in ApoE-/- mice

enhances atherosclerotic lesion stability by inhibiting pro-inflammatory cytokine and MMP

production, resulting in collagen-rich plaques with greater smooth muscle cell and less

macrophage content.
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Introduction
After the accidents at Chernobyl (1986) and Fukushima (2011), large amounts of caesium 137
(137Cs) were released into the environment [1]. 137Cs is the main fission product of uranium
and plutonium within nuclear reactors. It is a radionuclide which bears a low chemotoxicity
but high radiotoxicity, mainly related to emission of β and γ rays [2]. Because 137Cs has a 30
year half-life, it remains one of the major sources of exposure for the population in contaminat-
ed territories [3]. Several studies have reported that the youngest children in the contaminated
areas exposed to the Chernobyl accident are developing thyroid cancer, bone disorders [4], as
well as nervous and digestive system disorders [5]. The cardiovascular system may also
be targeted.

The two major contributors to cardiovascular diseases (CVD), myocardial infarction and
stroke, arise as a result atherosclerotic plaque rupture. Atherosclerosis is a chronic inflammato-
ry pathology of large and medium arteries [6]. In the course of the atherogenic process, oxi-
dized low-density lipoproteins enter the vascular wall and induce an inflammatory reaction. As
a result, endothelial cells express adhesion molecules such as E-selectin (ESel), intracellular ad-
hesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) that are necessary
for the adhesion and diapedesis of monocytes. Concurrently, a number of pro-inflammatory
cytokines such as tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and mono-
cyte chemo attractant protein-1 (MCP-1) are released, promoting monocyte chemotaxis. All of
these factors contribute to plaque progression [7]. Monocytes within the lesion differentiate
into macrophages which incorporate the oxidized low-density lipoproteins and become foam
cells. These lipid-laden cells have low structural strength and contribute to plaque fragility. On
the contrary, vascular smooth muscle cells (VSMC) are the main components of atherosclerot-
ic plaques responsible for promoting plaque stability; they produce collagen and other extracel-
lular matrix proteins that constitute the fibrous cap [8], which protects lesions from rupture
[9]. It is well documented that vulnerable plaques have high expression of some metalloprotei-
nases (MMP 2, 3, 8 and 13) that degrade matrix components and are responsible for plaque de-
stabilization and rupture [10]. The production of these MMPs by VSMCs and macrophages is
regulated by inflammation [6]. Thus, most clinical manifestations of atherosclerosis, which are
due to plaque rupture, depend on the change in balance between VSMCs and collagen buildup
on the one hand, and foam cell accumulation and fibrous cap degradation by MMPs on the
other hand. Inflammation is the primary underlying cause of atherosclerotic plaque instability
and rupture [6], and C-reactive protein (CRP), a marker of inflammation, has become the pro-
totypic risk marker for CVD [11].

Exposure to high doses of ionizing radiations increases the risk of CVD due to damages to
the heart structure and vessels [12–14]. Liquidators who took part in the repair at Chernobyl
are reported to have loss of vascular tone, amplified venous return, and increased myocardial
contractility [15]. High levels of 137Cs were observed in the hearts of adults and children living
in the contaminated areas of Belarus, and they may be related to a wide variety of changes to
this organ, including cardiovascular symptoms, electrocardiography alterations, and hyperten-
sion [16], although the elevated blood pressure may be related to not only to the 137Cs but also
perhaps to the psychological stress provoked by the accident [17]. Studies of atomic bomb sur-
vivors in Japan who received a single dose to the whole body of 0 to 4 Gy, showed a dose-relat-
ed increase in serum lipids, associated with greater CVD risk [18]. Some studies have even
established a link between radiation exposure and atherosclerosis [19]. In patients with Hodg-
kin’s disease, radiation therapy was associated with a greater intima-media thickness, an index
of atherosclerotic lesion size [20], and with early onset myocardial infarction [21–24]. Similar-
ly, carotid artery atherosclerosis is described as a relevant complication of neck radiotherapy
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[25–27]. However, irradiating existing atherosclerotic lesions in mice led to smaller, albeit
more inflamed plaques [28].

However, it is unclear from previous studies whether an association exists between athero-
sclerosis and low dose radiation exposure [29, 30], and whether the mechanisms implicated
differ from high-dose effects [31]. These questions are particularly pertinent in the setting
where the re-population of contaminated territories is envisioned after a nuclear accident. An
experimental study in rats showed that chronic exposure to low doses of 137Cs decreased mean
arterial blood pressure but increased the expression of angiotensin and brain natriuretic pep-
tide [32], which could have opposite effects on atherosclerosis. However, in diabetic mice, re-
peated low-dose radiation reduced lipid levels and attenuated inflammation [33], and reduced
cardiac expression of multiple inflammatory agents [34]. Likewise, multiple low-dose irradia-
tion of mice reduced inflammatory signalling in a mouse model of asthma [35].

