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Abstract 
This investigation presents the numerical development of a fully porous tibial knee implant that is 
suggested to alleviate the clinical problems associated with current prostheses that are fully solid. A 
scheme combining multiscale mechanics and topology optimization is proposed to handle the 
homogenized analysis and property tailoring of the porous architecture with the aim of reducing the 
stiffness mismatch between the implant and surrounding bone. The outcome of applying this scheme is a 
graded lattice microarchitecture that can potentially offer the implant an improved degree of load bearing 
capacity while reducing concurrently bone resorption and interface micromotion. Asymptotic 
Homogenization theory is used to characterize the mechanics of its building block, a tetrahedron based 
unit cell, and the Soderberg fatigue criterion to represent the implant fatigue resistance under multiaxial 
physiological loadings. The numerical results suggest that the overall amount of bone resorption around 
the graded porous tibial stem is 26% lower than that around a conventional, commercially available, fully 
dense titanium implant of identical shape and size. In addition, an improved interface micromotion is 
observed along the tibial stem, with values at the tip of the stem as low as 17 μm during gait cycle and 22 
μm for deep bend compared to a fully dense implant. This decrease in micromotion compared to that of 
an identical solid implant made of titanium can reasonably be expected to alleviate post-operative end of 
stem pain suffered by some patients undergoing surgery at the present time.  

Keywords: Porous biomaterial, Tibial knee implant, Bone resorption, End-of-stem pain, Multiscale 
Mechanics, Topology optimization. 
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1. Introduction 
Knee replacement implants currently used in total knee arthroplasty (TKA) are generally made of a fully 
solid material, such as Titanium alloys and  Cobalt chrome (CoCr) [1]. Despite their improved 
characteristics when compared to late 1970s implants, existing knee stems feature homogeneous 
properties that fail to fulfill the complete set of mechanobiological requirements they are subjected to [1]. 
One of these is the-end-of-stem pain, which is experienced by 7% of the patients undergoing primary 
TKA [2]. In revision surgery, despite the adoption of modified long stems, end-of-stem pain has been 
reported to affect as many as 19% of the patients [2]. The incidence of end-of-stem pain has been 
documented for both fully cementless and fully cemented stems with stable fixation such that 9% of 
patients with fully cemented stems suffer from end-of-stem pain [3-5]. Similarly, for patients receiving a 
press-fit, cementless stem, an incidence rate of 14% has been reported in the literature [6]. As an 
alternative, hybrid fixation of a stemmed tibial component has been proposed and has now become the 
standard of care. With this technique, the tibial plateau and the proximal metaphysis are cemented, 
whereas the stem is cementless and press-fit into the tibial diaphysis [7]. Nevertheless, although this type 
of fixation offers a lower failure rate, pain at the stem tip has been reported by patients with a stemmed 
tibial component with hybrid fixation [3, 7, 8]. The etiology of this pain is most commonly attributed to 
the severe interface micromotion that develops between the stem tip and the surrounding native bone, a 
problem that results from the elastic modulus mismatch existing between them [6]. Recent efforts to 
reduce the risk of end-of stem pain have included modification of the implant macrogeometry and use of 
advanced materials, such as composites and functionally graded solids [9-11]. Using advanced materials, 
an enhanced performance has been reported in tibiofemoral articulation [12, 13] and bone-implant 
interface. In a recent study, Completo et al. [14] postulated that fine-tuning the material properties of the 
tibial stem tip to make it mechanically similar to that of the surrounding cortical bone could reduce the 
incidence of post-operative pain. They found that a polyethylene tip lowered the strain at the distal end of 
the tibial stem, which could contribute to a reduction in the occurrence of end-of-stem pain. Despite these 
modest improvements in trying to eliminate end-of-stem pain in the proximal tibia, there has been no 
modification of the tibial implant that has successfully dealt with the modulus mismatch and micromotion 
that occurs between the stem and the surrounding tibial bone [6].  

The second consequence of the elastic modulus mismatch between the tibial implant and the surrounding 
host bone is bone resorption secondary to stress shielding. The modulus mismatch between the tibial 
component and the host bone results in periprosthetic bone loss in both primary and revision TKA [15]. 
There are studies in the literature that have shown the potential of decreasing bone resorption by means of 
reducing the implant stiffness [6, 16-18]. A reduction in implant stiffness to the order of magnitude of the 
surrounding bone tissue has been achieved in implants that use either composite materials or porous 
solids with uniform porosity [10, 19, 20]. These attempts, however, have shown only partial success. 
Only recently the tailoring of porosity gradients in porous hip stems has been demonstrated effective in 
reducing bone resorption secondary to stress-shielding [21-24]. Stress shielding around a TKA can 
predispose to a subsequent periprosthetic fracture and decreases the amount and quality of bone at the 
time of revision surgery. The contribution of material properties to stress shielding in the proximal tibia 
was investigated in a computational study, where a homogenous distribution of elastic properties was 
designed to be tuned to the order of magnitude of the surrounding cancellous bone [25]. However, since 
the elastic properties were assumed constant within the implant, the amount of stress shielding could not 
be reduced to minimum and a global reduction of bone resorption could not be achieved at the distal stem 
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[20]. Tawkol [26] found that customizing the elastic modulus within the tibial tray could contribute to a 
46% reduction in the stresses transferred to the implant, thus resulting in a lower bone resorption. This 
reduction can be achieved by varying the elastic modulus from 40 GPa at the top of the tray to 110 GPa 
downward. Other strategies that deal with the resolution of the modulus mismatch between standard 
titanium implants and the surrounding tibia involve the use of highly porous materials, such as tantalum 
foam [27]. Although its biocompatibility and high volumetric porosity can provide an exceptional degree 
of compliance, tantalum foam has a quasi-uniform distribution of pores which has limited capacity in 
minimizing bone resorption and interface micromotion simultaneously. Recently, porous implants 
featuring uniform porosity have been introduced with the aim of improving the performance of solid 
implants [19, 20, 28]. Despite encouraging results, these implants fall short in addressing post-operative 
complications, namely the concurrent reduction of bone resorption and interface micromotion. Elastic 
property tailoring in hip stems was recognized already in the 1990s as a promising mean to reduce bone 
resorption [29, 30]. Whereas those studies focus on the use of functionally graded solids, more recently 
porous materials with tailored cellular architecture have been proved successful in reducing bone 
resorption secondary to stress shielding, promoting bone ingrowth and providing implant stability [21-24, 
31]. This strategy has been recently adopted to design a hip replacement implant that can facilitate 
osseointegration and concurrently minimize bone resorption and bone-implant interface failure [21-24]. 
While this work focused on the suppression of bone resorption in a hip implant, a similar strategy can be 
extended to deal with stress shielding and micromotion that occur in present day stemmed tibial implants 
used in TKA.  