Hence, anti-inflammatory effects of low dose radioactivity were reported in models of
chronic inflammatory diseases. We therefore hypothesized that chronic low dose exposure to
137Cs would regulate atherosclerosis progression in mice. Genetically predisposed Apolipopro-
tein E-/- (ApoE-/-) mice [36, 37] were chronically exposed to 20, 100 or 500 Bq/animal of 137Cs
administrated through drinking water. Our dosing range (4–100 kBq/l) corresponded to a
range spanning 5 times less and 5 times more than the concentration of 20 kBq/l used in previ-
ous studies [38]. More importantly, our ingestion rates are close to the estimated ingestion
rates of 20 to 2100 Bq/day that were calculated to be ingested by humans living in contaminat-
ed areas [39]. As a whole, 137Cs contamination of human tissues was previously found to be in
the range of 100 and 2000 Bq/kg, measured in the whole body [40], in urine samples [41] or in
organs at autopsy [42, 43].We investigated atherosclerosis progression along with oxidative
stress balance, inflammatory status and indices of plaque stability at different stages of the
pathology.

Material and Methods

Animals
7–8 week-old ApoE-/- male mice were obtained from Charles River Laboratory. Each group
was comprised of 10 animals. ApoE-/- mice are homozygous null for a functional ApoE gene
on a C57BL/6J background. Apolipoprotein E acts as the main ligand mediating removal of
cholesterol enriched chylomicron and very low density lipoprotein remnants from the blood
stream and plays an important role in lipoprotein metabolism. These mice develop atheroscle-
rosis when fed with a normal low fat diet. The morphological features of early-stage lesions in
ApoE-/- mice are very similar to those found in humans [44]. Animals were maintained in a
specific-pathogen-free environment and monitored daily. All experiments and procedures
were carried out in accordance with the Guide for the Care and Use of Laboratory Animals as
published by the French regulations for animal experiments (Ministry of Agriculture Order
No. B92-032-01, 2006) with European Directives (86/609/CEE), and approved by the local eth-
ical committee of the Institute for Radiological Protection and Nuclear Safety (Permit Number:
P10-11 and thematic number: T29).

Cs 137 exposure
Animals were separated into 4 groups: ApoE-/- mice receiving either tap water ad libitum or
tap water ad libitum supplemented with 4, 20 or 100 kBq/l of 137Cs (137CsCl final concentration
5x10-9M, CERCA-LEA, Pierrelatte, France), during 6 or 9 months.
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Blood sampling and analysis
Mice were terminally anesthetized by intraperitoneal injection of ketamin/xylazin (Ketamine
500 Virbac, Rompun 2% Bayer). Blood was collected by intracardiac puncture with a hepari-
nised syringe. Blood was centrifuged for 8 minutes at 800 g and plasma was harvested and fro-
zen for subsequent analysis. Plasma cholesterol, low and high density lipoproteins (LDL and
HDL) levels were determined with an automated spectrophotometric system (Konelab 20, Bio-
logical Chemistry Reagents, Thermo Electro Corporation).

Tissue collection
Hearts (including the aortic root) were separated from the aorta, embedded in optimum cut-
ting temperature medium (OCT, Sakura Fineteck), and snap-frozen on a metal plate that was
cooled with liquid nitrogen. Aortas were excised from the aortic arch to the femoral bifurcation
and directly snap frozen on liquid nitrogen. The thoracic and abdominal aortas were separated
for gene and protein expression analysis.

Cs 137 measurement
Gamma spectrometry with a gamma counter (Packard Cobra Model II D5003) was used to
measure 137Cs. The gastrocnemus muscle was counted for 60 minutes, and the count was relat-
ed to its weight. The detection limit ranged from 4.2 to 12 counts per minute per sample, de-
pending on the mass of the organ tested and the duration of the counting period. The radiation
dose received by the muscle was calculated according to models developed for rodents [45], as
previously described [46].

Gene expression
Total RNA from thoracic aortas was extracted. Briefly, aortas, are grinded with a Precellys 24
(Bertin Technologies) using TRI Reagent solution (Sigma-Aldrich). After extraction, we per-
formed RNA purification (RNeasy Mini Kit, Qiagen). RNA quality was checked by measuring
the ratio of optical densities at 260 and 280 nm. Real-time qPCR (RT-qPCR) was used to ana-
lyse the mRNA levels of inflammatory cytokines and adhesion molecules: CRP, TNFα, MCP-1,
IFNγ, ICAM-1, VCAM-1, and ESel. Oxidative stress balance was evaluated by mRNA expres-
sion of pro and anti-oxidant enzymes catalase (CAT), heme oxygenase 1 (HO-1), nuclear
factor-like 2 (Nrf2), and gluthathione peroxydase (GPx). Finally, the mRNA expression of col-
lagen type III (col3a1) and MMP13 was evaluated. Real-time qPCR was performed with an Abi
Prism 7900HT Sequence Detection System (Applied Biosystems) using SYBR Green (Applied
Biosystems). All samples were normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) or hypoxanthine-guanine phosphoribosyltransferase (HPRT). The 2-ΔΔCT method
was used to analyse the results [47]. All RT-qPCR results are expressed as mean ± SEM, and
compared to expression levels of non-exposed group, which is set at 1. Primers were designed
using Primer-BLAST software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Sequences
of the forward and reverse primers used are listed in Table 1.

Aortic protein expression and activity
Total aorta proteins were extracted according the manufacturer’s instructions (Total protein
extraction kit, Millipore), and protein quantity was measured by a classic Bradford assay. To
assess the expression of MMPs implicated in atheromatous plaque destabilization (MMP2,
MMP3 and MMP8) in aorta, we perform a multiplex analysis on protein extracts according the
manufacturer’s instructions (MMMP1MAG-79K, Merck Millipore). GPx activity was
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measured in aortic protein extracts according the manufacturer’s instructions (Glutathione
Peroxidase Assay Kit, Cayman Chemical). GPx activity in tissues from non-exposed mice was
set at 100%.

Histological and immunohistochemical analyses of aortic plaque
phenotype
Cryosections of 7 μm thickness were cut from the origin of the aortic root throughout the aortic
sinus, for histological and immunohistochemical analysis. All images were acquired using an
Axiophot (Zeiss). Mean lesion area and composition was calculated using Histolab software
(GT Vision LTD) as described previously [48, 49]. Lesion area of control, unexposed mice was
set as 100% relative to the total aortic sinus area. Quantification of the positive stain area of pla-
que components was calculated as a proportion of total lesion area, with values in control, un-
exposed mice set as 100%.

Lipid and collagen staining. Five to seven sections per animal were stained for the oil red
O (Sigma-Aldrich) to evaluate the lesion area, and 5–7 sections per animal were stained with
Picrosirius red (Sigma-Aldrich) to evaluate plaque collagen content.

Smooth muscle alpha-actin and macrophage immunostaining. VSMC and macrophage
content were determined by immunofluorescence using monoclonal anti-α-smooth muscle
cell actin (clone 1A4, Life Science A5691) and anti-CD68 (Abcam 1252), respectively. The

Table 1. Primers sequences used for RT-qPCR. Primers sequences were obtained using Primer-BLAST.

Gene Genebank accession n° Strand Sequence

Col3a1 NM_009930.2 Sense 5’TCCCTGGAATCTGTGAATC3’

Antisense 5’TGAGTCGAATTGGGGAGAAT3’

Gapdh NM_001289726.1 Sense 5’CCCCAGCAAGGACACTGAGCAAG3’

Antisense 5’TGGGGGTCTGGGATGGAAATGTGA3’

Gpx1 NM_008160.6 Sense 5’CTGTGAACTCTTGTCAATG3’

Antisense 5’AACTGTGTCAGGTATCTCC3’

Hmox1 NM_010442.2 Sense 5’GGGACTACACCGAGATGAACG3’

Antisense 5’TCCGCAGGAAGGTAAAGAGC3’

Hprt NM_013556.2 Sense 5’TCAGTCAACGGGGGACATAAA3’

Antisense 5’GGGGCTGTACTGTTAACCAG3’

Icam1 NM_010493.2 Sense 5’TTCTCATGCCGCACAGAACT3’

Antisense 5’TCCTGGCCTCGGACACACATTA3’

Ifng NM_008337.3 Sense 5’TCTGGGTTCTCCTCCTGCGGC3’

Antisense 5’GGCGCTGGACCTGTGGGTTG3’

Mcp1 NM_011333.3 Sense 5’GCACCAGCACCAGCAACTCT3’

Antisense 5’TGGATGCTCCAGCCGGCAACT3’

Mmp13 NM_008607.2 Sense 5’ACAGGCTCCGAGAAATGCAA3’

Antisense 5’CCACATCAGGCACTCCACAT3’

Nfe2l2 NM_010902.3 Sense 5’CGAGATATACGCAGGAGAGGTAAGA3’

Antisense 5’GCTCGACAATGTTCTCCAGCTT3’

Sele NM_011345.2 Sense 5’ATGCAGCGCACAAGGGCAGT3’

Antisense 5’CCCGTGGCACCACACGTCAG3’

Tnf NM_013693.3 Sense 5’GACAAGGCTGCCCCGACTA3’

Antisense 5’AGGGCTCTTGATGGCAGAGA3’

Vcam1 NM_011693.3 Sense 5’AAGCCGGTCACGGTCAAGT3’

Antisense 5’GGTCACCCTTGAACAGAGATCAATC3’

doi:10.1371/journal.pone.0128539.t001
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aortic sinus cryosections were incubated then with primary antibody (1:100), rinsed, and fur-
ther incubated with fluorescently labeled secondary antibodies (1:500) (Invitrogen). At least
five sections per animal were stained. For negative controls, sections were incubated with sec-
ondary antibody only. Nuclei were stained with DAPI.