In this numeric investigation, we introduce a fully porous cementless stemmed tibial implant for primary 
and revision knee replacement that has a 3D cellular architecture tailored to concomitantly minimize 
interface micromotion and bone resorption, while satisfying clinical strength and fatigue requirements. 
Section 2 of this study presents a systematic methodology integrating multiscale mechanics and topology 
optimization to tailor the material properties of the knee implant. Section 3 describes the finite element 
model of the tibia and the prosthesis implanted into the tibia, while Section 4 details the calculation of the 
mechanical properties of the implant building block. In Section 5, we present the governing equations of a 
gradient-based topology optimization scheme that is used to optimally design the 3D architecture of the 
porous knee-implant. Finally, the performance of the proposed tibial knee implant, in particular its 
interface micromotion and bone resorption, is numerically assessed and compared to that of two baseline 
concepts, a fully solid one that is commercially available, and a fully porous tibial implant identical to the 
fully solid one, but with uniform distribution of pores. 

2. Methodology  
In this work, we present a fully porous architected biomaterial for a tibial knee implant, specifically a 
stemmed tibial component, with tailored properties and macro geometry identical to that of a 
commercially available tibial component, as explained in detail in the following section. Figure 1 briefly 
depicts the numeric strategy proposed here. The mechanical properties of the building block are expressed 
as a function of its relative density, and their optimal gradients are determined via topology optimization 
starting from the tissue properties of the tibial native bone of a patient.  

The major aspects of the proposed methodology rest on the integration of multiscale solid mechanics and 
hierarchical optimal design of materials [32, 33], as briefly summarized in the steps below: 
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• CT scan data from a 38 year old male are used to create the numerical model of his tibial 
geometry and bone tissue properties.  

• An open cell, a Tetrahedron-based topology, is selected to modularly build the interior 
architecture of the porous tibial stem. The high strength characteristics of this unit cell ensure a 
minimum level of fatigue and static resistance, as deemed necessary to resist the set of repetitive 
loads the knee is subjected to [31]. Asymptotic homogenization is used to calculate the elastic 
constants of the unit cell, with characteristic length much smaller than the implant, as a function 
of its relative density [34-38]. 

• A first trial uniform distribution of relative density is assigned to the implant and 3D finite 
element analysis is undertaken. From this analysis, the stress and displacement regime over the 
geometry of the prosthesis is obtained and used to formulate a multi constraint topology 
optimization problem. On the microscale, the stress distribution over the lattice architecture is 
retrieved and used to determine the implant safety factor (SF) under static and fatigue conditions. 

• To minimize bone resorption and interface micromotion around the tibial stem, topology 
optimization is solved for maximum implant compliance. The problem is also subjected to a set 
of inequality and equality constraints, which include average porosity of the cellular implant, 
along with safety factors for first cycle and infinite fatigue life. Implant compliance is obtained 
from the calculation of the total strain energy of the implant. Implant displacements at each mesh 
element node along with unit cell homogenized properties are then used to build the macro 
stiffness tensor of each element. The gradient of the objective function is then obtained through 
partially taking the derivatives of the stiffness tensor components with respect to the relative 
density. 

• The design variables are grouped in the vector, b, which collects the relative density of all 
elements and is updated via the standard optimality criterion. The optimization process continues 
until the attainment of the optimised distribution of relative density. 
 
 

2.1. Finite element model 
The three-dimensional (3D) finite element (FE) model of the tibial fixation is constructed through CT 
images from the left tibiae of a 38 year old male with a body weight of 900 N, as shown in Figure 2. The 
properties of bone are assumed to be isotropic, a simplification that does not lead to a considerable 
difference from the results that consider bone as orthotropic [39, 40]. The effective Young’s modulus of 
each element is obtained through the apparent density of the corresponding element. The Hounsfield 
values (HU) obtained through the CT images are used to determine the apparent density of bone by using 
a linear interpolation between HU and apparent density. As a result, the effective elastic properties of 
bone are expressed as a function of the apparent density [39, 41, 42]. The procedure followed to compute 
the mechanical properties of the tibia is detailed in Appendix A.  

The macrogeometry of the stemmed tibial knee implant was taken from a NexGen component (Zimmer, 
Warsaw, IN) commercially available and made of solid titanium. The tibial dimensions were measured 
and the tibia was templated using NexGen templates to determine the appropriate size of the tibial 
component and the tibial stem. The component was sized to ensure the central portion of the tibial tray 
was externally rotated to lie over the medial 1/3 of the tibial tubercle while choosing the largest size 
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possible that would cover the proximal tibia, 10 mm below the articular surface, but did not overhang. 
The tibial stem was chosen to fill the proximal tibial diaphysis. An offset tibial stem was required to 
permit anatomic positioning of the tibial tray and ensure centralization of the stem. This resulted in using 
a size 5 NexGen stemmed tibial implant with a 4 mm offset 100 mm stem extension, creating in a 145 
mm offset stem. These implants were CT scanned to create the parameters used in this study. The 
identical design was then used to convert the solid stemmed tibial implant into the optimized 3D porous 
implant here proposed. 

Figure 3 shows the geometry of the intact and implanted bone along with the applied loads and boundary 
conditions. The distal end of the bone is fixed to avoid rigid body motion. As clinically recommended, the 
exterior of the implant stem is made of a thin shell that eases the implant removal during revision surgery. 
This ensures that in a postoperative situation no bone ingrowth occurs onto the stem, which is press fitted 
into the cortical bone. On the other hand, the implant tray is kept fully porous, and for this reason bone 
ingrowth can occur beneath it. To accurately capture interface stability, two distinct contact models are 
implemented in this work, one for the tray and one for the stem below. The tibial tray is assumed fully 
bonded to the underlying bone of the tibial plateau; this scenario represents the incidence of bone 
ingrowth onto the tray. One benefit of this choice is the reduction in the computational cost required for 
the stability analysis on a non-linear frictional contact model [43]. On the other hand, a frictionless 
contact is assumed for the tibial stem below the tray, where a thin solid shell covers the implant. This 
contact model represents the weak bonding between the smooth metal and the surrounding bone tissue 
[43, 44]. At the bone implant interface, face to face contact elements with appropriate mesh type are used 
with results that show interfacial micromotion at an average error of about 10μm [43].  The entire stem 
surface is selected as the target member and the inner bone surface is selected to be the contact member. 
The Augmented Lagrangian method, where contact penetration is present but controlled to some degree, 
is used in the contact formulation and contact tractions are monitored at the Gauss points. A contact 
stiffness of 1 is considered at the contact regions. The time step control is set to be automatic, where the 
contact behaviour is reviewed at the end of each substep to ensure that neither drastic change in contact 
status nor excessive penetration occurs. 

Four different load cases corresponding to the 20% , 30% , 40%  of the gait cycle and deep-knee bend 
are all studied. The system of loads reported in Table 1 and adopted in this work represents the daily 
physiological loads experienced by a human. Obtained from in-vivo measurements on an instrumented 
knee joint, those values pertain to a subject with a male body weight of 1000N and provide contact load 
measures with an error below 2% [45-47]. The values in Table 1 are used with equal weights to calculate 
an equivalent load pattern that represents concurrently walking and deep knee bend, and is here used for 
the implant design.  

 

2.2. Homogenized mechanical properties 
Mechanics and optimization of implant microarchitecture are here undertaken by treating the implant as a 
homogenized  continuum, an assumption that allows to avoid detailed finite element simulations, which 
would be extensive and lengthy to handle [48]. By doing so, we can focus on a representative volume 
element (RVE) of the implant, and consider its properties as those of a homogenized medium equivalent 
to the implant itself. Below is a description of the method used in this paper to calculate the stiffness 
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tensor and implant fatigue resistance, which both depend on multiscale properties, specified at the macro 
and micro scale. 

2.2.1. Elastic properties of unit cell 
To obtain homogenized properties of the implant, we use asymptotic homogenization (AH) theory, which 
enables to calculate the stress and strain distribution developed within the cellular architecture, namely 
microstrain and microstress, from which the implant stiffness tensor can be obtained. The yield and 
ultimate strength of the lattice material are also assessed for relative density 0.3ρ ≤  and used to capture 
the fatigue strength of the designed implant via the Soderberg fatigue criterion under multi axial stresses 
[49].  

The effective properties of the building block H
ijklE  are obtained by solving a local problem formulated on 

the RVE and defined as [50]: 

1
| |

C

H
ijkl ijpm pmkl

Y

E E M dY
Y

= ∫  (1) 

where| |Y  is the unit cell volume, ijpmE is the positional elastic tensor of the unit cell that varies between 

zero and the material elastic tensor corresponding to the voids and bulk material respectively. 
Furthermore, we define a structure tensor pmklM  that relates the local macro strains klε  to the micro 

strains as   

*1 ( )
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(2a) 
 

(2b) 

Where ijδ is the Kroneckerς , and *kl
ijε is the microscopic strain corresponding to the component kl of the 

macroscopic strain. Given that for this application small deformation and linear elasticity hold, the 
microscopic strain *kl

ijε  can be expressed as 

1 * 1( ) ( ) ( )
C C

kl
ijpm ij pm ijkl ij kl

Y Y

E v u dY E v dYε ε ε ε=∫ ∫  (3) 

where 1 ( )ij vε denotes the virtual strain.  

In three dimensions, six arbitrary macroscopic unit strains are required to construct the ijklM  matrix. The 

periodicity of the strain field is ensured by imposing periodic boundary conditions on the RVE edges [50, 
51].  As a result, the nodes of the opposite planes are set with identical displacement. Once the structure 
tensor, ijklM , is obtained, the homogenized stiffness tensor of the unit cell can be predicted by substituting 

the structure tensor pmklM  into (2). The microscopic stress distribution, ijσ , can be defined by  

ij ijkl klmn mnE Mσ ε=  (4) 
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Using the microscopic stress tensor and introducing the homogenized elastic tensor, H
rsmnE , results in a 

simplified relationship between the microscopic stress distribution and the macroscopic stress tensor  

1( )H
ij ijkl klmn rsmn rsE M Ess −=  (5) 

wherein rss is the macroscopic stress distribution applied to the RVE.  If yss  is the yield strength of the 

cell walls, then the yield surface of the unit cell can be written from (5) as  

max{ ( )}
ysy

ij ij
VM ij

s
ss

ss
=  (6) 

where ( )VM ijσ σ  is the von-Mises stress distribution within the unit cell caused by the applied 

macroscopic stress ijσ .  