Superoxide and MMP activity staining. The evaluation of reactive oxygen species (ROS)
production in the entire plaque area of the aortic sinus was performed by Dihydroethidium
staining (DHE, 2 μM; Molecular Probes), applied during 30 minutes at 37°C. For negative con-
trol, sections were incubated with PBS 1X only. To assess MMP activity, aortic sinus cryosec-
tions were incubated at 37°C for 24 hours with fluorogenic gelatine substrate (DQ gelatine,
Molecular Probes, Life Technologies) in a dark humid chamber. Slides were rinsed in PBS and
nuclei stained with DAPI. Negative control sections were incubated without DQ-gelatine. All
slides were independently examined on a blinded basis for the level of ROS or MMP staining,
using a 0- to 4- point intensity gradient.

Statistical Analysis
Experiments were made with 10 animals per group per experimental condition. To verify the
normality, we performed a Shapiro-Wilk test. All data followed a Gaussian distribution. One-
way ANOVA and Student's t-test was used to compare exposed and non-exposed animals re-
sults. All results are expressed as means ± SEM. Statistical software Sigma Plot 11.0 (SPSS) was
used for all statistical analysis. Results with p< 0.05 were considered statistically significant.

Results

Chronic exposure to 137Cs has no effect on animal general health
parameters or plasma lipid levels
We found that 137Cs activity increased proportionally to 137Cs intake in the skeletal muscle
of animals, where it accumulates preferentially (Fig 1). The activity expressed in Bq/g of
tissue in the skeletal muscle after 6 months exposure was 0.12 ± 0.09; 8.00 ± 0.11; 37.58 ± 0.20;
191.91 ± 0.50 for 0, 4, 20 and 100 kBq/l respectively, and after 9 months exposure was 0.08 ±
0.08; 10.02 ± 0.15; 46.49 ± 0.49; 278.41 ± 1.00 for 0, 4, 20 and 100 kBq/l respectively. The result-
ing absorbed radiation doses due to 137Cs ingestion were calculated as previously described
[46] and were 3, 15, and 75 mGy after 6 months and 6, 30, and 150 mGy after 9 months expo-
sure to 4, 20 and 100 kBq/l of 137Cs, respectively. Exposure to 137Cs did not alter body weight
in ApoE-/- mice at any time over the 9 months of treatment, compared with unexposed mice
(Fig 2). Likewise, plasma concentration of total cholesterol, HDL and LDL was equivalent in all
groups irrespective of 137Cs concentrations (Table 2).

Chronic exposure to 100 kBq/l 137Cs does not influence plaque size but
it alters plaque inflammatory profile
Atherosclerotic lesion size was measured in the aortic sinus of ApoE-/- mice. No differences in
plaque area were observed between 137Cs-exposed animals and non-exposed animals (Fig 3).
Nevertheless, we investigated lesion composition in all groups. Macrophages are one of the
major inflammatory cell types implicated in atherosclerosis progression and often the most
abundant cells within lesions. To quantify macrophages within plaques, we performed a CD68
immunostaining. Our results show a decrease in CD68+ staining in lesions of mice exposed to
20 and 100 kBq/l 137Cs during 6 months (Cs 20: 54.0% ± 10.0%; Cs 100: 45.5% ± 7.7%) com-
pared to non-exposed mice (Fig 4A and 4B). At the 9 month time point, these differences were
no longer apparent (Fig 4).
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Chemokine and adhesion molecule expression are key elements in the recruitment and
diapedesis of monocytes in the vascular wall. Once inside the atherosclerotic lesion, most of
these cells are transformed into macrophages. In keeping with the reduced macrophage content
observed in plaques of mice exposed to 137Cs, we found a parallel decrease in the mRNA ex-
pression of many pro-inflammatory cytokines and adhesion molecules, measured by RT-
qPCR, in their aortas (Fig 5). Specifically, aortic mRNA expression of CRP, TNFα, MCP-1,
IFNγ, VCAM-1, and E-Sel were significantly decreased in ApoE-/- mice exposed during 6
months to 100 kBq/l 137Cs (0.30 ± 0.07-fold, 0.23 ± 0.07-fold, 0.43 ± 0.13-fold, 0.21 ± 0.04-fold,
0.25 ± 0.09-fold, and 0.22 ± 0.10-fold, respectively, compared to un-exposed controls). TNFα,
ICAM-1, VCAM-1, and E-SEL mRNA expression were also significantly decreased after 9
months 137Cs exposure (0.36 ± 0.14-fold, 0.40 ± 0.06, 0.52 ± 0.07-fold, and 0.46 ± 0.19-fold re-
spectively). Although aortic MCP-1 mRNA was no longer lowered at 9 months, serum levels of
the chemokine were significantly decreased after 9 months 100 kBq/l 137Cs exposure in ApoE-/-