Figure 4 illustrates the predicted elastic moduli and yield strength of the unit cell used in this work for the 
tibial knee-implant, obtained for the generic case of multi axial loadings. A relative density ranging 
0.05 1ρ< <  can be considered for the unit cell; however, since the cell topology degenerates for 0.8ρ > , 
we consider values of ρ  between 0.05 and 0.8 only.  

2.2.2. Fatigue properties  
Implant stiffness tailoring is undertaken against high cycle fatigue failure such that stress values generated 
within the material architecture do not exceed the yield strength of Ti6A14V, the material the implant is 
made of. Hence, to obtain the fatigue surface e

ijσ  of the RVE, we multiply the RVE yield strength y
ijσ  by 

the ratio of the endurance limit ess and yield strength yss  of the solid material. This gives  

e y es
ij ij

ys

s
ss

s
=  (7) 

Once the fatigue surface is obtained, the Soderberg diagram, a conservative criterion, can be constructed 
to compute the fatigue safety factor, FatigueSF , from the relation: 

1m a
ij ij
y e

Fatigueij ij SF
σ σ
σ σ

+ =  (8) 

 wherein, m
ijσ and a

ijσ  denote the mean and alternating stresses respectively,  given by: 
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 With max
ijσ and  min

ijσ being the multiaxial macroscopic stresses that cause, respectively, the highest and 

the lowest von-Mises stress within the unit cell. From eq. (7) and (8), the static safety factor of the RVE is 
expressed as: 

y
ij

static
ij

SF
s
s

=  (10) 

The procedure above is used for the analysis of the tibia knee implant which is modelled with 
homogenized properties representing the tetrahedron-based cell made of Ti6Al4V [52]. The properties of 
Ti6Al4V here adopted (Young’s modulus: 120GPa, Poisson’s ratio: 0.3, yield strength: 900MPa, fatigue 
strength: 600MPa at 107cycles) are measured from mechanical testing of 3d-printed samples 
manufactured via Selective Laser Melting [53]. SLM is the additive process that will be used for implant 
fabrication. In this work, we rely on the assumption that defects and imperfections emerging from the 
manufacturing process would not severely impact the mechanical properties [24, 31]. Further work, 
currently undergoing, is required to include the influence of manufacturing deviations in the implant 
analysis.  

3. Optimization scheme  
A density-based topology optimization is here adopted to optimally tailor the material distribution in the 
stem of the tibial component [54]. The search for optimized density gradients is undertaken on an 
equivalent medium with homogenized properties obtained in section 2.2.1 and expressed as a function of 
relative density (Figure 4). A penalization scheme that penalizes elements with intermediate density 
values is used to create an implant with continuous density distribution [55].  

3.1.  Problem formulation  
Elastic stiffness tailoring aims at reducing the elastic modulus mismatch between implant microstructure 
and native bone, resulting in lower bone resorption. As such, to minimize bone-stem interface 
micromotion and bone resorption, the optimization problem is posed for minimum stiffness, which is 
equivalent to maximize implant compliance [56], here expressed as 

( ) ( )Tc x F U x=   (11) 

where F is the vector of the nodal forces applied to the implant and ( )U x is the vector of nodal 
displacement. F can be expressed as  

( ) ( )F K x U x=    (12) 
where ( )K x is the total stiffness matrix of  the implant  [57]. The problem is subjected to multiple 
constraints, e.g. on volume, density, and safety factor, and can be formally formulated as:  

1 2

min max

min

[ , ,..., ,..., ]

( ) ( )
( ) 0

{ : }

e n
T

T

n

Find x x x x x
Maximize c x F U x
subject to v x x v v

x x x x x
SF SF

c c

=

=

= − ≤

∈ = ∈ ≤ ≤

<

 

  



 (13) 
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where x is the density vector which is filtered through a basic filter function described in Appendix B, 
n is the total number of the elements that discretizes the implant domain, 1[ ,..., ]nV v v= is the vector of 

the elements volume and v is a prescribed volume of the tibial knee implant. 

The optimization problem defined in (13) can be reformulated as a traditional problem of minimization by 
multiplying the objective function by -1, which results in  

1 2

min max

min

[ , ,..., ,..., ]

( ) ( )
( ) 0

{ : }

e n
T

T

n

Find x x x x x
Minimize c x F U x
subject to v x x v v

x x x x x
SF SF

c c

=

= −

= − ≤

∈ = ∈ ≤ ≤

<

 

  



 (14) 

 The derivative of the objective function can be determined as: 

( ) ( )
e

i
i N

e i e

xc x c x
x x x∈

∂∂ ∂
=
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

 



 (15) 

where ix represent the filtered density of element i and  i

e

x
x

∂
∂


is defined by 

i

i ie e

e ij jj N

x H v
x H v

∈

∂
=

∂ ∑


 (16) 

where Hij is a weight factor matrix as described in Appendix B. From (11),
( )

i

c x
x

∂
∂




 can be defined by  

( ) ( ) ( )( ) ( )T T

i i i

c x U x U xF U x K x
x x x
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= − = −

∂ ∂ ∂
  

 

  

 (17) 

where TF and ( )TU x  indicate the transpose matrix of F and ( )U x respectively. Taking the derivative 

of (12) with respect to ix yields 

( ) ( )( ) ( ) 0
i i

K x U xU x K x
x x

∂ ∂
+ =

∂ ∂
 

 

 

 (18) 

As a result, 
( )

i

U x
x

∂
∂




can be expressed as follows: 

1( ) ( )( ) ( )
i i

U x K xK x U x
x x
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= −

∂ ∂
 

 

 

 (19) 

From (17) and (19), we can obtain the derivative of the objective function as 
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( ) ( )( ) ( )T

i i

c x K xU x U x
x x

∂ ∂
=

∂ ∂
 

 

 

 (20) 

The procedure followed to calculate the derivative of the stiffness matrix of the implant microstructure 
with respect to the design variables is given in Appendix C. Once the sensitivity of the objective function 
is obtained, the design variables are updated using the standard optimality criterion (OC) scheme [58] 
until convergence is reached, as described in Appendix D.  