mice compared to non-exposed animals (0.13 ± 0.06-fold, P<0.01). Hence, 137Cs exposure di-
minishes chemokine and adhesion molecule expression in ApoE-/- mice, associated with re-
duced inflammatory cell content in atherosclerotic lesions.

Fig 1. 137Cs activity measurement correlates with 137Cs absorption in the gastrocnemusmuscle,
validating our experimental model. Activity is expressed as mean ± SEM of n = 8 per group per time.

doi:10.1371/journal.pone.0128539.g001

Fig 2. 137Cs exposure does not interfere with weight gain in ApoE-/- mice.Weight (in g) is expressed as
mean ± SEM of n = 8 animals per group per time.

doi:10.1371/journal.pone.0128539.g002
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Table 2. Evaluation of cholesterol, LDL and HDL plasma content following 6 or 9 month exposure to 137Cs.

Treatment

Cs 0 Cs 4 Cs 20 Cs 100

6 month exposure Cholesterol (mmol/l) 11.89 ± 1.12 9.97 ± 1.91 9.08 ± 2.05 11.55 ± 1.80

HDL (mmol/l) 3.38 ± 0.14 2.54 ± 0.39 2.92 ± 0.46 3.01 ± 0.38

LDL (mmol/l) 8.10 ± 0.71 6.81 ± 1.64 6.31 ± 1.53 7.36 ± 1.43

9 month exposure Cholesterol (mmol/l) 10.99 ± 1.62 9.30 ± 1.89 12.08 ± 0.67 13.88 ± 1.27

HDL (mmol/l) 2.80 ± 0.29 2.47 ± 0.40 2.97 ± 0.10 3.21 ± 0.12

LDL (mmol/l) 7.27 ± 1.15 6.36 ± 1.20 8.20 ± 0.36 9.32 ± 0.61

Chronic 137Cs exposure does not influence plasma lipid parameters. Results are expressed as mean ± SEM of n = 8 animals per group per time.

doi:10.1371/journal.pone.0128539.t002

Fig 3. Atheromatous lesion area is not modified by a 6 or 9 month chronic internal exposure to 137Cs.
A:Representative pictures of oil red O staining on aortic sinus cryosections after 6 months of exposure
(magnification x 50). B:Quantification of the average lesion area performed using Histolab software. Lesion
areas are expressed as mean ± SEM of n = 5 to 7 sections per animal.

doi:10.1371/journal.pone.0128539.g003
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Fig 4. A six months exposure to 20 and 100 kBq/l 137Cs reducesmacrophage content in atheromatous
plaques. A: Macrophages were detected by CD68 immunostaining (CD68+ cells: green; nuclei: blue).
Representative pictures obtained at magnification x100. B: Quantification of CD68+ cell content. Results are
expressed as mean ± SEM of CD68+ surface area per plaque surface area, proportional to Cs 0 control group
(%). *p<0.05, **p<0.01 vs non-exposed group. n = 5 sections per animal.

doi:10.1371/journal.pone.0128539.g004
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Fig 5. Aortic mRNA expression of inflammatory cytokines and adhesionmolecules following a 6 or 9 month exposure to 137Cs. Levels of CRP,
TNFα, MCP-1, IFNγ, ICAM-1, VCAM-1 and E-Sel were determined by RT-qPCR. GAPDH or HPRT were amplified and used as endogenous control. At 6
months, IFNγ and MCP-1 expression was significantly decreased in animals exposed to 100 kBq/l 137Cs compared to non-exposed animals; at 9 months,
TNFα and ICAM-1 expression was significantly reduced. Results are expressed as mean of fold change ± SEM of n = 5–8 per group per time. *p < 0.05 and
**p<0.01 versus Cs 0 control group.