4. Results and Discussion 
The methodology described in section 2 is here applied for the design of a fully porous knee implant. Two 
sets of numeric results are herein presented. The first describes the micro-architecture of the proposed 
tibial implant, and the second its performance, namely bone resorption and bone-stem interface 
micromotion, which are then compared to those of the fully solid titanium tibial implant and a fully 
porous one with uniform relative density.  

4.1.  Implant architecture 
Figure 5 shows the von Mises distribution and optimal density distribution of the microstructure of the 
proposed tibial implant which features low porosity at the distal region where severe stresses are located. 
As can be observed, stress concentration appears beneath the tray due to the variation in implant 
macrogeometry. In addition, the applied moment in the frontal plane, which represents the Varus-Valgus 
movement of knee joint, leads to high stress values at the distal region. The tibial implant is fully porous 
with very low porosity in the tibial tray. In particular, unit cells with high value of relative density ranging 
0.7-0.8 are located at regions with high stress in the tibial tray, which ensures a minimum level of fatigue 
resistance. Hence, underneath the tray as well as in the lower part of the stem, cells with high relative 
density are necessary to meet the level of fatigue resistance the implant should provide.  

From the relative density distribution, the lattice microarchitecture is created through in-house mapping 
scripts. Figure 5 shows that while the implant internal architecture is fully porous, a very thin shell is 
placed on the exterior of the stem only. This feature is designed to avoid bone ingrowth onto the stem and 
thus facilitate the process of implant replacement at the time of revision surgery. While the fully solid 
tibial implant shows fatigue strength 2 times higher than the cellular tibial implant, the latter has a safety 
factor of 3, which is well within the margin of safety for a biomedical device [59]. If a further increase in 
the implant fatigue strength is desired, either a lattice with smooth cell geometry could be implemented 
[49], or other part of the implant could  be designed as fully dense.    

4.2. Implant micromotion 
The primary stability of the implant is crucial to the success of the total knee arthroplasty (TKA) [60]. An 
extensive body of the literature has demonstrated that the elastic modulus mismatch from the bone tissue 
to the implant is one main cause of the lack of stability at the bone-implant interface [6, 14]. Although 
other factors such as the implant macrogeometry, the fixation technique used at the bone-implant 
interface, and the design platform of the implant play an important role in the development of interface 
micromotion [14, 60, 61], in this work we address the elastic modulus mismatch. To do so, we perform a 
relative comparison between implants that share identical macrogeometry and prescribed clinical 
conditions, such as the fixation type at the bone implant interface. The differences in interfacial 
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micromotion that we observe are therefore relative, and can be exclusively attributed to the distribution of 
elastic modulus that each tibial implant here examined features. 

Figure 6 and 7 illustrate the distribution of bone-stem interface micromotion at 30% of gait cycle and 
deep bend, respectively. The amount of micromotion is computed from the relative nodal sliding distance 
of mesh elements from bone and stem. Stable fixation at the bone-stem interface with micromotion 
between 20 – 50 μm provides a desirable range, since this degree of micromotion is known to be well 
tolerated by the periprosthetic bone, and in cases of porous implants, is associated with bone ingrowth 
(Chong et al 2010). This range of micromotion can also contribute to a notable reduction of the end-of-
stem pain that arises from excessive interface micromotion. The percentage of surface area (SA) with 
micromotion below 50 mm  is then assessed for the designed graded lattice implant and the two baselines, a 
fully dense tibial implant and a uniform porosity tibial implant, all made of Ti6Al4V. 

Both the loading conditions of gait cycle and deep knee bend led to severe micromotion around the distal 
part of the stem, particularly around the tip of the stem. High values of micromotion can cause the patient 
to feel pain at this region. At 30% of gait cycle, the graded lattice tibial implant stem resulted in a 
maximum micromotion at the stem tip that is reduced by 17μm and 10μm when compared respectively to 
a fully solid and a uniform lattice tibial implant stem. Although the maximum micromotion is reduced by 
only 15% when compared to a fully solid implant, from a clinical point of view this result suggests a 
lower potential for postoperative end-of-stem pain in patients. As can be seen, the surface area with 
micromotion below 50μm for the graded tibial implant (grey regions of the implant in Figure 6c) is larger 
than that of the two other implants (Figure 6a and 6b). This value of micromotion ensures an improved 
stability between the tray periphery and the distal part of the stem. During deep knee bend, a reduction in 
micromotion of the tip of the stem of 22 μm and 14 μm with respect to a fully dense titanium tibial 
implant and uniform porosity tibial implant were achieved. This amount represents a 14% reduction in the 
maximum micromotion at the stem tip for the graded lattice implant compared to the traditional solid 
implant. This provides the graded tibial implant with 76% prosthesis area with micromotion below 50 
μm, values that are clinically stable.    

Among the nodal displacement vectors, we now examine the displacement distribution at the mid (i) and 
distal areas (ii) of the implant, and plot the results in Figure 8. Here, is the micromotion distribution 
visualized for the loading conditions of walking and deep bend. 50 points around the stem surface have 
been specified with the first one located at the anterior of the cross section and the remaining ones 
following a counter clockwise direction. The figure shows the relative sliding micromotion values with 
respect to the fully solid implant for deep bend and 30% of gait cycle. As can be seen, maximum 
micromotion occurs anteriorly for both loading conditions. The interface micromotion for the graded 
lattice implant is lower relative to both baseline implants at almost all the points. Although the relative 
reduction is small, this result offers a lower probability of local interface failure and end-of stem pain.  