doi:10.1371/journal.pone.0128539.g005
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Exposure to 100 kBq/l 137Cs increases plaque stability in ApoE-/- mice
The absence of effects of 137Cs on plaque size, despite diminished macrophage content, sug-
gested that other lesion components might be affected by the treatment. Immunohistochemis-
try for α smooth muscle actin (αSMA), detecting smooth muscle cells (Fig 6A and 6B), and
picrosirius red staining for collagen (Fig 6C) showed accentuated levels of both proteins in pla-
ques from ApoE-/- mice exposed to 137Cs. In fact, the 9 month exposure to 20 kBq/l doubled
αSMA levels to 220.7 ± 15.4%, compared with non-exposed controls (100% ± 24.1; p<0.05).
Similarly, quantification of picrosirius red revealed a significant increase in collagen within the
plaques of mice exposed to 100 kBq/l 137Cs during 6 (159 ± 20%) and 9 months (137 ± 13%)
compared with non–exposed animals (100 ± 14% and 100 ± 11%, respectively, at 6 and 9
months) (Fig 6C and 6D). Finally, type III collagen mRNA expression was also found to be en-
hanced 2-fold in the aorta of animals exposed to 20 and 100 kBq/l 137Cs during 9 months
(p<0.05) compared to non-exposed animals (Fig 6E).

In plaques, collagen is generally synthesized by smooth muscle cells and degraded by of
matrix metalloproteinases (MMP) [50]Hence, we measured MMP2, MMP3 and MMP8 levels
in aortic protein extracts by Milliplex assay, and determined aortic MMP13 mRNA expression
by RT-qPCR. No differences in MMP2 or MMP3 expression were observed between the differ-
ent groups (Fig 7A and 7B). However, we observed a significant decrease in both MMP8
(0.34 ± 0.04-fold) and MMP13 (0.33 ± 0.05-fold) in animals exposed to 100 kBq/l 137Cs during
6 months, compared with non-exposed animal (Fig 7C and 7D). Finally, we evaluated MMP2/
MMP9 activity by in-situ gelatinase activity, and found no differences between groups (Fig 7E).
In summary, 137Cs exposure enhances two parameters associated with increased plaque stabili-
ty, collagen content and smooth muscle cell content.

Exposure to 100 kBq/l 137Cs has little effect on redox balance in ApoE-/-
mice
Oxidative stress is a critical feature of atherosclerosis, contributing to endothelial dysfunction,
LDL oxidation, upregulation of inflammatory pathways, and MMP induction. We first evaluat-
ed plaque superoxide production by dihydroethidium (DHE) staining. No differences were
noted between the different groups of animals at that specific time points (Fig 8A). The aortic
mRNA expression of HO-1 and Nrf2, two factors implicated in the oxidative stress response,
was also equivalent in all mice (Fig 8B). However, mRNA expression of GPx, an anti-oxidative
enzyme, was reduced after 6 months exposure to 137Cs at 100 kBq/l compared with non-ex-
posed animals (0.48 ± 0.05-fold), but no significant difference was observed in GPx activity at
this time point (Fig 8C). On the contrary, after 9 months exposure, GPx activity was increased
in 100 kBq/l 137Cs-exposed animals compared with non-exposed animals (173 ± 32%), but
GPx mRNA expression did not differ from controls (Fig 8C).

Discussion
Our results show that chronic, low dose ingestion of 137Cs during 6 and 9 months had no con-
sequences on plaque size and plasma lipid parameters. However, we observed a decrease in sys-
temic pro-inflammatory cytokines expression, reduced plaque macrophage content, increased
smooth muscle cells and collagen content, and lower MMP expression in 137Cs-exposed mice
compared to non-exposed animals. Our data therefore indicate that exposure to 137Cs may ac-
tually promote a more stable plaque phenotype in mice.

Thus far, two studies tested the effects of chronic exposure to 137Cs, at doses comparable to
post-accident exposure, on the cardiovascular system [32, 42]. These two studies yielded
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contradictory results. One reported alterations in the cardiovascular system of children who
have lived in contaminated territories [42], whereas the other showed subtle changes in blood
pressure and in atrial expression of some genes, without any structural, pathological or clinical
disorders, in an animal model [32]. Internal exposure to 137Cs during several months was pre-
viously reported to have no significant effects in different physiological systems (digestive

Fig 6. Indices of atheromatous plaque stability are enhanced after 9 months exposure to 100 kBq/l 137Cs. A: αSMA immunostaining for smooth
muscle cells (αSMA+ cells: green; nuclei: blue, n = 5 sections per animal) and B: αSMA quantification within the plaques. No difference is observed after 6
months exposure, however, after 9 months exposure, a significant increase in αSMA+ area is noted for the group exposed to 20 kBq/l. C: Picrosirius red
staining for collagen was performed on aortic sinus cryosections. Representative images obtained at magnification x100. n = 5 sections per animal. D:
Quantification of collagen in the plaque. After 6 and 9 months of exposure to 100 kBq/l 137Cs, collagen content was increased in lesions. E: This result was
paralleled by an increase in col3 mRNA expression, assessed by RT-qPCR, in the whole aorta. Results are expressed as mean ± SEM of n = 5–8. *p<0.05
vs Cs 0 control group.