4.3. Bone resorption 
To further investigate the improved performance of the implant here introduced, we compute its amount 
of bone loss and compare to that of a fully dense and a uniform porosity tibial implants ( ρ = 60%). 
Figure 9 shows the results with bone resorption levels plotted around the tibial stems in the three cases. 
The results are obtained by computing the amount of underloaded bone [21-24]. In particular, bone is 
assumed to start loosing its mass when the local strain energy ( iU ) per unit of bone mass ( ρ ) averaged 
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over ( n ) loading cases 
1

( ((1 / ) / ))
n

i
i

S n U ρ
=

= ∑  in the postoperative situation is beneath the respective 

local strain energy of the implant preoperatively ( (1 ) )refS s S< − . refS indicates the local strain energy 

of the intact bone and s indicates a specialized threshold level or dead-zone for the bone to start 
degrading after implantation.  As a result, the amount of resorbed bone mass can be expressed as 

1( ) ( ( ))r
V

m b g S b dV
M

r= ∫  (21) 

where M and V are the mass and volume of the original bone and ( ( ))g S b  is a resorptive function 

equal to unity if (1 ) refS s S< − and otherwise is equal to zero. The value considered in this study for the 

dead-zone is 0.75 [29].  

We observed that the computed amount of resorbed bone was consistent with the bone-stem stability. The 
less the bone-stem interface micromotion, the lower bone resorption. As can be seen, significant bone 
resorption appears proximally underneath the tray throughout the medial compartment of the tibia and 
propagates toward the lateral part. The concentration of bone resorption in the medial compartment can be 
attributed to the Varus-Valgus movement of the knee joint which causes a larger portion of the vertical 
load to be distributed over the medial part of the tibiae.     

In Figure 10, we compare the amount of bone resorption at four different regions of the implanted tibia. 
As previously described, bone resorption is maximum at the proximal region, whereas at the distal 
regions an overstressed bone results in bone formation [62]. For the solid titanium stem, an overall bone 
resorption of 40% can be predicted with the greatest degree of resorption occurring in zone 3. Due to the 
higher compliance of the uniform lattice tibial implant, we observe an overall decrease of resorbed bone 
of 16%, i.e. two times lower than the solid tibial implant. The least amount of bone resorption was seen 
around the graded cellular implant, with an overall decrease of 26%, 3 times less than that seen around the 
solid tibial implant. In summary with respect to the fully solid baseline tibial knee implant, Figure 10 
shows a reduction of bone resorption around the graded lattice tibial implant of 50 % at zone 4, 76% at 
zone 3 54% at zone 2, and 18% at zone 1.  

Recent technologies for additive manufacturing (AM), such as electron beam melting (EBM) and 
selective laser melting (SLM), bring versatile layer-by-layer processes that enable the fabrication of 
porous materials with tailored cellular architecture [63]. For example, SLM, a powder bed fusion 
technology, has been used to generate parts with improved mechanical, tribological and corrosion 
properties [64]. Recent works have demonstrated that AM can successfully build metallic lattice 
structures including porous implants with complex internal microarchitecture [63, 65-69]. In addition, 
AM facilitates the fabrication of cellular implants with tailored gradients of porosity and pore morphology 
that enables bone ingrowth [70, 71]. A fully porous hip implant featuring a lattice microstructure similar 
to the one presented in this paper has been recently manufactured through SLM and successfully tested in 
vitro [24]. Its graded microarchitecture features a minimum strut thickness of 200μm and a maximum 
pore size of 800μm, characteristics that are built through AM and are shared by the knee implant 
presented in this study [31, 63]. These previous works therefore demonstrate the feasibility of additively 
manufacturing the knee implant architecture herein reported.  
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Exploratory in nature, this numeric study holds some limitations that need to be addressed in the future. 
The first one is that a simplified loading system representing a high body weight has been used to perform 
the numerical analysis. Although this system of loadings describes the worst-case scenario that can occur 
during normal daily activities, the real load scenarios that a knee joint undergoes are more complex. In 
particular, this work did not consider the Varus-Valgus movements that often result in a higher amount of 
load on the medial compartment than the lateral one. In addition, the magnitude of contact forces varies 
between ordinary activities and the phase of activity, thus resulting in a complex relationship between the 
flexion angle, the maximum joint load and the balance of medial to lateral load distribution for different 
activities. Another aspect that requires further investigation is the sensitivity of the results, e.g. the 
amount of interface micromotion, to variations in bulk material properties, bone properties, loading 
conditions and the contact model used at the bone-implant interface. 
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5. Conclusion 
This study describes the computational design and numerical assessment of a stemmed tibial component 
with a fully porous stem with tuned tetrahedron lattice architecture. Although the results show an 
opportunity to improve the clinical performance of the current tibial implants, further experimental and 
numerical studies are required to validate the clinical applicability of the proposed design. The implant 
porosity has been optimally tailored to mitigate postoperative bone resorption and end-of-stem pain while 
satisfying the strength requirement necessary to sustain cyclic loadings. The mechanical properties of the 
implant are optimally tuned to bring about a concomitant reduction of bone resorption and interface 
micromotion. The numerical results suggest that the proposed concept could lead to a reduction of 17μm 
and 21μm in micromotion at the tip of the stem during gait cycle and deep knee bend, respectively. 
Clinically, this would be expected to alleviate the problem of end-of-stem pain that is not uncommon after 
total knee arthroplasty. In addition, the numerical results suggest a reduction in bone resorption of 26 % 
with respect to an identical tibial knee implant made of solid materials. This level of performance would 
translate in decreased periprosthetic fractures and enhanced bone stock at the time of revision surgery. 
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Appendix A: Assigning bone material properties using computed tomography (CT) data 
The heterogeneous material properties of the tibia are captured through computed tomography (CT) data 
obtained from a 38 year old male , provided by the Visible Human project (United States National Library 
of Medicine, Bethesda, MD). The radiographic density of the CT images quantified as Hounsfield Unit 
(HU) is used to calculate the local properties of the tibia. Since the relationship between the HU and bone 
density is monotonic, a linear relationship between the bone apparent density and the HU is adopted as 
shown in Figure [40]. The bone apparent density represents the density of solid bone excluding the 
density of the fluid mass, namely the density of blood. On the other hand, the bone effective density 
accounts for the fluid mass. At regions where there is no bone, the effective density would be about 1024 
kg/m3, which represents the density of blood. However at these regions, the apparent density and the HU 
value are zero.  