doi:10.1371/journal.pone.0128539.g006
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system, central nervous system and immune system) in mice [51–53]. However, most experi-
mental studies on irradiation and atherosclerosis exposed animals to external ionizing radia-
tion for a short time. The results ranged from an increase in inflammation and atherosclerosis
progression with high doses [14], to decreased atherosclerosis with very low doses adminis-
tered at a low dose rate [54]. Interestingly, in most situations where inflammatory condition
were modelled, the outcome of irradiation exposure was anti-inflammatory [33–35, 55, 56]. In
vitro, low dose irradiation increased endothelial expression of ICAM-1 when delivered in frac-
tionated episodes [57], and low dose irradiation activated immune cells, orienting macro-
phages towards a pro-inflammatory phenotype [58]. However, low dose irradiation also

Fig 7. Aortic expression of MMP-2, -3, -8 and -13 mRNA after 6 or 9 months exposure to 137Cs.MMP aorta expression was evaluated using milliplex kit
(for MMP2, -3 and -8) and by RT-qPCR for MMP13. A and B: No differences were observed for MMP2 and MMP3 expression levels at every 137Cs
concentration and time exposure. C and D: concerning MMP8 and MMP13, we noticed a significant decrease for ApoE-/- Cs100 after 6 months exposure.
However, after 9 months, levels of MMP8 and -13 for this group are similar to control level. Results are expressed as mean ± SEM of n = 5–8 animals per
group per time. **p<0.01 vs control. E: In-situ gelatinase activity, detected by enhanced fluorescence of fluorogenic gelatine substrate within the plaques
and no difference were observed in MMP activity whatever the group.

doi:10.1371/journal.pone.0128539.g007
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decreased inflammatory cytokine production, reduced migration, and increased chemotaxis in
macrophages, all of which could be linked to resolution of inflammation [59]. In summary, al-
though some in vitro studies tend to link irradiation with pro-inflammatory processes, most
animals studies describe a protective effect of low-dose radiation in the setting of inflammatory
disease.

Fig 8. Changes in oxidative stress and related enzyme expression after 6 or 9 months exposure to 137Cs. A: Representative images of superoxide
production within the atheromatous plaques evaluated by DHE staining after 9 months exposition (magnification x 200). n = 5 sections per animal. B:
Qualitative analyses did not revealed any differences in aortic mRNA expression of HO-1 or Nrf2 between exposed or non-exposed groups, measured by
RT-qPCR. C: However, aortic mRNA expression of GPx was reduced at 6 months in animals exposed to 100 kBq/l 137Cs. Moreover, GPx activity was
significantly increased at 9 months, compared with non-exposed animals. Results are expressed as mean ± SEM of n = 5–8 animals per group per time.
*p<0.05 vs Cs 0 control group.

doi:10.1371/journal.pone.0128539.g008

Chronic Exposure to 137Cs Enhances Atherosclerosis Plaques Stability

PLOS ONE | DOI:10.1371/journal.pone.0128539 June 5, 2015 14 / 21



To the best of our knowledge, this is the first work investigating the effects of a chronic in-
ternal low dose exposure to 137Cs on atherosclerosis development and progression. In compari-
son, our study demonstrated that chronic, low-dose 137Cs induced no significant modifications
in atherosclerotic plaque size. Our results are in line with those ofMitchel et al [54]. They re-
ported that a certain dose given at a low dose-rate (1 mGy/min) is protective against atheroscle-
rotic lesion development whereas the same dose given at a high dose-rate (150 mGy/min)
increases plaque size at late stages of the pathology. The importance of the dose-rate even after
chronic low-dose exposure was confirmed in a model of premature senescence in cultured en-
dothelial cells [60]. Interestingly, the dose-rate during internal contamination, the chosen
route of exposure in our study, is around 6 μGy/h, which is much lower than that used in previ-
ous works.

Our investigation of the effects of chronic 137Cs exposure revealed that indices of inflamma-
tion were actually reduced in exposed mice compared with non-exposed mice. Indeed, we ob-
served a decrease in CRP, TNFα, MCP-1, and IFNγ, associated with a decrease in macrophage
content within the plaques, after 6 months 137Cs exposure. Many of these effects persisted at 9
months. Our results are in accordance with some reports showing the anti-inflammatory effect
of low-dose irradiation [51, 61] and of low dose radiotherapy (<1Gy or fractionated) [62–64].
Moreover, a previous study highlighted that the anti-inflammatory effect of low dose radio-
therapy, which reduced adhesion of peripheral blood mononuclear cells to endothelium in
vitro in the absence of effects on adhesion molecule expression [65]. However, chronic inges-
tion of 20 kBq/l had no impact on leukocyte or lymphocyte numbers [38, 53]. In our model,
137Cs exposure diminished expression of ICAM-1, VCAM-1 and E selectin, further contribut-
ing to the potential protective effects of exposure. Hence, the reduced levels of macrophages
within the plaques of 137Cs-exposed mice was probably due to diminished pro-inflammatory
cytokines (CRP, TNFα, MCP-1, IFNγ), but could also be partially explained by a reduction in
adhesion molecules. After 9 months, TNFα, ICAM-1 and VCAM-1 expression was still attenu-
ated in exposed mice, but macrophage content no longer differed between Cs-exposed and un-
exposed mice. This may be ascribed in part to local proliferation on CD68+ cells, as recently
demonstrated [66].