To obtain the mechanical properties of the tibia, the apparent density for each element of the finite 
element model is determined from the HU value measured from the CT data ranging from 0 HU to 1567 
HU. This ensures that the density of the fluid has no contribution to the mechanical properties of the tibia. 
The maximum value of HU corresponds to the densest region of the cortical bone with an apparent 
density of 2000 kg/m3. The Young modulus of the tibia is then obtained using the relation  

1.64

3.09

1904 0.95
, 0.3

2065 0.95
E

v
E

ρ ρ

ρ ρ

 = < =
= <

 (A.1) 

where E is the elastic modulus of bone, and v is its Poisson’s ratio. The properties are assumed to be 
isotropic, a simplification that does not lead to a considerable difference from the results that consider 
bone as orthotropic [39, 40]. This assumption contributes also to reduce the computational cost.
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Appendix B: Filter density function 
Early formulations of topology optimization problems generally yield instabilities in the optimal solutions 
that in turn affect result accuracy. A continuous density distribution is an asset for the implant strength 
while a discontinuous density distribution in the implant microstructure leads to stress concentration and 
compromise the implant strength thus increasing the probability of local failure.  To avoid binary results 
(black and white patterns) for the density distribution, we use the following filter density function [72], to 
obtain the mechanical properties of each finite element mesh: 

i

i

ij j jj N
i

ij jj N

H v x
x

H v
∈

∈

=
∑
∑

  (B.1) 

 
wherein, iN corresponds to neighborhood elements  of element i ,with volume of iv .  

ijH is a weight factor matrix determined as follows: 

( , )ijH R dist i j= −  (B.2) 
 
where R is the size of the neighbourhood that is referred to the filter size and ( , )dist i j is the distance 
between the element i and the center of the element j . The neighborhood of an element is defined as 

{ : ( , ) }iN j dist i j R= ≤  (B.3) 
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Appendix C: Derivation of the stiffness tensor for the implant internal microstructure  
To compute the sensitivity of the strain energy of the implant microstructure, as described in section 3.1, 
the derivative of the stiffness tensor is required for the entire implant. We use here a direct stiffness 
approach to find the global stiffness tensor, where the implant is discretized into small elements, and the 
elastic tensor of each element is calculated before the global stiffness matrix, K, assembly, where K is 
expressed as 

T
i i iK B D B dV

Ω

= ∫  (C.1) 

B is the strain-displacement matrix and D  is the elastic tensor of element i, and Ω is the total volume of 
the implant. Since the strain-displacement matrix is independent of the design variables, the derivation of 
the stiffness matrix with respect to the design variables (relative density of each element) can be 
expressed as follows: 

T i
i i

i i

DK B B dV
x xΩ

∂∂
=

∂ ∂∫  (C.2) 

Each mesh element corresponds to a tetrahedron-based cell that has three planes of symmetry; therefore 9 
elastic constants are needed in the constitutive equations: 3 Young’s moduli xE , yE , zE  , 3 Poisson’s  

ratios yzv , zxv  , xyv  and 3 shear moduli yzG , zxG  , yxG . The stiffness matrix of the unit cell can thus be 

expressed as  
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(C.3) 

Since AH is used to obtain the elastic constants of the unit cell across a range of relative densities, with 
results shown in Figure 4, we can represent the elastic tensor of each element as a function of the element 
relative density and then use it to evaluate the derivative of the elastic tensor with respect to the design 
variables. The strain-displacement matrix is also derived by differentiating the displacements expressed 
through shape functions and nodal displacements. A 10 nodes isoparametric tetrahedron element is used 
to mesh the FE model of the implanted tibia. Hence, the strain-displacement matrix can be written as 

1 2 3 4 5 6 7 8 9 10[ ]B B B B B B B B B B B=  (C.4) 
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where ,k xN , ,k yN  and ,k zN   are the derivative of the shape functions with respect to the global 

coordinate system. The shape functions of a tetrahedron element with respect to the isoparametric 
coordinate system given by r , s and t  (see figure below) can be defined as  
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(C.6) 

 To construct the strain-displacement matrix, the derivative of the shape functions with respect to the 
generalized coordinate system is computed via the chain rule as 

N N x N y N z
r x r y r z r
N N x N y N z
s x s y s z s
N N x N y N z
t x t y t z t
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= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 

(C.7a) 
 

(C.7b) 
 

(C.7c) 
 

Using (C.7) results in 
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where[ ]J is the Jacobian matrix. From (C.8), the Jacobian matrix of a 10 nodes tetrahedron element may 
be expressed [57] as 
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where {( , , ) | (1, 2,...,10)}i i ix y z i∈ are the coordinates of the element nodes. By substituting (C.8) into 
(C.5), the strain-displacement matrix is calculated. Once the strain-displacement matrix for each element 
is obtained, the gradient of the strain energy for the corresponding element is computed from (C.2). The 

sensitivity of the objective function ( )c x
x

∂
∂




 is assembled by the element sensitivity ( )

i

c x
x

∂
∂




 to obtain the 

vector of strain energy differentiation for the whole implant microarchitecture. The sensitivity analysis is 
then implemented under the optimization scheme described in section 3.1, so as to seek the optimum 
density distribution of the implant.    



21 
 

Appendix D: Convergence plot of the topology optimization scheme 
As described in section 3, a density-based topology optimization is used in this study to optimally tailor 
the density gradients of the implant. To ensure solution convergence, we resort to the optimality criteria 
methods [58], in particular here we use the standard optimality criterion  based on the Lagrangian 
function that benefits from knowledge on the physics and mechanics of the problem [73]. This method 
requires the calculation of the derivative of the objective function along with the derivative of the design 
constraints to update the design variables based on the initial guess [73].  