In our study, reduced plaque macrophage content after 6 months to 137Cs suggested a po-
tential increase in stability. Interestingly, most clinical manifestations of atherosclerosis are re-
lated to plaque instability rather than lesion size. Vulnerable human atherosclerotic plaques are
characterized by increased accumulation of macrophages, a large lipid pool, a thin fibrous cap,
and decreased smooth muscle cell and collagen content; these plaques are more prone to rup-
ture than stable plaques [67–69]. Plaque rupture is an uncommon occurrence in murine mod-
els of atherosclerosis. However many morphologic features of atheroma that are prone to
plaque rupture in humans can be seen in murine lesions [70]. Accumulated macrophages not
only become foam cells that eventually become major constituents of the necrotic lipid core,
they also synthesize and secrete matrix metalloproteinases which destroy collagen and thereby
weaken the fibrous cap [10, 71]. Moreover, some reviews have emphasized the role of VSMCs
in maintaining the integrity of plaque, in part through collagen synthesis, and suggested that
VSMC proliferation may be beneficial to plaque stability [72]. Nevertheless, inflammation can
inhibit collagen I and III production [73] and stimulate MMP production [10] by VSMC. In
our study, we found that 6 months of 137Cs exposure was associated with reduced inflammato-
ry mediators, lower CD68+ staining, and diminished expression of MMP8 and MMP13. At 9
months, plaque macrophage numbers were equivalent in exposed and non-exposed mice, but
VSMC content was enhanced. In parallel, collagen content and collagen gene expression were
increased. Schiller et al [74] demonstrated macrophage rich and collagen poor lesions in the
aortic roots of irradiated LDLR-/- mice after acute high dose (10 Gy) total body irradiation.
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Another group [75] also observed a decrease in VSMC and an increase in macrophages, cou-
pled with higher levels of MMP8, in irradiated arteries. Thus, there truly appears to be a dose
effect related to beneficial or adverse impacts of radiation on markers of plaque stability. Differ-
ences in levels of inflammation may very well underlie the opposite outcomes of high and low
radiation exposure.

We hypothesized that changes in oxidative stress levels could account for the lower inflam-
matory profile of mice after 137Cs exposure. In a model of granulomatous disease, the anti-in-
flammatory effect of irradiation was correlated with an increase expression of oxidative stress
parameters like HO-1 [76]. Similarly, it was shown that low doses of X-rays modulate the oxi-
dative burst, which plays an anti-inflammatory role by reducing activated macrophages [77].
These observations could be attributed to hormesis, whereby a damaging agent causing a mild
stress response results in a beneficial effect. Whereas high doses of radioactivity increase oxida-
tive stress and inflammation significantly, low doses on the contrary modulate oxidative stress
and inflammation [66, 78, 79]. However, in our experimental model we did not observe any
striking difference in oxidative stress parameters after 137Cs exposure. The reduced expression
of the anti-oxidant enzyme glutathione peroxidase (GPx) at 6 months was counterbalanced by
increased GPx activity at 9 months. Moreover, plaque ROS status, measured by DHE staining,
was not altered by 137Cs exposure. Hence, although our results do not discount a potential role
for oxidative stress in the anti-atherogenic response to 137Cs at early time points, changes in ox-
idative stress are unlikely to explain the decreased in pro-inflammatory parameters and re-
duced macrophage content in plaques observed in mice exposed to 137Cs at 6 and 9 months.

The limitations of the current work include the use of young animals and reliance on the
mouse model, in which plaques are not rupture-prone. Nevertheless, our study demonstrates
that chronic low dose internal exposure to 137Cs, comparable to what is found in contaminated
territories, does not potentiate atherosclerosis progression. On the contrary, we observed that
such exposure enhances the stability of atherosclerotic plaques in ApoE-/- mice, by inhibiting
the expression of inflammatory cytokines and stimulating accumulation of collagen within the
plaques. Further studies will be required to assess how early modification in the plaques of
mice exposed to 137Cs may alter lesion composition at later time points, with special consider-
ation for smooth muscle cell content (since VSMCs are the main cell type responsible for colla-
gen synthesis in the plaque [8]) and inflammatory mediator expression (including TGFβ
which is both anti-inflammatory and a stimulant of collagen production).
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