In this work, the derivative of the implant compliance - obtained as described in section 3 - is used with 
the standard optimality criterion to find the optimum density distribution. As per the initial guess, a 
uniform relative density of 0.5 is assigned to the implant and the total strain energy of the implant is 
calculated. The optimization continues until the difference between two successive iterations is below 
1%. As shown in the figure below, the objective function converges within 31 iterations.  
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Figures 
 

 
Figure 1: Flow chart illustrating the analysis and design scheme used to develop a graded cellular knee implant 

minimizing bone resorption and interface micromotion. Legend: mean stress: ,  alternating stress: , yield stress 

of tetrahedron cell unit: , fatigue strength of tetrahedron cell unit: ,  implant compliance: c, relative density of 

tetrahedron cell unit: ρ, minimum element density: ρmin , maximum element density: ρmax, displacement vector: U, 
stiffness matrix of tetrahedron unit cell: Ki, volume constraint: f,  predefined volume of the implant: V0,  force vector: 

F, implant safety factor: SF, minimum allowable safety factor: SFmin . 

 

Figure 1 
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Figure 2: CT scan data used to create the solid model of the tibia along with the dimensions of the tibia 
and tibial knee implant in mm. Frontal view of the tibia (a), sagittal view of the tibia (b), Frontal view of 
the implant (c), sagittal view of the implant (c). 
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Figure 3: 3D finite element model of the intact tibiae (a), and implanted prosthesis (b). 
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Figure 4: (A) Effective elastic and (B) effective strength properties of Tetrahedron based lattice as a function of 
relative density. Effective elastic properties and yield strengths normalized with respect to elastic properties and 
yield strengths of bulk material. Only three independent elastic constants are necessary for the tetrahedron-based 

cell which is orthotropic and has 3 planes of symmetry: (Young`s modulus), xyG (Shear modulus) and yzv  

(Poisson’s ratio). xxσ , xyσ  and bxyσ refer to uniaxial, shear and biaxial strength respectively. Values of ρ  above 

0.8 are dismissed due to cell topology degeneration. 
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Figure 5: (a) Von-Mises stress distribution; (b) optimum relative density distribution to ensure adequate fatigue 

resistance against daily cyclic loads; (c) graded cellular implant with tailored porosity in the stem ranging 0.3-0.7. A thin 
solid exterior (shown only partially in the figure) coats the stem, a clinically recommended feature introduced to ease 

implant removal at the time of revision surgery; (d) internal architecture of the tibial implant, where the thin shell is here 
omitted for a global visualization of the whole internal microstructure. 
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Figure 6: Interface micromotion distribution at 30% of gait cycle for a fully dense titanium implant (a), cellular implant 

with uniform relative density of 60% (b), and graded cellular implant (c). SA: surface area of the prosthesis [74]. 
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Figure 7: Interface micromotion distribution at deep bend for a fully dense titanium implant (a), cellular implant with 

uniform relative density of 60% (b), and a graded cellular implant (c). SA: surface area of the prosthesis [74]. 
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Figure 8: Relative distribution of interface micromotion around the stem surface with respect to the fully solid implant. 

% values are shown at the distal and mid regions along the stem length for 30% of gait cycle (a), and deep bend (b). 
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Figure 9: Distribution of bone resorption in knee prosthesis around (a) fully dense titanium implant; (b) cellular implant 
with uniform relative density of 60%; and (c) graded cellular implant. L: Lateral, M: Medial, A: Anterior, P: Posterior, 

AL: Anterolateral, AM: Anteromedial. 
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Figure 10: Percentage of bone resorption with respect to a fully solid tibial implant here taken as a baseline for (i) graded 

cellular implant, and (ii) uniform cellular implant with relative density of 0.6. 
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Figures in the Appendices 

 

 

Figure A.1: Linear relationship between Hounsfield number and both effective density and apparent 
density. 

 

Figure A.1 
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Figure D.1: The convergence plot of the topology optimization scheme. 
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Tables 

 

 No. Load case Force/N Moment/N.mm 
   F1 F2 F3 M1 M2 M3 
 
Level 
walking 

1 20% of gait cycle -76.05 -318.9 -169.96 2420 -1900 3430 
2 30% of gait cycle -144.65 -1442.14 52.79 3760 1090 -4790 
3 40% of gait cycle -71.96 -2141.34 61.18 8850 1070 20220 

Level 
bending 

4 Deep knee bend 75.8 -2537.57 -8.3 13220 -2230 12030 

Table.1 Loading values measured on an instrumented implant [47] and used in this study. F1, F2 and F3 act 
in the medio-lateral, vertical and posterior-anterior directions respectively. M1, M2 and M3 act in the 
sagittal, horizontal and frontal plane of the tibiae, as shown at the right top corner in Figure 3.  

 

 

Table 1 


	Abstract
	1.  Introduction
	2. Methodology
	2.1. Finite element model
	2.2. Homogenized mechanical properties
	2.2.1. Elastic properties of unit cell
	2.2.2. Fatigue properties


	3. Optimization scheme
	3.1.  Problem formulation

	4. Results and Discussion
	4.1.  Implant architecture
	4.2. Implant micromotion
	4.3. Bone resorption

	5.  Conclusion
	Appendix A: Assigning bone material properties using computed tomography (CT) data
	where E is the elastic modulus of bone, and v is its Poisson’s ratio. The properties are assumed to be isotropic, a simplification that does not lead to a considerable difference from the results that consider bone as orthotropic [39, 40]. This assump...
	Appendix C: Derivation of the stiffness tensor for the implant internal microstructure
	Appendix D: Convergence plot of the topology optimization scheme

